Science.gov

Sample records for aldehyde dehydrogenase inhibitor

  1. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases

    SciTech Connect

    Khanna, Mary; Chen, Che-Hong; Kimble-Hill, Ann; Parajuli, Bibek; Perez-Miller, Samantha; Baskaran, Sulochanadevi; Kim, Jeewon; Dria, Karl; Vasiliou, Vasilis; Mochly-Rosen, Daria; Hurley, Thomas D.

    2012-10-23

    Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated {beta}-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype.

  2. Characterization of Two Distinct Structural Classes of Selective Aldehyde Dehydrogenase 1A1 Inhibitors

    PubMed Central

    Morgan, Cynthia A.; Hurley, Thomas D.

    2015-01-01

    Aldehyde dehydrogenases (ALDH) catalyze the irreversible oxidation of aldehydes to their corresponding carboxylic acid. Alterations in ALDH1A1 activity are associated with such diverse diseases as cancer, Parkinson’s disease, obesity, and cataracts. Inhibitors of ALDH1A1 could aid in illuminating the role of this enzyme in disease processes. However, there are no commercially available selective inhibitors for ALDH1A1. Here we characterize two distinct chemical classes of inhibitors that are selective for human ALDH1A1 compared to eight other ALDH isoenzymes. The prototypical members of each structural class, CM026 and CM037, exhibit sub-micromolar inhibition constants, but have different mechanisms of inhibition. The crystal structures of these compounds bound to ALDH1A1 demonstrate that they bind within the aldehyde binding pocket of ALDH1A1 and exploit the presence of a unique Glycine residue to achieve their selectivity. These two novel and selective ALDH1A1 inhibitors may serve as chemical tools to better understand the contributions of ALDH1A1 to normal biology and to disease states. PMID:25634381

  3. Biological Evaluation and 3D-QSAR Studies of Curcumin Analogues as Aldehyde Dehydrogenase 1 Inhibitors

    PubMed Central

    Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi

    2014-01-01

    Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor. PMID:24840575

  4. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.

    PubMed

    Ma, Menggen; Wang, Xu; Zhang, Xiaoping; Zhao, Xianxian

    2013-09-01

    Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. PMID:23912116

  5. Discovery of NCT-501, a Potent and Selective Theophylline-Based Inhibitor of Aldehyde Dehydrogenase 1A1 (ALDH1A1).

    PubMed

    Yang, Shyh-Ming; Yasgar, Adam; Miller, Bettina; Lal-Nag, Madhu; Brimacombe, Kyle; Hu, Xin; Sun, Hongmao; Wang, Amy; Xu, Xin; Nguyen, Kimloan; Oppermann, Udo; Ferrer, Marc; Vasiliou, Vasilis; Simeonov, Anton; Jadhav, Ajit; Maloney, David J

    2015-08-13

    Aldehyde dehydrogenases (ALDHs) metabolize reactive aldehydes and possess important physiological and toxicological functions in areas such as CNS, metabolic disorders, and cancers. Increased ALDH (e.g., ALDH1A1) gene expression and catalytic activity are vital biomarkers in a number of malignancies and cancer stem cells, highlighting the need for the identification and development of small molecule ALDH inhibitors. A new series of theophylline-based analogs as potent ALDH1A1 inhibitors is described. The optimization of hits identified from a quantitative high throughput screening (qHTS) campaign led to analogs with improved potency and early ADME properties. This chemotype exhibits highly selective inhibition against ALDH1A1 over ALDH3A1, ALDH1B1, and ALDH2 isozymes as well as other dehydrogenases such as HPGD and HSD17β4. Moreover, the pharmacokinetic evaluation of selected analog 64 (NCT-501) is also highlighted. PMID:26207746

  6. Discovery of NCT-501, a Potent and Selective Theophylline-Based Inhibitor of Aldehyde Dehydrogenase 1A1 (ALDH1A1).

    PubMed

    Yang, Shyh-Ming; Yasgar, Adam; Miller, Bettina; Lal-Nag, Madhu; Brimacombe, Kyle; Hu, Xin; Sun, Hongmao; Wang, Amy; Xu, Xin; Nguyen, Kimloan; Oppermann, Udo; Ferrer, Marc; Vasiliou, Vasilis; Simeonov, Anton; Jadhav, Ajit; Maloney, David J

    2015-08-13

    Aldehyde dehydrogenases (ALDHs) metabolize reactive aldehydes and possess important physiological and toxicological functions in areas such as CNS, metabolic disorders, and cancers. Increased ALDH (e.g., ALDH1A1) gene expression and catalytic activity are vital biomarkers in a number of malignancies and cancer stem cells, highlighting the need for the identification and development of small molecule ALDH inhibitors. A new series of theophylline-based analogs as potent ALDH1A1 inhibitors is described. The optimization of hits identified from a quantitative high throughput screening (qHTS) campaign led to analogs with improved potency and early ADME properties. This chemotype exhibits highly selective inhibition against ALDH1A1 over ALDH3A1, ALDH1B1, and ALDH2 isozymes as well as other dehydrogenases such as HPGD and HSD17β4. Moreover, the pharmacokinetic evaluation of selected analog 64 (NCT-501) is also highlighted.

  7. Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects in vitro and in vivo

    PubMed Central

    Liu, Ningning; Hua, Xianliang; Cai, Jianyu; Yang, Changshan; Long, Huidan; Zhao, Chong; Chen, Xin; Lan, Xiaoying; Zang, Dan; Wu, Jinjie; Li, Xiaofen; Shi, Xianping; Wang, Xuejun; Liu, Jinbao

    2016-01-01

    Inhibition of proteasome-associated deubiquitinases (DUBs) is emerging as a novel strategy for cancer therapy. It was recently reported that auranofin (Aur), a gold (I)-containing compound used clinically to treat rheumatoid arthritis, is a proteasome-associated DUB inhibitor. Disulfiram (DSF), an inhibitor of aldehyde dehydrogenase, is currently in clinical use for treating alcoholism. Recent studies have indicated that DSF can also act as an antitumor agent. We investigated the effect of combining DSF and Aur on apoptosis induction and tumor growth in hepatoma cancer cells. Here we report that (i) the combined treatment of Aur and DSF results in synergistic cytotoxicity to hepatoma cells in vitro and in vivo; (ii) Aur and DSF in combination induces caspase activation, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS) production; (iii) pan-caspase inhibitor z-VAD-FMK could efficiently block apoptosis but not proteasome inhibition induced by Aur and DSF combined treatment, and ROS is not required for Aur+DSF to induce apoptosis. Collectively, we demonstrate a model of synergism between DSF and proteasome-associated DUB inhibitor Aur in the induction of apoptosis in hepatoma cancer cells, identifying a potential novel anticancer strategy for clinical use in the future. PMID:26625200

  8. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  9. The Aldehyde Dehydrogenase Gene Superfamily Resource Center

    PubMed Central

    2009-01-01

    The website http://www.aldh.org is a publicly available database for nomenclature and functional and molecular sequence information for members of the aldehyde dehydrogenase (ALDH) gene superfamily for animals, plants, fungi and bacteria. The site has organised gene-specific records. It provides synopses of ALDH gene records, marries trivial terms to correct nomenclature and links global accession identifiers with source data. Server-side alignment software characterises the integrity of each sequence relative to the latest genomic assembly and provides identifier-specific detail reports, including a graphical presentation of the transcript's exon - intron structure, its size, coding sequence, genomic strand and locus. Also included are a summary of substrates, inhibitors and enzyme kinetics. The site provides reference lists and is designed to facilitate data mining by interested investigators. PMID:20038501

  10. Mitochondrial aldehyde dehydrogenase and cardiac diseases

    PubMed Central

    Chen, Che-Hong; Sun, Lihan; Mochly-Rosen, Daria

    2010-01-01

    Numerous conditions promote oxidative stress, leading to the build-up of reactive aldehydes that cause cell damage and contribute to cardiac diseases. Aldehyde dehydrogenases (ALDHs) are important enzymes that eliminate toxic aldehydes by catalysing their oxidation to non-reactive acids. The review will discuss evidence indicating a role for a specific ALDH enzyme, the mitochondrial ALDH2, in combating oxidative stress by reducing the cellular ‘aldehydic load’. Epidemiological studies in humans carrying an inactive ALDH2, genetic models in mice with altered ALDH2 levels, and small molecule activators of ALDH2 all highlight the role of ALDH2 in cardioprotection and suggest a promising new direction in cardiovascular research and the development of new treatments for cardiovascular diseases. PMID:20558439

  11. Development of Selective Inhibitors for Human Aldehyde Dehydrogenase 3A1 (ALDH3A1) for the Enhancement of Cyclophosphamide Cytotoxicity

    PubMed Central

    Parajuli, Bibek; Georgiadis, Taxiarchis M.; Fishel, Melissa L.; Hurley, Thomas D.

    2014-01-01

    Aldehyde dehydrogenase 3A1 (ALDH3A1) plays an important role in many cellular oxidative processes, including cancer chemo-resistance by metabolizing activated forms of oxazaphosphorine drugs such as cyclophosphamide (CP) and its analogues such as mafosfamide (MF), ifosfamide (IFM), 4-hydroperoxycyclophosphamide (4-HPCP). Compounds that can selectively target ALDH3A1 may permit delineation of its roles in these processes and could restore chemosensitivity in cancer cells that express this isoenzyme. Here we report the detailed kinetic and structural characterization of an ALDH3A1 selective inhibitor, CB29, previously identified in a high throughput screen. Kinetic and crystallographic studies demonstrate that CB29 binds within the aldehyde substrate-binding site of ALDH3A1. Cellular proliferation of ALDH3A1-expressing lung adenocarcinoma (A549) and glioblastoma (SF767) cell lines, as well as the ALDH3A1 non-expressing lung fibroblast cells, CCD-13Lu, is unaffected by treatment with CB29 and its analogues alone. However, the sensitivity toward the anti-proliferative effects of mafosfamide is enhanced by treatment with CB29 and its analogue in the tumour cells. In contrast, the sensitivity of CCD-13Lu cells toward mafosfamide was unaffected by the addition of these same compounds. CB29 is chemically distinct from the previously reported small molecule inhibitors of ALDH isoenzymes and does not inhibit ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1 or ALDH2 isoenzymes at concentrations up to 250 μM. Thus, CB29 is a novel small molecule inhibitor of ALDH3A1, which may be useful as a chemical tool to delineate the role of ALDH3A1 in numerous metabolic pathways, including sensitizing ALDH3A1-positive cancer cells to oxazaphosphorines. PMID:24677340

  12. Insight into the Structural Requirements of Theophylline-Based Aldehyde Dehydrogenase lAl (ALDHlAl) Inhibitors Through Multi-QSAR Modeling and Molecular Docking Approaches.

    PubMed

    Abdul Amin, Sk; Adhikari, Nilanjan; Gayen, Shovanlal; Jha, Tarun

    2016-01-01

    Over expression of aldehyde dehydrogenase (ALDH1A1) is one of the vital hallmarks of the self-renewal and differentiational cancer stem cells (CSCs). Till now, no selective ALDH1A1 inhibitor is commercially available in the market. So there is an urgent need to explore some novel molecules which can selectively inhibit ALDH1A1 to combat cancer. Presently, our work deals with the development of QSAR models of some theophylline-based molecules by conventional 2D-QSAR, hologram QSAR (HQSAR), and Bayesian classification modeling. The descriptors identified from these QSAR models give avenues to modulate the structure of theophylline-based compounds to a desirable biological end point. Molecular docking study reveals the selectivity of these molecules towards ALDH1A1 (PDB: 4WP7) and important binding residues (GLY 125, 458; THR 129; TRP 178; TYR 297; PHE 171, 466; VAL 174, 460; MET 175; HIS 293 etc.) for the interaction with the receptors. The current study may help to design novel compounds as selective ALDH1A1 inhibitors. PMID:27132720

  13. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  14. Relationships within the aldehyde dehydrogenase extended family.

    PubMed

    Perozich, J; Nicholas, H; Wang, B C; Lindahl, R; Hempel, J

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.

  15. SAXS fingerprints of aldehyde dehydrogenase oligomers

    PubMed Central

    Tanner, John J.

    2015-01-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren–Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513–5522; Luo et al., J. Mol. Biol. 425 (2013) 3106–3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  16. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  17. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed

    Winberg, J O; McKinley-McKee, J S

    1998-02-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  18. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed Central

    Winberg, J O; McKinley-McKee, J S

    1998-01-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  19. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities

    PubMed Central

    Chen, Che-Hong; Ferreira, Julio Cesar Batista; Gross, Eric R.; Mochly-Rosen, Daria

    2014-01-01

    A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme. PMID:24382882

  20. DEVELOPMENTAL EXPRESSION OF ALDEHYDE DEHYDROGENASE IN RAT: A COMPARISON OF LIVER AND LUNG DEVELOPMENT

    EPA Science Inventory

    Metabolism is one of the major determinants for age-related susceptibility changes to chemicals. Aldehydes are highly reactive molecules present in the environment and can be produced during biotransformation of xenobiotics. Aldehyde dehydrogenases (ALDH) are important in aldehyd...

  1. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  2. Kinetic properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1978-01-01

    The kinetics of the NAD+-dependent oxidation of aldehydes, catalysed by aldehyde dehydrogenase purified from sheep liver mitochondria, were studied in detail. Lag phases were observed in the assays, the length of which were dependent on the enzyme concentration. The measured rates after the lag phase was over were directly proportional to the enzyme concentration. If enzyme was preincubated with NAD+, the lag phase was eliminated. Double-reciprocal plots with aldehyde as the variable substrate were non-linear, showing marked substrate activation. With NAD+ as the variable substrate, double-reciprocal plots were linear, and apparently parallel. Double-reciprocal plots with enzyme modified with disulfiram (tetraethylthiuram disulphide) or iodoacetamide, such that at pH 8.0 the activity was decreased to 50% of the control value, showed no substrate activation, and the plots were linear. At pH 7.0, the kinetic parameters Vmax. and Km NAD+- for the oxidation of acetaldehyde and butyraldehyde by the native enzyme are almost identical. Formaldehyde and propionaldehyde show the same apparent maximum rate. Aldehyde dehydrogenase is able to catalyse the hydrolysis of p-nitrophenyl esters. This esterase activity was stimulated by both NAD+ and NADH, the maximum rate for the NAD+ stimulated esterase reaction being roughly equal to the maximum rate for the oxidation of aldehydes. The mechanistic implications of the above behaviour are discussed. PMID:217355

  3. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    PubMed

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  4. Some properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1977-01-01

    Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents. PMID:194582

  5. Functional Specialization of Maize Mitochondrial Aldehyde Dehydrogenases1

    PubMed Central

    Liu, Feng; Schnable, Patrick S.

    2002-01-01

    The maize (Zea mays) rf2a and rf2b genes both encode homotetrameric aldehyde dehydrogenases (ALDHs). The RF2A protein was shown previously to accumulate in the mitochondria. In vitro import experiments and ALDH assays on mitochondrial extracts from rf2a mutant plants established that the RF2B protein also accumulates in the mitochondria. RNA gel-blot analyses and immunohistolocation experiments revealed that these two proteins have only partially redundant expression patterns in organs and cell types. For example, RF2A, but not RF2B, accumulates to high levels in the tapetal cells of anthers. Kinetic analyses established that RF2A and RF2B have quite different substrate specificities; although RF2A can oxidize a broad range of aldehydes, including aliphatic aldehydes and aromatic aldehydes, RF2B can oxidize only short-chain aliphatic aldehydes. These two enzymes also have different pH optima and responses to changes in substrate concentration. In addition, RF2A, but not RF2B or any other natural ALDHs, exhibits positive cooperativity. These functional specializations may explain why many species have two mitochondrial ALDHs. This study provides data that serve as a basis for identifying the physiological pathway by which the rf2a gene participates in normal anther development and the restoration of Texas cytoplasm-based male sterility. For example, the observations that Texas cytoplasm anthers do not accumulate elevated levels of reactive oxygen species or lipid peroxidation and the kinetic features of RF2A make it unlikely that rf2a restores fertility by preventing premature programmed cell death. PMID:12481049

  6. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    PubMed

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  7. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    PubMed

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  8. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  9. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  10. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.

  11. [Characterization of aldehyde dehydrogenase gene fragment from mung bean Vigna radiata using the polymerase chain reaction].

    PubMed

    Ponomarev, A G; Bubiakina, V V; Tatarinova, T D; Zelenin, S M

    1998-01-01

    Two degenerate oligonucleotide sequence primers and polymerase chain reactions on total DNA have been utilized to clone on 651--bp gene fragment coding the central part of amino acid sequence of an earlier unknown aldehyde dehydrogenase (ALDH) from mung bean. The deduced partial amino acid sequence for this aldehyde dehydrogenase shows about 65% sequence identity to ALDHs of Vibrio cholerae Rhodococcus sp., Alcaligenes eutrophus and about 45% sequence identity to mammalian ALDHs 1 and 2, ALDHs of Aspergillus niger and A, nidulans, the betain aldehyde dehydrogenase from spinach. Alignment of the mung bean aldehyde dehydrogenase partial amino acid sequence with the sequence of 16 NAD(P)(+)-dependent aldehyde dehydrogenases has demonstrated that all strictly conserved amino acid residues and all three conservative regions are identical. PMID:9778740

  12. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates.

    PubMed

    Kim, Young-Jin; Chung, Joo Eun; Kurisawa, Motoichi; Uyama, Hiroshi; Kobayashi, Shiro

    2004-01-01

    In this study, new tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates, have been developed. Tyrosinase is a copper-containing enzyme that catalyzes the hydroxylation of a monophenol (monophenolase activity) and the oxidation of an o-diphenol (diphenolase activity). In the measurement of tyrosinase inhibition activity, (+)-catechin acted as substrate and cofactor of tyrosinase. On the other hand, the polycondensates inhibited the tyrosine hydroxylation and L-DOPA oxidation by chelation to the active site of tyrosinase. The UV-visible spectrum of a mixture of tyrosinase and the polycondensate exhibited a characteristic shoulder peak ascribed to the chelation of the polycondensate to the active site of tyrosinase. Furthermore, circular dichroism measurement showed a small red shift of the band due to the interaction between tyrosinase and the polycondensate. These data support that the polycondensate acts as an inhibitor of tyrosinase. PMID:15003008

  13. Aldehyde dehydrogenase 1A1 in stem cells and cancer

    PubMed Central

    Tomita, Hiroyuki; Tanaka, Kaori; Tanaka, Takuji; Hara, Akira

    2016-01-01

    The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies. PMID:26783961

  14. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    SciTech Connect

    Tasayco, M.L.; Prestwich, G.D. )

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.

  15. Characteristics of aldehyde dehydrogenase 2 (Aldh2) knockout mice.

    PubMed

    Yu, Hsu-Sheng; Oyama, Tsunehiro; Isse, Toyohi; Kitakawa, Kyoko; Ogawa, Masanori; Pham, Thi-Thu-Phuong; Kawamoto, Toshihiro

    2009-11-01

    Acetaldehyde is an intermediate of ethanol oxidation. It covalently binds to DNA, and is known as a carcinogen. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme that oxidizes acetaldehyde. Approximately 45% of Chinese and Japanese individuals have the inactive ALDH2 genotypes (ALDH2*2/*2 and ALDH2*1/*2), and Aldh2 knockout mice appear to be a valid animal model for humans with inactive ALDH2. This review gives an overview of published studies on Aldh2 knockout mice, which were treated with ethanol or acetaldehyde. According to these studies, it was found that Aldh2 -/- mice (Aldh2 knockout mice) are more susceptible to ethanol and acetaldehyde-induced toxicity than Aldh2 +/+ mice (wild type mice). When mice were fed with ethanol, the mortality was increased. When they were exposed to atmospheres containing acetaldehyde, the Aldh2 -/- mice showed more severe toxic symptoms, like weight loss and higher blood acetaldehyde levels, as compared with the Aldh2 +/+ mice. Thus, ethanol and acetaldehyde treatment affects Aldh2 knockout mice more than wild type mice. Based on these findings, it is suggested that ethanol consumption and acetaldehyde inhalation are inferred to pose a higher risk to ALDH2-inactive humans. These results also support that ALDH2-deficient humans who habitually consume alcohol have a higher rate of cancer than humans with functional ALDH2. PMID:19874182

  16. Aldehyde dehydrogenase induction in arsenic-exposed rat bladder epithelium.

    PubMed

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2016-01-01

    Arsenic is widely distributed in the environment. Many human cancers, including urothelial carcinoma (UC), show a dose-dependent relationship with arsenic exposure in the south-west coast of Taiwan (also known as the blackfoot disease (BFD) areas). However, the molecular mechanisms of arsenic-mediated UC carcinogenesis has not yet been defined. In vivo study, the rat bladder epithelium were exposed with arsenic for 48 h. The proteins were extracted from untreated and arsenic-treated rat bladder cells and utilized two-dimensional gel electrophoresis and mass spectrometry. Selected peptides were extracted from the gel and identified by quadrupole-time of flight (Q-TOF) Ultima-Micromass spectra. The significantly difference expression of proteins in arsenic-treated groups as compared with untreated groups was confirmed by immunohistochemistry (IHC) and western blotting. We found that thirteen proteins were down-regulated and nine proteins were up-regulated in arsenic-treated rat bladder cells when compared with untreated groups. The IHC and western blotting results confirmed that aldehyde dehydrogenase (ALDH) protein was up-regulated in arsenic-treated rat bladder epithelium. Expression of ALDH protein was significantly higher in UC patients from BFD areas than those from non-BFD areas using IHC (p=0.018). In conclusion, the ALDH protein expression could be used as molecular markers for arsenic-induced transformation.

  17. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  18. Aldehyde dehydrogenase induction in arsenic-exposed rat bladder epithelium.

    PubMed

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2016-01-01

    Arsenic is widely distributed in the environment. Many human cancers, including urothelial carcinoma (UC), show a dose-dependent relationship with arsenic exposure in the south-west coast of Taiwan (also known as the blackfoot disease (BFD) areas). However, the molecular mechanisms of arsenic-mediated UC carcinogenesis has not yet been defined. In vivo study, the rat bladder epithelium were exposed with arsenic for 48 h. The proteins were extracted from untreated and arsenic-treated rat bladder cells and utilized two-dimensional gel electrophoresis and mass spectrometry. Selected peptides were extracted from the gel and identified by quadrupole-time of flight (Q-TOF) Ultima-Micromass spectra. The significantly difference expression of proteins in arsenic-treated groups as compared with untreated groups was confirmed by immunohistochemistry (IHC) and western blotting. We found that thirteen proteins were down-regulated and nine proteins were up-regulated in arsenic-treated rat bladder cells when compared with untreated groups. The IHC and western blotting results confirmed that aldehyde dehydrogenase (ALDH) protein was up-regulated in arsenic-treated rat bladder epithelium. Expression of ALDH protein was significantly higher in UC patients from BFD areas than those from non-BFD areas using IHC (p=0.018). In conclusion, the ALDH protein expression could be used as molecular markers for arsenic-induced transformation. PMID:26482281

  19. Vascular Bioactivation of Nitroglycerin by Aldehyde Dehydrogenase-2

    PubMed Central

    Lang, Barbara S.; Gorren, Antonius C. F.; Oberdorfer, Gustav; Wenzl, M. Verena; Furdui, Cristina M.; Poole, Leslie B.; Mayer, Bernd; Gruber, Karl

    2012-01-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes the bioactivation of nitroglycerin (glyceryl trinitrate, GTN) in blood vessels, resulting in vasodilation by nitric oxide (NO) or a related species. Because the mechanism of this reaction is still unclear we determined the three-dimensional structures of wild-type (WT) ALDH2 and of a triple mutant of the protein that exhibits low denitration activity (E268Q/C301S/C303S) in complex with GTN. The structure of the triple mutant showed that GTN binds to the active site via polar contacts to the oxyanion hole and to residues 268 and 301 as well as by van der Waals interactions to hydrophobic residues of the catalytic pocket. The structure of the GTN-soaked wild-type protein revealed a thionitrate adduct to Cys-302 as the first reaction intermediate, which was also found by mass spectrometry (MS) experiments. In addition, the MS data identified sulfinic acid as the irreversibly inactivated enzyme species. Assuming that the structures of the triple mutant and wild-type ALDH2 reflect binding of GTN to the catalytic site and the first reaction step, respectively, superposition of the two structures indicates that denitration of GTN is initiated by nucleophilic attack of Cys-302 at one of the terminal nitrate groups, resulting in formation of the observed thionitrate intermediate and release of 1,2-glyceryl dinitrate. Our results shed light on the molecular mechanism of the GTN denitration reaction and provide useful information on the structural requirements for high affinity binding of organic nitrates to the catalytic site of ALDH2. PMID:22988236

  20. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    PubMed

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-01

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  1. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle.

  2. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle. PMID:14756315

  3. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy.

  4. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  5. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells

    PubMed Central

    Vasiliou, Vasilis; Thompson, David C.; Smith, Clay; Fujita, Mayumi; Chen, Ying

    2014-01-01

    The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date, 24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity, ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes. PMID:23159885

  6. Changes in the inducibility of a hepatic aldehyde dehydrogenase by various effectors.

    PubMed

    Vasiliou, V; Marselos, M

    1989-01-01

    A hepatic soluble aldehyde dehydrogenase (ALDH), inducible by polycyclic aromatic hydrocarbons, was studied in Wistar rats in connection with substances known to affect drug metabolism or aldehyde dehydrogenase activity, such as phenobarbital (PB), disulfiram (DS), beta-diethylaminoethyl diphenylpropylacetate (SKF 525A) and calcium cyanamide (CC). 3-Methylcholanthrene (MC) was given as a model inducer of ALDH (100 mg/kg, i.p., as a single dose) and the animals were killed after 3 days. Pretreatment with PB (1 g/l drinking water, for 2 weeks) enhanced the inducing effect of MC. On the contrary, pretreatment with DS (100 mg/kg, i.p., daily x 4) reduced by 70% the expected increase in ALDH activity. Neither SKF 525A (25 mg/kg, i.p., daily x 4), nor CC (5 mg/kg, i.p., daily x 4) could affect the action of the inducer. At the above doses, basal ALDH activity was inhibited by DS (30%) and CC (70%), but was not affected at all by PB or SKF 525A. The results were somewhat different when the various effectors tested were administered to animals already treated with MC (20 mg/kg, i.p., daily x 6). In this case, DS did not affect the already induced ALDH activity. On the contrary, CC was still an effective inhibitor. Unexpectedly, post-treatment with SKF 525A further enhanced the initial induction brought about by MC. Our findings show that substances affecting microsomal drug metabolism can interfere with the process of ALDH induction by MC. The additive result of PB pretreatment is probably due to the enhanced accumulation of an active metabolite of MC.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    PubMed

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass. PMID:27003269

  8. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation.

    PubMed

    Neubauer, Regina; Neubauer, Andrea; Wölkart, Gerald; Schwarzenegger, Christine; Lang, Barbara; Schmidt, Kurt; Russwurm, Michael; Koesling, Doris; Gorren, Antonius C F; Schrammel, Astrid; Mayer, Bernd

    2013-09-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.

  9. Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1

    PubMed Central

    Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2015-01-01

    Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction

  10. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes. PMID:27580341

  11. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  12. Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity

    PubMed Central

    Brocker, Chad; Cantore, Miriam; Failli, Paola; Vasiliou, Vasilis

    2012-01-01

    Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H2O2) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation. PMID:21338592

  13. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.

    PubMed

    Frömmel, Jan; Tarkowski, Petr; Kopečný, David; Šebela, Marek

    2016-09-25

    Plant NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases. They participate in the metabolism of polyamines or osmoprotectants. The enzymes are characterized by their broad substrate specificity covering ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The isoenzyme 1 from tomato (Solanum lycopersicum; SlAMADH1) oxidizes aliphatic aldehydes very efficiently and converts also furfural, its derivatives or benzaldehyde, which are present at low concentrations in alcoholic distillates such as fruit brandy. In this work, SlAMADH1 was examined as a bioanalytical tool for their detection. These aldehydes arise from fermentation processes or thermal degradation of sugars and their presence is related to health complications after consumption including nausea, emesis, sweating, decrease in blood pressure, hangover headache, among others. Sixteen samples of slivovitz (plum brandy) from local producers in Moravia, Czech Republic, were analyzed for their aldehyde content using a spectrophotometric activity assay with SlAMADH1. In all cases, there were oxidative responses observed when monitoring NADH production in the enzymatic reaction. Aldehydes in the distillate samples were also subjected to a standard determination using reversed-phase HPLC with spectrophotometric and tandem mass spectrometric detection after a derivatization with 2,4-dinitrophenylhydrazine. Results obtained by both methods were found to correlate well for a majority of the analyzed samples. The possible applicability of SlAMADH1 for the evaluation of aldehyde content in food and beverages has now been demonstrated. PMID:26703808

  14. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors

    PubMed Central

    Venton, G; Pérez-Alea, M; Baier, C; Fournet, G; Quash, G; Labiad, Y; Martin, G; Sanderson, F; Poullin, P; Suchon, P; Farnault, L; Nguyen, C; Brunet, C; Ceylan, I; Costello, R T

    2016-01-01

    The vast majority of patients with acute myeloid leukemia (AML) achieve complete remission (CR) after standard induction chemotherapy. However, the majority subsequently relapse and die of the disease. A leukemia stem cell (LSC) paradigm has been invoked to explain this failure of CR to reliably translate into cure. Indeed, LSCs are highly enriched in CD34+CD38− leukemic cells that exhibit positive aldehyde dehydrogenase activity (ALDH+) on flow cytometry, these LSCs are resistant to currently existing treatments in AML such as cytarabine and anthracycline that, at the cost of great toxicity on normal cells, are highly active against the leukemic bulk, but spare the LSCs responsible for relapse. To try to combat the LSC population selectively, a well-characterized ALDH inhibitor by the trivial name of dimethyl ampal thiolester (DIMATE) was assessed on sorted CD34+CD38− subpopulations from AML patients and healthy patients. ALDH activity and cell viability were monitored by flow cytometry. From enzyme kinetic studies DIMATE is an active enzyme-dependent, competitive, irreversible inhibitor of ALDH1. On cells in culture, DIMATE is a powerful inhibitor of ALDHs 1 and 3, has a major cytotoxic activity on human AML cell lines. Moreover, DIMATE is highly active against leukemic populations enriched in LSCs, but, unlike conventional chemotherapy, DIMATE is not toxic for healthy hematopoietic stem cells which retained, after treatment, their self-renewing and multi-lineage differentiation capacity in immunodeficient mice, xenografted with human leukemic cells. DIMATE eradicates specifically human AML cells and spares healthy mouse hematologic cells. PMID:27611922

  15. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors.

    PubMed

    Venton, G; Pérez-Alea, M; Baier, C; Fournet, G; Quash, G; Labiad, Y; Martin, G; Sanderson, F; Poullin, P; Suchon, P; Farnault, L; Nguyen, C; Brunet, C; Ceylan, I; Costello, R T

    2016-01-01

    The vast majority of patients with acute myeloid leukemia (AML) achieve complete remission (CR) after standard induction chemotherapy. However, the majority subsequently relapse and die of the disease. A leukemia stem cell (LSC) paradigm has been invoked to explain this failure of CR to reliably translate into cure. Indeed, LSCs are highly enriched in CD34+CD38- leukemic cells that exhibit positive aldehyde dehydrogenase activity (ALDH+) on flow cytometry, these LSCs are resistant to currently existing treatments in AML such as cytarabine and anthracycline that, at the cost of great toxicity on normal cells, are highly active against the leukemic bulk, but spare the LSCs responsible for relapse. To try to combat the LSC population selectively, a well-characterized ALDH inhibitor by the trivial name of dimethyl ampal thiolester (DIMATE) was assessed on sorted CD34+CD38- subpopulations from AML patients and healthy patients. ALDH activity and cell viability were monitored by flow cytometry. From enzyme kinetic studies DIMATE is an active enzyme-dependent, competitive, irreversible inhibitor of ALDH1. On cells in culture, DIMATE is a powerful inhibitor of ALDHs 1 and 3, has a major cytotoxic activity on human AML cell lines. Moreover, DIMATE is highly active against leukemic populations enriched in LSCs, but, unlike conventional chemotherapy, DIMATE is not toxic for healthy hematopoietic stem cells which retained, after treatment, their self-renewing and multi-lineage differentiation capacity in immunodeficient mice, xenografted with human leukemic cells. DIMATE eradicates specifically human AML cells and spares healthy mouse hematologic cells. PMID:27611922

  16. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N.

  17. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  18. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    PubMed

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  19. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus

    PubMed Central

    Halavaty, Andrei S.; Rich, Rebecca L.; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R.; Myszka, David G.; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F.; Anderson, Wayne F.

    2015-01-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD+) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD+, NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme. PMID:25945581

  20. Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels

    PubMed Central

    Neubauer, Regina; Wölkart, Gerald; Opelt, Marissa; Schwarzenegger, Christine; Hofinger, Marielies; Neubauer, Andrea; Kollau, Alexander; Schmidt, Kurt; Schrammel, Astrid; Mayer, Bernd

    2015-01-01

    The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2. PMID:25576686

  1. Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels.

    PubMed

    Neubauer, Regina; Wölkart, Gerald; Opelt, Marissa; Schwarzenegger, Christine; Hofinger, Marielies; Neubauer, Andrea; Kollau, Alexander; Schmidt, Kurt; Schrammel, Astrid; Mayer, Bernd

    2015-02-15

    The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2.

  2. Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria.

    PubMed

    Senior, D J; Tsai, C S

    1988-04-01

    Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated. PMID:3355167

  3. Correlation of loss of activity of human aldehyde dehydrogenase with reaction of bromoacetophenone with glutamic acid-268 and cysteine-302 residues. Partial-sites reactivity of aldehyde dehydrogenase.

    PubMed Central

    Abriola, D P; MacKerell, A D; Pietruszko, R

    1990-01-01

    Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete. PMID:1968743

  4. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    PubMed

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  5. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    PubMed

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  6. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...

  7. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde

    PubMed Central

    Ma, Heng; Guo, Rui; Yu, Lu; Zhang, Yingmei; Ren, Jun

    2011-01-01

    Aims The present study was designed to examine the mechanism involved in mitochondrial aldehyde dehydrogenase (ALDH2)-induced cardioprotection against ischaemia/reperfusion (I/R) injury with a focus on autophagy. Methods Wild-type (WT), ALDH2 overexpression, and knockout (KO) mice (n = 4–6 for each index measured) were subjected to I/R, and myocardial function was assessed using echocardiographic, Langendroff, and edge-detection systems. Western blotting was used to evaluate AMP-dependent protein kinase (AMPK), Akt, autophagy, and the AMPK/Akt upstream signalling LKB1 and PTEN. Results ALDH2 overexpression and KO significantly attenuated and accentuated, respectively, infarct size, factional shortening, and recovery of post-ischaemic left ventricular function following I/R as well as hypoxia/reoxygenation-induced cardiomyocyte contractile dysfunction. Autophagy was induced during ischaemia and remained elevated during reperfusion. ALDH2 significantly promoted autophagy during ischaemia, which was accompanied by AMPK activation and mammalian target of rapamycin (mTOR) inhibition. On the contrary, ALDH2 overtly inhibited autophagy during reperfusion accompanied by the activation of Akt and mTOR. Inhibition and induction of autophagy mitigated ALDH2-induced protection against cell death in hypoxia and reoxygenation, respectively. In addition, levels of the endogenous toxic aldehyde 4-hydroxy-2-nonenal (4-HNE) were elevated by ischaemia and reperfusion, which was abrogated by ALDH2. Furthermore, ALDH2 ablated 4-HNE-induced cardiomyocyte dysfunction and protein damage, whereas 4-HNE directly decreased pan and phosphorylated LKB1 and PTEN expression. Conclusion Our data suggest a myocardial protective effect of ALDH2 against I/R injury possibly through detoxification of toxic aldehyde and a differential regulation of autophagy through AMPK- and Akt-mTOR signalling during ischaemia and reperfusion, respectively. PMID:20705694

  8. Aldehyde Dehydrogenase 2 Knockout Accentuates Ethanol-Induced Cardiac Depression: Role of Protein Phosphatases

    PubMed Central

    Ma, Heng; Byra, Emily A.; Yu, Lu; Hu, Nan; Kitagawa, Kyoko; Nakayama, Keiichi I.; Kawamoto, Toshihiro; Ren, Jun

    2010-01-01

    Alcohol consumption leads to myocardial contractile dysfunction possibly due to the toxicity of ethanol and its major metabolite acetaldehyde. This study was designed to examine the influence of mitochondrial aldehyde dehydrogenase-2 (ALDH2) knockout (KO) on acute ethanol exposure-induced cardiomyocyte dysfunction. Wild-type (WT) and ALDH2 KO mice were subjected to acute ethanol (3 g/kg, i.p.) challenge and cardiomyocyte contractile function was assessed 24 hrs later using an IonOptix® edge-detection system. Western blot analysis was performed to evaluate ALDH2, protein phosphatase 2A (PP2A), phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β). ALDH2 KO accentuated ethanol-induced elevation in cardiac acetaldehyde levels. Ethanol exposure depressed cardiomyocyte contractile function including decreased cell shortening amplitude and maximal velocity of shortening/relengthening as well as prolonged relengthening duration and a greater decline in peak shortening in response to increasing stimulus frequency, the effect of which was significantly exaggerated by ALDH2 KO. ALDH2 KO also unmasked an ethanol-induced prolongation of shortening duration. In addition, short-term in vitro incubation of ethanol-induced cardiomyocyte mechanical defects were exacerbated by the ALDH inhibitor cyanamide. Ethanol treatment dampened phosphorylation of Akt and GSK-3β associated with up-regulated PP2A, which was accentuated by ALDH2 KO. ALDH2 KO aggravated ethanol-induced decrease in mitochondrial membrane potential. These results suggested that ALDH2 deficiency led to worsened ethanol-induced cardiomyocyte function, possibly due to upregulated expression of protein phosphatase, depressed Akt activation and subsequently impaired mitochondrial function. These findings depict a critical role of ALDH2 in the pathogenesis of alcoholic cardiomyopathy. PMID:20362583

  9. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    PubMed

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  10. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592.

    PubMed Central

    Yan, R T; Chen, J S

    1990-01-01

    Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay. Images PMID:2275527

  11. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  12. The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions.

    PubMed

    Pineda, Erika; Encalada, Rusely; Olivos-García, Alfonso; Néquiz, Mario; Moreno-Sánchez, Rafael; Saavedra, Emma

    2013-01-16

    By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde-alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux-control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and -0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux-control on the carbon end-product formation of amoebas subjected to aerobic conditions. PMID:23201265

  13. A gatekeeper helix determines the substrate specificity of Sjögren–Larsson Syndrome enzyme fatty aldehyde dehydrogenase

    PubMed Central

    Keller, Markus A.; Zander, Ulrich; Fuchs, Julian E.; Kreutz, Christoph; Watschinger, Katrin; Mueller, Thomas; Golderer, Georg; Liedl, Klaus R.; Ralser, Markus; Kräutler, Bernhard; Werner, Ernst R.; Marquez, Jose A.

    2014-01-01

    Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren–Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a ‘gatekeeper’ helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site. Activity assays demonstrate that the gatekeeper helix is important for directing the substrate specificity of FALDH towards long-chain fatty aldehydes. The gatekeeper feature is conserved across membrane-associated aldehyde dehydrogenases. Finally, we provide insight into the previously elusive molecular basis of SLS-causing mutations. PMID:25047030

  14. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs

    PubMed Central

    Bilgihan, K.; Bilgihan, A.; Turkozkan, N.

    1998-01-01

    BACKGROUND—The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions.
METHODS—In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours.
RESULTS—The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p>0.05). The corneal ALDH activities were found to be significantly decreased (p<0.05) and GST activities increased (p<0.05) in group III.
CONCLUSION—These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

 Keywords: excimer laser keratectomy; aldehyde dehydrogenase; glutathione S-transferase PMID:9602629

  15. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain

    PubMed Central

    Zambelli, Vanessa O.; Gross, Eric R.; Chen, Che-Hong; Gutierrez, Vanessa P.; Cury, Yara; Mochly-Rosen, Daria

    2014-01-01

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase 2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2=0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than wild-type mice. Finally, Alda-1 treatment was also beneficial when given even after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance. PMID:25163478

  16. Partial reversal of the acetaldehyde and butyraldehyde oxidation reactions catalysed by aldehyde dehydrogenases from sheep liver.

    PubMed Central

    Hart, G J; Dickinson, F M

    1978-01-01

    In the presence of acetic anhydride or butyric anhydride, liver aldehyde dehydrogenases catalyse the oxidation of NADH at pH 7.0 and 25 degrees C. The maximum velocities and Michaelis constants for NADH at saturating anhydride concentrations are independent of which anhydride is used, the values being V'max. = 12 min-1 and Km for NADH = 9 micrometer for the mitochondrial enzyme and V'max = 25 min-1 and Km for NADH = 20 micrometer for the cytoplasmic enzyme. Substitution of [4A-2H]NADH for NADH resulted in 2-fold and 4-fold decreases in rate for the mitochondrial and cytoplasmic enzymes respectively. PMID:217349

  17. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7.

    PubMed

    Končitíková, Radka; Vigouroux, Armelle; Kopečná, Martina; Andree, Tomáš; Bartoš, Jan; Šebela, Marek; Moréra, Solange; Kopečný, David

    2015-05-15

    Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes. PMID:25734422

  18. Structural Basis of Substrate Recognition by Aldehyde Dehydrogenase 7A1

    PubMed Central

    2016-01-01

    Aldehyde dehydrogenase 7A1 (ALDH7A1) is part of lysine catabolism and catalyzes the NAD+-dependent oxidation of α-aminoadipate semialdehyde to α-aminoadipate. Herein, we describe a structural study of human ALDH7A1 focused on substrate recognition. Five crystal structures and small-angle X-ray scattering data are reported, including the first crystal structure of any ALDH7 family member complexed with α-aminoadipate. The product binds with the ε-carboxylate in the oxyanion hole, the aliphatic chain packed into an aromatic box, and the distal end of the product anchored by electrostatic interactions with five conserved residues. This binding mode resembles that of glutamate bound to the proline catabolic enzyme ALDH4A1. Analysis of ALDH7A1 and ALDH4A1 structures suggests key interactions that underlie substrate discrimination. Structures of apo ALDH7A1 reveal dramatic conformational differences from the product complex. Product binding is associated with a 16 Å movement of the C-terminus into the active site, which stabilizes the active conformation of the aldehyde substrate anchor loop. The fact that the C-terminus is part of the active site was hitherto unknown. Interestingly, the C-terminus and aldehyde anchor loop are disordered in a new tetragonal crystal form of the apoenzyme, implying that these parts of the enzyme are highly flexible. Our results suggest that the active site of ALDH7A1 is disassembled when the aldehyde site is vacant, and the C-terminus is a mobile element that forms quaternary structural interactions that aid aldehyde binding. These results are relevant to the c.1512delG genetic deletion associated with pyridoxine-dependent epilepsy, which alters the C-terminus of ALDH7A1. PMID:26260980

  19. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  20. The effects of alcohol and aldehyde dehydrogenases on disorders of hematopoiesis.

    PubMed

    Smith, Clay; Gasparetto, Maura; Jordan, Craig; Pollyea, Daniel A; Vasiliou, Vasilis

    2015-01-01

    Hematopoiesis involves the orderly production of millions of blood cells per second from a small number of essential bone marrow cells termed hematopoietic stem cells (HSCs). Ethanol suppresses normal hematopoiesis resulting in leukopenia, anemia, and thrombocytopenia and may also predispose to the development of diseases such as myelodysplasia (MDS) and acute leukemia. Currently the exact mechanisms by which ethanol perturbs hematopoiesis are unclear. The aldehyde dehydrogenase (ALDH) gene family plays a major role in the metabolism of reactive aldehydes derived from ethanol in the liver and other organs. At least one of the ALDH isoforms, ALDH1A1, is expressed at high levels in HSCs in humans, mice, and other organisms. Recent data indicate that ALDH1A1 and possibly other ALDH isoforms may metabolize reactive aldehydes in HSCs and other hematopoietic cells as they do in the liver and elsewhere. In addition, loss of these ALDHs leads to perturbation of a variety of cell processes that may predispose HSCs to disorders in growth and leukemic transformation. From these findings, we suggest a hypothesis that the cytopenias and possible increased risk of MDS and acute leukemia in heavy alcohol users is due to polymorphisms in genes responsible for metabolism of alcohol derived reactive aldehydes and repair of their DNA adducts in HSCs and other hematopoietic cells. In the article, we will summarize the biological properties of hematopoietic cells and diseases related to ethanol consumption, discuss molecular characteristics of ethanol metabolism, and describe a model to explain how ethanol derived reactive aldehydes may promote HSC damage. PMID:25427917

  1. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics

    PubMed Central

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.

    2012-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  2. The subcellular distribution and properties of aldehyde dehydrogenases in rat liver

    PubMed Central

    Tottmar, S. O. C.; Pettersson, H.; Kiessling, K.-H.

    1973-01-01

    1. Kinetic experiments suggested the possible existence of at least two different NAD+-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP+-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The Km for acetaldehyde was apparently less than 10μm for enzyme I and 0.9–1.7mm for enzyme II. The Km for NAD+ was similar for both enzymes (20–30μm). The Km for NADP+ was 2–3mm and for acetaldehyde 0.5–0.7mm for the NADP+-dependent activity. 4. The NAD+-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources. PMID:4149764

  3. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH)

    SciTech Connect

    Rogers, G.R.; Markova, N.G.; Compton, J.G.

    1997-01-15

    Mutations in the fatty aldehyde dehydrogenase (FALDH) gene cause Sjoegren-Larsson syndrome (SLS) - a disease characterized by mental retardation, spasticity, and congenital ichthyosis. To facilitate mutation analysis in SLS and to study the pathogenesis of FALDH deficiency, we have determined the structural organization and characterized expression of the FALDH (proposed designation ALDH10) gene. The gene consists of 10 exons spanning about 30.5 kb. A TATA-less promoter is associated with the major transcription initiation site found to be 258 hp upstream of the ATG codon. The G4C-rich sequences surrounding the transcription initiation site encompassed regulatory elements that interacted with proteins in HeLa nuclear extracts and were able to promote transcription in vitro. FALDH is widely expressed as three transcripts of 2, 3.8, and 4.0 kb, which originate from multiple polyadenylation signals in the 3{prime} UTR. An alternatively spliced mRNA was detected that contains an extra exon and encodes an enzyme that is likely to have altered membrane-binding properties. The FALDH gene lies only 50-85 kb from ALDH3, an aldehyde dehydrogenase gene that has homologous sequence and intron/exon structure. 25 refs., 4 figs., 1 tab.

  4. Ocular Aldehyde Dehydrogenases: Protection against Ultraviolet Damage and Maintenance of Transparency for Vision

    PubMed Central

    Chen, Ying; Thompson, David C.; Koppaka, Vindhya; Jester, James V.; Vasiliou, Vasilis

    2012-01-01

    Aldehyde dehydrogenase (ALDH) enzymes catalyze the NAD(P)+-dependent oxidation of a wide variety of endogenous and exogenous aldehydes to their corresponding acids. Some members of the ALDH superfamily of enzymes are abundantly expressed in the mammalian cornea and lens in a taxon-specific manner. Considered to be corneal and lens crystallins, they confer protective and transparent properties upon these ocular tissues. ALDH3A1 is highly expressed in the cornea of most mammals, with the exception of rabbit that expresses exclusively ALDH1A1 in the cornea. ALDH1A1 is present in both the cornea and lens of several animal species. As a result of their catalytic and non-catalytic functions, ALDH3A1 and ALDH1A1 proteins protect inner ocular tissues from ultraviolet radiation and reactive oxygen-induced damage. In addition, these corneal crystallins contribute to cellular transparency in corneal stromal keratocytes, supporting a structural role of these ALDH proteins. A putative regulatory function of ALDH3A1 on corneal cell proliferation has also been proposed. Finally, the three retinaldehye dehydrogenases cooperatively mediate retinoic acid signaling during the eye development. PMID:23098688

  5. Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells.

    PubMed

    Van Wassenhove, Lauren D; Mochly-Rosen, Daria; Weinberg, Kenneth I

    2016-09-01

    Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. PMID:27650066

  6. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-01

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  7. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    PubMed

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  8. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  9. NAD(P)-Dependent Aldehyde Dehydrogenases Induced during Growth of Ralstonia eutropha Strain Bo on Tetrahydrofurfuryl Alcohol

    PubMed Central

    Schräder, Thomas; Zarnt, Grit; Andreesen, Jan R.

    2001-01-01

    Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4. PMID:11717302

  10. Mitochondrial aldehyde dehydrogenase mediates vasodilator responses of glyceryl trinitrate and sodium nitrite in the pulmonary vascular bed of the rat.

    PubMed

    Badejo, Adeleke M; Hodnette, Chris; Dhaliwal, Jasdeep S; Casey, David B; Pankey, Edward; Murthy, Subramanyam N; Nossaman, Bobby D; Hyman, Albert L; Kadowitz, Philip J

    2010-09-01

    It has been reported that mitochondrial aldehyde dehydrogenase (ALDH2) catalyzes the formation of glyceryl dinitrate and inorganic nitrite from glyceryl trinitrate (GTN), leading to an increase in cGMP and vasodilation in the coronary and systemic vascular beds. However, the role of nitric oxide (NO) formed from nitrite in mediating the response to GTN in the pulmonary vascular bed is uncertain. The purpose of the present study was to determine if nitrite plays a role in mediating vasodilator responses to GTN. In this study, intravenous injections of GTN and sodium nitrite decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressure under baseline and elevated tone conditions and decreases in systemic arterial pressure in response to GTN and sodium nitrite were attenuated by cyanamide, an ALDH2 inhibitor, whereas responses to the NO donor, sodium nitroprusside (SNP), were not altered. The decreases in pulmonary and systemic arterial pressure in response to GTN and SNP were not altered by allopurinol, an inhibitor of xanthine oxidoreductase, whereas responses to sodium nitrite were attenuated. GTN was approximately 1,000-fold more potent than sodium nitrite in decreasing pulmonary and systemic arterial pressures. These results suggest that ALDH2 plays an important role in the bioactivation of GTN and nitrite in the pulmonary and systemic vascular beds and that the reduction of nitrite to vasoactive NO does not play an important role in mediating vasodilator responses to GTN in the intact chest rat.

  11. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  12. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    PubMed

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    polyol dehydrogenases are encountered. The two isozymes of human aldehyde dehydrogenase also exhibit considerable differences, with only 68% structural identity. The results show an early divergence into isozymes before the man/horse species radiation. Cys-302 is a functionally important residue and is located in one of the regions with conserved hydrophobic properties. Other regions with large differences in hydropathic properties may explain the absence of cross-hybridizing isozyme forms of human liver aldehyde dehydrogenase.

  13. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    PubMed

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  14. Inactivation of cytosolic aldehyde dehydrogenase via-nitrosylation in ethanol-exposed rat liver

    PubMed Central

    Moon, Kwan-Hoon; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2009-01-01

    Aldehyde dehydrogenase (ALDH) isozymes are critically important in the metabolism of acetaldehyde, thus preventing its accumulation after ethanol exposure. We previously reported that mitochondrial ALDH2 could be inactivated via -nitrosylation in ethanol-exposed rats. This study was aimed at investigating whether cytosolic ALDH1, with a relatively low- value (11–18 μM) for acetaldehyde, could be also inhibited in ethanol-exposed rats. Chronic or binge ethanol exposure significantly decreased ALDH1 activity, which was restored by addition of dithiothreitol. Immunoblot analysis with the anti--nitroso-Cys antibody showed one immunoreactive band in the immunoprecipiated ALDH1 only from ethanol-exposed rats, but not from pair-fed controls, suggesting -nitrosylation of ALDH1. Therefore inactivation of ALDH1 via -nitrosylation can result in accumulation of acetaldehyde upon ethanol exposure. PMID:17673211

  15. Benomyl, Aldehyde Dehydrogenase, DOPAL, and the Catecholaldehyde Hypothesis for the Pathogenesis of Parkinson’s Disease

    PubMed Central

    2015-01-01

    The dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is detoxified mainly by aldehyde dehydrogenase (ALDH). We find that the fungicide benomyl potently and rapidly inhibits ALDH and builds up DOPAL in vivo in mouse striatum and in vitro in PC12 cells and human cultured fibroblasts and glial cells. The in vivo results resemble those noted previously with knockouts of the genes encoding ALDH1A1 and 2, a mouse model of aging-related Parkinson’s disease (PD). Exposure to pesticides that inhibit ALDH may therefore increase PD risk via DOPAL buildup. This study lends support to the “catecholaldehyde hypothesis” that the autotoxic dopamine metabolite DOPAL plays a pathogenic role in PD. PMID:25045800

  16. A Personalized Medicine Approach for Asian Americans with the Aldehyde Dehydrogenase 2*2 Variant

    PubMed Central

    Gross, Eric R.; Zambelli, Vanessa O.; Small, Bryce A.; Ferreira, Julio C.B.; Chen, Che-Hong; Mochly-Rosen, Daria

    2015-01-01

    Asian Americans are one of the fastest-growing populations in the United States. A relatively large subset of this population carries a unique loss-of-function point mutation in aldehyde dehydrogenase 2 (ALDH2), ALDH2*2. Found in approximately 560 million people of East Asian descent, ALDH2*2 reduces enzymatic activity by approximately 60% to 80% in heterozygotes. Furthermore, this variant is associated with a higher risk for several diseases affecting many organ systems, including a particularly high incidence relative to the general population of esophageal cancer, myocardial infarction, and osteoporosis. In this review, we discuss the pathophysiology associated with the ALDH2*2 variant, describe why this variant needs to be considered when selecting drug treatments, and suggest a personalized medicine approach for Asian American carriers of this variant. We also discuss future clinical and translational perspectives regarding ALDH2*2 research. PMID:25292432

  17. Aldehyde Dehydrogenase 2 Has Cardioprotective Effects on Myocardial Ischaemia/Reperfusion Injury via Suppressing Mitophagy

    PubMed Central

    Ji, Wenqing; Wei, Shujian; Hao, Panpan; Xing, Junhui; Yuan, Qiuhuan; Wang, Jiali; Xu, Feng; Chen, Yuguo

    2016-01-01

    Mitophagy, a selective form of autophagy, is excessively activated in myocardial ischemia/reperfusion (I/R). The study investigated whether aldehyde dehydrogenase 2 (ALDH2) exerted its cardioprotective effect by regulating mitophagy. Myocardial infarct size and apoptosis after I/R in rats were ameliorated by Alda-1, an ALDH2 activator, and aggravated by ALDH2 inhibition. Both in I/R rats and hypoxia/reoxygenation H9C2 cells, ALDH2 activation suppressed phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin expression, regulating mitophagy, by preventing 4-hydroxynonenal, reactive oxygen species and mitochondrial superoxide accumulation. Furthermore, the effect was enhanced by ALDH2 inhibition. Thus, ALDH2 may protect hearts against I/R injury by suppressing PINK1/Parkin–dependent mitophagy. PMID:27148058

  18. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    PubMed

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  19. IN VITRO ORGANIC NITRATE BIOACTIVATION TO NITRIC OXIDE BY RECOMBINANT ALDEHYDE DEHYDROGENASE 3A1

    PubMed Central

    Lin, Shunxin; Page, Nathaniel A.; Fung, Sun Mi; Fung, Ho-Leung

    2013-01-01

    Organic nitrates (ORNs) are commonly used anti-ischemic and anti-anginal agents, which serve as an exogenous source of the potent vasodilator nitric oxide (NO). Recently, both mitochondrial aldehyde dehydrogenase-2 (ALDH2) and cytosolic aldehyde dehydrogenase-1a1 (ALDH1A1) have been shown to exhibit the ability to selectively bioactivate various ORNs in vitro. The objective of the present research was to examine the potential role of ALDH3A1, another major cytosolic isoform of ALDH, in the in vitro bioactivation of various ORNs, and to estimate the enzyme kinetic parameters toward ORNs through mechanistic modeling. The extent of bioactivation was assayed by exposing recombinant ALDH3A1 to various concentrations of ORNs, and measuring the concentration-time profiles of released NO via a NO-specific electrode. Metabolite formation kinetics was monitored for nitroglycerin (NTG) using LC/MS/MS. Our results showed that ALDH3A1 mRNA and protein were highly expressed in C57BL/6 mouse aortic, cardiac, and hepatic tissues, and it was able to release NO from several ORNs, including NTG, isosorbide dinitrate (ISDN), isosorbide-2-mononitrate (IS-2-MN), and nicorandil with similar Vmax (0.175 – 0.503 nmol/min/mg of ALDH3A1), and Km values of 4.01, 46.5, 818 and 5.75 × 103 μM respectively. However, activation of isosorbide-5-mononitrate (IS-5-MN) by ALDH3A1 was undetectable in vitro. ALDH3A1 was also shown to denitrate NTG, producing primarily glyceryl 1, 2-dinitrate (1, 2-GDN) in preference to glyceryl 1, 3-dinitrate (1, 3-GDN). Therefore, ALDH3A1 may contribute to the bioactivation of ORNs in vivo. PMID:24126018

  20. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation.

    PubMed

    Wenzl, M Verena; Beretta, Matteo; Griesberger, Martina; Russwurm, Michael; Koesling, Doris; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2011-08-01

    To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.

  1. Betaine Accumulation and Betaine-Aldehyde Dehydrogenase in Spinach Leaves 1

    PubMed Central

    Pan, Shu-Mei; Moreau, Robert A.; Yu, Charles; Huang, Anthony H. C.

    1981-01-01

    Spinach leaf discs accumulated betaine when exposed to a mannitol solution of −20 bars. The accumulation was 12 micromoles per gram original fresh weight in a 24-hour period. Betaine-aldehyde dehydrogenase (EC 1.2.1.8) was assayed in various subcellular fractions prepared from spinach leaves, and it was found only in the soluble fraction. This cytosolic enzyme was purified 175-fold, and its properties were studied. The enzyme was relatively specific for betaine aldehyde as the substrate with an apparent Km value of 2.08 × 10−4 molar. It also exerted activity on other aldehyde analogs tested, but with lower Vmax and higher Km values. The enzyme was relatively specific for nicotinamide adenine dinucleotide as the coenzyme, having an apparent Km value of 9.46 × 10−6 molar; lower activities were observed when nicotinamide adenine dinucleotide phosphate or 3-acetyl pyridine adenine dinucleotide were tested as electron acceptors. The activity was enhanced by dithiothreitol and inhibited by p-chloromercuribenzoate, and the inhibition by p-chloromercuribenzoate was partially reversed by the subsequent addition of dithiothreitol. The activity was inhibited by high concentrations of NaCl and, to a lesser extent, proline. The equilibrium of the enzymic reaction was strongly in favor of betaine formation. The in vitro activity of the enzyme under optimal assay conditions was high enough to account for the amount of betaine accumulated under water stress conditions. The enzyme activity was the same in unstressed leaves and in leaves that had been water stressed for 24 hours. PMID:16661818

  2. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant

    PubMed Central

    Perez-Miller, Samantha; Younus, Hina; Vanam, Ram; Chen, Che-Hong; Mochly-Rosen, Daria; Hurley, Thomas D.

    2010-01-01

    In approximately one billion people, a point mutation inactivates a key detoxifying enzyme, aldehyde dehydrogenase (ALDH2). This mitochondrial enzyme metabolizes toxic biogenic and environmental aldehydes, including the endogenously produced 4-hydroxynonenal (4HNE) and the environmental pollutant, acrolein. ALDH2 also bioactivates nitroglycerin, but it is best known for its role in ethanol metabolism. The accumulation of acetaldehyde following the consumption of even a single alcoholic beverage leads to the Asian Alcohol-induced Flushing Syndrome in ALDH2*2 homozygotes. The ALDH2*2 allele is semi-dominant and heterozygotic individuals exhibit a similar, but not as severe phenotype. We recently identified a small molecule, Alda-1, which activates wild-type ALDH2 and restores near wild-type activity to ALDH2*2. The structures of Alda-1 bound to ALDH2 and ALDH2*2 reveal how Alda-1 activates the wild-type enzyme and how it restores the activity of ALDH2*2 by acting as a structural chaperone. PMID:20062057

  3. Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata.

    PubMed

    Wang, F W; Wang, M L; Guo, C; Wang, N; Li, X W; Chen, H; Dong, Y Y; Chen, X F; Wang, Z M; Li, H Y

    2016-01-01

    Glycine betaine is an important quaternary ammonium compound that is produced in response to several abiotic stresses in many organisms. The synthesis of glycine betaine requires the catalysis of betaine aldehyde dehydrogenase (BADH), which can convert betaine aldehyde into glycine betaine in plants, especially in halotolerant plants. In this study, we isolated the full-length cDNA of BADH from Suaeda corniculata (ScBADH) using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends. Next, we analyzed the expression profile of ScBADH using real-time PCR. The results showed that ScBADH expression was induced in the roots, stems, and leaves of S. corniculata seedlings under salt and drought stress. Next, ScBADH was overexpressed in Arabidopsis, resulting in the transgenic plants exhibiting enhanced tolerance over wild-type plants under salt and drought stress. We then analyzed the levels of glycine betaine and proline, as well as superoxide dismutase (SOD) activity, during salt stress in WT and transgenic Arabidopsis. The results indicated that overexpression of ScBADH produced more glycine betaine and proline, and increased SOD activity under NaCl treatment. Our results suggest that ScBADH might be a positive regulator in plants during the response to NaCl. PMID:27420939

  4. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant

    SciTech Connect

    Perez-Miller, Samantha; Younus, Hina; Vanam, Ram; Chen, Che-Hong; Mochly-Rosen, Daria; Hurley, Thomas D.

    2010-04-19

    In approximately one billion people, a point mutation inactivates a key detoxifying enzyme, aldehyde dehydrogenase (ALDH2). This mitochondrial enzyme metabolizes toxic biogenic and environmental aldehydes, including the endogenously produced 4-hydroxynonenal (4HNE) and the environmental pollutant acrolein, and also bioactivates nitroglycerin. ALDH2 is best known, however, for its role in ethanol metabolism. The accumulation of acetaldehyde following the consumption of even a single alcoholic beverage leads to the Asian alcohol-induced flushing syndrome in ALDH2*2 homozygotes. The ALDH2*2 allele is semidominant, and heterozygotic individuals show a similar but less severe phenotype. We recently identified a small molecule, Alda-1, that activates wild-type ALDH2 and restores near-wild-type activity to ALDH2*2. The structures of Alda-1 bound to ALDH2 and ALDH2*2 reveal how Alda-1 activates the wild-type enzyme and how it restores the activity of ALDH2*2 by acting as a structural chaperone.

  5. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily

    PubMed Central

    Lopez-Valverde, Francisco J.; Robles-Bolivar, Paula; Lima-Cabello, Elena; Gachomo, Emma W.; Kotchoni, Simeon O.

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling. PMID:27755582

  6. Relative inhibitory potency of molinate and metabolites with aldehyde dehydrogenase2: implications for the mechanism of enzyme inhibition

    PubMed Central

    Allen, Erin M.G.; Anderson, David G.R.; Florang, Virginia R.; Khanna, May; Hurley, Thomas D.; Doorn, Jonathan A.

    2010-01-01

    Molinate is a thiocarbamate herbicide used as a pre-emergent in rice patty fields. It has two predominant sulfoxidation metabolites, molinate sulfoxide and molinate sulfone. Previous work demonstrated an in vivo decrease in liver aldehyde dehydrogenase (ALDH) activity in rats treated with molinate and motor function deficits in dogs dosed chronically with this compound. ALDH is an enzyme important in the catabolism of many neurotransmitters, such as dopamine. Inhibition of this enzyme may lead to the accumulation of endogenous neurotoxic metabolites such as 3,4-dihydroxyphenylacetaldehyde (DOPAL), a dopamine metabolite, which may account for the observed neurotoxicity. In this study, the relative reactivity of molinate and both of its sulfoxidation metabolites towards ALDH were investigated, as well as the mechanism of inhibition. ALDH activity was monitored in two different model systems, human recombinant ALDH (hALDH2) and mouse striatal synaptosomes. Molinate sulfone was found to be the most potent ALDH inhibitor, compared to molinate and molinate sulfoxide. The reactivity of these three compounds was also assessed, using N-acetyl Cys, model peptides, and hALDH2. It was determined that molinate sulfone is capable of covalently modifying Cys residues, including catalytic Cys302 of ALDH, accounting for the observed enzyme inhibition. PMID:20954713

  7. Relative inhibitory potency of molinate and metabolites with aldehyde dehydrogenase 2: implications for the mechanism of enzyme inhibition.

    PubMed

    Allen, Erin M G; Anderson, David G R; Florang, Virginia R; Khanna, May; Hurley, Thomas D; Doorn, Jonathan A

    2010-11-15

    Molinate is a thiocarbamate herbicide used as a pre-emergent in rice patty fields. It has two predominant sulfoxidation metabolites, molinate sulfoxide and molinate sulfone. Previous work demonstrated an in vivo decrease in liver aldehyde dehydrogenase (ALDH) activity in rats treated with molinate and motor function deficits in dogs dosed chronically with this compound. ALDH is an enzyme important in the catabolism of many neurotransmitters, such as dopamine. Inhibition of this enzyme may lead to the accumulation of endogenous neurotoxic metabolites such as 3,4-dihydroxyphenylacetaldehyde, a dopamine metabolite, which may account for the observed neurotoxicity. In this study, the relative reactivity of molinate and both of its sulfoxidation metabolites toward ALDH was investigated, as well as the mechanism of inhibition. The ALDH activity was monitored in two different model systems, human recombinant ALDH (hALDH2) and mouse striatal synaptosomes. Molinate sulfone was found to be the most potent ALDH inhibitor, as compared to molinate and molinate sulfoxide. The reactivity of these three compounds was also assessed, using N-acetyl Cys, model peptides, and hALDH2. It was determined that molinate sulfone is capable of covalently modifying Cys residues, including catalytic Cys302 of ALDH, accounting for the observed enzyme inhibition.

  8. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    PubMed

    Ikeda, Tetsuhiko; Takahashi, Tetsuya; Tsujita, Mika; Kanazawa, Masato; Toriyabe, Masafumi; Koyama, Misaki; Itoh, Kosuke; Nakada, Tsutomu; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2015-01-01

    Hypoglycemic encephalopathy (HE) is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG) state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE), a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB) staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg) or vehicle (dimethyl sulfoxide; DMSO) was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020). Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose. PMID:26083658

  9. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs

    PubMed Central

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants. PMID:25909656

  10. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation

    PubMed Central

    Liu, Guoxiang; Yu, Jia; Ding, Jinhui; Xie, Chengsong; Sun, Lixin; Rudenko, Iakov; Zheng, Wang; Sastry, Namratha; Luo, Jing; Rudow, Gay; Troncoso, Juan C.; Cai, Huaibin

    2014-01-01

    Subpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson’s disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein. Notably, the topographic ALDH1A1 pattern observed in α-synuclein transgenic mice was conserved in human SNpc. Postmortem evaluation of brains of patients with PD revealed a severe reduction of ALDH1A1 expression and neurodegeneration in the ventral ALDH1A1-positive DA subpopulations. ALDH1A1 expression was also suppressed in α-synuclein transgenic mice. Deletion of Aldh1a1 exacerbated α-synuclein–mediated DA neurodegeneration and α-synuclein aggregation, whereas Aldh1a1-null and control DA neurons were comparably susceptible to 1-methyl-4-phenylpyridinium–, glutamate-, or camptothecin-induced cell death. ALDH1A1 overexpression appeared to preferentially protect against α-synuclein–mediated DA neurodegeneration but did not rescue α-synuclein–induced loss of cortical neurons. Together, our findings suggest that ALDH1A1 protects subpopulations of SNpc DA neurons by preventing the accumulation of dopamine aldehyde intermediates and formation of cytotoxic α-synuclein oligomers. PMID:24865427

  11. Parallel Functional Changes in Independent Testis-Specific Duplicates of Aldehyde dehydrogenase in Drosophila

    PubMed Central

    Chakraborty, Mahul; Fry, James D.

    2015-01-01

    A large proportion of duplicates, originating from ubiquitously expressed genes, acquire testis-biased expression. Identifying the underlying cause of this observation requires determining whether the duplicates have altered functions relative to the parental genes. Typically, statistical methods are used to test for positive selection, signature of which in protein sequence of duplicates implies functional divergence. When assumptions are violated, however, such tests can lead to false inference of positive selection. More convincing evidence for naturally selected functional changes would be the occurrence of structural changes with similar functional consequences in independent duplicates of the same gene. We investigated two testis-specific duplicates of the broadly expressed enzyme gene Aldehyde dehydrogenase (Aldh) that arose in different Drosophila lineages. The duplicates show a typical pattern of accelerated amino acid substitutions relative to their broadly expressed paralogs, with statistical evidence for positive selection in both cases. Importantly, in both duplicates, width of the entrance to the substrate binding site, known a priori to influence substrate specificity, and otherwise conserved throughout the genus Drosophila, has been reduced, resulting in narrowing of the entrance. Protein structure modeling suggests that the reduction of the size of the enzyme’s substrate entry channel, which is likely to shift substrate specificity toward smaller aldehydes, is accounted for by the positively selected parallel substitutions in one duplicate but not the other. Evolution of the testis-specific duplicates was accompanied by reduction in expression of the ancestral Aldh in males, supporting the hypothesis that the duplicates may have helped resolve intralocus sexual conflict over Aldh function. PMID:25564519

  12. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    PubMed

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  13. Parallel functional changes in independent testis-specific duplicates of Aldehyde dehydrogenase in Drosophila.

    PubMed

    Chakraborty, Mahul; Fry, James D

    2015-04-01

    A large proportion of duplicates, originating from ubiquitously expressed genes, acquire testis-biased expression. Identifying the underlying cause of this observation requires determining whether the duplicates have altered functions relative to the parental genes. Typically, statistical methods are used to test for positive selection, signature of which in protein sequence of duplicates implies functional divergence. When assumptions are violated, however, such tests can lead to false inference of positive selection. More convincing evidence for naturally selected functional changes would be the occurrence of structural changes with similar functional consequences in independent duplicates of the same gene. We investigated two testis-specific duplicates of the broadly expressed enzyme gene Aldehyde dehydrogenase (Aldh) that arose in different Drosophila lineages. The duplicates show a typical pattern of accelerated amino acid substitutions relative to their broadly expressed paralogs, with statistical evidence for positive selection in both cases. Importantly, in both duplicates, width of the entrance to the substrate binding site, known a priori to influence substrate specificity, and otherwise conserved throughout the genus Drosophila, has been reduced, resulting in narrowing of the entrance. Protein structure modeling suggests that the reduction of the size of the enzyme's substrate entry channel, which is likely to shift substrate specificity toward smaller aldehydes, is accounted for by the positively selected parallel substitutions in one duplicate but not the other. Evolution of the testis-specific duplicates was accompanied by reduction in expression of the ancestral Aldh in males, supporting the hypothesis that the duplicates may have helped resolve intralocus sexual conflict over Aldh function.

  14. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death

    PubMed Central

    Ikeda, Tetsuhiko; Takahashi, Tetsuya; Tsujita, Mika; Kanazawa, Masato; Toriyabe, Masafumi; Koyama, Misaki; Itoh, Kosuke; Nakada, Tsutomu; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2015-01-01

    Hypoglycemic encephalopathy (HE) is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG) state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE), a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB) staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg) or vehicle (dimethyl sulfoxide; DMSO) was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020). Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose. PMID:26083658

  15. Different effects of ascorbate deprivation and classical vascular nitrate tolerance on aldehyde dehydrogenase-catalysed bioactivation of nitroglycerin

    PubMed Central

    Wenzl, MV; Wölkart, G; Stessel, H; Beretta, M; Schmidt, K; Mayer, B

    2009-01-01

    Background and purpose: Vascular tolerance to nitroglycerin (GTN) may be caused by impaired GTN bioactivation due to inactivation of mitochondrial aldehyde dehydrogenase (ALDH2). As relaxation to GTN is reduced but still sensitive to ALDH2 inhibitors in ascorbate deficiency, we compared the contribution of ALDH2 inactivation to GTN hyposensitivity in ascorbate deficiency and classical in vivo nitrate tolerance. Experimental approach: Guinea pigs were fed standard or ascorbate-free diet for 2 weeks. Reversibility was tested by feeding ascorbate-deficient animals standard diet for 1 week. Nitrate tolerance was induced by subcutaneous injection of 50 mg·kg−1 GTN 4 times daily for 3 days. Ascorbate levels were determined in plasma, blood vessels, heart and liver. GTN-induced relaxation was measured as isometric tension of aortic rings; vascular GTN biotransformation was assayed as formation of 1,2-and 1,3-glyceryl dinitrate (GDN). Key results: Two weeks of ascorbate deprivation had no effect on relaxation to nitric oxide but reduced the potency of GTN ∼10-fold in a fully reversible manner. GTN-induced relaxation was similarly reduced in nitrate tolerance but not further attenuated by ALDH inhibitors. Nitrate tolerance reduced ascorbate plasma levels without affecting ascorbate in blood vessels, liver and heart. GTN denitration was significantly diminished in nitrate-tolerant and ascorbate-deficient rings. However, while the ∼10-fold preferential 1,2-GDN formation, indicative for active ALDH2, had been retained in ascorbate deficiency, selectivity was largely lost in nitrate tolerance. Conclusions and implications: These results indicate that nitrate tolerance is associated with ALDH2 inactivation, whereas ascorbate deficiency possibly results in down-regulation of ALDH2 expression. PMID:19254277

  16. Geometric specificity of alcohol dehydrogenases and its potential for separation of trans and cis isomers of unsaturated aldehydes.

    PubMed Central

    Klibanov, A M; Giannousis, P P

    1982-01-01

    The geometric specificity of three different alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) (from yeast, from horse liver, and from Leuconostoc mesenteroides) in the reduction of trans- and cis-cinnamaldehydes has been investigated. All three enzymes display a remarkable trans specificity: they react with the trans isomer 7 to 647 times faster than with its cis counterpart. Experiments with the enzymatic reduction of 3-phenylpropionaldehyde, a saturated analog of cinnamaldehyde, have revealed that whereas trans-cinnamaldehyde possesses the "right" configuration for the active centers of the alcohol dehydrogenases, the cis isomer apparently does not fit the active centers well. All three alcohol dehydrogenases studied also exhibit a marked trans specificity in the reaction with alpha-methylcinnamaldehyde. The geometric specificity of alcohol dehydrogenases can be used for the production of otherwise hard to synthesize cis isomers of unsaturated aldehydes from their readily available trans counterparts: trans-cinnamaldehyde was irradiated with ultraviolet light (which converted it to a mixture of trans and cis isomers) then treated with NADH and yeast alcohol dehydrogenase (which selectively reduces only trans aldehyde into the alcohol), and finally the mixture of cis-cinnamaldehyde and trans-cinnamyl alcohol was separated easily by preparative column chromatography. PMID:7048306

  17. Mechanism of Substrate and Inhibitor Binding of Rhodobacter Capsulatus Xanthine Dehydrogenase

    SciTech Connect

    Dietzel, U.; Kuper, J; Doebbler, J; Schulte, A; Truglio, J; Leimkuhler, S; Kisker, C

    2009-01-01

    Rhodobacter capsulatus xanthine dehydrogenase (XDH) is an (ae)2 heterotetrameric cytoplasmic enzyme that resembles eukaryotic xanthine oxidoreductases in respect to both amino acid sequence and structural fold. To obtain a detailed understanding of the mechanism of substrate and inhibitor binding at the active site, we solved crystal structures of R. capsulatus XDH in the presence of its substrates hypoxanthine, xanthine, and the inhibitor pterin-6-aldehyde using either the inactive desulfo form of the enzyme or an active site mutant (EB232Q) to prevent substrate turnover. The hypoxanthine- and xanthine-bound structures reveal the orientation of both substrates at the active site and show the importance of residue GluB-232 for substrate positioning. The oxygen atom at the C-6 position of both substrates is oriented toward ArgB-310 in the active site. Thus the substrates bind in an orientation opposite to the one seen in the structure of the reduced enzyme with the inhibitor oxypurinol. The tightness of the substrates in the active site suggests that the intermediate products must exit the binding pocket to allow first the attack of the C-2, followed by oxidation of the C-8 atom to form the final product uric acid. Structural studies of pterin-6-aldehyde, a potent inhibitor of R. capsulatus XDH, contribute further to the understanding of the relative positioning of inhibitors and substrates in the binding pocket. Steady state kinetics reveal a competitive inhibition pattern with a Ki of 103.57 {+-} 18.96 nm for pterin-6-aldehyde.

  18. Aldehyde Dehydrogenase 1B1: Molecular Cloning and Characterization of a Novel Mitochondrial Acetaldehyde-Metabolizing Enzyme

    PubMed Central

    Stagos, Dimitrios; Chen, Ying; Brocker, Chad; Donald, Elizabeth; Jackson, Brian C.; Orlicky, David J.; Thompson, David C.

    2010-01-01

    Ethanol-induced damage is largely attributed to its toxic metabolite, acetaldehyde. Clearance of acetaldehyde is achieved by its oxidation, primarily catalyzed by the mitochondrial class II aldehyde dehydrogenase (ALDH2). ALDH1B1 is another mitochondrial aldehyde dehydrogenase (ALDH) that shares 75% peptide sequence homology with ALDH2. Recent population studies in whites suggest a role for ALDH1B1 in ethanol metabolism. However, to date, no formal documentation of the biochemical properties of ALDH1B1 has been forthcoming. In this current study, we cloned and expressed human recombinant ALDH1B1 in Sf9 insect cells. The resultant enzyme was purified by affinity chromatography to homogeneity. The kinetic properties of purified human ALDH1B1 were assessed using a wide range of aldehyde substrates. Human ALDH1B1 had an exclusive preference for NAD+ as the cofactor and was catalytically active toward short- and medium-chain aliphatic aldehydes, aromatic aldehydes, and the products of lipid peroxidation, 4-hydroxynonenal and malondialdehyde. Most importantly, human ALDH1B1 exhibited an apparent Km of 55 μM for acetaldehyde, making it the second low Km ALDH for metabolism of this substrate. The dehydrogenase activity of ALDH1B1 was sensitive to disulfiram inhibition, a feature also shared with ALDH2. The tissue distribution of ALDH1B1 in C57BL/6J mice and humans was examined by quantitative polymerase chain reaction, Western blotting, and immunohistochemical analysis. The highest expression occurred in the liver, followed by the intestinal tract, implying a potential physiological role for ALDH1B1 in these tissues. The current study is the first report on the expression, purification, and biochemical characterization of human ALDH1B1 protein. PMID:20616185

  19. Cloning and sequence analysis of the safflower betaine aldehyde dehydrogenase gene.

    PubMed

    Wang, Y B; Guan, L L; Xu, Y W; Shen, H; Wu, W

    2014-01-01

    In response to salinity or drought stress, many plants accumulate glycine betaine, which is a regulator of osmosis. In plants, the last step in betaine synthesis is catalyzed by betaine aldehyde dehydrogenase (BADH), a nuclear-encoded chloroplastic enzyme. Based on the conserved oligo amino acid residues of the published BADH genes from other higher plant species, a cDNA sequence, designated CtBADH, was isolated from safflower (Carthamus tinctorius L.) using a polymerase chain reaction approach. The clones were 1.7 kb on average, and contained an open reading frame predicting a polypeptide of 503 amino acids with 84.5% identity to that of Helianthus annuus. The deduced amino acid sequence showed a decapeptide, Val-Thr-Leu-Geu-Leu-Gly-Gly-Lys-Ser-Pro and Cys, which is essential for proper functioning of BADH. Phylogenetic analysis indicated that CtBADH grouped with other dicotyledonous plant BADH genes, and subgrouped in the composite family. Prediction of secondary structure and subcellular localization suggested that the protein encoded by CtBADH contains 33 coils, 15 alpha helixes, and 21 beta strands, and most likely targets the chloroplast or mitochondria.

  20. Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic β cells in diabetic mice.

    PubMed

    Kim-Muller, Ja Young; Fan, Jason; Kim, Young Jung R; Lee, Seung-Ah; Ishida, Emi; Blaner, William S; Accili, Domenico

    2016-01-01

    Insulin-producing β cells become dedifferentiated during diabetes progression. An impaired ability to select substrates for oxidative phosphorylation, or metabolic inflexibility, initiates progression from β-cell dysfunction to β-cell dedifferentiation. The identification of pathways involved in dedifferentiation may provide clues to its reversal. Here we isolate and functionally characterize failing β cells from various experimental models of diabetes and report a striking enrichment in the expression of aldehyde dehydrogenase 1 isoform A3 (ALDH(+)) as β cells become dedifferentiated. Flow-sorted ALDH(+) islet cells demonstrate impaired glucose-induced insulin secretion, are depleted of Foxo1 and MafA, and include a Neurogenin3-positive subset. RNA sequencing analysis demonstrates that ALDH(+) cells are characterized by: (i) impaired oxidative phosphorylation and mitochondrial complex I, IV and V; (ii) activated RICTOR; and (iii) progenitor cell markers. We propose that impaired mitochondrial function marks the progression from metabolic inflexibility to dedifferentiation in the natural history of β-cell failure. PMID:27572106

  1. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    PubMed

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells.

  2. Aldehyde dehydrogenase variation enhances effect of pesticides associated with Parkinson disease

    PubMed Central

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Cockburn, Myles; Ritz, Beate

    2014-01-01

    Objective: The objective of this study was to determine whether environmental and genetic alterations of neuronal aldehyde dehydrogenase (ALDH) enzymes were associated with increased Parkinson disease (PD) risk in an epidemiologic study. Methods: A novel ex vivo assay was developed to identify pesticides that can inhibit neuronal ALDH activity. These were investigated for PD associations in a population-based case-control study, the Parkinson's Environment & Genes (PEG) Study. Common variants in the mitochondrial ALDH2 gene were genotyped to assess effect measure modification (statistical interaction) of the pesticide effects by genetic variation. Results: All of the metal-coordinating dithiocarbamates tested (e.g., maneb, ziram), 2 imidazoles (benomyl, triflumizole), 2 dicarboxymides (captan, folpet), and 1 organochlorine (dieldrin) inhibited ALDH activity, potentially via metabolic byproducts (e.g., carbon disulfide, thiophosgene). Fifteen screened pesticides did not inhibit ALDH. Exposures to ALDH-inhibiting pesticides were associated with 2- to 6-fold increases in PD risk; genetic variation in ALDH2 exacerbated PD risk in subjects exposed to ALDH-inhibiting pesticides. Conclusion: ALDH inhibition appears to be an important mechanism through which environmental toxicants contribute to PD pathogenesis, especially in genetically vulnerable individuals, suggesting several potential interventions to reduce PD occurrence or slow or reverse its progression. PMID:24491970

  3. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson’s disease

    PubMed Central

    Yu, Rwei-Ling; Tan, Chun-Hsiang; Lu, Ying-Che; Wu, Ruey-Meei

    2016-01-01

    Neurotransmitter degradation has been proposed to cause the accumulation of neurotoxic metabolites. The metabolism of these metabolites involves aldehyde dehydrogenase 2 (ALDH2). The Asian-specific single nucleotide polymorphism rs671 causes reduced enzyme activity. This study aims to explore whether Parkinson’s disease (PD) patients with reduced ALDH2 activity owing to the rs671 polymorphism are at risk for neuropsychological impairments. A total of 139 PD patients were recruited. Each participant was assessed for medical characteristics and their ALDH2 genotype. The Mini-Mental State Examination (MMSE), the Clinical Dementia Rating Scale and the Frontal Behavioral Inventory were used to measure neuropsychological functions. We found that the MMSE scores were significantly lower in patients with inactive ALDH2 (U = 1873.5, p = 0.02). The presence of cognitive impairments was significantly more frequent in the inactive ALDH2 group (46.0%) than in the active ALDH2 group (26.3%) (χ2 = 5.886, p = 0.01). The inactive group showed significant deterioration in hobbies and exhibited more severe “disorganization” and “hyper-sexuality” behaviours. The additive effects of the allele on the development of cognitive impairments in PD patients may be an important finding that provides further insight into the pathogenic mechanism of cognitive dysfunction in PD. PMID:27453488

  4. Aldehyde Dehydrogenase Activity Identifies a Population of Human Skeletal Muscle Cells With High Myogenic Capacities

    PubMed Central

    Vauchez, Karine; Marolleau, Jean-Pierre; Schmid, Michel; Khattar, Patricia; Chapel, Alain; Catelain, Cyril; Lecourt, Séverine; Larghéro, Jérôme; Fiszman, Marc; Vilquin, Jean-Thomas

    2009-01-01

    Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH+ cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH, Aldefluor, identified brightly stained (ALDHbr) cells with low side scatter (SSClo), in enzymatically dissociated muscle biopsies, thereafter abbreviated as SMALD+ (for skeletal muscle ALDH+) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD+/CD34− and SMALD+/CD34+ cells. These sub-populations did not initially express endothelial (CD31), hematopoietic (CD45), and myogenic (CD56) markers. Upon sorting, however, whereas SMALD+/CD34+ cells developed in vitro as a heterogeneous population of CD56− cells able to differentiate in adipoblasts, the SMALD+/CD34− fraction developed in vitro as a highly enriched population of CD56+ myoblasts able to form myotubes. Moreover, only the SMALD+/CD34− population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy. PMID:19738599

  5. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells

    PubMed Central

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2014-01-01

    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP–associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs. PMID:25384215

  6. Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic β cells in diabetic mice

    PubMed Central

    Kim-Muller, Ja Young; Fan, Jason; Kim, Young Jung R.; Lee, Seung-Ah; Ishida, Emi; Blaner, William S.; Accili, Domenico

    2016-01-01

    Insulin-producing β cells become dedifferentiated during diabetes progression. An impaired ability to select substrates for oxidative phosphorylation, or metabolic inflexibility, initiates progression from β-cell dysfunction to β-cell dedifferentiation. The identification of pathways involved in dedifferentiation may provide clues to its reversal. Here we isolate and functionally characterize failing β cells from various experimental models of diabetes and report a striking enrichment in the expression of aldehyde dehydrogenase 1 isoform A3 (ALDH+) as β cells become dedifferentiated. Flow-sorted ALDH+ islet cells demonstrate impaired glucose-induced insulin secretion, are depleted of Foxo1 and MafA, and include a Neurogenin3-positive subset. RNA sequencing analysis demonstrates that ALDH+ cells are characterized by: (i) impaired oxidative phosphorylation and mitochondrial complex I, IV and V; (ii) activated RICTOR; and (iii) progenitor cell markers. We propose that impaired mitochondrial function marks the progression from metabolic inflexibility to dedifferentiation in the natural history of β-cell failure. PMID:27572106

  7. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    PubMed

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  8. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    SciTech Connect

    Nakamura, Tomofumi; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  9. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans.

    PubMed

    Sobreira, Tiago J P; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S L; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.

  10. Activator Protein-1 Regulation of Murine Aldehyde Dehydrogenase 1a1

    PubMed Central

    Makia, N. L.; Amunom, I.; Falkner, K. C.; Conklin, D. J.; Surapureddi, S.; Goldstein, J. A.

    2012-01-01

    Previously we demonstrated that aldehyde dehydrogenase (ALDH) 1a1 is the major ALDH expressed in mouse liver and is an effective catalyst in metabolism of lipid aldehydes. Quantitative real-time polymerase chain reaction analysis revealed a ≈2.5- to 3-fold induction of the hepatic ALDH1A1 mRNA in mice administered either acrolein (5 mg/kg acrolein p.o.) or butylated hydroxylanisole (BHA) (0.45% in the diet) and of cytosolic NAD+-dependent ALDH activity. We observed ≈2-fold increases in ALDH1A1 mRNA levels in both Nrf2(+/+) and Nrf2(−/−) mice treated with BHA compared with controls, suggesting that BHA-induced expression is independent of nuclear factor E2-related factor 2 (Nrf2). The levels of activator protein-1 (AP-1) mRNA and protein, as well as the amount of phosphorylated c-Jun were significantly increased in mouse liver or Hepa1c1c7 cells treated with either BHA or acrolein. With use of luciferase reporters containing the 5′-flanking sequence of Aldh1a1 (−1963/+27), overexpression of c-Jun resulted in an ≈4-fold induction in luciferase activity, suggesting that c-Jun transactivates the Aldh1a1 promoter as a homodimer and not as a c-Jun/c-Fos heterodimer. Promoter deletion and mutagenesis analyses demonstrated that the AP-1 site at position −758 and possibly −1069 relative to the transcription start site was responsible for c-Jun-mediated transactivation. Electrophoretic mobility shift assay analysis with antibodies against c-Jun and c-Fos showed that c-Jun binds to the proximal AP-1 site at position −758 but not at −1069. Recruitment of c-Jun to this proximal AP-1 site by BHA was confirmed by chromatin immunoprecipitation analysis, indicating that recruitment of c-Jun to the mouse Aldh1a1 gene promoter results in increased transcription. This mode of regulation of an ALDH has not been described before. PMID:22740640

  11. Aldehyde dehydrogenase 2 ameliorates doxorubicin-induced myocardial dysfunction through detoxification of 4-HNE and suppression of autophagy.

    PubMed

    Sun, Aijun; Cheng, Yong; Zhang, Yingmei; Zhang, Qian; Wang, Shijun; Tian, Shan; Zou, Yunzeng; Hu, Kai; Ren, Jun; Ge, Junbo

    2014-06-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) protects against cardiac injury via reducing production of 4-hydroxynonenal (4-HNE) and ROS. This study was designed to examine the impact of ALDH2 on doxorubicin (DOX)-induced cardiomyopathy and mechanisms involved with a focus on autophagy. 4-HNE and autophagic markers were detected by Western blotting in ventricular tissues from normal donors and patients with idiopathic dilated cardiomyopathy. Cardiac function, 4-HNE and levels of autophagic markers were detected in WT, ALDH2 knockout or ALDH2 transfected mice treated with or without DOX. Autophagy regulatory signaling including PI-3K, AMPK and Akt was examined in DOX-treated cardiomyocytes incubated with or without ALDH2 activator Alda-1. DOX-induced myocardial dysfunction, upregulation of 4-HNE and autophagic proteins were further aggravated in ALDH2 knockout mice while they were ameliorated in ALDH2 transfected mice. DOX downregulated Class I and upregulated Class III PI3-kinase, the effect of which was augmented by ALDH2 deletion. Accumulation of 4-HNE and autophagic protein markers in DOX-induced cardiomyocytes was significantly reduced by Alda-1. DOX depressed phosphorylated Akt but not AMPK, the effect was augmented by ALDH2 knockout. The autophagy inhibitor 3-MA attenuated, whereas autophagy inducer rapamycin mimicked DOX-induced cardiomyocyte contractile defects. In addition, rapamycin effectively mitigated Alda-1-offered protective action against DOX-induced cardiomyocyte dysfunction. Our data further revealed downregulated ALDH2 and upregulated autophagy levels in the hearts from patients with dilated cardiomyopathy. Taken together, our findings suggest that inhibition of 4-HNE and autophagy may be a plausible mechanism underscoring ALDH2-offered protection against DOX-induced cardiac defect. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy". PMID:24434637

  12. A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase.

    PubMed

    Mullarky, Edouard; Lairson, Luke L; Cantley, Lewis C; Lyssiotis, Costas A

    2016-07-01

    Serine metabolism is likely to play a critical role in cancer cell growth. A recent study reports the identification of a novel small-molecule inhibitor of serine synthesis that targets 3-phosphoglycerate dehydrogenase (PHGDH), the first enzyme of the serine synthesis pathway, and selectively abrogates the proliferation of PHGDH overexpressing breast cancer cells. PMID:27652319

  13. Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases

    SciTech Connect

    Jaeger, Martin Rothacker, Boris; Ilg, Thomas

    2008-08-01

    Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD{sup +}/NADP{sup +} indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD{sup +}/NADP{sup +} adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD{sup +}/NADP{sup +} adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.

  14. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  15. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  16. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  17. Aldehyde dehydrogenase-derived omega-crystallins of squid and octopus. Specialization for lens expression.

    PubMed

    Zinovieva, R D; Tomarev, S I; Piatigorsky, J

    1993-05-25

    omega-Crystallin of the octopus lens is related to aldehyde dehydrogenases (ALDH) of vertebrates (Tomarev, S. I., Zinovieva, R. D., and Piatigorsky, J. (1991) J. Biol. Chem. 266, 24226-24231) and ALDH1/eta-crystallin of elephant shrews (Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269). Only very low amounts of omega-crystallin are present in the squid lens. Here, we have cloned omega-crystallin cDNAs of the octopus (Octopus dofleini) and squid (Ommastrephes sloani pacificus) lenses. The deduced amino acid sequences of omega-crystallin from these species are 78% identical to each other, 56-58% identical to cytoplasmic ALDH1 and mitochondrial ALDH2 of vertebrates (which are 66-68% identical to each other), and 40% identical to Escherichia coli and spinach ALDHs. These data are consistent with the idea that the ALDH1/ALDH2 gene duplication in vertebrates occurred after divergence of cephalopods from the line giving rise to vertebrates, but before the separation of squid and octopus. Southern blot hybridization indicated that omega-crystallin is encoded by few genes (possibly just one) in octopus and squid. Northern blot hybridization revealed two bands (2.7 and 9.0 kilobases) of omega-crystallin RNA in the octopus lens and one band (4.2 kilobases) in the squid lens; omega-crystallin RNAs were undetectable in numerous non-lens tissues of octopus and squid, suggesting lens-specific expression of this gene(s). Finally, extracts of the octopus lens had no detectable ALDH activity using different substrates, consistent with omega-crystallin having no enzymatic activity. Taken together, our results suggest that omega-crystallin evolved by duplication of an ancestral gene encoding ALDH and subsequently specialized for refraction in the transparent lens while losing ALDH activity and expression in other tissues. PMID:7684383

  18. Aldehyde dehydrogenase 1A1 circumscribes high invasive glioma cells and predicts poor prognosis

    PubMed Central

    Xu, Sen-Lin; Liu, Sha; Cui, Wei; Shi, Yu; Liu, Qin; Duan, Jiang-Jie; Yu, Shi-Cang; Zhang, Xia; Cui, You-Hong; Kung, Hsiang-Fu; Bian, Xiu-Wu

    2015-01-01

    Glioma is the most aggressive brain tumor with high invasiveness and poor prognosis. More reliable, sensitive and practical biomarkers to reveal glioma high invasiveness remain to be explored for the guidance of therapy. We herein evaluated the diagnostic and prognostic value of aldehyde dehydrogenase 1A1 (ALDH1A1) in the glioma specimens from 237 patients, and found that ADLH1A1 was frequently overexpressed in the high-grade glioma (WHO grade III-IV) as compared to the low-grade glioma (WHO grade I-II) patients. The tumor cells with ALDH1A1 expression were more abundant in the region between tumor and the borderline of adjacent tissue as compared to the central part of the tumor. ALDH1A1 overexpression was associated with poor differentiation and dismal prognosis. Notably, the overall and disease-free survivals of the patients who had ALDH1A1+ tumor cells sparsely located in the adjacent tissue were much worse. Furthermore, ALDH1A1 expression was correlated with the “classical-like” (CL) subtype as we examined GBM specimens from 72 patients. Multivariate Cox regression analysis revealed that ALDH1A1 was an independent marker for glioma patients’ outcome. Mechanistically, both in vitro and in vivo studies revealed that ALDH1A1+ cells isolated from either a glioblastoma cell line U251 or primary glioblastoma cells displayed significant invasiveness, clonogenicity, and proliferation as compared to ALDH1A1- cells, due to increased levels of mRNA and protein for matrix metalloproteinase 2, 7 and 9 (MMP2, MMP7 and MMP9). These results indicate that ALDH1A1+ cells contribute to the progression of glioma including invasion, proliferation and poor prognosis, and suggest that targeting ALDH1A1 may have important implications for the treatment of highly invasive glioma. PMID:26101711

  19. Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction

    PubMed Central

    Liao, Jianquan; Sun, Aijun; Xie, Yeqing; Isse, Toyoshi; Kawamoto, Toshihiro; Zou, Yunzeng; Ge, Junbo

    2012-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items—78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal—were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47phox NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47phox NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress–induced apoptosis. The protective role of ALDH2 against ER stress–induced cell death was probably mediated by Akt via a p47phox NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress

  20. Characterization of betaine aldehyde dehydrogenase (BetB) as an essential virulence factor of Brucella abortus.

    PubMed

    Lee, Jin Ju; Kim, Jae Hong; Kim, Dae Geun; Kim, Dong Hyeok; Simborio, Hannah Leah; Min, Won Gi; Rhee, Man Hee; Lim, Jong Hwan; Chang, Hong Hee; Kim, Suk

    2014-01-10

    The pathogenic mechanisms of Brucellosis used to adapt to the harsh intracellular environment of the host cell are not fully understood. The present study investigated the in vitro and in vivo characteristics of B. abortus betaine aldehyde dehydrogenase (BetB) (Gene Bank ID: 006932) using a betB deletion mutant constructed from virulent B. abortus 544. In test under stress conditions, including osmotic- and acid stress-resistance, the betB mutant had a lower osmotic-resistance than B. abortus wild-type. In addition, the betB mutant showed higher internalization rates compared to the wild-type strain; however, it also displayed replication failures in HeLa cells and RAW 264.7 macrophages. During internalization, compared to the wild-type strain, the betB mutant was more adherent to the host surface and showed enhanced phosphorylation of protein kinases, two processes that promote phagocytic activity, in host cells. During intracellular trafficking, colocalization of B. abortus-containing phagosomes with LAMP-1 was elevated in betB mutant-infected cells compared to the wild-type cells. In mice, the betB mutant was predominantly cleared from spleens compared to the wild-type strain after 2 weeks post-infection, and the vaccination test with the live betB mutant showed effective protection against challenge infection with the virulent wild-type strain. These findings suggested that the B. abortus betB gene substantially affects the phagocytic pathway in human phagocytes and in host cells in mice. Furthermore, this study highlights the potential use of the B. abortus betB mutant as a live vaccine for the control of brucellosis.

  1. Mining distinct aldehyde dehydrogenase 1 (ALDH1) isoenzymes in gastric cancer

    PubMed Central

    Li, Guan-Wu; Huang, Yi-Teng; Wu, Hua-Tao

    2016-01-01

    Aldehyde dehydrogenase 1 (ALDH1) consists of a family of intracellular enzymes, highly expressed in stem cells populations of leukemia and some solid tumors. Up to now, 6 isoforms of ALDH1 have been reported. However, the expression patterns and the identity of ALDH1 isoenzymes contributing to ALDH1 activity, as well as the prognostic values of ALDH1 isoenzymes in cancers all remain to be elucidated. Here, we studied the expressions of ALDH1 transcripts in gastric cancer (GC) compared with the normal controls using the ONCOMINE database. Through the Kaplan-Meier plotter database, which contains updated gene expression data and survival information of 876 GC patients, we also investigated the prognostic values of ALDH1 isoenzymes in GC patients. It was found that when compared with normal tissues, ALDH1A1 mRNA expression was downregulated, whereas ALDH1A3 and ALDH1B1 were upregulated in GC patients. In survival analyses, high ALDH1A1 and ALDH1B1 expressions were associated with better overall survival (OS) in all GC patients. In addition, high transcription activity of ALDH1A1 predicted better OS in gastric intestinal type adenocarcinoma, but not in diffuse gastric adenocarcinoma. GC patients with high mRNA level of ALDH1B1 showed better OS in gastric intestinal type, and worse OS in diffuse type. Oppositely, high transcription activities of ALDH1A2, ALDH1A3 and ALDH1L1 predicted worsen overall survival in GC patients, suggesting that these isoenzymes might be responsible mainly for the ALDH1 activities in GC. These data provides ALDH1A2, ALDH1A3 and ALDH1L1 as excellent potential targets for individualized treatment of GC patients. PMID:27015121

  2. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  3. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice

    PubMed Central

    Kwon, Hyo-Jung; Won, Young-Suk; Park, Ogyi; Chang, Binxia; Duryee, Michael J.; Thiele, Geoffrey E.; Matsumoto, Akiko; Singh, Surendra; Abdelmegeed, Mohamed A.; Song, Byoung-Joon; Kawamoto, Toshihiro; Vasiliou, Vasilis; Thiele, Geoffrey M.; Gao, Bin

    2014-01-01

    Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that metabolizes acetaldehyde produced from alcohol metabolism. Approximately 40~50% of East Asians carry an inactive ALDH2 gene and exhibit acetaldehyde accumulation after alcohol consumption. However, the role of ALDH2 deficiency in the pathogenesis of alcoholic liver injury remains obscure. In the present study, wild-type and ALDH2−/− mice were subjected to ethanol feeding and/or carbon tetrachloride (CCl4) treatment, and liver injury was assessed. Compared with wild-type mice, ethanol-fed ALDH2−/− mice had higher levels of malondialdehyde-acetaldehyde (MAA) adduct and greater hepatic inflammation, with higher hepatic IL-6 expression but surprisingly lower levels of steatosis and serum ALT. Higher IL-6 levels were also detected in ethanol-treated precision-cut-liver-slices from ALDH2−/− mice and in Kupffer cells isolated from ethanol-fed ALDH2−/− mice than those levels in wild-type mice. In vitro incubation with MAA enhanced the LPS-mediated stimulation of IL-6 production in Kupffer cells. In agreement with these findings, hepatic activation of the major IL-6 downstream signaling molecule signal transducer and activator of transcription 3 (STAT3) was higher in ethanol-fed ALDH2−/− mice than in wild-type mice. An additional deletion of hepatic STAT3 increased steatosis and hepatocellular damage in ALDH2−/− mice. Finally, ethanol-fed ALDH2−/− mice were more prone to CCl4-induced liver inflammation and fibrosis than ethanol-fed wild-type mice. Conclusions: ALDH2−/− mice are resistant to ethanol-induced steatosis but prone to inflammation and fibrosis via MAA-mediated paracrine activation of IL-6 in Kupffer cells. These findings suggest that alcohol, via acetaldehyde and its associated adducts, stimulates hepatic inflammation and fibrosis independent from causing hepatocyte death, and that ALDH2-deficient individuals may be resistant to steatosis and blood ALT elevation, but are

  4. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    SciTech Connect

    Doherty, R.E.; Haywood-Small, S.L.; Sisley, K.; Cross, N.A.

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Isolated ALDH{sup Hi} PC3 cells preferentially form primitive holoclone-type colonies. Black-Right-Pointing-Pointer Primitive holoclone colonies are predominantly ALDH{sup Lo} but contain rare ALDH{sup Hi} cells. Black-Right-Pointing-Pointer Holoclone-forming cells are not restricted to the ALDH{sup Hi} population. Black-Right-Pointing-Pointer ALDH phenotypic plasticity occurs in PC3 cells (ALDH{sup Lo} to ALDH{sup Hi} and vice versa). Black-Right-Pointing-Pointer ALDH{sup Hi} cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDH{sup Lo} cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDH{sup Hi} population, or whether all ALDH{sup Hi} cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDH{sup Hi} cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDH{sup Hi} cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDH{sup Lo} population can develop ALDH{sup Hi} populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDH{sup Hi} cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in

  5. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2012-06-01

    BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling. PMID:22574886

  6. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Boa, Andrew N; Canavan, Shane P; Hirst, Paul R; Ramsey, Christopher; Stead, Andrew M W; McConkey, Glenn A

    2005-03-15

    A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.

  7. Alcohol and Aldehyde Dehydrogenases Contribute to Sex-Related Differences in Clearance of Zolpidem in Rats

    PubMed Central

    Peer, Cody J.; Strope, Jonathan D.; Beedie, Shaunna; Ley, Ariel M.; Holly, Alesia; Calis, Karim; Farkas, Ronald; Parepally, Jagan; Men, Angela; Fadiran, Emmanuel O.; Scott, Pamela; Jenkins, Marjorie; Theodore, William H.; Sissung, Tristan M.

    2016-01-01

    Objectives: The recommended zolpidem starting dose was lowered in females (5 mg vs. 10 mg) since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK) is unknown. We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH) expression. Methods: Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, ± disulfiram (ADH/ALDH pathway inhibitor) to compare PK changes induced by sex and gonadal hormones. PK analyses were conducted in rat plasma and rat brain. Key findings: Sex differences in PK were evident: females had a higher CMAX (112.4 vs. 68.1 ug/L) and AUC (537.8 vs. 231.8 h∗ug/L) than uncastrated males. Castration induced an earlier TMAX (0.25 vs. 1 h), greater CMAX (109.1 vs. 68.1 ug/L), and a corresponding AUC increase (339.7 vs. 231.8 h∗ug/L). Administration of disulfiram caused more drastic CMAX and TMAX changes in male vs. female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations. Conclusion: These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens. PMID:27574509

  8. The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors

    PubMed Central

    Hedstrom, Lizbeth; Liechti, George; Goldberg, Joanna B.; Gollapalli, Deviprasad R.

    2016-01-01

    Inosine 5′-monophosphate dehydrogenase (IMPDH) catalyzes the first committed step of guanosine 5′-monophosphate (GMP) biosynthesis, and thus regulates the guanine nucleotide pool, which in turn governs proliferation. Human IMPDHs are validated targets for immunosuppressive, antiviral and anticancer drugs, but as yet microbial IMPDHs have not been exploited in antimicrobial chemotherapy. Selective inhibitors of IMPDH from Cryptosporidium parvum have recently been discovered that display anti-parasitic activity in cell culture models of infection. X-ray crystal structure and mutagenesis experiments identified the structural features that determine inhibitor susceptibility. These features are found in IMPDHs from a wide variety of pathogenic bacteria, including select agents and multiply drug resistant strains. A second generation inhibitor displays antibacterial activity against Helicobacter pylori, demonstrating the antibiotic potential of IMPDH inhibitors. PMID:21517780

  9. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought.

    PubMed Central

    Weretilnyk, E A; Hanson, A D

    1990-01-01

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase (BADH, EC 1.2.1.8), a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a lambda gt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligonucleotide probes corresponding to amino acid sequences of two peptides prepared from purified BADH. The authenticity of the clone was confirmed by nucleotide sequence analysis; this analysis demonstrated the presence of a 1491-base-pair open reading frame that contained sequences encoding 12 peptide fragments of BADH. The clone hybridized to a 1.9-kilobase mRNA from spinach leaves; this mRNA was more abundant in salt-stressed plants, consistent with the known salt induction of BADH activity. The amino acid sequence deduced from the BADH cDNA sequence showed substantial similarities to those for nonspecific aldehyde dehydrogenases (EC 1.2.1.3 and EC 1.2.1.5) from several sources, including absolute conservation of a decapeptide in the probable active site. Comparison of deduced and determined amino acid sequences indicated that the transit peptide may comprise only 7 or 8 residues, which is atypically short for precursors to stromal proteins. Images PMID:2320587

  10. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer.

    PubMed

    Laniewska-Dunaj, Magdalena; Jelski, Wojciech; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2013-07-01

    The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.

  11. Delineation of an in vivo inhibitor for Aspergillus glutamate dehydrogenase.

    PubMed

    Choudhury, Rajarshi; Noor, Shahid; Varadarajalu, Lakshmi Prabha; Punekar, Narayan S

    2008-01-01

    NADP-glutamate dehydrogenase (NADP-GDH) along with glutamine synthetase plays a pivotal role in ammonium assimilation. Specific inhibitors were valuable in defining the importance of glutamine synthetase in nitrogen metabolism. Selective in vivo inhibition of NADP-GDH has so far been an elusive desideratum. Isophthalate, a potent in vitro inhibitor of Aspergillus niger NADP-GDH [Noor S, Punekar NS. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology 2005;151:1409-19], was evaluated for its efficacy in vivo. Dimethyl ester of isophthalate (DMIP), but not isophthalate, inhibited A. niger growth on agar as well as in liquid culture. This was ascribed to the inability of isophthalate to enter fungal mycelia. Subsequent to DMIP addition however, intracellular isophthalate could be demonstrated. Apart from NAD-GDH, no other enzyme including NAD-glutamate synthase was inhibited by isophthalate. A cross-over at NADP-GDH step of metabolism was observed as a direct consequence of isophthalate (formed in vivo from DMIP) inhibiting this enzyme. Addition of ammonium to DMIP-treated A. niger mycelia resulted in intensive vacuolation, retraction of cytoplasm and autolysis. Taken together, these results implicate glutamate dehydrogenase and NADP-GDH in particular, as a key target of in vivo isophthalate inhibition during ammonium assimilation. PMID:22578865

  12. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.

    PubMed

    Barski, O A; Gabbay, K H; Bohren, K M

    1996-11-12

    Human aldehyde reductase has a preference for carboxyl group-containing negatively charged substrates. It belongs to the NADPH-dependent aldo-keto reductase superfamily whose members are in part distinguished by unique C-terminal loops. To probe the role of the C-terminal loops in determining substrate specificities in these enzymes, two arginine residues, Arg308 and Arg311, located in the C-terminal loop of aldehyde reductase, and not found in any other C-terminal loop, were replaced with alanine residues. The catalytic efficiency of the R311A mutant for aldehydes containing a carboxyl group is reduced 150-250-fold in comparison to that of the wild-type enzyme, while substrates not containing a negative charge are unaffected. The R311A mutant is also significantly less sensitive to inhibition by dicarboxylic acids, indicating that Arg311 interacts with one of the carboxyl groups. The inhibition pattern indicates that the other carboxyl group binds to the anion binding site formed by Tyr49, His112, and the nicotinamide moiety of NADP+. The correlation between inhibitor potency and the length of the dicarboxylic acid molecules suggests a distance of approximately 10 A between the amino group of Arg311 and the anion binding site in the aldehyde reductase molecule. The sensitivity of inhibition of the R311A mutant by several commercially available aldose reductase inhibitors (ARIs) was variable, with tolrestat and zopolrestat becoming more potent inhibitors (30- and 5-fold, respectively), while others remained the same or became less potent. The catalytic properties, substrate specificity, and susceptibility to inhibition of the R308A mutant remained similar to that of the wild-type enzyme. The data provide direct evidence for C-terminal loop participation in determining substrate and inhibitor specificity of aldo-keto reductases and specifically identifies Arg311 as the basis for the carboxyl-containing substrate preference of aldehyde reductase. PMID:8916913

  13. On dihydroorotate dehydrogenases and their inhibitors and uses.

    PubMed

    Munier-Lehmann, Hélène; Vidalain, Pierre-Olivier; Tangy, Frédéric; Janin, Yves L

    2013-04-25

    Proper nucleosides availability is crucial for the proliferation of living entities (eukaryotic cells, parasites, bacteria, and virus). Accordingly, the uses of inhibitors of the de novo nucleosides biosynthetic pathways have been investigated in the past. In the following we have focused on dihydroorotate dehydrogenase (DHODH), the fourth enzyme in the de novo pyrimidine nucleosides biosynthetic pathway. We first described the different types of enzyme in terms of sequence, structure, and biochemistry, including the reported bioassays. In a second part, the series of inhibitors of this enzyme along with a description of their potential or actual uses were reviewed. These inhibitors are indeed used in medicine to treat autoimmune diseases such as rheumatoid arthritis or multiple sclerosis (leflunomide and teriflunomide) and have been investigated in treatments of cancer, virus, and parasite infections (i.e., malaria) as well as in crop science. PMID:23452331

  14. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  15. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes.

    PubMed Central

    Hershko, A; Rose, I A

    1987-01-01

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. We now examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown. release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent. Direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown. Images PMID:3031653

  16. Triazaspirodimethoxybenzoyls as Selective Inhibitors of Mycobacterial Lipoamide Dehydrogenase

    SciTech Connect

    Bryk, Ruslana; Arango, Nancy; Venugopal, Aditya; Warren, J. David; Park, Yun-Hee; Patel, Mulchand S.; Lima, Christopher D.; Nathan, Carl

    2010-06-25

    Mycobacterium tuberculosis (Mtb) remains the leading single cause of death from bacterial infection. Here we explored the possibility of species-selective inhibition of lipoamide dehydrogenase (Lpd), an enzyme central to Mtb's intermediary metabolism and antioxidant defense. High-throughput screening of combinatorial chemical libraries identified triazaspirodimethoxybenzoyls as high-nanomolar inhibitors of Mtb's Lpd that were noncompetitive versus NADH, NAD{sup +}, and lipoamide and >100-fold selective compared to human Lpd. Efficacy required the dimethoxy and dichlorophenyl groups. The structure of an Lpd-inhibitor complex was resolved to 2.42 {angstrom} by X-ray crystallography, revealing that the inhibitor occupied a pocket adjacent to the Lpd NADH/NAD{sup +} binding site. The inhibitor did not overlap with the adenosine moiety of NADH/NAD{sup +} but did overlap with positions predicted to bind the nicotinamide rings in NADH and NAD{sup +} complexes. The dimethoxy ring occupied a deep pocket adjacent to the FAD flavin ring where it would block coordination of the NADH nicotinamide ring, while the dichlorophenyl group occupied a more exposed pocket predicted to coordinate the NAD{sup +} nicotinamide. Several residues that are not conserved between the bacterial enzyme and its human homologue were predicted to contribute both to inhibitor binding and to species selectivity, as confirmed for three residues by analysis of the corresponding mutant Mtb Lpd proteins. Thus, nonconservation of residues lining the electron-transfer tunnel in Mtb Lpd can be exploited for development of species-selective Lpd inhibitors.

  17. Structure and mechanism of action of the hydroxy aryl aldehyde class of IRE1 endoribonuclease inhibitors

    PubMed Central

    Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D.; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L.; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B.; Sicheri, Frank

    2014-01-01

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy aryl aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a H-bond with Tyr892. Structure activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design. PMID:25164867

  18. Inhibitor-bound structures of human pyruvate dehydrogenase kinase 4.

    PubMed

    Kukimoto-Niino, Mutsuko; Tokmakov, Alexander; Terada, Takaho; Ohbayashi, Naomi; Fujimoto, Takako; Gomi, Sumiko; Shiromizu, Ikuya; Kawamoto, Masaki; Matsusue, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2011-09-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. PDC activity is tightly regulated by four members of a family of pyruvate dehydrogenase kinase isoforms (PDK1-4), which phosphorylate and inactivate PDC. Recently, the development of specific inhibitors of PDK4 has become an especially important focus for the pharmaceutical management of diabetes and obesity. In this study, crystal structures of human PDK4 complexed with either AMPPNP, ADP or the inhibitor M77976 were determined. ADP-bound PDK4 has a slightly wider active-site cleft and a more disordered ATP lid compared with AMPPNP-bound PDK4, although both forms of PDK4 assume open conformations with a wider active-site cleft than that in the closed conformation of the previously reported ADP-bound PDK2 structure. M77976 binds to the ATP-binding pocket of PDK4 and causes local conformational changes with complete disordering of the ATP lid. M77976 binding also leads to a large domain rearrangement that further expands the active-site cleft of PDK4 compared with the ADP- and AMPPNP-bound forms. Biochemical analyses revealed that M77976 inhibits PDK4 with increased potency compared with the previously characterized PDK inhibitor radicicol. Thus, the present structures demonstrate for the first time the flexible and dynamic aspects of PDK4 in the open conformation and provide a basis for the development of novel inhibitors targeting the nucleotide-binding pocket of PDK4. PMID:21904029

  19. Genetics of Aldehyde Dehydrogenase Isozymes in the Mouse: Evidence for Multiple Loci and Localization of Ahd-2 on Chromosome 19

    PubMed Central

    Timms, Glenn P.; Holmes, Roger S.

    1981-01-01

    Electrophoretic and activity variation of the cytoplasmic isozyme of aldehyde dehydrogenase (designated AHD-B4) was observed among inbred strains and Harwell linkage-testing stocks of Mus musculus. The phenotypes are inherited in a normal Mendelian fashion, with two alleles showing co-dominant expression at a single locus (Ahd-2). The locus was shown to segregate independently of Ahd-1 (encoding the mitochondrial AHD-A2 isozymes on chromosome 4; Holmes 1978). Linkage data of Ahd-2 with ep (pale ears), ru (ruby eyes) and bm (brachymorphic) suggest that it is localized near the centromeric end of chromosome 19. Electrophoretic evidence for a third AHD isozyme (designated AHD-Cy), which is predominantly localized in the liver microsomal fraction, is also presented. PMID:7274657

  20. HEPATOCYTE EXPRESION OF TUMOR ASSOCIATED ALDEHYDE DEHYDROGENASE (ALDH-3) AND P21 RAS FOLLOWING DIETHYLNITROSAMINE (DEN) INITIATION AND CHRONIC EXPOSURE TO DI(2-ETHYLHEXYL) PHTHALATE (DHEP)

    EPA Science Inventory

    Phthalate esters such as di(2-ethylhexyl)phthalate (DEHP)either promote or inhibit rat liver tumorigenesis depending on the carcinogenesis protocol. In this study, we examined the expression of two histochemical markers, the tumor associated isozyme of aldehyde dehydrogenase (ALD...

  1. The mechanism of discrimination between oxidized and reduced coenzyme in the aldehyde dehydrogenase domain of Aldh1l1.

    PubMed

    Tsybovsky, Yaroslav; Malakhau, Yuryi; Strickland, Kyle C; Krupenko, Sergey A

    2013-02-25

    Aldh1l1, also known as 10-formyltetrahydrofolate dehydrogenase (FDH), contains the carboxy-terminal domain (Ct-FDH), which is a structural and functional homolog of aldehyde dehydrogenases (ALDHs). This domain is capable of catalyzing the NADP(+)-dependent oxidation of short chain aldehydes to their corresponding acids, and similar to most ALDHs it has two conserved catalytic residues, Cys707 and Glu673. Previously, we demonstrated that in the Ct-FDH mechanism these residues define the conformation of the bound coenzyme and the affinity of its interaction with the protein. Specifically, the replacement of Cys707 with an alanine resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme. We suggested that this was due to the loss of a covalent bond between the cysteine and the C4N atom of nicotinamide ring of NADP(+) formed during Ct-FDH catalysis. To obtain further insight into the functional significance of the covalent bond between Cys707 and the coenzyme, and the overall role of the two catalytic residues in the coenzyme binding and positioning, we have now solved crystal structures of Ct-FDH in the complex with thio-NADP(+) and the complexes of the C707S mutant with NADP(+) and NADPH. This study has allowed us to trap the coenzyme in the contracted conformation, which provided a snapshot of the conformational processing of the coenzyme during the transition from oxidized to reduced form. Overall, the results of this study further support the previously proposed mechanism by which Cys707 helps to differentiate between the oxidized and reduced coenzyme during ALDH catalysis.

  2. Functional and expression analyses of two kinds of betaine aldehyde dehydrogenases in a glycinebetaine-hyperaccumulating graminaceous halophyte, Leymus chinensis.

    PubMed

    Mitsuya, Shiro; Tsuchiya, Asumi; Kono-Ozaki, Keiko; Fujiwara, Takashi; Takabe, Teruhiro; Takabe, Tetsuko

    2015-01-01

    Glycinebetaine (GB) is an important compatible solute for salinity tolerance in many plants. In this study, we analyzed the enzymatic activity and the expression level of betaine aldehyde dehydrogenase (BADH), an important enzyme that catalyzes the last step in the GB synthesis in Leymus chinensis, a GB-hyperaccumulating graminaceous halophyte, and compared with those of barley, a graminaceous glycophyte. We have isolated cDNAs for two BADH genes, LcBADH1 and LcBADH2. LcBADH1 has a putative peroxisomal signal peptide (PTS1) at its C-terminus, while LcBADH2 does not have any typical signal peptide. Using immunofluorescent labeling, we showed that BADH proteins were localized to the cytosol and dot-shaped organelles in the mesophyll and bundle sheath cells of L.chinensis leaves. The affinity of recombinant LcBADH2 for betaine aldehyde was comparable to other plant BADHs, whereas recombinant LcBADH1 showed extremely low affinity for betaine aldehyde, indicating that LcBADH2 plays a major role in GB synthesis in L. chinensis. In addition, the recombinant LcBADH2 protein was tolerant to NaCl whereas LcBADH1 wasn't. The kinetics, subcellular and tissue localization of BADH proteins were comparable between L. chinensis and barley. The activity and expression level of BADH proteins were higher in L. chinensis compared with barley under both normal and salinized conditions, which may be related to the significant difference in the amount of GB accumulation between two plants.

  3. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease

    PubMed Central

    Oniki, K; Morita, K; Watanabe, T; Kajiwara, A; Otake, K; Nakagawa, K; Sasaki, Y; Ogata, Y; Saruwatari, J

    2016-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies toxic aldehydes and has a key role in protecting the liver. An elevated gamma-glutamyl transferase (GGT) level is related to oxidative stress and nonalcoholic fatty liver disease (NAFLD). We herein investigated the association between inactive ALDH2*2 allele (rs671) and the risk of NAFLD, including the relationship to the GGT level. A retrospective follow-up study (mean 5.4±1.1 years) was conducted among 341 Japanese health screening program participants. The receiver operating characteristic curve indicated that the GGT level predicted the development of NAFLD (area under the curve: 0.65, P<0.05) with a cutoff value of 25.5 IUl−1. The longitudinal risk of NAFLD was higher in the ALDH2*2 allele carriers than in the noncarriers (odds ratio (OR): 2.30, 95% confidence interval (CI): 1.21–4.40), and the risk was further increased among the *2 allele carriers with GGT values ⩾25.5 IUl−1 (OR: 4.28, 95% CI: 1.80–10.19). On the other hand, there were no significant changes in the subjects' body weight and body mass index during observation period. The ALDH2*2 allele, in relation to the GGT level, may potentially be a novel risk factor for NAFLD. PMID:27214654

  4. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease.

    PubMed

    Oniki, K; Morita, K; Watanabe, T; Kajiwara, A; Otake, K; Nakagawa, K; Sasaki, Y; Ogata, Y; Saruwatari, J

    2016-05-23

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies toxic aldehydes and has a key role in protecting the liver. An elevated gamma-glutamyl transferase (GGT) level is related to oxidative stress and nonalcoholic fatty liver disease (NAFLD). We herein investigated the association between inactive ALDH2*2 allele (rs671) and the risk of NAFLD, including the relationship to the GGT level. A retrospective follow-up study (mean 5.4±1.1 years) was conducted among 341 Japanese health screening program participants. The receiver operating characteristic curve indicated that the GGT level predicted the development of NAFLD (area under the curve: 0.65, P<0.05) with a cutoff value of 25.5 IUl(-1). The longitudinal risk of NAFLD was higher in the ALDH2*2 allele carriers than in the noncarriers (odds ratio (OR): 2.30, 95% confidence interval (CI): 1.21-4.40), and the risk was further increased among the *2 allele carriers with GGT values ⩾25.5 IUl(-1) (OR: 4.28, 95% CI: 1.80-10.19). On the other hand, there were no significant changes in the subjects' body weight and body mass index during observation period. The ALDH2*2 allele, in relation to the GGT level, may potentially be a novel risk factor for NAFLD.

  5. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    PubMed Central

    Zhao, Yan; Wang, Chuancai

    2015-01-01

    Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP) of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer's disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations. PMID:26491656

  6. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    PubMed

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  7. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    SciTech Connect

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important component in making biofuels production from lignocellulosic biomass feasible.

  8. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    DOE PAGES

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important componentmore » in making biofuels production from lignocellulosic biomass feasible.« less

  9. Isolation of an Aldehyde Dehydrogenase Involved in the Oxidation of Fluoroacetaldehyde to Fluoroacetate in Streptomyces cattleya

    PubMed Central

    Murphy, Cormac D.; Moss, Steven J.; O'Hagan, David

    2001-01-01

    Streptomyces cattleya is unusual in that it produces fluoroacetate and 4-fluorothreonine as secondary metabolites. We now report the isolation of an NAD+-dependent fluoroacetaldehyde dehydrogenase from S. cattleya that mediates the oxidation of fluoroacetaldehyde to fluoroacetate. This is the first enzyme to be identified that is directly involved in fluorometabolite biosynthesis. Production of the enzyme begins in late exponential growth and continues into the stationary phase. Measurement of kinetic parameters shows that the enzyme has a high affinity for fluoroacetaldehyde and glycoaldehyde, but not acetaldehyde. PMID:11571203

  10. Mitochondrial Aldehyde Dehydrogenase Activation by Alda‐1 Inhibits Atherosclerosis and Attenuates Hepatic Steatosis in Apolipoprotein E‐Knockout Mice

    PubMed Central

    Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Wiśniewska, Anna; Totoń‐Żurańska, Justyna; Madej, Józef; Jawień, Jacek; Białas, Magdalena; Okoń, Krzysztof; Gajda, Mariusz; Głombik, Katarzyna; Basta‐Kaim, Agnieszka; Korbut, Ryszard

    2014-01-01

    Background Mitochondrial dysfunction has been shown to play an important role in the development of atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda‐1, an activator of ALDH2, on atherogenesis and on the liver steatosis in apolipoprotein E knockout (apoE−/−) mice. Methods and Results Alda‐1 caused decrease of atherosclerotic lesions approximately 25% as estimated by “en face” and “cross‐section” methods without influence on plasma lipid profile, atherosclerosis‐related markers of inflammation, and macrophage and smooth muscle content in the plaques. Plaque nitrotyrosine was not changed upon Alda‐1 treatment, and there were no changes in aortic mRNA levels of factors involved in antioxidative defense, regulation of apoptosis, mitogenesis, and autophagy. Hematoxylin/eosin staining showed decrease of steatotic changes in liver of Alda‐1‐treated apoE−/− mice. Alda‐1 attenuated formation of 4‐hydroxy‐2‐nonenal (4‐HNE) protein adducts and decreased triglyceride content in liver tissue. Two‐dimensional electrophoresis coupled with mass spectrometry identified 20 differentially expressed mitochondrial proteins upon Alda‐1 treatment in liver of apoE−/− mice, mostly proteins related to metabolism and oxidative stress. The most up‐regulated were the proteins that participated in beta oxidation of fatty acids. Conclusions Collectively, Alda‐1 inhibited atherosclerosis and attenuated NAFLD in apoE−/− mice. The pattern of changes suggests a beneficial effect of Alda‐1 in NAFLD; however, the exact liver functional consequences of the revealed alterations as well as the mechanism(s) of antiatherosclerotic Alda‐1 action require further investigation. PMID:25392542

  11. Cardiac Mitochondrial Respiratory Dysfunction and Tissue Damage in Chronic Hyperglycemia Correlate with Reduced Aldehyde Dehydrogenase-2 Activity

    PubMed Central

    Deshpande, Mandar; Thandavarayan, Rajarajan A.; Xu, Jiang; Yang, Xiao-Ping; Palaniyandi, Suresh S.

    2016-01-01

    Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial isozyme of the heart involved in the metabolism of toxic aldehydes produced from oxidative stress. We hypothesized that hyperglycemia-mediated decrease in ALDH2 activity may impair mitochondrial respiration and ultimately result in cardiac damage. A single dose (65 mg/kg; i.p.) streptozotocin injection to rats resulted in hyperglycemia with blood glucose levels of 443 ± 9 mg/dl versus 121 ± 7 mg/dl in control animals, p<0.0001, N = 7–11. After 6 months of diabetes mellitus (DM) induction, the rats were sacrificed after recording the functionality of their hearts. Increase in the cardiomyocyte cross sectional area (446 ± 32 μm2 Vs 221 ± 10 μm2; p<0.0001) indicated cardiac hypertrophy in DM rats. Both diastolic and systolic dysfunctions were observed with DM rats compared to controls. Most importantly, myocardial ALDH2 activity and levels were reduced, and immunostaining for 4HNE protein adducts was increased in DM hearts compared to controls. The mitochondrial oxygen consumption rate (OCR), an index of mitochondrial respiration, was decreased in mitochondria isolated from DM hearts compared to controls (p<0.0001). Furthermore, the rate of mitochondrial respiration and the increase in carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP)-induced maximal respiration were also decreased with chronic hyperglycemia. Chronic hyperglycemia reduced mitochondrial OXPHOS proteins. Reduced ALDH2 activity was correlated with mitochondrial dysfunction, pathological remodeling and cardiac dysfunction, respectively. Our results suggest that chronic hyperglycemia reduces ALDH2 activity, leading to mitochondrial respiratory dysfunction and consequently cardiac damage and dysfunction. PMID:27736868

  12. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity.

    PubMed

    Kusuma, Gina D; Abumaree, Mohamed H; Pertile, Mark D; Perkins, Anthony V; Brennecke, Shaun P; Kalionis, Bill

    2016-06-01

    The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments.

  13. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    PubMed

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

  14. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.

    PubMed

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

  15. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity.

    PubMed

    Kusuma, Gina D; Abumaree, Mohamed H; Pertile, Mark D; Perkins, Anthony V; Brennecke, Shaun P; Kalionis, Bill

    2016-06-01

    The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments. PMID:26880140

  16. Novel steroid inhibitors of glucose 6-phosphate dehydrogenase.

    PubMed

    Hamilton, Niall M; Dawson, Martin; Fairweather, Emma E; Hamilton, Nicola S; Hitchin, James R; James, Dominic I; Jones, Stuart D; Jordan, Allan M; Lyons, Amanda J; Small, Helen F; Thomson, Graeme J; Waddell, Ian D; Ogilvie, Donald J

    2012-05-10

    Novel derivatives of the steroid DHEA 1, a known uncompetitive inhibitor of G6PD, were designed, synthesized, and tested for their ability to inhibit this dehydrogenase enzyme. Several compounds with approximately 10-fold improved potency in an enzyme assay were identified, and this improved activity translated to efficacy in a cellular assay. The SAR for steroid inhibition of G6PD has been substantially developed; the 3β-alcohol can be replaced with 3β-H-bond donors such as sulfamide, sulfonamide, urea, and carbamate. Improved potency was achieved by replacing the androstane nucleus with a pregnane nucleus, provided a ketone at C-20 is present. For pregnan-20-ones incorporation of a 21-hydroxyl group is often beneficial. The novel compounds generally have good physicochemical properties and satisfactory in vitro DMPK parameters. These derivatives may be useful for examining the role of G6PD inhibition in cells and will assist the future design of more potent steroid inhibitors with potential therapeutic utility. PMID:22506561

  17. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde.

    PubMed

    Scharschmidt, M; Fisher, M A; Cleland, W W

    1984-11-01

    Primary intrinsic deuterium and 13C isotope effects have been determined for liver (LADH) and yeast (YADH) alcohol dehydrogenases with benzyl alcohol as substrate and for yeast aldehyde dehydrogenase (ALDH) with benzaldehyde as substrate. These values have also been determined for LADH as a function of changing nucleotide substrate. As the redox potential of the nucleotide changes from -0.320 V with NAD to -0.258 V with acetylpyridine-NAD, the product of primary and secondary deuterium isotope effects rises from 4 toward 6.5, while the primary 13C isotope effect drops from 1.025 to 1.012, suggesting a trend from a late transition state with NAD to one that is more symmetrical. The values of Dk (again the product of primary and secondary isotope effects) and 13k for YADH with NAD are 7 and 1.023, suggesting for this very slow reaction a more stretched, and thus symmetrical, transition state. With ALDH and NAD, the primary 13C isotope effect on the hydride transfer step lies in the range 1.3-1.6%, and the alpha-secondary deuterium isotope effect on the same step is at least 1.22, but 13C isotope effects on formation of the thiohemiacetal intermediate and on the addition of water to the thio ester intermediate are less than 1%. On the basis of the relatively large 13C isotope effects, we conclude that carbon motion is involved in the hydride transfer steps of dehydrogenase reactions.

  18. Conserved catalytic residues of the ALDH1L1 aldehyde dehydrogenase domain control binding and discharging of the coenzyme.

    PubMed

    Tsybovsky, Yaroslav; Krupenko, Sergey A

    2011-07-01

    The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.

  19. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production

    PubMed Central

    Zarei, Adel; Trobacher, Christopher P.; Shelp, Barry J.

    2016-01-01

    Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation. PMID:27725774

  20. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence

    PubMed Central

    Tanaka, Masayuki; Wali, Ullah Md; Nakayashiki, Hitoshi; Fukuda, Tatsuya; Mizumoto, Hiroyuki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2011-01-01

    Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat) is located between hrpL and an aldehyde dehydrogenase gene (aldH) in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH) and a pat-deleted mutant (Δpat) lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species. PMID:24704843

  1. Impairment of aldehyde dehydrogenase 2 increases accumulation of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion

    PubMed Central

    Yukawa, Yoshiyuki; Ohashi, Shinya; Amanuma, Yusuke; Nakai, Yukie; Tsurumaki, Mihoko; Kikuchi, Osamu; Miyamoto, Shin’ichi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Chiba, Tsutomu; Matsuda, Tomonari; Muto, Manabu

    2014-01-01

    Ethanol and its metabolite, acetaldehyde, are the definite carcinogens for esophageal squamous cell carcinoma (ESCC), and reduced catalytic activity of aldehyde dehydrogenase 2 (ALDH2), which detoxifies acetaldehyde, increases the risk for ESCC. However, it remains unknown whether the ALDH2 genotype influences the level of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion. In the present study, we administered ethanol orally or intraperitoneally to Aldh2-knockout and control mice, and we quantified the level of acetaldehyde-derived DNA damage, especially N2-ethylidene-2’-deoxyguanosine (N2-ethylidene-dG), in the esophagus. In the model of oral ethanol administration, the esophageal N2-ethylidene-dG level was significantly higher in Aldh2-knockout mice compared with control mice. Similarly, in the model of intraperitoneal ethanol administration, in which the esophagus is not exposed directly to the alcohol solution, the esophageal N2-ethylidene-dG level was also elevated in Aldh2-knockout mice. This result indicates that circulating ethanol-derived acetaldehyde causes esophageal DNA damage, and that the extent of damage is influenced by knockout of Aldh2. Taken together, our findings strongly suggest the importance of acetaldehyde-derived DNA damage which is induced in the esophagus of individuals with ALDH2 gene impairment. This provides a physiological basis for understanding alcohol-related esophageal carcinogenesis. PMID:24959382

  2. Impairment of aldehyde dehydrogenase 2 increases accumulation of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion.

    PubMed

    Yukawa, Yoshiyuki; Ohashi, Shinya; Amanuma, Yusuke; Nakai, Yukie; Tsurumaki, Mihoko; Kikuchi, Osamu; Miyamoto, Shin'ichi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Chiba, Tsutomu; Matsuda, Tomonari; Muto, Manabu

    2014-01-01

    Ethanol and its metabolite, acetaldehyde, are the definite carcinogens for esophageal squamous cell carcinoma (ESCC), and reduced catalytic activity of aldehyde dehydrogenase 2 (ALDH2), which detoxifies acetaldehyde, increases the risk for ESCC. However, it remains unknown whether the ALDH2 genotype influences the level of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion. In the present study, we administered ethanol orally or intraperitoneally to Aldh2-knockout and control mice, and we quantified the level of acetaldehyde-derived DNA damage, especially N(2) -ethylidene-2'-deoxyguanosine (N(2) -ethylidene-dG), in the esophagus. In the model of oral ethanol administration, the esophageal N(2) -ethylidene-dG level was significantly higher in Aldh2-knockout mice compared with control mice. Similarly, in the model of intraperitoneal ethanol administration, in which the esophagus is not exposed directly to the alcohol solution, the esophageal N(2) -ethylidene-dG level was also elevated in Aldh2-knockout mice. This result indicates that circulating ethanol-derived acetaldehyde causes esophageal DNA damage, and that the extent of damage is influenced by knockout of Aldh2. Taken together, our findings strongly suggest the importance of acetaldehyde-derived DNA damage which is induced in the esophagus of individuals with ALDH2 gene impairment. This provides a physiological basis for understanding alcohol-related esophageal carcinogenesis. PMID:24959382

  3. Lack of aldehyde dehydrogenase ameliorates oxidative stress induced by single-dose ethanol administration in mouse liver.

    PubMed

    Matsumoto, Akiko; Ichiba, Masayoshi; Horita, Mikako; Yamashita, Zenko; Takahashi, Tatsuya; Isse, Toyohi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Tomokuni, Katsumaro

    2007-02-01

    Polymorphism of aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2, is far more common in East Asian countries. Acetaldehyde, an intermediate metabolite of ethanol, is metabolized very slowly in people who have ALDH2*2, as the mutated ALDH2 lacks acetaldehyde metabolizing activity. On the other hand, it is well established that metabolism of ethanol causes oxidative stress in liver tissue. To examine the consequences of this polymorphism on ethanol-induced oxidative stress in liver tissue, we conducted a study using Aldh2 knockout mice. Aldh2+/+ and Aldh2-/- mice were orally administered ethanol at a dose of 5g/kg body weight. Levels of malondialdehyde, an indicator of oxidative stress, and glutathione, a key antioxidant, in liver tissue were analyzed 0-24h after administration. Levels of malondialdehyde were significantly lower in Aldh2-/- mice than in Aldh2+/+ mice at 12h after injection, while levels of glutathione were higher in Aldh2-/- mice than in Aldh2+/+ mice at 6 and 12h after injection. Our results suggest that a lack of ALDH ameliorates ethanol-induced oxidative stress in liver tissue. PMID:17452299

  4. Salt-induction of betaine aldehyde dehydrogenase mRNA, protein, and enzymatic activity in sugar beet. [Beta vulgaris L

    SciTech Connect

    McCue, K.F.; Hanson, A.D. )

    1991-05-01

    In Chenopodiaceae such as sugar beet (Beta vulgaris L.), glycine betaine (betaine) accumulates in response to drought or salinity stress and functions in the cytoplasm as a compatible osmolyte. The last enzyme in the biosynthetic pathway, betaine aldehyde dehydrogenase (BADH), increases as much as 4-fold in response to rising salinity in the external medium. This increase is accompanied by an increase in both protein and mRNA levels. The steady state increases in BADH were examined at a series of NaCl concentrations from 100 to 500 mM NaCl. BADH protein levels were examined by native PAGE, and by western blot analysis using antibodies raised against BADH purified from spinach. mRNA levels were examined by northern plot analysis of total RNA isolated from the leaves and hybridized with a sugar beet BADH cDNA clone. The time course for BADH mRNA induction was determined in a salt shock experiment utilizing 400 mM NaCl added to the external growth medium. Disappearance of BADH was examined in a salt relief experiment using plants step-wise salinized to 500 mM NaCl and then returned to 0 mM NaCl.

  5. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    SciTech Connect

    McCue, K.F.; Hanson, A.D. )

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screened with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.

  6. Aldehyde Dehydrogenase 2 (ALDH2) Polymorphism and the Risk of Alcoholic Liver Cirrhosis among East Asians: A Meta-Analysis

    PubMed Central

    He, Lei; Luo, Hesheng

    2016-01-01

    Purpose The aldehyde dehydrogenase 2 (ALDH2) gene has been implicated in the development of alcoholic liver cirrhosis (ALC) in East Asians. However, the results are inconsistent. In this study, a meta-analysis was performed to assess the associations between the ALDH2 polymorphism and the risk of ALC. Materials and Methods Relevant studies were retrieved by searching PubMed, Web of Science, CNKI, Wanfang and Veipu databases up to January 10, 2015. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using either the fixed- or random effects model. Results A total of twelve case-control studies included 1003 cases and 2011 controls were included. Overall, the ALDH2 polymorphism was associated with a decreased risk of ALC (*1/*2 vs. *1/*1: OR=0.78, 95% CI: 0.61–0.99). However, in stratification analysis by country, we failed to detect any association among Chinese, Korean or Japanese populations. Conclusion The pooled evidence suggests that ALDH2 polymorphism may be an important protective factor for ALC in East Asians. PMID:27189280

  7. Pigs fed camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase

    PubMed Central

    2014-01-01

    Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analyses of the livers, using intra-species microarrays, identified increased expression of phase 1 and phase 2 drug metabolism enzymes. The porcine versions of the enzymes were confirmed by real time PCR. Cytochrome 8b1 (CYP8B1), aldehyde dehydrogenase 2 (Aldh2), and thiosulfate transferase (TST) were all significantly stimulated. Collectively, these genes implicate the camelina glucosinolate metabolite, methyl-sulfinyldecyl isothiocyanate, as the main xeniobiotic, causing increased hepatic metabolism and increased liver weight. PMID:24383433

  8. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    SciTech Connect

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  9. Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400

    PubMed Central

    Bains, Jasleen; Leon, Rafael; Temke, Kevin G; Boulanger, Martin J

    2011-01-01

    Oxidation of cis-3,4-dehydroadipyl-CoA semialdehyde to cis-3,4-dehydroadipyl-CoA by the aldehyde dehydrogenase, ALDHC (EC.1.2.1.77), is an essential step in the metabolism of benzoate in Burkholderia xenovorans LB400. In a previous study, we established a structural blueprint for this novel group of ALDH enzymes. Here, we build significantly on this initial work and propose a detailed reaction mechanism for ALDHC based on comprehensive structural and functional investigations of active site residues. Kinetic analyses reveal essential roles for C296 as the nucleophile and E257 as the associated general base. Structural analyses of E257Q and C296A variants suggest a dynamic charge repulsion relationship between E257 and C296 that contributes to the inherent flexibility of E257 in the native enzyme, which is further regulated by E496 and E167. A proton relay network anchored by E496 and supported by E167 and K168 serves to reset E257 for the second catalytic step. We also propose that E167, which is unique to ALDHC and its homologs, serves a critical role in presenting the catalytic water to the newly reset E257 such that the enzyme can proceed with deacylation and product release. Collectively, the reaction mechanism proposed for ALDHC promotes a greater understanding of these novel ALDH enzymes, the ALDH super-family in general, and benzoate degradation in B. xenovorans LB400. PMID:21495107

  10. Solanum Incanum Extract Downregulates Aldehyde Dehydrogenase 1-Mediated Stemness and Inhibits Tumor Formation in Ovarian Cancer Cells

    PubMed Central

    Wu, Yi-Hui; Chiu, Wen-Tai; Young, Ming-Jer; Chang, Tzu-Hao; Huang, Yu-Fang; Chou, Cheng-Yang

    2015-01-01

    Solanum incanum extract (SR-T100), containing the active ingredient solamargine, can induce apoptosis via upregulation of tumor necrosis factor receptor expression and activation of the mitochondrial apoptosis pathway, and has therapeutic effects in patients with actinic keratosis. Here, we evaluate the novel molecular mechanisms underlying SR-T100-regulated stemness and chemoresistance. The concentration of SR-T100 that inhibited 50% cell viability (IC50) was lower in ovarian cancer cells than in nonmalignant cells. Furthermore, the SR-T100 IC50 in chemoresistant cells was similar to the IC50 in chemosensitive cells. Additionally, SR-T100 increased cisplatin and paclitaxel sensitivity in chemoresistant cells. SR-T100 downregulated the expression of stem cell markers, including aldehyde dehydrogenase 1 (ALDH1), Notch1, and FoxM1, and reduced sphere formation in ovarian cancer cells. Using microarray analyses, immunoblotting, luciferase activity, and chromatin immunoprecipitation (ChIP) assays, we showed that SR-T100 suppressed the expression of c/EBPβ and COL11A1, and its promoter activity, in resistant cells, but not sensitive cells. SR-T100, paclitaxel, and cisplatin inhibited the growth of A2780CP70 cells in mouse xenografts, as compared to the vehicle control, and the combination of cisplatin and SR-T100 was more effective than either treatment alone. SR-T100 may represent a potential therapeutic adjunct to chemotherapy for ovarian cancer treatment. PMID:26366215

  11. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    PubMed Central

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R.; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  12. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed.

    PubMed

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  13. Aldehyde dehydrogenase 1A1 stabilizes transcription factor Gli2 and enhances the activity of Hedgehog signaling in hepatocellular cancer.

    PubMed

    Yan, Zhengwei; Xu, Liyao; Zhang, Junyan; Lu, Quqin; Luo, Shiwen; Xu, Linlin

    2016-03-18

    The Gli transcription factors are primary transcriptional regulators that mediate the activation of Hedgehog (Hh) signaling. Recent studies have revealed that Gli proteins are also regulated transcriptionally and post-translationally through noncanonical mechanisms, independent of Hh signaling. However, the precise mechanisms involved in the regulation of Gli proteins remain unclear. Using a differential mass-spectrometry approach, we found that aldehyde dehydrogenase 1A1 (ALDH1A1) is associated with transcription factor Gli2. Overexpression of ALDH1A1 increased Gli2 protein levels; in contrast, ALDH1A1 depletion facilitated Gli2 degradation. In addition, Gli2 mRNA expression was not affected by ectopic expression of ALDH1A1, indicating the role of ALDH1A1 in the stabilization of Gli2. Further investigation showed that ALDH1A1 prolonged the stability of Gli2 protein in a catalytic-independent manner. Finally, we showed that overexpression of ALDH1A1 activated the Hh signaling pathway and promoted cell growth, migration and invasion in hepatocellular cancer cells. Together, these results illustrate regulatory roles of ALDH1A1 in the activation of the Hh signaling pathway and highlight a novel mechanism for the aberrant activation of the Hh signaling pathway in hepatocellular cancer cells. PMID:26896768

  14. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    DOE PAGES

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profilesmore » by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.« less

  15. Microsomal aldehyde dehydrogenase is localized to the endoplasmic reticulum via its carboxyl-terminal 35 amino acids

    PubMed Central

    1994-01-01

    Rat microsomal aldehyde dehydrogenase (msALDH) has no amino-terminal signal sequence, but instead it has a characteristic hydrophobic domain at the carboxyl terminus (Miyauchi, K., R. Masaki, S. Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 1991. J. Biol. Chem. 266:19536- 19542). This membrane-bound enzyme is a useful model protein for studying posttranslational localization to its final destination. When expressed from cDNA in COS-1 cells, wild-type msALDH is localized exclusively in the well-developed ER. The removal of the hydrophobic domain results in the cytosolic localization of truncated proteins, thus suggesting that the portion is responsible for membrane anchoring. The last 35 amino acids of msALDH, including the hydrophobic domain, are sufficient for targeting of E. coli beta-galactosidase to the ER membrane. Further studies using chloramphenicol acetyltransferase fusion proteins suggest that two hydrophilic sequences on either side of the hydrophobic domain play an important role in ER targeting. PMID:8089174

  16. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping.

    PubMed

    Vasiliou, V; Bairoch, A; Tipton, K F; Nebert, D W

    1999-08-01

    As currently being performed with an increasing number of superfamilies, a standardized gene nomenclature system is proposed here, based on divergent evolution, using multiple alignment analysis of all 86 eukaryotic aldehyde dehydrogenase (ALDH) amino-acid sequences known at this time. The ALDHs represent a superfamily of NAD(P)(+)-dependent enzymes having similar primary structures that oxidize a wide spectrum of endogenous and exogenous aliphatic and aromatic aldehydes. To date, a total of 54 animal, 15 plant, 14 yeast, and three fungal ALDH genes or cDNAs have been sequenced. These ALDHs can be divided into a total of 18 families (comprising 37 subfamilies), and all nonhuman ALDH genes are named here after the established human ALDH genes, when possible. An ALDH protein from one gene family is defined as having approximately < or = 40% amino-acid identity to that from another family. Two members of the same subfamily exhibit approximately > or = 60% amino-acid identity and are expected to be located at the same subchromosomal site. For naming each gene, it is proposed that the root symbol 'ALDH' denoting 'aldehyde dehydrogenase' be followed by an Arabic number representing the family and, when needed, a letter designating the subfamily and an Arabic number denoting the individual gene within the subfamily; all letters are capitalized in all mammals except mouse and fruit fly, e.g. 'human ALDH3A1 (mouse, Drosophila Aldh3a1).' It is suggested that the Human Gene Nomenclature Guidelines (http://++www.gene.ucl.ac.uk/nomenclature/guidelines.h tml) be used for all species other than mouse and Drosophila. Following these guidelines, the gene is italicized, whereas the corresponding cDNA, mRNA, protein or enzyme activity is written with upper-case letters and without italics, e.g. 'human, mouse or Drosophila ALDH3A1 cDNA, mRNA, or activity'. If an orthologous gene between species cannot be identified with certainty, sequential naming of these genes will be carried out

  17. The Bifunctional Alcohol and Aldehyde Dehydrogenase Gene, adhE, Is Necessary for Ethanol Production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum

    PubMed Central

    Lo, Jonathan; Zheng, Tianyong; Hon, Shuen; Olson, Daniel G.

    2015-01-01

    ABSTRACT Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol to lactate production and resulted in lower cell density and longer time to reach maximal cell density. In T. saccharolyticum, the adhE deletion strain lost >85% of alcohol dehydrogenase (ADH) activity. Aldehyde dehydrogenase (ALDH) activity did not appear to be affected, although ALDH activity was low in cell extracts. Adding ubiquinone-0 to the ALDH assay increased activity in the T. saccharolyticum parent strain but did not increase activity in the adhE deletion strain, suggesting that ALDH activity was inhibited. In C. thermocellum, the adhE deletion strain lost >90% of ALDH and ADH activity in cell extracts. The C. thermocellum adhE deletion strain contained a point mutation in the lactate dehydrogenase gene, which appears to deregulate its activation by fructose 1,6-bisphosphate, leading to constitutive activation of lactate dehydrogenase. IMPORTANCE Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are bacteria that have been investigated for their ability to produce biofuels from plant biomass. They have been engineered to produce higher yields of ethanol, yet questions remain about the enzymes responsible for ethanol formation in these bacteria. The genomes of these bacteria encode multiple predicted aldehyde and alcohol

  18. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men

    PubMed Central

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2015-01-01

    Background Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics. Methods The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission. Results High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67–2.94] and 1.39 [0.99–1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28–0.49] and 0.51 [0.37–0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45–0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl). Conclusions The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast

  19. Effect of 15-hydroxyprostaglandin dehydrogenase inhibitor on wound healing.

    PubMed

    Seo, Seung Yong; Han, Song-Iy; Bae, Chun Sik; Cho, Hoon; Lim, Sung Chul

    2015-06-01

    PGE2 is an important mediator of wound healing. It is degraded and inactivated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Various growth factors, type IV collagen, TIMP-2 and PGE2 are important mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring. If we make the condition downregulating growth factors and upregulating PGE2, the wound will have a positive effect which results in little scar formation after healing. TD88 is a 15-PGDH inhibitor based on thiazolinedione structure. We evaluated the effect of TD88 on wound healing. In 10 guinea pigs (4 control and 6 experimental groups), we made four 1cm diameter-sized circular skin defects on each back. TD88 and vehicle were applicated on the wound twice a day for 4 days in the experimental and control groups, respectively. Tissue samples were harvested for qPCR and histomorphometric analyses on the 2nd and 4th day after treatment. Histomorphometric analysis showed significant reepithelization in the experimental group. qPCR analysis showed significant decrease of PDGF, CTGF and TIMP-2, but significant increase of type IV collagen in the experimental group. Taken together TD88 could be a good effector on wound healing, especially in the aspects of prevention of scarring.

  20. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry

    PubMed Central

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76–1.16] in abstainers with *2, 1.00 [0.80–1.26] in *1/*1 drinkers, 0.71 [0.54–0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28–6.13] in abstainers with *2, 1.89 [0.89–4.51] in *1/*1 drinkers, 2.35 [1.06–5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2

  1. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry.

    PubMed

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76-1.16] in abstainers with *2, 1.00 [0.80-1.26] in *1/*1 drinkers, 0.71 [0.54-0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28-6.13] in abstainers with *2, 1.89 [0.89-4.51] in *1/*1 drinkers, 2.35 [1.06-5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2 displayed a

  2. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity.

    PubMed

    Stiti, Naim; Podgórska, Karolina; Bartels, Dorothea

    2014-03-01

    The cofactor-binding site of the NAD(+)-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2'- and 3'-hydroxyl groups of the adenosyl ribose ring of NAD(+) and repels the 2'-phosphate moiety of NADP(+). If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD(+) is altered and rendered the enzyme capable of using NADP(+). This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2'-phosphate of NADP(+). Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP(+). The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP(+). Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a "closed" cofactor binding site. The cofactor specificity was shifted even further in favor of NADP(+), as the mutant ALDH3H1E149T/V178R/I200V uses NADP(+) with almost 7-fold higher catalytic efficiency compared to NAD(+). Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.

  3. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase.

    PubMed

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  4. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    PubMed Central

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  5. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1

    PubMed Central

    Li, Chen; Yin, Yue; Yang, Jingrun; Wang, Zhifa; Zheng, Qiangsun; Ma, Heng

    2016-01-01

    Cardiac aging is characterized by accumulation of damaged proteins and decline of autophagic efficiency. Here, by forestalling SIRT1 carbonylated inactivation in aged heart, we determined the benefits of activation of aldehyde dehydrogenase 2 (ALDH2) on the autophagy. In this study, the ALDH2 KO mice progressively developed age-related heart dysfunction and showed reduction in the life span, which strongly suggests that ALDH2 ablation leads to cardiac aging. What's more, aged hearts displayed a significant decrease ALDH2 activity, resulting in accumulation of 4-HNE-protein adducts and protein carbonyls, impairment in the autophagy flux, and, consequently, deteriorated cardiac function after starvation. Sustained Alda-1 (selective ALDH2 activator) treatment increased cardiac ALDH2 activity and abrogated these effects. Using SIRT1 deficient heterozygous (Sirt1+/−) mice, we found that SIRT1 was necessary for ALDH2 activation-induced autophagy. We further demonstrated that ALDH2 activation attenuated SIRT1 carbonylation and improved SIRT1 activity, thereby increasing the deacetylation of nuclear LC3 and FoxO1. Sequentially, ALDH2 enhanced SIRT1 regulates LC3-Atg7 interaction and FoxO1 increased Rab7 expression, which were both necessary and sufficient for restoring autophagy flux. These results highlight that both accumulation of proteotoxic carbonyl stress linkage with autophagy decline contribute to heart senescence. ALDH2 activation is adequate to improve the autophagy flux by reducing the carbonyl modification on SIRT1, which in turn plays an important role in maintaining cardiac health during aging. PMID:26741505

  6. Effects on sister chromatid exchange frequency of aldehyde dehydrogenase 2 genotype and smoking in vinyl chloride workers.

    PubMed

    Wong, R H; Wang, J D; Hsieh, L L; Du, C L; Cheng, T J

    1998-12-01

    Vinyl chloride monomer (VCM) is a human carcinogen. However, the exact mechanism of carcinogenesis remains unclear. VCM may be metabolized by cytochrome P450 2E1 (CYP2E1), aldehyde dehydrogenase 2 (ALDH2) and glutathione S-transferases (GSTs). Thus workers with inherited variant metabolic enzyme activities may have an altered risk of genotoxicity. This study was designed to investigate which risk factors might affect sister chromatid exchange (SCE) frequency in polyvinyl chloride (PVC) workers. Study subjects were 44 male workers from three PVC factories. Questionnaires were administered to obtain detailed histories of cigarette smoking, alcohol consumption, occupations, and medications. SCE frequency in peripheral lymphocytes was determined using a standardized method, and CYP2E1, GSTM1, GSTT1 and ALDH2 genotypes were identified by the polymerase chain reaction (PCR). Analysis revealed that smoking status and exposure to VCM were significantly associated with increased SCE frequency. The presence of ALDH2 1-2/2-2 genotypes was also significantly associated with an elevation of SCE frequency (9. 5 vs. 8.1, p<0.01). However, CYP2E1, GSTM1 or GSTT1 genotypes were not significantly associated with SCE frequency. When various genotypes were considered together, combination of CYP2E1 c1c2/c2c2 with ALDH2 1-2/2-2 showed an additive effect on SCE frequency. Similar results were also found for the combination of smoking with CYP2E1, or smoking with ALDH2. These results suggest that VCM workers with ALDH2 1-2/2-2 genotypes, who also smoke, may have increased risk of DNA damage.

  7. Increased superoxide production in nitrate tolerance is associated with NAD(P)H oxidase and aldehyde dehydrogenase 2 downregulation.

    PubMed

    Szöcs, Katalin; Lassègue, Bernard; Wenzel, Philip; Wendt, Maria; Daiber, Andreas; Oelze, Matthias; Meinertz, Thomas; Münzel, Thomas; Baldus, Stephan

    2007-06-01

    Chronic administration of nitroglycerin (NTG) induces nitrate tolerance. Among possible underlying mechanisms, increased vascular production of reactive oxygen species (ROS) has emerged as a principal mechanism. Using cell culture and animal models of nitrate tolerance, we aimed to assess the impact of nitrates on NAD(P)H oxidases and aldehyde dehydrogenase 2 (ALDH2) expression. Rats and vascular smooth muscle cells were treated with NTG. Vascular reactivity was assessed by isometric tension studies. Superoxide was detected by dihydroethidium staining. Gene expression was measured by real-time polymerase chain reaction. NAD(P)H oxidase activity was measured using lucigenin-enhanced chemiluminescence. ALDH activity was measured biochemically, and NO consumption electrochemically. Nitrate tolerance was induced in rats by treatment with NTG for 3 days, and detected as impaired endothelium-dependent and -independent relaxation of aortic segments. Although superoxide production was increased in all aortic layers, expression of nox1, nox2 and nox4 was significantly decreased. Similarly, in vascular smooth muscle cells exposed to NTG for 6-24 h, NAD(P)H oxidase activity was increased, in spite of nox1 downregulation. In addition, expression and activity of ALDH-2 was decreased in nitrate-tolerant rings. Furthermore, exogenous addition of ALDH decreased superoxide generation in vitro and attenuated NO consumption in vascular smooth muscle cell homogenates. Our data suggest that in nitrate tolerance, activation of nox enzymes more than compensates for their downregulation, resulting in a net increase in superoxide and NO consumption. Furthermore, reduced ALDH-2 activity and expression leads to decreased NTG bioconversion. Therefore, both mechanisms reduce NO availability and impair vasorelaxation. PMID:17493633

  8. Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli.

    PubMed

    Yu, Hao-Qiang; Wang, Ying-Ge; Yong, Tai-Ming; She, Yue-Hui; Fu, Feng-Ling; Li, Wan-Chen

    2014-10-01

    Betaine aldehyde dehydrogenase (BADH) catalyzes the synthesis of glycine betaine, a regulator of osmosis, and therefore BADH is considered to play a significant role in response of plants to abiotic stresses. Here, based on the conserved residues of the deduced amino acid sequences of the homologous BADH genes, we cloned the AnBADH gene from the xerophytic leguminous plant Ammopiptanthus nanus by using reverse transcription PCR and rapid amplification of cDNA ends. The full-length cDNA is 1,868 bp long without intron, and contains an open reading frame of 1512 bp, and 3'- and 5'-untranslated regions of 294 and 62 bp. It encodes a 54.71 kDa protein of 503 amino acids. The deduced amino acid sequence shares high homology, conserved amino acid residues and sequence motifs crucial for the function with the BADHs in other leguminous species. The sequence of the open reading frame was used to construct a prokaryotic expression vector pET32a-AnBADH, and transform Escherichia coli. The transformants expressed the heterologous AnBADH gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of salt and heat tolerance under the stress conditions of 700 mmol L(-1) NaCl and 55°C high temperature. This result suggests that the AnBADH gene might play a crucial role in adaption of A. nanus to the abiotic stresses, and have the potential to be applied to transgenic operations of commercially important crops for improvement of abiotic tolerance. PMID:25046139

  9. Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity.

    PubMed

    Wang, Lin; Park, Paul; Zhang, Huina; La Marca, Frank; Lin, Chia-Ying

    2011-01-15

    High aldehyde dehydrogenase (ALDH) activity has recently been used to identify tumorigenic cell fractions in many cancer types. Herein we hypothesized that a subpopulation of cells with cancer stem cells (CSCs) properties could be identified in established human osteosarcoma cell lines based on high ALDH activity. We previously showed that a subpopulation of cells with high ALDH activity were present in 4 selected human osteosarcoma cell lines, of which a significantly higher ALDH activity was present in the OS99-1 cell line that was originally derived from a highly aggressive primary human osteosarcoma. Using a xenograft model in which OS99-1 cells were grown in NOD/SCID mice, we identified a highly tumorigenic subpopulation of osteosarcoma cells based on their high ALDH activity. Cells with high ALDH activity (ALDH(br) cells) from the OS99-1 xenografts were much less frequent, averaging 3% of the entire tumor population, compared to those isolated directly from the OS99-1 cell line. ALDH(br) cells from the xenograft were enriched with greater tumorigenicity compared to their counterparts with low ALDH activity (ALDH(lo) cells), generating new tumors with as few as 100 cells in vivo. The highly tumorigenic ALDH(br) cells illustrated the stem cell characteristics of self-renewal, the ability to produce differentiated progeny and increased expression of stem cell marker genes OCT3/4A, Nanog and Sox-2. The isolation of osteosarcoma CSCs by their high ALDH activity may provide new insight into the study of osteosarcoma-initiating cells and may potentially have therapeutic implications for human osteosarcoma.

  10. Plastid-Expressed Betaine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells, Roots, and Leaves Confers Enhanced Salt Tolerance1

    PubMed Central

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-01-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93–101 μmol g−1 dry weight of β-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants. PMID:15347789

  11. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  12. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  13. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  14. Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Heikkilä, Timo; Ramsey, Christopher; Davies, Matthew; Galtier, Christophe; Stead, Andrew M W; Johnson, A Peter; Fishwick, Colin W G; Boa, Andrew N; McConkey, Glenn A

    2007-01-25

    Pyrimidine biosynthesis presents an attractive drug target in malaria parasites due to the absence of a pyrimidine salvage pathway. A set of compounds designed to inhibit the Plasmodium falciparum pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (PfDHODH) was synthesized. PfDHODH-specific inhibitors with low nanomolar binding affinities were identified that bind in the N-terminal hydrophobic channel of dihydroorotate dehydrogenase, the presumed site of ubiquinone binding during oxidation of dihydroorotate to orotate. These compounds also prevented growth of cultured parasites at low micromolar concentrations. Models that suggest the mode of inhibitor binding is based on shape complementarity, matching hydrophobic regions of inhibitor and enzyme, and interaction of inhibitors with amino acid residues F188, H185, and R265 are supported by mutagenesis data. These results further highlight PfDHODH as a promising new target for chemotherapeutic intervention in prevention of malaria and provide better understanding of the factors that determine specificity over human dihydroorotate dehydrogenase.

  15. Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells

    PubMed Central

    2014-01-01

    Introduction Although breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors. Methods Paraffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation. Results Immunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we

  16. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Zorzano, A. ); Herrera, E. )

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  17. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses

    PubMed Central

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses. PMID:25873668

  18. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors

    SciTech Connect

    Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D.; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L.; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B.; Sicheri, Frank

    2014-10-24

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy–aldehyde moieties, termed hydroxy–aryl–aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase-active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a hydrogen bond with Tyr892. Structure–activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor-binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design.

  19. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors.

    PubMed

    Sanches, Mario; Duffy, Nicole M; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B; Sicheri, Frank

    2014-08-28

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy-aryl-aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase-active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a hydrogen bond with Tyr892. Structure-activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor-binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design.

  20. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH.

    PubMed

    Wallwey, Christiane; Matuschek, Marco; Li, Shu-Ming

    2010-02-01

    Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaDH has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaDH comprises 261 amino acids with a molecular mass of about 27.8 kDa and contains the conserved motifs of classical short-chain dehydrogenases/reductases (SDRs), but shares no worth mentioning sequence similarity with SDRs and other known proteins. The coding region of fgaDH consisting of two exons was amplified by PCR from a cDNA library of Aspergillus fumigatus, cloned into pQE60 and overexpressed in E. coli. The soluble tetrameric His(6)-FgaDH was purified to apparent homogeneity and characterized biochemically. It has been shown that FgaDH catalyzes the oxidation of chanoclavine-I in the presence of NAD(+) resulting in the formation of chanoclavine-I aldehyde, which was unequivocally identified by NMR and MS analyzes. Therefore, FgaDH functions as a chanoclavine-I dehydrogenase and represents a new group of short-chain dehydrogenases. K (M) values for chanoclavine-I and NAD(+) were determined at 0.27 and 1.1 mM, respectively. The turnover number was 0.38 s(-1). PMID:20039019

  1. Aldehyde dehydrogenase (ALDH) 2 associates with oxidation of methoxyacetaldehyde; in vitro analysis with liver subcellular fraction derived from human and Aldh2 gene targeting mouse.

    PubMed

    Kitagawa, K; Kawamoto, T; Kunugita, N; Tsukiyama, T; Okamoto, K; Yoshida, A; Nakayama, K; Nakayama, K

    2000-07-01

    A principal pathway of 2-methoxyethanol (ME) metabolism is to the toxic oxidative product, methoxyacetaldehyde (MALD). To assess the role of aldehyde dehydrogenase (ALDH) in MALD metabolism, in vitro MALD oxidation was examined with liver subcellular fractions from Japanese subjects who carried three different ALDH2 genotypes and Aldh2 knockout mice, which were generated in this study. The activity was distributed in mitochondrial fractions of ALDH2*1/*1 and wild type (Aldh2+/+) mice but not ALDH2*1/*2, *2/*2 subjects or Aldh2 homozygous mutant (Aldh2-/-) mice. These data suggest that ALDH2 is a key enzyme for MALD oxidation and ME susceptibility may be influenced by the ALDH2 genotype. PMID:10913633

  2. Pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica.

    PubMed

    Pineda, Erika; Encalada, Rusely; Rodríguez-Zavala, José S; Olivos-García, Alfonso; Moreno-Sánchez, Rafael; Saavedra, Emma

    2010-08-01

    The in vitro Entamoeba histolytica pyruvate:ferredoxin oxidoreductase (EhPFOR) kinetic properties and the effect of oxidative stress on glycolytic pathway enzymes and fluxes in live trophozoites were evaluated. EhPFOR showed a strong preference for pyruvate as substrate over other oxoacids. The enzyme was irreversibly inactivated by a long period of saturating O(2) exposure (IC(50) 0.034 mm), whereas short-term exposure (< 30 min) leading to > 90% inhibition allowed for partial restoration by addition of Fe(2+). CoA and acetyl-CoA prevented, whereas pyruvate exacerbated, inactivation induced by short-term saturating O(2) exposure. Superoxide dismutase was more effective than catalase in preventing the inactivation, indicating that reactive oxygen species (ROS) were involved. Hydrogen peroxide caused inactivation in an Fe(2+)-reversible fashion that was not prevented by the coenzymes, suggesting different mechanisms of enzyme inactivation by ROS. Structural analysis on an EhPFOR 3D model suggested that the protection against ROS provided by coenzymes could be attributable to their proximity to the Fe-S clusters. After O(2) exposure, live parasites displayed decreased enzyme activities only for PFOR (90%) and aldehyde dehydrogenase (ALDH; 68%) of the bifunctional aldehyde-alcohol dehydrogenase (EhADH2), whereas acetyl-CoA synthetase remained unchanged, explaining the increased acetate and lowered ethanol fluxes. Remarkably, PFOR and ALDH activities were restored after return of the parasites to normoxic conditions, which correlated with higher ethanol and lower acetate fluxes. These results identified amebal PFOR and ALDH of EhADH2 activities as markers of oxidative stress, and outlined their relevance as significant controlling steps of energy metabolism in parasites subjected to oxidative stress. PMID:20629749

  3. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays).

    PubMed

    Huang, Weizao; Ma, Xinrong; Wang, Qilin; Gao, Yongfeng; Xue, Ying; Niu, Xiangli; Yu, Guirong; Liu, Yongsheng

    2008-11-01

    Aldehyde dehydrogenases (ALDHs) play a central role in detoxification processes of aldehydes generated in plants when exposed to the stressed conditions. In order to identify genes required for the stresses responses in the grass crop Zea mays, an ALDH (ZmALDH22A1) gene was isolated and characterized. ZmALDH22A1 belongs to the family ALDH22 that is currently known only in plants. The ZmALDH22A1 encodes a protein of 593 amino acids that shares high identity with the orthologs from Saccharum officinarum (95%), Oryza sativa (89%), Triticum aestivum (87%) and Arabidopsis thaliana (77%), respectively. Real-time PCR analysis indicates that ZmALDH22A1 is expressed differentially in different tissues. Various elevated levels of ZmALDH22A1 expression have been detected when the seedling roots exposed to abiotic stresses including dehydration, high salinity and abscisic acid (ABA). Tomato stable transformation of construct expressing the ZmALDH22A1 signal peptide fused with yellow fluorescent protein (YFP) driven by the CaMV35S-promoter reveals that the fusion protein is targeted to plastid. Transgenic tobacco plants overexpressing ZmALDH22A1 shows elevated stresses tolerance. Stresses tolerance in transgenic plants is accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation.

  4. Human Salivary Aldehyde Dehydrogenase: Purification, Kinetic Characterization and Effect of Ethanol, Hydrogen Peroxide and Sodium Dodecyl Sulfate on the Activity of the Enzyme.

    PubMed

    Alam, Md Fazle; Laskar, Amaj Ahmed; Choudhary, Hadi Hasan; Younus, Hina

    2016-09-01

    Human salivary aldehyde dehydrogenase (hsALDH) enzyme appears to be the first line of defense in the body against exogenous toxic aldehydes. However till date much work has not been done on this important member of the ALDH family. In this study, we have purified hsALDH to homogeneity by diethylaminoethyl-cellulose (DEAE-cellulose) ion-exchange chromatography in a single step. The molecular mass of the homodimeric enzyme was determined to be approximately 108 kDa. Four aromatic substrates; benzaldehyde, cinnamaldehyde, 2-naphthaldehyde and 6-methoxy-2-naphthaldehyde were used for determining the activity of pure hsALDH. K m values for these substrates were calculated to be 147.7, 5.31, 0.71 and 3.31 μM, respectively. The best substrates were found to be cinnamaldehyde and 2-naphthaldehyde since they exhibited high V max /K m values. 6-methoxy-2-naphthaldehyde substrate was used for further kinetic characterization of pure hsALDH. The pH and temperature optima of hsALDH were measured to be pH 8 and 45 °C, respectively. The pure enzyme is highly unstable at high temperatures. Ethanol, hydrogen peroxide and SDS activate hsALDH, therefore it is safe and beneficial to include them in mouthwashes and toothpastes in low concentrations. PMID:27324040

  5. Molecular and Catalytic Properties of the Aldehyde Dehydrogenase of Gluconacetobacter diazotrophicus, a Quinoheme Protein Containing Pyrroloquinoline Quinone, Cytochrome b, and Cytochrome c▿

    PubMed Central

    Gómez-Manzo, S.; Chavez-Pacheco, J. L.; Contreras-Zentella, M.; Sosa-Torres, M. E.; Arreguín-Espinosa, R.; Pérez de la Mora, M.; Membrillo-Hernández, J.; Escamilla, J. E.

    2010-01-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone. PMID:20802042

  6. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity

    DOE PAGES

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; et al

    2015-01-09

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes withmore » different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. As a result, these findings offer a potential strategy for further ligand optimization.« less

  7. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    PubMed Central

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  8. Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine

    PubMed Central

    2014-01-01

    Background Plant ALDH10 enzymes are aminoaldehyde dehydrogenases (AMADHs) that oxidize different ω-amino or trimethylammonium aldehydes, but only some of them have betaine aldehyde dehydrogenase (BADH) activity and produce the osmoprotectant glycine betaine (GB). The latter enzymes possess alanine or cysteine at position 441 (numbering of the spinach enzyme, SoBADH), while those ALDH10s that cannot oxidize betaine aldehyde (BAL) have isoleucine at this position. Only the plants that contain A441- or C441-type ALDH10 isoenzymes accumulate GB in response to osmotic stress. In this work we explored the evolutionary history of the acquisition of BAL specificity by plant ALDH10s. Results We performed extensive phylogenetic analyses and constructed and characterized, kinetically and structurally, four SoBADH variants that simulate the parsimonious intermediates in the evolutionary pathway from I441-type to A441- or C441-type enzymes. All mutants had a correct folding, average thermal stabilities and similar activity with aminopropionaldehyde, but whereas A441S and A441T exhibited significant activity with BAL, A441V and A441F did not. The kinetics of the mutants were consistent with their predicted structural features obtained by modeling, and confirmed the importance of position 441 for BAL specificity. The acquisition of BADH activity could have happened through any of these intermediates without detriment of the original function or protein stability. Phylogenetic studies showed that this event occurred independently several times during angiosperms evolution when an ALDH10 gene duplicate changed the critical Ile residue for Ala or Cys in two consecutive single mutations. ALDH10 isoenzymes frequently group in two clades within a plant family: one includes peroxisomal I441-type, the other peroxisomal and non-peroxisomal I441-, A441- or C441-type. Interestingly, high GB-accumulators plants have non-peroxisomal A441- or C441-type isoenzymes, while low-GB accumulators

  9. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here

  10. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  11. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.

    PubMed

    Luo, Min; Christgen, Shelbi; Sanyal, Nikhilesh; Arentson, Benjamin W; Becker, Donald F; Tanner, John J

    2014-09-01

    Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis, and kinetics are used to determine the contributions of this domain to PutA structure and function. The 1127-residue Rhodobacter capsulatus PutA (RcPutA) is used as a representative CTDUF-containing type B PutA. The reaction progress curve for the coupled PRODH-P5CDH activity of RcPutA does not exhibit a time lag, implying a substrate channeling mechanism. RcPutA is monomeric in solution, which is unprecedented for PutAs. SAXS rigid body modeling with target-decoy validation is used to build a model of RcPutA. On the basis of homology to aldehyde dehydrogenases (ALDHs), the CTDUF is predicted to consist of a β-hairpin fused to a noncatalytic Rossmann fold domain. The predicted tertiary structural interactions of the CTDUF resemble the quaternary structural interactions in the type A PutA dimer interface. The model is tested by mutagenesis of the dimerization hairpin of a type A PutA and the CTDUF hairpin of RcPutA. Similar functional phenotypes are observed in the two sets of variants, supporting the hypothesis that the CTDUF mimics the type A PutA dimer interface. These results suggest annotation of the CTDUF as an ALDH superfamily domain that facilitates P5CDH activity and substrate channeling by stabilizing the aldehyde-binding site and sealing the substrate-channeling tunnel from the bulk medium. PMID:25137435

  12. Evidence That the C-Terminal Domain of a Type B PutA Protein Contributes to Aldehyde Dehydrogenase Activity and Substrate Channeling

    PubMed Central

    2015-01-01

    Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis, and kinetics are used to determine the contributions of this domain to PutA structure and function. The 1127-residue Rhodobacter capsulatus PutA (RcPutA) is used as a representative CTDUF-containing type B PutA. The reaction progress curve for the coupled PRODH–P5CDH activity of RcPutA does not exhibit a time lag, implying a substrate channeling mechanism. RcPutA is monomeric in solution, which is unprecedented for PutAs. SAXS rigid body modeling with target–decoy validation is used to build a model of RcPutA. On the basis of homology to aldehyde dehydrogenases (ALDHs), the CTDUF is predicted to consist of a β-hairpin fused to a noncatalytic Rossmann fold domain. The predicted tertiary structural interactions of the CTDUF resemble the quaternary structural interactions in the type A PutA dimer interface. The model is tested by mutagenesis of the dimerization hairpin of a type A PutA and the CTDUF hairpin of RcPutA. Similar functional phenotypes are observed in the two sets of variants, supporting the hypothesis that the CTDUF mimics the type A PutA dimer interface. These results suggest annotation of the CTDUF as an ALDH superfamily domain that facilitates P5CDH activity and substrate channeling by stabilizing the aldehyde-binding site and sealing the substrate-channeling tunnel from the bulk medium. PMID:25137435

  13. Discovery of 2-Alkyl-1-arylsulfonylprolinamides as 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors

    PubMed Central

    2012-01-01

    On the basis of scaffold hopping, a novel series of 2-alkyl-1-arylsulfonylprolinamides was discovered as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) inhibitors. A representative compound 4ek, obtained through SAR and structure optimization studies, demonstrates excellent in vitro potency against 11β-HSD-1 and dose-dependent in vivo inhibition of 11β-HSD-1 in a prednisone/prednisolone transformation biomarker study in mice. PMID:24900382

  14. Discovery of covalent inhibitors of glyceraldehyde-3-phosphate dehydrogenase, a target for the treatment of malaria.

    PubMed

    Bruno, Stefano; Pinto, Andrea; Paredi, Gianluca; Tamborini, Lucia; De Micheli, Carlo; La Pietra, Valeria; Marinelli, Luciana; Novellino, Ettore; Conti, Paola; Mozzarelli, Andrea

    2014-09-11

    We developed a new class of covalent inhibitors of Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenase, a validated target for the treatment of malaria, by screening a small library of 3-bromo-isoxazoline derivatives that inactivate the enzyme through a covalent, selective bond to the catalytic cysteine, as demonstrated by mass spectrometry. Substituents on the isoxazolinic ring modulated the potency up to 20-fold, predominantly due to an electrostatic effect, as assessed by computational analysis. PMID:25137375

  15. The Structural Basis of Cryptosporidium-Specific IMP Dehydrogenase Inhibitor Selectivity

    SciTech Connect

    MacPherson, Iain S.; Kirubakaran, Sivapriya; Gorla, Suresh Kumar; Riera, Thomas V.; D’Aquino, J. Alejandro; Zhang, Minjia; Cuny, Gregory D.; Hedstrom, Lizbeth

    2010-03-29

    Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5{prime}-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 10{sup 3} selectivity for the parasite enzyme over human IMPDH2.

  16. Structure-guided development of specific pyruvate dehydrogenase kinase inhibitors targeting the ATP-binding pocket.

    PubMed

    Tso, Shih-Chia; Qi, Xiangbing; Gui, Wen-Jun; Wu, Cheng-Yang; Chuang, Jacinta L; Wernstedt-Asterholm, Ingrid; Morlock, Lorraine K; Owens, Kyle R; Scherer, Philipp E; Williams, Noelle S; Tambar, Uttam K; Wynn, R Max; Chuang, David T

    2014-02-14

    Pyruvate dehydrogenase kinase isoforms (PDKs 1-4) negatively regulate activity of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation. PDK isoforms are up-regulated in obesity, diabetes, heart failure, and cancer and are potential therapeutic targets for these important human diseases. Here, we employed a structure-guided design to convert a known Hsp90 inhibitor to a series of highly specific PDK inhibitors, based on structural conservation in the ATP-binding pocket. The key step involved the substitution of a carbonyl group in the parent compound with a sulfonyl in the PDK inhibitors. The final compound of this series, 2-[(2,4-dihydroxyphenyl)sulfonyl]isoindoline-4,6-diol, designated PS10, inhibits all four PDK isoforms with IC50 = 0.8 μM for PDK2. The administration of PS10 (70 mg/kg) to diet-induced obese mice significantly augments pyruvate dehydrogenase complex activity with reduced phosphorylation in different tissues. Prolonged PS10 treatments result in improved glucose tolerance and notably lessened hepatic steatosis in the mouse model. The results support the pharmacological approach of targeting PDK to control both glucose and fat levels in obesity and type 2 diabetes. PMID:24356970

  17. Mitochondrial Aldehyde Dehydrogenase 2 Plays Protective Roles in Heart Failure After Myocardial Infarction via Suppression of the Cytosolic JNK/p53 Pathway in Mice

    PubMed Central

    Sun, Aijun; Zou, Yunzeng; Wang, Ping; Xu, Danling; Gong, Hui; Wang, Shijun; Qin, Yingjie; Zhang, Peng; Chen, Yunqin; Harada, Mutsuo; Isse, Toyoshi; Kawamoto, Toshihiro; Fan, Huizhi; Yang, Pengyuan; Akazawa, Hiroshi; Nagai, Toshio; Takano, Hiroyuki; Ping, Peipei; Komuro, Issei; Ge, Junbo

    2014-01-01

    Background Increasing evidence suggests a critical role for mitochondrial aldehyde dehydrogenase 2 (ALDH2) in protection against cardiac injuries; however, the downstream cytosolic actions of this enzyme are largely undefined. Methods and Results Proteomic analysis identified a significant downregulation of mitochondrial ALDH2 in the heart of a rat heart failure model after myocardial infarction. The mechanistic insights underlying ALDH2 action were elucidated using murine models overexpressing ALDH2 or its mutant or with the ablation of the ALDH2 gene (ALDH2 knockout) and neonatal cardiomyocytes undergoing altered expression and activity of ALDH2. Left ventricle dilation and dysfunction and cardiomyocyte death after myocardial infarction were exacerbated in ALDH2‐knockout or ALDH2 mutant‐overexpressing mice but were significantly attenuated in ALDH2‐overexpressing mice. Using an anoxia model of cardiomyocytes with deficiency in ALDH2 activities, we observed prominent cardiomyocyte apoptosis and increased accumulation of the reactive aldehyde 4‐hydroxy‐2‐nonenal (4‐HNE). We subsequently examined the impacts of mitochondrial ALDH2 and 4‐HNE on the relevant cytosolic protective pathways. Our data documented 4‐HNE‐stimulated p53 upregulation via the phosphorylation of JNK, accompanying increased cardiomyocyte apoptosis that was attenuated by inhibition of p53. Importantly, elevation of 4‐HNE also triggered a reduction of the cytosolic HSP70, further corroborating cytosolic action of the 4‐HNE instigated by downregulation of mitochondrial ALDH2. Conclusions Downregulation of ALDH2 in the mitochondria induced an elevation of 4‐HNE, leading to cardiomyocyte apoptosis by subsequent inhibition of HSP70, phosphorylation of JNK, and activation of p53. This chain of molecular events took place in both the mitochondria and the cytosol, contributing to the mechanism underlying heart failure. PMID:25237043

  18. Computational optimization of AG18051 inhibitor for amyloid-beta binding alcohol dehydrogenase enzyme

    NASA Astrophysics Data System (ADS)

    Marques, Alexandra T.; Antunes, Agostinho; Fernandes, Pedro A.; Ramos, Maria J.

    Amyloid-beta (Abeta) binding alcohol dehydrogenase (ABAD) is a multifunctional enzyme involved in maintaining the homeostasis. The enzyme can also mediate some diseases, including genetic diseases, Alzheimer's disease, and possibly some prostate cancers. Potent inhibitors of ABAD might facilitate a better clarification of the functions of the enzyme under normal and pathogenic conditions and might also be used for therapeutic intervention in disease conditions mediated by the enzyme. The AG18051 is the only presently available inhibitor of ABAD. It binds in the active-site cavity of the enzyme and reacts with the NAD+ cofactor to form a covalent adduct. In this work, we use computational methods to perform a rational optimization of the AG18051 inhibitor, through the introduction of chemical substitutions directed to improve the affinity of the inhibitor to the enzyme. The molecular mechanics-Poisson-Boltzmann surface area methodology was used to predict the relative free binding energy of the different modified inhibitor-NAD-enzyme complexes. We show that it is possible to increase significantly the affinity of the inhibitor to the enzyme with small modifications, without changing the overall structure and ADME (absorption, distribution, metabolism, and excretion) properties of the original inhibitor.

  19. Genetic polymorphisms of alcohol dehydrogense-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers.

    PubMed

    Yokoyama, Akira; Mizukami, Takeshi; Yokoyama, Tetsuji

    2015-01-01

    Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) modulate exposure levels to ethanol/acetaldehyde. Endoscopic screening of 6,014 Japanese alcoholics yielded high detection rates of esophageal squamous cell carcinoma (SCC; 4.1%) and head and neck SCC (1.0%). The risks of upper aerodigestive tract SCC/dysplasia, especially of multiple SCC/dysplasia, were increased in a multiplicative fashion by the presence of a combination of slow-metabolizing ADH1B*1/*1 and inactive heterozygous ALDH2*1/*2 because of prolonged exposure to higher concentrations of ethanol/acetaldehyde. A questionnaire asking about current and past facial flushing after drinking a glass (≈180 mL) of beer is a reliable tool for detecting the presence of inactive ALDH2. We invented a health-risk appraisal (HRA) model including the flushing questionnaire and drinking, smoking, and dietary habits. Esophageal SCC was detected at a high rate by endoscopic mass-screening in high HRA score persons. A total of 5.0% of 4,879 alcoholics had a history of (4.0%) or newly diagnosed (1.0%) gastric cancer. Their high frequency of a history of gastric cancer is partly explained by gastrectomy being a risk factor for alcoholism because of altered ethanol metabolism, e.g., by blood ethanol level overshooting. The combination of H. pylori-associated atrophic gastritis and ALDH2*1/*2 showed the greatest risk of gastric cancer in alcoholics. High detection rates of advanced colorectal adenoma/carcinoma were found in alcoholics, 15.7% of 744 immunochemical fecal occult blood test (IFOBT)-negative alcoholics and 31.5% of the 393 IFOBT-positive alcoholics. Macrocytosis with an MCV≥106 fl increased the risk of neoplasia in the entire aerodigestive tract of alcoholics, suggesting that poor nutrition as well as ethanol/acetaldehyde exposure plays an important role in neoplasia.

  20. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians.

    PubMed

    Yokoyama, Akira; Omori, Tai; Yokoyama, Tetsuji

    2010-01-01

    The ethanol in alcoholic beverages and the acetaldehyde associated with alcohol consumption are Group 1 human carcinogens (WHO, International Agency for Research on Cancer). The combination of alcohol consumption, tobacco smoking, the inactive heterozygous aldehyde dehydrogenase-2 genotype (ALDH2*1/*2) and the less-active homozygous alcohol dehydrogenase-1B genotype (ADH1B*1/*1) increases the risk of squamous cell carcinoma (SCC) in the upper aerodigestive tract (UADT) in a multiplicative fashion in East Asians. In addition to being exposed to locally high levels of ethanol, the UADT is exposed to a very high concentration of acetaldehyde from a variety of sources, including that as an ingredient of alcoholic beverages per se and that found in tobacco smoke; acetaldehyde is also produced by salivary microorganisms and mucosal enzymes and is present as blood acetaldehyde. The inefficient degradation of acetaldehyde by weakly expressed ALDH2 in the UADT may be cri! tical to the local accumulation of acetaldehyde, especially in ALDH2*1/*2 carriers. ADH1B*1/*1 carriers tend to experience less intense alcohol flushing and are highly susceptible to heavy drinking and alcoholism. Heavy drinking by persons with the less-active ADH1B*1/*1 leads to longer exposure of the UADT to salivary ethanol and acetaldehyde. The ALDH2*1/*2 genotype is a very strong predictor of synchronous and metachronous multiple SCCs in the UADT. High red cell mean corpuscular volume (MCV), esophageal dysplasia, and melanosis in the UADT, all of which are frequently found in ALDH2*1/*2 drinkers, are useful for identifying high-risk individuals. We invented a simple flushing questionnaire that enables prediction of the ALDH2 phenotype. New health appraisal models that include ALDH2 genotype, the simple flushing questionnaire, or MCV are powerful tools for devising a new strategy for prevention and screening for UADT cancer in East Asians.

  1. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin. PMID:25772736

  2. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  3. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity

    SciTech Connect

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-09

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. As a result, these findings offer a potential strategy for further ligand optimization.

  4. Sugar derivatives as new 6-phosphogluconate dehydrogenase inhibitors selective for the parasite Trypanosoma brucei.

    PubMed

    Pasti, Claudia; Rinaldi, Eliana; Cervellati, Carlo; Dallocchio, Franco; Hardré, Renaud; Salmon, Laurent; Hanau, Stefania

    2003-04-01

    Sugar derivatives mimicking compounds which take part in the catalysed reaction have been assayed as alternative substrates and/or competitive inhibitors of 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Phosphonate analogues have been synthesised and the new compound 5-deoxy-5-phosphono-D-arabinonate shows good selectivity towards the parasite enzyme. A number of 4-carbon and 5-carbon aldonates are strong inhibitors of the parasite enzyme with K(i) values below the substrate K(m) and some acyl derivatives are also potent inhibitors. At least five of the compounds showing a significant selectivity for the parasite enzyme represent leads for trypanocidal drugs against this recently validated target.

  5. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes.

    PubMed

    Navarro-Aviño, J P; Prasad, R; Miralles, V J; Benito, R M; Serrano, R

    1999-07-01

    The complete sequencing of the genome of Saccharomyces cerevisiae indicated that this organism contains five genes encoding aldehyde dehydrogenases. YOR374w and YER073w correspond to the mitochondrial isoforms and we propose as gene names ALD4 and ALD5, respectively. YPL061w has been described as the cytoplasmic constitutive isoform and named ALD6. We characterize here the tandem-repeated ORFs YMR170c and YMR169c as the cytoplasmic stress-inducible isoforms, with gene names ALD2 and ALD3, respectively. The expression of ALD2 and ALD3 is dependent on the general-stress transcription factors Msn2,4 but independent of the HOG MAP kinase pathway. ALD3 is induced by a variety of stresses, including osmotic shock, heat shock, glucose exhaustion, oxidative stress and drugs. ALD2 is only induced by osmotic stress and glucose exhaustion. A double null mutant, ald2 ald3, exhibited unchanged sensitivity to any of the above stresses. The only phenotype detected in this mutant was a reduced growth rate in ethanol medium as compared to the wild type. PMID:10407263

  6. 9-O-acetylated sialic acids differentiating normal haematopoietic precursors from leukemic stem cells with high aldehyde dehydrogenase activity in children with acute lymphoblastic leukaemia.

    PubMed

    Chowdhury, Suchandra; Chandra, Sarmila; Mandal, Chitra

    2014-10-01

    Childhood acute lymphoblastic leukaemia (ALL) originates from mutations in haematopoietic progenitor cells (HPCs). For high-risk patients, treated with intensified post-remission chemotherapy, haematopoietic stem cell (HSC) transplantation is considered. Autologous HSC transplantation needs improvisation till date. Previous studies established enhanced disease-associated expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of these patients at diagnosis, followed by its decrease with clinical remission and reappearance with relapse. Based on this differential expression of Neu5,9Ac2-GPs, identification of a normal HPC population was targeted from patients at diagnosis. This study identifies two distinct haematopoietic progenitor populations from bone marrow of diagnostic ALL patients, exploring the differential expression of Neu5,9Ac2-GPs with stem cell (CD34, CD90, CD117, CD133), haematopoietic (CD45), lineage-commitment (CD38) antigens and cytosolic aldehyde dehydrogenase (ALDH). Normal haematopoietic progenitor cells (ALDH(+)SSC(lo)CD45(hi)Neu5,9Ac2 -GPs(lo)CD34(+)CD38(-)CD90(+)CD117(+)CD133(+)) differentiated into morphologically different, lineage-specific colonies, being crucial for autologous HSC transplantation while leukemic stem cells (ALDH(+)SSC(lo)CD45(lo)Neu5,9Ac2 -GPs(hi)CD34(+)CD38(+)CD90(-)CD117(-)CD133(-)) lacking this ability can be potential targets for minimal residual disease detection and drug-targeted immunotherapy.

  7. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    SciTech Connect

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M. . E-mail: Elizabeth.ellis@strath.ac.uk

    2006-01-15

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V {sub max} of 2141 {+-} 500 nmol/min/mg and a K {sub m} of 11 {+-} 4 {mu}M. This enzyme was inhibited by pyrazole with a K {sub I} of 3.1 {+-} 0.57 {mu}M. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V {sub max} of 115 nmol/min/mg and a K {sub m} of 15 {+-} 2 {mu}M and was not inhibited by pyrazole.

  8. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    PubMed Central

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  9. Aldehyde dehydrogenase 2 protects human umbilical vein endothelial cells against oxidative damage and increases endothelial nitric oxide production to reverse nitroglycerin tolerance.

    PubMed

    Hu, X Y; Fang, Q; Ma, D; Jiang, L; Yang, Y; Sun, J; Yang, C; Wang, J S

    2016-06-10

    Medical nitroglycerin (glyceryl trinitrate, GTN) use is limited principally by tolerance typified by a decrease in nitric oxide (NO) produced by biotransformation. Such tolerance may lead to endothelial dysfunction by inducing oxidative stress. In vivo studies have demonstrated that aldehyde dehydrogenase 2 (ALDH2) plays important roles in GTN biotransformation and tolerance. Thus, modification of ALDH2 expression represents a potentially effective strategy to prevent and reverse GTN tolerance and endothelial dysfunction. In this study, a eukaryotic expression vector containing the ALDH2 gene was introduced into human umbilical vein endothelial cells (HUVECs) by liposome-mediated transfection. An indirect immunofluorescence assay showed that ALDH2 expression increased 24 h after transfection. Moreover, real-time polymerase chain reaction and western blotting revealed significantly higher ALDH2 mRNA and protein expression in the gene-transfected group than in the two control groups. GTN tolerance was induced by treating HUVECs with 10 mM GTN for 16 h + 10 min, which significantly decreased NO levels in control cells, but not in those transfected with ALDH2. Overexpression of ALDH2 increased cell survival against GTN-induced cytotoxicity and conferred protection from oxidative damage resulting from nitrate tolerance, accompanied by decreased production of intracellular reactive oxygen species and reduced expression of heme oxygenase 1. Furthermore, ALDH2 overexpression promoted Akt phosphorylation under GTN tolerance conditions. ALDH2 gene transfection can reverse and prevent tolerance to GTN through its bioactivation and protect against oxidative damage, preventing the development of endothelial dysfunction.

  10. Tryptophan in Alcoholism Treatment I:  Kynurenine Metabolites Inhibit the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevate Blood Acetaldehyde Concentration and Induce Aversion to Alcohol

    PubMed Central

    Badawy, Abdulla A.-B.; Bano, Samina; Steptoe, Alex

    2011-01-01

    Aims: The aims were to provide proofs of mechanism and principle by establishing the ability of kynurenine metabolites to inhibit the liver mitochondrial low Km aldehyde dehydrogenase (ALDH) activity after administration and in vivo, and to induce aversion to alcohol. Methods: Kynurenic acid (KA), 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) were administered to normal male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring blood acetaldehyde following ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. Results: ALDH activity was significantly inhibited by all three metabolites by doses as small as 1 mg/kg body wt. Blood acetaldehyde accumulation after ethanol administration was strongly elevated by KA and 3-HK and to a lesser extent by 3-HAA. All three metabolites induced aversion to alcohol in rats and decreased alcohol preference in mice. Conclusions: The above kynurenine metabolites of tryptophan induce aversion to alcohol by inhibiting ALDH activity. An intellectual property covering the use of 3-HK and 3-HAA and derivatives thereof in the treatment of alcoholism by aversion awaits further development. PMID:21896552

  11. The frequency of the mitochondrial aldehyde dehydrogenase I2 (atypical) allele in Caucasian, Oriental and African black populations determined by the restriction profile of PCR-amplified DNA.

    PubMed

    Dandré, F; Cassaigne, A; Iron, A

    1995-06-01

    The aldehyde dehydrogenase I (ALDH I) gene codes for a mitochondrial enzyme which plays a major role in hepatic alcohol detoxication. It has been related to alcohol flushing in Orientals bearing the atypical ALDH I2 gene. The variant protein results from a lysine for glutamate substitution at position 487 (G-->A change in exon 12). A procedure for ALDH I2 detection consisting in a differentiation between the 'atypical' allele and the 'wild' allele has been improved through PCR and subsequent MboII digestion. Blood samples collected on anticoagulant or directly absorbed on blotting paper were used for DNA amplification in the presence of two specific oligonucleotidic primers, each one able to incorporate a restriction site in the amplimer. After MboII digestion, PCR products were separated by polyacrylamide gel electrophoresis and then visualized with ethidium bromide. This technique permits a rapid and non-radioactive detection of atypical ALDH I2 on a PCR product without the use of allele specific oligonucleotides. It was applied to the study of ALDH I2 allele frequency in random population samples of three ethnic groups: Caucasians, Orientals and African blacks.

  12. Identification of Small-Molecule Inhibitors against Meso-2, 6-Diaminopimelate Dehydrogenase from Porphyromonas gingivalis

    PubMed Central

    Stone, Victoria N.; Parikh, Hardik I.; El-rami, Fadi; Ge, Xiuchun; Chen, Weihau; Zhang, Yan; Kellogg, Glen E.; Xu, Ping

    2015-01-01

    Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a “druggable” essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivalis was first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials. PMID:26544875

  13. Evaluation of the anti-tumor effects of lactate dehydrogenase inhibitor galloflavin in endometrial cancer cells.

    PubMed

    Han, Xiaoyun; Sheng, Xiugui; Jones, Hannah M; Jackson, Amanda L; Kilgore, Joshua; Stine, Jessica E; Schointuch, Monica N; Zhou, Chunxiao; Bae-Jump, Victoria L

    2015-01-29

    High rates of aerobic glycolysis represent a key mechanism by which endometrial cancer cells consume glucose as its primary energy source. The up-regulated glycolytic pathway is a common therapeutic target whose inhibition has implications for anti-tumor activity in cancer cells. The present study was aimed at evaluating the potential of a novel lactate dehydrogenase (LDH) inhibitor, Galloflavin, as a therapeutic agent for endometrial cancer. Our results revealed that Galloflavin effectively inhibited cell growth in endometrial cancer cell lines and primary cultures of human endometrial cancer through its involvement in multiple signaling pathways that regulate metabolism, cell cycle, apoptosis, cell stress and metastasis.

  14. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.

    PubMed

    Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2015-10-15

    Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme.

  15. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.

    PubMed

    Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2015-10-15

    Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme. PMID:26404410

  16. Novel Diketopiperazine Dihydroorotate Dehydrogenase Inhibitors Purified from Traditional Tibetan Animal Medicine Osteon Myospalacem Baileyi.

    PubMed

    Jiang, Lei; Wen, Huaixiu; Shao, Yun; Yu, Ruitao; Liu, Zenggen; Wang, Shuo; Wang, Qilan; Zhao, Xiaohui; Zhang, Peng; Tao, Yanduo; Mei, Lijuan

    2015-10-01

    Traditional Tibetan medicine provides an abundant source of knowledge on human ailments and their treatment. As such, it is necessary to explore their active single compounds used to treat these ailments to discover lead compounds with good pharmacologic properties. In this present work, animal medicine, Osteon Myospalacem Baileyi extracts have been separated using a two-dimensional preparative chromatographic method to obtain single compounds with high purity as part of the following pharmacological research. Five high-purity cyclic dipeptides from chromatography work were studied for their dihydroorotate dehydrogenase inhibitory activity on recombinant human dihydroorotate dehydrogenase enzyme and compound Fr. 1-4 was found to contain satisfying inhibition activity. The molecular modeling study suggests that the active compound Fr. 1-4 may have a teriflunomide-like binding mode. Then, the energy decomposition study suggests that the hydrogen bond between Fr. 1-4 and Arg136 can improve the binding mode to indirectly increase the van der Waals binding energy. All the results above together come to the conclusion that the 2, 5-diketopiperazine structure group can interact with the polar residues well in the active pocket using electrostatic power. If some proper hydrophobic groups can be added to the sides of the 2, 5-diketopiperazine group, it is believed that better 2, 5-diketopiperazine dihydroorotate dehydrogenase inhibitors will be found in the future. PMID:25626527

  17. Novel Diketopiperazine Dihydroorotate Dehydrogenase Inhibitors Purified from Traditional Tibetan Animal Medicine Osteon Myospalacem Baileyi.

    PubMed

    Jiang, Lei; Wen, Huaixiu; Shao, Yun; Yu, Ruitao; Liu, Zenggen; Wang, Shuo; Wang, Qilan; Zhao, Xiaohui; Zhang, Peng; Tao, Yanduo; Mei, Lijuan

    2015-10-01

    Traditional Tibetan medicine provides an abundant source of knowledge on human ailments and their treatment. As such, it is necessary to explore their active single compounds used to treat these ailments to discover lead compounds with good pharmacologic properties. In this present work, animal medicine, Osteon Myospalacem Baileyi extracts have been separated using a two-dimensional preparative chromatographic method to obtain single compounds with high purity as part of the following pharmacological research. Five high-purity cyclic dipeptides from chromatography work were studied for their dihydroorotate dehydrogenase inhibitory activity on recombinant human dihydroorotate dehydrogenase enzyme and compound Fr. 1-4 was found to contain satisfying inhibition activity. The molecular modeling study suggests that the active compound Fr. 1-4 may have a teriflunomide-like binding mode. Then, the energy decomposition study suggests that the hydrogen bond between Fr. 1-4 and Arg136 can improve the binding mode to indirectly increase the van der Waals binding energy. All the results above together come to the conclusion that the 2, 5-diketopiperazine structure group can interact with the polar residues well in the active pocket using electrostatic power. If some proper hydrophobic groups can be added to the sides of the 2, 5-diketopiperazine group, it is believed that better 2, 5-diketopiperazine dihydroorotate dehydrogenase inhibitors will be found in the future.

  18. Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors.

    PubMed

    Ibrar, Aliya; Tehseen, Yildiz; Khan, Imtiaz; Hameed, Abdul; Saeed, Aamer; Furtmann, Norbert; Bajorath, Jürgen; Iqbal, Jamshed

    2016-10-01

    In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a-o) and coumarin-oxadiazole 11(a-h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16±0.06μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50=2.94±1.23μM for ARL1 and 0.12±0.05μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50=1.71±0.01μM for ARL1 and 0.11±0.001μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50=0.459±0.001μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.

  19. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE PAGES

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; Gollapalli, Deviprasad R.; Cuny, Gregory D.; Joachimiak, Andrzej; Hedstrom, Lizbeth

    2015-04-21

    Inosine 5´-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 5´-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategymore » for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.« less

  20. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity.

    PubMed

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; Gollapalli, Deviprasad R; Cuny, Gregory D; Joachimiak, Andrzej; Hedstrom, Lizbeth

    2015-05-01

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications. PMID:25945705

  1. Repurposing cryptosporidium inosine 5'-monophosphate dehydrogenase inhibitors as potential antibacterial agents.

    PubMed

    Mandapati, Kavitha; Gorla, Suresh Kumar; House, Amanda L; McKenney, Elizabeth S; Zhang, Minjia; Rao, Suraj Nagendra; Gollapalli, Deviprasad R; Mann, Barbara J; Goldberg, Joanna B; Cuny, Gregory D; Glomski, Ian J; Hedstrom, Lizbeth

    2014-08-14

    Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. IMPDH is a target for immunosuppressive, antiviral, and anticancer drugs, but, as of yet, has not been exploited for antimicrobial therapy. We have previously reported potent inhibitors of IMPDH from the protozoan parasite Cryptosporidium parvum (CpIMPDH). Many pathogenic bacteria, including Bacillus anthracis, Staphylococcus aureus, and Listeria monocytogenes, contain IMPDHs that should also be inhibited by these compounds. Herein, we present the structure-activity relationships for the inhibition of B. anthracis IMPDH (BaIMPDH) and antibacterial activity of 140 compounds from five structurally distinct compound series. Many potent inhibitors of BaIMPDH were identified (78% with IC50 ≤ 1 μM). Four compounds had minimum inhibitory concentrations (MIC) of less than 2 μM against B. anthracis Sterne 770. These compounds also displayed antibacterial activity against S. aureus and L. monocytogenes. PMID:25147601

  2. Human hydroxysteroid dehydrogenases and pre-receptor regulation: insights into inhibitor design and evaluation.

    PubMed

    Penning, Trevor M

    2011-05-01

    Hydroxysteroid dehydrogenases (HSDs) represent a major class of NAD(P)(H) dependent steroid hormone oxidoreductases involved in the pre-receptor regulation of hormone action. This is achieved by HSDs working in pairs so that they can interconvert ketosteroids with hydroxysteroids resulting in a change in ligand potency for nuclear receptors. HSDs belong to two protein superfamilies the aldo-keto reductases and the short-chain dehydrogenase/reductases. In humans, many of the important enzymes have been thoroughly characterized including the elucidation of their three-dimensional structures. Because these enzymes play fundamental roles in steroid hormone action they can be considered to be drug targets for a variety of steroid driven diseases, e.g. metabolic syndrome and obesity, inflammation, and hormone dependent malignancies of the endometrium, prostate and breast. This article will review how fundamental knowledge of these enzymes can be exploited in the development of isoform specific HSD inhibitors from both protein superfamilies. Article from the Special issue on Targeted Inhibitors.

  3. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum

    PubMed Central

    Zheng, Tianyong; Olson, Daniel G.; Tian, Liang; Bomble, Yannick J.; Himmel, Michael E.; Lo, Jonathan; Hon, Shuen; Shaw, A. Joe; van Dijken, Johannes P.

    2015-01-01

    ABSTRACT Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. thermocellum and T. saccharolyticum were cloned and expressed in Escherichia coli, the enzymes produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains of T. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain of C. thermocellum has acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced into C. thermocellum and T. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. IMPORTANCE This work describes the characterization of the AdhE enzyme from different strains of C. thermocellum and T. saccharolyticum. C. thermocellum and T. saccharolyticum are thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of

  4. Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase.

    PubMed

    Kumar, Vinod; Sankaranarayanan, Mugesh; Jae, Kyeung-Eun; Durgapal, Meetu; Ashok, Somasundar; Ko, Yeounjoo; Sarkar, Ritam; Park, Sunghoon

    2012-10-01

    The co-production of 3-hydroxypropionic acid (3HP) and 1,3-propanediol (PDO) from glycerol was studied using the resting cells of a recombinant Klebsiella pneumoniae J2B strain that overexpresses an aldehyde dehydrogenase (KGSADH). Active biomass was produced in a mineral salt medium containing yeast extract and glycerol under a range of aeration conditions, and shifted to potassium phosphate buffer containing glycerol for bioconversion. The microaerobic or anaerobic conditions were favorable for both the production of active biomass and subsequent bioconversion. At the flask level, the recombinant strain (2.0 g CDW/L) grown under microaerobic conditions produced 43.2 mM 3HP and 59.0 mM PDO from glycerol (117 mM) in 30 min with a cumulative yield of 0.87 (mol/mol). The fed-batch bioconversion, which was performed in a 1.5-L bioreactor with 1.0 g CDW/L at a constant pH 7.0 under anaerobic conditions, resulted in 125.6 mM 3HP and 209.5 mM PDO in 12 h with a cumulative overall productivity, yield, and maximum specific production rate of 27.9 mmol/L/h, 0.71 (mol/mol), and 128.5 mmol/g CDW/h, respectively. Lactate, succinate and 2,3-butanediol were the major by-products, whereas the production of acetate and ethanol was marginal. This is the first report of the simultaneous production of 3HP and PDO from glycerol using a resting cell system.

  5. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    PubMed Central

    Wang, Da-qing; Yu, Song

    2016-01-01

    The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs) obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling. PMID:27689079

  6. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    PubMed Central

    Wang, Da-qing; Yu, Song

    2016-01-01

    The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs) obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  7. Immobilisation and characterisation of biocatalytic co-factor recycling enzymes, glucose dehydrogenase and NADH oxidase, on aldehyde functional ReSyn™ polymer microspheres.

    PubMed

    Twala, Busisiwe V; Sewell, B Trevor; Jordaan, Justin

    2012-05-10

    The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of two biocatalytically relevant co-factor recycling enzymes, glucose dehydrogenase (GDH) and NADH oxidase (NOD) on aldehyde functional ReSyn™ polymer microspheres with varying functional group densities. The successful immobilisation of the enzymes on this new high capacity microsphere technology resulted in the maintenance of activity of ∼40% for GDH and a maximum of 15.4% for NOD. The microsphere variant with highest functional group density of ∼3500 μmol g⁻¹ displayed the highest specific activity for the immobilisation of both enzymes at 33.22 U mg⁻¹ and 6.75 U mg⁻¹ for GDH and NOD with respective loading capacities of 51% (0.51 mg mg⁻¹) and 129% (1.29 mg mg⁻¹). The immobilised GDH further displayed improved activity in the acidic pH range. Both enzymes displayed improved pH and thermal stability with the most pronounced thermal stability for GDH displayed on ReSyn™ A during temperature incubation at 65 °C with a 13.59 fold increase, and NOD with a 2.25-fold improvement at 45 °C on the same microsphere variant. An important finding is the suitability of the microspheres for stabilisation of the multimeric protein GDH.

  8. Post-Translational Modification as a Potential Explanation of High Levels of Enzyme Polymorphism: Xanthine Dehydrogenase and Aldehyde Oxidase in DROSOPHILA MELANOGASTER

    PubMed Central

    Finnerty, Victoria; Johnson, George

    1979-01-01

    Xanthine dehydrogenase (XDH) and aldehyde oxidase (AO) in Drosophila melanogaster require for their activity the action of another unlinked locus, maroon-like (mal). While the XDH and AO loci are on chromosome 3, mal maps to the X chromosome. Although functional mal gene product is required for XDH and AO activity, it is possible to examine the effects of mutant mal alleles in those cases when pairs of mutants complement to produce a partial restoration of activity. To test whether mal mediates a post-translational modification of the XDH and AO proteins, we constructed several mal heteroallelic complementing stocks of Drosophila in which the third chromosomes were co-isogenic. Since all lines were co-isogenic for the XDH and AO structural genes, any variation in these enzymes seen when comparing these stocks must have been produced by post-translational modification by mal. We examined the XDH and AO proteins in these stocks by gel-sieving electrophoresis, a procedure that permits independent characterization of a protein's charge and shape, and is capable of discriminating many variants not detected in routine electrophoresis. In every mal heteroallelic combination, there is a significant alteration in protein shape, when compared to wild type. The magnitude of differences in shape of XDH and AO is correlated both with differences in their enzyme activities and with differences in their thermal stabilities. As the body of this variation appears heritable, any functional differences resulting from these variants are of real genetic and evolutionary interest. A similar post-translational modification of XDH and AO by yet another locus, lxd, was subsequently documented in an analogous manner. The pattern of electrophoretic differences produced by mal and lxd modification is similar to that reported for electrophoretic "alleles" of XDH in natural populations. The implication is that heritable variation in electrophoretic mobility at these two enzyme loci, and

  9. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487.

    PubMed

    Larson, Heather N; Zhou, Jianzhong; Chen, Zhiqiang; Stamler, Jonathan S; Weiner, Henry; Hurley, Thomas D

    2007-04-27

    The common mitochondrial aldehyde dehydrogenase (ALDH2) ALDH2(*)2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu-487 that reduces the k(cat) for these processes and increases the K(m) for NAD(+), as compared with ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2(*)2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2(*)2 complexed with coenzyme to 2.5A(.) We have also solved the structures of a mutated form of ALDH2 where Arg-475 is replaced by Gln (R475Q). The structural and functional properties of the R475Q enzyme are intermediate between those of wild-type and the ALDH2(*)2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the R475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2(*)2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2(*)2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the R475Q enzyme. The data presented shows that Glu-487 maintains a critical function in linking the structure of the coenzyme-binding site to that of the active site through its interactions with Arg-264 and Arg-475, and in doing so, creates the stable structural scaffold conducive to catalysis.

  10. Association between Carotid Intima-media Thickness and Aldehyde Dehydrogenase 2 Glu504Lys Polymorphism in Chinese Han with Essential Hypertension

    PubMed Central

    Ma, Xiao-Xiang; Zheng, Shu-Zhan; Shu, Yan; Wang, Yong; Chen, Xiao-Ping

    2016-01-01

    Background: Aldehyde dehydrogenase 2 (ALDH2) is involved in the pathophysiological processes of cardiovascular diseases. Recent studies showed that mutant ALDH2 could increase oxidative stress and is a susceptible factor for hypertension. In addition, wild-type ALDH2 could improve the endothelial functions, therefore reducing the risk of developing atherosclerosis. The aim of the present study was to explore the frequency of the Glu504Lys polymorphism of the ALDH2 gene and its relation to carotid intima-media thickness (CIMT) in a group of patients with essential hypertension (EH) and to investigate the association between the Glu504Lys polymorphism and CIMT in Chinese Han patients with EH. Methods: In this study, 410 Chinese Han patients with EH who received physical examinations at the People's Hospital of Sichuan Province (China) were selected. DNA microarray chip was used for the genotyping of the Glu504Lys polymorphism of the ALDH2 gene. The differences in CIMT among patients with different Glu504Lys ALDH2 genotypes were analyzed. Results: The mean CIMT of the patients carrying AA/AG and GG genotypes was 1.02 ± 0.31 mm and 0.78 ± 0.28 mm, respectively. One-way ANOVA showed that the CIMT of the patients carrying the AA/AG genotype was significantly higher than in the ones carrying the GG genotype (P < 0.001). Multivariate logistic regression showed that the Glu504Lys AA/AG genotype of the ALDH2 gene was one of the major factors influencing the CIMT in patients with EH (odds ratio = 3.731, 95% confidence interval = 1.589–8.124, P = 0.001). Conclusions: The Glu504Lys polymorphism of the ALDH2 gene is associated with the CIMT of Chinese Han patients with EH in Sichuan, China. PMID:27270535

  11. Structural and Functional Consequences of Coenzyme Binding to the Inactive Asian Variant of Mitochondrial Aldehyde Dehydrogenase: Roles of Residues 475 and 487

    SciTech Connect

    Larson,H.; Zhou, J.; Chen, Z.; Stamler, J.; Weiner, H.; Hurley, T.

    2007-01-01

    The common mitochondrial aldehyde dehydrogenase (ALDH2) ALDH2*2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu-487 that reduces the k{sub cat} for these processes and increases the K{sub m} for NAD{sup +}, as compared with ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2*2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2*2 complexed with coenzyme to 2.5 {angstrom}. We have also solved the structures of a mutated form of ALDH2 where Arg-475 is replaced by Gln (R475Q). The structural and functional properties of the R475Q enzyme are intermediate between those of wild-type and the ALDH2*2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the R475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2*2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2*2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the R475Q enzyme. The data presented shows that Glu-487 maintains a critical function in linking the structure of the coenzyme binding site to that of the active site through its interactions with Arg-264 and Arg-475, and in doing so, creates the stable structural scaffold conducive to catalysis.

  12. Decreased expression of mitochondrial aldehyde dehydrogenase-2 induces liver injury via activation of the mitogen-activated protein kinase pathway.

    PubMed

    Zhong, Zibiao; Ye, Shaojun; Xiong, Yan; Wu, Lianxi; Zhang, Meng; Fan, Xiaoli; Li, Ling; Fu, Zhen; Wang, Huanglei; Chen, Mingyun; Yan, Xiaomin; Huang, Wei; Ko, Dicken Shiu-Chung; Wang, Yanfeng; Ye, Qifa

    2016-01-01

    The aim of this study was to determine the role of ALDH2 in the injury of liver from brain-dead donors. Using brain-dead rabbit model and hypoxia model, levels of ALDH2 and apoptosis in tissues and cell lines were determined by Western blot, flow cytometry (FCM), and transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assays. After the expression of ALDH2 during hypoxia had been inhibited or activated, the accumulations of 4-hydroxynonenal (4-HNE) and molecules involved in mitogen-activated protein kinase (MAPK) signaling pathway were analyzed using ELISA kit and Western blot. The low expression of phosphorylated ALDH2 in liver was time-dependent in the brain-dead rabbit model. Immunohistochemistry showed ALDH2 was primarily located in endothelial, and the rates of cell apoptosis in the donation after brain-death (DBD) rabbit groups significantly increased with time. Following the treatment of inhibitor of ALDH2, daidzein, in combination with hypoxia for 8 h, the apoptosis rate and the levels of 4-HNE, P-JNK, and cleaved caspase-3 significantly increased in contrast to that in hypoxic HUVECs; however, they all decreased after treatment with Alda-1 and hypoxia compared with that in hypoxic HUVECs (P < 0.05). Instead, the levels of P-P38, P-ERK, P-JNK, and cleaved caspase-3 decreased and the ratio of bcl-2/bax increased with ad-ALDH2 (10(6) pfu/ml) in combination with hypoxia for 8 h, which significantly alleviated in contrast to that in hypoxic HUVECs. We found low expression of ALDH2 and high rates of apoptosis in the livers of brain-dead donor rabbits. Furthermore, decreased ALDH2 led to apoptosis in HUVECs through MAPK pathway.

  13. Molecular docking and enzymatic evaluation to identify selective inhibitors of aspartate semialdehyde dehydrogenase

    PubMed Central

    Luniwal, Amarjit; Wang, Lin; Pavlovsky, Alexander; Erhardt, Paul W.; Viola, Ronald E.

    2013-01-01

    Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors. PMID:22464683

  14. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers

    PubMed Central

    Mullarky, Edouard; Lucki, Natasha C.; Beheshti Zavareh, Reza; Anglin, Justin L.; Gomes, Ana P.; Nicolay, Brandon N.; Wong, Jenny C. Y.; Christen, Stefan; Takahashi, Hidenori; Singh, Pradeep K.; Blenis, John; Fendt, Sarah-Maria; Asara, John M.; DeNicola, Gina M.; Lyssiotis, Costas A.; Lairson, Luke L.; Cantley, Lewis C.

    2016-01-01

    Cancer cells reprogram their metabolism to promote growth and proliferation. The genetic evidence pointing to the importance of the amino acid serine in tumorigenesis is striking. The gene encoding the enzyme 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the first committed step of serine biosynthesis, is overexpressed in tumors and cancer cell lines via focal amplification and nuclear factor erythroid-2-related factor 2 (NRF2)-mediated up-regulation. PHGDH-overexpressing cells are exquisitely sensitive to genetic ablation of the pathway. Here, we report the discovery of a selective small molecule inhibitor of PHGDH, CBR-5884, identified by screening a library of 800,000 drug-like compounds. CBR-5884 inhibited de novo serine synthesis in cancer cells and was selectively toxic to cancer cell lines with high serine biosynthetic activity. Biochemical characterization of the inhibitor revealed that it was a noncompetitive inhibitor that showed a time-dependent onset of inhibition and disrupted the oligomerization state of PHGDH. The identification of a small molecule inhibitor of PHGDH not only enables thorough preclinical evaluation of PHGDH as a target in cancers, but also provides a tool with which to study serine metabolism. PMID:26831078

  15. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening.

    PubMed

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción

    2016-08-01

    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth. PMID:27133204

  16. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    PubMed

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-01

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development. PMID:21877690

  17. Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.

    PubMed

    Gorla, Suresh Kumar; Kavitha, Mandapati; Zhang, Minjia; Chin, James En Wai; Liu, Xiaoping; Striepen, Boris; Makowska-Grzyska, Magdalena; Kim, Youngchang; Joachimiak, Andrzej; Hedstrom, Lizbeth; Cuny, Gregory D

    2013-05-23

    Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD(+). The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 μM) against a panel of four mammalian cells lines.

  18. Xanthine toxicity to caterpillars synergized by allopurinol, a xanthine dehydrogenase/oxidase inhibitor.

    PubMed

    Slansky, F

    1993-11-01

    Xanthine (2,6-dioxypurine), which occurs in certain legumes and other plants, was fed in artificial diet to larvae of two noctuid moth species, a legume specialist,Anticarsia gemmatalis, and a generalist,Spodoptera frugiperda. In addition, diets either lacked or contained allopurinol (4-hydroxypyrazolo(3,4-d)-pyrimidine), an inhibitor of xanthine dehydrogenase and oxidase, enzymes that convert xanthine to uric acid. Xanthine alone (up to 2% fresh mass, fm) had little deleterious effect on either species, whereas allopurinol alone (up to 1% fm) had moderate but significant effects, increasing mortality, slowing development, and reducing insect biomass. At 0.5% fm allopurinol, the decrease in biomass-relative growth rate (RGR) was associated with reductions in the efficiency of conversion to biomass of digested food (ECD; both species) and in the biomass-relative consumption rate (RCR;A. gemmatalis). In addition, pupae of each species from allopurinol-fed larvae had increased water retention (i.e., lower percentage dry mass) compared with insects consuming control diet. When fed diet containing both compounds (1% fm xanthin+0.5% fm allopurinol), noA. gemmatalis and only 40% ofS. frugiperda larvae reached the prepupal stage; additionally for the latter species, there was a substantial slowing of growth and reductions in final biomass, RGR, RCR, and ECD. These results indicate a synergistic interaction, in which the effects of xanthine and allopurinol combined in the diet were significantly greater than the additive effects of each compound tested separately. Presumably, the inhibition of xanthine dehydrogenase by allopurinol prevented the absorbed xanthine from being converted to uric acid and excreted. In addition, this study expands the phenomenon of phytochemical detoxification by insects to include xanthine dehydrogenase, an enzyme generally not considered within this context. PMID:24248717

  19. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration

    PubMed Central

    Jang, Kusik; Kim, Inhyub; Kim, Bo-Kyung; Lee, Kyeong; Won, Misun

    2016-01-01

    We previously reported that hypoxia-inducible factor (HIF)-1 inhibitor LW6, an aryloxyacetylamino benzoic acid derivative, inhibits malate dehydrogenase 2 (MDH2) activity during the mitochondrial tricarboxylic acid (TCA) cycle. In this study, we present a novel MDH2 inhibitor compound 7 containing benzohydrazide moiety, which was identified through structure-based virtual screening of chemical library. Similar to LW6, compound 7 inhibited MDH2 activity in a competitive fashion, thereby reducing NADH level. Consequently, compound 7 reduced oxygen consumption and ATP production during the mitochondrial respiration cycle, resulting in increased intracellular oxygen concentration. Therefore, compound 7 suppressed the accumulation of HIF-1α and expression of its target genes, vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). Moreover, reduction in ATP content activated AMPK, thereby inactivating ACC and mTOR the downstream pathways. As expected, compound 7 exhibited significant growth inhibition of human colorectal cancer HCT116 cells. Compound 7 demonstrated substantial anti-tumor efficacy in an in vivo xenograft assay using HCT116 mouse model. Taken together, a novel MDH2 inhibitor, compound 7, suppressed HIF-1α accumulation via reduction of oxygen consumption and ATP production, integrating metabolism into anti-cancer efficacy in cancer cells. PMID:27611801

  20. Inhibition of progesterone secretion by a 3 beta-hydroxysteroid dehydrogenase inhibitor in pregnant goats.

    PubMed

    Taylor, M J

    1987-06-01

    Epostane, an inhibitor of 3 beta-hydroxysteroid dehydrogenase, was administered to goats in late pregnancy in the presence or absence of concurrent treatment with prostaglandin synthetase inhibitors (indomethacin and diclofenac sodium) and the effect on steroidogenesis in the corpus luteum and adrenal cortex determined by measurement of peripheral concentrations of progesterone and cortisol respectively. Concentrations of both steroids were reduced to about 20% of pretreatment levels within 6 h of epostane administration. Cortisol concentrations subsequently increased about 24 h after epostane administration and returned to and exceeded pretreatment values, but progesterone concentrations remained suppressed until premature delivery, which occurred in all animals 44 +/- 2 h (mean +/- S.E.M.) after epostane administration. However, combined administration of epostane and prostaglandin synthetase inhibitor prevented the onset of labour in the majority of animals, but progesterone secretion in animals receiving this combined treatment did not differ from that in animals given epostane alone. It is concluded that progesterone withdrawal is an important component of the mechanisms which initiate parturition in the goat and that increased prostaglandin synthesis is essential for delivery in this species, but perhaps not for luteolysis. PMID:3625098

  1. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration.

    PubMed

    Ban, Hyun Seung; Xu, Xuezhen; Jang, Kusik; Kim, Inhyub; Kim, Bo-Kyung; Lee, Kyeong; Won, Misun

    2016-01-01

    We previously reported that hypoxia-inducible factor (HIF)-1 inhibitor LW6, an aryloxyacetylamino benzoic acid derivative, inhibits malate dehydrogenase 2 (MDH2) activity during the mitochondrial tricarboxylic acid (TCA) cycle. In this study, we present a novel MDH2 inhibitor compound 7 containing benzohydrazide moiety, which was identified through structure-based virtual screening of chemical library. Similar to LW6, compound 7 inhibited MDH2 activity in a competitive fashion, thereby reducing NADH level. Consequently, compound 7 reduced oxygen consumption and ATP production during the mitochondrial respiration cycle, resulting in increased intracellular oxygen concentration. Therefore, compound 7 suppressed the accumulation of HIF-1α and expression of its target genes, vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). Moreover, reduction in ATP content activated AMPK, thereby inactivating ACC and mTOR the downstream pathways. As expected, compound 7 exhibited significant growth inhibition of human colorectal cancer HCT116 cells. Compound 7 demonstrated substantial anti-tumor efficacy in an in vivo xenograft assay using HCT116 mouse model. Taken together, a novel MDH2 inhibitor, compound 7, suppressed HIF-1α accumulation via reduction of oxygen consumption and ATP production, integrating metabolism into anti-cancer efficacy in cancer cells. PMID:27611801

  2. The use of pH-gradient ion-exchange chromatography to separate sheep liver cytoplasmic aldehyde dehydrogenase from mitochondrial enzyme contamination, and observations on the interaction between the pure cytoplasmic enzyme and disulfiram.

    PubMed Central

    Dickinson, F M; Hart, G J; Kitson, T M

    1981-01-01

    1. Sheep liver cytoplasmic aldehyde dehydrogenase can be purified from contamination with the mitochondrial form of the enzyme by pH-gradient ion-exchange chromatography. The method is simple, reproducible and efficient. 2. The purified cytoplasmic enzyme retains about 2% of its original activity in the presence of a large excess of disulfiram. This suggests that the disulfiram-reactive thiol groups are not essential for covalent interaction with the aldehyde substrate during catalysis, as has sometimes been suggested. 3. Between 1.5 and 2.0 molecules of disulfiram per tetrameric enzyme molecule account for the observed loss of activity, suggesting that the enzyme may have only two functional active sites. 4. Experiments show that disulfiram-modified enzyme retains the ability to bind NAD+ and NADH. PMID:7340819

  3. Myocardial steatosis and necrosis in atria and ventricles of rats given pyruvate dehydrogenase kinase inhibitors.

    PubMed

    Jones, Huw Bowen; Reens, Jaimini; Johnson, Elizabeth; Brocklehurst, Simon; Slater, Ian

    2014-12-01

    Pharmaceutical therapies for non-insulin-dependent diabetes mellitus (NIDDM) include plasma glucose lowering by enhancing glucose utilization. The mitochondrial pyruvate dehydrogenase (PDH) complex is important in controlling the balance between glucose and fatty acid substrate oxidation. Administration of pyruvate dehydrogenase kinase inhibitors (PDHKIs) to rats effectively lowers plasma glucose but results in myocardial steatosis that in some instances is associated primarily with atrial and to a lesser degree with ventricular pathology. Induction of myocardial steatosis is not dose-dependent, varies from minimal to moderate severity, and is either of multifocal or diffuse distribution. Ventricular histopathology was restricted to few myocardial degenerative fibers, while that in the atrium/atria was of either acute or chronic appearance with the former showing myocardial degeneration/necrosis, acute myocarditis, edema, endothelial activation (rounding up), endocarditis, and thrombosis associated with moderate myocardial steatosis and the latter with myocardial loss, replacement fibrosis, and no apparent or minimal association with steatosis. The evidence from these evaluations indicate that excessive intramyocardial accumulation of lipid may be either primarily adverse or represents an indicator of other adversely affected cellular processes.

  4. Differential effects of organic nitrates on arterial diameter among healthy Japanese participants with different mitochondrial aldehyde dehydrogenase 2 genotypes: randomised crossover trial

    PubMed Central

    Sakata, Satoko; Yoshihara, Tatsuya; Arima, Hisatomi; Shiraishi, Fumie; Oniki, Hideyuki; Takahashi-Yanaga, Fumi; Matsumura, Kiyoshi

    2011-01-01

    Objectives To determine whether polymorphisms at codon 487 (*1, GAA=Glu; *2, AAA=Lys) of mitochondrial aldehyde dehydrogenase 2 (ALDH2) influence nitroglycerine (glyceryl trinitrate (GTN))-induced vasodilation, and whether GTN or isosorbide dinitrate (ISDN) is a more effective antianginal agent in each ALDH2 genotype. Design A randomised, open-label, crossover trial with 117 healthy Japanese (20–39 years) whose genotypes were determined (*1/*1, n=47; *1/*2, n=48; *2/*2, n=22) was performed at Kyushu University Hospital, Fukuoka, Japan. Participants were randomly assigned to treatment: sublingual spray of GTN (0.3 mg) or ISDN (1.25 mg). After ≥1 week, measurements were repeated using the other drug. The main outcome measures were the maximal rate of increase in the brachial artery diameter determined by ultrasonography, the time required to attain maximal dilation (Tmax) and the time required to attain 90% maximal dilation (T0.9). Results The maximal artery diameter increase in response to GTN or ISDN did not differ among genotypes. However, GTN Tmax was significantly longer for *2/*2 (299.7 s, 269.0–330.4) than *1/*1 (254.7 s, 238.6–273.4; p=0.0190). GTN T0.9 was significantly longer in the *1/*2 (206.1 s, 191.7–219.3) and *2/*2 (231.4 s, 211.8–251.0) genotypes than *1/*1 (174.9 s, 161.5–188.3; p=0.0068, p<0.0001, respectively). In contrast, the time-course of ISDN-induced vasodilation did not differ among genotypes. GTN Tmax and T0.9 among *1 allele carriers (*1/*1 and *1/*2) were significantly shorter than those of ISDN, whereas the time course of GTN and ISDN vasodilation did not differ among participants carrying *2/*2. Conclusions The amplitude of GTN-induced vasodilation was not influenced by the ALDH2 genotype, but the response was significantly delayed in *2 allele carriers, especially *2/*2. GTN dilated the artery more quickly than ISDN in *1/*1 and *1/*2, but not in *2/*2. Trial registration number UMIN000001492 (UMIN

  5. High ethanol and acetaldehyde impair spatial memory in mouse models: opposite effects of aldehyde dehydrogenase 2 and apolipoprotein E on memory.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Miki, Takanori; Tanaka, Naoko; Ono, Junichiro; Shirakami, Gotaro; Sultana, Ruby; Yu, Nakamura; Kinoshita, Hiroshi

    2012-05-01

    Aldehyde dehydrogenase 2 deficiency may directly contribute to excess acetaldehyde (AcH) accumulation after ethanol (EtOH) drinking and AcH mediates some of the behavioral effects of EtOH. Apolipoprotein E has been suggested to be involved in the alteration of attention and memory. We have chosen Aldh2-knockout (Aldh2-KO), ApoE-KO, and their wild-type (WT) control mice to examine the effects of EtOH and AcH on spatial memory and to compare the possible relationship between genetic deficiency and memory using two behavioral assessments. Mice were trained for 4 days, with EtOH (0.5, 1.0, 2.0 g/kg) being given intraperitoneally on day 4. A probe trial was given on day 5 in the non-EtOH state in the Morris water maze (MWM). The results showed that 2.0 g/kg EtOH increased errors, indicating memory impairment on the eight-arm radial maze (RAM) for all the mice studied. One gram per kilogram EtOH impaired the performance of Aldh2-KO and ApoE-KO mice, but not WT mice. We found similar effects of EtOH on the MWM performance, with 2.0 g/kg EtOH increasing the latencies. One gram per kilogram EtOH increased the latencies of Aldh2-KO and WT mice, but not ApoE-KO mice. The 2.0 g/kg EtOH-induced memory impairment in Aldh2-KO mice was greater, suggesting an AcH effect. Furthermore, time spent on the probe trial was shorter in mice that had previously received 2.0 g/kg EtOH. ApoE-KO mice learned more slowly, while Aldh2-KO mice learned more quickly. Both the RAM and MWM results suggest that high EtOH and AcH impair spatial memory in mice, while lower doses do not have consistent memory effects. In addition, we conclude that genetic differences might underlie some of EtOH's effects on memory.

  6. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    PubMed

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  7. The novel myxofibrosarcoma cell line MUG-Myx1 expresses a tumourigenic stem-like cell population with high aldehyde dehydrogenase 1 activity

    PubMed Central

    2013-01-01

    Background Myxofibrosarcoma comprises a spectrum of malignant neoplasms withprominent myxoid stromata, cellular pleomorphism, and distinct curvilinear vascular patterns. These neoplasms mainly affect patients in the sixth to eighth decades of life and the overall 5-year survival rate is 60–70%. Methods After the establishment of the novel myxofibrosarcoma cell lines MUG-Myx1, cells were characterized using short tandem repeat (STR), copy number variation (CNV), and genotype/loss-of-heterozygosity (LOH) analyses. The growth behaviour of the cells was analyzed with the xCELLigence system and an MTS assay. The tumourigenicity of MUG-Myx1 was proved in NOD/SCID mice. Additionally, a stem-like cell population with high enzymatic activity of aldehyde dehydrogenase 1 (ALDH1high) was isolated for the first time from myxofibrosarcoma cells using the Aldefluor® assay followed by FACS analysis. Results The frozen primary parental tumour tissue and the MUG-Myx1 cell line showed the same STR profile at the markers D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, Amelogenin, D8S1179, TPOX, and FGY. Typically, myxofibrosarcoma gain and/or amplification was mapped to 7p21.3-q31.1, q31.1-q31.33, q33-q36.2, p21.3, p21.2, p14.1-q11.23, q31.33-q33, p21.2-p14.1, q11.23-q21.3, q36.2-q36.3, which, respectively are known to harbour tumour-associated genes, including TIF, BRAF, MLL3, SMO, and MET. Typically an LOH for myxofibrosarcoma on chr5 q21 was found. In addition, MUG-Myx1 ALDH1high cells showed an upregulation of the ABC transporter ABCB1 and ABCG2; higher c-Myc, E-cadherin and SOX-2 expression; and a higher potential for tumourigenicity and proliferation levels. Conclusion The new myxofibrosarcoma cell line MUG-Myx1 was established to enrich the bank of publicly available cell lines, with respect to providing comprehensive genetic and epigenetic characterization. Furthermore, because of their tumourigenicity, the cell line is also

  8. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    PubMed

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  9. Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain α-ketoacid dehydrogenase kinase.

    PubMed

    Tso, Shih-Chia; Gui, Wen-Jun; Wu, Cheng-Yang; Chuang, Jacinta L; Qi, Xiangbing; Skvora, Kristen J; Dork, Kenneth; Wallace, Amy L; Morlock, Lorraine K; Lee, Brendan H; Hutson, Susan M; Strom, Stephen C; Williams, Noelle S; Tambar, Uttam K; Wynn, R Max; Chuang, David T

    2014-07-25

    The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation.BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6- dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC(50) = 3.19 μM). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T(1⁄2) = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[ b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[ b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations. PMID:24895126

  10. Biochemical, Cellular, and Biophysical Characterization of a Potent Inhibitor of Mutant Isocitrate Dehydrogenase IDH1*

    PubMed Central

    Davis, Mindy I.; Gross, Stefan; Shen, Min; Straley, Kimberly S.; Pragani, Rajan; Lea, Wendy A.; Popovici-Muller, Janeta; DeLaBarre, Byron; Artin, Erin; Thorne, Natasha; Auld, Douglas S.; Li, Zhuyin; Dang, Lenny; Boxer, Matthew B.; Simeonov, Anton

    2014-01-01

    Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (−) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered. PMID:24668804

  11. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase.

    PubMed

    Wang, Vincent C-C; Can, Mehmet; Pierce, Elizabeth; Ragsdale, Stephen W; Armstrong, Fraser A

    2013-02-13

    Several small molecules and ions, notably carbon monoxide, cyanide, cyanate, and hydrogen sulfide, are potent inhibitors of Ni-containing carbon monoxide dehydrogenases (Ni-CODH) that catalyze very rapid, efficient redox interconversions of CO(2) and CO. Protein film electrochemistry, which probes the dependence of steady-state catalytic rate over a wide potential range, reveals how these inhibitors target particular oxidation levels of Ni-CODH relating to intermediates (C(ox), C(red1), and C(red2)) that have been established for the active site. The following properties are thus established: (1) CO suppresses CO(2) reduction (CO is a product inhibitor), but its binding affinity decreases as the potential becomes more negative. (2) Cyanide totally inhibits CO oxidation, but its effect on CO(2) reduction is limited to a narrow potential region (between -0.5 and -0.6 V), below which CO(2) reduction activity is restored. (3) Cyanate is a strong inhibitor of CO(2) reduction but inhibits CO oxidation only within a narrow potential range just above the CO(2)/CO thermodynamic potential--EPR spectra confirm that cyanate binds selectively to C(red2). (4) Hydrogen sulfide (H(2)S/HS(-)) inhibits CO oxidation but not CO(2) reduction--the complex on/off characteristics are consistent with it binding at the same oxidation level as C(ox) and forming a modified version of this inactive state rather than reacting directly with C(red1). The results provide a new perspective on the properties of different catalytic intermediates of Ni-CODH--uniting and clarifying many previous investigations. PMID:23368960

  12. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria

    PubMed Central

    Phillips, Margaret A.; Lotharius, Julie; Marsh, Kennan; White, John; Dayan, Anthony; White, Karen L.; Njoroge, Jacqueline W.; El Mazouni, Farah; Lao, Yanbin; Kokkonda, Sreekanth; Tomchick, Diana R.; Deng, Xiaoyi; Laird, Trevor; Bhatia, Sangeeta N.; March, Sandra; Ng, Caroline L.; Fidock, David A.; Wittlin, Sergio; Lafuente-Monasterio, Maria; Benito, Francisco Javier Gamo; Alonso, Laura Maria Sanz; Martinez, Maria Santos; Jimenez-Diaz, Maria Belen; Bazaga, Santiago Ferrer; Angulo-Barturen, Iñigo; Haselden, John N.; Louttit, James; Cui, Yi; Sridhar, Arun; Zeeman, Anna-Marie; Kocken, Clemens; Sauerwein, Robert; Dechering, Koen; Avery, Vicky M.; Duffy, Sandra; Delves, Michael; Sinden, Robert; Ruecker, Andrea; Wickham, Kristina S.; Rochford, Rosemary; Gahagen, Janet; Iyer, Lalitha; Riccio, Ed; Mirsalis, Jon; Bathhurst, Ian; Rueckle, Thomas; Ding, Xavier; Campo, Brice; Leroy, Didier; Rogers, M. John; Rathod, Pradipsinh K.; Burrows, Jeremy N.; Charman, Susan A.

    2015-01-01

    Malaria is one of the most significant causes of childhood mortality but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective towards DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200–400 mg. DSM265 was well tolerated in repeat dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood and liver-stage activity, and predicted long human half-life position DSM265 as a new potential drug combination partner for either single-dose treatment or once weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive on the parasite liver-stage PMID:26180101

  13. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases

    PubMed Central

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-01-01

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013

  14. Design and development of new class of Mycobacterium tuberculosisl-alanine dehydrogenase inhibitors.

    PubMed

    Reshma, Rudraraju Srilakshmi; Saxena, Shalini; Bobesh, Karyakulam Andrews; Jeankumar, Variam Ullas; Gunda, Saritha; Yogeeswari, Perumal; Sriram, Dharmarajan

    2016-09-15

    Mycobacterium tuberculosisl-alanine dehydrogenase (MTB l-AlaDH) is one of the important drug targets for treating latent/persistent tuberculosis. In this study we used crystal structure of the MTB l-AlaDH bound with cofactor NAD(+) as a structural framework for virtual screening of our in-house database to identified new classes of l-AlaDH inhibitor. We identified azetidine-2,4-dicarboxamide derivative as one of the potent inhibitor with IC50 of 9.22±0.72μM. Further lead optimization by synthesis leads to compound 1-(isonicotinamido)-N(2),N(4)-bis(benzo[d]thiazol-2-yl)azetidine-2,4-dicarboxamide (18) with l-AlaDH IC50 of 3.83±0.12μM, 2.0log reduction in nutrient starved dormant MTB model and MIC of 11.81μM in actively replicative MTB. PMID:27477207

  15. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenol...

  16. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa).

    PubMed

    Tang, Wei; Sun, Jiaqi; Liu, Jia; Liu, Fangfang; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2014-11-01

    As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.

  17. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola.

    PubMed

    Scalliet, Gabriel; Bowler, Judith; Luksch, Torsten; Kirchhofer-Allan, Lucy; Steinhauer, Diana; Ward, Keith; Niklaus, Michael; Verras, Andreas; Csukai, Michael; Daina, Antoine; Fonné-Pfister, Raymonde

    2012-01-01

    A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness. We used a UV mutagenesis approach in Mycosphaerella graminicola, a key pathogen of wheat to compare the nature, frequencies and impact of target mutations towards five subclasses of carboxamides. From this screen we identified 27 amino acid substitutions occurring at 18 different positions on the 3 subunits constituting the ubiquinone binding (Qp) site of the enzyme. The nature of substitutions and cross resistance profiles indicated significant differences in the binding interaction to the enzyme across the different inhibitors. Pharmacophore elucidation followed by docking studies in a tridimensional SDH model allowed us to propose rational hypotheses explaining some of the differential behaviors for the first time. Interestingly all the characterized substitutions had a negative impact on enzyme efficiency, however very low levels of enzyme activity appeared to be sufficient for cell survival. In order to explore the impact of mutations on pathogen fitness in vivo and in planta, homologous recombinants were generated for a selection of mutation types. In vivo, in contrast to previous studies performed in yeast and other organisms, SDH mutations did not result in a major increase of reactive oxygen species levels and did not display any significant fitness penalty. However, a number of Qp site mutations affecting enzyme efficiency were shown to have a biological impact in planta.Using the combined approaches described here, we have significantly improved our understanding of possible resistance mechanisms to carboxamides and performed preliminary fitness penalty assessment in an economically important plant pathogen years ahead of

  18. Fluorine Modulates Species Selectivity in the Triazolopyrimidine Class of Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors

    PubMed Central

    2015-01-01

    Malaria is one of the most serious global infectious diseases. The pyrimidine biosynthetic enzyme Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) is an important target for antimalarial chemotherapy. We describe a detailed analysis of protein–ligand interactions between DHODH and a triazolopyrimidine-based inhibitor series to explore the effects of fluorine on affinity and species selectivity. We show that increasing fluorination dramatically increases binding to mammalian DHODHs, leading to a loss of species selectivity. Triazolopyrimidines bind Plasmodium and mammalian DHODHs in overlapping but distinct binding sites. Key hydrogen-bond and stacking interactions underlying strong binding to PfDHODH are absent in the mammalian enzymes. Increasing fluorine substitution leads to an increase in the entropic contribution to binding, suggesting that strong binding to mammalian DHODH is a consequence of an enhanced hydrophobic effect upon binding to an apolar pocket. We conclude that hydrophobic interactions between fluorine and hydrocarbons provide significant binding energy to protein–ligand interactions. Our studies define the requirements for species-selective binding to PfDHODH and show that the triazolopyrimidine scaffold can alternatively be tuned to inhibit human DHODH, an important target for autoimmune diseases. PMID:24801997

  19. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    SciTech Connect

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  20. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    SciTech Connect

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  1. Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor.

    PubMed

    Zhang, Yu; Lu, Jingle; Wang, Jianxin; Zhou, MingGuo; Chen, Changjun

    2015-10-01

    During 2010-2012, a total of 120 isolates of Rhizoctonia cerealis were collected from wheat with symptoms of sharp eyespot in four provinces (Henan, Shandong, Anhui and Jiangsu) in China. All the isolates were determined for baseline sensitivity to thifluzamide, a succinate dehydrogenase inhibitor (SDHI) with strong antifungal activity. The sampled pathogenic populations, never exposed to SDHIs, had similar sensitivity to trifluzamide (0.025-0.359 µg/ml) in the four regions and over the two years. The baseline sensitivity was distributed as a skewed unimodal curve with a mean EC50 value (effective concentrations for 50% inhibiting mycelial growth) of 0.064 ± 0.013 µg/ml. The resistance risk of R. cerealis to thifluzamide was further evaluated in vitro. Two thifluzamide-resistant mutants of R. cerealis were obtained by culturing on thifluzamide-amended plates. The resistance factors (RF = EC50 value of a mutant/EC50 value of the wild type progenitor of the mutant) were 120 and 40 for two R. cerealis mutants, respectively. All the mutants exhibited similar fitness after 10 successive transfers when compared to their wild-type parents in mycelial growth, sclerotia production, and virulence. However, the two thifluzamide-resistant mutants differed significantly in sensitivity to boscalid and flutolanil. Therefore, a low-to-moderate risk of resistance development was recommended for thifluzamide. PMID:26453237

  2. 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors with oleanan and ursan scaffolds.

    PubMed

    Blum, Andreas; Favia, Angelo D; Maser, Edmund

    2009-03-25

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone to the active glucocorticoid cortisol, thereby acting as a cellular switch to mediate glucocorticoid action in many tissues. Several studies have indicated that 11beta-HSD1 plays a crucial role in the onset of type 2 diabetes and central obesity. As a consequence, selective inhibition of 11beta-HSD1 in humans might become a new and promising approach for lowering blood glucose concentrations and for counteracting the accumulation of visceral fat and its related metabolic abnormalities in type 2 diabetes. In this study, we present the synthesis and the biological evaluation of ursan or oleanan type triterpenoids which may act as selective 11beta-HSD1 inhibitors in liver as well as in peripheral tissues, like adipocytes and muscle cells. In order to rationalise the outcomes of the inhibition data, docking simulations of the ligands were performed on the experimentally determined structure of 11beta-HSD1. Furthermore, we discuss the structural determinants that confer enzymatic specificity. From our investigation, valuable information has been obtained to design selective 11beta-HSD1 blockers based on the oleanan and ursan scaffold.

  3. Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor L-lysine.

    PubMed

    Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2015-02-20

    Allosteric proteins, which can sense different signals, are interesting biological parts for synthetic biology. In particular, the design of an artificial allosteric enzyme to sense an unnatural signal is both challenging and highly desired, for example, for a precise and dynamical control of fluxes of growth-essential but byproduct pathways in metabolic engineering of industrial microorganisms. In this work, we used homoserine dehydrogenase (HSDH) of Corynebacterium glutamicum, which is naturally allosterically regulated by threonine and isoleucine, as an example to demonstrate the feasibility of reengineering an allosteric enzyme to respond to an unnatural inhibitor L-lysine. For this purpose, the natural threonine binding sites of HSD were first predicted and verified by mutagenesis experiments. The threonine binding sites were then engineered to a lysine binding pocket. The reengineered HSD only responds to lysine inhibition but not to threonine. This is a significant step toward the construction of artificial molecular circuits for dynamic control of growth-essential byproduct formation pathway for lysine biosynthesis. PMID:24344690

  4. Hydroperoxidic inhibitor of horse liver alcohol dehydrogenase activity, tightly bound to the enzyme-NAD+ complex, characteristically degrades the coenzyme.

    PubMed

    Skurský, L; Rezác, M; Khan, A N; Zídek, L; Rocek, J

    1992-01-01

    The strong inhibition of horse liver alcohol dehydrogenase (HLAD) by p-methylbenzyl hydroperoxide (XyHP) is only transient, XyHP behaves also as a pseudo-substrate of the enzyme and in the presence of NAD+, is degraded by HLAD to (as yet unidentified) non-inhibiting products while the NAD+ is converted to a derivative similar to the "NADX", originally observed in an analogous reaction of HLAD with hydrogen peroxide. The apparent KM for XyHP is approximately 10(4) times smaller than that for H2O2. The catalytic constant kcat for HLAD degradation of XyHP is two orders of magnitude less than that for ethanol dehydrogenation. XyHP inhibits both directions of the alcohol-aldehyde interconversion with equal potency. The first step of the inhibition mechanism is a tight binding of XyHP to the binary HLAD-NAD+ complex. PMID:1284958

  5. Structure-Activity Relationship Studies and Biological Characterization of Human NAD+-dependent 15-Hydroxyprostaglandin Dehydrogenase Inhibitors

    PubMed Central

    Duveau, Damien Y.; Yasgar, Adam; Wang, Yuhong; Hu, Xin; Kouznetsova, Jennifer; Brimacombe, Kyle R.; Jadhav, Ajit; Simeonov, Anton; Thomas, Craig J.; Maloney, David J.

    2014-01-01

    The structure-activity relationship (SAR) study of two chemotypes identified as inhibitors of the human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (HPGD, 15-PGDH) was conducted. Top compounds from both series displayed potent inhibition (IC50 <50 nM), demonstrate excellent selectivity towards HPGD and potently induce PGE2 production in A549 lung cancer and LNCaP prostate cancer cells. PMID:24360556

  6. Structure-activity relationship studies and biological characterization of human NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase inhibitors.

    PubMed

    Duveau, Damien Y; Yasgar, Adam; Wang, Yuhong; Hu, Xin; Kouznetsova, Jennifer; Brimacombe, Kyle R; Jadhav, Ajit; Simeonov, Anton; Thomas, Craig J; Maloney, David J

    2014-01-15

    The structure-activity relationship (SAR) study of two chemotypes identified as inhibitors of the human NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (HPGD, 15-PGDH) was conducted. Top compounds from both series displayed potent inhibition (IC50 <50 nM), demonstrate excellent selectivity towards HPGD and potently induce PGE2 production in A549 lung cancer and LNCaP prostate cancer cells. PMID:24360556

  7. Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis.

    PubMed

    Gorla, Suresh Kumar; McNair, Nina N; Yang, Guangyi; Gao, Song; Hu, Ming; Jala, Venkatakrishna R; Haribabu, Bodduluri; Striepen, Boris; Cuny, Gregory D; Mead, Jan R; Hedstrom, Lizbeth

    2014-01-01

    Cryptosporidium parasites are a major cause of diarrhea and malnutrition in the developing world, a frequent cause of waterborne disease in the developed world, and a potential bioterrorism agent. Currently, available treatment is limited, and Cryptosporidium drug discovery remains largely unsuccessful. As a result, the pharmacokinetic properties required for in vivo efficacy have not been established. We have been engaged in a Cryptosporidium drug discovery program targeting IMP dehydrogenase (CpIMPDH). Here, we report the activity of eight potent and selective inhibitors of CpIMPDH in the interleukin-12 (IL-12) knockout mouse model, which mimics acute human cryptosporidiosis. Two compounds displayed significant antiparasitic activity, validating CpIMPDH as a drug target. The best compound, P131 (250 mg/kg of body weight/day), performed equivalently to paromomycin (2,000 mg/kg/day) when administered in a single dose and better than paromomycin when administered in three daily doses. One compound, A110, appeared to promote Cryptosporidium infection. The pharmacokinetic, uptake, and permeability properties of the eight compounds were measured. P131 had the lowest systemic distribution but accumulated to high concentrations within intestinal cells. A110 had the highest systemic distribution. These observations suggest that systemic distribution is not required, and may be a liability, for in vivo antiparasitic activity. Intriguingly, A110 caused specific alterations in fecal microbiota that were not observed with P131 or vehicle alone. Such changes may explain how A110 promotes parasitemia. Collectively, these observations suggest a blueprint for the development of anticryptosporidial therapy.

  8. The essential function of genes for a hydratase and an aldehyde dehydrogenase for growth of Pseudomonas sp. strain Chol1 with the steroid compound cholate indicates an aldolytic reaction step for deacetylation of the side chain.

    PubMed

    Holert, Johannes; Jagmann, Nina; Philipp, Bodo

    2013-08-01

    In the bacterial degradation of steroid compounds, the enzymes initiating the breakdown of the steroid rings are well known, while the reactions for degrading steroid side chains attached to C-17 are largely unknown. A recent in vitro analysis with Pseudomonas sp. strain Chol1 has shown that the degradation of the C5 acyl side chain of the C24 steroid compound cholate involves the C22 intermediate 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20S-carbaldehyde (DHOPDCA) with a terminal aldehyde group. In the present study, candidate genes with plausible functions in the formation and degradation of this aldehyde were identified. All deletion mutants were defective in growth with cholate but could transform it into dead-end metabolites. A mutant with a deletion of the shy gene, encoding a putative enoyl coenzyme A (CoA) hydratase, accumulated the C24 steroid (22E)-7α,12α-dihydroxy-3-oxochola-1,4,22-triene-24-oate (DHOCTO). Deletion of the sal gene, formerly annotated as the steroid ketothiolase gene skt, resulted in the accumulation of 7α,12α,22-trihydroxy-3-oxochola-1,4-diene-24-oate (THOCDO). In cell extracts of strain Chol1, THOCDO was converted into DHOPDCA in a coenzyme A- and ATP-dependent reaction. A sad deletion mutant accumulated DHOPDCA, and expression in Escherichia coli revealed that sad encodes an aldehyde dehydrogenase for oxidizing DHOPDCA to the corresponding acid 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) with NAD(+) as the electron acceptor. These results clearly show that the degradation of the acyl side chain of cholate proceeds via an aldolytic cleavage of an acetyl residue; they exclude a thiolytic cleavage for this reaction step. Based on these results and on sequence alignments with predicted aldolases from other bacteria, we conclude that the enzyme encoded by sal catalyzes this aldolytic cleavage.

  9. High-Affinity Inhibitors of Human NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase: Mechanisms of Inhibition and Structure-Activity Relationships

    PubMed Central

    Niesen, Frank H.; Schultz, Lena; Jadhav, Ajit; Bhatia, Chitra; Guo, Kunde; Maloney, David J.; Pilka, Ewa S.; Wang, Minghua; Oppermann, Udo; Heightman, Tom D.; Simeonov, Anton

    2010-01-01

    Background 15-hydroxyprostaglandin dehydrogenase (15-PGDH, EC 1.1.1.141) is the key enzyme for the inactivation of prostaglandins, regulating processes such as inflammation or proliferation. The anabolic pathways of prostaglandins, especially with respect to regulation of the cyclooxygenase (COX) enzymes have been studied in detail; however, little is known about downstream events including functional interaction of prostaglandin-processing and -metabolizing enzymes. High-affinity probes for 15-PGDH will, therefore, represent important tools for further studies. Principal Findings To identify novel high-affinity inhibitors of 15-PGDH we performed a quantitative high-throughput screen (qHTS) by testing >160 thousand compounds in a concentration-response format and identified compounds that act as noncompetitive inhibitors as well as a competitive inhibitor, with nanomolar affinity. Both types of inhibitors caused strong thermal stabilization of the enzyme, with cofactor dependencies correlating with their mechanism of action. We solved the structure of human 15-PGDH and explored the binding modes of the inhibitors to the enzyme in silico. We found binding modes that are consistent with the observed mechanisms of action. Conclusions Low cross-reactivity in screens of over 320 targets, including three other human dehydrogenases/reductases, suggest selectivity of the present inhibitors for 15-PGDH. The high potencies and different mechanisms of action of these chemotypes make them a useful set of complementary chemical probes for functional studies of prostaglandin-signaling pathways. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S2. PMID:21072165

  10. Inhibition of Growth by Combined Treatment with Inhibitors of Lactate Dehydrogenase and either Phenformin or Inhibitors of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3.

    PubMed

    Lea, Michael A; Guzman, Yolanda; Desbordes, Charles

    2016-04-01

    Enhanced glycolysis in cancer cells presents a target for chemotherapy. Previous studies have indicated that proliferation of cancer cells can be inhibited by treatment with phenformin and with an inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB) namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). In the present work, the action of two inhibitors that are effective at lower concentrations than 3PO, namely 1-(3-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PQP) and 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) were investigated. The inhibitors of lactate dehydrogenase (LDHA) studied in order of half-maximal inhibitory concentrations were methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2) < isosafrole < oxamate. In colonic and bladder cancer cells, additive growth inhibitory effects were seen with the LDHA inhibitors, of which NHI-2 was effective at the lowest concentrations. Growth inhibition was generally greater with PFK15 than with PQP. The increased acidification of the culture medium and glucose uptake caused by phenformin was blocked by combined treatment with PFKFB3 or LDHA inhibitors. The results suggest that combined treatment with phenformin and inhibitors of glycolysis can cause additive inhibition of cell proliferation and may mitigate lactic acidosis caused by phenformin when used as a single agent. PMID:27069123

  11. Recent Update on Human Lactate Dehydrogenase Enzyme 5 (hLDH5) Inhibitors: A Promising Approach for Cancer Chemotherapy.

    PubMed

    Rani, Reshma; Kumar, Vinit

    2016-01-28

    Human lactate dehydrogenase (hLDH5), a glycolytic enzyme responsible for the conversion of pyruvate to lactate coupled with oxidation of NADH to NAD(+), plays a crucial role in the promotion of glycolysis in invasive tumor cells. Recently, hLDH5 has been considered a vital therapeutic target for invasive cancers. Selective inhibition of hLDH5 using small molecules holds potential prospects for the treatment of cancer and associated diseases. Consequently, significant progress has been made in the discovery of selective small-molecule hLDH5 inhibitors displaying remarkable inhibitory potencies. The purpose of this review is to discuss briefly the roles of hLDH isoforms and to compile small hLDH5 inhibitors into groups based on their chemical classes and pharmacological applications.

  12. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  13. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH)

    PubMed Central

    2016-01-01

    Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure–activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH. PMID:26079043

  14. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH).

    PubMed

    Lucas-Hourani, Marianne; Munier-Lehmann, Hélène; El Mazouni, Farah; Malmquist, Nicholas A; Harpon, Jane; Coutant, Eloi P; Guillou, Sandrine; Helynck, Olivier; Noel, Anne; Scherf, Artur; Phillips, Margaret A; Tangy, Frédéric; Vidalain, Pierre-Olivier; Janin, Yves L

    2015-07-23

    Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure-activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH.

  15. Binding mode of inhibitors and Cryptosporidium parvum IMP dehydrogenase: A combined ligand- and receptor-based study.

    PubMed

    Li, R-J; Wang, Y-L; Wang, Q-H; Huang, W-X; Wang, J; Cheng, M-S

    2015-01-01

    A combined ligand- and target-based approach was used to analyse the interaction models of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase (CpIMPDH) with selective inhibitors. First, a ligand-based pharmacophore model was generated from 20 NAD(+) competitive CpIMPDH inhibitors with the HipHop module. The characteristic of the NAD(+) binding site of CpIMPDH was then described, and the binding modes of the representative inhibitors were studied by molecular docking. The combination of the pharmacophore model and the docking results allowed us to evaluate the pharmacophore features and structural information of the NAD(+) binding site of CpIMPDH. This research supports the proposal of an interaction model inside the NAD(+) binding site of CpIMPDH, consisting of four key interaction points: two hydrophobic-aromatic groups, a hydrophobic-aliphatic group and a hydrogen bond donor. This study also provides guidance for the design of more potent CpIMPDH inhibitors for the treatment of Cryptosporidium infections.

  16. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH).

    PubMed

    Lucas-Hourani, Marianne; Munier-Lehmann, Hélène; El Mazouni, Farah; Malmquist, Nicholas A; Harpon, Jane; Coutant, Eloi P; Guillou, Sandrine; Helynck, Olivier; Noel, Anne; Scherf, Artur; Phillips, Margaret A; Tangy, Frédéric; Vidalain, Pierre-Olivier; Janin, Yves L

    2015-07-23

    Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure-activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH. PMID:26079043

  17. Binding mode of inhibitors and Cryptosporidium parvum IMP dehydrogenase: A combined ligand- and receptor-based study.

    PubMed

    Li, R-J; Wang, Y-L; Wang, Q-H; Huang, W-X; Wang, J; Cheng, M-S

    2015-01-01

    A combined ligand- and target-based approach was used to analyse the interaction models of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase (CpIMPDH) with selective inhibitors. First, a ligand-based pharmacophore model was generated from 20 NAD(+) competitive CpIMPDH inhibitors with the HipHop module. The characteristic of the NAD(+) binding site of CpIMPDH was then described, and the binding modes of the representative inhibitors were studied by molecular docking. The combination of the pharmacophore model and the docking results allowed us to evaluate the pharmacophore features and structural information of the NAD(+) binding site of CpIMPDH. This research supports the proposal of an interaction model inside the NAD(+) binding site of CpIMPDH, consisting of four key interaction points: two hydrophobic-aromatic groups, a hydrophobic-aliphatic group and a hydrogen bond donor. This study also provides guidance for the design of more potent CpIMPDH inhibitors for the treatment of Cryptosporidium infections. PMID:25978645

  18. Screening Baccharin Analogs as Selective Inhibitors Against Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3)

    PubMed Central

    Zang, Tianzhu; Verma, Kshitij; Chen, Mo; Jin, Yi; Trippier, Paul C.; Penning, Trevor M.

    2015-01-01

    Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase, is a downstream steroidogenic enzyme and converts androgen precursors to the potent androgen receptor ligands: testosterone and 5α-dihydrotestosterone. Studies have shown that AKR1C3 is involved in the development of castration resistant prostate cancer (CRPC) and that it is a rational drug target for the treatment of CRPC. Baccharin, a component of Brazilian propolis, has been observed to exhibit a high inhibitory potency and selectivity for AKR1C3 over other AKR1C isoforms and is a promising lead compound for developing more potent and selective inhibitors. Here, we report the screening of fifteen baccharin analogs as selective inhibitors against AKR1C3 versus AKR1C2 (type 3 3α-hydroxysteroid dehydrogenase). Among these analogs, the inhibitory activity and selectivity of thirteen compounds were evaluated for the first time. The substitution of the 4-dihydrocinnamoyloxy group of baccharin by an acetate group displayed nanomolar inhibitory potency (IC50: 440 nM) and a 102-fold selectivity over AKR1C2. By contrast, when the cinnamic acid group of baccharin was esterified, there was a dramatic decrease in potency and selectivity for AKR1C3 in comparison to baccharin. Low or sub- micromolar inhibition was observed when the 3-prenyl group of baccharin was removed, and the selectivity over AKR1C2 was low. Although unsubstituted baccharin was still the most potent (IC50: 100 nM) and selective inhibitor for AKR1C3, these data provide structure-activity relationships required for the optimization of new baccharin analogs. They suggest that the carboxylate group on cinnamic acid, the prenyl group, and either retention of 4′-dihydrocinnamoyloxy group or acetate substituent on cinnamic acid are important to maintain the high potency and selectivity for AKR1C3. PMID:25555457

  19. Screening baccharin analogs as selective inhibitors against type 5 17β-hydroxysteroid dehydrogenase (AKR1C3).

    PubMed

    Zang, Tianzhu; Verma, Kshitij; Chen, Mo; Jin, Yi; Trippier, Paul C; Penning, Trevor M

    2015-06-01

    Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase, is a downstream steroidogenic enzyme and converts androgen precursors to the potent androgen receptor ligands: testosterone and 5α-dihydrotestosterone. Studies have shown that AKR1C3 is involved in the development of castration resistant prostate cancer (CRPC) and that it is a rational drug target for the treatment of CRPC. Baccharin, a component of Brazilian propolis, has been observed to exhibit a high inhibitory potency and selectivity for AKR1C3 over other AKR1C isoforms and is a promising lead compound for developing more potent and selective inhibitors. Here, we report the screening of fifteen baccharin analogs as selective inhibitors against AKR1C3 versus AKR1C2 (type 3 3α-hydroxysteroid dehydrogenase). Among these analogs, the inhibitory activity and selectivity of thirteen compounds were evaluated for the first time. The substitution of the 4-dihydrocinnamoyloxy group of baccharin by an acetate group displayed nanomolar inhibitory potency (IC50: 440 nM) and a 102-fold selectivity over AKR1C2. By contrast, when the cinnamic acid group of baccharin was esterified, there was a dramatic decrease in potency and selectivity for AKR1C3 in comparison to baccharin. Low or sub-micromolar inhibition was observed when the 3-prenyl group of baccharin was removed, and the selectivity over AKR1C2 was low. Although unsubstituted baccharin was still the most potent (IC50: 100 nM) and selective inhibitor for AKR1C3, these data provide structure-activity relationships required for the optimization of new baccharin analogs. They suggest that the carboxylate group on cinnamic acid, the prenyl group, and either retention of 4-dihydrocinnamoyloxy group or acetate substituent on cinnamic acid are important to maintain the high potency and selectivity for AKR1C3.

  20. Biochemical genetics of opossum aldehyde dehydrogenase 3: evidence for three ALDH3A-like genes and an ALDH3B-like gene.

    PubMed

    Holmes, Roger S

    2010-04-01

    Mammalian ALDH3 isozymes participate in peroxidic and fatty aldehyde metabolism, and in anterior eye tissue UV-filtration. BLAT analyses were undertaken of the opossum genome using rat ALDH3A1, ALDH3A2, ALDH3B1, and ALDH3B2 amino acid sequences. Two predicted opossum ALDH3A1-like genes and an ALDH3A2-like gene were observed on chromosome 2, as well as an ALDH3B-like gene, which showed similar intron-exon boundaries with other mammalian ALDH3-like genes. Opossum ALDH3 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for rat ALDH3A1. Eleven glycine residues were conserved for all of the opossum ALDH3-like sequences examined, including two glycine residues previously located within the stem of the rat ALDH3A1 active site funnel. Phylogeny studies of human, rat, opossum, and chicken ALDH3-like sequences indicated that the common ancestor for ALDH3A- and ALDH3B-like genes predates the appearance of birds during vertebrate evolution.

  1. Ligand-Based Pharmacophore Modeling and Virtual Screening for the Discovery of Novel 17β-Hydroxysteroid Dehydrogenase 2 Inhibitors

    PubMed Central

    2014-01-01

    17β-Hydroxysteroid dehydrogenase 2 (17β-HSD2) catalyzes the inactivation of estradiol into estrone. This enzyme is expressed only in a few tissues, and therefore its inhibition is considered as a treatment option for osteoporosis to ameliorate estrogen deficiency. In this study, ligand-based pharmacophore models for 17β-HSD2 inhibitors were constructed and employed for virtual screening. From the virtual screening hits, 29 substances were evaluated in vitro for 17β-HSD2 inhibition. Seven compounds inhibited 17β-HSD2 with low micromolar IC50 values. To investigate structure–activity relationships (SAR), 30 more derivatives of the original hits were tested. The three most potent hits, 12, 22, and 15, had IC50 values of 240 nM, 1 μM, and 1.5 μM, respectively. All but 1 of the 13 identified inhibitors were selective over 17β-HSD1, the enzyme catalyzing conversion of estrone into estradiol. Three of the new, small, synthetic 17β-HSD2 inhibitors showed acceptable selectivity over other related HSDs, and six of them did not affect other HSDs. PMID:24960438

  2. 3D-QSAR and docking studies on 1-hydroxypyridin-2-one compounds as mutant isocitrate dehydrogenase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin

    2016-11-01

    Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.

  3. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  4. Profiling of dihydroorotate dehydrogenase, p38 and JAK inhibitors in the rat adjuvant-induced arthritis model: a translational study

    PubMed Central

    Balagué, C; Pont, M; Prats, N; Godessart, N

    2012-01-01

    BACKGROUND AND PURPOSE Translational animal models are essential in the prediction of the efficacy and side effects of new chemical entities. We have carried out a thorough study of three distinct disease-modifying antirheumatic drugs (DMARDs) in an adjuvant-induced arthritis (AIA) model in the rat and critically appraised the results in the context of the reported clinical experience in rheumatoid arthritis (RA) patients. EXPERIMENTAL APPROACH Teriflunomide – a dihydroorotate dehydrogenase (DHODH) inhibitor; AL8697 – a selective p38 MAPK inhibitor; and tofacitinib – a Janus kinase (JAK) inhibitor; were selected as representatives of their class and dose-response studies carried out using a therapeutic 10-day administration scheme in arthritic rats. Paw swelling and body weight were periodically monitored, and joint radiology and histology, lymph organ weight and haematological and biochemical parameters evaluated at study completion. KEY RESULTS All three drugs demonstrated beneficial effects on paw swelling, bone lesions and splenomegalia, with p38 inhibition providing the best anti-inflammatory effect and JAK inhibition the best DMARD effect. Leukopenia, body weight loss and gastrointestinal toxicity were dose-dependently observed with teriflunomide treatment. p38 MAPK inhibition induced leukocytosis and increased total plasma cholesterol. JAK inhibition, normalized platelet, reticulocyte and neutrophil counts, and alanine aminotransferase (ALT) levels while inducing lymphopenia and cholesterolemia. CONCLUSIONS AND IMPLICATIONS This multiparametric approach can reveal specific drug properties and provide translational information. Whereas the complex profile for p38 inhibition in AIA is not observed in human RA, immunosuppressants such as DHODH and JAK inhibitors show DMARD properties and side effects seen in both AIA and RA. PMID:22229697

  5. Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Guo, Liping; Yang, Li

    2015-05-15

    In this study, we present an on-line measurement of enzyme activity and inhibition of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme using capillary electrophoresis based immobilized enzyme micro-reactor (CE-based IMER). The IMER was prepared using a two-step protocol based on electrostatic assembly. The micro-reactor exhibited good stability and reproducibility for on-line assay of G6PDH enzyme. Both the activity as well as the inhibition of the G6PDH enzyme by six inhibitors, including three metals (Cu(2+), Pb(2+), Cd(2+)), vancomycin, urea and KMnO4, were investigated using on-line assay of the CE-based IMERs. The enzyme activity and inhibition kinetic constants were measured using the IMERs which were found to be consistent with those using traditional off-line enzyme assays. The kinetic mechanism of each inhibitor was also determined. The present study demonstrates the feasibility of using CE-based IMERs for rapid and efficient on-line assay of G6PDH, an important enzyme in the pentosephosphate pathway of human metabolism.

  6. 4SC-101, a novel small molecule dihydroorotate dehydrogenase inhibitor, suppresses systemic lupus erythematosus in MRL-(Fas)lpr mice.

    PubMed

    Kulkarni, Onkar P; Sayyed, Sufyan G; Kantner, Claudia; Ryu, Mi; Schnurr, Max; Sárdy, Miklós; Leban, Johann; Jankowsky, Ruediger; Ammendola, Aldo; Doblhofer, Robert; Anders, Hans-Joachim

    2010-06-01

    Immunosuppressive treatments of systemic lupus (SLE) remain associated with significant toxicities; hence, compounds with better toxicity profiles are needed. Dihydroorotate dehydrogenase (DHODH) inhibition with leflunomide has proven to be effective in autoimmune diseases including SLE, but leflunomide can cause a variety of side effects. We hypothesized that 4SC-101, a novel DHODH inhibitor with a more favorable toxicity profile, would be as effective as high-dose cyclophosphamide (CYC) in controlling experimental SLE of female MRL(Fas)lpr mice. Daily oral gavage of 30, 100, and 300 mg/kg 4SC-101 from 12 to 22 weeks of age was compared with either vehicle or CYC treatment (30 mg/kg/week, i.p.) in terms of efficacy and toxicity. Three hundred milligrams per kilogram 4SC-101 was as effective as CYC in depleting spleen autoreactive T cells, B cells, and plasma cells as well as the respective DNA and RNA serum autoantibodies. This was associated with a comparable amelioration of the renal, dermal, and pulmonary SLE manifestations of MRL(Fas)lpr mice. However, even the highest dose of 4SC-101 had no effect on bone marrow neutrophil counts, which were significantly reduced in CYC-treated mice. Together, the novel DHODH inhibitor 4SC-101 is as effective as high dose CYC in controlling SLE without causing myelosuppression. Hence, DHODH inhibition with 4SC-101 might be suitable to treat active SLE with fewer side effects than CYC.

  7. [Effects of panthenol and carnitine on aldehyde metabolic enzymes in rats with tetrachloromethane-induced liver injury].

    PubMed

    Satanovskaia, V I; Pron'ko, P S; Gaĭshmanova, A V; Miskevich, D A

    2009-01-01

    Tetrachloromethane (2 g/kg, intragastric) produced a decrease in the activity of NAD- and NADH- dependent aldehyde dehydrogenases with high Km for aldehydes in rat liver. Panthenol and L-carnitine administered separately normalized the activity of aldehyde dehydrogenases, while a combination of the drugs did not produce any significant effect. PMID:19441727

  8. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    PubMed

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  9. Essential role of aldehyde dehydrogenase 1A3 (ALDH1A3) for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway

    PubMed Central

    Shao, Chunli; Sullivan, James P.; Girard, Luc; Augustyn, Alexander; Yenerall, Paul; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Shay, Jerry W.; Wistuba, Ignacio I.; Minna, John D.

    2014-01-01

    Purpose Lung cancer stem cells (CSCs) with elevated aldehyde dehydrogenase (ALDH) activity are self-renewing, clonogenic and tumorigenic. The purpose of our study is to elucidate the mechanisms by which lung CSCs are regulated. Experimental Design A genome-wide gene expression analysis was performed to identify genes differentially expressed in the ALDH+ vs. ALDH− cells. RT-PCR, western blot and Aldefluor assay were used to validate identified genes. To explore the function in CSCs we manipulated their expression followed by colony and tumor formation assays. Results We identified a subset of genes that were differentially expressed in common in ALDH+ cells, among which ALDH1A3 was the most upregulated gene in ALDH+ vs. ALDH− cells. ShRNA-mediated knockdown of ALDH1A3 in NSCLCs resulted in a dramatic reduction in ALDH activity, clonogenicity and tumorigenicity, indicating that ALDH1A3 is required for tumorigenic properties. By contrast, overexpression of ALDH1A3 by itself it was not sufficient to increase tumorigenicity. The ALDH+ cells also expressed more activated Signal Transducers and Activators of Transcription 3 (STAT3) than ALDH− cells. Inhibition of STAT3 or its activator EZH2 genetically or pharmacologically diminished the level of ALDH+ cells and clonogenicity. Unexpectedly, ALDH1A3 was highly expressed in female, never smokers, well differentiated tumors, or adenocarcinoma. ALDH1A3 low expression was associated with poor overall survival. Conclusion Our data show that ALDH1A3 is the predominant ALDH isozyme responsible for ALDH activity and tumorigenicity in most NSCLCs, and that inhibiting either ALDH1A3 or the STAT3 pathway are potential therapeutic strategies to eliminate the ALDH+ subpopulation in NSCLCs. PMID:24907115

  10. Purification, crystallization and preliminary X-ray analysis of recombinant betaine aldehyde dehydrogenase 2 (OsBADH2), a protein involved in jasmine aroma, from Thai fragrant rice (Oryza sativa L.)

    PubMed Central

    Kuaprasert, Buabarn; Silprasit, Kun; Horata, Natharinee; Khunrae, Pongsak; Wongpanya, Ratree; Boonyalai, Nonlawat; Vanavichit, Apichart; Choowongkomon, Kiattawee

    2011-01-01

    Fragrant rice (Oryza sativa L.) betaine aldehyde dehydrogenase 2 (OsBADH2) is a key enzyme in the synthesis of fragrance aroma compounds. The extremely low activity of OsBADH2 in catalyzing the oxidation of acetaldehyde is believed to be crucial for the accumulation of the volatile compound 2-acetyl-1-pyrroline (2AP) in many scented plants, including fragrant rice. Recombinant fragrant rice OsBADH2 was expressed in Escherichia coli as an N-terminal hexahistidine fusion protein, purified using Ni Sepharose affinity chromatography and crystallized using the microbatch method. Initial crystals were obtained within 24 h using 0.1 M Tris pH 8.5 with 30%(w/v) PEG 4000 and 0.2 M magnesium chloride as the precipitating agent at 291 K. Crystal quality was improved when the enzyme was cocrystallized with NAD+. Improved crystals were grown in 0.1 M HEPES pH 7.4, 24%(w/v) PEG 4000 and 0.2 M ammonium chloride and diffracted to beyond 2.95 Å resolution after being cooled in a stream of N2 immediately prior to X-ray diffraction experiments. The crystals belonged to space group C2221, with unit-cell parameters a = 66.03, b = 183.94, c = 172.28 Å. An initial molecular-replacement solution has been obtained and refinement is in progress. PMID:22102032

  11. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides.

    PubMed

    Sierotzki, Helge; Scalliet, Gabriel

    2013-09-01

    The new broad-spectrum fungicides from the succinate dehydrogenase inhibitor (SDHI) class have been quickly adopted by the market, which may lead to a high selection pressure on various pathogens. Cases of resistance have been observed in 14 fungal pathogens to date and are caused by different mutations in genes encoding the molecular target of SDHIs, which is the mitochondrial succinate dehydrogenase (SDH) enzyme. All of the 17 marketed SDHI fungicides bind to the same ubiquinone binding site of the SDH enzyme. Their primary biochemical mode of action is the blockage of the TCA cycle at the level of succinate to fumarate oxidation, leading to an inhibition of respiration. Homology models and docking simulations explain binding behaviors and some peculiarities of the cross-resistance profiles displayed by different members of this class of fungicides. Furthermore, cross-resistance patterns among SDHIs is complex because many mutations confer full cross resistance while others do not. The nature of the mutations found in pathogen populations varies with species and the selection compound used but cross resistance between all SDHIs has to be assumed at the population level. In most of the cases where resistance has been reported, the frequency is still too low to impact field performance. However, the Fungicide Resistance Action Committee has developed resistance management recommendations for pathogens of different crops in order to reduce the risk for resistance development to this class of fungicides. These recommendations include preventative usage, mixture with partner fungicides active against the current pathogen population, alternation in the mode of action of products used in a spray program, and limitations in the total number of applications per season or per crop.

  12. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors for metabolic syndrome.

    PubMed

    Schnackenberg, Christine G

    2008-03-01

    The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to promote the development of diabetes and cardiovascular disease. These risk factors include abdominal obesity, insulin resistance, hypertension and dyslipidemia. 11beta-Hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the interconversion of glucocorticoids through the activity of two isozymes: type 1 (11beta-HSD1) and type 2 (11beta-HSD2). 11beta-HSD1 converts inactive glucocorticoid to the active form, whereas 11beta-HSD2 converts active glucocorticoid to the inactive form. It is well established that reduced 11beta-HSD2 activity causes hypertension and electrolyte abnormalities. More recently, the pathophysiological role of 11beta-HSD1 has been explored and studies suggest that increased 11beta-HSD1 activity within target tissues may promote insulin resistance, obesity, hypertension and dyslipidemia. This review will discuss the evidence that inhibition of 11beta-HSD1 may be therapeutic in the treatment of the metabolic syndrome.

  13. Reduction of glucocorticoid receptor ligand binding by the 11-beta hydroxysteroid dehydrogenase type 2 inhibitor, Thiram.

    PubMed

    Garbrecht, Mark R; Krozowski, Zygmunt S; Snyder, Jeanne M; Schmidt, Thomas J

    2006-10-01

    Endogenous and synthetic glucocorticoids (GCs), such as cortisol and dexamethasone (Dex), modulate airway inflammation, regulate the production of surfactant by lung epithelial cells, and influence fetal lung maturation. The 11-beta hydroxysteroid dehydrogenase type 2 (HSD2) enzyme catalyzes the oxidation of bioactive cortisol and Dex to their 11-keto metabolites. Thiram (tetramethylthiuram disulfide) specifically inhibits HSD2 activity by oxidizing cysteine residues located in the cofactor binding domain of the enzyme. During studies performed to define a potential role for HSD2 in modulating GC action in human lung epithelial cells, we observed that exposure of intact human lung epithelial cells (NCI-H441) to 50 microM Thiram significantly attenuated the down-stream effects of Dex (100 nM) on the expression of two GC-sensitive genes, pulmonary surfactant proteins A and B. This observation appeared to be inconsistent with simple inhibition of HSD2 activity. Although Thiram inhibited HSD2 oxidase activity in a dose-dependent manner without affecting HSD2 protein expression, Thiram also reduced specific binding of [3H]-Dex to the glucocorticoid receptor (GR). Pre-treatment of cells with 1 mM dithiothreitol (DTT), a thiol-reducing agent, completely blocked the inhibitory effect of Thiram on ligand binding. These results are suggestive that Thiram may alter the ligand-binding domain of the GR by oxidizing critical thiol-containing amino acid residues. Taken collectively, these data demonstrate that attenuated down-stream GC signaling, via decreased binding of ligand to the GR, is a novel cellular effect of Thiram exposure in human lung epithelial cells.

  14. Preparative isolation and analysis of alcohol dehydrogenase inhibitors from Glycyrrhiza uralensis root using ultrafiltration combined with high-performance liquid chromatography and high-speed countercurrent chromatography.

    PubMed

    Chen, Miao; Liu, Liangliang; Chen, Xiaoqing

    2014-07-01

    A simple, rapid, and effective assay based on ultrafiltration combined with high-performance liquid chromatography and high-speed countercurrent chromatography was developed for screening and purifying alcohol dehydrogenase inhibitors from Glycyrrhiza uralensis root extract. Experiments were carried out to optimize binding conditions including alcohol dehydrogenase concentration, incubation time, temperature, and pH. By comparing the chromatograms, three compounds were found possessing alcohol dehydrogenase binding activity in Glycyrrhiza uralensis root. Under the target-guidance of ultrafiltration combined with the high-performance liquid chromatography experiment, liquiritin (1), isoliquiritin (2), and liquiritigenin (3) were separated by high-speed countercurrent chromatography using ethyl acetate/methanol/water (5:1:4) as the solvent system. The alcohol dehydrogenase inhibitory activities of these three isolated compounds were assessed; compound 2 showed strongest inhibitory activity with an IC50 of 8.95 μM. The results of the present study indicated that the combinative method using ultrafiltration, high-performance liquid chromatography and high-speed countercurrent chromatography could be widely applied for the rapid screening and isolation of enzyme inhibitors from complex mixtures.

  15. Pistacia lentiscus Oleoresin: Virtual Screening and Identification of Masticadienonic and Isomasticadienonic Acids as Inhibitors of 11β-Hydroxysteroid Dehydrogenase 1.

    PubMed

    Vuorinen, Anna; Seibert, Julia; Papageorgiou, Vassilios P; Rollinger, Judith M; Odermatt, Alex; Schuster, Daniela; Assimopoulou, Andreana N

    2015-04-01

    In traditional medicine, the oleoresinous gum of Pistacia lentiscus var. chia, so-called mastic gum, has been used to treat multiple conditions such as coughs, sore throats, eczema, dyslipidemia, and diabetes. Mastic gum is rich in triterpenes, which have been postulated to exert antidiabetic effects and improve lipid metabolism. In fact, there is evidence of oleanonic acid, a constituent of mastic gum, acting as a peroxisome proliferator-activated receptor γ agonist, and mastic gum being antidiabetic in mice in vivo. Despite these findings, the exact antidiabetic mechanism of mastic gum remains unknown. Glucocorticoids play a key role in regulating glucose and fatty acid metabolism, and inhibition of 11β-hydroxysteroid dehydrogenase 1 that converts inactive cortisone to active cortisol has been proposed as a promising approach to combat metabolic disturbances including diabetes. In this study, a pharmacophore-based virtual screening was applied to filter a natural product database for possible 11β-hydroxysteroid dehydrogenase 1 inhibitors. The hit list analysis was especially focused on the triterpenoids present in Pistacia species. Multiple triterpenoids, such as masticadienonic acid and isomasticadienonic acid, main constituents of mastic gum, were identified. Indeed, masticadienonic acid and isomasticadienonic acid selectively inhibited 11β-hydroxysteroid dehydrogenase 1 over 11β-hydroxysteroid dehydrogenase 2 at low micromolar concentrations. These findings suggest that inhibition of 11β-hydroxysteroid dehydrogenase 1 contributes to the antidiabetic activity of mastic gum.

  16. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    PubMed

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  17. [The PQQ-dehydrogenases. A novel example of bacterial quinoproteins].

    PubMed

    Flores-Encarnación, Marcos; Sánchez-Cuevas, Mariano; Ortiz-Gutiérrez, Felipe

    2004-01-01

    The word "quinoprotein" describes four groups of different enzymes which have cofactors containing o-quinones. Pyrrolo-quinoline quinone (PQQ) is not covalently attached. PQQ is the cofactor of several quinoprotein bacterial dehydrogenases including glucose dehydrogenase (G-DH), alcohol dehydrogenase (A-DH) and aldehyde dehydrogenase (AL-DH). These dehydrogenases are located in the periplasm of Gram-negative bacteria. This report summarises the structural properties of quinoprotein dehydrogenases, such as the biological functions and biotechnological aspects more important.

  18. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    SciTech Connect

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is in an

  19. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    PubMed

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  20. Evidence that Proteosome Inhibitors and Chemical Chaperones Can Rescue the Activity of Retinol Dehydrogenase 12 mutant T49M

    PubMed Central

    Lee, Seung-Ah; Belyaeva, Olga V.; Kedishvili, Natalia Y.

    2011-01-01

    Retinol dehydrogenase 12 (RDH12) is a microsomal enzyme that catalyzes the reduction of all-trans-retinaldehyde to all-trans-retinol when expressed in cells. Mutations in RDH12 cause severe retinal degeneration; however, some of the disease-associated RDH12 mutants retain significant catalytic activity. Our previous study (Lee et al., FEBS Lett. 2010 584:507–10) demonstrated that the catalytically active T49M and I51N variants of RDH12 undergo accelerated degradation through the ubiquitin-proteosome system, which results in reduced levels of these proteins in the cells. Here, we investigated whether stabilization of T49M or I51N RDH12 protein levels through inhibition of proteosome activity or improved folding could rescue their retinaldehyde reductase activity. For the T49M variant, inhibition of proteosome activity resulted in an increased level of T49M protein in the microsomal fraction. The higher level of the T49M variant in microsomes correlated with the higher microsomal retinaldehyde reductase activity. T49M-expressing living cells treated with inhibitors of proteosome activity or with dimethyl sulfoxide exhibited an increase in the conversion of retinaldehyde to retinol, consistent with recovery of functional RDH12 protein. On the other hand, accumulation of the I51N variant in the microsomes did not result in higher retinaldehyde reductase activity of the microsomes or cells. These results provide a proof of concept that, at least in the case of the T49M variant, prevention of accelerated degradation could lead to restoration of its function in the cells. This finding justifies further search for more efficient and clinically relevant compounds for stabilizing the T49M variant activity. PMID:21232531

  1. Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat.

    PubMed

    Fraaije, Bart A; Bayon, Carlos; Atkins, Sarah; Cools, Hans J; Lucas, John A; Fraaije, Marco W

    2012-04-01

    Chemical control of Septoria leaf blotch, caused by Mycosphaerella graminicola, is essential to ensure wheat yield and food security in most European countries. Mycosphaerella graminicola has developed resistance to several classes of fungicide and, with the efficacy of azoles gradually declining over time, new modes of action and/or improvements in host varietal resistance are urgently needed to ensure future sustainable disease control. Several new-generation carboxamide fungicides with broad-spectrum activity have recently been introduced into the cereal market. Carboxamides inhibit succinate dehydrogenase (Sdh) of the mitochondrial respiratory chain (complex II) but, because of their single-site specificity, these fungicides may be prone to resistance development. The objective of this study was to assess the risk of resistance development to different Sdh inhibitor (SDHI) fungicides in M. graminicola. UV mutagenesis was conducted to obtain a library of carboxin-resistant mutants. A range of SDHI resistance-conferring mutations was found in Sdh subunits B, C and D. Pathogenicity studies with a range of Sdh variants did not detect any fitness costs associated with these mutations. Most of the amino acid residues identified (e.g. B-S221P/T, B-H267F/L/N/Y, B-I269V and D-D129E/G/T) are directly involved in forming the cavity in which SDHI fungicides bind. Docking studies of SDHI fungicides in structural models of wild-type and mutated Sdh complexes also indicated which residues were important for the binding of different SDHI fungicides and showed a different binding for fluopyram. The predictive power of the model was also shown. Further diagnostic development, enabling the detection of resistant alleles at low frequencies, and cross-resistance studies will aid the implementation of anti-resistance strategies to prolong the cost-effectiveness and lifetime of SDHI fungicides.

  2. Development of a human dihydroorotate dehydrogenase (hDHODH) pharma-similarity index approach with scaffold-hopping strategy for the design of novel potential inhibitors.

    PubMed

    Shih, Kuei-Chung; Lee, Chi-Ching; Tsai, Chi-Neu; Lin, Yu-Shan; Tang, Chuan-Yi

    2014-01-01

    Human dihydroorotate dehydrogenase (hDHODH) is a class-2 dihydroorotate dehydrogenase. Because it is extensively used by proliferating cells, its inhibition in autoimmune and inflammatory diseases, cancers, and multiple sclerosis is of substantial clinical importance. In this study, we had two aims. The first was to develop an hDHODH pharma-similarity index approach (PhSIA) using integrated molecular dynamics calculations, pharmacophore hypothesis, and comparative molecular similarity index analysis (CoMSIA) contour information techniques. The approach, for the discovery and design of novel inhibitors, was based on 25 diverse known hDHODH inhibitors. Three statistical methods were used to verify the performance of hDHODH PhSIA. Fischer's cross-validation test provided a 98% confidence level and the goodness of hit (GH) test score was 0.61. The q(2), r(2), and predictive r(2) values were 0.55, 0.97, and 0.92, respectively, for a partial least squares validation method. In our approach, each diverse inhibitor structure could easily be aligned with contour information, and common substructures were unnecessary. For our second aim, we used the proposed approach to design 13 novel hDHODH inhibitors using a scaffold-hopping strategy. Chemical features of the approach were divided into two groups, and the Vitas-M Laboratory fragment was used to create de novo inhibitors. This approach provides a useful tool for the discovery and design of potential inhibitors of hDHODH, and does not require docking analysis; thus, our method can assist medicinal chemists in their efforts to identify novel inhibitors.

  3. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo.

    PubMed

    Qvit, Nir; Disatnik, Marie-Hélène; Sho, Eiketsu; Mochly-Rosen, Daria

    2016-06-22

    Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors. PMID:27218445

  4. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    SciTech Connect

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; Gollapalli, Deviprasad R.; Cuny, Gregory D.; Joachimiak, Andrzej; Hedstrom, Lizbeth

    2015-04-21

    Inosine 5´-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 5´-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.

  5. Discovery of 2-((3-cyanopyridin-2-yl)thio)acetamides as human lactate dehydrogenase A inhibitors to reduce the growth of MG-63 osteosarcoma cells: Virtual screening and biological validation.

    PubMed

    Cui, Wei; Lv, Wei; Qu, Ying; Ma, Rui; Wang, Yi-Wei; Xu, Yong-Jun; Wu, Di; Chen, Xuanhuang

    2016-08-15

    Lactate dehydrogenase A (LDHA) has emerged as an attractive target in the oncology field. In this paper, we present the identification of 2-((3-cyanopyridin-2-yl)thio)acetamide-containing compounds as LDHA inhibitors. The in vitro enzymatic assay suggested that inhibitor 9 had good inhibitory potency against LDHA with IC50 value as 1.24μM. Cytotoxicity assay showed that inhibitor 9 strongly inhibited the proliferation of cancer cell MG-63 (EC50=0.98μM). These findings indicated that inhibitor 9 could be employed as a lead for developing more potent LDHA inhibitor with anti-proliferative potency. PMID:27406795

  6. VER-246608, a novel pan-isoform ATP competitive inhibitor of pyruvate dehydrogenase kinase, disrupts Warburg metabolism and induces context-dependent cytostasis in cancer cells.

    PubMed

    Moore, Jonathan D; Staniszewska, Anna; Shaw, Terence; D'Alessandro, Jalanie; Davis, Ben; Surgenor, Alan; Baker, Lisa; Matassova, Natalia; Murray, James; Macias, Alba; Brough, Paul; Wood, Mike; Mahon, Patrick C

    2014-12-30

    Pyruvate dehydrogenase kinase (PDK) is a pivotal enzyme in cellular energy metabolism that has previously been implicated in cancer through both RNAi based studies and clinical correlations with poor prognosis in several cancer types. Here, we report the discovery of a novel and selective ATP competitive pan-isoform inhibitor of PDK, VER-246608. Consistent with a PDK mediated MOA, VER-246608 increased pyruvate dehydrogenase complex (PDC) activity, oxygen consumption and attenuated glycolytic activity. However, these effects were only observed under D-glucose-depleted conditions and required almost complete ablation of PDC E1α subunit phosphorylation. VER-246608 was weakly anti-proliferative to cancer cells in standard culture media; however, depletion of either serum or combined D-glucose/L-glutamine resulted in enhanced cellular potency. Furthermore, this condition-selective cytostatic effect correlated with reduced intracellular pyruvate levels and an attenuated compensatory response involving deamination of L-alanine. In addition, VER-246608 was found to potentiate the activity of doxorubicin. In contrast, the lipoamide site inhibitor, Nov3r, demonstrated sub-maximal inhibition of PDK activity and no evidence of cellular activity. These studies suggest that PDK inhibition may be effective under the nutrient-depleted conditions found in the tumour microenvironment and that combination treatments should be explored to reveal the full potential of this therapeutic strategy.

  7. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death.

    PubMed

    Qvit, Nir; Joshi, Amit U; Cunningham, Anna D; Ferreira, Julio C B; Mochly-Rosen, Daria

    2016-06-24

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy. PMID:27129213

  8. In vitro resistance selections for Plasmodium falciparum dihydroorotate dehydrogenase inhibitors give mutants with multiple point mutations in the drug-binding site and altered growth.

    PubMed

    Ross, Leila S; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M P; Rowland, Paul; Wiegand, Roger C; Wirth, Dyann F

    2014-06-27

    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characterizing resistance pathways for antimalarial agents not yet in clinical use will increase our understanding of the potential for resistance. We identified resistance mechanisms of Plasmodium falciparum (Pf) DHODH inhibitors via in vitro resistance selections. We found 11 point mutations in the PfDHODH target. Target gene amplification and unknown mechanisms also contributed to resistance, albeit to a lesser extent. These mutant parasites were often hypersensitive to other PfDHODH inhibitors, which immediately suggested a novel combination therapy approach to preventing resistance. Indeed, a combination of wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. The effects of point mutations in PfDHODH were corroborated with purified recombinant wild-type and mutant-type PfDHODH proteins, which showed the same trends in drug response as the cognate cell lines. Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate. Co-crystallography of PfDHODH with three inhibitors suggested that hydrophobic interactions are important for drug binding and selectivity.

  9. A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20alpha-hydroxysteroid dehydrogenase.

    PubMed

    Dhagat, Urmi; Carbone, Vincenzo; Chung, Roland P-T; Matsunaga, Toshihiro; Endo, Satoshi; Hara, Akira; El-Kabbani, Ossama

    2007-11-01

    20alpha-hydroxysteroid dehydrogenase (AKR1C1) plays a key role in the metabolism of progesterone and other steroid hormones, thereby regulating their action at the pre-receptor level. AKR1C1 is implicated in neurological and psychiatric conditions such as catamenial epilepsy and depressive disorders. Increased activity of AKR1C1 is associated with termination of pregnancy and the development of breast cancer, endometriosis and endometrial cancer. Inhibition of the undesired activity of AKR1C1 will help reduce risks of premature birth, neurological disorders and the development of cancer. In order to identify potential leads for new inhibitors of AKR1C1 we adopted a virtual screening-based approach using the automated DOCK program. Approximately 250,000 compounds from the NCI database were screened for potential ligands based on their chemical complementarity and steric fit within the active site of AKR1C1. Kinetic analysis revealed 3,5-diiodosalicylic acid, an analogue of salicylic acid, as a potent competitive inhibitor with respect to the substrate 5beta-pregnane-3alpha,20alpha-diol with a K(i) of 9 nM. Aspirin, which is a well known salicylic acid-based drug, was also found to inhibit AKR1C1 activity. This is the first report to show aspirin (IC(50)=21 microM) and its metabolite salicylic acid (IC(50)=7.8 microM) as inhibitors of AKR1C1.

  10. Screening and isolation of potential lactate dehydrogenase inhibitors from five Chinese medicinal herbs: Soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali.

    PubMed

    Tang, Ying; Li, Senlin; Li, Sainan; Yang, Xiaojing; Qin, Yao; Zhang, Yuchi; Liu, Chunming

    2016-06-01

    Stroke is among the leading causes of death and severe disability worldwide. Flavonoids have been extensively used in the treatment of ischemic stroke by reducing lactate dehydrogenase levels and thereby enhancing blood perfusion to the ischemic region. Here, we used ultrafiltration high-performance liquid chromatography coupled with diode array detection and mass spectrometry for the rapid screening and identification of flavonoids from five Chinese medicinal herbs: soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali. Using PC12 cells as a suitable in vitro model of toxicity, cell viability was quantitated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that the extracts of soybean and the six major components, namely, acetyldaidzin, malonylgenistin, daidiain, glycitin, genistin, and acetylcitin; the extract of R. pueraria and its main component daidzein; the extract of F. pueraria and its three major components, tectorigenin, tectoridin, and tectorigenin-7-O-xylosylglucosid; and the extract of R. belamcandae and its main component, tectoridin, were strong lactate dehydrogenase inhibitors. Also, the components of R. astragali showed no bioactivity. These findings indicate that the ultrafltration high-performance liquid chromatography coupled with diode array detection and mass spectrometry method could be utilized in rapid screening and separation of bioactive compounds from a complex matrix. PMID:27059876

  11. The 2',4'-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species.

    PubMed

    Passalacqua, Thais G; Torres, Fábio A E; Nogueira, Camila T; de Almeida, Leticia; Del Cistia, Mayara L; dos Santos, Mariana B; Regasini, Luis O; Graminha, Márcia A S; Marchetto, Reinaldo; Zottis, Aderson

    2015-09-01

    The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity. PMID:26169126

  12. Exploring the molecular basis for selective binding of homoserine dehydrogenase from Mycobacterium leprae TN toward inhibitors: a virtual screening study.

    PubMed

    Zhan, Dongling; Wang, Dongmei; Min, Weihong; Han, Weiwei

    2014-01-24

    Homoserine dehydrogenase (HSD) from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ), a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (L-aspartate semialdehyde (L-ASA)) binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. neuraminidaseAfter use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation-π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.

  13. Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential

    SciTech Connect

    Coteron, Jose M.; Marco, Maria; Esquivias, Jorge; Deng, Xiaoyi; White, Karen L.; White, John; Koltun, Maria; El Mazouni, Farah; Kokkonda, Sreekanth; Katneni, Kasiram; Bhamidipati, Ravi; Shackleford, David M.; Angulo-Barturen, Inigo; Ferrer, Santiago B.; Jimenez-Diaz, Maria Belen; Gamo, Francisco-Javier; Goldsmith, Elizabeth J.; Charman, William N.; Bathurst, Ian; Floyd, David; Matthews, David; Burrows, Jeremy N.; Rathod, Pradipsinh K.; Charman, Susan A.; Phillips, Margaret A.

    2012-02-27

    Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.

  14. Endocrine disruptors and other inhibitors of 11β-hydroxysteroid dehydrogenase 1 and 2: Tissue-specific consequences of enzyme inhibition.

    PubMed

    Vitku, Jana; Starka, Luboslav; Bicikova, Marie; Hill, Martin; Heracek, Jiri; Sosvorova, Lucie; Hampl, Richard

    2016-01-01

    Numerous chemicals in the environment have the ability to interact with the endocrine system. These compounds are called endocrine disruptors (EDs). Exposure to EDs represents one of the hypotheses for decreasing fertility, the increased risk of numerous cancers and obesity, metabolic syndrome and type 2 diabetes. There are various mechanisms of ED action, one of which is their interference in the action of 11β-hydroxysteroid dehydrogenase (11βHSD) that maintains a balance between active and inactive glucocorticoids on the intracellular level. This enzyme has two isoforms and is expressed in various tissues. Inhibition of 11βHSD in various tissues can have different consequences. In the case of EDs, the results of exposure are mainly adverse; on the other hand pharmaceutically developed inhibitors of 11βHSD type 1 are evaluated as an option for treating metabolic syndrome, as well as related diseases and depressive disorders. This review focuses on the effects of 11βHSD inhibitors in the testis, colon, adipose tissue, kidney, brain and placenta.

  15. Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity

    PubMed Central

    Li, Shiliang; Luan, Guoqin; Ren, Xiaoli; Song, Wenlin; Xu, Liuxin; Xu, Minghao; Zhu, Junsheng; Dong, Dong; Diao, Yanyan; Liu, Xiaofeng; Zhu, Lili; Wang, Rui; Zhao, Zhenjiang; Xu, Yufang; Li, Honglin

    2015-01-01

    Human dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 were the most potent with IC50 values in the double-digit nanomolar range. Moreover, compound 19 displayed significant anti-arthritic effects and favorable pharmacokinetic profiles in vivo. Further X-ray structure and SAR analyses revealed that the potencies of the designed inhibitors were partly attributable to additional water-mediated hydrogen bond networks formed by an unexpected buried water between hDHODH and the 2-(2-methylenehydrazinyl)thiazole scaffold. This work not only elucidates promising scaffolds targeting hDHODH for the treatment of rheumatoid arthritis, but also demonstrates that the water-mediated hydrogen bond interaction is an important factor in molecular design and optimization. PMID:26443076

  16. Human class II (pi) alcohol dehydrogenase has a redox-specific function in norepinephrine metabolism.

    PubMed Central

    Mårdh, G; Dingley, A L; Auld, D S; Vallee, B L

    1986-01-01

    Studies of the function of human alcohol dehydrogenase (ADH) have revealed substrates that are virtually unique for class II ADH (pi ADH). It catalyzes the formation of the intermediary glycols of norepinephrine metabolism, 3,4-dihydroxyphenylglycol and 4-hydroxy-3-methoxyphenylglycol, from the corresponding aldehydes 3,4-dihydroxymandelaldehyde and 4-hydroxy-3-methoxymandelaldehyde with Km values of 55 and 120 microM and kcat/Km ratios of 14,000 and 17,000 mM-1 X min-1; these are from 60- to 210-fold higher than those obtained with class I ADH isozymes. The catalytic preference of class II ADH also extends to benzaldehydes. The kcat/Km values for the reduction of benzaldehyde, 3,4-dihydroxybenzaldehyde and 4-hydroxy-3-methoxybenzaldehyde by pi ADH are from 9- to 29-fold higher than those for a class I isozyme, beta 1 gamma 2 ADH. Furthermore, the norepinephrine aldehydes are potent inhibitors of alcohol (ethanol) oxidation by pi ADH. The high catalytic activity of pi ADH-catalyzed reduction of the aldehydes in combination with a possible regulatory function of the aldehydes in the oxidative direction leads to essentially "unidirectional" catalysis by pi ADH. These features and the presence of pi ADH in human liver imply a physiological role for pi ADH in the degradation of circulating epinephrine and norepinephrine. PMID:3466164

  17. Scavenger receptor for aldehyde-modified proteins.

    PubMed

    Horiuchi, S; Murakami, M; Takata, K; Morino, Y

    1986-04-15

    This paper describes an unexpectedly broad ligand specificity of a scavenger receptor of sinusoidal liver cells that is responsible for endocytic uptake of formaldehyde-treated bovine serum albumin (f-Alb). Binding of 125I-f-Alb to the isolated cells was effectively inhibited by bovine serum albumin (BSA) modified with aliphatic aldehydes such as glycolaldehye, DL-glyceraldehyde, and propionaldehyde whereas albumin preparations modified by aromatic aldehydes such as pyridoxal, pyridoxal phosphate, salicylaldehyde, and benzaldehyde did not affect this binding process. Binding of 125I-glycolaldehyde-treated BSA to the cells exhibited a saturation kinetics with an apparent Kd = 3.3 micrograms of the ligand/ml. This binding process was inhibited by unlabeled f-Alb as well as by the antibody raised against the f-Alb receptor. Indeed, 125I-glycolaldehyde-treated BSA underwent a rapid plasma clearance (t1/2 approximately 2 min) which was markedly retarded by unlabeled f-Alb. Upon treatment by these aldehydes, other proteins such as ovalbumin, soybean trypsin inhibitor, and hemoglobin were also converted to active ligands for the f-Alb receptor, while no ligand activity was generated with gamma-globulin and RNase A. These results clearly show that the f-Alb receptor, originally described as being specific for f-Alb, exhibits a broad ligand specificity in terms of both aldehydes and proteins and, hence, should be described as a scavenger receptor for aldehyde-modified proteins.

  18. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    PubMed

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-01

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis. PMID:14992577

  19. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  20. Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells.

    PubMed

    Granchi, Carlotta; Roy, Sarabindu; Giacomelli, Chiara; Macchia, Marco; Tuccinardi, Tiziano; Martinelli, Adriano; Lanza, Mario; Betti, Laura; Giannaccini, Gino; Lucacchini, Antonio; Funel, Nicola; León, Leticia G; Giovannetti, Elisa; Peters, Godefridus J; Palchaudhuri, Rahul; Calvaresi, Emilia C; Hergenrother, Paul J; Minutolo, Filippo

    2011-03-24

    Highly invasive tumor cells are characterized by a metabolic switch, known as the Warburg effect, from "normal" oxidative phosphorylation to increased glycolysis even under sufficiently oxygenated conditions. This dependence on glycolysis also confers a growth advantage to cells present in hypoxic regions of the tumor. One of the key enzymes involved in glycolysis, the muscle isoform of lactate dehydrogenase (LDH-A), is overexpressed by metastatic cancer cells and is linked to the vitality of tumors in hypoxia. This enzyme may be considered as a potential target for new anticancer agents, since its inhibition cuts cancer energetic and anabolic supply, thus reducing the metastatic and invasive potential of cancer cells. We have discovered new and efficient N-hydroxyindole-based inhibitors of LDH-A, which are isoform-selective (over LDH-B) and competitive with both the substrate (pyruvate) and the cofactor (NADH). The antiproliferative activity of these compounds was confirmed on a series of cancer cell lines, and they proved to be particularly effective under hypoxic conditions. Moreover, NMR experiments showed that these compounds are able to reduce the glucose-to-lactate conversion inside the cell.

  1. Online solid phase extraction LC-MS/MS method for the analysis of succinate dehydrogenase inhibitor fungicides and its applicability to surface water samples.

    PubMed

    Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas

    2014-10-01

    A sensitive and selective analytical method, based on online solid phase extraction coupled to LC-MS/MS, was developed and validated to determine traces of several recently introduced fungicides in surface water and wastewater. The list of target analytes included eight succinate dehydrogenase inhibitors (bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, isopyrazam, penflufen, and penthiopyrad), and two other fungicides with different modes of action, fenpyrazamine and fluopicolide. Detection and quantification limits in various matrices were in the range of 0.1 to 2 and 0.5 to 10 ng/L, respectively. Moderate signal suppression was observed in surface water (≤15%) and wastewater (≤25%) and was well compensated by the selected internal standard. The intra- and inter-day precisions were generally <10 and <20%, respectively. The applicability of the method was demonstrated in a study on the occurrence of fungicides in the river Glatt, Switzerland, that drains a catchment area of 419 km(2) with a substantial proportion of agricultural land. Of the studied compounds, only boscalid and fluopicolide were detected in flow-proportional weekly composite samples, generally at low concentrations up to 15 and 5 ng/L, respectively. While fluopicolide was detected in only 30% of the samples above the LOD of 0.5 ng/L, boscalid was detected in all samples analyzed between March and October 2012.

  2. Lead-optimization of aryl and aralkyl amine based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice

    PubMed Central

    Gujjar, Ramesh; Mazouni, Farah El; White, Karen L.; White, John; Creason, Sharon; Shackleford, David M.; Deng, Xiaoyi; Charman, William N.; Bathurst, Ian; Burrows, Jeremy; Floyd, David M.; Matthews, David; Buckner, Frederick S.; Charman, Susan A.; Phillips, Margaret A.; Rathod, Pradipsinh K.

    2011-01-01

    Malaria is one of the leading causes of severe infectious disease worldwide, yet our ability to maintain effective therapy to combat the illness is continually challenged by the emergence of drug resistance. We previously reported identification of a new class of triazolopyrimidine based P. falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors with antimalarial activity, leading to the discovery of a new lead series and novel target for drug development. Active compounds from the series contained a triazolopyrimidine ring attached to an aromatic group through a bridging nitrogen atom. Herein we describe systematic efforts to optimize the aromatic functionality with the goal of improving potency and in vivo properties of compounds from the series. These studies led to the identification of two new substituted aniline moieties (4-SF5-Ph and 3,5-Di-F-4-CF3-Ph) which, when coupled to the triazolopyrimidine ring showed good plasma exposure and better efficacy in the P. berghei mouse model of the disease, than previously reported compounds from the series. PMID:21517059

  3. [Activity of aldehyde scavenger enzymes in the heart of rats of different age during immobilized stress].

    PubMed

    Grabovetskaia, E R; Davydov, V V

    2009-01-01

    This study was made to determine the activity of aldehyde scavenger enzymes in the heart's postmitochondrial fraction of rats of different age during immobilization stress. Our study demonstrated, that immobilization of 1.5-, 2- and 12-month rats was accompanied by inhibiting activity of aldehyde dehydrogenase and aldehyde reductase. At the same time we observed an increase in glutathione transferase activity in immobilized 1.5-month-old rats and that in reductase activity in 24-month-old rats. The revealed changes can lead to a decrease in the rate of endogenous aldehyde utilization in the heart during stress at puberty.

  4. Possible role of alteration of aldehyde's scavenger enzymes during aging.

    PubMed

    Davydov, Vadim V; Dobaeva, Nataly M; Bozhkov, Anatoly I

    2004-01-01

    Apoptosis in tissues is induced by different kind of signals including endogenous aldehydes, such as 4-hydroxy-2, 3-nonenal. The accumulation rate of aldehydes in the cell is affected by conditions of oxidative stress. In the cell, aldehydes can be metabolized by various isoforms of aldehyde dehydrogenase, aldehyde reductase, and glutathione-S-transferase. There is evidence suggesting that the catalytic properties of these enzymes change during ontogenesis, and that aging is accompanied by their reduced activities. These functional changes may contribute substantially to the alteration in the organism sensitivity to damaging action of stress factors during aging, to age-related modulation of the action of endogenous aldehydes as a signal for apoptosis, and finally, to the origin of diseases associated with aging. In this context, the stimulation of enzymes' expression, and the activation of the catalytic properties of enzymes responsible for catabolism of endogenous aldehydes could become a perspective direction in increasing the organism resistance to the action of damaging factors during aging.

  5. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E

    DOE PAGES

    Clarkson, Sonya M.; Hamilton-Brehm, Scott D.; Giannone, Richard J.; Engle, Nancy L.; Tschaplinski, Timothy J.; Hettich, Robert L.; Elkins, James G.

    2014-12-03

    Background: Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria is important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains such as Thermoanaerobacter spp. may also enable improvements in candidate CBP microorganisms. Results: T. pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30more » mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated vs. 73 downregulated. Only 86 proteins exhibited a 2-fold change in abundance in either direction. Of these, 53 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least 2-fold by furfural and were targeted for further investigation: Teth39_1597, encodes a predicted butanol dehydrogenase (BdhA) and Teth39_1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. AKR also showed significant activity with NADPH, but only with four carbon butyr

  6. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  7. Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways.

    PubMed

    Farabegoli, F; Vettraino, M; Manerba, M; Fiume, L; Roberti, M; Di Stefano, G

    2012-11-20

    Galloflavin (GF), a recently identified lactate dehydrogenase inhibitor, hinders the proliferation of cancer cells by blocking glycolysis and ATP production. The aim of the present experiments was to study the effect of this compound on breast cancer cell lines reproducing different pathological subtypes of this tumor: MCF-7 (the well differentiated form), MDA-MB-231 (the aggressive triple negative tumor) and MCF-Tam (a sub-line of MCF-7 with acquired tamoxifen resistance). We observed marked differences in the energetic metabolism of these cell lines. Compared to MCF-7 cells, both MDA-MB-231 and MCF-Tam cells exhibited higher LDH levels and glucose uptake and showed lower capacity of oxygen consumption. In spite of these differences, GF exerted similar growth inhibitory effects. This result was explained by the finding of a constitutively activated stress response in MDA-MB-231 and MCF-Tam cells, which reproduce the poor prognosis tumor forms. As a further proof, different signaling pathways were found to be involved in the antiproliferative action of GF. In MCF-7 cells we observed a down regulation of the ERα-mediated signaling needed for cell survival. On the contrary, in MCF-Tam and MDA-MB-231 cells growth inhibition appeared to be contributed by an oxidative stress condition. The prevalent mechanism of cell death was found to be apoptosis induction. Because of the clinical relevance of breast cancer forms having the triple negative and/or chemoresistant phenotype, our results showing comparable effects of GF even on aggressively growing cells encourage further studies to verify the potential of this compound in improving the chemotherapy of breast cancer.

  8. Betaine aldehyde, betaine, and choline levels in rat livers during ethanol metabolism.

    PubMed

    Chern, M K; Gage, D A; Pietruszko, R

    2000-12-01

    Betaine aldehyde levels were determined in rat livers following 4 weeks of ethanol feeding, employing the Lieber-De Carli liquid diet. The results showed that the levels of betaine aldehyde are unaffected by alcohol feeding to rats. These levels in both experimental and control animals were found to be quite low, 5.5 nmol/g liver. Betaine aldehyde levels have not been determined previously in mammalian liver because of methodological difficulties. This investigation employed fast atom bombardment-mass spectroscopy to determine the levels of betaine aldehyde, betaine, and choline. The decrease in betaine levels following ethanol administration confirmed the results of other investigators. Choline levels determined during this investigation were lower than previously reported. The reason for starting this investigation was the fact that the enzyme that catalyzes betaine aldehyde dehydrogenation to betaine, which is distributed in both mitochondria and the cytoplasm, was found to also metabolize acetaldehyde with K(m) and V(max) values lower than those for betaine aldehyde. Thus, it appeared likely that the metabolism of acetaldehyde during ethanol metabolism might inhibit betaine aldehyde conversion to betaine and thereby result in decreased betaine levels (Barak et al., Alcohol 13: 395-398, 1996). The fact that betaine aldehyde levels in alcohol-fed animals were similar to those in controls demonstrates that competition between acetaldehyde and betaine aldehyde for the same enzyme does not occur. This complete lack of competition suggests that betaine aldehyde dehydrogenase in the mitochondrial matrix may totally metabolize betaine aldehyde to betaine without any involvement of cytoplasmic betaine aldehyde dehydrogenase. PMID:11077045

  9. Aldehyde Reduction by Cytochrome P450

    PubMed Central

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A.

    2011-01-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes, 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE); specifically the aldehyde reduction reactions of cytochrome P450s (CYPs). These assays can be performed using either liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method used here to study the reduction of a model α,β-unsaturated aldehyde, 9-AA, by CYPs was adapted from the assay used to investigate 9-anthracene oxidation as reported by Marini et al. (Marini et al., 2003). For experiments measuring reduction of the endogenous aldehyde, 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH and the metabolites were separated by High Pressure Liquid Chromatograpy (HPLC), using an adaptation of the method of Srivastava et al. (Srivastava et al., 2010). For study of 9-AA and 4-HNE reduction, the first step involves incubation of the substrate with the CYP in appropriate media, followed by quantification of metabolites through either spectrofluorimetry or analysis by HPLC coupled with a radiometric assay, respectively. Metabolite identification can be achieved by HPLC GC-mass spectrometric analysis. Inhibitors of cytochrome P450 function can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction reactions for CYP’s were not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These character of these reactions are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  10. Synthesis, in Vitro Evaluation and Cocrystal Structure of 4-Oxo-[1]benzopyrano[4,3-c]pyrazole Cryptosporidium parvum Inosine 5′-Monophosphate Dehydrogenase (CpIMPDH) Inhibitors

    PubMed Central

    2015-01-01

    Cryptosporidium inosine 5′-monophosphate dehydrogenase (CpIMPDH) has emerged as a therapeutic target for treating Cryptosporidium parasites because it catalyzes a critical step in guanine nucleotide biosynthesis. A 4-oxo-[1]benzopyrano[4,3-c]pyrazole derivative was identified as a moderately potent (IC50 = 1.5 μM) inhibitor of CpIMPDH. We report a SAR study for this compound series resulting in 8k (IC50 = 20 ± 4 nM). In addition, an X-ray crystal structure of CpIMPDH·IMP·8k is also presented. PMID:25474504

  11. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  12. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E

    SciTech Connect

    Clarkson, Sonya M.; Hamilton-Brehm, Scott D.; Giannone, Richard J.; Engle, Nancy L.; Tschaplinski, Timothy J.; Hettich, Robert L.; Elkins, James G.

    2014-12-03

    Background: Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria is important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains such as Thermoanaerobacter spp. may also enable improvements in candidate CBP microorganisms. Results: T. pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30 mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated vs. 73 downregulated. Only 86 proteins exhibited a 2-fold change in abundance in either direction. Of these, 53 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least 2-fold by furfural and were targeted for further investigation: Teth39_1597, encodes a predicted butanol dehydrogenase (BdhA) and Teth39_1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. AKR also showed significant activity with NADPH

  13. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    PubMed

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  14. Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of Acinetobacter calcoaceticus.

    PubMed Central

    Gillooly, D J; Robertson, A G; Fewson, C A

    1998-01-01

    The nucleotide sequences of xylB and xylC from Acinetobacter calcoaceticus, the genes encoding benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II, were determined. The complete nucleotide sequence indicates that these two genes form part of an operon and this was supported by heterologous expression and physiological studies. Benzaldehyde dehydrogenase II is a 51654 Da protein with 484 amino acids per subunit and it is typical of other prokaryotic and eukaryotic aldehyde dehydrogenases. Benzyl alcohol dehydrogenase has a subunit Mr of 38923 consisting of 370 amino acids, it stereospecifically transfers the proR hydride of NADH, and it is a member of the family of zinc-dependent long-chain alcohol dehydrogenases. The enzyme appears to be more similar to animal and higher-plant alcohol dehydrogenases than it is to most other microbial alcohol dehydrogenases. Residue His-51 of zinc-dependent alcohol dehydrogenases is thought to be necessary as a general base for catalysis in this category of alcohol dehydrogenases. However, this residue was found to be replaced in benzyl alcohol dehydrogenase from A. calcoaceticus by an isoleucine, and the introduction of a histidine residue in this position did not alter the kinetic coefficients, pH optimum or substrate specificity of the enzyme. Other workers have shown that His-51 is also absent from the TOL-plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida and so these two closely related enzymes presumably have a catalytic mechanism that differs from that of the archetypal zinc-dependent alcohol dehydrogenases. PMID:9494109

  15. Aldehyde-stabilized cryopreservation.

    PubMed

    McIntyre, Robert L; Fahy, Gregory M

    2015-12-01

    We describe here a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC), which demonstrates the relevance and utility of advanced cryopreservation science for the neurobiological research community. ASC is a new brain-banking technique designed to facilitate neuroanatomic research such as connectomics research, and has the unique ability to combine stable long term ice-free sample storage with excellent anatomical resolution. To demonstrate the feasibility of ASC, we perfuse-fixed rabbit and pig brains with a glutaraldehyde-based fixative, then slowly perfused increasing concentrations of ethylene glycol over several hours in a manner similar to techniques used for whole organ cryopreservation. Once 65% w/v ethylene glycol was reached, we vitrified brains at -135 °C for indefinite long-term storage. Vitrified brains were rewarmed and the cryoprotectant removed either by perfusion or gradual diffusion from brain slices. We evaluated ASC-processed brains by electron microscopy of multiple regions across the whole brain and by Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) imaging of selected brain volumes. Preservation was uniformly excellent: processes were easily traceable and synapses were crisp in both species. Aldehyde-stabilized cryopreservation has many advantages over other brain-banking techniques: chemicals are delivered via perfusion, which enables easy scaling to brains of any size; vitrification ensures that the ultrastructure of the brain will not degrade even over very long storage times; and the cryoprotectant can be removed, yielding a perfusable aldehyde-preserved brain which is suitable for a wide variety of brain assays. PMID:26408851

  16. Acetaldehyde metabolism by liver mitochondrial ALDH from UChA and UChB rats: effect of inhibitors.

    PubMed

    Tampier, L; Sánchez, E; Quintanilla, M E

    1996-01-01

    We have observed that blood acetaldehyde (AcH) levels after an ethanol dose were significantly higher in disulfiram-pre-treated UChA (low ethanol consumer) than in UChB (high ethanol consumer) rats. In order to explore these results further, we studied the effect of disulfiram (300 mg/kg i.p.) and chlorpropamide (80) mg/kg i.p.) pre-treatment on blood AcH levels after oral ethanol (60 mmol/kg) and on AcH metabolism by liver mitochondrial aldehyde(s) dehydrogenase(s) from UChA and UChB rats. AcH metabolism by liver mitochondrial aldehyde dehydrogenase (ALDH) was studied by following AcH disappearance rate and the formation of NADH at 340 nm in the incubation medium. The results showed that chlorpropamide, like disulfiram, produced a higher blood AcH level consistent with a greater inhibition of the low-Km mitochondrial ALDH in the UChA rats than in the UChB rats. These drugs did not inhibit the high Km mitochondrial ALDH. Kinetic studies of mitochondrial ALDH show that low-Km mitochondrial ALDH from UChB rats exhibits a higher affinity for NAD than UChA rats. This observation could explain the different inhibition of ALDH by both drugs, assuming that the inhibitors reduce NAD availability, the rate limiting step in the mitochondrial ALDH oxidation.

  17. Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker's yeast grown in a variety of hypoxic conditions.

    PubMed

    Machado, A; Nuñez de Castro, I; Mayor, F

    1975-02-28

    The activities of isocitrate dehydrogenase (NAD), isocitrate dehydrogenase (NADP) and oxoglutarate dehydrogenase have been investigated in Saccharomyces cerevisiae grown in a variety of aerobic and hypoxic conditions, the latter including oxygen deprivation, high glucose concentration, addition of inhibitors of mitochondrial protein synthesis, respiratory inhibition by azide, and impaired respiration mutants. All hypoxic conditions led to a marked decrease of oxoglutarate dehydrogenase and significant decreases of the two isocitrate dehydrogenases. According to its kinetic properties, the NAD-isocitrate dehydrogenase will not be operative in hypoxia "in vivo". From these and other related facts it is concluded that hypoxic conditions in yeast generally lead to a splitting of the tricarboxylic acid cycle and that glutamate synthesis in these conditions takes place through the coupling of the NADP-linked isocitrate and glutamate dehydrogenases.

  18. Acyclovir-induced nephrotoxicity: the role of the acyclovir aldehyde metabolite.

    PubMed

    Gunness, Patrina; Aleksa, Katarina; Bend, John; Koren, Gideon

    2011-11-01

    For decades, acyclovir-induced nephrotoxicity was believed to be secondary to crystalluria. Clinical evidence of nephrotoxicity in the absence of crystalluria suggests that acyclovir induces direct insult to renal tubular cells. We postulated that acyclovir is metabolized by the alcohol dehydrogenase (ADH) enzyme to acyclovir aldehyde, which is metabolized by the aldehyde dehydrognase 2 (ALDH2) enzyme to 9-carboxymethoxymethylguanine (CMMG). We hypothesized that acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity. Human renal proximal tubular (HK-2) cells were used as our in vitro model. Western blot and enzymes activities assays were performed to determine whether the HK-2 cells express ADH and ALDH2 isozymes, respectively. Cytotoxicity (measured as a function of cell viability) assays were conducted to determine (1) whether the acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity and (2) whether CMMG induces cell death. A colorimetric assay was performed to determine whether acyclovir was metabolized to an aldehyde in vitro. Our results illustrated that (1) HK-2 cells express ADH and ALDH2 isozymes, (2) 4-methylpyrazole rendered significant protection against cell death, (3) CMMG does not induce cell death, and (4) acyclovir was metabolized to an aldehyde in tubular cells. These data indicate that acyclovir aldehyde is produced in HK-2 cells and that inhibition of its production by 4-methylpyrazole offers significant protection from cell death in vitro, suggesting that acyclovir aldehyde may cause the direct renal tubular insult associated with acyclovir.

  19. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  20. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  1. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  2. New Insights into Human 17β-Hydroxysteroid Dehydrogenase Type 14: First Crystal Structures in Complex with a Steroidal Ligand and with a Potent Nonsteroidal Inhibitor.

    PubMed

    Bertoletti, Nicole; Braun, Florian; Lepage, Mahalia; Möller, Gabriele; Adamski, Jerzy; Heine, Andreas; Klebe, Gerhard; Marchais-Oberwinkler, Sandrine

    2016-07-28

    17β-HSD14 is a SDR enzyme able to oxidize estradiol and 5-androstenediol using NAD(+). We determined the crystal structure of this human enzyme as the holo form and as ternary complexes with estrone and with the first potent, nonsteroidal inhibitor. The structures reveal a conical, rather large and lipophilic binding site and are the starting point for structure-based inhibitor design. The two natural variants (S205 and T205) were characterized and adopt a similar structure. PMID:27362750

  3. Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure Activity Relationships

    PubMed Central

    Adeniji, Adegoke O.; Twenter, Barry M.; Byrns, Michael C.; Jin, Yi; Chen, Mo; Winkler, Jeffrey D.; Penning, Trevor M.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castrate resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required since compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular are potent but non-selective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid as lead compound, five classes of structural analogs were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads towards new therapeutics for CRPC. PMID:22263837

  4. 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitors Still Improve Metabolic Phenotype in Male 11β-HSD1 Knockout Mice Suggesting Off-Target Mechanisms

    PubMed Central

    Harno, Erika; Cottrell, Elizabeth C.; Yu, Alice; DeSchoolmeester, Joanne; Gutierrez, Pablo Morentin; Denn, Mark; Swales, John G.; Goldberg, Fred W.; Bohlooly-Y, Mohammad; Andersén, Harriet; Wild, Martin J.; Turnbull, Andrew V.; Leighton, Brendan

    2013-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a target for novel type 2 diabetes and obesity therapies based on the premise that lowering of tissue glucocorticoids will have positive effects on body weight, glycemic control, and insulin sensitivity. An 11β-HSD1 inhibitor (compound C) inhibited liver 11β-HSD1 by >90% but led to only small improvements in metabolic parameters in high-fat diet (HFD)–fed male C57BL/6J mice. A 4-fold higher concentration produced similar enzyme inhibition but, in addition, reduced body weight (17%), food intake (28%), and glucose (22%). We hypothesized that at the higher doses compound C might be accessing the brain. However, when we developed male brain-specific 11β-HSD1 knockout mice and fed them the HFD, they had body weight and fat pad mass and glucose and insulin responses similar to those of HFD-fed Nestin-Cre controls. We then found that administration of compound C to male global 11β-HSD1 knockout mice elicited improvements in metabolic parameters, suggesting “off-target” mechanisms. Based on the patent literature, we synthesized another 11β-HSD1 inhibitor (MK-0916) from a different chemical series and showed that it too had similar off-target body weight and food intake effects at high doses. In summary, a significant component of the beneficial metabolic effects of these 11β-HSD1 inhibitors occurs via 11β-HSD1–independent pathways, and only limited efficacy is achievable from selective 11β-HSD1 inhibition. These data challenge the concept that inhibition of 11β-HSD1 is likely to produce a “step-change” treatment for diabetes and/or obesity. PMID:24169553

  5. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages.

    PubMed

    Park, Sung Bum; Park, Ji Seon; Jung, Won Hoon; Kim, Hee Youn; Kwak, Hyun Jung; Ahn, Jin Hee; Choi, Kyoung-Jin; Na, Yoon-Ju; Choi, Sunhwa; Dal Rhee, Sang; Kim, Ki Young

    2016-08-01

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344), a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS)-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients. PMID:27523796

  6. Lack of cross-resistance to FF-10501, an inhibitor of inosine-5'-monophosphate dehydrogenase, in azacitidine-resistant cell lines selected from SKM-1 and MOLM-13 leukemia cell lines.

    PubMed

    Murase, Motohiko; Iwamura, Hiroyuki; Komatsu, Kensuke; Saito, Motoki; Maekawa, Toshihiko; Nakamura, Takaaki; Yokokawa, Takuya; Shimada, Yasuhiro

    2016-02-01

    Resistance to azacitidine is a major issue in the treatments of myelodysplastic syndrome and acute myeloid leukemia, and previous studies suggest that changes in drug metabolism are involved in the resistance. Therefore, drugs with mechanisms resistant or alternative to such metabolic changes have been desired for the treatment of resistant disease. We generated azacitidine-resistant cells derived from SKM-1 and MOLM-13 leukemia cell lines in vitro, analyzed the mechanisms, and examined the impact on the efficacy of other antimetabolic drugs. It appeared that the cell growth-inhibitory effect of azacitidine, expression levels of uridine-cytidine kinase 2, and the concentrations of azacitidine triphosphate were remarkably decreased in the resistant cells compared with those in parent cells. These results were consistent with previous observations that azacitidine resistance is derived from metabolic changes. Cross-resistance of greater than 10-fold (shift in IC50 value) was observed in azacitidine-resistant cells for decitabine and for cytarabine, but not for gemcitabine or the inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors FF-10501 and mycophenolate mofetil (cross-resistance to 5-fluorouracil was cell line dependent). The IMPDH inhibitors maintained their cell growth-inhibitory activities in the azacitidine-resistant cell lines, in which the levels of adenine phosphoribosyltransferase (which converts FF-10501 to its active form, FF-10501 ribosylmonophosphate [FF-10501RMP]), FF-10501RMP, and the target enzyme, IMPDH, were equivalent to those in the parent cell lines. These results suggest that an IMPDH inhibitor such as FF-10501 could be an alternative therapeutic treatment for leukemia patients with acquired resistance to azacitidine.

  7. Optimization of brain penetrant 11β-hydroxysteroid dehydrogenase type I inhibitors and in vivo testing in diet-induced obese mice.

    PubMed

    Goldberg, Frederick W; Dossetter, Alexander G; Scott, James S; Robb, Graeme R; Boyd, Scott; Groombridge, Sam D; Kemmitt, Paul D; Sjögren, Tove; Gutierrez, Pablo Morentin; deSchoolmeester, Joanne; Swales, John G; Turnbull, Andrew V; Wild, Martin J

    2014-02-13

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been widely considered by the pharmaceutical industry as a target to treat metabolic syndrome in type II diabetics. We hypothesized that central nervous system (CNS) penetration might be required to see efficacy. Starting from a previously reported pyrimidine compound, we removed hydrogen-bond donors to yield 3, which had modest CNS penetration. More significant progress was achieved by changing the core to give 40, which combines good potency and CNS penetration. Compound 40 was dosed to diet-induced obese (DIO) mice and gave excellent target engagement in the liver and high free exposures of drug, both peripherally and in the CNS. However, no body weight reduction or effects on glucose or insulin were observed in this model. Similar data were obtained with a structurally diverse thiazole compound 51. This work casts doubt on the hypothesis that localized tissue modulation of 11β-HSD1 activity alleviates metabolic syndrome.

  8. Effects of kinase inhibitors and potassium phosphate (KPi) on site-specific phosphorylation of branched chain. cap alpha. -ketoacid dehydrogenase (BCKDH)

    SciTech Connect

    Kuntz, M.J.; Shimomura, Y.; Ozawa, T.; Harris, R.A.

    1987-05-01

    BCKDH is phosphorylated by a copurifying kinase at two serine residues on the El..cap alpha.. subunit. Phosphorylation of both sites occurs at about the same rate initially, but inactivation is believed associated only with site 1 phosphorylation. The effects of KPi and known inhibitors of BCKDH kinase, ..cap alpha..-chloroisocaproate (CIC) and branched chain ..cap alpha..-ketoacids (BCKA), on the phosphorylation of purified rat liver BCKDH were studied. Site-specific phosphorylation was quantitated by thin-layer electrophoresis of tryptic peptides followed by densitometric scanning of autoradiograms. Addition of 5 mM KPi was found necessary to stabilize the BCKDH activity at 37/sup 0/C. Increasing the KPi to 50 mM dramatically increased the CIC and BCKA inhibition of site 1 and site 2 phosphorylation. The finding of enhanced sensitivity of inhibitors with 50 mM KPi may facilitate identification of physiologically important kinase effectors. Regardless of the KPi concentration, CIC and the BCKA showed much more effective inhibition of site 2 than site 1 phosphorylation. Although site 1 is the primary inactivating site, predominant inhibition of site 2 phosphorylation may provide a means of modulating kinase/phosphatase control of BCKDH activity under steady state conditions.

  9. Kinetic models for synthesis by a thermophilic alcohol dehydrogenase

    SciTech Connect

    Ford, J.B.; Askins, K.J.; Taylor, K.B. )

    1993-07-01

    Alcohol dehydrogenase from Thermoanearobium brockii at 25[degree] C and at 65[degree]C is more active with secondary than primary alcohols. The enzyme utilizes NADP and NADPH as cosubstrates better than NAD and NADH. The maximum velocities (V[sub m]) for secondary alcohols at 65[degree] C are 10 to 100 times higher than those at 25[degree] C, whereas the K[sub m] values are more comparable. At both 25[degree] C and 65[degree] C the substrate analogue 1,1,1,3,3,3-hexafluoro-2-propanol inhibited the oxidation of alcohol competitively with respect to cyclopentanol, and uncompetitively with respect to NADP. Dimethylsulfoxide inhibited the reduction of cyclopentanone competitively with respect to cyclopentanone, and uncompetitively with respect to NADPH. As a product inhibitor, NADP was competitive with respect to NADPH. These results demonstrate that the enzyme binds the nucleotide and then the alcohol or ketone to form a ternary complex which is converted to a product ternary complex that releases product and nucleotide in that order. At 25[degree] C, all aldehydes and ketones examined inhibited the enzyme at concentrations above their Michaelis constants. The substrate inhibition by cyclopentanone was incomplete, and it was uncompetitive with respect to NADPH. Furthermore, cyclopentanone as a product inhibitor showed intercept-linear, slope-parabolic inhibition with respect to cyclopentanol. These results indicate that cyclopentanone binds to the enzyme-NADP complex at high concentrations. The resulting ternary complex slowly dissociates NADP and cyclopentanone. At 65[degree] C, all of the secondary alcohols, with the exception of cyclohexanol, show substrate activation at high concentration.

  10. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  11. Physiological responses and endogenous cytokinin profiles of tissue-cultured 'Williams' bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments.

    PubMed

    Aremu, Adeyemi O; Bairu, Michael W; Novák, Ondřej; Plačková, Lenka; Zatloukal, Marek; Doležal, Karel; Finnie, Jeffrey F; Strnad, Miroslav; Van Staden, Johannes

    2012-12-01

    The effect of supplementing either meta-topolin (mT) or N(6)-benzyladenine (BA) requiring cultures with roscovitine (6-benzylamino-2-[1(R)-(hydroxymethyl)propyl]amino-9-isopropylpurine), a cyclin-dependent kinase (CDK) and N-glucosylation inhibitor, and INCYDE (2-chloro-6-(3-methoxyphenyl)aminopurine), an inhibitor of cytokinin (CK) degradation, on the endogenous CK profiles and physiology of banana in vitro was investigated. Growth parameters including multiplication rate and biomass were recorded after 42 days. Endogenous CK levels were quantified using UPLC-MS/MS while the photosynthetic pigment and phenolic contents were evaluated spectrophotometrically. The highest regeneration rate (93 %) was observed in BA + roscovitine while mT + INCYDE plantlets produced most shoots. Treatment with BA + roscovitine had the highest shoot length and biomass. Although not significant, there was a higher proanthocyanidin level in BA + roscovitine treatments compared to the control (BA). The levels of total phenolics and flavonoids were significantly higher in mT + roscovitine treatment than in the mT-treated regenerants. The presence of roscovitine and/or INCYDE had no significant effect on the photosynthetic pigments of the banana plantlets. Forty-seven aromatic and isoprenoid CKs categorized into nine CK-types were detected at varying concentrations. The presence of mT + roscovitine and/or INCYDE increased the levels of O-glucosides while 9-glucosides were higher in the presence of BA. Generally, the underground parts had higher CK levels than the aerial parts; however, the presence of INCYDE increased the level of CK quantified in the aerial parts. From a practical perspective, the use of roscovitine and INCYDE in micropropagation could be crucial in the alleviation of commonly observed in vitro-induced physiological abnormalities.

  12. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  13. Synthesis of 5'-Aldehyde Oligonucleotide.

    PubMed

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  14. Green Tea and One of Its Constituents, Epigallocatechine-3-gallate, Are Potent Inhibitors of Human 11β-hydroxysteroid Dehydrogenase Type 1

    PubMed Central

    Hintzpeter, Jan; Stapelfeld, Claudia; Loerz, Christine; Martin, Hans-Joerg; Maser, Edmund

    2014-01-01

    The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1) catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome. Since tea has been associated with health benefits for thousands of years, we sought to elucidate the active principle in tea with regard to diabetes type 2 prevention. Several teas and tea specific polyphenolic compounds were tested for their possible inhibition of cortisone reduction with human liver microsomes and purified human 11β-HSD1. Indeed we found that tea extracts inhibited 11β-HSD1 mediated cortisone reduction, where green tea exhibited the highest inhibitory potency with an IC50 value of 3.749 mg dried tea leaves per ml. Consequently, major polyphenolic compounds from green tea, in particular catechins were tested with the same systems. (−)-Epigallocatechin gallate (EGCG) revealed the highest inhibition of 11β-HSD1 activity (reduction: IC50 = 57.99 µM; oxidation: IC50 = 131.2 µM). Detailed kinetic studies indicate a direct competition mode of EGCG, with substrate and/or cofactor binding. Inhibition constants of EGCG on cortisone reduction were Ki = 22.68 µM for microsomes and Ki = 18.74 µM for purified 11β-HSD1. In silicio docking studies support the view that EGCG binds directly to the active site of 11β-HSD1 by forming a hydrogen bond with Lys187 of the catalytic triade. Our study is the first to provide evidence that the health benefits of green tea and its polyphenolic compounds

  15. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1.

    PubMed

    Hintzpeter, Jan; Stapelfeld, Claudia; Loerz, Christine; Martin, Hans-Joerg; Maser, Edmund

    2014-01-01

    The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1) catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome. Since tea has been associated with health benefits for thousands of years, we sought to elucidate the active principle in tea with regard to diabetes type 2 prevention. Several teas and tea specific polyphenolic compounds were tested for their possible inhibition of cortisone reduction with human liver microsomes and purified human 11β-HSD1. Indeed we found that tea extracts inhibited 11β-HSD1 mediated cortisone reduction, where green tea exhibited the highest inhibitory potency with an IC50 value of 3.749 mg dried tea leaves per ml. Consequently, major polyphenolic compounds from green tea, in particular catechins were tested with the same systems. (-)-Epigallocatechin gallate (EGCG) revealed the highest inhibition of 11β-HSD1 activity (reduction: IC50 = 57.99 µM; oxidation: IC50 = 131.2 µM). Detailed kinetic studies indicate a direct competition mode of EGCG, with substrate and/or cofactor binding. Inhibition constants of EGCG on cortisone reduction were Ki = 22.68 µM for microsomes and Ki = 18.74 µM for purified 11β-HSD1. In silicio docking studies support the view that EGCG binds directly to the active site of 11β-HSD1 by forming a hydrogen bond with Lys187 of the catalytic triade. Our study is the first to provide evidence that the health benefits of green tea and its polyphenolic compounds may

  16. Use of secondary isotope effects and varying pH to investigate the mode of binding of inhibitory amino aldehydes by leucine aminopeptidase

    SciTech Connect

    Andersson, L.; MacNeela, J.; Wolfenden, R.

    1985-01-15

    Ki values for leucine aldehyde, a competitive inhibitor of leucine aminopeptidase, vary with pH in a manner compatible with the binding of uncharged inhibitors. The pH dependence of kcat/Km suggests likewise that the substrate leucine p-nitroanilide is productively bound as the uncharged species. Comparison of pKa values of the model compounds aminoacetone and aminoacetal indicates that the equilibrium constant for hydration of amino aldehydes is reduced by a factor of about 2 when a proton is lost from the alpha-ammonium group near pH 8. Effects of deuterium substitution at C-1 on equilibrium binding of leucine aldehyde were determined with immobilized enzymes and inhibitors doubly labeled with radioisotopes. The observed isotope effect (KD/KH) is approximately unity, suggesting that leucine aldehyde combines with the enzyme as an oxygen adduct, not as the intact aldehyde.

  17. A validated enantioselective LC-MS/MS assay for quantification of a major chiral metabolite of an achiral 11-β-hydroxysteroid-dehydrogenase 1 inhibitor in human plasma: Application to a clinical pharmacokinetic study.

    PubMed

    Furlong, Michael T; Ji, Qin C; Iacono, Lisa; Dang, Oanh; Noren, Marzena; Bruce, John; Aubry, Anne-Françoise; Arnold, Mark E

    2016-06-01

    BMS-823778 is a potent 11-β-hydroxysteroid-dehydrogenase 1 (11βHSD-1) inhibitor and a potential therapeutic agent for type 2 diabetes mellitus (T2DM). A high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated to enable reliable separation and quantification of both enantiomers of a chiral hydroxy metabolite (BMT-094817) in human plasma. Following liquid-liquid extraction in a 96-well plate format, chromatographic separation of the metabolite enantiomers was achieved by isocratic elution on a Chiralpak IA-3 column. Chromatographic conditions were optimized to ensure separation of both metabolite enantiomers. Metabolite enantiomers and stable isotope-labeled (SIL) internal standards were detected by positive ion electrospray tandem mass spectrometry. The LC-MS/MS assay was validated over a concentration range of 0.200-200ng/mL. Intra- and inter-assay precision values for replicate quality control samples were less than 9.9% for both enantiomers during the assay validation. Mean quality control accuracy values were within ±7.3%. Assay recoveries were high (>75%) and consistent across the assay range. The metabolite enantiomers were stable in human blood for 2h on ice. The analytes were also stable in human plasma for 25h at room temperature, 34days at -20°C and -70°C, and following five freeze-thaw cycles. No interconversion of the metabolite enantiomers was detected under any bioanalytical stress conditions, from blood collection/processing through extracted sample storage. The validated assay was successfully applied to the quantification of both metabolite enantiomers in human plasma in support of a human pharmacokinetic study.

  18. Effects of Iodonium-Class Flavin Dehydrogenase Inhibitors on Growth, Reactive Oxygen Production, Cell Cycle Progression, NADPH Oxidase 1 Levels, and Gene Expression in Human Colon Cancer Cells and Xenografts

    PubMed Central

    Doroshow, James H.; Gaur, Shikha; Markel, Susan; Lu, Jiamo; van Balgooy, Josephus; Synold, Timothy W.; Xi, Bixin; Wu, Xiwei; Juhasz, Agnes

    2013-01-01

    Iodonium-class flavoprotein dehydrogenase inhibitors have been demonstrated to possess antiproliferative potential and to inhibit reactive oxygen production in human tumor cells, although the mechanism(s) that explain the relationship between altered cell growth and the generation of reactive oxygen species (ROS) remain an area of active investigation. Because of the ability of these compounds to inhibit the activity of flavoprotein-containing epithelial NADPH oxidases, we chose to examine the effects of several iodonium-class flavoprotein inhibitors on human colon cancer cell lines that express high, functional levels of a single such oxidase (NADPH oxidase 1 [Nox1]). We found that diphenylene iodonium (DPI), di-2-thienyliodonium (DTI), and iodoniumdiphenyl inhibited the growth of Caco2, HT-29, and LS-174T colon cancer cells at concentrations (10–250 nM for DPI, 0.5–2.5 μM for DTI, and 155 nM to 10 μM for iodoniumdiphenyl) substantially lower than for DU145 human prostate cancer cells that do not possess functional NADPH oxidase activity. Drug treatment was associated with decreased H2O2 production and diminished intracellular ROS levels, lasting up to 24 hr, following short-term (1-hr) exposure to the iodonium analogs. Decreased tumor cell proliferation was caused, in part, by a profound block in cell cycle progression at the G1/S interface in both LS-174T and HT-29 cells exposed to either DPI or DTI; and the G1 block was produced, for LS-174T cells, by upregulation of p27 and a drug concentration-related decrease in the expression of cyclins D1, A, and E that was partially prevented by exogenous H2O2. Not only did DPI and DTI decrease intracellular ROS, they both also significantly decreased the mRNA expression levels of Nox1, potentially contributing to the prolonged reduction in tumor cell reactive oxygen levels. We also found that DPI and DTI significantly decreased the growth of both HT-29 and LS-174T human tumor xenografts, at dose levels that

  19. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts.

    PubMed

    Mano, Jun'ichi; Miyatake, Fumitaka; Hiraoka, Eiji; Tamoi, Masahiro

    2009-09-01

    Aldehydes produced under various environmental stresses can cause cellular injury in plants, but their toxicology in photosynthesis has been scarcely investigated. We here evaluated their effects on photosynthetic reactions in chloroplasts isolated from Spinacia oleracea L. leaves. Aldehydes that are known to stem from lipid peroxides inactivated the CO(2) photoreduction to various extents, while their corresponding alcohols and carboxylic acids did not affect photosynthesis. alpha,beta-Unsaturated aldehydes (2-alkenals) showed greater inactivation than the saturated aliphatic aldehydes. The oxygenated short aldehydes malondialdehyde, methylglyoxal, glycolaldehyde and glyceraldehyde showed only weak toxicity to photosynthesis. Among tested 2-alkenals, 2-propenal (acrolein) was the most toxic, and then followed 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal. While the CO(2)-photoreduction was inactivated, envelope intactness and photosynthetic electron transport activity (H(2)O --> ferredoxin) were only slightly affected. In the acrolein-treated chloroplasts, the Calvin cycle enzymes phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphophatase, sedoheptulose-1,7-bisphosphatase, aldolase, and Rubisco were irreversibly inactivated. Acrolein treatment caused a rapid drop of the glutathione pool, prior to the inactivation of photosynthesis. GSH exogenously added to chloroplasts suppressed the acrolein-induced inactivation of photosynthesis, but ascorbic acid did not show such a protective effect. Thus, lipid peroxide-derived 2-alkenals can inhibit photosynthesis by depleting GSH in chloroplasts and then inactivating multiple enzymes in the Calvin cycle.

  20. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, J.P.; Evans, R.J.

    1987-04-06

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  1. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  2. Microsphere coated substrate containing reactive aldehyde groups

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  3. Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function

    PubMed Central

    Vaishnav, Radhika A.; Singh, Indrapal N.; Miller, Darren M.

    2010-01-01

    Abstract Mitochondrial bioenergetic dysfunction in traumatic spinal cord and brain injury is associated with post-traumatic free radical–mediated oxidative damage to proteins and lipids. Lipid peroxidation by-products, such as 4-hydroxy-2-nonenal and acrolein, can form adducts with proteins and exacerbate the effects of direct free radical–induced protein oxidation. The aim of the present investigation was to determine and compare the direct contribution of 4-hydroxy-2-nonenal and acrolein to spinal cord and brain mitochondrial dysfunction. Ficoll gradient–isolated mitochondria from normal rat spinal cords and brains were treated with carefully selected doses of 4-hydroxy-2-nonenal or acrolein, followed by measurement of complex I– and complex II–driven respiratory rates. Both compounds were potent inhibitors of mitochondrial respiration in a dose-dependent manner. 4-Hydroxy-2-nonenal significantly compromised spinal cord mitochondrial respiration at a 0.1-μM concentration, whereas 10-fold greater concentrations produced a similar effect in brain. Acrolein was more potent than 4-hydroxy-2-nonenal, significantly decreasing spinal cord and brain mitochondrial respiration at 0.01 μM and 0.1 μM concentrations, respectively. The results of this study show that 4-hydroxy-2-nonenal and acrolein can directly and differentially impair spinal cord and brain mitochondrial function, and that the targets for the toxic effects of aldehydes appear to include pyruvate dehydrogenase and complex I–associated proteins. Furthermore, they suggest that protein modification by these lipid peroxidation products may directly contribute to post-traumatic mitochondrial damage, with spinal cord mitochondria showing a greater sensitivity than those in brain. PMID:20392143

  4. DIFFERENTIATING THE TOXICITY OF CARCINOGENIC ALDEHYDES FROM NONCARCINOGENIC ALDEHYDES IN THE RAT NOSE USING CDNA ARRAYS

    EPA Science Inventory

    Differentiating the Toxicity of Carcinogenic Aldehydes from Noncarcinogenic Aldehydes in the Rat Nose Using cDNA Arrays.

    Formaldehyde is a widely used aldehyde in many industrial settings, the tanning process, household products, and is a contaminant in cigarette smoke. H...

  5. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1.

    PubMed

    Morgan, Cynthia A; Hurley, Thomas D

    2015-06-01

    The human aldehyde dehydrogenase (ALDH) superfamily consists of at least 19 enzymes that metabolize endogenous and exogenous aldehydes. Currently, there are no commercially available inhibitors that target ALDH1A1 but have little to no effect on the structurally and functionally similar ALDH2. Here we present the first human ALDH1A1 structure, as the apo-enzyme and in complex with its cofactor NADH to a resolution of 1.75 and 2.1Å, respectfully. Structural comparisons of the cofactor binding sites in ALDH1A1 with other closely related ALDH enzymes illustrate a high degree of similarity. In order to minimize discovery of compounds that inhibit both isoenzymes by interfering with their conserved cofactor binding sites, this study reports the use of an in vitro, NAD(+)-independent, esterase-based high-throughput screen (HTS) of 64,000 compounds to discover novel, selective inhibitors of ALDH1A1. We describe 256 hits that alter the esterase activity of ALDH1A1. The effects on aldehyde oxidation of 67 compounds were further analyzed, with 30 selectively inhibiting ALDH1A1 compared to ALDH2 and ALDH3A1. One compound inhibited ALDH1A1 and ALDH2, while another inhibited ALDH1A1, ALDH2, and the more distantly related ALDH3A1. The results presented here indicate that this in vitro enzyme activity screening protocol successfully identified ALDH1A1 inhibitors with a high degree of isoenzyme selectivity. The compounds identified via this screen plus the screening methodology itself represent a starting point for the development of highly potent and selective inhibitors of ALDH1A1 that may be utilized to better understand the role of this enzyme in both normal and disease states.

  6. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1

    PubMed Central

    Morgan, Cynthia A.; Hurley, Thomas D.

    2014-01-01

    The human aldehyde dehydrogenase (ALDH) superfamily consists of at least 19 enzymes that metabolize endogenous and exogenous aldehydes. Currently, there are no commercially available inhibitors that target ALDH1A1 but have little to no effect on the structurally and functionally similar ALDH2. Here we present the first human ALDH1A1 structure, as the apoenzyme and in complex with its cofactor NADH to a resolution of 1.75 Å and 2.1 Å, respectfully. Structural comparisons of the cofactor binding sites in ALDH1A1 with other closely related ALDH enzymes illustrate a high degree of similarity. In order to minimize discovery of compounds that inhibit both isoenzymes by interfering with their conserved cofactor binding sites, this study reports the use of an in vitro, NAD+-independent, esterase-based high-throughput screen (HTS) of 64,000 compounds to discover novel, selective inhibitors of ALDH1A1. We describe 256 hits that alter the esterase activity of ALDH1A1. The effects on aldehyde oxidation of 67 compounds were further analyzed, with 30 selectively inhibiting ALDH1A1 compared to ALDH2 and ALDH3A1. One compound inhibited ALDH1A1 and ALDH2, while another inhibited ALDH1A1, ALDH2, and the more distantly related ALDH3A1. The results presented here indicate that this in vitro enzyme activity screening protocol successfully identified ALDH1A1 inhibitors with a high degree of isoenzyme selectivity. The compounds identified via this screen plus the screening methodology itself represent a starting point for the development of highly potent and selective inhibitors of ALDH1A1 that may be utilized to better understand the role of this enzyme in both normal and disease states. PMID:25450233

  7. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.; Martinez, A. |

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  8. Gaseous aliphatic aldehydes in Chinese incense smoke

    SciTech Connect

    Lin, J.M.; Wang, L.H. )

    1994-09-01

    Aliphatic aldehydes were found during the combustion of materials. Tobacco smoke contains aldehydes. Fire fighters were exposed to aldehydes when they conducted firefighting. Aldehydes in ambient air come mainly from the incomplete combustion of hydrocarbons and from photochemical reaction. Most aldehydes in ambient air are formaldehyde and acetaldehyde. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde were found in the atmosphere in Los Angeles. Burning Chinese incense for worshipping deities is a Chinese daily routine. It was suspected to be a factor causing nasopharynegeal cancer. Epidemiological studies correlated it with the high risk of childhood brain tumor and the high risk of childhood leukemia. Ames test identified the mutagenic effect of the smoke from burning Chinese incense. The smoke had bee proved to contain polycyclic aromatic hydrocarbons and aromatic aldehydes. Suspicion about formaldehyde and other alphatic aldehydes was evoked, when a survey of indoor air pollution was conducted in Taipei city. This study determined the presence of aliphatic aldehydes in the smoke from burning Chinese incense under a controlled atmosphere. 12 refs., 5 figs., 2 tabs.

  9. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  10. EMISSIONS OF ODOROUS ALDEHYDES FROM ALKYD PAINT

    EPA Science Inventory

    Aldehyde emissions are widely held responsible for the acrid after-odor of drying alkyd-based paint films. The aldehyde emissions from three different alkyd paints were measured in small environmental chambers. It was found that, for each alkyd paint applied, more than 2 mg of ...

  11. Emissions of odorous aldehydes from alkyd paint

    NASA Astrophysics Data System (ADS)

    Chang, John C. S.; Guo, Zhishi

    Aldehyde emissions are widely held responsible for the acrid after-odor of drying alkyd-based paint films. The aldehyde emissions from three different alkyd paints were measured in small environ-mental chambers. It was found that, for each gram of alkyd paint applied, more than 2 mg of aldehydes (mainly hexanal) were emitted during the curing (drying) period. Since no measurable hexanal was found in the original paint, it is suspected that the aldehydes emitted were produced by autoxidation of the unsaturated fatty acid esters in the alkyd resins. The hexanal emission rate was simulated by a model assuming that the autoxidation process was controlled by a consecutive first-order reaction mechanism. Using the emission rate model, indoor air quality simulation indicated that the hexanal emissions can result in prolonged (several days) exposure risk to occupants. The occupant exposure to aldehydes emitted from alkyd paint also could cause sensory irritation and other health concerns.

  12. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  13. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli

    PubMed Central

    Rodriguez, Gabriel M.; Atsumi, Shota

    2015-01-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90–99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2–C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production. PMID:25108218

  14. Enzymatic conversion of atmospheric aldehydes into alcohol in a phospholipid polymer film.

    PubMed

    Tanaka, Naoki; Watari, Akihiro; Tada, Tomoko; Asada, Tomoko; Kunugi, Shigeru; Lee, Yin-Fai; Yamada, Satoshi; Shuto, Kenshiro; Sakaki, Shujiro

    2009-02-01

    We developed a unique method for converting atmospheric aldehyde into alcohol using formaldehyde dehydrogenase from Pseudomonas putida (PFDH) doped in a polymer film. A film of poly(2-methacryloyloxyethylphosphorylcholine-co-n-butyl methacrylate) (PMB), which has a chemical structure similar to that of a biological membrane, was employed for its biocompatibility. A water-incorporated polymer film entrapping PFDH and its cofactor NAD(+) was obtained by drying a buffered solution of PMB, PFDH, and NAD(+). The aldehydes in the air were absorbed into the polymer film and then enzymatically oxidized by PFDH doped in the PMB film. Interestingly, alcohol and carboxylic acid were produced by the enzymatic reaction, indicating that PFDH catalyzes dismutation of aldehyde in the PMB film. Importantly, a PFDH-PMB film catalyzes aldehyde degradation without consuming the nucleotide cofactor, thereby allowing repeated use of the film. The activity of PFDH in the PMB film was higher than that in other common water-soluble polymers, suggesting that the hydrational state in a phospholipid polymer matrix is suitable for enzymatic activity.

  15. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  16. Genomic mechanisms of inhibitor-detoxification for low-cost lignocellulosic bioethanol conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One major challenges of sustainable lignocellulosic biomass conversion to ethanol is to overcome inhibitors generated from biomass pretreatment. Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural, cinnamaldehyde, phenylacetylaldehyde, and 4-hydroxybenzaldehyde, are common and potent inhi...

  17. Evidence for the generation of transaminase inhibitor(s) during ethanol metabolism by rat liver homogenates: a potential mechanism for alcohol toxicity.

    PubMed

    Solomon, L R

    1987-08-01

    Since ethanol consumption decreases hepatic aminotransferase activities in vivo, mechanisms of ethanol-mediated transaminase inhibition were explored in vitro using mitochondria-depleted rat liver homogenates. When homogenates were incubated at 37 degrees with 50 mM ethanol for 1 hr, alanine aminotransferase decreased by 20%, while aspartate aminotransferase was unchanged. After 2 hr, aspartate aminotransferase decreased by 20% and by 3 hr, alanine and aspartate aminotransferases were decreased by 31 and 23%, respectively. Levels of acetaldehyde generated during ethanol oxidation were 525 +/- 47 microM at 1 hr, 855 +/- 14 microM at 2 hr, and 1293 +/- 140 microM at 3 hr. Although inhibition of alcohol oxidation with methylpyrazole or cyanide markedly decreased ethanol-mediated transaminase inhibition, neither incubation with acetate nor generation of reducing equivalents by oxidation of lactate, malate, xylitol, or sorbitol altered the activity of either enzyme. However, semicarbazide, an aldehyde scavenger, prevented inhibition of both aminotransferases by ethanol. Moreover, incubation with 5 mM acetaldehyde for 1 hr inhibited alanine and aspartate aminotransferases by 36 and 26%, respectively. Cyanamide, an aldehyde dehydrogenase inhibitor, had little effect on ethanol-mediated transaminase inhibition. Thus, metabolism of ethanol by rat liver homogenates produces transaminase inhibition similar to that described in vivo and this effect requires acetaldehyde generation but not acetaldehyde oxidation. Since addition of pyridoxal 5'-phosphate to assay mixes did not reverse ethanol effects, aminotransferase inhibition does not result from displacement of vitamin B6 coenzymes.

  18. Evidence for the generation of transaminase inhibitor(s) during ethanol metabolism by rat liver homogenates: a potential mechanism for alcohol toxicity.

    PubMed

    Solomon, L R

    1987-08-01

    Since ethanol consumption decreases hepatic aminotransferase activities in vivo, mechanisms of ethanol-mediated transaminase inhibition were explored in vitro using mitochondria-depleted rat liver homogenates. When homogenates were incubated at 37 degrees with 50 mM ethanol for 1 hr, alanine aminotransferase decreased by 20%, while aspartate aminotransferase was unchanged. After 2 hr, aspartate aminotransferase decreased by 20% and by 3 hr, alanine and aspartate aminotransferases were decreased by 31 and 23%, respectively. Levels of acetaldehyde generated during ethanol oxidation were 525 +/- 47 microM at 1 hr, 855 +/- 14 microM at 2 hr, and 1293 +/- 140 microM at 3 hr. Although inhibition of alcohol oxidation with methylpyrazole or cyanide markedly decreased ethanol-mediated transaminase inhibition, neither incubation with acetate nor generation of reducing equivalents by oxidation of lactate, malate, xylitol, or sorbitol altered the activity of either enzyme. However, semicarbazide, an aldehyde scavenger, prevented inhibition of both aminotransferases by ethanol. Moreover, incubation with 5 mM acetaldehyde for 1 hr inhibited alanine and aspartate aminotransferases by 36 and 26%, respectively. Cyanamide, an aldehyde dehydrogenase inhibitor, had little effect on ethanol-mediated transaminase inhibition. Thus, metabolism of ethanol by rat liver homogenates produces transaminase inhibition similar to that described in vivo and this effect requires acetaldehyde generation but not acetaldehyde oxidation. Since addition of pyridoxal 5'-phosphate to assay mixes did not reverse ethanol effects, aminotransferase inhibition does not result from displacement of vitamin B6 coenzymes. PMID:3663401

  19. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase.

    PubMed

    Pirouzpanah, Saieed; Saieed, Pirouzpanah; Rashidi, Mohammad Reza; Reza, Rashidi Mohammad; Delazar, Abbas; Abbas, Delazar; Razavieh, Seyyed-Vali; Seyyedvali, Razavieh; Hamidi, Aliasghar; Aliasghar, Hamidi

    2006-01-01

    Ruta graveolens L. is a flavonoid-containing medicinal plant with various biological properties. In the present study, the effects of R. graveolens extract on aldehyde oxidase, a molybdenum hydroxylase, are investigated. Aldehyde oxidase was partially purified from liver homogenates of mature male guinea pigs by heat treatment and ammonium sulphate precipitation. The total extract was obtained by macerating the aerial parts of R. graveolens in MeOH 70% and the effect of this extract on the enzyme activity was assayed using phenanthridine, vanillin and benzaldehyde as substrates. Quercetin and its glycoside form, rutin were isolated, purified and identified from the extract and their inhibitory effects on the enzyme were investigated. R. graveolens extract exhibited a high inhibition on aldehyde oxidase activity (89-96%) at 100 microg/ml which was comparable with 10 microM of menadione, a specific potent inhibitor of aldehyde oxidase. The IC50 values for the inhibitory effect of extract against the oxidation of benzaldehyde, vanillin and phenanthridine were 10.4, 10.1, 43.2 microg/ml, respectively. Both quercetin and rutin at 10 microM caused 70-96% and 27-52% inhibition on the enzyme activity, respectively. Quercetin was more potent inhibitor than rutin, but both flavonols exerted their inhibitory effects mostly in a linear mixed-type.

  20. Modulation of therapy-induced senescence by reactive lipid aldehydes

    PubMed Central

    Flor, A C; Doshi, A P; Kron, S J

    2016-01-01

    Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence. PMID:27453792

  1. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. PMID:25656103

  2. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production.

  3. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    PubMed

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  4. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6- phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro

    PubMed Central

    Preuss, Janina; Maloney, Patrick; Peddibhotla, Satyamaheshwar; Hedrick, Michael P.; Hershberger, Paul; Gosalia, Palak; Milewski, Monika; Li, Yujie Linda; Sugarman, Eliot; Hood, Becky; Suyama, Eigo; Nguyen, Kevin; Vasile, Stefan; Sergienko, Eduard; Mangravita-Novo, Arianna; Vicchiarelli, Michael; McAnally, Danielle; Smith, Layton H.; Roth, Gregory P.; Diwan, Jena; Chung, Thomas D.Y.; Jortzik, Esther; Rahlfs, Stefan; Becker, Katja; Pinkerton, Anthony B.; Bode, Lars

    2012-01-01

    A high throughput screen of the NIH’s MLSMR collection of ~340,000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is essential for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human ortholog. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fastgrowing cells. In P. falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase-6- phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2- (2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11, (ML276), is a submicromolar inhibitor of PfG6PD (IC50 = 889 nM). It is completely selective for the enzyme’s human isoform, displays micromolar potency (IC50 = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress. PMID:22813531

  5. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    PubMed

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  6. Influence of Tris(hydroxymethyl)aminomethane on kinetic mechanism of yeast alcohol dehydrogenase.

    PubMed

    Trivić, S; Leskovac, V; Zeremski, J; Stancić, B; Anderson, B M

    1998-02-01

    Acetaldehyde, propionaldehyde, glyceraldehyde-3-P and 4-dimethylaminocinnamaldehyde form Schiff bases in Tris. HCl buffers; the rates of formation and dissociation of Schiff bases, and equilibrium constants for their formation are very similar for the first three aldehydes. The steady-state kinetic constants for the yeast alcohol dehydrogenase-catalyzed reaction, propan-1-ol + NAD+ reversible propionaldehyde + NADH + H+, have been determined in several Tris. HCl buffers of increasing concentration at pH 8.1. In the forward direction, oxidation of alcohol, most kinetic constants are increased by increasing concentrations of Tris. In the reverse direction, reduction of aldehyde, substrate, NADH, Tris and Schiff base were equilibrated before enzyme reaction was started. It was found that Schiff base, rather than Tris, binds to free enzyme competitively with respect to NADH. Tris and Schiff base do not influence the binding of aldehyde to enzyme in any way. PMID:9879514

  7. New studies of the alcohol dehydrogenase cline in D. melanogaster from Mexico.

    PubMed

    Pipkin, S B; Franklin-Springer, E; Law, S; Lubega, S

    1976-01-01

    An altitudinal cline of frequencies of alcohol dehydrogenase alleles occurs in D. melanogaster populations of southeastern Mexico. A similar cline of two aldehyde oxidase alleles is present, but frequencies of esterase-6 alleles are not distributed clinically. Collections were made from small dispersed populations. Some gene flow occurred throughout the lowlands according to the distribution of two moderately endemic autosomal inversions and five previously described inversions. The clines are believed dependent on a limited gene flow between temperature races of D. melanogaster.

  8. The physiological role of liver alcohol dehydrogenase.

    PubMed

    Krebs, H A; Perkins, J R

    1970-07-01

    1. Yeast alcohol dehydrogenase was used to determine ethanol in the portal and hepatic veins and in the contents of the alimentary canal of rats given a diet free from ethanol. Measurable amounts of a substance behaving like ethanol were found. Its rate of interaction with yeast alcohol dehydrogenase and its volatility indicate that the substance measured was in fact ethanol. 2. The mean alcohol concentration in the portal blood of normal rats was 0.045mm. In the hepatic vein, inferior vena cava and aorta it was about 15 times lower. 3. The contents of all sections of the alimentary canal contained measurable amounts of ethanol. The highest values (average 3.7mm) were found in the stomach. 4. Infusion of pyrazole (an inhibitor of alcohol dehydrogenase) raised the alcohol concentration in the portal vein 10-fold and almost removed the difference between portal and hepatic venous blood. 5. Addition of antibiotics to the food diminished the ethanol concentration of the portal blood to less than one-quarter and that of the stomach contents to less than one-fortieth. 6. The concentration of alcohol in the alimentary canal and in the portal blood of germ-free rats was much decreased, to less than one-tenth in the alimentary canal and to one-third in the portal blood, but detectable quantities remained. These are likely to arise from acetaldehyde formed by the normal pathways of degradation of threonine, deoxyribose phosphate and beta-alanine. 7. The results indicate that significant amounts of alcohol are normally formed in the gastro-intestinal tract. The alcohol is absorbed into the circulation and almost quantitatively removed by the liver. Thus the function, or a major function, of liver alcohol dehydrogenase is the detoxication of ethanol normally present. 8. The alcohol concentration in the stomach of alloxan-diabetic rats was increased about 8-fold. 9. The activity of liver alcohol dehydrogenase is generally lower in carnivores than in herbivores and omnivores

  9. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    PubMed Central

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  10. Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489.

    PubMed

    Park, Yong-Cheol; San, Ka-Yiu; Bennett, George N

    2007-08-01

    Alcohol dehydrogenase (ADH) is a key enzyme in the production and utilization of alcohols. Some also catalyze the formation of carboxylate esters from alcohols and aldehydes. The ADH1 and ADH3 genes of Neurospora crassa FGSC2489 were cloned and expressed in recombinant Escherichia coli to investigate their alcohol dehydrogenation and carboxylate ester formation abilities. Homology analysis and sequence alignment of amino acid sequence indicated that ADH1 and ADH3 of N. crassa contained a zinc-binding consensus sequence and a NAD(+)-binding motif and showed 54-75% identity with fungi ADHs. N. crassa ADH1 was expressed in E. coli to give a specific activity of 289 +/- 9 mU/mg using ethanol and NAD(+) as substrate and cofactor, respectively. Corresponding experiments on the expression and activity of ADH3 gave 4 mU/mg of specific activity. N. crassa ADH1 preferred primary alcohols containing C3-C8 carbons to secondary alcohols such as 2-propanol and 2-butanol. N. crassa ADH1 possessed 5.3 mU/mg of specific carboxylate ester-forming activity accumulating 0.4 mM of ethyl acetate in 18 h. Substrate specificity of various linear alcohols and aldehydes indicated that short chain-length alcohols and aldehydes were good substrates for carboxylate ester production. N. crassa ADH1 was a primary alcohol dehydrogenase using cofactor NAD(+) preferably and possessed carboxylate ester-forming activity with short chain alcohols and aldehydes. PMID:17516063

  11. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

    DOE PAGES

    Huo, Lu; Davis, Ian; Liu, Fange; Andi, Babak; Esaki, Shingo; Iwaki, Hiroaki; Hasegawa, Yoshie; Orville, Allen M.; Liu, Aimin

    2015-01-07

    Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD+-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp3-to-sp2 transition during enzyme-mediated oxidation.« less

  12. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

    SciTech Connect

    Huo, Lu; Davis, Ian; Liu, Fange; Andi, Babak; Esaki, Shingo; Iwaki, Hiroaki; Hasegawa, Yoshie; Orville, Allen M.; Liu, Aimin

    2015-01-07

    Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacyl intermediate and an NAD+-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp3-to-sp2 transition during enzyme-mediated oxidation.

  13. Volatile aldehydes in libraries and archives

    NASA Astrophysics Data System (ADS)

    Fenech, Ann; Strlič, Matija; Kralj Cigić, Irena; Levart, Alenka; Gibson, Lorraine T.; de Bruin, Gerrit; Ntanos, Konstantinos; Kolar, Jana; Cassar, May

    2010-06-01

    Volatile aldehydes are produced during degradation of paper-based materials. This may result in their accumulation in archival and library repositories. However, no systematic study has been performed so far. In the frame of this study, passive sampling was carried out at ten locations in four libraries and archives. Despite the very variable sampling locations, no major differences were found, although air-filtered repositories were found to have lower concentrations while a non-ventilated newspaper repository exhibited the highest concentrations of volatile aldehydes (formaldehyde, acetaldehyde, furfural and hexanal). Five employees in one institution were also provided with personal passive samplers to investigate employees' exposure to volatile aldehydes. All values were lower than the presently valid exposure limits. The concentration of volatile aldehydes, acetic acid, and volatile organic compounds (VOCs) in general was also compared with that of outdoor-generated pollutants. It was evident that inside the repository and particularly inside archival boxes, the concentration of VOCs and acetic acid was much higher than the concentration of outdoor-generated pollutants, which are otherwise more routinely studied in connection with heritage materials. This indicates that further work on the pro-degradative effect of VOCs on heritage materials is necessary and that monitoring of VOCs in heritage institutions should become more widespread.

  14. Oxidation of Aromatic Aldehydes Using Oxone

    ERIC Educational Resources Information Center

    Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.

    2007-01-01

    The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…

  15. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius.

    PubMed

    Extance, Jonathan; Crennell, Susan J; Eley, Kirstin; Cripps, Roger; Hough, David W; Danson, Michael J

    2013-10-01

    Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

  16. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  17. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  18. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  19. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  20. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  1. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  2. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  3. Histone deacetylase inhibitor-induced cancer stem cells exhibit high pentose phosphate pathway metabolism

    PubMed Central

    Debeb, Bisrat G.; Lacerda, Lara; Larson, Richard; Wolfe, Adam R.; Krishnamurthy, Savitri; Reuben, James M.; Ueno, Naoto T.; Gilcrease, Michael; Woodward, Wendy A.

    2016-01-01

    Purpose We recently demonstrated that histone deacetylase (HDAC) inhibitors can “reprogram” differentiated triple-negative breast cancer cells to become quiescent stem-like cancer cells. We hypothesized that the metabolic state of such cells differs from that of their differentiated progeny. Results In untreated cells, glucose uptake was higher in ALDH+ cells than in ALDH− cells (p = 0.01) but lactate production was not different; treating ALDH− or ALDH+ cells with VA or SAHA similarly increased glucose uptake without changing lactate production but upregulated G6PD, a rate-limiting enzyme in pentose phosphate pathway metabolism. NADPH production was higher in HDAC inhibitor-treated stem-like cells than in vehicle-treated cells (p < 0.05). Two G6PD inhibitors, 6-aminonicotinamide and dehydroepiandrosterone, decreased mammosphere formation efficiency and ALDH activity and 6-aminonicotinamide reduced the VA-induced increase in ALDH+ cells. Finally, patients expressing high G6PD mRNA had significantly worse overall survival (p < 0.001), and patients with high G6PD protein showed a similar trend towards worse disease-specific survival (p = 0.06). Methods Glucose consumption, lactate and NADPH production, and reactive oxygen species generation were compared in aldehyde dehydrogenase (ALDH)-positive and –negative cells in the presence or absence of the HDAC inhibitors valproic acid (VA) or suberoylanilide hydroxamic acid (SAHA). Glucose-6-phosphate dehydrogenase (G6PD) expression was evaluated in a tissue microarray from 94 patients with node-positive invasive breast carcinoma and in two publically available databases and correlated with overall survival. Conclusions Energy metabolism in HDAC inhibitor-induced stem-like cancer cells differed sharply from that of differentiated cell types. HDAC inhibitor-induced dedifferentiation promoted metabolic reprogramming into the pentose phosphate pathway, which is targeted effectively by G6PD inhibition. These findings

  4. Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise.

    PubMed Central

    Hagg, S A; Taylor, S I; Ruberman, N B

    1976-01-01

    1. The interconversion of pyruvate dehydrogenase between its inactive phosphorylated and active dephosphorylated forms was studied in skeletal muscle. 2. Exercise, induced by electrical stimulation of the sciatic nerve (5/s), increased the measured activity of (active) pyruvate dehydrogenase threefold in intact anaesthetized rated within 2 min. No further increase was seen after 15 min of stimulation. 3. In the perfused rat hindquarter, (active) pyruvate dehydrogenase activity was decreased by 50% in muscle of starved and diabetic rats. Exercise produced a twofold increase in its activity in all groups; however, the relative differences between fed, starved and diabetic groups persisted. 4. Perfusion of muslce with acetoacetate (2 mM) decreased (active) pyruvate dehydrogenase activity by 50% at rest but not during exercise. 5. Whole-tissue concentrations of pyruvate and citrate, inhibitors of (active) pyruvate dehydrogenase kinase and (inactive) pyruvate dehydrogenase phosphate phosphatase respectively, were not altered by excerise. A decrease in the ATP/ADP ratio was observed, but did not appear to be sufficient to account for the increase in (active) pyruvate dehydrogenase activity. 6. The results suggest that interconversion of the phosphorylated and dephosphorylated forms of pyruvate dehydrogenase plays a major role in the regulation of pyruvate oxidation by eomparison of enzyme activity with measurements of lactate oxidation in the perfused hindquarter [see the preceding paper, Berger et al. (1976)] suggest that pyruvate oxidation is also modulated by the concentrations of substrates, cofactors and inhibitors of (active) pyruvate dehydrogenase activity. PMID:825112

  5. Interactions between heparinoids and alcohol dehydrogenase.

    PubMed

    Paulíková, H; Valusová, E; Antalík, M

    1997-07-01

    The interaction between polysulfated polysaecharides (low-molecular-weight heparin LMWH, dextran sulfate DS and pentosan sulfate PS) and yeast alcohol dehydrogenase (YADH) was investigated. The fluorescence and UV spectra of YADH after adding the tested polysaccharides have confirmed the interaction between the enzyme and these compounds. Kinetic studies have shown that LMWH, DS and PS are inhibitors of YADH (mixed type with respect to NAD). The most potent inhibitor is PS (ID50=37.5 ng/ml, Ki=0.6 muM). The inhibition effect depends on the ionic strength (the inhibition decreased by about 50% in the presence of 100 mM Na2SO4) and pH value (the inhibition decreased at pH>7). The results indicate that the inhibition effect of these polyanions is caused by their electrostatic interactions with the NAD-binding region of YADH.

  6. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    PubMed

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. PMID:25340465

  7. Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum.

    PubMed Central

    Palosaari, N R; Rogers, P

    1988-01-01

    The coenzyme A (CoA)-linked butyraldehyde dehydrogenase (BAD) from Clostridium acetobutylicum was characterized and purified to homogeneity. The enzyme was induced over 200-fold, coincident with a shift from an acidogenic to a solventogenic fermentation, during batch culture growth. The increase in enzyme activity was found to require new protein synthesis since induction was blocked by the addition of rifampin and antibody against the purified enzyme showed the appearance of enzyme antigen beginning at the shift of the fermentation and increasing coordinately with the increase in enzyme specific activity. The CoA-linked acetaldehyde dehydrogenase was copurified with BAD during an 89-fold purification, indicating that one enzyme accounts for the synthesis of the two aldehyde intermediates for both butanol and ethanol production. Butanol dehydrogenase activity was clearly separate from the BAD enzyme activity on TEAE cellulose. A molecular weight of 115,000 was determined for the native enzyme, and the enzyme subunit had a molecular weight of 56,000 indicating that the active form is a homodimer. Kinetic constants were determined in both the forward and reverse directions. In the reverse direction both the Vmax and the apparent affinity for butyraldehyde and caproaldehyde were significantly greater than they were for acetaldehyde, while in the forward direction, the Vmax for butyryl-CoA was fivefold that for acetyl-CoA. These and other properties of BAD indicate that this enzyme is distinctly different from other reported CoA-dependent aldehyde dehydrogenases. Images PMID:3384801

  8. Elusive transition state of alcohol dehydrogenase unveiled

    PubMed Central

    Roston, Daniel; Kohen, Amnon

    2010-01-01

    For several decades the hydride transfer catalyzed by alcohol dehydrogenase has been difficult to understand. Here we add to the large corpus of anomalous and paradoxical data collected for this reaction by measuring a normal (> 1) 2° kinetic isotope effect (KIE) for the reduction of benzaldehyde. Because the relevant equilibrium effect is inverse (< 1), this KIE eludes the traditional interpretation of 2° KIEs. It does, however, enable the development of a comprehensive model for the “tunneling ready state” (TRS) of the reaction that fits into the general scheme of Marcus-like models of hydrogen tunneling. The TRS is the ensemble of states along the intricate reorganization coordinate, where H tunneling between the donor and acceptor occurs (the crossing point in Marcus theory). It is comparable to the effective transition state implied by ensemble-averaged variational transition state theory. Properties of the TRS are approximated as an average of the individual properties of the donor and acceptor states. The model is consistent with experimental findings that previously appeared contradictory; specifically, it resolves the long-standing ambiguity regarding the location of the TRS (aldehyde-like vs. alcohol-like). The new picture of the TRS for this reaction identifies the principal components of the collective reaction coordinate and the average structure of the saddle point along that coordinate. PMID:20457944

  9. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  10. Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344).

    PubMed

    Park, Ji Seon; Rhee, Sang Dal; Kang, Nam Sook; Jung, Won Hoon; Kim, Hee Youn; Kim, Jun Hyoung; Kang, Seung Kyu; Cheon, Hyae Gyeong; Ahn, Jin Hee; Kim, Ki Young

    2011-04-15

    The selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential for treating type 2 diabetes mellitus and metabolic syndrome. In the present study, we investigated the anti-diabetic and anti-adipogenic effects of 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344), as a 11β-HSD1 inhibitor; we also investigated the underlying molecular mechanisms in the cortisone-induced 3T3-L1 adipogenesis model system and C57BL/6-Lep(ob/ob) mice. KR-66344 concentration-dependently inhibited 11β-HSD1 activity in human liver microsome, mouse C2C12 myotube and human SW982 cells. In the C57BL/6-Lep(ob/ob) mice study, the administration of KR-66344 (200mg/kg/d, orally for 5 days) improved the glucose intolerance as determined by the oral glucose tolerance test, in which the area under the curve (AUC) of the plasma glucose concentration was significantly reduced by 27% compared with the vehicle treated group. Further, KR-66344 suppressed adipocyte differentiation on cortisone-induced adipogenesis in 3T3-L1 cells is associated with the suppression of the cortisone-induced mRNA levels of FABP4, G3PD, PPARγ2 and Glut4, and 11β-HSD1 expression and activity. Our results additionally demonstrate evidence showing that KR-66344 improved glycemic control and inhibited adipogenesis via 11β-HSD1 enzyme activity. Taken together, these results may provide evidence of the therapeutic potential of KR-66344, as a 11β-HSD1 inhibitor, in obesity and type 2 diabetes patients with metabolic syndrome.

  11. Neurotoxicity of reactive aldehydes: the concept of "aldehyde load" as demonstrated by neuroprotection with hydroxylamines.

    PubMed

    Wood, Paul L; Khan, M Amin; Kulow, Sarah R; Mahmood, Siddique A; Moskal, Joseph R

    2006-06-20

    The concept of "oxidative stress" has become a mainstay in the field of neurodegeneration but has failed to differentiate critical events from epiphenomena and sequalae. Furthermore, the translation of current concepts of neurodegenerative mechanisms into effective therapeutics for neurodegenerative diseases has been meager and disappointing. A corollary of current concepts of "oxidative stress" is that of "aldehyde load". This relates to the production of reactive aldehydes that covalently modify proteins, nucleic acids, lipids and carbohydrates and activate apoptotic pathways. However, reactive aldehydes can also be generated by mechanisms other than "oxidative stress". We therefore hypothesized that agents that can chemically neutralize reactive aldehydes should demonstrate superior neuroprotective actions to those of free radical scavengers. To this end, we evaluated hydroxylamines as aldehyde-trapping agents in an in vitro model of neurodegeneration induced by the reactive aldehyde, 3-aminopropanal (3-AP), a product of polyamine oxidase metabolism of spermine and spermidine. In this model, the hydroxylamines N-benzylhydroxylamine, cyclohexylhydroxylamine and t-butylhydroxylamine were shown to protect, in a concentration-dependent manner, against 3-AP neurotoxicity. Additionally, a therapeutic window of 3 h was demonstrated for delayed administration of the hydroxylamines. In contrast, the free radical scavengers TEMPO and TEMPONE and the anti-oxidant ascorbic acid were ineffective in this model. Extending these tissue culture findings in vivo, we examined the actions of N-benzylhydroxylamine in the trimethyltin (TMT) rat model of hippocampal CA3 neurodegeneration. This model involves augmented polyamine metabolism resulting in the generation of reactive aldehydes that compromise mitochondrial integrity. In the rat TMT model, NBHA (50 mg/kg, sc, daily) provided 100% protection against neurodegeneration, as reflected by measurements of KCl-evoked glutamate

  12. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis.

    PubMed

    Ngo, Ho-Phuong-Thuy; Hong, Seung-Hye; Hong, Myoung-Ki; Pham, Tan-Viet; Oh, Deok-Kun; Kang, Lin-Woo

    2013-09-01

    Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.

  13. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis

    PubMed Central

    Ngo, Ho-Phuong-Thuy; Hong, Seung-Hye; Hong, Myoung-Ki; Pham, Tan-Viet; Oh, Deok-Kun; Kang, Lin-Woo

    2013-01-01

    Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD+ to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD+. The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding V M of 2.55 Å3 Da−1 and a solvent content of 51.8%. PMID:23989158

  14. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  15. Proteomics Guided Discovery of Flavopeptins: Anti-Proliferative Aldehydes Synthesized by a Reductase Domain-Containing Nonribosomal Peptide Synthetase

    PubMed Central

    Chen, Yunqiu; McClure, Ryan A.; Zheng, Yupeng; Thomson, Regan J.; Kelleher, Neil L.

    2013-01-01

    Due to the importance of proteases in regulating cellular processes, the development of protease inhibitors has garnered great attention. Peptide-based aldehydes are a class of compounds that exhibit inhibitory activities against various proteases and proteasomes in the context of anti-proliferative treatments for cancer and other diseases. More than a dozen peptide-based natural products containing aldehydes have been discovered such as chymostatin, leupeptin, and fellutamide; however, the biosynthetic origin of the aldehyde functionality has yet to be elucidated. Herein we describe the discovery of a new group of lipopeptide aldehydes, the flavopeptins, and the corresponding biosynthetic pathway arising from an orphan gene cluster in Streptomyces sp. NRRL-F6652, a close relative of Streptomyces flavogriseus ATCC 33331. This research was initiated using a proteomics approach that screens for expressed enzymes involved in secondary metabolism in microorganisms. Flavopeptins are synthesized through a nonribosomal peptide synthetase containing a terminal NAD(P)H dependent reductase domain likely for the reductive release of the peptide with a C-terminal aldehyde. Solid phase peptide synthesis of several flavopeptin species and derivatives enabled structural verification and subsequent screening of biological activity. Flavopeptins exhibited submicromolar inhibition activities against cysteine proteases such as papain and calpain as well as the human 20S proteasome. They also showed anti-proliferative activities against multiple myeloma and lymphoma cell lines. PMID:23763305

  16. One-Pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes.

    PubMed

    Papadopoulos, Giorgos N; Kokotos, Christoforos G

    2016-08-19

    A mild, one-pot, and environmentally friendly synthesis of amides from aldehydes and amines is described. Initially, a photoorganocatalytic reaction of aldehydes with di-isopropyl azodicarboxylate leads to an intermediate carbonyl imide, which can react with a variety of amines to afford the desired amides. The initial visible light-mediated activation of a variety of monosubstituted or disubstituted aldehydes is usually fast, occurring in a few hours. Following the photocatalytic reaction, addition of the primary amine at room temperature or the secondary amine at elevated temperatures leads to the corresponding amide from moderate to excellent yields without epimerization. This methodology was applied in the synthesis of Moclobemide, a drug against depression and social anxiety. PMID:27227271

  17. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  18. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity.

    PubMed

    Porté, Sergio; Xavier Ruiz, F; Giménez, Joan; Molist, Iago; Alvarez, Susana; Domínguez, Marta; Alvarez, Rosana; de Lera, Angel R; Parés, Xavier; Farrés, Jaume

    2013-02-25

    Biological activity of natural retinoids requires the oxidation of retinol to retinoic acid (RA) and its binding to specific nuclear receptors in target tissues. The first step of this pathway, the reversible oxidoreduction of retinol to retinaldehyde, is essential to control RA levels. The enzymes of retinol oxidation are NAD-dependent dehydrogenases of the cytosolic medium-chain (MDR) and the membrane-bound short-chain (SDR) dehydrogenases/reductases. Retinaldehyde reduction can be performed by SDR and aldo-keto reductases (AKR), while its oxidation to RA is carried out by aldehyde dehydrogenases (ALDH). In contrast to SDR, AKR and ALDH are cytosolic. A common property of these enzymes is that they only use free retinoid, but not retinoid bound to cellular retinol binding protein (CRBP). The relative contribution of each enzyme type in retinoid metabolism is discussed in terms of the different subcellular localization, topology of membrane-bound enzymes, kinetic constants, binding affinity of CRBP for retinol and retinaldehyde, and partition of retinoid pools between membranes and cytoplasm. The development of selective inhibitors for AKR enzymes 1B1 and 1B10, of clinical relevance in diabetes and cancer, granted the investigation of some structure-activity relationships. Kinetics with the 4-methyl derivatives of retinaldehyde isomers was performed to identify structural features for substrate specificity. Hydrophilic derivatives were better substrates than the more hydrophobic compounds. We also explored the inhibitory properties of some synthetic retinoids, known for binding to retinoic acid receptors (RAR) and retinoid X receptors (RXR). Consistent with its substrate specificity towards retinaldehyde, AKR1B10 was more effectively inhibited by synthetic retinoids than AKR1B1. A RARβ/γ agonist (UVI2008) inhibited AKR1B10 with the highest potency and selectivity, and docking simulations predicted that its carboxyl group binds to the anion-binding pocket. PMID

  19. Cloning, expression, and purification of choline dehydrogenase from the moderate halophile Halomonas elongata.

    PubMed

    Gadda, Giovanni; McAllister-Wilkins, Elien Elizabeth

    2003-04-01

    Choline dehydrogenase (EC 1.1.99.1) catalyzes the four-electron oxidation of choline to glycine-betaine via a betaine-aldehyde intermediate. Such a reaction is of considerable interest for biotechnological applications in that transgenic plants engineered with bacterial glycine-betaine-synthesizing enzymes have been shown to have enhanced tolerance towards various environmental stresses, such as hypersalinity, freezing, and high temperatures. To date, choline dehydrogenase has been poorly characterized in its biochemical and kinetic properties, mainly because its purification has been hampered by instability of the enzyme in vitro. In the present report, we cloned and expressed in Escherichia coli the betA gene from the moderate halophile Halomonas elongata which codes for a hypothetical choline dehydrogenase. The recombinant enzyme was purified to more than 70% homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by treatment with 30 to 50% saturation of ammonium sulfate followed by column chromatography using DEAE-Sepharose. The purified enzyme showed similar substrate specificities with either choline or betaine-aldehyde as the substrate, as indicated by the apparent V/K values (where V is the maximal velocity and K is the Michaelis constant) of 0.9 and 0.6 micro mol of O(2) min(-1) mg(-1) mM(-1) at pH 7 and 25 degrees C, respectively. With 1 mM phenazine methosulfate as the primary electron acceptor, the apparent V(max) values for choline and betaine-aldehyde were 10.9 and 5.7 micro mol of O(2) min(-1) mg(-1), respectively. These V(max) values decreased four- to sevenfold when molecular oxygen was used as the electron acceptor. Altogether, the kinetic data are consistent with the conclusion that H. elongata betA codes for a choline dehydrogenase that can also act as an oxidase when electron acceptors other than molecular oxygen are not available.

  20. Two-Step biocatalytic conversion of an ester to an aldehyde in reverse micelles.

    PubMed

    Yang, F; Russell, A J

    1994-02-01

    Lipases from Candida cyclindracea (L-1754) and wheat germ (L-3001) have been used to hydrolyze esters to their corresponding alcohols and acids in reverse micelles. Alcohol dehydrogenase from baker's yeast (YADH) was subsequently used to reduce the alcohol products to aldehydes. Cofactor recycling in the redox reaction was achieved using a sacrificial cosubstrate, as described previously. Four surfactants (sodium dioctylsulfosuccinate, Nonidet P-40 with Triton X-35, polyoxyethylene, 10-cetyl-ether, polyoxyethylene sorbitan trioleate) were employed to determine the effect of amphiphile on ester hydrolysis and redox reaction rates separately. The effect of type of organic solvent, W(0) [(water]/[surfactant)], and substrate concentration on separte enzyme activity were also investigated. A brief investigation of a single phase, two-step reaction catalyzed by the combination of lipase and YADH in reverse micelles is also reported. The activities of the enzymes are significantly different when used together instead of independently. (c) 1994 John Wiley & Sons, Inc.

  1. Substrate Specificity of the Purified Primary Alcohol Dehydrogenases from Methanol-Oxidizing Bacteria

    PubMed Central

    Sperl, George T.; Forrest, Hugh S.; Gibson, David T.

    1974-01-01

    Hyphomicrobium strain WC, Pseudomonas strain TP-1, and Pseudomonas strain W1 are capable of growth on methanol as the sole source of carbon and energy. Methanol-grown cells of each organism contain a primary alcohol dehydrogenase that has been purified to homogeneity. Each enzyme has a molecular weight of 120,000 and shows an in vitro requirement for phenazine methosulfate and ammonium ions for enzymatic activity. Normal aliphatic alcohols are oxidized rapidly by each enzyme. The presence of a methyl group on the carbon atom adjacent to the primary alcohol group lowers the enzymatic activity. This effect is reduced as the methyl substituent is moved further away from the hydroxyl group. The effect of other substituents on enzymatic activity is reported. Methanol, formaldehyde, and to a limited extent acetaldehyde are oxidized by the primary alcohol dehydrogenases. Higher aldehydes are not oxidized. A possible explanation for this specificity, with regard to aldehydes, is presented in terms of degree of hydration of the aldehyde. Images PMID:4828309

  2. Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86.

    PubMed

    Shrivastava, Rahul; Basu, Aditya; Phale, Prashant S

    2011-08-01

    Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD(+) dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD(+), while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K (m) value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K (m) and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.

  3. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3.

    PubMed

    Way, Luke; Faktor, Jakub; Dvorakova, Petra; Nicholson, Judith; Vojtesek, Borek; Graham, Duncan; Ball, Kathryn L; Hupp, Ted

    2016-09-01

    Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53-independent MDM2-drug responsive-binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin-3 responsive MDM2-binding proteins that are perturbed independent of cell density using SWATH-MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin-3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin-3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin-3 treated cells. Mitotracker confirmed that Nutlin-3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin-3 treatment. Proximity ligation identified rearrangements of cellular protein-protein complexes in situ. In response to Nutlin-3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein-protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein-protein complexes in drug-treated cells. PMID:27273042

  4. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein–protein interactions by the MDM2 ligand nutlin‐3

    PubMed Central

    Way, Luke; Faktor, Jakub; Dvorakova, Petra; Nicholson, Judith; Vojtesek, Borek; Graham, Duncan; Ball, Kathryn L.

    2016-01-01

    Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–p