Science.gov

Sample records for aldehydes bind sulfhydryl

  1. Kinetics and mechanism of proteinase-binding of pregnancy zone protein (PZP). Appearance of sulfhydryl groups in reactions with proteinases.

    PubMed

    Christensen, U; Sottrup-Jensen, L; Simonsen, M

    1992-01-01

    Proteinase binding by pregnancy zone protein (PZP), an alpha-macroglobulin involves bait region cleavages, association of dimeric-PZP into tetrameric and reaction of internal gamma-glutamyl-beta-cysteinyl thiol esters of PZP with proteinase side chains. The product is an equimolar enzyme-PZP(tetramer) covalently linked complex with four free sulfhydryl groups. The kinetics of the appearances of sulfhydryl groups during the reaction of PZP with chymotrypsin has been investigated using stopped-flow and conventional mixing techniques over a broad concentration range. Thiol ester cleavages followed double exponential decays corresponding with two steps. The faster one resulted in the appearance of three sulfhydryl groups with an observed rate constant, k(obs) = k1.1 + k1.2 delta E, dependent on the excess concentration of chymotrypsin, delta E, and k1.1 = 0.03 s-1 and k1.2 = 4 x 10(4) M-1 s-1. The last sulfhydryl group appeared in a slower step, with similar concentration dependence and k2.1 approximately 0.003 s-1 and k2.2 approximately 5 x 10(3) M-1s-1. Covalent binding of the enzyme apparently was simultaneous with the faster thiol ester cleavage step. Based on these and previous results a model of the reaction mechanism of the proteinase binding reaction of PZP is proposed. It consists of four major steps: (i) Bait region cleavage of PZP-dimers by the enzyme, (ii) fast association of enzyme-PZP(dimer) species with native PZP or with another enzyme-PZP(dimer) compound resulting in release of one of the associated enzyme molecules (iii) reaction of an average of three thiol esters of the enzyme-PZP(tetramer) intermediate with the associated internal enzyme molecule or with an external one. In this step one enzyme molecule becomes covalently linked to the PZP-(tetramer), three sulfhydryl groups appear and the enzymic activity of the bound enzyme molecule decreases to the level of that of the final complex. (iv) Hydrolysis of the last thiol ester and in the presence of

  2. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  3. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols.

    PubMed

    Furuhata, Atsunori; Nakamura, Mitsuhiro; Osawa, Toshihiko; Uchida, Koji

    2002-08-01

    Acrolein, a representative carcinogenic aldehyde that could be ubiquitously generated in biological systems under oxidative stress, shows facile reactivity with the epsilon-amino group of lysine to form N(epsilon)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) as the major product (Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N., and Niki, E. (1998) J. Biol. Chem. 273, 16058-16066). In the present study, we determined the electrophilic potential of FDP-lysine and established a novel mechanism of protein thiolation in which the FDP-lysine generated in the acrolein-modified protein reacts with sulfhydryl groups to form thioether adducts. When a sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase, was incubated with acrolein-modified bovine serum albumin in sodium phosphate buffer (pH 7.2) at 37 degrees C, a significant loss of sulfhydryl groups, which was accompanied by the loss of enzyme activity and the formation of high molecular mass protein species (>200 kDa), was observed. The FDP-lysine adduct generated in the acrolein-modified protein was suggested to represent a thiol-reactive electrophile based on the following observations. (i) N(alpha)-acetyl-FDP-lysine, prepared from the reaction of N(alpha)-acetyl lysine with acrolein, was covalently bound to glyceraldehyde-3-phosphate dehydrogenase. (ii) The FDP-lysine derivative reacted with glutathione to form a GSH conjugate. (iii) The acrolein-modified bovine serum albumin significantly reacted with GSH to form a glutathiolated protein. Furthermore, the observation that the glutathiolated acrolein-modified protein showed decreased immunoreactivity with an anti-FDP-lysine monoclonal antibody suggested that the FDP-lysine residues in the acrolein-modified protein served as the binding site of GSH. These data suggest that thiolation of the protein-bound acrolein may be involved in redox alteration under oxidative stress, whereby oxidative stress generates the increased production of

  4. Cysteine-10 on 17β-Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals

    PubMed Central

    Nashev, Lyubomir G.; Atanasov, Atanas G.; Baker, Michael E.

    2013-01-01

    17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17β-HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys10, in the Rossmann-fold NADPH binding region, for 17β-HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys10 with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17β-HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM) and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17β-HSD1 from inhibition by these chemicals. Cys10Ser mutant 17β-HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys10 in the cofactor binding region. Substitution of Cys10 with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys10 on 17β-HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme. PMID:24348564

  5. Cysteine-10 on 17 β -Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals.

    PubMed

    Nashev, Lyubomir G; Atanasov, Atanas G; Baker, Michael E; Odermatt, Alex

    2013-01-01

    17 β -Hydroxysteroid dehydrogenase type 1 (17 β -HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17 β -HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys(10), in the Rossmann-fold NADPH binding region, for 17 β -HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys(10) with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17 β -HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM) and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17 β -HSD1 from inhibition by these chemicals. Cys(10)Ser mutant 17 β -HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys(10) in the cofactor binding region. Substitution of Cys(10) with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys(10) on 17 β -HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme. PMID:24348564

  6. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...

  7. Use of secondary isotope effects and varying pH to investigate the mode of binding of inhibitory amino aldehydes by leucine aminopeptidase

    SciTech Connect

    Andersson, L.; MacNeela, J.; Wolfenden, R.

    1985-01-15

    Ki values for leucine aldehyde, a competitive inhibitor of leucine aminopeptidase, vary with pH in a manner compatible with the binding of uncharged inhibitors. The pH dependence of kcat/Km suggests likewise that the substrate leucine p-nitroanilide is productively bound as the uncharged species. Comparison of pKa values of the model compounds aminoacetone and aminoacetal indicates that the equilibrium constant for hydration of amino aldehydes is reduced by a factor of about 2 when a proton is lost from the alpha-ammonium group near pH 8. Effects of deuterium substitution at C-1 on equilibrium binding of leucine aldehyde were determined with immobilized enzymes and inhibitors doubly labeled with radioisotopes. The observed isotope effect (KD/KH) is approximately unity, suggesting that leucine aldehyde combines with the enzyme as an oxygen adduct, not as the intact aldehyde.

  8. Conserved catalytic residues of the ALDH1L1 aldehyde dehydrogenase domain control binding and discharging of the coenzyme.

    PubMed

    Tsybovsky, Yaroslav; Krupenko, Sergey A

    2011-07-01

    The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.

  9. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    PubMed Central

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R.; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  10. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed.

    PubMed

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  11. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    PubMed

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-01

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development. PMID:21877690

  12. The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: The role of sulfhydryl sites

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Fein, Jeremy B.

    2015-10-01

    The adsorption and desorption of Cd onto Shewanella oneidensis bacterial cells with and without blocking of sulfhydryl sites was measured in order to determine the effect of metal loading and to understand the role of sulfhydryl sites in the adsorption reactions. The observed adsorption/desorption behaviors display strong dependence on metal loading. Under a high loading of 40 μmol Cd/g bacterial cells, blocking the sulfhydryl sites within the cell envelope by exposure of the biomass to monobromo(trimethylammonio)bimane bromide (qBBr) does not significantly affect the extent of Cd adsorption, and we observed fully reversible adsorption under this condition. In contrast, under a low metal loading of 1.3 μmol Cd/g bacterial cells, the extent of Cd adsorption onto sulfhydryl-blocked S. oneidensis cells was significantly lower than that onto untreated cells, and only approximately 50-60% of the adsorbed Cd desorbed from the cells upon acidification. In conjunction with previous EXAFS results, our findings demonstrate that Cd adsorption onto S. oneidensis under low metal loading conditions is dominated by sulfhydryl binding, and thus is controlled by a distinct adsorption mechanism from the non-sulfhydryl site binding which controls Cd adsorption under high metal loading conditions. We use the data to develop a surface complexation model that constrains the values of the stability constants for individual Cd-sulfhydryl and Cd-non-sulfhydryl bacterial complexes, and we use this approach to account for the Cd adsorption behavior as a function of both pH and metal loading. This approach is crucial in order to predict metal adsorption onto bacteria under environmentally relevant metal loading conditions where sulfhydryl binding sites can dominate the adsorption reaction.

  13. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487.

    PubMed

    Larson, Heather N; Zhou, Jianzhong; Chen, Zhiqiang; Stamler, Jonathan S; Weiner, Henry; Hurley, Thomas D

    2007-04-27

    The common mitochondrial aldehyde dehydrogenase (ALDH2) ALDH2(*)2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu-487 that reduces the k(cat) for these processes and increases the K(m) for NAD(+), as compared with ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2(*)2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2(*)2 complexed with coenzyme to 2.5A(.) We have also solved the structures of a mutated form of ALDH2 where Arg-475 is replaced by Gln (R475Q). The structural and functional properties of the R475Q enzyme are intermediate between those of wild-type and the ALDH2(*)2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the R475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2(*)2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2(*)2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the R475Q enzyme. The data presented shows that Glu-487 maintains a critical function in linking the structure of the coenzyme-binding site to that of the active site through its interactions with Arg-264 and Arg-475, and in doing so, creates the stable structural scaffold conducive to catalysis.

  14. Structural and Functional Consequences of Coenzyme Binding to the Inactive Asian Variant of Mitochondrial Aldehyde Dehydrogenase: Roles of Residues 475 and 487

    SciTech Connect

    Larson,H.; Zhou, J.; Chen, Z.; Stamler, J.; Weiner, H.; Hurley, T.

    2007-01-01

    The common mitochondrial aldehyde dehydrogenase (ALDH2) ALDH2*2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu-487 that reduces the k{sub cat} for these processes and increases the K{sub m} for NAD{sup +}, as compared with ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2*2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2*2 complexed with coenzyme to 2.5 {angstrom}. We have also solved the structures of a mutated form of ALDH2 where Arg-475 is replaced by Gln (R475Q). The structural and functional properties of the R475Q enzyme are intermediate between those of wild-type and the ALDH2*2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the R475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2*2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2*2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the R475Q enzyme. The data presented shows that Glu-487 maintains a critical function in linking the structure of the coenzyme binding site to that of the active site through its interactions with Arg-264 and Arg-475, and in doing so, creates the stable structural scaffold conducive to catalysis.

  15. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  16. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    SciTech Connect

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E. )

    1990-09-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with ({sup 14}C)iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 ({plus minus} 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked.

  17. Sulfhydryl-specific PEGylation of phosphotriesterase cysteine mutants for organophosphate detoxification.

    PubMed

    Daffu, Gurdip K; Lopez, Patricia; Katz, Francine; Vinogradov, Michael; Zhan, Chang-Guo; Landry, Donald W; Macdonald, Joanne

    2015-11-01

    The catalytic bioscavenger phosphotriesterase (PTE) is experimentally an effective antidote for organophosphate poisoning. We are interested in the molecular engineering of this enzyme to confer additional functionality, such as improved in vivo longevity. To this aim, we developed PTE cysteine mutants with free sulfhydryls to allow macromolecular attachments to the protein. A library of PTE cysteine mutants were assessed for efficiency in hydrolysing the toxic pesticide metabolite paraoxon, and screened for attachment with a sulfhydryl-reactive small molecule, fluorescein 5-maleimide (F5M), to examine cysteine availability. We established that the newly incorporated cysteines were readily available for labelling, with R90C, E116C and S291C displaying the highest affinity for binding with F5M. Next, we screened for efficiency in attaching a large macromolecule, a 30 000 Da polyethylene glycol (PEG) molecule. Using a solid-phase PEGylation strategy, we found the E116C mutant to be the best single-mutant candidate for attachment with PEG30. Kinetic activity of PEGylated E116C, with paraoxon as substrate, displayed activity approaching that of the unPEGylated wild-type. Our findings demonstrate, for the first time, an efficient cysteine mutation and subsequent method for sulfhydryl-specific macromolecule attachment to PTE.

  18. Sulfhydryl group of the canine cardiac beta-adrenergic receptor observed in the absence of hormone

    SciTech Connect

    Strauss, W.L.; Venter, J.C.

    1985-05-06

    Canine cardiac beta-adrenergic receptors contain a free sulfhydryl group in the adrenergic ligand binding site. (/sup 125/I)-Iodohydroxybenzylpindolol ((/sup 125/I)-IHYP) binding to cardiac beta-receptors was inhibitied 80% by treatment with 1 mM p-chloromercuribenzoic acid (pCMB). Occupation of the beta-receptors by an antagonist prior to treatment with pCMB prevented this effect suggesting that a sulfhydryl group is present in or near the ligand binding site of the cardiac beta-receptor. In the presence of agonists, the sensitivity of cardiac beta-receptors to pCMB was increased. Incubation of isoproterenol-occupied cardiac beta-receptors with 0.25 mM pCMB, which had no effect on the unoccupied receptors, resulted in a 57% inhibition of (/sup 125/I)-IHYP binding measured after extensive washing to remove bound agonist. The ability of isoproterenol to increase the reactivity of cardiac beta-adrenergic receptors supports the hypothesis that agonists produce a conformational change upon binding. 13 references, 4 figures, 1 table.

  19. Chemical modification and reactivity of sulfhydryls and disulfides of rat brain nicotinic-like acetylcholine receptors

    SciTech Connect

    Lukas, R.J.; Bennett, E.L.

    1980-06-25

    Rat central nervous system binding sites for ..cap alpha..-bungarotoxin display considerable biochemical homology with characterized nicotinic acetylcholine receptors from the periphery. They possess a critical disulfide residue(s), which is susceptible to chemical modification and consequent specific alteration in the affinity of the binding site for cholinergic agonists. After reaction with Na/sub 2/S/sub 2/O/sub 5/, as with reaction with dithiothreitol and 5,5'-dithiobis(2-nitrobenzoic acid), the binding site is frozen in a high affinity state toward acetylcholine. After reduction with dithiothreitol and alkylation with a variety of compounds of different molecular configuration or electrical charge, or both, the binding site is frozen in a low affinity state toward acetylcholine. Thus, effects of disulfide/sulfhydryl modification on agonist binding affinity appear to be attributable to the nature of the covalent modification rather than charge or steric alteration at the receptor active site brought about by chemical modification.

  20. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    SciTech Connect

    Myneni, Satish C.; Mishra, Bhoopesh; Fein, Jeremy

    2009-04-01

    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit

  1. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    SciTech Connect

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is in an

  2. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    PubMed

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  3. Scavenger receptor for aldehyde-modified proteins.

    PubMed

    Horiuchi, S; Murakami, M; Takata, K; Morino, Y

    1986-04-15

    This paper describes an unexpectedly broad ligand specificity of a scavenger receptor of sinusoidal liver cells that is responsible for endocytic uptake of formaldehyde-treated bovine serum albumin (f-Alb). Binding of 125I-f-Alb to the isolated cells was effectively inhibited by bovine serum albumin (BSA) modified with aliphatic aldehydes such as glycolaldehye, DL-glyceraldehyde, and propionaldehyde whereas albumin preparations modified by aromatic aldehydes such as pyridoxal, pyridoxal phosphate, salicylaldehyde, and benzaldehyde did not affect this binding process. Binding of 125I-glycolaldehyde-treated BSA to the cells exhibited a saturation kinetics with an apparent Kd = 3.3 micrograms of the ligand/ml. This binding process was inhibited by unlabeled f-Alb as well as by the antibody raised against the f-Alb receptor. Indeed, 125I-glycolaldehyde-treated BSA underwent a rapid plasma clearance (t1/2 approximately 2 min) which was markedly retarded by unlabeled f-Alb. Upon treatment by these aldehydes, other proteins such as ovalbumin, soybean trypsin inhibitor, and hemoglobin were also converted to active ligands for the f-Alb receptor, while no ligand activity was generated with gamma-globulin and RNase A. These results clearly show that the f-Alb receptor, originally described as being specific for f-Alb, exhibits a broad ligand specificity in terms of both aldehydes and proteins and, hence, should be described as a scavenger receptor for aldehyde-modified proteins.

  4. Altered sulfhydryl reactivity of hemoglobins and red blood cell membranes in congenital heinz body hemolytic anemia

    PubMed Central

    Jacob, Harry S.; Brain, Michael C.; Dacie, John V.

    1968-01-01

    The mechanisms of hemoglobin precipitation into Heinz bodies and hemolytic anemia that characterize congenital Heinz body hemolytic anemia (CHBHA) were studied in patients with the unstable hemoglobins, Köln (β-98 valine → methionine) and Hammersmith (β-42 phenylalanine → serine). The cysteines in the 93rd position of the β-chains of CHBHA hemoglobins bound glutathione excessively in mixed disulfide linkage. The resulting diminished “free” GSH within the cell accelerated hexose monophosphate shunt metabolism. The unique precipitability of CHBHA hemoglobins when heated at 50°C could be induced in normal hemoglobin A by artificially blockading its sulfhydryl groups with paramercuribenzoate (PMB). Reflecting the previously reported excessive flux of hemes from hemoglobin Köln, the expected heme/globin ratio in this hemoglobin was reduced by 30%. The further increment in heme loss that occurs with heat (50°C) underlies the unique heat precipitability of CHBHA hemoglobins; it was retarded if detachment of heme was inhibited by cyanide or carbon monoxide. Heinz bodies were attached to red cell membrane thiol groups presumably through mixed disulfide bonds, being released by mercaptoethanol. Binding of hemoglobin Köln-59Fe to red cell ghosts, which was markedly enhanced when Heinz bodies were generated at 50°C, was inhibited if membrane thiols were preblockaded by PMB. The depletion of membrane thiols by their reaction with Heinz bodies rendered CHBHA red cells hypersusceptible to membrane sulfhydryl inhibitors, as manifested by inordinate cation leakage, osmotic fragility, and autohemolysis. We conclude that both cellular and membrane thiols bind β-93 sulfhydryls of CHBHA hemoglobins as mixed disulfides. Concomitantly, heme avidity to β-92 lessens, suggesting that degradation of the resulting excessively freed heme may produce the pigmented dipyrroluria of this syndrome. Heinz bodies, reflecting the heightend precipitability of heme-deficient globin

  5. Modification of ultraviolet radiation effects on the membrane of myelinated nerve fibers by sulfhydryl compounds

    SciTech Connect

    Hof, D.; Fox, J.M.

    1984-01-01

    The modification of the ultraviolet blocking of sodium channels and of the ultraviolet-induced potential shift of the gating parameters by means of the sulfhydryl compounds l-cysteine and 2-mercaptoethanol was investigated in the node of Ranvier of Rana esculenta under voltage-clamp conditions. The UV wavelength was 280 nm. The radiation-induced potential shift of the voltage-dependent gating parameters was prevented or even reversed by the action of the sulfhydryl compounds (internal application), while the blocking effect was not affected. It is concluded that the two radiation effects are caused by two separate photoreactions. Internally applied N-ethylmaleimide, binding specifically to protein-SH groups, exhibits an effect similar to the ultraviolet-induced potential shift, without affecting the maximum sodium permeability. Therefore, the ultraviolet-induced potential shift might be caused by a photocatalyzed oxidation of -SH groups of membrane proteins changing the surface charge density at the inner side of the nodal membrane.

  6. Sulfhydryl-group modifications of Torpedo Californica acetylcholine receptor: subunit localization and effects on function

    SciTech Connect

    McNamee, M.G.; Yee, A.S.

    1986-05-01

    The effects of thiol-group modification on acetylcholine receptor (ACHR) function were measured using purified Torpedo ACHR reconstituted into soybean lipid vesicles. N-Phenyl-maleimide (NPM) was used to modify sulfhydryl groups in ACHR in the absence of any prior reduction by dithiotheitol. Modification by NPM led to the inhibition of ion channel activity without a detectable effect on ligand binding. The ion flux inhibition by NPM primarily affected channel activation, since the initial rates of activation decreased over a wide range of carbamylcholine concentrations. The /sup 3/H-NPM subunit labelling pattern of ACHR (a multisubunit membrane protein with ..cap alpha../sub 2/..beta gamma..delta stoichiometry) revealed preferential labelling of the ..gamma.. subunit. At high NPM concentration, the number of sulfhydryl groups on the ..gamma.. subunit that could be modified with NPM was two. Detergent was required during labelling for functionally relevant thiol group modifications, and most of the label was protected from protease digestion in the reconstituted membranes. These results are consistent with the presence of the NPM modification in a bilayer and/or cytoplasmic domain. Analysis of cyanogen bromide and trypsin fragments indicates that the labeled cysteines may be located in the postulated amphipathic helix region of the ..gamma.. subunit.

  7. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  8. Structural and Functional Consequences of Coenzyme Binding to the Inactive Asian Variant of Mitochondrial Aldehyde Dehydrogenase: Roles of Residues 475 and 487

    PubMed Central

    Larson, Heather N.; Zhou, Jianzhong; Chen, Zhiqiang; Stamler, Jonathan S.; Weiner, Henry; Hurley, Thomas D.

    2007-01-01

    The common ALDH2*2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu 487 that reduces the kcat for these processes and increases the KM for NAD+, as compared to ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2*2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2*2 complexed with coenzyme to 2.5 Å. We have also solved the structures of a mutated form of ALDH2 where Arg 475 is replaced by Gln (475Q). The structural and functional properties of the 475Q enzyme are intermediate between those of wild type and the ALDH2*2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the 475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2*2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2*2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the 475Q enzyme. The data presented shows that Glu 487 maintains a critical function in linking the structure of the coenzyme-binding site to that of the active site through its interactions with Arg 264 and Arg 475, and in doing so, creates the stable structural scaffold conducive to catalysis. PMID:17327228

  9. Aldehyde-stabilized cryopreservation.

    PubMed

    McIntyre, Robert L; Fahy, Gregory M

    2015-12-01

    We describe here a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC), which demonstrates the relevance and utility of advanced cryopreservation science for the neurobiological research community. ASC is a new brain-banking technique designed to facilitate neuroanatomic research such as connectomics research, and has the unique ability to combine stable long term ice-free sample storage with excellent anatomical resolution. To demonstrate the feasibility of ASC, we perfuse-fixed rabbit and pig brains with a glutaraldehyde-based fixative, then slowly perfused increasing concentrations of ethylene glycol over several hours in a manner similar to techniques used for whole organ cryopreservation. Once 65% w/v ethylene glycol was reached, we vitrified brains at -135 °C for indefinite long-term storage. Vitrified brains were rewarmed and the cryoprotectant removed either by perfusion or gradual diffusion from brain slices. We evaluated ASC-processed brains by electron microscopy of multiple regions across the whole brain and by Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) imaging of selected brain volumes. Preservation was uniformly excellent: processes were easily traceable and synapses were crisp in both species. Aldehyde-stabilized cryopreservation has many advantages over other brain-banking techniques: chemicals are delivered via perfusion, which enables easy scaling to brains of any size; vitrification ensures that the ultrastructure of the brain will not degrade even over very long storage times; and the cryoprotectant can be removed, yielding a perfusable aldehyde-preserved brain which is suitable for a wide variety of brain assays. PMID:26408851

  10. Chloroplast Sulfhydryl Groups and the Light Activation of Fructose-1,6-Bisphosphatase 1

    PubMed Central

    Slovacek, Rudolf E.; Vaughn, Sharon

    1982-01-01

    Studies of isolated intact spinach (Spinacia oleracea L.) chloroplasts reveal that most of the available sulfhydryl groups are associated with stromal protein as opposed to a thylakoid membrane fraction under non-denaturing conditions. Increases in sulfhydryl content of approximately 50% occurred with illumination and could be correlated kinetically with a reductive activation of fructose-1,6-bisphosphatase during CO2-assimilation. Inhibition of linear electron flow with 3-(3,4-dichlorophenyl)-1,1-dimethylurea prevented light driven increases in both fructose-1,6-bisphosphatase activity and the relative sulfhydryl number. These results provide evidence for the operation of a reductive enzyme activating system in vivo. PMID:16662654

  11. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    PubMed

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  12. Unusual properties of crocodilian ovomacroglobulin shown in its methylamine treatment and sulfhydryl titration

    SciTech Connect

    Arakawa, H.; Osada, T.; Ikai, A.

    1986-02-01

    The inhibitory activity of chicken and crocodilian ovomacroglobulins against trypsin was measured before and after their incubation with methylamine. The result for crocodilian ovomacroglobulin showed that methylamine treatment destroyed half of its activity, in unique contrast to human alpha 2-macroglobulin and chicken ovomacroglobulin for which methylamine either destroys the inhibitory activity of the former completely or does not affect that of the latter at all. Free sulfhydryl groups of chicken and crocodilian ovomacroglobulins were titrated with 5,5'-dithiobis(2-nitrobenzoic acid) before and after incubation with trypsin. Prior to the incubation with trypsin the chicken and crocodilian proteins respectively had 0 and 1 titratable sulfhydryl per molecule of Mr 720,000. After treatment with trypsin the crocodilian protein had 3.5-4 titratable sulfhydryls, whereas there were no titratable sulfhydryls in the chicken protein. After denaturation of the crocodilian protein in sodium dodecyl sulfate at 100 degrees C the number of titratable sulfhydryls was 4. Chicken ovomacroglobulin again did not have an appreciable number of titratable sulfhydryls under similar denaturing conditions. Incubation of crocodilian protein with (14C)methylamine showed an incorporation of at least 2 mol of methylamine per molecule. The result indicated the presence of three intramolecular thiol ester bonds in crocodilian ovomacroglobulin with differential stability against external perturbations.

  13. Primary structural analysis of sulfhydryl protease inhibitors from pineapple stem.

    PubMed

    Reddy, M N; Keim, P S; Heinrikson, R L; Kezdy, F J

    1975-03-10

    Pineapple stem acetone powder provides a rich source of the sulfhydryl protease bromelain and of a family of compositionally similar but chromatographically distinct polypeptide inihibtors of this enzyme. The isoinhibitors have molecular weights of 5600, and they contain five disulfide bonds and about 50 amino acids each (Perlstein, S. H., AND Kezdy, F.J. (1973) J. Supramol. Struct. 1, 249-254). Primary structural analysis of one of the seven inhibitor fractions (VII) revealed extensive microheterogeneity. Each of the inhibitor molecules in Fraction VII was shown to be composed of two peptide chains joined by disulfide bonds. These chains, designated A and B on the basis of size, comprise 41 and 10-11 residues, respectively, and the amino acid sequence of one of each are given below: (see article for formular). On the basis of ionization properties and yields of the A and B chains, it would appear that one of the major inhibitor species in Fraction VII is the covalently linked complex of the two chains shown, namely [A-1, B-2]. The second major inhibitor component of Fraction VII is identical in structure with [A-1, B-2i1 except that residues 1 and 8 in the A chain are pyroglutamate and threonine, respectively, and in the B chain glutamine 11 is replaced by arginine. The third inhibitor in Fraction VII is a minor constituent identical with the second, except that residue 1 in the A chain is glutamate rather than pyroglutamate. This microheterogeneity in the inhibitors of Fraction VII is further increased by the fact that B chains may lack threonine 1, in which case they are decapeptides beginning with alanine. On the basis of the striking homology of the cysteine residues with those of other protease inhibitors, it is proposed that the bromelain inhibitors are generated enzymatically from single chain precursors by excision of a "bridge" paptide which links the NH-2 termal A chain to the COOH-terminal B chain.

  14. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  15. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  16. Sulfhydryl-dependent attachment of Treponema denticola to laminin and other proteins.

    PubMed Central

    Haapasalo, M; Singh, U; McBride, B C; Uitto, V J

    1991-01-01

    Attachment of Treponema denticola ATCC 35405 to laminin, a major basement membrane protein, and to other proteins was studied. Microdilution plates were coated with the proteins, and the attachment of T. denticola was measured by the enzyme-linked immunosorbent assay technique. Compared with bovine serum albumin (BSA), T. denticola had a high affinity to laminin, fibronectin, fibrinogen, and gelatin, as well as to type I and type IV collagens. Attachment to RGD peptide (Gly-Arg-Gly-Asp-Ser, the integrin recognition sequence) was only about 30% of that to laminin and was comparable to attachment to BSA. Tests with laminin fragments obtained through elastase digestion showed that the spirochetes attached well to an A-chain 140-kDa fragment involved in eukaryote cell attachment but did not attach to a 50-kDa fragment that includes the heparin binding site. Pretreatment of T. denticola with soluble laminin, fibronectin, gelatin, BSA, or fibrinogen had no effect on the attachment of the bacteria to laminin or fibronectin. A wide variety of compounds were tested for their possible inhibitory actions on the attachment. While most treatments of T. denticola ATCC 35405 had little or no effect on the attachment to proteins, sulfhydryl reagents p-chloromercuribenzoic acid (pCMBA) and oxidized glutathione inhibited the attachment by 70 to 99%, depending on the protein. When T. denticola was first allowed to attach to proteins, addition of pCMBA or oxidized glutathione could no longer reverse the attachment. Heat treatment of the spirochetes also markedly reduced the attachment to laminin, gelatin, and fibrinogen but not to BSA. Mixed glycosidase treatment of the spirochetes inhibited the attachment by 20 to 80%. None of the above treatments of the substrate proteins had any marked effect on the spirochete attachment. The results indicate that T. denticola has the capacity to bind to many different kinds of proteins by utilizing specific attachment mechanisms. The binding

  17. Relationships within the aldehyde dehydrogenase extended family.

    PubMed

    Perozich, J; Nicholas, H; Wang, B C; Lindahl, R; Hempel, J

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.

  18. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells

    PubMed Central

    Vasiliou, Vasilis; Thompson, David C.; Smith, Clay; Fujita, Mayumi; Chen, Ying

    2014-01-01

    The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date, 24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity, ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes. PMID:23159885

  19. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  20. Synthesis of 5'-Aldehyde Oligonucleotide.

    PubMed

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  1. LC/MS/MS determination of omapatrilat, a sulfhydryl-containing vasopeptidase inhibitor, and its sulfhydryl- and thioether-containing metabolites in human plasma.

    PubMed

    Jemal, M; Khan, S; Teitz, D S; McCafferty, J A; Hawthorne, D J

    2001-11-15

    Omapatrilat, the most clinically advanced member of a new class of cardiovascular agents, vasopeptidase inhibitors, is under development at Bristol-Myers Squibb Pharmaceutical Research Institute for the treatment of hypertension and heart failure. An electrospray LC/MS/MS method has been developed and validated for the simultaneous determination of omapatrilat and its four metabolites in human plasma. Since omapatrilat and two of the metabolites are sulfhydryl-containing compounds, methyl acrylate was used to stabilize these compounds in human blood and plasma samples. Methyl acrylate reacted instantly with the sulfhydryl group to form a derivative that was stable in blood and plasma. Extraction of the analytes from plasma samples was achieved by semiautomated liquid-liquid extraction, where a robotic liquid handler performed the liquid-transferring steps. The mass spectrometer was operated in the negative ion selected-reaction-monitoring mode. The calibration curve ranges were 0.5-250 ng/mL for omapatrilat and one metabolite and 2.0-250 ng/mL for the other three metabolites. PMID:11816572

  2. Prevention of acrylonitrile-induced gastrointestinal bleeding by sulfhydryl compounds, atropine and cimetidine

    SciTech Connect

    Ghanayem, B.I.; Ahmed, A.E.

    1986-07-01

    We have recently demonstrated that acrylonitrile (VCN) causes acute gastric hemorrhage and mucosal erosions. The current studies were undertaken to investigate the effects of the sulfhydryl-containing compounds, cysteine and cysteamine, the cholinergic blocking agent atropine and the histamine H2 receptor antagonist, cimetidine on the VCN-induced gastrointestinal (GI) bleeding in rats. Our data shows that pretreatment with L-cysteine, cysteamine, atropine or cimetidine has significantly protected rats against the VCN-induced GI bleeding. A possible mechanism of the VCN-induced GI bleeding may involve the interaction of VCN with critical sulfhydryl groups that, in turn, causes alteration of acetylcholine muscarinic receptors to lead to gastric hemorrhagic lesions and bleeding.

  3. Alkyne Ligation Handles: Propargylation of Hydroxyl, Sulfhydryl, Amino, and Carboxyl Groups via the Nicholas Reaction.

    PubMed

    Wells, Sarah M; Widen, John C; Harki, Daniel A; Brummond, Kay M

    2016-09-16

    The Nicholas reaction has been applied to the installation of alkyne ligation handles. Acid-promoted propargylation of hydroxyl, sulfhydryl, amino, and carboxyl groups using dicobalt hexacarbonyl-stabilized propargylium ions is reported. This method is useful for introduction of propargyl groups into base-sensitive molecules, thereby expanding the toolbox of methods for the incorporation of alkynes for bio-orthogonal reactions. High-value molecules are used as the limiting reagent, and various propargylium ion precursors are compared. PMID:27570975

  4. Counting sulfhydryls and disulfide bonds in peptides and proteins using mercurial ions as an MS-tag.

    PubMed

    Guo, Yifei; Chen, Liqin; Yang, Limin; Wang, Qiuquan

    2008-08-01

    Organic mercurial compounds are the most specific and sensitive reagents for reaction with the sulfhydryl groups (SHs) in peptides and proteins because of the strong mercury-sulfur affinity. Using the monofunctional organic mercury ion RHg(+) as a mass spectrometry (MS)-tag has the advantages of reacting with one sulfhydryl group, offering definite mass shift, and especially stable and characteristic nonradioactive isotopic distribution. Mass spectrometric analysis of derivatized sulfhydryls in peptides/proteins is thus an alternative for precisely counting the number of sulfhydryl groups and disulfide bonds (SS). Here the tags used include monomethylmercury chloride, monoethylmercury chloride, and 4-(hydroxymercuri) benzoic acid. The feasibility of this strategy is demonstrated using HPLC/ESI-MS to count SHs and SS in model peptides/proteins, i.e., glutathione, phytochelatins, lysozyme and beta-lactoglobulin, which contain increasing SHs and various SS linkages. PMID:18524619

  5. Determination of exposed sulfhydryl groups in heated beta-lactoglobulin A using IAEDANS and mass spectrometry.

    PubMed

    Kehoe, Joseph J; Brodkorb, André; Mollé, Daniel; Yokoyama, Emilie; Famelart, Marie-Héléne; Bouhallab, Saíd; Morris, Edwin R; Croguennec, Thomas

    2007-08-22

    This paper takes a new approach to determining which sulfhydryl groups are exposed during the heat denaturation of bovine beta-lactoglobulin A. The sulfhydryl groups exposed after heating were blocked with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). The results show that IAEDANS is a suitable blocking agent, and its absorbance at 336 nm enabled the quantification of exposed sulfhydryl groups in a mixture of protein species by gel permeation chromatography. Combined with the specific fragmentation of bound IAEDANS by matrix-assisted laser desorption ionization (MALDI) MS/MS in negative ionization mode, this facilitated the identification of peptides that contained blocked cysteines after enzymatic digestion of the protein. During MALDI MS/MS of the peptides, in positive ionization mode, the IAEDANS molecule remained bound to the cysteines, making it possible to identify exactly which cysteine had been exposed after heating. In beta-lactoglobulin A it was found that cysteine 66 and cysteine 160 were predominantly exposed regardless of the length of exposure to heat.

  6. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, J.P.; Evans, R.J.

    1987-04-06

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  7. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  8. Microsphere coated substrate containing reactive aldehyde groups

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  9. DIFFERENTIATING THE TOXICITY OF CARCINOGENIC ALDEHYDES FROM NONCARCINOGENIC ALDEHYDES IN THE RAT NOSE USING CDNA ARRAYS

    EPA Science Inventory

    Differentiating the Toxicity of Carcinogenic Aldehydes from Noncarcinogenic Aldehydes in the Rat Nose Using cDNA Arrays.

    Formaldehyde is a widely used aldehyde in many industrial settings, the tanning process, household products, and is a contaminant in cigarette smoke. H...

  10. Gaseous aliphatic aldehydes in Chinese incense smoke

    SciTech Connect

    Lin, J.M.; Wang, L.H. )

    1994-09-01

    Aliphatic aldehydes were found during the combustion of materials. Tobacco smoke contains aldehydes. Fire fighters were exposed to aldehydes when they conducted firefighting. Aldehydes in ambient air come mainly from the incomplete combustion of hydrocarbons and from photochemical reaction. Most aldehydes in ambient air are formaldehyde and acetaldehyde. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde were found in the atmosphere in Los Angeles. Burning Chinese incense for worshipping deities is a Chinese daily routine. It was suspected to be a factor causing nasopharynegeal cancer. Epidemiological studies correlated it with the high risk of childhood brain tumor and the high risk of childhood leukemia. Ames test identified the mutagenic effect of the smoke from burning Chinese incense. The smoke had bee proved to contain polycyclic aromatic hydrocarbons and aromatic aldehydes. Suspicion about formaldehyde and other alphatic aldehydes was evoked, when a survey of indoor air pollution was conducted in Taipei city. This study determined the presence of aliphatic aldehydes in the smoke from burning Chinese incense under a controlled atmosphere. 12 refs., 5 figs., 2 tabs.

  11. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  12. EMISSIONS OF ODOROUS ALDEHYDES FROM ALKYD PAINT

    EPA Science Inventory

    Aldehyde emissions are widely held responsible for the acrid after-odor of drying alkyd-based paint films. The aldehyde emissions from three different alkyd paints were measured in small environmental chambers. It was found that, for each alkyd paint applied, more than 2 mg of ...

  13. Emissions of odorous aldehydes from alkyd paint

    NASA Astrophysics Data System (ADS)

    Chang, John C. S.; Guo, Zhishi

    Aldehyde emissions are widely held responsible for the acrid after-odor of drying alkyd-based paint films. The aldehyde emissions from three different alkyd paints were measured in small environ-mental chambers. It was found that, for each gram of alkyd paint applied, more than 2 mg of aldehydes (mainly hexanal) were emitted during the curing (drying) period. Since no measurable hexanal was found in the original paint, it is suspected that the aldehydes emitted were produced by autoxidation of the unsaturated fatty acid esters in the alkyd resins. The hexanal emission rate was simulated by a model assuming that the autoxidation process was controlled by a consecutive first-order reaction mechanism. Using the emission rate model, indoor air quality simulation indicated that the hexanal emissions can result in prolonged (several days) exposure risk to occupants. The occupant exposure to aldehydes emitted from alkyd paint also could cause sensory irritation and other health concerns.

  14. The Trichoplusia ni single nucleopolyhedrovirus tn79 gene encodes a functional sulfhydryl oxidase enzyme that is able to support the replication of Autographa californica multiple nucleopolyhedrovirus lacking the sulfhydryl oxidase ac92 gene

    PubMed Central

    Clem, Stian A.; Wu, Wenbi; Lorena Passarelli, A.

    2014-01-01

    The Autographa californica multiple nucleopolyhedrovirus ac92 is a conserved baculovirus gene with homology to flavin adenine dinucleotide-linked sulfhydryl oxidases. Its product, Ac92, is a functional sulfhydryl oxidase. Deletion of ac92 results in almost negligible levels of budded virus (BV) production, defects in occlusion-derived virus (ODV) co-envelopment and their inefficient incorporation into occlusion bodies. To determine the role of sulfhydryl oxidation in the production of BV, envelopment of nucleocapsids, and nucleocapsid incorporation into occlusion bodies, the Trichoplusia ni single nucleopolyhedrovirus ortholog, Tn79, was substituted for ac92. Tn79 was found to be an active sulfhydryl oxidase that substituted for Ac92, resulting in the production of infectious BV, albeit about 10-fold less than an ac92-containing virus. Tn79 rescued defects in ODV morphogenesis caused by a lack of ac92. Active Tn79 sulfhydryl oxidase activity is required for efficient BV production, ODV envelopment, and their subsequent incorporation into occlusion bodies in the absence of ac92. PMID:25010286

  15. Development of soluble ester-linked aldehyde polymers for proteomics.

    PubMed

    Beaudette, Patrick; Rossi, Nicholas A A; Huesgen, Pitter F; Yu, Xifei; Shenoi, Rajesh A; Doucet, Alain; Overall, Christopher M; Kizhakkedathu, Jayachandran N

    2011-09-01

    High molecular weight hyperbranched polyglycerol (HPG) was selected for development as a soluble polymer support for the targeted selection and release of primary-amine containing peptides from a complex mixture. HPG has been functionalized with ester-linked aldehyde groups that can bind primary-amine containing peptides via a reductive alkylation reaction. Once bound, the high molecular weight of the polymer facilitates separation from a complex peptide mixture by employing either a 30 kDa molecular weight cutoff membrane or precipitation in acetonitrile. Following the removal of unbound peptides and reagents, subsequent hydrolysis of the ester linker releases the bound peptide into solution for analysis by mass spectrometry. Released peptides retain the linker moiety and are therefore characteristically mass-shifted. Four water-soluble cleavable aldehyde polymers (CAP1, CAP2, CAP3, and CAP4) ranging in types of linker groups, length of the linker groups, have been prepared and characterized, each demonstrating the ability to selectively enrich and sequence primary-amine peptides from a complex human proteome containing blocked (dimethylated amine) and unblocked (primary amine) peptides. The polymers have very low nonspecific peptide-binding properties while possessing significantly more reactive groups per milligram of the support than commercially available resins. The polymers exhibit a range of reactivities and binding capacities that depend on the type of linker group between the aldehyde group and the polymer. Using various linker structures, we also probed the mechanism of the observed dehydration of hydrolyzed peptides during matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis.

  16. Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation.

    PubMed

    Hoober, K L; Thorpe, C

    1999-03-01

    The flavin-dependent sulfhydryl oxidase from chicken egg white catalyzes the oxidation of sulfhydryl groups to disulfides with reduction of oxygen to hydrogen peroxide. The oxidase contains FAD and a redox-active cystine bridge and accepts a total of 4 electrons per active site. Dithiothreitol (DTT; the best low molecular weight substrate known) reduces the enzyme disulfide bridge with a limiting rate of 502/s at 4 degrees C, pH 7.5, yielding a thiolate-to-flavin charge-transfer complex. Further reduction to EH4 is limited by the slow internal transfer of reducing equivalents from enzyme dithiol to oxidized flavin (3.3/s). In the oxidative half of catalysis, oxygen rapidly converts EH4 to EH2, but Eox appearance is limited by the slow internal redox equilibration. During overall turnover with DTT, the thiolate-to-flavin charge-transfer complex accumulates with an apparent extinction coefficient of 4.9 mM-1 cm-1 at 560 nm. In contrast, glutathione (GSH) is a much slower reductant of the oxidase to the EH2 level and shows a kcat/Km 100-fold smaller than DTT. Full reduction of EH2 by GSH shows a limiting rate of 3.6/s at 4 degrees C comparable to that seen with DTT. Reduced RNase is an excellent substrate of the enzyme, with kcat/Km per thiol some 1000- and 10-fold better than GSH and DTT, respectively. Enzyme-monitored steady-state turnover shows that RNase is a facile reductant of the oxidase to the EH2 state. This work demonstrates the basic similarity in the mechanism of turnover between all of these three substrates. A physiological role for sulfhydryl oxidase in the formation of disulfide bonds in secreted proteins is discussed.

  17. Synthesis and Posttranslational Activation of Sulfhydryl-Endopeptidase in Cotyledons of Germinating Vigna mungo Seeds.

    PubMed

    Mitsuhashi, W; Minamikawa, T

    1989-01-01

    A sulfhydryl-endopeptidase was purified as a 33 kilodalton (kD) mass polypeptide from cotyledons of Vigna mungo seedlings. Immunoblot analysis with antiserum made against the purified enzyme showed that the sulfhydryl-endopeptidase was synthesized only in the cotyledons during germination and that the amount of the enzyme increased until 4 days after imbibition and decreased thereafter. Next, an RNA fraction was prepared from cotyledons of 3 day old seedlings and translated in a wheat germ system. The synthesis of a 45 kD polypeptide was shown by the analysis of its translation products by immunoprecipitation with the antiserum to the endopeptidase and gel electrophoresis. When the RNA fraction was translated in the presence of canine microsomal membranes, a smaller polypeptide, having a 43 kD molecular mass, was detected as the translation product. When membrane-bound polysomes, but not free polysomes, prepared from cotyledons were used for translation in the wheat germ system, both the 43 and 45 kD polypeptides were synthesized. By incubation of a crude enzyme extract from cotyledons at 5 +/- 1 degrees C at neutral pH, the 43 kD polypeptide was sequentially cleaved to the 33 kD polypeptide via 39 and 36 kD intermediate polypeptides. The endopeptidase was activated simultaneously with the processing. Two-dimensional polyacrylamide gel electrophoresis showed that the 33 kD polypeptide was the fully activated form of the enzyme, whereas little or no activity was detected in other forms. From the present results, we postulate that the sulfhydryl-endopeptidase is first synthesized as the 45 kD precursor with a 2 kD signal peptide being cleaved, and that the 43 kD polypeptide is further cleaved to give the 33kD mature enzyme.

  18. Synthesis and Posttranslational Activation of Sulfhydryl-Endopeptidase in Cotyledons of Germinating Vigna mungo Seeds 1

    PubMed Central

    Mitsuhashi, Wataru; Minamikawa, Takao

    1989-01-01

    A sulfhydryl-endopeptidase was purified as a 33 kilodalton (kD) mass polypeptide from cotyledons of Vigna mungo seedlings. Immunoblot analysis with antiserum made against the purified enzyme showed that the sulfhydryl-endopeptidase was synthesized only in the cotyledons during germination and that the amount of the enzyme increased until 4 days after imbibition and decreased thereafter. Next, an RNA fraction was prepared from cotyledons of 3 day old seedlings and translated in a wheat germ system. The synthesis of a 45 kD polypeptide was shown by the analysis of its translation products by immunoprecipitation with the antiserum to the endopeptidase and gel electrophoresis. When the RNA fraction was translated in the presence of canine microsomal membranes, a smaller polypeptide, having a 43 kD molecular mass, was detected as the translation product. When membrane-bound polysomes, but not free polysomes, prepared from cotyledons were used for translation in the wheat germ system, both the 43 and 45 kD polypeptides were synthesized. By incubation of a crude enzyme extract from cotyledons at 5 ± 1°C at neutral pH, the 43 kD polypeptide was sequentially cleaved to the 33 kD polypeptide via 39 and 36 kD intermediate polypeptides. The endopeptidase was activated simultaneously with the processing. Two-dimensional polyacrylamide gel electrophoresis showed that the 33 kD polypeptide was the fully activated form of the enzyme, whereas little or no activity was detected in other forms. From the present results, we postulate that the sulfhydryl-endopeptidase is first synthesized as the 45 kD precursor with a 2 kD signal peptide being cleaved, and that the 43 kD polypeptide is further cleaved to give the 33kD mature enzyme. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:16666526

  19. Some properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1977-01-01

    Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents. PMID:194582

  20. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli

    PubMed Central

    Rodriguez, Gabriel M.; Atsumi, Shota

    2015-01-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90–99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2–C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production. PMID:25108218

  1. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes. PMID:27580341

  2. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  3. Mitochondrial protein import: modification of sulfhydryl groups of the inner mitochondrial membrane import machinery in Solanum tuberosum inhibits protein import.

    PubMed

    von Stedingk, E M; Pavlov, P F; Grinkevich, V A; Glaser, E

    1997-12-01

    Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 beta subunit of the ATP synthase (pF1 beta) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondrial than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 beta with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 beta into intact mitochondria. Import of pF1 beta through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.

  4. Crystal and molecular structure of the sulfhydryl protease calotropin DI at 3.2 A resolution.

    PubMed

    Heinemann, U; Pal, G P; Hilgenfeld, R; Saenger, W

    1982-11-15

    The three-dimensional structure of the sulfhydryl protease calotropin DI from the madar plant, Calotropis gigantea, has been determined at 3.2 A resolution using the multiple isomorphous replacement method with five heavy atom derivatives. A Fourier synthesis based on protein phases with a mean figure of merit of 0.857 was used for model building. The polypeptide backbone of calotropin DI is folded to form two distinct lobes, one of which is comprised mainly of alpha-helices, while the other is characterized by a system of all antiparallel pleated sheets. The overall molecular architecture closely resembles those found in the sulfhydryl proteases papain and actinidin. Despite the unknown amino acid sequence of calotropin DI a number of residues around its active center could be identified. These amino acid side-chains were found in a similar arrangement as the corresponding ones in papain and actinidin. The polypeptide chain between residues 1 and 18 of calotropin DI folds in a unique manner, providing a possible explanation for the unusual inability of calotropin DI to hydrolyze those synthetic substrates that papain and actinidin act upon.

  5. Enhancement of lactase activity in milk by reactive sulfhydryl groups induced by heat treatment.

    PubMed

    Jiménez-Guzmán, J; Cruz-Guerrero, A E; Rodríguez-Serrano, G; López-Munguía, A; Gómez-Ruiz, L; García-Garibay, M

    2002-10-01

    The effects of heat treatments of milk and whey prior to lactose hydrolysis with Kluyveromyces lactis beta-galactosidase were studied. It was observed that heat treatment of milk significantly increases lactase activity, with a maximum activity increase found when milk was heated at 55 degrees C. In whey from 55 up to 75 degrees C, beta-galactosidase activity decreased slightly. Nevertheless, heating whey at 85 degrees C for 30 min raised the rate of hydrolysis significantly. Electrophoretic patterns and UV spectra proved that the activity change correlated with milk protein denaturation, particularly that of beta-lactoglobulin. Heating whey permeate did not increase the enzyme activity as heating whole whey; but heating whey prior to ultrafiltration also resulted in enzyme activation. Measurement of free sulfhydryl (SH) groups in both whey and heated whey permeate showed that the liberation of free SH is highly correlated to the change of the activity. Furthermore, this activation can be reversed by oxidizing the reactive sulfhydryl groups, proving that the observed effect may be related to the release of free SH to the medium, rather than to the denaturation of a thermolabile protein inhibitor.

  6. Changes in sulfhydryl groups of honeybee glyceraldehyde phosphate dehydrogenase associated with generation of the intermediate plateau in its saturation kinetics

    NASA Technical Reports Server (NTRS)

    Gelb, W. G.; Brandts, J. F.; Nordin, J. H.

    1973-01-01

    Honeybee and rabbit muscle GPDH were studied to obtain information at the chemical level regarding anomolous saturation kinetics of the honeybee enzyme. Results demonstrate that the enzyme's sulfhydryl groups are implicated in the process. Measured by DTNB titration, native honeybee GPDH has one less active SH than the native rabbit muscle enzyme and displays changes in overall sulfhydryl reactivity after preincubation with G-3-P or G-3-P plus NAD+. The total DTNB reactive sulfhydryls of rabbit muscle GPDH are not changed by preincubation with NAD+ or G-3-P; honeybee GPDH, under certain conductions of preincubation with these ligands, shows a decrease of two total DTNB reactive SH groups. This difference has been confirmed by an independent experiment in which the two enzymes were carboxymethylated with C-14 bromoacetic acid.

  7. Sulfhydryl site-specific cross-linking and labeling of monoclonal antibodies by a fluorescent equilibrium transfer alkylation cross-link reagent.

    PubMed

    del Rosario, R B; Wahl, R L; Brocchini, S J; Lawton, R G; Smith, R H

    1990-01-01

    The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies. PMID:2128870

  8. Mitochondrial aldehyde dehydrogenase and cardiac diseases

    PubMed Central

    Chen, Che-Hong; Sun, Lihan; Mochly-Rosen, Daria

    2010-01-01

    Numerous conditions promote oxidative stress, leading to the build-up of reactive aldehydes that cause cell damage and contribute to cardiac diseases. Aldehyde dehydrogenases (ALDHs) are important enzymes that eliminate toxic aldehydes by catalysing their oxidation to non-reactive acids. The review will discuss evidence indicating a role for a specific ALDH enzyme, the mitochondrial ALDH2, in combating oxidative stress by reducing the cellular ‘aldehydic load’. Epidemiological studies in humans carrying an inactive ALDH2, genetic models in mice with altered ALDH2 levels, and small molecule activators of ALDH2 all highlight the role of ALDH2 in cardioprotection and suggest a promising new direction in cardiovascular research and the development of new treatments for cardiovascular diseases. PMID:20558439

  9. Hydrogen Sulfide Inhibits L-Type Calcium Currents Depending upon the Protein Sulfhydryl State in Rat Cardiomyocytes

    PubMed Central

    Tsai, Haojan; Tang, Chaoshu; Jin, Hongfang; Du, Junbao

    2012-01-01

    Hydrogen sulfide (H2S) is a novel gasotransmitter that inhibits L-type calcium currents (I Ca, L). However, the underlying molecular mechanisms are unclear. In particular, the targeting site in the L-type calcium channel where H2S functions remains unknown. The study was designed to investigate if the sulfhydryl group could be the possible targeting site in the L-type calcium channel in rat cardiomyocytes. Cardiac function was measured in isolated perfused rat hearts. The L-type calcium currents were recorded by using a whole cell voltage clamp technique on the isolated cardiomyocytes. The L-type calcium channel containing free sulfhydryl groups in H9C2 cells were measured by using Western blot. The results showed that sodium hydrosulfide (NaHS, an H2S donor) produced a negative inotropic effect on cardiac function, which could be partly inhibited by the oxidant sulfhydryl modifier diamide (DM). H2S donor inhibited the peak amplitude of I Ca, L in a concentration-dependent manner. However, dithiothreitol (DTT), a reducing sulfhydryl modifier markedly reversed the H2S donor-induced inhibition of I Ca, L in cardiomyocytes. In contrast, in the presence of DM, H2S donor could not alter cardiac function and L type calcium currents. After the isolated rat heart or the cardiomyocytes were treated with DTT, NaHS could markedly alter cardiac function and L-type calcium currents in cardiomyocytes. Furthermore, NaHS could decrease the functional free sulfhydryl group in the L-type Ca2+ channel, which could be reversed by thiol reductant, either DTT or reduced glutathione. Therefore, our results suggest that H2S might inhibit L-type calcium currents depending on the sulfhydryl group in rat cardiomyocytes. PMID:22590646

  10. Actin Cys374 as a nucleophilic target of alpha,beta-unsaturated aldehydes.

    PubMed

    Dalle-Donne, Isabella; Carini, Marina; Vistoli, Giulio; Gamberoni, Luca; Giustarini, Daniela; Colombo, Roberto; Maffei Facino, Roberto; Rossi, Ranieri; Milzani, Aldo; Aldini, Giancarlo

    2007-03-01

    We have recently shown that actin can be modified by the Michael addition of 4-hydroxynonenal to Cys374. Here, we have exposed purified actin at increasing acrolein concentrations and have identified the sites of acrolein addition using LC-ESI-MS/MS. Acrolein reacted with Cys374, His87, His173, and, minimally, His40. Cys374 adduction by both 4-hydroxynonenal and acrolein negligibly affected the polymerization of aldehyde-modified (carbonylated) actin, as shown by fluorescence measurements. Differently, acrolein binding at histidine residues, when Cys374 was completely saturated, inhibited polymerization in a dose-dependent manner. Molecular modeling analyses indicated that structural distortions of the ATP-binding site, induced by four acrolein-Michael adducts, could explain the changes in the polymerization process. Aldehyde binding to Cys374 does not alter significantly actin polymerization because this residue is located in a very flexible region, whose covalent modifications do not alter the protein folding. These data demonstrate that Cys374 represents the primary target site of alpha,beta-unsaturated aldehyde addition to actin in vitro. As Cys374 is a preferential target for various oxidative/nitrosative modifications, and actin is one of the main carbonylated proteins in vivo, these findings also suggest that the highly reactive Cys374 could serve as a carbonyl scavenger of reactive alpha,beta-unsaturated aldehydes and other electrophilic lipids.

  11. Target-Specific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles.

    PubMed

    Campbell, McKenzie L; Guerra, Fernanda D; Dhulekar, Jhilmil; Alexis, Frank; Whitehead, Daniel C

    2015-10-12

    Aldehyde and carboxylic acid volatile organic compounds (VOCs) present significant environmental concern due to their prevalence in the atmosphere. We developed biodegradable functional nanoparticles comprised of poly(d,l-lactic acid)-poly(ethylene glycol)-poly(ethyleneimine) (PDLLA-PEG-PEI) block co-polymers that capture these VOCs by chemical reaction. Polymeric nanoparticles (NPs) preparation involved nanoprecipitation and surface functionalization with branched PEI. The PDLLA-PEG-PEI NPs were characterized by using TGA, IR, (1) H NMR, elemental analysis, and TEM. The materials feature 1°, 2°, and 3° amines on their surface, capable of capturing aldehydes and carboxylic acids from gaseous mixtures. Aldehydes were captured by a condensation reaction forming imines, whereas carboxylic acids were captured by acid/base reaction. These materials reacted selectively with target contaminants obviating off-target binding when challenged by other VOCs with orthogonal reactivity. The NPs outperformed conventional activated carbon sorbents.

  12. Pulse radiolysis studies of the interactions of the sulfhydryl compound dithiothreitol and sugars

    SciTech Connect

    Held, K.D.; Harrop, H.A.; Michael, B.D.

    1985-08-01

    Pulse radiolysis studies of the hydrogen atom transfer (repair) reaction from the sulfhydryl-containing (RSH) compound dithiothreitol (DTT) to the DNA sugar deoxyribose and to several related sugars have been undertaken. The H transfer reaction is measured by monitoring the transient absorbance of the radical-anion RSSR/sup -/. The H atom transfer reactions for some sugars were fitted by a single time exponential function, but other sugars exhibited both a fast and a slow component to the reaction. The maximum extent of total repair varied from 60% for ribose-5-phosphate to 100% for 2-deoxyglucose. The rate of repair, the extent of repair, and the appearance of more than one component of repair seem to depend on several factors. The biological relevance of the reactions studied herein is discussed and the rates obtained are compared with rates for repair of damage in certain radiobiological systems.

  13. Nucleotide-Protectable Labeling of Sulfhydryl Groups in Subunit I of the ATPhase from Halobacterium Saccharovorum

    NASA Technical Reports Server (NTRS)

    Sulzner, Michael; Stan-Lotter, Helga; Hochstein, Lawrence I.

    1992-01-01

    A membrane-bound ATPase from the archaebacterium Halobacterium saccharovorum is inhibited by N-ethyl-maleimide in a nucleotide-protectable manner. When the enzyme was incubated with N-[C-14]jethylmaleimide, the bulk of radioactivity was as- sociated with the 87,000-Da subunit (subunit 1). ATP, ADP, or AMP reduced incorporation of the inhibitor. No charge shift of subunit I was detected following labeling with N-ethylmaleimide, indicating an electroneutral reaction. The results are consistent with the selective modification of sulfhydryl groups in subunit I at or near the catalytic site and are further evidence of a resemblance between this archaebacterial ATPase and the vacuolar-type ATPases.

  14. Transmembrane Signaling Characterized in Bacterial Chemoreceptors by Using Sulfhydryl Cross-Linking in vivo

    NASA Astrophysics Data System (ADS)

    Lee, Geoffrey F.; Lebert, Michael R.; Lilly, Angela A.; Hazelbauer, Gerald L.

    1995-04-01

    Transmembrane signaling by bacterial chemoreceptors is thought to involve conformational changes within a stable homodimer. We investigated the functional consequences of constraining movement between pairs of helices in the four-helix structure of the transmembrane domain of chemoreceptor Trg. Using a family of cysteine-containing receptors, we identified oxidation treatments for intact cells that catalyzed essentially complete sulfhydryl cross-linking at selected positions and yet left flagellar and sensory functions largely unperturbed. Constraining movement by cross-links between subunits had little effect on tactic response, but constraining movement between transmembrane segments of the monomer drastically reduced function. We deduce that transmembrane signaling requires substantial movement between transmembrane helices of a monomer but not between interacting helices across the interface between subunits.

  15. Structural properties of cyanase. Denaturation, renaturation, and role of sulfhydryls and oligomeric structure in catalytic activity.

    PubMed

    Little, R M; Anderson, P M

    1987-07-25

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to give ammonia and bicarbonate. The enzyme is composed of 8-10 identical subunits (Mr = 17,008). The objective of this study was to clarify some of the structural properties of cyanase for the purpose of understanding the relationship between oligomeric structure and catalytic activity. Circular dichroism studies showed that cyanase has a significant amount of alpha-helix and beta-sheet structure. The one sulfhydryl group per subunit does not react with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) unless cyanase is denatured. Denaturation is apparently complete in 10 M urea or 6 M guanidine hydrochloride, but is significantly reduced in 10 M urea by the presence of azide (analog of cyanate) and is incomplete in 8 M urea. Denatured cyanase could be renatured and reactivated (greater than 85%) by removal of denaturants. Reactivation was greatly facilitated by the presence of certain anions, particularly bicarbonate, and by high ionic strength and protein concentration. The catalytic activity of renatured cyanase was associated only with oligomer. Cyanase that had been denatured in the presence of DTNB to give a cyanase-DTNB derivative could also be renatured at 26 degrees C to give active cyanase-DTNB oligomer. The active oligomeric form of the cyanase-DTNB derivative could be converted reversibly to inactive dimer by lowering the temperature to 4 degrees C or by reduction of the ionic strength and removal of monoanions. These results provide evidence that free sulfhydryl groups are not required for catalytic activity and that catalytic activity may be dependent upon oligomeric structure.

  16. Structural Basis of Substrate Recognition by Aldehyde Dehydrogenase 7A1

    PubMed Central

    2016-01-01

    Aldehyde dehydrogenase 7A1 (ALDH7A1) is part of lysine catabolism and catalyzes the NAD+-dependent oxidation of α-aminoadipate semialdehyde to α-aminoadipate. Herein, we describe a structural study of human ALDH7A1 focused on substrate recognition. Five crystal structures and small-angle X-ray scattering data are reported, including the first crystal structure of any ALDH7 family member complexed with α-aminoadipate. The product binds with the ε-carboxylate in the oxyanion hole, the aliphatic chain packed into an aromatic box, and the distal end of the product anchored by electrostatic interactions with five conserved residues. This binding mode resembles that of glutamate bound to the proline catabolic enzyme ALDH4A1. Analysis of ALDH7A1 and ALDH4A1 structures suggests key interactions that underlie substrate discrimination. Structures of apo ALDH7A1 reveal dramatic conformational differences from the product complex. Product binding is associated with a 16 Å movement of the C-terminus into the active site, which stabilizes the active conformation of the aldehyde substrate anchor loop. The fact that the C-terminus is part of the active site was hitherto unknown. Interestingly, the C-terminus and aldehyde anchor loop are disordered in a new tetragonal crystal form of the apoenzyme, implying that these parts of the enzyme are highly flexible. Our results suggest that the active site of ALDH7A1 is disassembled when the aldehyde site is vacant, and the C-terminus is a mobile element that forms quaternary structural interactions that aid aldehyde binding. These results are relevant to the c.1512delG genetic deletion associated with pyridoxine-dependent epilepsy, which alters the C-terminus of ALDH7A1. PMID:26260980

  17. Sulfhydryl groups of the F1 adenosine triphosphatase of Escherichia coli and the stoichiometry of the subunits.

    PubMed

    Stan-Lotter, H; Bragg, P D

    1984-02-15

    The distribution and total number of sulfhydryl groups present in the F1 adenosine triphosphatase of Escherichia coli were used to calculate the stoichiometry of the alpha-delta subunits. Titration with 5,5'-dithiobis (2-nitrobenzoate) gave 19.1 +/- 2.2 sulfhydryl groups/mol ATPase. Labeling with [14C]iodoacetamide and [14C]N-ethylmaleimide showed that 11.9, 3.1, 1.9, and 1.8 sulfhydryl groups per molecule of ATPase were associated with the alpha, beta, gamma, and delta subunits, respectively. The epsilon subunit was not labeled. Application of the method of Creighton [Nature (London) (1980) 284, 487-489] showed that 4, 1, and 2 sulfhydryl groups were present in the alpha, beta, and gamma subunits, respectively. This, together with published data for the delta subunit, allowed a subunit stoichiometry of alpha 3 beta 3 gamma delta to be calculated. The presence of four cysteinyl residues in the alpha subunit, as shown by several different methods, does not agree with the results of DNA sequencing of the ATPase genes [H. Kanazawa, T. Kayano, K. Mabuchi, and M. Futai (1981) Biochem. Biophys. Res. Commun. 103, 604-612; N. J. Gay and J. E. Walker (1981) Nucl. Acids Res. 9, 2187-2194] where three cysteinyl residues/alpha subunit have been found. It is suggested that post-translational modification of the alpha subunit to add a fourth cysteinyl residue might occur.

  18. Site-specific modification of rabbit muscle creatine kinase with sulfhydryl-specific fluorescence probe by use of hydrostatic pressure.

    PubMed

    Tanaka, N; Tonai, T; Kunugi, S

    1997-05-23

    We investigated the effect of pressure on the reactivity of cysteine residues of rabbit muscle creatine kinase (CK). Performing the fluorescent modification under high pressure, a unique sulfhydryl group (Cys-253) of CK was labeled, in addition to Cys-282, which is known as a single reactive sulfhydryl under ambient conditions. CK is composed of two identical subunits, containing four cysteine residues in each subunit. Cys-282 plays an important role in enzymatic activity. In the pressure range from 0.1 MPa to 300 MPa, only one sulfhydryl group for each subunit of CK reacted with the reagents. However, at 400 MPa 2 sulfhydryl groups were modified. The 2-nitro-5-thiocyanobenzoic acid (NTCB) cleavage method revealed that both Cys-282 and Cys-253 were modified at 400 MPa. The chemical modification of Cys-282 induced a loss of enzymatic activity. By taking advantage of the modification under high pressure, selective modification of Cys-253 with 5-[N-(iodoacetamidoethyl)amino]-naphthalene-1-sulfonate (IAEDANS) was performed. A reversible blocking of Cys-282 at atmospheric pressure was followed by the reaction of Cys-253 with the fluorescent probe at 400 MPa. After the decompression, Cys-282 was unblocked, and obtained Cys-253-modified CK retained up to 64% of the catalytic activity of the intact CK. The fluorescent properties of IAEDANS covalently bound at Cys-253 were not significantly different from those of IAEDANS covalently bound at Cys-282.

  19. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  20. Inhibition of human cytochrome P450 2E1 and 2A6 by aldehydes: structure and activity relationships.

    PubMed

    Kandagatla, Suneel K; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M

    2014-08-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ± 0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ± 1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5-12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8 ± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0 ± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1.

  1. Inhibition of human Cytochrome P450 2E1 and 2A6 by aldehydes: Structure and activity relationships

    PubMed Central

    Kandagatla, Suneel K.; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M.

    2014-01-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ±0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ±1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5–12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. PMID:24924949

  2. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  3. Human antioxidant-response-element-mediated regulation of type 1 NAD(P)H:quinone oxidoreductase gene expression. Effect of sulfhydryl modifying agents.

    PubMed

    Li, Y; Jaiswal, A K

    1994-11-15

    Human antioxidant-response element (hARE) containing two copies of the AP1/AP1-like elements arranged as inverse repeat is known to mediate basal and beta-naphthoflavone-induced transcription of the type 1 NAD(P)H:quinone oxidoreductase (NQO1) gene. Band-shift assays revealed that beta-naphthoflavone increased binding of nuclear proteins at the hARE. Super shift assays identified Jun-D and c-Fos proteins in the band-shift complexes observed with control and beta-naphthoflavone-treated Hepa-1 nuclear extracts. Hepa-1 cells stably transformed with hARE-tk-chloramphenicol acetyl transferase (CAT) recombinant plasmid were used to demonstrate that, in addition to beta-naphthoflavone, a variety of antioxidants, tumor promoters and hydrogen peroxide (H2O2) also increased expression of hARE-mediated CAT gene. beta-naphthoflavone induction of the CAT gene expression in Hepa-1 cells was found insensitive to inhibitors of protein kinase C and tyrosine kinases. However, binding of regulatory proteins at the hARE and the CAT gene expression in Hepa-1 cells were increased by dithiothreitol, 2-mercaptoethanol and diamide. Treatment of the Hepa-1 cells with N-ethylmaleimide reduced binding of proteins at the hARE and interfered with expression and beta-naphthoflavone induction of the CAT gene. These results suggested a role of sulfhydryl modification of hARE binding (Jun and Fos) proteins which mediate basal and induced expression of the NQO1 gene. We also report that in-vitro-translated products of the proto-oncogenes, Jun and Fos, bind to the hARE in band-shift assays. The incubation of Jun and Fos proteins with small amounts of nuclear extract from dimethylsulfoxide-treated (control) or beta-naphthoflavone treated Hepa-1 cells prior to band-shift assays increased the binding of Jun and Fos proteins to the hARE. Interestingly, the increase in binding of Jun and Fos proteins to the hARE was more prominent with beta-naphthoflavone-treated nuclear extract as compared to the control

  4. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.

    PubMed

    Barski, O A; Gabbay, K H; Bohren, K M

    1996-11-12

    Human aldehyde reductase has a preference for carboxyl group-containing negatively charged substrates. It belongs to the NADPH-dependent aldo-keto reductase superfamily whose members are in part distinguished by unique C-terminal loops. To probe the role of the C-terminal loops in determining substrate specificities in these enzymes, two arginine residues, Arg308 and Arg311, located in the C-terminal loop of aldehyde reductase, and not found in any other C-terminal loop, were replaced with alanine residues. The catalytic efficiency of the R311A mutant for aldehydes containing a carboxyl group is reduced 150-250-fold in comparison to that of the wild-type enzyme, while substrates not containing a negative charge are unaffected. The R311A mutant is also significantly less sensitive to inhibition by dicarboxylic acids, indicating that Arg311 interacts with one of the carboxyl groups. The inhibition pattern indicates that the other carboxyl group binds to the anion binding site formed by Tyr49, His112, and the nicotinamide moiety of NADP+. The correlation between inhibitor potency and the length of the dicarboxylic acid molecules suggests a distance of approximately 10 A between the amino group of Arg311 and the anion binding site in the aldehyde reductase molecule. The sensitivity of inhibition of the R311A mutant by several commercially available aldose reductase inhibitors (ARIs) was variable, with tolrestat and zopolrestat becoming more potent inhibitors (30- and 5-fold, respectively), while others remained the same or became less potent. The catalytic properties, substrate specificity, and susceptibility to inhibition of the R308A mutant remained similar to that of the wild-type enzyme. The data provide direct evidence for C-terminal loop participation in determining substrate and inhibitor specificity of aldo-keto reductases and specifically identifies Arg311 as the basis for the carboxyl-containing substrate preference of aldehyde reductase. PMID:8916913

  5. Volatile aldehydes in libraries and archives

    NASA Astrophysics Data System (ADS)

    Fenech, Ann; Strlič, Matija; Kralj Cigić, Irena; Levart, Alenka; Gibson, Lorraine T.; de Bruin, Gerrit; Ntanos, Konstantinos; Kolar, Jana; Cassar, May

    2010-06-01

    Volatile aldehydes are produced during degradation of paper-based materials. This may result in their accumulation in archival and library repositories. However, no systematic study has been performed so far. In the frame of this study, passive sampling was carried out at ten locations in four libraries and archives. Despite the very variable sampling locations, no major differences were found, although air-filtered repositories were found to have lower concentrations while a non-ventilated newspaper repository exhibited the highest concentrations of volatile aldehydes (formaldehyde, acetaldehyde, furfural and hexanal). Five employees in one institution were also provided with personal passive samplers to investigate employees' exposure to volatile aldehydes. All values were lower than the presently valid exposure limits. The concentration of volatile aldehydes, acetic acid, and volatile organic compounds (VOCs) in general was also compared with that of outdoor-generated pollutants. It was evident that inside the repository and particularly inside archival boxes, the concentration of VOCs and acetic acid was much higher than the concentration of outdoor-generated pollutants, which are otherwise more routinely studied in connection with heritage materials. This indicates that further work on the pro-degradative effect of VOCs on heritage materials is necessary and that monitoring of VOCs in heritage institutions should become more widespread.

  6. Oxidation of Aromatic Aldehydes Using Oxone

    ERIC Educational Resources Information Center

    Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.

    2007-01-01

    The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…

  7. Aldehyde Reduction by Cytochrome P450

    PubMed Central

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A.

    2011-01-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes, 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE); specifically the aldehyde reduction reactions of cytochrome P450s (CYPs). These assays can be performed using either liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method used here to study the reduction of a model α,β-unsaturated aldehyde, 9-AA, by CYPs was adapted from the assay used to investigate 9-anthracene oxidation as reported by Marini et al. (Marini et al., 2003). For experiments measuring reduction of the endogenous aldehyde, 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH and the metabolites were separated by High Pressure Liquid Chromatograpy (HPLC), using an adaptation of the method of Srivastava et al. (Srivastava et al., 2010). For study of 9-AA and 4-HNE reduction, the first step involves incubation of the substrate with the CYP in appropriate media, followed by quantification of metabolites through either spectrofluorimetry or analysis by HPLC coupled with a radiometric assay, respectively. Metabolite identification can be achieved by HPLC GC-mass spectrometric analysis. Inhibitors of cytochrome P450 function can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction reactions for CYP’s were not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These character of these reactions are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  8. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  9. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  10. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  11. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  12. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  13. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  14. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  15. Colorimetric analysis of protein sulfhydryl groups in milk: applications and processing effects.

    PubMed

    Owusu-Apenten, R

    2005-01-01

    Methods for protein sulfhydryl (SH) group analysis in food systems have been largely overlooked. Nevertheless, changes in SH group concentration affect both physical and nutritional characteristics of high protein foods and ingredients. Food scientists and technologists require improved understanding of protein SH chemistry in order to design processes that minimize loss of thiol groups. This article surveys colorimetric methods for food protein SH group analysis with applications to fluid milk and dried milk powder. Most colorimetric assays (chloromeribenzoate, pyridine disulfide, Nitrobenzo-2-oxa-1,3-diazole, papain reactivation assay, etc.) were found to be inferior to the Ellman method based on the use of 5,5'dithio (bis-2 nitro benzoic acid). Techniques for SH group analysis in fluid milk and dried milk powder are described, along with typical results, their interpretations, and current research related to processing effects and the role of milk SH content on a wider range of technological issues, such as development of cooked flavors, fouling and cleaning of plate heat exchanges, protein-protein interactions, and the storage stability. Finally, a number of areas requiring further research are presented.

  16. Partial amino acid sequences around sulfhydryl groups of soybean beta-amylase.

    PubMed

    Nomura, K; Mikami, B; Morita, Y

    1987-08-01

    Sulfhydryl (SH) groups of soybean beta-amylase were modified with 5-(iodoaceto-amidoethyl)aminonaphthalene-1-sulfonate (IAEDANS) and the SH-containing peptides exhibiting fluorescence were purified after chymotryptic digestion of the modified enzyme. The sequence analysis of the peptides derived from the modification of all SH groups in the denatured enzyme revealed the existence of six SH groups, in contrast to five reported previously. One of them was found to have extremely low reactivity toward SH-reagents without reduction. In the native state, IAEDANS reacted with 2 mol of SH groups per mol of the enzyme (SH1 and SH2) accompanied with inactivation of the enzyme owing to the modification of SH2 located near the active site of this enzyme. The selective modification of SH2 with IAEDANS was attained after the blocking of SH1 with 5,5'-dithiobis-(2-nitrobenzoic acid). The amino acid sequences of the peptides containing SH1 and SH2 were determined to be Cys-Ala-Asn-Pro-Gln and His-Gln-Cys-Gly-Gly-Asn-Val-Gly-Asp-Ile-Val-Asn-Ile-Pro-Ile-Pro-Gln-Trp, respectively.

  17. RELATION BETWEEN WATER PERMEABILITY AND INTEGRITY OF SULFHYDRYL GROUPS IN MALIGNANT AND NORMAL CELLS

    PubMed Central

    Belkin, Morris; Hardy, Walter G.

    1961-01-01

    When malignant cells, animal and human, were exposed in vitro to solutions of heavy metals or other selected compounds, three types of cell blebs were produced: (1) acentric blebs, arising from one side of the cell, e. g., by chlormerodrin, meralluride sodium, mercuric chloride; (2) symmetrical blebs; which completely enveloped the cell, e. g., by strong silver protein, auric chloride, p-chloromercuribenzoate; (3) scallop blebs, numerous small spherical elevations which completely covered the cell, e.g., by N-ethyl-maleimide, trivalent arsenicals, iodoacetamide. As indicated by vital stains and morphologic appearance, the blebs arose in healthy cells. They also can be made to appear in vivo in ascites tumor cells by intraperitoneal administration of a blebbing agent. All the bleb-producing chemicals have the property of reacting with protein-sulfhydryl groups by alkylation, oxidation or mercaptide formation. The three bleb types have been induced in 8 mouse and 2 rat ascites tumor cells; in 4 human and 1 mouse malignant cell lines; and in 3 normal cell lines grown in tissue culture. In contrast, cells from normal solid tissues of liver, lung, spleen, kidney, testis and brain from mouse, rat and rabbit failed to produce blebs. A possible interpretation for these observations is presented. PMID:19866586

  18. Relationship between rubisco sulfhydryl content and relative sensitivity of potato cultivars to ozone

    SciTech Connect

    Enyedi, A.J.; Pell, E.J. )

    1989-04-01

    Ozone (O{sub 3}) induced a reduction in quantity of rubisco in potato foliage. In vitro, O{sub 3} predisposed purified rubisco to elevated proteolysis; reagents which protected sulfhydryl (SH) groups suppressed this effect. We hypothesized that rubisco SH content correlated directly with foliar O{sub 3} sensitivity. Rubisco was purified from Solanum tuberosum L. O{sub 3}-tolerant cv. Superior (SP) and Norgold Russet (NR), and O{sub 3}-susceptible cv. Norland (NL) and Cherokee (CK). When native rubisco was titrated with DTNB, protein of NL contained 1.33 and 1.26 times more SH groups than SP and NR, respectively. Rubisco from CK also contained more SH groups than SP and NR, but the difference was not significant. Rubisco of SP, NR and CK denatured by SDS exhibited identical number of SH groups, however, NL exhibited 1.15 times more SH groups. The greater number of SH groups in rubisco from NL versus SP and NR may explain its relative sensitivity to ozone. The role of SH groups in ozone-sensitivity of CK will require further study.

  19. Evidence that the two free sulfhydryl groups of plasma fibronectin are in different local environments. Saturation-recovery electron spin resonance study.

    PubMed Central

    Lai, C S; Narasimhan, C; Yin, J J

    1989-01-01

    Human plasma fibronectin is a dimer consisting of two subunits; each contains two cryptic thiol groups that were selectively labeled with an 15N,2H-maleimide spin label. Previous studies using conventional X-band electron spin resonance (ESR) methods showed that the spectrum of the labeled protein displays a single strongly immobilized component with an effective rotational correlation time of approximately 17 ns, suggesting that the physical environments of the two labeled sites per chain are indistinguishable. Here we have used saturation-recovery ESR to measure directly electron spin-lattice relaxation time (T1) of the labeled protein in solution at 27 degrees C. Interestingly, the time evolution of the signal was found to be biphasic, which was deconvoluted into two T1 values of 1.37 and 4.53 microseconds. Thus, the two spin-labeled sulfhydryl sites of plasma fibronectin (Fn), being similar in rates of rotational diffusion, differ by a factor of 3.2 in T1. Parallel experiments using various fibronectin fragments showed that the 1.37-microseconds component is associated with the label attached onto the thiol located in between the DNA-binding and the cell-binding domains, and the 4.53-microseconds component is associated with the label attached onto the thiol located within the carboxyl-terminal fibrin-binding domain. The data suggest that the saturation-recovery ESR is a useful method for differentiating multiple spin-labeled sites on macromolecules in which the labels undergo similar rates of rotational motion. PMID:2550091

  20. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7.

    PubMed

    Končitíková, Radka; Vigouroux, Armelle; Kopečná, Martina; Andree, Tomáš; Bartoš, Jan; Šebela, Marek; Moréra, Solange; Kopečný, David

    2015-05-15

    Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes. PMID:25734422

  1. Facile preparation of biocompatible sulfhydryl cotton fiber-based sorbents by "thiol-ene" click chemistry for biological analysis.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Zhu, Yuan-Yuan; Chen, Xi; Zhang, Zheng; Wang, Shao-Ting; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-10-22

    Sulfhydryl cotton fiber (SCF) has been widely used as adsorbent for a variety of metal ions since 1971. Thanks to the abundant thiols on SCF, in this study, we reported a universal method for the facile preparation of SCF-based materials using "thiol-ene" click chemistry for the first time. With the proposed method, two types of SCF-based materials, phenylboronic acid grafted sulfhydryl cotton fiber (SCF-PBA) and zirconium phosphonate-modified sulfhydryl cotton fiber (SCF-pVPA-Zr(4+)), were successfully prepared. The grafted functional groups onto the thiol group of SCF were demonstrated by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). The prepared fibrous materials exhibited excellent fiber strength, good stability in aqueous or nonaqueous solutions, and great biocompatibility. Moreover, we developed filter-free in-pipet-tip SPE using these SCF-based materials as adsorbent for the enrichment of ribonucleosides, glycopeptides and phosphopeptides. Our results showed that SCF-PBA adsorbent can selectively capture ribonucleosides and glycopeptides from complex biological samples. And SCF-pVPA-Zr(4+) adsorbent exhibited high selectivity and capacity in the enrichment of phosphopeptides from the digestion mixture of β-casein and bovine serum albumin (BSA), as well as human serum and nonfat milk digest. Generally, the preparation strategy can be a universal method for the synthesis of other functionalized cotton-based adsorbents with special requirement in microscale biological analysis.

  2. Influence of certain essential oils on carcinogen-metabolizing enzymes and acid-soluble sulfhydryls in mouse liver.

    PubMed

    Banerjee, S; Sharma, R; Kale, R K; Rao, A R

    1994-01-01

    The influence of essential oils from naturally occurring plant dietary items such as cardamom, celery seed, cumin seed, coriander, ginger, nutmeg, and zanthoxylum on the activities of hepatic carcinogen-metabolizing enzymes (cytochrome P450, aryl hydrocarbon hydroxylase, and glutathione S-transferase) and acid-soluble sulfhydryl level was investigated in Swiss albino mice. Each oil was fed by gavage at 10 microliters/day for 14 days, and then the animals were sacrificed and their hepatic enzyme activities and sulfhydryl levels were evaluated. Only nutmeg and zanthoxylum oils induced cytochrome P450 level significantly (p < 0.05), whereas cardamom oil caused a significant reduction in its activity (p < 0.05). Furthermore, aryl hydrocarbon hydroxylase activity was significantly elevated only by treatment with ginger oil (p < 0.01), whereas nutmeg oil caused a significant reduction in its activity (p < 0.01). The remaining oils did not significantly alter the level of cytochrome P450 and aryl hydrocarbon hydroxylase activity. Glutathione S-transferase activity was significantly elevated in all experimental groups (p < 0.1-p < 0.001) compared with controls. The acid-soluble sulfhydryl was significantly elevated only by the essential oils of cardamom (p < 0.05), nutmeg (p < 0.05), and zanthoxylum (p < 0.01). Our observations suggest that intake of essential oils affects the host enzymes associated with activation and detoxication of xenobiotic compounds, including chemical carcinogens and mutagens. PMID:8072879

  3. Reversible dissociation of active octamer of cyanase to inactive dimer promoted by alteration of the sulfhydryl group.

    PubMed

    Anderson, P M; Johnson, W V; Korte, J J; Xiong, X F; Sung, Y C; Fuchs, J A

    1988-04-25

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate resulting in the decomposition of cyanate to ammonia and bicarbonate. In this study, the role of the single sulfhydryl group in each of the eight identical subunits of cyanase was investigated. Tetranitromethane, methyl methanethiosulfonate, N-ethylmaleimide, and Hg2+ all reacted with the sulfhydryl group to give derivatives which had reduced activities and which dissociated reversibly to inactive dimer. Association of inactive dimer to active octamer was facilitated by the presence of azide (cyanate analog) and bicarbonate, increased temperature and enzyme concentration, and presence of phosphate. Nitration of tyrosine residues by tetranitromethane occurred only in the absence of azide and bicarbonate, suggesting that at least some of the tyrosine residues become exposed when octamer dissociates to dimer. Site-directed mutagenesis was used to prepare a mutant enzyme in which serine was substituted for cysteine. The mutant enzyme was catalytically active and had properties very similar to native enzyme, except that it was less stable to treatment with urea and to high temperatures. These results establish that in native cyanase the sulfhydryl group per se is not required for catalytic activity, but it may play a role in stabilizing octameric structure, and that octameric structure is required for catalytic activity.

  4. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    PubMed

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-01

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  5. Neurotoxicity of reactive aldehydes: the concept of "aldehyde load" as demonstrated by neuroprotection with hydroxylamines.

    PubMed

    Wood, Paul L; Khan, M Amin; Kulow, Sarah R; Mahmood, Siddique A; Moskal, Joseph R

    2006-06-20

    The concept of "oxidative stress" has become a mainstay in the field of neurodegeneration but has failed to differentiate critical events from epiphenomena and sequalae. Furthermore, the translation of current concepts of neurodegenerative mechanisms into effective therapeutics for neurodegenerative diseases has been meager and disappointing. A corollary of current concepts of "oxidative stress" is that of "aldehyde load". This relates to the production of reactive aldehydes that covalently modify proteins, nucleic acids, lipids and carbohydrates and activate apoptotic pathways. However, reactive aldehydes can also be generated by mechanisms other than "oxidative stress". We therefore hypothesized that agents that can chemically neutralize reactive aldehydes should demonstrate superior neuroprotective actions to those of free radical scavengers. To this end, we evaluated hydroxylamines as aldehyde-trapping agents in an in vitro model of neurodegeneration induced by the reactive aldehyde, 3-aminopropanal (3-AP), a product of polyamine oxidase metabolism of spermine and spermidine. In this model, the hydroxylamines N-benzylhydroxylamine, cyclohexylhydroxylamine and t-butylhydroxylamine were shown to protect, in a concentration-dependent manner, against 3-AP neurotoxicity. Additionally, a therapeutic window of 3 h was demonstrated for delayed administration of the hydroxylamines. In contrast, the free radical scavengers TEMPO and TEMPONE and the anti-oxidant ascorbic acid were ineffective in this model. Extending these tissue culture findings in vivo, we examined the actions of N-benzylhydroxylamine in the trimethyltin (TMT) rat model of hippocampal CA3 neurodegeneration. This model involves augmented polyamine metabolism resulting in the generation of reactive aldehydes that compromise mitochondrial integrity. In the rat TMT model, NBHA (50 mg/kg, sc, daily) provided 100% protection against neurodegeneration, as reflected by measurements of KCl-evoked glutamate

  6. SAXS fingerprints of aldehyde dehydrogenase oligomers

    PubMed Central

    Tanner, John J.

    2015-01-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren–Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513–5522; Luo et al., J. Mol. Biol. 425 (2013) 3106–3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  7. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  8. One-Pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes.

    PubMed

    Papadopoulos, Giorgos N; Kokotos, Christoforos G

    2016-08-19

    A mild, one-pot, and environmentally friendly synthesis of amides from aldehydes and amines is described. Initially, a photoorganocatalytic reaction of aldehydes with di-isopropyl azodicarboxylate leads to an intermediate carbonyl imide, which can react with a variety of amines to afford the desired amides. The initial visible light-mediated activation of a variety of monosubstituted or disubstituted aldehydes is usually fast, occurring in a few hours. Following the photocatalytic reaction, addition of the primary amine at room temperature or the secondary amine at elevated temperatures leads to the corresponding amide from moderate to excellent yields without epimerization. This methodology was applied in the synthesis of Moclobemide, a drug against depression and social anxiety. PMID:27227271

  9. Aldehydes from n-6 fatty acid peroxidation. Effects on aminophospholipids.

    PubMed

    Guichardant, M; Bernoud-Hubac, N; Chantegrel, B; Deshayes, C; Lagarde, M

    2002-01-01

    4-Hydroxy-nonenal (4-HNE) is a major by-product of n-6 fatty acid peroxidation. It has been described to covalently bind biomolecules expressing primary amine, especially the Lys residues in proteins. Low-density lipoproteins (LDL) are well-described macromolecules to be modified by 4-HNE, making them available to scavenger receptors on macrophages. Those macrophages then become foam cells and play an active role in atherogenesis. This paper reports on the covalent binding of 4-HNE to phosphatidylethanolamine (PE), a major aminophospholipid in biological membranes. In contrast, phosphatidylserine (PS) is virtually not modified by 4-HNE. One stable adduct, the Michael adduct PE/4-HNE is a poor substrate of secreted phospholipase A(2) and is not cleaved by phospholipase D. Plasmalogen PE, an important subclass of PE, is covalently modified by 4-HNE as well, but appears to be further degraded on its sn-1 position, the alkenyl chain, which might alter the antioxidant potential of the molecule. An aldehyde homologous to 4-HNE has been characterized as a breakdown product of 12-hydroperoxyeicosatetraenoic acid (12-HpETE) and named 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). This compound as well as 4-HNE was detected in human plasma. Finally, 4-HDDE appears almost 3-fold more active than 4-HNE to make covalent adducts with PE. We conclude that 4-HNE and 4-HDDE are two biologically relevant markers of n-6 fatty acid peroxidation that may alter the phospholipid-dependent cell signaling.

  10. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    SciTech Connect

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  11. Characterization of Two Distinct Structural Classes of Selective Aldehyde Dehydrogenase 1A1 Inhibitors

    PubMed Central

    Morgan, Cynthia A.; Hurley, Thomas D.

    2015-01-01

    Aldehyde dehydrogenases (ALDH) catalyze the irreversible oxidation of aldehydes to their corresponding carboxylic acid. Alterations in ALDH1A1 activity are associated with such diverse diseases as cancer, Parkinson’s disease, obesity, and cataracts. Inhibitors of ALDH1A1 could aid in illuminating the role of this enzyme in disease processes. However, there are no commercially available selective inhibitors for ALDH1A1. Here we characterize two distinct chemical classes of inhibitors that are selective for human ALDH1A1 compared to eight other ALDH isoenzymes. The prototypical members of each structural class, CM026 and CM037, exhibit sub-micromolar inhibition constants, but have different mechanisms of inhibition. The crystal structures of these compounds bound to ALDH1A1 demonstrate that they bind within the aldehyde binding pocket of ALDH1A1 and exploit the presence of a unique Glycine residue to achieve their selectivity. These two novel and selective ALDH1A1 inhibitors may serve as chemical tools to better understand the contributions of ALDH1A1 to normal biology and to disease states. PMID:25634381

  12. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    EPA Science Inventory

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  13. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. PMID:25656103

  14. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production.

  15. Human augmenter of liver regeneration: probing the catalytic mechanism of a flavin-dependent sulfhydryl oxidase.

    PubMed

    Schaefer-Ramadan, Stephanie; Gannon, Shawn A; Thorpe, Colin

    2013-11-19

    Augmenter of liver regeneration is a member of the ERV family of small flavin-dependent sulfhydryl oxidases that contain a redox-active CxxC disulfide bond in redox communication with the isoalloxazine ring of bound FAD. These enzymes catalyze the oxidation of thiol substrates with the reduction of molecular oxygen to hydrogen peroxide. This work studies the catalytic mechanism of the short, cytokine form of augmenter of liver regeneration (sfALR) using model thiol substrates of the enzyme. The redox potential of the proximal disulfide in sfALR was found to be approximately 57 mV more reducing than the flavin chromophore, in agreement with titration experiments. Rapid reaction studies show that dithiothreitol (DTT) generates a transient mixed disulfide intermediate with sfALR signaled by a weak charge-transfer interaction between the thiolate of C145 and the oxidized flavin. The subsequent transfer of reducing equivalents to the flavin ring is relatively slow, with a limiting apparent rate constant of 12.4 s(-1). However, reoxidation of the reduced flavin by molecular oxygen is even slower (2.3 s(-1) at air saturation) and thus largely limits turnover at 5 mM DTT. The nature of the charge-transfer complexes observed with DTT was explored using a range of simple monothiols to mimic the initial nucleophilic attack on the proximal disulfide. While β-mercaptoethanol is a very poor substrate of sfALR (∼0.3 min(-1) at 100 mM thiol), it rapidly generates a mixed disulfide intermediate allowing the thiolate of C145 to form a strong charge-transfer complex with the flavin. Unlike the other monothiols tested, glutathione is unable to form charge-transfer complexes and is an undetectable substrate of the oxidase. These data are rationalized on the basis of the stringent steric requirements for thiol-disulfide exchange reactions. The inability of the relatively bulky glutathione to attain the in-line geometry required for efficient disulfide exchange in sfALR may be

  16. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway.

    PubMed

    Apostolopoulos, V; Pietersz, G A; Gordon, S; Martinez-Pomares, L; McKenzie, I F

    2000-06-01

    Antigens such as MUC1 coupled to oxidized mannan lead to rapid and efficient MHC class I presentation to CD8+ cells and a preferential T1 response; after reduction there is class II presentation and a T2 immune response. We now show that the selective advantage of the oxidized mannan-MUC1 is due to the presence of aldehydes and not Schiff bases, and that oxidized mannan-MUC1 binds to the mannose and not scavenger receptors and is internalized and presented by MHC class I molecules 1,000 times more efficiently than when reduced. After internalization there is rapid access to the class I pathway via endosomes but not lysosomes, proteasomal processing and transport to the endoplasmic reticulum, Golgi apparatus and cell surface. Aldehydes cause rapid entry into the class I pathway, and can therefore direct the subsequent immune response.

  17. Redox factor-1 activates endothelial SIRTUIN1 through reduction of conserved cysteine sulfhydryls in its deacetylase domain.

    PubMed

    Jung, Saet-Byel; Kim, Cuk-Seong; Kim, Young-Rae; Naqvi, Asma; Yamamori, Tohru; Kumar, Santosh; Kumar, Ajay; Irani, Kaikobad

    2013-01-01

    Apurinic/Apyrmidinic Endonuclease 1/Redox Factor-1 (APE1/Ref-1) is a reductant which is important for vascular homeostasis. SIRTUIN1 (SIRT1) is a lysine deacetylase that also promotes endothelium-dependent vasorelaxation. We asked if APE1/Ref-1 governs the redox state and activity of SIRT1, and whether SIRT1 mediates the effect of APE1/Ref-1 on endothelium-dependent vascular function. APE1/Ref-1 maintains sulfhydryl (thiol) groups of cysteine residues in SIRT1 in the reduced form and promotes endothelial SIRT1 activity. APE1/Ref-1 stimulates SIRT1 activity by targeting highly conserved vicinal thiols 371 and 374 which form a zinc tetra-thiolate motif in the deacetylase domain of SIRT1. Cysteine residues in the N-terminal redox domain of APE1/Ref-1 are essential for reducing SIRT1 and stimulating its activity. APE1/Ref-1 protects endothelial SIRT1 from hydrogen peroxide-induced oxidation of sulfhydryls and from inactivation. APE1/Ref-1 also promotes lysine deacetylation of the SIRT1 target endothelial nitric oxide synthase (eNOS). SIRT1 mutated at cysteines 371 and 374, which renders it non-reducible by APE1/Ref-1, prevents lysine deacetylation of eNOS by APE1/Ref-1. SIRT1 free thiol (reduced sulfhydryl) content and deacetylase activity are diminished in all examined tissues of APE1/Ref-1(+/-) mice, including the vasculature. Overexpression of SIRT1 in aortas of APE1/Ref-1(+/-) mice restores endothelium-dependent vasorelaxation and bioavailable nitric oxide (NO) to levels similar to those observed in wild-type mice. Thus, APE1/Ref-1, by maintaining functionally important cysteine sulfhydryls in SIRT1 in the reduced form, promotes endothelial SIRT1 activity. This reductive activation of endothelial SIRT1 by APE1/Ref-1 mediates the effect of APE1/Ref-1 on eNOS acetylation, promoting endothelium-derived NO and endothelium-dependent vasorelaxation.

  18. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    PubMed

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  19. Vascular Bioactivation of Nitroglycerin by Aldehyde Dehydrogenase-2

    PubMed Central

    Lang, Barbara S.; Gorren, Antonius C. F.; Oberdorfer, Gustav; Wenzl, M. Verena; Furdui, Cristina M.; Poole, Leslie B.; Mayer, Bernd; Gruber, Karl

    2012-01-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes the bioactivation of nitroglycerin (glyceryl trinitrate, GTN) in blood vessels, resulting in vasodilation by nitric oxide (NO) or a related species. Because the mechanism of this reaction is still unclear we determined the three-dimensional structures of wild-type (WT) ALDH2 and of a triple mutant of the protein that exhibits low denitration activity (E268Q/C301S/C303S) in complex with GTN. The structure of the triple mutant showed that GTN binds to the active site via polar contacts to the oxyanion hole and to residues 268 and 301 as well as by van der Waals interactions to hydrophobic residues of the catalytic pocket. The structure of the GTN-soaked wild-type protein revealed a thionitrate adduct to Cys-302 as the first reaction intermediate, which was also found by mass spectrometry (MS) experiments. In addition, the MS data identified sulfinic acid as the irreversibly inactivated enzyme species. Assuming that the structures of the triple mutant and wild-type ALDH2 reflect binding of GTN to the catalytic site and the first reaction step, respectively, superposition of the two structures indicates that denitration of GTN is initiated by nucleophilic attack of Cys-302 at one of the terminal nitrate groups, resulting in formation of the observed thionitrate intermediate and release of 1,2-glyceryl dinitrate. Our results shed light on the molecular mechanism of the GTN denitration reaction and provide useful information on the structural requirements for high affinity binding of organic nitrates to the catalytic site of ALDH2. PMID:22988236

  20. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities

    PubMed Central

    Chen, Che-Hong; Ferreira, Julio Cesar Batista; Gross, Eric R.; Mochly-Rosen, Daria

    2014-01-01

    A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme. PMID:24382882

  1. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective

    PubMed Central

    2015-01-01

    Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause “type-2 alkene toxicity” through additive interactions

  2. Molecular mechanisms of aldehyde toxicity: a chemical perspective.

    PubMed

    LoPachin, Richard M; Gavin, Terrence

    2014-07-21

    Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause "type-2 alkene toxicity" through additive interactions

  3. A Sulfhydryl Reagent Modulates Systemic Signaling for Wound-Induced and Systemin-Induced Proteinase Inhibitor Synthesis.

    PubMed Central

    Narvaez-Vasquez, J.; Orozco-Cardenas, M. L.; Ryan, C. A.

    1994-01-01

    The sulfhydryl group reagent p-chloromecuribenzene sulfonic acid (PCMBS), an established inhibitor of active apoplastic phloem loading of sucrose in several plant species, is shown to be a powerful inhibitor of wound-induced and systemin-induced activation of proteinase inhibitor synthesis and accumulation in leaves of tomato plants (Lycopersicon esculentum cv Castlemart). PCMBS, supplied to young tomato plants through their cut stems, blocks accumulation of proteinase inhibitors in leaves in response to wounding. The application of systemin directly to fresh wounds enhances systemic accumulation of proteinase inhibitors to levels higher than wounding alone. Placed on fresh wounds, PCMBS severely inhibits systemic induction of proteinase inhibitors, in both the presence and absence of exogenous systemin. PCMBS inhibition can be reversed by cysteine, dithiothreitol, and glutathione. Radiolabeled systemin placed on fresh wounds is readily transported from the wounded leaves to upper leaves. However, in the presence of PCMBS, radiolabeled systemin is not transported away from wound sites. Induction of proteinase inhibitor I synthesis by oligouronides (degree of polymerization [almost equal to] 20), linolenic acid, or methyl jasmonate was not inhibited by PCMBS. The cumulative data support a possible role for sulfhydryl groups in mediating the translocation of systemin from wound sites to distal receptor sites in tomato plants and further support a role for systemin as a systemic wound signal. PMID:12232239

  4. Appearance of aldehydes in the surface layer of lake waters.

    PubMed

    Dąbrowska, Agata; Nawrocki, Jacek; Szeląg-Wasielewska, Elżbieta

    2014-07-01

    The paper presents results concerning the changes in the content of aldehydes in samples of lake water collected near the lake surface. The study of lake waters was undertaken to explain which physicochemical parameters of the environment have the greatest influence on the level of aldehydes, which of the aldehydes are most often met in surface water and in what concentrations. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in surface water samples, while semi-volatile and poorly soluble aldehydes such as nonanal and decanal were observed seasonally. The contents of total aldehydes varied in a wide range, from 55 to 670 μg/l, and the concentration of total organic carbon varied significantly from 3 to 18 mg /l, but there was no evident correlation between them in all of samples. The total content of aldehydes did not depend on the meteorological parameters such as air temperature, UV radiation and ozone concentration; however, it was noted that the level of carbonyl concentration is related to the period of intense precipitation: in the period of very low precipitations, the highest contents of total aldehydes were determined in all of the water samples, and in the periods of intense precipitations, the content of total aldehydes was drastically smaller.

  5. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  6. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  7. DEVELOPMENTAL EXPRESSION OF ALDEHYDE DEHYDROGENASE IN RAT: A COMPARISON OF LIVER AND LUNG DEVELOPMENT

    EPA Science Inventory

    Metabolism is one of the major determinants for age-related susceptibility changes to chemicals. Aldehydes are highly reactive molecules present in the environment and can be produced during biotransformation of xenobiotics. Aldehyde dehydrogenases (ALDH) are important in aldehyd...

  8. Characteristics of aldehyde dehydrogenase 2 (Aldh2) knockout mice.

    PubMed

    Yu, Hsu-Sheng; Oyama, Tsunehiro; Isse, Toyohi; Kitakawa, Kyoko; Ogawa, Masanori; Pham, Thi-Thu-Phuong; Kawamoto, Toshihiro

    2009-11-01

    Acetaldehyde is an intermediate of ethanol oxidation. It covalently binds to DNA, and is known as a carcinogen. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme that oxidizes acetaldehyde. Approximately 45% of Chinese and Japanese individuals have the inactive ALDH2 genotypes (ALDH2*2/*2 and ALDH2*1/*2), and Aldh2 knockout mice appear to be a valid animal model for humans with inactive ALDH2. This review gives an overview of published studies on Aldh2 knockout mice, which were treated with ethanol or acetaldehyde. According to these studies, it was found that Aldh2 -/- mice (Aldh2 knockout mice) are more susceptible to ethanol and acetaldehyde-induced toxicity than Aldh2 +/+ mice (wild type mice). When mice were fed with ethanol, the mortality was increased. When they were exposed to atmospheres containing acetaldehyde, the Aldh2 -/- mice showed more severe toxic symptoms, like weight loss and higher blood acetaldehyde levels, as compared with the Aldh2 +/+ mice. Thus, ethanol and acetaldehyde treatment affects Aldh2 knockout mice more than wild type mice. Based on these findings, it is suggested that ethanol consumption and acetaldehyde inhalation are inferred to pose a higher risk to ALDH2-inactive humans. These results also support that ALDH2-deficient humans who habitually consume alcohol have a higher rate of cancer than humans with functional ALDH2. PMID:19874182

  9. Penicillin-binding site on the Escherichia coli cell envelope

    SciTech Connect

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-08-01

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.

  10. The Aldehyde Dehydrogenase Gene Superfamily Resource Center

    PubMed Central

    2009-01-01

    The website http://www.aldh.org is a publicly available database for nomenclature and functional and molecular sequence information for members of the aldehyde dehydrogenase (ALDH) gene superfamily for animals, plants, fungi and bacteria. The site has organised gene-specific records. It provides synopses of ALDH gene records, marries trivial terms to correct nomenclature and links global accession identifiers with source data. Server-side alignment software characterises the integrity of each sequence relative to the latest genomic assembly and provides identifier-specific detail reports, including a graphical presentation of the transcript's exon - intron structure, its size, coding sequence, genomic strand and locus. Also included are a summary of substrates, inhibitors and enzyme kinetics. The site provides reference lists and is designed to facilitate data mining by interested investigators. PMID:20038501

  11. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates.

    PubMed

    Kim, Young-Jin; Chung, Joo Eun; Kurisawa, Motoichi; Uyama, Hiroshi; Kobayashi, Shiro

    2004-01-01

    In this study, new tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates, have been developed. Tyrosinase is a copper-containing enzyme that catalyzes the hydroxylation of a monophenol (monophenolase activity) and the oxidation of an o-diphenol (diphenolase activity). In the measurement of tyrosinase inhibition activity, (+)-catechin acted as substrate and cofactor of tyrosinase. On the other hand, the polycondensates inhibited the tyrosine hydroxylation and L-DOPA oxidation by chelation to the active site of tyrosinase. The UV-visible spectrum of a mixture of tyrosinase and the polycondensate exhibited a characteristic shoulder peak ascribed to the chelation of the polycondensate to the active site of tyrosinase. Furthermore, circular dichroism measurement showed a small red shift of the band due to the interaction between tyrosinase and the polycondensate. These data support that the polycondensate acts as an inhibitor of tyrosinase. PMID:15003008

  12. 'Dopamine-first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile.

    PubMed

    Lichman, Benjamin R; Gershater, Markus C; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M

    2015-03-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the 'dopamine-first' mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity. PMID:25620686

  13. ‘Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    PubMed Central

    Lichman, Benjamin R; Gershater, Markus C; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet–Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the ‘dopamine-first’ mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity. PMID:25620686

  14. Possible role of alteration of aldehyde's scavenger enzymes during aging.

    PubMed

    Davydov, Vadim V; Dobaeva, Nataly M; Bozhkov, Anatoly I

    2004-01-01

    Apoptosis in tissues is induced by different kind of signals including endogenous aldehydes, such as 4-hydroxy-2, 3-nonenal. The accumulation rate of aldehydes in the cell is affected by conditions of oxidative stress. In the cell, aldehydes can be metabolized by various isoforms of aldehyde dehydrogenase, aldehyde reductase, and glutathione-S-transferase. There is evidence suggesting that the catalytic properties of these enzymes change during ontogenesis, and that aging is accompanied by their reduced activities. These functional changes may contribute substantially to the alteration in the organism sensitivity to damaging action of stress factors during aging, to age-related modulation of the action of endogenous aldehydes as a signal for apoptosis, and finally, to the origin of diseases associated with aging. In this context, the stimulation of enzymes' expression, and the activation of the catalytic properties of enzymes responsible for catabolism of endogenous aldehydes could become a perspective direction in increasing the organism resistance to the action of damaging factors during aging.

  15. PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic Inhibition Observed during a Sulfhydryl-Scavenging HTS

    PubMed Central

    2015-01-01

    Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter. PMID:25634295

  16. Ethanol induced changes in lipid peroxidation and nonprotein sulfhydryl content. Different sensitivities in rat liver and kidney.

    PubMed

    Kera, Y; Komura, S; Ohbora, Y; Kiriyama, T; Inoue, K

    1985-02-01

    Acute ethanol ingestion (5 g/Kg) led to an acceleration of lipid peroxidation and reduction in non-proteinic free sulfhydryl (NPFSH) levels in the rat liver and kidney. In the liver, progressive changes of these phenomena were inversely related, and maximal effects were observed 6 hr after ethanol ingestion. Unlike the liver, in the kidney, there was a rapid fall in NPFSH content followed by constantly reduced levels during ethanol intoxication, whereas acceleration of lipid peroxidation was detected only after 6-8 hr of ethanol. In addition, a lower dose (2 g/Kg) which caused no significant change in the liver, was effective in reducing renal NPFSH, but not in enhancing lipid peroxidation. These results suggest that acceleration of lipid peroxidation may not be required for the NPFSH decrease, at least in case of kidney.

  17. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    PubMed

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde). PMID:20061389

  18. Comparison of Helicobacter pylori Urease Inhibition by Rhizoma Coptidis, Cortex Phellodendri and Berberine: Mechanisms of Interaction with the Sulfhydryl Group.

    PubMed

    Li, Cailan; Xie, Jianhui; Chen, Xiaoying; Mo, Zhizhun; Wu, Wen; Liang, Yeer; Su, Zuqing; Li, Qian; Li, Yucui; Su, Ziren; Yang, Xiaobo

    2016-03-01

    Rhizoma Coptidis, Cortex Phellodendri, and berberine were reported to inhibit Helicobacter pylori. However, the underlying mechanism remained elusive. Urease plays a vital role in H. pylori colonization and virulence. In this work, aqueous extracts of Rhizoma Coptidis, Cortex Phellodendri of different origins, and purified berberine were investigated against H. pylori urease and jack bean urease to elucidate the inhibitory capacity, kinetics, and mechanism. Results showed that berberine was the major chemical component in Rhizoma Coptidis and Cortex Phellodendri, and the content of berberine in Rhizoma Coptidis was higher than in Cortex Phellodendri. The IC50 values of Rhizoma Coptidis were significantly lower than those Cortex Phellodendri and purified berberine, of which Coptis chinensis was shown to be the most active concentration- and time-dependent urease inhibitor. The Lineweaver-Burk plot analysis indicated that the inhibition pattern of C. chinensis against urease was noncompetitive for both H. pylori urease and jack bean urease. Thiol protectors (L-cysteine, glutathione, and dithiothreithol) significantly protected urease from the loss of enzymatic activity, while fluoride and boric acid showed weaker protection, indicating the active-site sulfhydryl group was possibly responsible for its inhibition. Furthermore, the urease inhibition proved to be reversible since C. chinensis-blocked urease could be reactivated by glutathione. The results suggested that the anti-urease activity of Rhizoma Coptidis was superior to that of Cortex Phellodendri and berberine, which was believed to be more likely to correlate to the content of total alkaloids rather than berberine monomer. The concentration- and time-dependent, reversible, and noncompetitive inhibition against urease by C. chinensis might be attributed to its interaction with the sulfhydryl group of the active site of urease. PMID:26669678

  19. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    SciTech Connect

    Nakamura, Tomofumi; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  20. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  1. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  2. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  3. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  4. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  5. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    NASA Astrophysics Data System (ADS)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  6. Silver-catalyzed synthesis of amides from amines and aldehydes

    DOEpatents

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  7. Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds.

    PubMed

    Negishi, O; Ozawa, T

    2000-06-01

    In a reaction between (-)-epicatechin (EC) and 2-mercaptoethanol (2ME), catalyzed by partially purified polyphenol oxidase (PPO) extracted from the style of Rhododendron mucronatum, 2'-(2-hydroxyethylthio)-(-)-epicatechin (2'-HETEC), 5'-(2-hydroxyethylthio)-(-)-epicatechin (5'-HETEC), and 2',5'-bis(2-hydroxyethylthio)-(-)-epicatechin (2',5'-HETEC) were formed. The rate of formation of 2',5'-HETEC from 5'-HETEC was faster than that from 2'-HETEC. In the absence of 2ME, the concentration of EC decreased rapidly and the reaction mixture turned brown; 2'-, 5'-, and 2',5'-HETEC, especially 2'-substituted HETECs. reacted more slowly. These data indicate that 2ME acts both as an inhibitor of the polymerization of O-quinone, presumably by binding to it and as a reductant involved in the conversion of O-quinone to O-dihydroxyphenol, Inhibition of enzymatic browning by other thiol compounds such as cysteine and dithiothreitol was also investigated.

  8. Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins.

    PubMed

    Takata, K; Horiuchi, S; Araki, N; Shiga, M; Saitoh, M; Morino, Y

    1988-10-15

    Long term incubation of proteins with glucose, named the Maillard reaction (Maillard, L. C. (1912) C. R. Acad. Sci. (Paris) 154, 66-68), gives rise to advanced glycosylation end product (AGE) with fluorescence, color, as well as cross-linked properties. The receptor-mediated endocytosis of AGE-proteins by macrophages was reported (Vlassara, H., Brownlee, M., and Cerami, A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5588-5592). The present study on the binding of AGE-bovine serum albumin (BSA) to rat peritoneal macrophages and sinusoidal liver cells demonstrated the presence of a saturable, high affinity receptor for AGE-BSA with Kd = 2.4 x 10(-7) M (macrophages) and 2.1 x 10(-7) M (sinusoidal cells). The cellular binding of AGE-BSA and its endocytic uptake by these cells were competitively inhibited by BSA preparations modified with aliphatic aldehydes such as formaldehyde or glycolaldehyde, ligands known to be specific for a scavenger receptor for aldehyde-modified proteins (Horiuchi, S., Murakami, M., Takata, K., and Morino, Y. (1986). J. Biol. Chem. 261, 4962-4966). These ligands also had a profound in vivo effect on the plasma clearance of 125I-AGE-BSA as well as its hepatic uptake. Thus, endocytic uptake of AGE-proteins by macrophages appeared to be mediated by a scavenger receptor for aldehyde-modified proteins. This provides evidence for the biological importance of the scavenger receptor in eliminating senescent macromolecules from the circulation.

  9. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed

    Winberg, J O; McKinley-McKee, J S

    1998-02-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  10. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed Central

    Winberg, J O; McKinley-McKee, J S

    1998-01-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  11. FAST TRACK COMMUNICATION: Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions

    NASA Astrophysics Data System (ADS)

    Feng, Xiumei; Hu, Jianqiang; Chen, Xiaohua; Xie, Jingsi; Liu, Yuying

    2009-02-01

    One-dimensional metal/semiconductor heterojunction nanomaterials have opened many new opportunities for future nanodevices because of their novel structures and unique electrical and optical properties. In this work, sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle (MWCNT/Au) heterojunctions were synthesized in high yield by a sulfhydryl- functionalized self-assembly strategy. The component, size, structure, morphology and bond mode of the MWCNT/Au heterojunctions thus prepared were investigated and demonstrated by transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, Fourier-transform infrared and UV-visible measurements. Cyclic voltammogram and electrochemical impedance spectroscopy studies indicate that the MWCNT/Au heterojunctions have a novel electron transfer property, which retards electron transfer of the horseradish peroxidase or the ferricyanide in the underlying electrodes. We believe that MWCNT/Au heterojunctions with high stability and a unique electrical property are expected to find potential applications for nanodevices.

  12. Effects of depletion of ascorbic acid or nonprotein sulfhydryls on the acute inhalation toxicity of nitrogen dioxide, ozone, and phosgene

    SciTech Connect

    Slade, R.; Highfill, J.W.; Hatch, G.E.

    1989-01-01

    The effect of depleting lung ascorbic acid (AH{sub 2}) and nonprotein sulfhydryls (NPSH) on the acute inhalation toxicity of nitrogen dioxide (NO{sub 2}), ozone (O{sub 3}), and phosgene (COCl{sub 2}) was investigated in guinea pigs. The increase in bronchoalveolar lavage (BAL) fluid protein (an indicator of alveolar-capillary damage leading to increased permeability) was measured 16 to 18 hr following a 4 hr exposure to the gas in animals deficient in (AH{sub 2}) or NPSH. Gas concentrations were chosen which produced low but significant increases in BAL protein. Lung (AH{sub 2}) was lowered to about 20% of control by feeding rabbit chow for 2 weeks. Lung NPSH was lowered to about 50% of control by injecting a mixture of buthionine S,R-sulfoximine (BSO) and diethylmaleate (DEM) (2.7 and 1.2 mmol/kg respectively). BSO/DEM did not affect the lung concentrations of (AH{sub 2}) or alpha-tocopherol. AH{sub 2} depletion caused a 6 fold and a 3 fold enhancement in the toxicity of 5 ppm and 10 ppm (NO{sub 2}), and a 6 fold enhancement in the toxicity of 0.5 ppm (O{sub 3}), but did not affect toxicity of 1.0 ppm (O{sub 3}). AH{sub 2} depletion did not affect phosgene toxicity (at 0.25 ppm and 0.5 ppm).

  13. Uptake of [sup 10]B in gliosarcomas following the injection of gluthathione monoethyl ester and sulfhydryl borane

    SciTech Connect

    Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1992-01-01

    The sulfhydryl borane Na[sub 2][sup 10]B[sub 12]H[sub 11]SH (BSH) was developed as a capture agent for BNCT about 20 years ago and is the compound currently used clinically in Japan for BNCT of malignant brain tumors. Tumor [sup 10]B concentrations following the infusion of the oxidized BSH, a disulfide dimer (Na[sub 4][sup 10]B[sub 24]H[sub 22]S[sub 2]), are nearly twice those obtained following administration of equal amounts of boron as BSH. Also, the rate of decrease of tumor [sup 10]B concentration is slower after dimer infusion than after BSH infusion. When BNCT was administered to rats bearing intracerebral gliosarcomas, the animals infused with dimer had a significant longer median survival time. Dimer, on the other hand, induces a moderately severe, but reversible, hepatotoxicity which may complicate its use in humans. Intracellular glutathione plays an important role in defense against radical-mediated tissue injury. Glutathione monoesters have been reported to have a protective effective on cisplatin toxicity and on radical-induced acute pancreatitis. We investigated the possibility of reducing dimer-induced hepatotoxicity by pre-administration of GSH-ME. The results indicate that not only does the pre-administration of GSH-ME markedly reduce dimer-induced hepatotoxicity, but also results in nearly a doubling of tumor boron concentration. Furthermore, GSH-ME markedly increases tumor boron uptake and retention following administration of BSH.

  14. Uptake of {sup 10}B in gliosarcomas following the injection of gluthathione monoethyl ester and sulfhydryl borane

    SciTech Connect

    Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1992-12-31

    The sulfhydryl borane Na{sub 2}{sup 10}B{sub 12}H{sub 11}SH (BSH) was developed as a capture agent for BNCT about 20 years ago and is the compound currently used clinically in Japan for BNCT of malignant brain tumors. Tumor {sup 10}B concentrations following the infusion of the oxidized BSH, a disulfide dimer (Na{sub 4}{sup 10}B{sub 24}H{sub 22}S{sub 2}), are nearly twice those obtained following administration of equal amounts of boron as BSH. Also, the rate of decrease of tumor {sup 10}B concentration is slower after dimer infusion than after BSH infusion. When BNCT was administered to rats bearing intracerebral gliosarcomas, the animals infused with dimer had a significant longer median survival time. Dimer, on the other hand, induces a moderately severe, but reversible, hepatotoxicity which may complicate its use in humans. Intracellular glutathione plays an important role in defense against radical-mediated tissue injury. Glutathione monoesters have been reported to have a protective effective on cisplatin toxicity and on radical-induced acute pancreatitis. We investigated the possibility of reducing dimer-induced hepatotoxicity by pre-administration of GSH-ME. The results indicate that not only does the pre-administration of GSH-ME markedly reduce dimer-induced hepatotoxicity, but also results in nearly a doubling of tumor boron concentration. Furthermore, GSH-ME markedly increases tumor boron uptake and retention following administration of BSH.

  15. Favism: effect of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate shunt activity, morphology, and membrane skeletal proteins.

    PubMed

    McMillan, D C; Bolchoz, L J; Jollow, D J

    2001-08-01

    Favism is an acute anemic crisis that can occur in susceptible individuals who ingest fava beans. The fava bean pyrimidine aglycone divicine has been identified as a hemotoxic constituent; however, its mechanism of toxicity remains unknown. We have shown recently that divicine can induce a favic-like response in rats and that divicine is directly toxic to rat red cells. In the present study, we have examined the effect of hemotoxic concentrations of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate (HMP) shunt activity, morphology, and membrane skeletal proteins. In vitro exposure of rat red cells to divicine markedly stimulated HMP shunt activity and resulted in depletion of reduced glutathione with concomitant formation of glutathione-protein mixed-disulfides. Examination of divicine-treated red cells by scanning electron microscopy revealed transformation of the cells to an extreme echinocytic morphology. SDS-PAGE and immunoblotting analysis of the membrane skeletal proteins indicated that hemotoxicity was associated with the apparent loss of skeletal protein bands 2.1, 3, and 4.2, and the appearance of membrane-bound hemoglobin. Treatment of divicine-damaged red cells with dithiothreitol reversed the protein changes, which indicated that the observed alterations were due primarily to the formation of disulfide-linked hemoglobin-skeletal protein adducts. The data suggest that oxidative modification of hemoglobin and membrane skeletal proteins by divicine may be key events in the mechanism underlying favism. PMID:11452148

  16. Protective effect of silymarin against ethanol-induced gastritis in rats: role of sulfhydryls, nitric oxide and gastric sensory afferents.

    PubMed

    Shin, Jung Hyu; Lee, Chang Woo; Oh, Soo Jin; Yun, Jieun; Lee, Kiho; Park, Song-Kyu; Kim, Hwan Mook; Han, Sang-Bae; Kim, Youngsoo; Kim, Hyoung-Chin; Kang, Jong Soon

    2013-05-01

    Silymarin has been known to exert antioxidant, anti-carcinogenic and anti-inflammatory effects. In this study, we examined the effect of silymarin on gastritis in rats. Oral administration of silymarin dose-dependently decreased gastric lesions in ethanol-induced gastritis model. Silymarin also significantly suppressed the development of gastric lesions in aspirin- or water immersion-restraint stress-induced gastritis models. Further study demonstrated that the gastroprotective effect of silymarin was blocked by nitric oxide (NO) synthase inhibitor l-NAME, SH blocker N-ethylmaleimide or TRPV1 antagonist capsazepine in ethanol-induced gastritis model. In addition, ex vivo analysis revealed that ethanol-induced decrease in gastric mucus and non-protein sulfhydryl (NPSH) groups was significantly reversed by silymarin treatment and lipid peroxidation was also suppressed by silymarin in ethanol-induced gastritis model. Taken together, these results suggest that silymarin exerts gastroprotective effects and the gastroprotective effects of silymarin might be related to the protection of gastric mucosal NO and NP-SH and the modulation of capsaicin-sensitive gastric sensory afferents.

  17. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications. PMID:24664672

  18. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis

    SciTech Connect

    Morel, Carole; Adami, Pascale; Musard, Jean-Francois; Duval, Dominique; Radom, Jean; Jouvenot, Michele

    2007-11-15

    The QSOX1 protein, belonging to a new class of FAD-linked Quiescin/Sulfhydryl oxidase, catalyzes disulfide bond formation. To give new insight into the biological function of QSOX1, we studied its involvement in oxidative stress-induced apoptosis and cell recovery of PC12 cells. By real time RT-PCR and flow cytometric analysis, we show that the QSOX1 mRNA and protein levels increased late after the beginning of oxidative treatment and were sustained for 72 h. These levels were still high when the PC12 cells were not dying but had resumed proliferation. The kinetics of QSOX1 expression suggest a more protective effect of QSOX1 rather than an involvement of this protein in apoptosis. Human breast cancer MCF-7 cell lines overexpressing the guinea pig QSOX1 protein submitted to the same treatments appeared less sensitive to cell death than the MCF-7 control cells. The protective effect is partly due to a preservation of the mitochondrial polarization generally lost after an oxidative stress. These results strengthen our hypothesis of a protective role of QSOX1 against apoptosis.

  19. Contribution of ozone to airborne aldehyde formation in Paris homes.

    PubMed

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels.

  20. Kinetic properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1978-01-01

    The kinetics of the NAD+-dependent oxidation of aldehydes, catalysed by aldehyde dehydrogenase purified from sheep liver mitochondria, were studied in detail. Lag phases were observed in the assays, the length of which were dependent on the enzyme concentration. The measured rates after the lag phase was over were directly proportional to the enzyme concentration. If enzyme was preincubated with NAD+, the lag phase was eliminated. Double-reciprocal plots with aldehyde as the variable substrate were non-linear, showing marked substrate activation. With NAD+ as the variable substrate, double-reciprocal plots were linear, and apparently parallel. Double-reciprocal plots with enzyme modified with disulfiram (tetraethylthiuram disulphide) or iodoacetamide, such that at pH 8.0 the activity was decreased to 50% of the control value, showed no substrate activation, and the plots were linear. At pH 7.0, the kinetic parameters Vmax. and Km NAD+- for the oxidation of acetaldehyde and butyraldehyde by the native enzyme are almost identical. Formaldehyde and propionaldehyde show the same apparent maximum rate. Aldehyde dehydrogenase is able to catalyse the hydrolysis of p-nitrophenyl esters. This esterase activity was stimulated by both NAD+ and NADH, the maximum rate for the NAD+ stimulated esterase reaction being roughly equal to the maximum rate for the oxidation of aldehydes. The mechanistic implications of the above behaviour are discussed. PMID:217355

  1. The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response

    PubMed Central

    Dinkova-Kostova, Albena T.

    2012-01-01

    The KEAP1/NRF2 pathway and the heat shock response are two essential cytoprotective mechanisms that allow adaptation and survival under conditions of oxidative, electrophilic, and thermal stress by regulating the expression of elaborate networks of genes with versatile protective functions. The two pathways are independently regulated by the transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2) and heat shock factor 1 (HSF1), respectively. The activity of these transcriptional master regulators increases during conditions of stress and also upon encounter of small molecules (inducers), both naturally occurring as well as synthetically produced. Inducers have a common chemical property: the ability to react with sulfhydryl groups. The protein targets of such sulfhydryl-reactive compounds are equipped with highly reactive cysteine residues, which serve as sensors for inducers. The initial cysteine-sensed signal is further relayed to affect the expression of large networks of genes, which in turn can ultimately influence complex cell fate decisions such as life and death. The paper summarizes the multiple lines of experimental evidence demonstrating that the reactivity with sulfhydryl groups is a major determinant of the mechanism of action of small molecule dual activators of the KEAP1/NRF2 pathway and the heat shock response. PMID:24278719

  2. Maternal aldehyde elimination during pregnancy preserves the fetal genome.

    PubMed

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J

    2014-09-18

    Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611

  3. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  4. RP-HPLC-fluorescence analysis of aliphatic aldehydes: application to aldehyde-generating enzymes HACL1 and SGPL1.

    PubMed

    Mezzar, Serena; de Schryver, Evelyn; Van Veldhoven, Paul P

    2014-03-01

    Long-chain aldehydes are commonly produced in various processes, such as peroxisomal α-oxidation of long-chain 3-methyl-branched and 2-hydroxy fatty acids and microsomal breakdown of phosphorylated sphingoid bases. The enzymes involved in the aldehyde-generating steps of these processes are 2-hydroxyacyl-CoA lyase (HACL1) and sphingosine-1-phosphate lyase (SGPL1), respectively. In the present work, nonradioactive assays for these enzymes were developed employing the Hantzsch reaction. Tridecanal (C13-al) and heptadecanal (C17-al) were selected as model compounds and cyclohexane-1,3-dione as 1,3-diketone, and the fluorescent derivatives were analyzed by reversed phase (RP)-HPLC. Assay mixture composition, as well as pH and heating, were optimized for C13-al and C17-al. Under optimized conditions, these aldehydes could be quantified in picomolar range and different long-chain aldehyde derivatives were well resolved with a linear gradient elution by RP-HPLC. Aldehydes generated by recombinant enzymes could easily be detected via this method. Moreover, the assay allowed to document activity or deficiency in tissue homogenates and fibroblast lysates without an extraction step. In conclusion, a simple, quick, and cheap assay for the study of HACL1 and SGPL1 activities was developed, without relying on expensive mass spectrometric detectors or radioactive substrates.

  5. Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis

    PubMed Central

    2015-01-01

    Direct β-alkylation of saturated aldehydes has been accomplished by synergistically combining photoredox catalysis and organocatalysis. Photon-induced enamine oxidation provides an activated β-enaminyl radical intermediate, which readily combines with a wide range of Michael acceptors to produce β-alkyl aldehydes in a highly efficient manner. Furthermore, this redox-neutral, atom-economical C–H functionalization protocol can be achieved both inter- and intramolecularly. Mechanistic studies by various spectroscopic methods suggest that a reductive quenching pathway is operable. PMID:24754456

  6. Structure and mechanism of action of the hydroxy aryl aldehyde class of IRE1 endoribonuclease inhibitors

    PubMed Central

    Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D.; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L.; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B.; Sicheri, Frank

    2014-01-01

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy aryl aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a H-bond with Tyr892. Structure activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design. PMID:25164867

  7. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH)

    SciTech Connect

    Rogers, G.R.; Markova, N.G.; Compton, J.G.

    1997-01-15

    Mutations in the fatty aldehyde dehydrogenase (FALDH) gene cause Sjoegren-Larsson syndrome (SLS) - a disease characterized by mental retardation, spasticity, and congenital ichthyosis. To facilitate mutation analysis in SLS and to study the pathogenesis of FALDH deficiency, we have determined the structural organization and characterized expression of the FALDH (proposed designation ALDH10) gene. The gene consists of 10 exons spanning about 30.5 kb. A TATA-less promoter is associated with the major transcription initiation site found to be 258 hp upstream of the ATG codon. The G4C-rich sequences surrounding the transcription initiation site encompassed regulatory elements that interacted with proteins in HeLa nuclear extracts and were able to promote transcription in vitro. FALDH is widely expressed as three transcripts of 2, 3.8, and 4.0 kb, which originate from multiple polyadenylation signals in the 3{prime} UTR. An alternatively spliced mRNA was detected that contains an extra exon and encodes an enzyme that is likely to have altered membrane-binding properties. The FALDH gene lies only 50-85 kb from ALDH3, an aldehyde dehydrogenase gene that has homologous sequence and intron/exon structure. 25 refs., 4 figs., 1 tab.

  8. Tunable Ether Production via Coupling of Aldehydes or Aldehyde/Alcohol over Hydrogen-Modified Gold Catalysts at Low Temperatures.

    PubMed

    Pan, Ming; Brush, Adrian J; Dong, Guangbin; Mullins, C Buddie

    2012-09-01

    Ethers are an important group of organic compounds that are primarily prepared via homogeneous catalysis, which can lead to operational and environmental issues. Here we demonstrate the production of ethers via heterogeneous catalysis over H adatom-covered gold at temperatures lower than 250 K. Symmetrical ethers can be formed via a self-coupling reaction of corresponding aldehydes; for example, homocoupling of acetaldehyde and propionaldehyde yields diethyl ether and di-n-propyl ether, respectively. In addition, coupling reactions between alcohols and aldehydes, with different carbon chain lengths, are observed via the production of the corresponding unsymmetrical ethers. A reaction mechanism is proposed, suggesting that an alcohol-like intermediate via partial hydrogenation of aldehydes on the surface plays a key role in these reactions. These surface chemical reactions suggest possible heterogeneous routes to low-temperature production of ethers. PMID:26292142

  9. Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1

    PubMed Central

    Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2015-01-01

    Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction

  10. Structure of yeast sulfhydryl oxidase erv1 reveals electron transfer of the disulfide relay system in the mitochondrial intermembrane space.

    PubMed

    Guo, Peng-Chao; Ma, Jin-Di; Jiang, Yong-Liang; Wang, Shu-Jie; Bao, Zhang-Zhi; Yu, Xiao-Jie; Chen, Yuxing; Zhou, Cong-Zhao

    2012-10-12

    The disulfide relay system in the mitochondrial intermembrane space drives the import of proteins with twin CX(9)C or twin CX(3)C motifs by an oxidative folding mechanism. This process requires disulfide bond transfer from oxidized Mia40 to a substrate protein. Reduced Mia40 is reoxidized/regenerated by the FAD-linked sulfhydryl oxidase Erv1 (EC 1.8.3.2). Full-length Erv1 consists of a flexible N-terminal shuttle domain (NTD) and a conserved C-terminal core domain (CTD). Here, we present crystal structures at 2.0 Å resolution of the CTD and at 3.0 Å resolution of a C30S/C133S double mutant of full-length Erv1 (Erv1FL). Similar to previous homologous structures, the CTD exists as a homodimer, with each subunit consisting of a conserved four-helix bundle that accommodates the isoalloxazine ring of FAD and an additional single-turn helix. The structure of Erv1FL enabled us to identify, for the first time, the three-dimensional structure of the Erv1NTD, which is an amphipathic helix flanked by two flexible loops. This structure also represents an intermediate state of electron transfer from the NTD to the CTD of another subunit. Comparative structural analysis revealed that the four-helix bundle of the CTD forms a wide platform for the electron donor NTD. Moreover, computational simulation combined with multiple-sequence alignment suggested that the amphipathic helix close to the shuttle redox enter is critical for the recognition of Mia40, the upstream electron donor. These findings provide structural insights into electron transfer from Mia40 via the shuttle domain of one subunit of Erv1 to the CTD of another Erv1 subunit.

  11. Divergent molecular evolution of the mitochondrial sulfhydryl:cytochrome C oxidoreductase Erv in opisthokonts and parasitic protists.

    PubMed

    Eckers, Elisabeth; Petrungaro, Carmelina; Gross, Dominik; Riemer, Jan; Hell, Kai; Deponte, Marcel

    2013-01-25

    Mia40 and the sulfhydryl:cytochrome c oxidoreductase Erv1/ALR are essential for oxidative protein import into the mitochondrial intermembrane space in yeast and mammals. Although mitochondrial protein import is functionally conserved in the course of evolution, many organisms seem to lack Mia40. Moreover, except for in organello import studies and in silico analyses, nothing is known about the function and properties of protist Erv homologues. Here we compared Erv homologues from yeast, the kinetoplastid parasite Leishmania tarentolae, and the non-related malaria parasite Plasmodium falciparum. Both parasite proteins have altered cysteine motifs, formed intermolecular disulfide bonds in vitro and in vivo, and could not replace Erv1 from yeast despite successful mitochondrial protein import in vivo. To analyze its enzymatic activity, we established the expression and purification of recombinant full-length L. tarentolae Erv and compared the mechanism with related and non-related flavoproteins. Enzyme assays indeed confirmed an electron transferase activity with equine and yeast cytochrome c, suggesting a conservation of the enzymatic activity in different eukaryotic lineages. However, although Erv and non-related flavoproteins are intriguing examples of convergent molecular evolution resulting in similar enzyme properties, the mechanisms of Erv homologues from parasitic protists and opisthokonts differ significantly. In summary, the Erv-mediated reduction of cytochrome c might be highly conserved throughout evolution despite the apparent absence of Mia40 in many eukaryotes. Nevertheless, the knowledge on mitochondrial protein import in yeast and mammals cannot be generally transferred to all other eukaryotes, and the corresponding pathways, components, and mechanisms remain to be analyzed.

  12. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.

    PubMed

    Luo, Xu-Ying; Tu, Yong-Gang; Zhao, Yan; Li, Jian-Ke; Wang, Jun-Jie

    2014-08-01

    To identify inhibitors for lysinoalanine formation in preserved egg, sulfhydryl compounds (glutathione, L-cysteine), carbohydrates (sucrose, D-glucose, maltose), organic acids (L-ascorbic acid, citric acid, DL-malic acid, lactic acid), and sodium sulfite were individually added at different concentrations to a pickling solution to prepare preserved eggs. Lysinoalanine formation as an index of these 10 substances was determined. Results indicate that glutathione, D-glucose, maltose, L-ascorbic acid, citric acid, lactic acid, and sodium sulfite all effectively diminished lysinoalanine formation in preserved egg albumen and yolk. When 40 and 80 mmol/L of sodium sulfite, citric acid, L-ascorbic acid, and D-glucose were individually added into the pickling solution, the inhibition rates of lysinoalanine in the produced preserved egg albumen and yolk were higher. However, the attempt of minimizing lysinoalanine formation was combined with the premise of ensuring preserved eggs quality. Moreover, the addition of 40 and 80 mmol/L of sodium sulfite, 40 and 80 mmol/L of D-glucose, 40 mmol/L of citric acid, and 40 mmol/L of L-ascorbic acid was optimal to produce preserved eggs. The corresponding inhibition rates of lysinoalanine in the albumen were approximately 76.3% to 76.5%, 67.6% to 67.8%, 74.6%, and 74.6%, and the corresponding inhibition rates of lysinoalanine in the yolk were about 68.7% to 69.7%, 50.6% to 51.8%, 70.4%, and 57.8%. It was concluded that sodium sulfite, D-glucose, L-ascorbic, and citric acid at suitable concentrations can be used to control the formation of lysinoalanine during preserved egg processing.

  13. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.

    PubMed

    Luo, Xu-Ying; Tu, Yong-Gang; Zhao, Yan; Li, Jian-Ke; Wang, Jun-Jie

    2014-08-01

    To identify inhibitors for lysinoalanine formation in preserved egg, sulfhydryl compounds (glutathione, L-cysteine), carbohydrates (sucrose, D-glucose, maltose), organic acids (L-ascorbic acid, citric acid, DL-malic acid, lactic acid), and sodium sulfite were individually added at different concentrations to a pickling solution to prepare preserved eggs. Lysinoalanine formation as an index of these 10 substances was determined. Results indicate that glutathione, D-glucose, maltose, L-ascorbic acid, citric acid, lactic acid, and sodium sulfite all effectively diminished lysinoalanine formation in preserved egg albumen and yolk. When 40 and 80 mmol/L of sodium sulfite, citric acid, L-ascorbic acid, and D-glucose were individually added into the pickling solution, the inhibition rates of lysinoalanine in the produced preserved egg albumen and yolk were higher. However, the attempt of minimizing lysinoalanine formation was combined with the premise of ensuring preserved eggs quality. Moreover, the addition of 40 and 80 mmol/L of sodium sulfite, 40 and 80 mmol/L of D-glucose, 40 mmol/L of citric acid, and 40 mmol/L of L-ascorbic acid was optimal to produce preserved eggs. The corresponding inhibition rates of lysinoalanine in the albumen were approximately 76.3% to 76.5%, 67.6% to 67.8%, 74.6%, and 74.6%, and the corresponding inhibition rates of lysinoalanine in the yolk were about 68.7% to 69.7%, 50.6% to 51.8%, 70.4%, and 57.8%. It was concluded that sodium sulfite, D-glucose, L-ascorbic, and citric acid at suitable concentrations can be used to control the formation of lysinoalanine during preserved egg processing. PMID:25047093

  14. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  15. NHC-catalysed highly selective aerobic oxidation of nonactivated aldehydes

    PubMed Central

    Möhlmann, Lennart; Ludwig, Stefan

    2013-01-01

    Summary This publication describes a highly selective oxidation of aldehydes to the corresponding acids or esters. The reaction proceeds under metal-free conditions by using N-heterocyclic carbenes as organocatalysts in combination with environmentally friendly oxygen as the terminal oxidation agent. PMID:23616801

  16. Diastereoselective synthesis of substituted diaziridines from simple ketones and aldehydes.

    PubMed

    Beebe, Alexander W; Dohmeier, Emma F; Moura-Letts, Gustavo

    2015-09-11

    Diastereopure substituted diaziridines from simple ketones, aldehydes and amines are here reported. These important chemical scaffolds are obtained in the presence of a weak inorganic base and hydroxylamine O-sulfonic acid (HOSA). This method introduces three stereocenters in one step to provide a wide variety of substituted diaziridines with high yields and diastereoselectivities.

  17. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic aldehyde phenolic resin (generic). 721.5762 Section 721.5762 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5762...

  18. A thermostable transketolase evolved for aliphatic aldehyde acceptors.

    PubMed

    Yi, Dong; Saravanan, Thangavelu; Devamani, Titu; Charmantray, Franck; Hecquet, Laurence; Fessner, Wolf-Dieter

    2015-01-11

    Directed evolution of the thermostable transketolase from Geobacillus stearothermophilus based on a pH-based colorimetric screening of smart libraries yielded several mutants with up to 16-fold higher activity for aliphatic aldehydes and high enantioselectivity (>95% ee) in the asymmetric carboligation step. PMID:25415647

  19. Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens.

    PubMed

    Anke, H; Casser, I; Steglich, W; Pommer, E H

    1987-04-01

    Phlebiakauranol aldehyde and the corresponding alcohol were isolated from cultures of Punctularia atropurpurascens. The aldehyde but not the alcohol exhibited strong antifungal activity against several phytopathogens as well as antibacterial and cytotoxic activities. Two acetylated derivatives prepared from the aldehyde showed only very weak antifungal and antibacterial and moderate cytotoxic activities. We therefore assume, that the aldehyde group together with the high number of hydroxyl groups are responsible for the biological activity of the compound.

  20. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes.

    PubMed

    Jain, Deepti; Khandal, Hitaishi; Khurana, Jitendra Paul; Chattopadhyay, Debasis

    2016-01-01

    Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein.

  1. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes.

    PubMed

    Jain, Deepti; Khandal, Hitaishi; Khurana, Jitendra Paul; Chattopadhyay, Debasis

    2016-01-01

    Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein. PMID:26577640

  2. Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound

    DOE PAGES

    Liberman-Martin, Allegra L.; Bergman, Robert G.; Tilley, T. Don

    2015-04-16

    Bis(perfluorocatecholato)silane Si(cat(F)2 was prepared, and stoichiometric binding to Lewis bases was demonstrated with fluoride, triethylphosphine oxide, and N,N'-diisopropylbenzamide. The potent Lewis acidity of Si(cat(F)2 was suggested from catalytic hydrosilylation and silylcyanation reactions with aldehydes. Mechanistic studies of hydrosilylation using an optically active silane substrate, R-(+)-methyl-(1-naphthyl)phenylsilane, proceeded with predominant stereochemical retention at silicon, consistent with a carbonyl activation pathway. The enantiospecificity was dependent on solvent and salt effects, with increasing solvent polarity or addition of NBu4BAr(F)4 leading to a diminished enantiomeric ratio. The medium effects are consistent with an ionic mechanism, wherein hydride transfer occurs prior to silicon-oxygen bond formation.

  3. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  4. Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound

    SciTech Connect

    Liberman-Martin, Allegra L.; Bergman, Robert G.; Tilley, T. Don

    2015-04-16

    Bis(perfluorocatecholato)silane Si(cat(F)2 was prepared, and stoichiometric binding to Lewis bases was demonstrated with fluoride, triethylphosphine oxide, and N,N'-diisopropylbenzamide. The potent Lewis acidity of Si(cat(F)2 was suggested from catalytic hydrosilylation and silylcyanation reactions with aldehydes. Mechanistic studies of hydrosilylation using an optically active silane substrate, R-(+)-methyl-(1-naphthyl)phenylsilane, proceeded with predominant stereochemical retention at silicon, consistent with a carbonyl activation pathway. The enantiospecificity was dependent on solvent and salt effects, with increasing solvent polarity or addition of NBu4BAr(F)4 leading to a diminished enantiomeric ratio. The medium effects are consistent with an ionic mechanism, wherein hydride transfer occurs prior to silicon-oxygen bond formation.

  5. Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound.

    PubMed

    Liberman-Martin, Allegra L; Bergman, Robert G; Tilley, T Don

    2015-04-29

    Bis(perfluorocatecholato)silane Si(cat(F))2 was prepared, and stoichiometric binding to Lewis bases was demonstrated with fluoride, triethylphosphine oxide, and N,N'-diisopropylbenzamide. The potent Lewis acidity of Si(cat(F))2 was suggested from catalytic hydrosilylation and silylcyanation reactions with aldehydes. Mechanistic studies of hydrosilylation using an optically active silane substrate, R-(+)-methyl-(1-naphthyl)phenylsilane, proceeded with predominant stereochemical retention at silicon, consistent with a carbonyl activation pathway. The enantiospecificity was dependent on solvent and salt effects, with increasing solvent polarity or addition of NBu4BAr(F)4 leading to a diminished enantiomeric ratio. The medium effects are consistent with an ionic mechanism, wherein hydride transfer occurs prior to silicon-oxygen bond formation.

  6. Functional Specialization of Maize Mitochondrial Aldehyde Dehydrogenases1

    PubMed Central

    Liu, Feng; Schnable, Patrick S.

    2002-01-01

    The maize (Zea mays) rf2a and rf2b genes both encode homotetrameric aldehyde dehydrogenases (ALDHs). The RF2A protein was shown previously to accumulate in the mitochondria. In vitro import experiments and ALDH assays on mitochondrial extracts from rf2a mutant plants established that the RF2B protein also accumulates in the mitochondria. RNA gel-blot analyses and immunohistolocation experiments revealed that these two proteins have only partially redundant expression patterns in organs and cell types. For example, RF2A, but not RF2B, accumulates to high levels in the tapetal cells of anthers. Kinetic analyses established that RF2A and RF2B have quite different substrate specificities; although RF2A can oxidize a broad range of aldehydes, including aliphatic aldehydes and aromatic aldehydes, RF2B can oxidize only short-chain aliphatic aldehydes. These two enzymes also have different pH optima and responses to changes in substrate concentration. In addition, RF2A, but not RF2B or any other natural ALDHs, exhibits positive cooperativity. These functional specializations may explain why many species have two mitochondrial ALDHs. This study provides data that serve as a basis for identifying the physiological pathway by which the rf2a gene participates in normal anther development and the restoration of Texas cytoplasm-based male sterility. For example, the observations that Texas cytoplasm anthers do not accumulate elevated levels of reactive oxygen species or lipid peroxidation and the kinetic features of RF2A make it unlikely that rf2a restores fertility by preventing premature programmed cell death. PMID:12481049

  7. Derivatization Strategy for the Comprehensive Characterization of Endogenous Fatty Aldehydes Using HPLC-Multiple Reaction Monitoring.

    PubMed

    Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan

    2016-08-01

    Fatty aldehydes are crucial substances that mediate a wide range of vital physiological functions, particularly lipid peroxidation. Fatty aldehydes such as acrolein and 4-hydroxynonenal (4-HNE) are considered potential biomarkers of myocardial ischemia and dementia, but analytical techniques for fatty aldehydes are lacking. In the present study, a comprehensive characterization strategy with high sensitivity and facility for fatty aldehydes based on derivatization and high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) was developed. The fatty aldehydes of a biosample were derivatized using 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine under mild and efficient reaction conditions at 37 °C for 15 min. The limit of detection (LOD) of the fatty aldehydes varied from 0.1 to 1 pg/mL, depending on the structures of these molecules. General MRM parameters were forged for the analysis of endogenous fatty aldehydes. "Heavy" derivatization reagents with 20 deuterium atoms were synthesized for both the discovery and comprehensive characterization of fatty aldehydes. More than 80 fatty aldehydes were detected in the biosamples. The new strategy was successfully implemented in global fatty aldehyde profiling of plasma and brain tissue of the bilateral common carotid artery (2VO) dementia rat model. Dozens of fatty aldehydes were significantly changed between the control and model groups. These findings further highlight the importance of endogenous fatty aldehydes. PMID:27397858

  8. Purification, characterization, and properties of an aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646.

    PubMed

    Li, T; Rosazza, J P

    1997-06-01

    An aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646 was purified 196-fold by a combination of Mono-Q, Reactive Green 19 agarose affinity, and hydroxyapatite chromatographies. The purified enzyme runs as a single band of 140 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass was estimated to be 163 +/- 3.8 kDa by gel filtration, indicating that this enzyme is a monomeric protein. The binding of the enzyme to Reactive Green 19 agarose was Mg2+ dependent. The binding capacity was estimated to be about 0.2 mg of Reactive Green agarose per ml in the presence of 10 mM MgCl2. This enzyme can catalyze the reduction of a wide range of aryl carboxylic acids, including substituted benzoic acids, phenyl-substituted aliphatic acids, heterocyclic carboxylic acids, and polyaromatic ring carboxylic acids, to produce the corresponding aldehydes. The Km values for benzoate, ATP, and NADPH were determined to be 645 +/- 75, 29.3 +/- 3.1, and 57.3 +/- 12.5 microM, respectively. The Vmax was determined to be 0.902 +/- 0.04 micromol/min/mg of protein. Km values for (S)-(+)-alpha-methyl-4-(2-methylpropyl)-benzeneacetic acid (ibuprofen) and its (R)-(-) isomer were determined to be 155 +/- 18 and 34.5 +/- 2.5 microM, respectively. The Vmax for the (S)-(+) and (R)-(-) isomers were 1.33 and 0.15 micromol/min/mg of protein, respectively. Anthranilic acid is a competitive inhibitor with benzoic acid as a substrate, with a Ki of 261 +/- 30 microM. The N-terminal and internal amino acid sequences of a 76-kDa peptide from limited alpha-chymotrypsin digestion were determined.

  9. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  10. Substrate Specificity and Subcellular Localization of the Aldehyde-Alcohol Redox-coupling Reaction in Carp Cones*

    PubMed Central

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-01-01

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment. PMID:24217249

  11. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes

    PubMed Central

    Affaticati, Pierre E.; Dai, Shao-Bo; Payongsri, Panwajee; Hailes, Helen C.; Tittmann, Kai; Dalby, Paul A.

    2016-01-01

    The S385Y/D469T/R520Q variant of E. coli transketolase was evolved previously with three successive smart libraries, each guided by different structural, bioinformatical or computational methods. Substrate-walking progressively shifted the target acceptor substrate from phosphorylated aldehydes, towards a non-phosphorylated polar aldehyde, a non-polar aliphatic aldehyde, and finally a non-polar aromatic aldehyde. Kinetic evaluations on three benzaldehyde derivatives, suggested that their active-site binding was differentially sensitive to the S385Y mutation. Docking into mutants generated in silico from the wild-type crystal structure was not wholly satisfactory, as errors accumulated with successive mutations, and hampered further smart-library designs. Here we report the crystal structure of the S385Y/D469T/R520Q variant, and molecular docking of three substrates. This now supports our original hypothesis that directed-evolution had generated an evolutionary intermediate with divergent binding modes for the three aromatic aldehydes tested. The new active site contained two binding pockets supporting π-π stacking interactions, sterically separated by the D469T mutation. While 3-formylbenzoic acid (3-FBA) preferred one pocket, and 4-FBA the other, the less well-accepted substrate 3-hydroxybenzaldehyde (3-HBA) was caught in limbo with equal preference for the two pockets. This work highlights the value of obtaining crystal structures of evolved enzyme variants, for continued and reliable use of smart library strategies. PMID:27767080

  12. Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity

    PubMed Central

    Brocker, Chad; Cantore, Miriam; Failli, Paola; Vasiliou, Vasilis

    2012-01-01

    Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H2O2) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation. PMID:21338592

  13. Effects of dimethylsulfoxide and mercurial sulfhydryl reagents on water and solute permeability of rat kidney brush border membranes.

    PubMed

    van Hoek, A N; de Jong, M D; van Os, C H

    1990-12-14

    The effects of dimethylsulfoxide, DMSO, and mercurial sulfhydryl reagents have been studied on water and small solute permeability of rat renal brush border membrane vesicles. Water and solute permeability was measured by mixing membrane vesicles with hypertonic solutions in a stopped-flow apparatus and following osmotically-induced changes in vesicular volume via changes in scattered light intensity. The rate constant of the fast osmotic shrinkage is proportional to the osmotic water permeability, while the rate constant of the slow reswelling phase is proportional to the solute permeability. Using mannitol as the osmotic agent, the osmotic shrinkage of rat renal brush border membrane vesicles followed a biphasic time course. 80% of the vesicles shrunk with a rate constant of approx. 50 s-1 and 20% with a rate constant of approx. 2 s-1. DMSO decreased dose-dependently the amplitude of the fast osmotic shrinkage, without affecting its rate constant. In contrast to DMSO, HgCl2 decreased the rate constant but not the amplitude of the fast osmotic shrinkage of renal brush border vesicles. Between 40-50 microM HgCl2, the inhibition of the fast osmotic shrinkage was completed. DMSO and HgCl2 increase the activation energy of water permeation in renal membranes from 3 to 12-15 kcal/mol. DMSO and HgCl2 did not affect the rate constant of the slow osmotic shrinkage of renal membrane vesicles and were also without effect on osmotic shrinkage of small intestinal brush border and pure phospholipid vesicles. In renal brush border membranes, HgCl2 at low concentrations (less than 10 microM) increased by 15-fold the permeability to NaCl and urea but not to mannitol, an effect which precedes the inhibition of water permeability at higher HgCl2 concentrations. The increase in small solute permeability was irreversible while the inhibition of water permeability could be reversed with cysteine and dithiothreitol. We conclude that water and small solute pathways in rat renal brush

  14. Free radical activity and loss of plasma antioxidants, vitamin E, and sulfhydryl groups in patients with burns: the 1993 Moyer Award.

    PubMed

    Nguyen, T T; Cox, C S; Traber, D L; Gasser, H; Redl, H; Schlag, G; Herndon, D N

    1993-01-01

    This study examines the relationship of burn injury and plasma levels of conjugated dienes, total sulfhydryl groups, and vitamin E in patients with thermal injuries. Plasma neopterin levels were determined as an index of macrophage activity and serine elastase as an index of polymorphonuclear cell activation. Thirteen patients with burns, six survivors and seven nonsurvivors, were studied for the first 4 days, then every other day until postburn day 14. Twelve healthy volunteers served as the control group. Survivors had 56% +/- 4% total body surface area burned, and nonsurvivors had 63.9% +/- % total body surface area burned. The patients with burns, compared with the control group, showed elevated plasma levels of the lipid peroxidation products conjugated dienes (0.767 +/- 0.045 vs 0.269 +/- 0.013 Abs at 233 nm) and reduced levels of the natural scavengers of free radicals, vitamin E (196.2 +/- 12.6 vs 841.1 +/- 22.7 micrograms/dl) and total sulfhydryl groups (54.0 +/- 0.4 vs 15.8 +/- 1.0 mumol/dl). The total sulfhydryl groups/conjugated dienes ratio fell at a greater rate (9.8% +/- 3.2% vs 3.2% +/- 0.7%/day) in nonsurvivors than in survivors (p < 0.05 by Mann-Whitney). The levels of elastase were slightly elevated in the patients with burns, but there was no difference between survivors and nonsurvivors. Normal neopterin levels are 3 to 10 nm/L; peak levels were 119 +/- 48 nm/L in nonsurvivors and 37.4 +/- 10 nm/L in survivors. Patients with burns demonstrated evidence of increased oxygen free radical activity and activation of polymorphonuclear cell and macrophages. Nonsurvivors demonstrated increased consumption of antioxidants compared with survivors.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Gastroprotective effects of goniothalamin against ethanol and indomethacin-induced gastric lesions in rats: Role of prostaglandins, nitric oxide and sulfhydryl compounds.

    PubMed

    Vendramini-Costa, Débora Barbosa; Monteiro, Karin Maia; Iwamoto, Leilane Hespporte; Jorge, Michelle Pedroza; Tinti, Sirlene Valério; Pilli, Ronaldo Aloise; de Carvalho, João Ernesto

    2014-12-01

    Goniothalamin (GTN), a styryl-lactone, is a secondary metabolite naturally found in its enantiomeric form (R) in plants of the genus Goniothalamus (Annonaceae). The antiproliferative activity against human tumor cell lines reported in several studies suggest that the α,β-unsaturated δ-lactone moiety emerges as a key Michael acceptor for cysteine residues or other nucleophilic biological molecules. Our group reported on the in vivo activity of (R)- and (S)-GTN as well as its racemic form (rac-GTN) in both Ehrlich solid tumor and carrageenan-induced paw edema in mice, without side effects in the effective doses. Despite the rich body of data on the in vitro GTN biological activity, much less is known about its in vivo pharmacological action. Herein we describe the gastroprotective activity of rac-GTN on chemical-induced gastric ulcers models in rats. GTN has a potent gastroprotective effect on ethanol-induced ulcers (effective dose50=18mg/kg) and this activity is dependent on sulfhydryl compounds and prostaglandins generation, but independent of nitric oxide (NO), gastric secretion and mucus production. We hypothesize that goniothalamin may act as a mild irritant, inducing the production of sulfhydryl compounds and prostaglandins, in a process known as adaptive cytoprotection. This hypothesis is supported by the fact that Michael acceptors are the most potent inducers of antioxidant response (as activation of Nrf2 pathway) through generation of mild oxidative stress and that gastroprotective activity of goniothalamin is inhibited after pre-treatment with NEM (N-ethylmaleimide) and NSAID (non-steroidal anti-inflammatory drugs), highlighting the importance of sulfhydryl compounds and prostaglandins on GTN activity.

  16. Synergism of organic zinc salts and sulfhydryl compounds (thiols) in the protection of mice against acute ethanol toxicity, and protective effects of various metal salts.

    PubMed

    Floersheim, G L

    1987-06-01

    Organic zinc salts such as zinc aspartate, zinc orotate, zinc histidine and zinc acetate protected mice against the lethality of an acute intraperitoneal challenge with ethanol. A similar activity was also provided by salts of cobalt, zirconium, lithium and magnesium. Organic zinc salts acted synergistically with sulfhydryl compounds in protecting the mice and potentiation between the two categories of agents was seen. The results are in analogy to radioprotective effects by zinc and thiols and imply that organic zinc salts may, alone or in conjunction with thiols, reduce in a wider context tissue injury caused by free radical-mediated mechanisms. PMID:3630856

  17. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    PubMed

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  18. Purification, Characterization, and Potential Bacterial Wax Production Role of an NADPH-Dependent Fatty Aldehyde Reductase from Marinobacter aquaeolei VT8▿ †

    PubMed Central

    Wahlen, Bradley D.; Oswald, Whitney S.; Seefeldt, Lance C.; Barney, Brett M.

    2009-01-01

    Wax esters, ester-linked fatty acids and long-chain alcohols, are important energy storage compounds in select bacteria. The synthesis of wax esters from fatty acids is proposed to require the action of a four-enzyme pathway. An essential step in the pathway is the reduction of a fatty aldehyde to the corresponding fatty alcohol, although the enzyme responsible for catalyzing this reaction has yet to be identified in bacteria. We report here the purification and characterization of an enzyme from the wax ester-accumulating bacterium Marinobacter aquaeolei VT8, which is a proposed fatty aldehyde reductase in this pathway. The enzyme, a 57-kDa monomer, was expressed in Escherichia coli as a fusion protein with the maltose binding protein on the N terminus and was purified to near homogeneity by using amylose affinity chromatography. The purified enzyme was found to reduce a number of long-chain aldehydes to the corresponding alcohols coupled to the oxidation of NADPH. The highest specific activity was observed for the reduction of decanal (85 nmol decanal reduced/min/mg). Short-chain and aromatic aldehydes were not substrates. The enzyme showed no detectable catalysis of the reverse reaction, the oxidation of decanol by NADP+. The mechanism of the enzyme was probed with several site-specific chemical probes. The possible uses of this enzyme in the production of wax esters are discussed. PMID:19270127

  19. An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases.

    PubMed

    Ellis, E M; Judah, D J; Neal, G E; Hayes, J D

    1993-11-01

    Protection of liver against the toxic and carcinogenic effects of aflatoxin B1 (AFB1) can be achieved through the induction of detoxification enzymes by chemoprotectors such as the phenolic antioxidant ethoxyquin. We have cloned and sequenced a cDNA encoding an aldehyde reductase (AFB1-AR), which is expressed in rat liver in response to dietary ethoxyquin. Expression of the cDNA in Escherichia coli and purification of the recombinant enzyme reveals that the protein exhibits aldehyde reductase activity and is capable of converting the protein-binding dialdehyde form of AFB1-dihydrodiol to the nonbinding dialcohol metabolite. We show that the mRNA encoding this enzyme is markedly elevated in the liver of rats fed an ethoxyquin-containing diet, correlating with acquisition of resistance to AFB1. AFB1-AR represents the only carcinogen-metabolizing aldehyde reductase identified to date that is induced by a chemoprotector. Alignment of the amino acid sequence of AFB1-AR with other known and putative aldehyde reductases shows that it defines a subfamily within the aldo-keto reductase superfamily. PMID:8234296

  20. Nucleophilic Iododifluoromethylation of Aldehydes Using Bromine/Iodine Exchange.

    PubMed

    Levin, Vitalij V; Smirnov, Vladimir O; Struchkova, Marina I; Dilman, Alexander D

    2015-09-18

    A method for the iododifluoromethylation of aromatic aldehydes using (bromodifluoromethyl)trimethylsilane (Me3SiCF2Br) is described. The selective formation of the CF2I group is based on using sodium iodide, with the sodium serving as a scavenger of bromide and iodide serving as a nucleophile with respect to difluorocarbene. The primary CF2I-addition products can undergo HI-elimination or iodine/zinc exchange followed by allylation in a one-pot manner.

  1. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  2. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  3. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes.

    PubMed

    Leow, Dasheng

    2014-11-01

    Amides are prevalent in organic synthesis. Developing an efficient synthesis that avoids expensive oxidants and heating is highly desirable. Here the oxidative amidation of aromatic aldehydes is reported using an inexpensive metal-free visible light photocatalyst, phenazine ethosulfate, at low catalytic loading (1-2 mol %). The reaction proceeds at ambient temperature and uses air as the sole oxidant. The operationally easy procedure provides an economical, green, and mild alternative for the formation of amide bonds.

  4. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.

  5. Enantioselective α-Benzylation of Aldehydes via Photoredox Organocatalysis

    PubMed Central

    Shih, Hui-Wen; Vander Wal, Mark N.; Grange, Rebecca L.; MacMillan, David W. C.

    2011-01-01

    The first enantioselective aldehyde α-benzylation using electron-deficient aryl and heteroaryl substrates has been accomplished. The productive merger of a chiral imidazolidinone organocatalyst and a commercially available iridium photoredox catalyst in the presence of household fluorescent light directly affords the desired homobenzylic stereogenicity in good to excellent yield and enantioselectivity. The utility of this methodology has been demonstrated via rapid access to an enantioen-riched drug target for angiogenesis suppression. PMID:20831195

  6. Quantification of the electrophilic reactivities of aldehydes, imines, and enones.

    PubMed

    Appel, Roland; Mayr, Herbert

    2011-06-01

    The rates of the epoxidation reactions of aldehydes, of the aziridination reactions of aldimines, and of the cyclopropanation reactions of α,β-unsaturated ketones with aryl-stabilized dimethylsulfonium ylides have been determined photometrically in dimethyl sulfoxide (DMSO). All of these sulfur ylide-mediated cyclization reactions as well as the addition reactions of stabilized carbanions to N-tosyl-activated aldimines have been shown to follow a second-order rate law, where the rate constants reflect the (initial) CC bond formation between nucleophile and electrophile. The derived second-order rate constants (log k(2)) have been combined with the known nucleophilicity parameters (N, s(N)) of the aryl-stabilized sulfur ylides 4a,b and of the acceptor-substituted carbanions 4c-h to calculate the electrophilicity parameters E of aromatic and aliphatic aldehydes (1a-i), N-acceptor-substituted aromatic aldimines (2a-e), and α,β-unsaturated ketones (3a-f) according to the linear free-energy relationship log k(2) = s(N)(N + E) as defined in J. Am. Chem. Soc.2001, 123, 9500-9512. The data reported in this work provide the first quantitative comparison of the electrophilic reactivities of aldehydes, imines, and simple Michael acceptors in DMSO with carbocations and cationic metal-π complexes within our comprehensive electrophilicity scale. PMID:21553901

  7. γ-Unsaturated aldehydes as potential Lilial replacers.

    PubMed

    Schroeder, Martin; Mathys, Marion; Ehrensperger, Nadja; Büchel, Michelle

    2014-10-01

    A series of Claisen rearrangements was undertaken in order to find a replacement for Lilial (=3-(4-(tert-butyl)phenyl)-2-methylpropanal), a high-tonnage perfumery ingredient with a lily-of-the-valley odour, which is a CMR2 material [1]. 5,7,7-Trimethyl-4-methyleneoctanal (10), the synthesis of which is described, became the main lead. It possesses an odour which is very close to that of Lilial but lacks its substantivity. Aldehydes with higher molecular weights than that of 10 were, therefore, synthesised in order to boost substantivity and to understand the structural requirements for a 'Lilial' odour. The aldehydes were obtained via Claisen rearrangements of 'exo-methylidene' vinyl ethers, allenyl vinyl ethers, or allenyl allyl ethers. Alternatively, coupling of terminal alkynes with allyl alcohols led to the desired aldehydes. Derivatives of 10 and their sila analogues were also synthesised. The olfactory properties of all synthesised molecules were evaluated for possible structure-odour relationships (SOR).

  8. Volatile aldehydes in the mainstream smoke of the narghile waterpipe.

    PubMed

    Al Rashidi, M; Shihadeh, A; Saliba, N A

    2008-11-01

    Very little is known about the quality and quantity of toxicants yielded by the narghile, a subject of increasing importance as this method of tobacco smoking has become popular all over the world. This study is concerned with the identification and quantification of volatile aldehydes in the gas and particle phases of mainstream narghile smoke generated using a popular type of flavored ma'ssel tobacco mixture. These compounds were analyzed based on a modified version of the Environmental Protection Agency compendium method TO-11A. Using a standardized smoking machine protocol consisting of 171 puffs, 2.6s puff duration and 17s inter puff interval, the average yields of formaldehyde, acetaldehyde, acrolein, propionaldehyde and methacrolein were 630, 2520, 892, 403, and 106 microg/smoking session, respectively. The results showed that none of the aldehydes identified in this study are found in the particulate phase of the smoke, except for formaldehyde for which the partitioning coefficient was estimated as Kp = 3.3 x 10(-8) microg/m3. Given previously reported lung absorption fractions of circa 90% for volatile aldehydes, the yields measured in this study are sufficient to induce various diseases depending on the extent of exposure, and on the breathing patterns of the smokers. PMID:18834915

  9. Henry's law constants of some environmentally important aldehydes

    SciTech Connect

    Betterton, E.A.; Hoffmann, M.R.

    1988-12-01

    The Henry's law constants of seven aldehydes have been determined as a function of temperature by bubble-column and by head-space techniques. The compounds were chosen for their potential importance in the polluted troposphere and to allow structure-reactivity patterns to be investigated. The results (at 25/degree/C) are as follows (in units of M atm/sup /minus/1/): chloral, 3.44 /times/ 10/sup 5/; glyoxal, greater than or equal to3 /times/ 10/sup 5/; methylglyoxal, 3.71 /times/ 10/sup 3/; formaldehyde, 2.97 /times/ 10/sup 3/; benzaldehyde, 3.74 /times/ 10/sup 1/; hydroxyacetaldehyde, 4.14 /times/ 10/sup 4/; acetaldehyde, 1.14 /times/ 10/sup 1/. A plot of Taft's parameter, ..sigma..sigma*, vs log H* (the apparent Henry's law constant) gives a straight line with a slope of 1.72. H* for formaldehyde is anomalously high, as expected, but the extremely high value for hydroxyacetaldehyde was unexpected and may indicate that ..cap alpha..-hydroxy-substituted aldehydes could have an usually high affinity for the aqueous phase. The intrinsic Henry's law constants, H, corrected for hydration, do not show a clear structure-reactivity pattern for this series of aldehydes.

  10. The 3-(bromoacetamido)-propylamine hydrochloride: A novel sulfhydryl reagent and its future potential in the configurational study of S1-myosin

    NASA Technical Reports Server (NTRS)

    Sharma, Prasanta; Cheung, Herbert C.

    1989-01-01

    Configurational study of S1-Myosin is an important step towards understanding force generation in muscle contraction. Previously reported NMR studies were corroborated. A new compound was synthesized, 3-(Bromoacetamido)-propylamine hydrochloride. Its potential as a sulfhydryl reagent provides an indirect but elegant approach towards future structural elucidation of S1-Myosin. The preliminary investigation has shown that this compound, BAAP, reacted with S1 in the absence of MgADP. The modified enzyme had a 2-fold increase in CaATPase activity and no detectable K-EDTA ATPase activity. Reaction of BAAP with S1 in the presence of MgADP resulted in a modified enzyme which retained a Ca-ATPase activity that was about 60 percent of the unmodified S1 and had essentially zero K-EDTA ATPase activity. Sulfhydryl titration indicated that about 1.5 and 3.5 SH groups per S1 molecule were blocked by BAAP in the absence and presence of MgADP, respectively. When coupled to a carboxyl group of EDTA, the resulting reagent could become a useful SH reagent in which chelated paramagnetic or luminescent lanthanide ions can be exploited to probe S1 conformation.

  11. Immunolocalization of sulfhydryl oxidase in reptilian epidermis indicates that the enzyme participates mainly to the hardening process of the beta-corneous layer.

    PubMed

    Alibardi, Lorenzo

    2015-11-01

    Reptilian skin is tough and scaled representing an evolutionary adaptation to the terrestrial environment. The presence of sulfhydryl oxidase during the process of hardening of the corneous layer in reptilian epidermis has been analyzed by immunocytochemistry and immunoblotting. Sulfhydryl oxidase-like immunoreactivity of proteins in the 50-65 kDa range of molecular weight is mainly observed in the transitional and pre-corneous layers of crocodilians, chelonian, and in the forming beta-layer of lepidosaurians. The ultrastructural localization of the enzyme by immunogold in lizard epidermis during renewal and resting stages shows that the labeling is mainly distributed in the cytoplasm and along the accumulating beta-packets of differentiating beta-cells while it appears very low to undetectable in differentiating alpha-cells of the lacunar, clear, mesos, and alpha-layers. The labeling however becomes absent or undetectable also in the fully mature beta-layer. The study shows that an oxidative enzyme is likely responsible of the cross-linking of the numerous cysteines present in the main proteins accumulated in corneocytes of reptilian epidermis, known as corneous beta-proteins (beta-keratins). This process of disulphide bond formation is probably largely responsible for the formation of hard beta-corneous layers in reptilian scales, a difference with alpha-corneous layers where substrate proteins of transglutaminase appear predominant.

  12. Rapid and Selective Screening for Sulfhydryl Analytes in Plasma and Urine using Surface-Enhanced Transmission Mode Desorption Electrospray Ionization Mass Spectrometry

    PubMed Central

    Chipuk, Joseph E.; Gelb, Michael H.; Brodbelt, Jennifer S.

    2010-01-01

    Nylon mesh substrates were derivatized to include VICATSH, a biotinylated reagent that contains both a photolabile linking group and a thiol specific capture agent. The enhanced mesh substrates were then used to capture sulfhydryl analytes directly from urine and plasma samples via covalent reaction between the reactive thiols of the analytes and the iodoacetaminyl unit of VICATSH. Photocleavage of the labile linker was followed by direct analysis of the mesh surface via transmission mode desorption electrospray ionization (TM-DESI). This chemoselective capture method promoted enrichment of sulfhydryl analytes and reduced matrix interferences, thereby resulting in increased analytical performance of surface enhanced TM-DESI-MS when compared to standard DESI-MS. The present work describes the manufacture of the derivatized mesh substrates and the quality control assessments made during the manufacturing process; the optimization of the chemoselective capture method; and results of experiments pertinent to biological applications. Integration of the chemoselective capture materials with ambient ionization and tandem mass spectrometry results in a powerful combination of speed and selectivity for targeted analyte screening. PMID:20402469

  13. Conformational change in beef-heart mitochondrial F1 ATPase to ATP synthesis mode induced by dimethylsulfoxide and ATP revealed by sulfhydryl group labeling.

    PubMed

    Beharry, S; Bragg, P D

    1989-08-14

    Treatment of beef-heart mitochondrial F1 ATPase with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) results in the incorporation of 1 mol DTNB/mol F1 without loss of ATPase activity. Incorporation is not prevented by ATP. Labeling occurs predominantly on an alpha-subunit, but also with a significant degree of modification of gamma- and epsilon-subunits. It is suggested that the modified sulfhydryl groups of the alpha-, gamma- and epsilon-subunits are in proximity so that only one can be modified by the reagent. Guanidine hydrochloride (0.3 M) dissociates F1 into its subunits. Eight sulfhydryl groups/mol F1 can be modified under these conditions. Guanidine hydrochloride does not cause dissociation of F1 in the presence of 30% (v/v) dimethylsulfoxide (Me2SO) and 2 mM ATP. Under these conditions a second molecule of DTNB is incorporated into F1 with nearly equal modification of the epsilon-subunit and an alpha-subunit. It is proposed that Me2SO and ATP induce a more stable conformation of F1, which is resistant to dissociation by guanidine hydrochloride, but in which the site of reaction with DTNB is made more accessible by the guanidine hydrochloride to permit the simultaneous modification of an alpha-subunit and the epsilon-subunit. This conformation is probably that which occurs during ATP synthesis by F1 in the presence of Me2SO.

  14. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    PubMed

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass. PMID:27003269

  15. Parallel Functional Changes in Independent Testis-Specific Duplicates of Aldehyde dehydrogenase in Drosophila

    PubMed Central

    Chakraborty, Mahul; Fry, James D.

    2015-01-01

    A large proportion of duplicates, originating from ubiquitously expressed genes, acquire testis-biased expression. Identifying the underlying cause of this observation requires determining whether the duplicates have altered functions relative to the parental genes. Typically, statistical methods are used to test for positive selection, signature of which in protein sequence of duplicates implies functional divergence. When assumptions are violated, however, such tests can lead to false inference of positive selection. More convincing evidence for naturally selected functional changes would be the occurrence of structural changes with similar functional consequences in independent duplicates of the same gene. We investigated two testis-specific duplicates of the broadly expressed enzyme gene Aldehyde dehydrogenase (Aldh) that arose in different Drosophila lineages. The duplicates show a typical pattern of accelerated amino acid substitutions relative to their broadly expressed paralogs, with statistical evidence for positive selection in both cases. Importantly, in both duplicates, width of the entrance to the substrate binding site, known a priori to influence substrate specificity, and otherwise conserved throughout the genus Drosophila, has been reduced, resulting in narrowing of the entrance. Protein structure modeling suggests that the reduction of the size of the enzyme’s substrate entry channel, which is likely to shift substrate specificity toward smaller aldehydes, is accounted for by the positively selected parallel substitutions in one duplicate but not the other. Evolution of the testis-specific duplicates was accompanied by reduction in expression of the ancestral Aldh in males, supporting the hypothesis that the duplicates may have helped resolve intralocus sexual conflict over Aldh function. PMID:25564519

  16. Parallel functional changes in independent testis-specific duplicates of Aldehyde dehydrogenase in Drosophila.

    PubMed

    Chakraborty, Mahul; Fry, James D

    2015-04-01

    A large proportion of duplicates, originating from ubiquitously expressed genes, acquire testis-biased expression. Identifying the underlying cause of this observation requires determining whether the duplicates have altered functions relative to the parental genes. Typically, statistical methods are used to test for positive selection, signature of which in protein sequence of duplicates implies functional divergence. When assumptions are violated, however, such tests can lead to false inference of positive selection. More convincing evidence for naturally selected functional changes would be the occurrence of structural changes with similar functional consequences in independent duplicates of the same gene. We investigated two testis-specific duplicates of the broadly expressed enzyme gene Aldehyde dehydrogenase (Aldh) that arose in different Drosophila lineages. The duplicates show a typical pattern of accelerated amino acid substitutions relative to their broadly expressed paralogs, with statistical evidence for positive selection in both cases. Importantly, in both duplicates, width of the entrance to the substrate binding site, known a priori to influence substrate specificity, and otherwise conserved throughout the genus Drosophila, has been reduced, resulting in narrowing of the entrance. Protein structure modeling suggests that the reduction of the size of the enzyme's substrate entry channel, which is likely to shift substrate specificity toward smaller aldehydes, is accounted for by the positively selected parallel substitutions in one duplicate but not the other. Evolution of the testis-specific duplicates was accompanied by reduction in expression of the ancestral Aldh in males, supporting the hypothesis that the duplicates may have helped resolve intralocus sexual conflict over Aldh function.

  17. Binding of DTNB to band 3 in the human red cell membrane.

    PubMed

    Toon, M R; Dorogi, P L; Lukacovic, M F; Solomon, A K

    1985-08-27

    Inhibition of red cell water transport by the sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) has been reported by Naccache and Sha'afi ((1974) J. Cell Physiol. 84, 449-456) but other investigators have not been able to confirm this observation. Brown et al. ((1975) Nature 254, 523-525) have shown that, under appropriate conditions, DTNB binds only to band 3 in the red cell membrane. We have made a detailed investigation of DTNB binding to red cell membranes that had been treated with the sulfhydryl reagent N-ethylmaleimide (NEM), and our results confirm the observation of Brown et al. Since this covalent binding site does not react with either N-ethylmaleimide or the sulfhydryl reagent pCMBS (p-chloromercuribenzenesulfonate), its presence has not previously been reported. This covalent site does not inhibit water transport nor does it affect any transport process we have studied. There is an additional low-affinity (non-covalent) DTNB site that Reithmeier ((1983) Biochim. Biophys. Acta 732, 122-125) has shown to inhibit anion transport. In N-ethylmaleimide-treated red cells, we have found that this binding site inhibits water transport and that the inhibition can be partially reversed by the specific stilbene anion exchange transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), thus linking water transport to anion exchange. DTNB binding to this low-affinity site also inhibits ethylene glycol and methyl urea transport with the same KI as that for water inhibition, thus linking these transport systems to that for water and anions. These results support the view that band 3 is a principal constituent of the red cell aqueous channel, through which urea and ethylene glycol also enter the cell. PMID:2992587

  18. New scavenger resin for the reversible linking and monoprotection of functionalized aromatic aldehydes.

    PubMed

    Zhu, Mingzhao; Ruijter, Eelco; Wessjohann, Ludger A

    2004-10-28

    [reaction: see text] Polymer-supported benzylhydrazines were synthesized using poly(ethylene glycol) acrylamide (PEGA) resin. They can be used to scavenge electrophiles reactive with hydrazine. Especially aromatic aldehydes can be captured selectively, monoprotected, and reversibly linked in the presence of other functional groups, including electrophilic ones. Various reactions can be performed on these protectively linked aldehydes, which afterward can be released either with full restoration of the aldehyde function or, alternatively, with simultaneous conversion.

  19. Ionic liquid-supported aldehyde: a highly efficient scavenger for primary amines.

    PubMed

    Muthayala, Manoj Kumar; Kumar, Anil

    2012-01-01

    Novel aldehyde-functionalized ionic liquids have been synthesized and used as scavengers for primary amines in the synthesis of secondary amines. The yields of secondary amines are high (82-90%) with high purity. The advantages of the protocol over that with a polymer-supported aldehyde scavenger are the shorter reaction time, the homogeneous reaction medium, the high level of loading of the aldehyde group, easy monitoring of reaction, and characterization of intermediates.

  20. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    PubMed Central

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  1. Nickel-catalyzed dehydrogenative cross-coupling: direct transformation of aldehydes into esters and amides.

    PubMed

    Whittaker, Aaron M; Dong, Vy M

    2015-01-19

    By exploring a new mode of nickel-catalyzed cross-coupling, a method to directly transform both aromatic and aliphatic aldehydes into either esters or amides has been developed. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. Mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C-H bond is also presented. PMID:25424967

  2. Betaine aldehyde, betaine, and choline levels in rat livers during ethanol metabolism.

    PubMed

    Chern, M K; Gage, D A; Pietruszko, R

    2000-12-01

    Betaine aldehyde levels were determined in rat livers following 4 weeks of ethanol feeding, employing the Lieber-De Carli liquid diet. The results showed that the levels of betaine aldehyde are unaffected by alcohol feeding to rats. These levels in both experimental and control animals were found to be quite low, 5.5 nmol/g liver. Betaine aldehyde levels have not been determined previously in mammalian liver because of methodological difficulties. This investigation employed fast atom bombardment-mass spectroscopy to determine the levels of betaine aldehyde, betaine, and choline. The decrease in betaine levels following ethanol administration confirmed the results of other investigators. Choline levels determined during this investigation were lower than previously reported. The reason for starting this investigation was the fact that the enzyme that catalyzes betaine aldehyde dehydrogenation to betaine, which is distributed in both mitochondria and the cytoplasm, was found to also metabolize acetaldehyde with K(m) and V(max) values lower than those for betaine aldehyde. Thus, it appeared likely that the metabolism of acetaldehyde during ethanol metabolism might inhibit betaine aldehyde conversion to betaine and thereby result in decreased betaine levels (Barak et al., Alcohol 13: 395-398, 1996). The fact that betaine aldehyde levels in alcohol-fed animals were similar to those in controls demonstrates that competition between acetaldehyde and betaine aldehyde for the same enzyme does not occur. This complete lack of competition suggests that betaine aldehyde dehydrogenase in the mitochondrial matrix may totally metabolize betaine aldehyde to betaine without any involvement of cytoplasmic betaine aldehyde dehydrogenase. PMID:11077045

  3. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  4. Bioreduction of aldehydes and ketones using Manihot species.

    PubMed

    Machado, Luciana L; Souza, João Sammy N; de Mattos, Marcos Carlos; Sakata, Solange K; Cordell, Geoffrey A; Lemos, Telma L G

    2006-08-01

    Biocatalysis constitutes an important tool in organic synthesis, especially for the preparation of chiral molecules of biological interest. A series of aliphatic and aromatic aldehydes and two ketones were reduced using plant cell preparations from Manihot esculenta and Manihot dulcis roots. The reduced products were typically obtained in excellent yields (80-96%), and with excellent enantiomeric excess (94-98%), except for vanillin. Esters, a nitrile, and an amide were also examined, but were not reduced. Preliminary conversion rate studies are reported. This is the first attempt to perform the biotransformation of carbonyl compounds using Manihot species. PMID:16603212

  5. [Activity of aldehyde scavenger enzymes in the heart of rats of different age during immobilized stress].

    PubMed

    Grabovetskaia, E R; Davydov, V V

    2009-01-01

    This study was made to determine the activity of aldehyde scavenger enzymes in the heart's postmitochondrial fraction of rats of different age during immobilization stress. Our study demonstrated, that immobilization of 1.5-, 2- and 12-month rats was accompanied by inhibiting activity of aldehyde dehydrogenase and aldehyde reductase. At the same time we observed an increase in glutathione transferase activity in immobilized 1.5-month-old rats and that in reductase activity in 24-month-old rats. The revealed changes can lead to a decrease in the rate of endogenous aldehyde utilization in the heart during stress at puberty.

  6. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    PubMed

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  7. Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. II. Site of labeling with iodoacetamide and its fluorescent derivative.

    PubMed

    Yamashita, T; Kawakita, M

    1987-02-01

    Iodoacetamide (IAA) and its fluorescent derivative, 5-(2-iodoacetamidoethyl) amino-naphthalene-1-sulfonate (IAEDANS) specifically bind to a site on the C-terminal half of sarcoplasmic reticulum (SR) Ca2+,Mg2+-ATPase. The location of this specific binding site was identified. SR membranes were treated with 150 microM [14C]IAA at pH 7.0 and 30 degrees C. One mole of IAA per mole of ATPase was bound in 6 h without affecting the Ca2+-transport activity. [14C]IAA-labeled SR membranes were cleaved with BrCN, and 14C-labeled peptide fragments were separated by Sephadex LH-60 chromatography and then digested further with trypsin. A radioactive peptide (Ala-Cys 674-Cys-Phe-Ala-Arg) was purified by Sephadex LH-20 chromatography and C18 reversed phase HPLC (Cys denotes the [14C]IAA-binding site). IAEDANS-labeling was carried out by reacting SR membranes with 50 microM IAEDANS for 5 h, at pH 7.0 and 30 degrees C. A fluorescent peptide was successfully purified by the same procedures as for the IAA-labeled peptide, and the amino acid sequence analysis of this peptide revealed that the IAEDANS labeling site was identical with the IAA binding site.

  8. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    PubMed Central

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  9. Prevention of ethanol-induced vascular injury and gastric mucosal lesions by sucralfate and its components: possible role of endogenous sulfhydryls

    SciTech Connect

    Szabo, S.; Brown, A.

    1987-09-01

    The authors tested the hypothesis that sucralfate, which contains eight sulfate and aluminum molecules on a sucrose and its other components might decrease ethanol-induced vascular injury and hemorrhagic mucosal lesions through a sulfhydryl (SH)-sensitive process. Experiments performed in rats revealed that the entire sucralfate molecule is not a prerequisite for protection against ethanol-induced mucosal vascular injury and erosions. It appears that sulfate and sucrose octasulfate are potent components of sucralfate, although an equimolar amount of sucralfate is at least twice as effective in gastroprotection than its components. The SH alkylator N-ethylmaleimide abolished the gastroprotection by sucralfate, suggesting SH-sensitive process in the mucosal protection which seems to be associated with the prevention of rapidly developing vascular injury in the stomach of rats given ethanol.

  10. Evidence for a reactive cysteine at the nucleotide binding site of spinach ribulose-5-phosphate kinase

    SciTech Connect

    Omnaas, J.; Porter, M.A.; Hartman, F.C.

    1985-02-01

    Ribulose-5-phosphate kinase from spinach was rapidly inactivated by N-bromoacetylethanolamine phosphate in a bimolecular fashion with a k2 of 2.0 m s at 2C and pH 8.0. Ribulose 5-phosphate had little effect on the rate of inactivation, whereas complete protection was afforded by ADP or ATP. The extent of incorporation as determined with UC-labeled reagent was about 1 molar equivalent per subunit in the presence of ATP with full retention of enzymatic activity, and about 2 molar equivalents per subunit in the completely inactivated enzyme. Amino acid analyses of enzyme derivatized with UC-labeled reagent reveal that all of the covalently incorporated reagent was associated with cysteinyl residues. Hence, two sulfhydryls are reactive, but the inactivation correlates with alkylation of one cysteinyl residue at or near the enzyme's nucleotide binding site. The kinase was also extremely sensitive to the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide. The reactive sulfhydryl groups are likely to be those generated by reduction of a disulfide during activation. 20 references, 3 figures, 2 tables.

  11. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde

    PubMed Central

    Ma, Heng; Guo, Rui; Yu, Lu; Zhang, Yingmei; Ren, Jun

    2011-01-01

    Aims The present study was designed to examine the mechanism involved in mitochondrial aldehyde dehydrogenase (ALDH2)-induced cardioprotection against ischaemia/reperfusion (I/R) injury with a focus on autophagy. Methods Wild-type (WT), ALDH2 overexpression, and knockout (KO) mice (n = 4–6 for each index measured) were subjected to I/R, and myocardial function was assessed using echocardiographic, Langendroff, and edge-detection systems. Western blotting was used to evaluate AMP-dependent protein kinase (AMPK), Akt, autophagy, and the AMPK/Akt upstream signalling LKB1 and PTEN. Results ALDH2 overexpression and KO significantly attenuated and accentuated, respectively, infarct size, factional shortening, and recovery of post-ischaemic left ventricular function following I/R as well as hypoxia/reoxygenation-induced cardiomyocyte contractile dysfunction. Autophagy was induced during ischaemia and remained elevated during reperfusion. ALDH2 significantly promoted autophagy during ischaemia, which was accompanied by AMPK activation and mammalian target of rapamycin (mTOR) inhibition. On the contrary, ALDH2 overtly inhibited autophagy during reperfusion accompanied by the activation of Akt and mTOR. Inhibition and induction of autophagy mitigated ALDH2-induced protection against cell death in hypoxia and reoxygenation, respectively. In addition, levels of the endogenous toxic aldehyde 4-hydroxy-2-nonenal (4-HNE) were elevated by ischaemia and reperfusion, which was abrogated by ALDH2. Furthermore, ALDH2 ablated 4-HNE-induced cardiomyocyte dysfunction and protein damage, whereas 4-HNE directly decreased pan and phosphorylated LKB1 and PTEN expression. Conclusion Our data suggest a myocardial protective effect of ALDH2 against I/R injury possibly through detoxification of toxic aldehyde and a differential regulation of autophagy through AMPK- and Akt-mTOR signalling during ischaemia and reperfusion, respectively. PMID:20705694

  12. Comparative effects of sulfhydryl compounds on target organellae, nuclei and mitochondria, of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes.

    PubMed

    Nakagawa, Yoshio; Inomata, Akiko; Ogata, Akio; Nakae, Dai

    2015-12-01

    DNA damage and cytotoxicity induced by a hydroxylated fullerene [C60 (OH)24 ], which is a spherical nanomaterial and/or a water-soluble fullerene derivative, and their protection by sulfhydryl compounds were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to C60 (OH)24 at a concentration of 50 μM caused time (0 to 3 h)-dependent cell death accompanied by the formation of cell surface blebs, the loss of cellular levels of ATP and reduced glutathione, accumulation of glutathione disulfide, and induction of DNA fragmentation assayed using alkali single-cell agarose-gel electrophoresis. C60 (OH)24 -induced cytotoxicity was effectively prevented by pretreatment with sulfhydryl compounds. N-acetyl-L-cysteine (NAC), L-cysteine and L-methionine, at a concentration of 2.5 mM, ameliorated cell death, accompanied by a decrease in cellular ATP levels, formation of cell surface blebs, induction of reactive oxygen species (ROS) and loss of mitochondrial membrane potential caused by C60 (OH)24 . In addition, DNA fragmentation caused by C60 (OH)24 was also inhibited by NAC, whereas an antioxidant ascorbic acid did not affect C60 (OH)24 -induced cell death and DNA damage in rat hepatocytes. Taken collectively, these results indicate that incubation of rat hepatocytes with C60 (OH)24 elicits DNA damage, suggesting that nuclei as well as mitochondria are target sites of the hydroxylated fullerene; and induction of DNA damage and oxidative stress is ameliorated by an increase in cellular GSH levels, suggesting that the onset of toxic effects may be partially attributable to a thiol redox-state imbalance caused by C60 (OH)24 .

  13. Functional consequences of sulfhydryl modification of the γ-aminobutyric acid transporter 1 at a single solvent-exposed cysteine residue.

    PubMed

    Omoto, Jaison J; Maestas, Matthew J; Rahnama-Vaghef, Ali; Choi, Ye E; Salto, Gerardo; Sanchez, Rachel V; Anderson, Cynthia M; Eskandari, Sepehr

    2012-12-01

    The aims of this study were to optimize the experimental conditions for labeling extracellularly oriented, solvent-exposed cysteine residues of γ-aminobutyric acid transporter 1 (GAT1) with the membrane-impermeant sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) and to characterize the functional and pharmacological consequences of labeling on transporter steady-state and presteady-state kinetic properties. We expressed human GAT1 in Xenopus laevis oocytes and used radiotracer and electrophysiological methods to assay transporter function before and after sulfhydryl modification with MTSET. In the presence of NaCl, transporter exposure to MTSET (1-2.5 mM for 5-20 min) led to partial inhibition of GAT1-mediated transport, and this loss of function was completely reversed by the reducing reagent dithiothreitol. MTSET treatment had no functional effect on the mutant GAT1 C74A, whereas the membrane-permeant reagents N-ethylmaleimide and tetramethylrhodamine-6-maleimide inhibited GABA transport mediated by GAT1 C74A. Ion replacement experiments indicated that MTSET labeling of GAT1 could be driven to completion when valproate replaced chloride in the labeling buffer, suggesting that valproate induces a GAT1 conformation that significantly increases C74 accessibility to the extracellular fluid. Following partial inhibition by MTSET, there was a proportional reduction in both the presteady-state and steady-state macroscopic signals, and the functional and pharmacological properties of the remaining signals were indistinguishable from those of unlabeled GAT1. Therefore, covalent modification of GAT1 at C74 results in completely nonfunctional as well as electrically silent transporters.

  14. Aldehyde dehydrogenase 1A1 in stem cells and cancer

    PubMed Central

    Tomita, Hiroyuki; Tanaka, Kaori; Tanaka, Takuji; Hara, Akira

    2016-01-01

    The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies. PMID:26783961

  15. Volatile aldehydes are promising broad-spectrum postharvest insecticides.

    PubMed

    Hammond, D G; Rangel, S; Kubo, I

    2000-09-01

    A variety of naturally occurring aldehydes common in plants have been evaluated for their insecticidal activity and for phytotoxicity to postharvest fruits, vegetables, and grains. Twenty-nine compounds were initially screened for their activity against aphids on fava bean leaf disks. Application under reduced pressure (partial vacuum) for the first quarter of fumigation increased insecticidal activity severalfold. The 11 best aldehydes were assayed against aphids placed under the third leaf of whole heads of iceberg lettuce using the same two-tier reduced-pressure regime, which caused no additional detriment to the commodity over fumigation at atmospheric pressure. Phytotoxicity to naked and wrapped iceburg lettuce, green and red table grapes, lemon, grapefruit, orange, broccoli, avocado, cabbage, pinto bean, and rice at doses that killed 100% of aphids was recorded for three promising fumigants: propanal, (E)-2-pentenal, and 2-methyl-(E)-2-butenal. These three compounds have excellent potential as affordable postharvest insect control agents, killing 100% of the aphids with little or no detectable harm to a majority of the commodities tested. Preliminary assays indicate that similar doses are also effective against mealybugs, thrips, and whitefly. PMID:10995371

  16. Modulation of therapy-induced senescence by reactive lipid aldehydes

    PubMed Central

    Flor, A C; Doshi, A P; Kron, S J

    2016-01-01

    Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence. PMID:27453792

  17. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  18. Direct electrochemistry of the Desulfovibrio gigas aldehyde oxidoreductase.

    PubMed

    Correia dos Santos, Margarida M; Sousa, Patrícia M P; Gonçalves, M Lurdes S; Romão, M João; Moura, Isabel; Moura, José J G

    2004-04-01

    This work reports on the direct electrochemistry of the Desulfovibrio gigas aldehyde oxidoreductase (DgAOR), a molybdenum enzyme of the xanthine oxidase family that contains three redox-active cofactors: two [2Fe-2S] centers and a molybdopterin cytosine dinucleotide cofactor. The voltammetric behavior of the enzyme was analyzed at gold and carbon (pyrolytic graphite and glassy carbon) electrodes. Two different strategies were used: one with the molecules confined to the electrode surface and a second with DgAOR in solution. In all of the cases studied, electron transfer took place, although different redox reactions were responsible for the voltammetric signal. From a thorough analysis of the voltammetric responses and the structural properties of the molecular surface of DgAOR, the redox reaction at the carbon electrodes could be assigned to the reduction of the more exposed iron cluster, [2Fe-2S] II, whereas reduction of the molybdopterin cofactor occurs at the gold electrode. Voltammetric results in the presence of aldehydes are also reported and discussed.

  19. Residual Particle Sizes of Evaporating Droplets: Ammonium Sulfate and Aldehydes

    NASA Astrophysics Data System (ADS)

    Sedehi, N.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    The reactions of carbonyls like glyoxal, methylglyoxal, and glycolaldehyde, with ammonium salts have been proposed as significant sources of atmospheric organic aerosol. Aerosol containing these compounds was generated in the laboratory using the Vibrating Orifice Aerosol Generator (VOAG). The particles were completely dried before they were measured using a SMPS system. The nonvolatile fraction of the resulting aerosol was measured. The drying times were varied between two and twenty minutes, and for ammonium sulfate and glyoxal reactions, minimum residual particle sizes were reached after 3.5 minutes. Reactions of glyoxal, glycolaldehyde, and methylglyoxal with ammonium sulfate appeared to have lower non-volatile fractions remaining at higher starting concentrations, suggesting that a constant 'excess volume,' likely water, was present in the residual particles that could not be evaporated even after 20 minutes of drying. These excess volumes were not observed in our previous experiments with aldehydes but no ammonium sulfate present. At the highest concentrations tested (100 uM), non-volatile fractions of aldehydes present in residual particles were 16 (±17) %, 41 (±28) %, and 17(±32) % for glyoxal, glycolaldehyde, and methylglyoxal, respectively.

  20. Indoor air chemistry: Formation of organic acids and aldehydes

    SciTech Connect

    Zhang, J.; Lioy, P.J. ||; Wilson, W.E.

    1994-12-31

    Laying emphasis on the formation of aldehydes and organic acids, the study has examined the gas-phase reactions of ozone with unsaturated VOCs. The formation of formaldehyde and formic acid was observed for all the three selected unsaturated VOCs: styrene, limonene, and 4-vinylcyclohexene. In addition, benzaldehyde was detected in the styrene-ozone-air reaction system, and acetic acid was also found in limonene-ozone-air system. The study has also examined the gas-phase reactions among formaldehyde, ozone, and nitrogen dioxide and found the formation of formic acid. The nitrate radical was suggested to play an important role in converting formaldehyde into formic acid. Experiments for all the reactions were conducted by using a 4.3 m{sup 3} Teflon chamber. Since the conditions for the reactions were similar to those for indoor environments, the results from the study can be implicated to real indoor situations and can be employed to support the findings and suggestions from the previous studies: certain aldehydes and organic acids could be generated by indoor chemistry.

  1. Spotting optimization for oligo microarrays on aldehyde-glass.

    PubMed

    Dawson, Erica D; Reppert, Amy E; Rowlen, Kathy L; Kuck, Laura R

    2005-06-15

    Low-density microarrays that utilize short oligos (<100 nt) for capture are highly attractive for use in diagnostic applications, yet these experiments require strict quality control and meticulous reproducibility. However, a survey of current literature indicates vast inconsistencies in the spotting and processing procedures. In this study, spotting and processing protocols were optimized for aldehyde-functionalized glass substrates. Figures of merit were developed for quantitative comparison of spot quality and reproducibility. Experimental variables examined included oligo concentration in the spotting buffer, composition of the spotting buffer, postspotting "curing" conditions, and postspotting wash conditions. Optimized conditions included the use of 3-4 microM oligo in a 3x standard saline citrate/0.05% sodium dodecyl sulfate/0.001% (3-[(3-cholamidopropyl) dimethylammonia]-1-propane sulfonate) spotting buffer, 24-h postspotting reaction at 100% relative humidity, and a four-step wash procedure. Evaluation of six types of aldehyde-functionalized glass substrates indicated that those manufactured by CEL Associates, Inc. yield the highest oligo coverage.

  2. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    PubMed

    Varrella, Stefano; Romano, Giovanna; Costantini, Susan; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  3. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  4. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors

    SciTech Connect

    Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D.; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L.; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B.; Sicheri, Frank

    2014-10-24

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy–aldehyde moieties, termed hydroxy–aryl–aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase-active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a hydrogen bond with Tyr892. Structure–activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor-binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design.

  5. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  6. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors.

    PubMed

    Sanches, Mario; Duffy, Nicole M; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B; Sicheri, Frank

    2014-08-28

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy-aryl-aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase-active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a hydrogen bond with Tyr892. Structure-activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor-binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design.

  7. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    SciTech Connect

    Tasayco, M.L.; Prestwich, G.D. )

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.

  8. Acyclovir-induced nephrotoxicity: the role of the acyclovir aldehyde metabolite.

    PubMed

    Gunness, Patrina; Aleksa, Katarina; Bend, John; Koren, Gideon

    2011-11-01

    For decades, acyclovir-induced nephrotoxicity was believed to be secondary to crystalluria. Clinical evidence of nephrotoxicity in the absence of crystalluria suggests that acyclovir induces direct insult to renal tubular cells. We postulated that acyclovir is metabolized by the alcohol dehydrogenase (ADH) enzyme to acyclovir aldehyde, which is metabolized by the aldehyde dehydrognase 2 (ALDH2) enzyme to 9-carboxymethoxymethylguanine (CMMG). We hypothesized that acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity. Human renal proximal tubular (HK-2) cells were used as our in vitro model. Western blot and enzymes activities assays were performed to determine whether the HK-2 cells express ADH and ALDH2 isozymes, respectively. Cytotoxicity (measured as a function of cell viability) assays were conducted to determine (1) whether the acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity and (2) whether CMMG induces cell death. A colorimetric assay was performed to determine whether acyclovir was metabolized to an aldehyde in vitro. Our results illustrated that (1) HK-2 cells express ADH and ALDH2 isozymes, (2) 4-methylpyrazole rendered significant protection against cell death, (3) CMMG does not induce cell death, and (4) acyclovir was metabolized to an aldehyde in tubular cells. These data indicate that acyclovir aldehyde is produced in HK-2 cells and that inhibition of its production by 4-methylpyrazole offers significant protection from cell death in vitro, suggesting that acyclovir aldehyde may cause the direct renal tubular insult associated with acyclovir.

  9. Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA.

    PubMed

    Gaspa, Silvia; Porcheddu, Andrea; De Luca, Lidia

    2015-08-01

    Aromatic and aliphatic aldehydes are simply converted into esters by an efficient oxidative esterification carried out under mild conditions. The aldehydes are converted in situ into their corresponding acyl chlorides, which are then reacted with primary and secondary aliphatic, benzylic, allylic, and propargylic alcohols and phenols. A variety of esters are obtained in high yields.

  10. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects.

    PubMed

    Johansen, J D; Andersen, K E; Rastogi, S C; Menne, T

    1996-03-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patch tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed usage concentrations in different kind of cosmetics. 72% (13/18) developed eczema in the use test performed with an alcoholic solution of cinnamic aldehyde on healthy upper arm skin. 6 of the 13 use-test-positive subjects (46%) reacted later than day 7, indicating that the standard exposure period of 7 days in use testing may not be sufficient, if low concentrations or volatile substances are used. A significant correlation between patch test sensitivity and the outcome of use testing was found (1,<0.001), which should be considered in designing future use test studies and advising patients. Detailed exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity.

  11. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    PubMed Central

    Ye, Jun; Ren, Chong; Shan, Xiexie

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  12. Peptide-catalyzed 1,4-addition reactions of aldehydes to nitroolefins.

    PubMed

    Kastl, Robert; Arakawa, Yukihiro; Duschmalé, Jörg; Wiesner, Markus; Wennemers, Helma

    2013-01-01

    Conjugate addition reactions of aldehydes to nitroolefins provide synthetically useful gamma-nitroaldehydes. Here we summarize our research on peptide-catalyzed conjugate addition reactions of aldehydes to differently substituted nitroolefins. We show that peptides of the general type Pro-Pro-Xaa (Xaa = acidic amino acid) are not only highly active, robust and stereoselective catalysts but have also remarkable chemoselectivities.

  13. Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water.

    PubMed

    Liu, Mingxin; Li, Chao-Jun

    2016-08-26

    The first example of homogeneous copper-catalyzed aerobic oxidation of aldehydes is reported. This method utilizes atmospheric oxygen as the sole oxidant, proceeds under extremely mild aqueous conditions, and covers a wide range of various functionalized aldehydes. Chromatography is generally not necessary for product purification. PMID:27505714

  14. Cu-NHC-TEMPO catalyzed aerobic oxidation of primary alcohols to aldehydes.

    PubMed

    Liu, Xiaolong; Xia, Qinqin; Zhang, Yuejiao; Chen, Congyan; Chen, Wanzhi

    2013-09-01

    Imidazolium salts bearing TEMPO groups react with commercially available copper powder affording Cu-NHC complexes. The in situ generated Cu-NHC-TEMPO complexes are quite efficient catalysts for aerobic oxidation of primary alcohols into aldehydes. The catalyst is easily available, and various primary alcohols were selectively converted to aldehydes in excellent yields. PMID:23944937

  15. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8.

    PubMed

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensisACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism.

  16. Chromatographic approaches for determination of low-molecular mass aldehydes in bio-oil.

    PubMed

    Tessini, Catherine; Müller, Niels; Mardones, Claudia; Meier, Dietrich; Berg, Alex; von Baer, Dietrich

    2012-01-01

    HPLC-UV and GC/MS determination of aldehydes in bio-oil were evaluated. HPLC-UV preceded by derivatization with 2,4-dinitrophenylhydrazine allows separation and detection of bio-oil aldehydes, but the derivatization affected the bio-oil stability reducing their quantitative applicability. GC/MS determination of aldehydes was reached by derivatization with o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride. Two approaches for this reaction were evaluated. The first: "in solution derivatization and head space extraction" and the second: "on fiber derivatization SPME", the latter through an automatic procedure. Both sample treatments allows the quantification of most important aliphatic aldehydes in bio-oil, being the SPME approach more efficient. The aldehyde concentrations in bio-oil were ~2% formaldehyde, ~!0.1% acetaldehyde and ~0.05% propionaldehyde.

  17. Synthesis of bio-based aldehyde from seaweed polysaccharide and its interaction with bovine serum albumin.

    PubMed

    Kholiya, Faisal; Chaudhary, Jai Prakash; Vadodariya, Nilesh; Meena, Ramavatar

    2016-10-01

    Here, we demonstrate a successful synthesis of bio-based aldehyde namely dialdehyde-carboxymethylagarose (DCMA) using carboxymethyagarose (CMA). Further reaction parameters (i.e. reaction temperature, pH and periodate concentration) were optimized to achieve maximum aldehyde content and product yield. The synthesis of DCMA was confirmed by employing FTIR, (1)H NMR, XRD, SEM, AFM, TGA, DSC, EA and GPC techniques. To investigate the aldehyde functionality, DCMA was allowed to interact with BSA and obtained results were found to be comparable with that of synthetic aldehyde (Formaldehyde). Further interaction of DCMA with BSA was confirmed by using UV-vis, FTIR, fluorescent spectroscopy, CD and DLS analysis. Results of this study revealed that bio-based aldehyde behaves like formaldehyde. This study adds value to abundant marine biopolymers and opens the new research area for polymer researchers. PMID:27312639

  18. [Characterization of aldehyde dehydrogenase gene fragment from mung bean Vigna radiata using the polymerase chain reaction].

    PubMed

    Ponomarev, A G; Bubiakina, V V; Tatarinova, T D; Zelenin, S M

    1998-01-01

    Two degenerate oligonucleotide sequence primers and polymerase chain reactions on total DNA have been utilized to clone on 651--bp gene fragment coding the central part of amino acid sequence of an earlier unknown aldehyde dehydrogenase (ALDH) from mung bean. The deduced partial amino acid sequence for this aldehyde dehydrogenase shows about 65% sequence identity to ALDHs of Vibrio cholerae Rhodococcus sp., Alcaligenes eutrophus and about 45% sequence identity to mammalian ALDHs 1 and 2, ALDHs of Aspergillus niger and A, nidulans, the betain aldehyde dehydrogenase from spinach. Alignment of the mung bean aldehyde dehydrogenase partial amino acid sequence with the sequence of 16 NAD(P)(+)-dependent aldehyde dehydrogenases has demonstrated that all strictly conserved amino acid residues and all three conservative regions are identical. PMID:9778740

  19. Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.

    2007-01-01

    Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.

  20. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  1. Multicomponent reactions of methyl substituted all-cis tetrafluorocyclohexane aldehydes.

    PubMed

    Bykova, Tetiana; Al-Maharik, Nawaf; Slawin, Alexandra M Z; O'Hagan, David

    2016-01-21

    This paper reports the preparation of methyl substituted all-cis tetrafluorocyclohexanes prepared from a Birch reduction of benzoic acid, worked up with a methyl iodide quench. The resultant methylcyclohexadiene carboxylic acid was reduced to the alcohol, protected as an ether and then a sequence of functional group manipulations carried out to introduce four fluorines. The cyclohexadienyl ring was then epoxidised and the C-O bonds sequentially converted through deoxyfluorination reactions to two sets of isomers of all-cis tetrafluorocyclohexane isomers. The blocking methyl group renders the ring safe to hydrogen fluoride elimination. Deprotection of the benzylic ether and then oxidation gave aldehydes which were then used in Ugi and Passerini multicomponent reactions, allowing this facially polarised cyclohexane to be incorporated into peptidic structural motifs. PMID:26646211

  2. Possible prebiotic catalysts formed from adenine and aldehyde

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Dumas, L.; Décout, J.-L.; Maurel, M.-C.

    2000-09-01

    Careful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the "RNA World" hypothesis of the origin of life. However, in this scenario, the difficult prebiotic synthesis of ribose and consequently of nucleotides remain a major problem. In order to overcome this problem and obtain nucleoside analogs, we are investigating reactions of the nucleic acid base, adenine 1, with different aldehydes under presumably prebiotic conditions. In the reaction of adenine and pyruvaldehyde 2 in water, we report here the formation in high yield of two isomeric products. These compounds possessing alcohols functions as nucleosides result from condensation of two molecules of pyruvaldehyde on the 6-amino group of one adenine molecule. Their catalytic activities in the model hydrolysis of p-nitrophenylesters appeared interesting in the search of prebiotic catalysts.

  3. Studies on organic indole-3-aldehyde single crystals

    NASA Astrophysics Data System (ADS)

    Haja Hameed, A. S.; Ravi, G.; Dhanasekaran, R.; Ramasamy, P.

    Indole-3-aldehyde (IA) is a new organic nonlinear material for which its solubility in methanol and acetone was found out using the apparatus fabricated by the authors. In order to get the good-quality crystals, methods of evaporation of solvent at room temperature and slow cooling of saturated solution at boiling temperature were adopted. Simulated lattice parameter values were found out using experimentally known " d" values. The etching and mechanical strength studies on different planes of the crystal were carried out. Decomposition temperature, weight loss and different functional bond frequencies associated with the crystal were also found out from differential thermal analysis (DTA), thermo-gravimetric analysis (TGA) and Fourier transform infra-red (FTIR) spectroscopic analysis, respectively.

  4. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    PubMed

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. PMID:25340465

  5. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  6. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    PubMed

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  7. Activator Protein-1 Regulation of Murine Aldehyde Dehydrogenase 1a1

    PubMed Central

    Makia, N. L.; Amunom, I.; Falkner, K. C.; Conklin, D. J.; Surapureddi, S.; Goldstein, J. A.

    2012-01-01

    Previously we demonstrated that aldehyde dehydrogenase (ALDH) 1a1 is the major ALDH expressed in mouse liver and is an effective catalyst in metabolism of lipid aldehydes. Quantitative real-time polymerase chain reaction analysis revealed a ≈2.5- to 3-fold induction of the hepatic ALDH1A1 mRNA in mice administered either acrolein (5 mg/kg acrolein p.o.) or butylated hydroxylanisole (BHA) (0.45% in the diet) and of cytosolic NAD+-dependent ALDH activity. We observed ≈2-fold increases in ALDH1A1 mRNA levels in both Nrf2(+/+) and Nrf2(−/−) mice treated with BHA compared with controls, suggesting that BHA-induced expression is independent of nuclear factor E2-related factor 2 (Nrf2). The levels of activator protein-1 (AP-1) mRNA and protein, as well as the amount of phosphorylated c-Jun were significantly increased in mouse liver or Hepa1c1c7 cells treated with either BHA or acrolein. With use of luciferase reporters containing the 5′-flanking sequence of Aldh1a1 (−1963/+27), overexpression of c-Jun resulted in an ≈4-fold induction in luciferase activity, suggesting that c-Jun transactivates the Aldh1a1 promoter as a homodimer and not as a c-Jun/c-Fos heterodimer. Promoter deletion and mutagenesis analyses demonstrated that the AP-1 site at position −758 and possibly −1069 relative to the transcription start site was responsible for c-Jun-mediated transactivation. Electrophoretic mobility shift assay analysis with antibodies against c-Jun and c-Fos showed that c-Jun binds to the proximal AP-1 site at position −758 but not at −1069. Recruitment of c-Jun to this proximal AP-1 site by BHA was confirmed by chromatin immunoprecipitation analysis, indicating that recruitment of c-Jun to the mouse Aldh1a1 gene promoter results in increased transcription. This mode of regulation of an ALDH has not been described before. PMID:22740640

  8. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    PubMed

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in total, with 21-28 replacements between any pair of the alpha/beta/gamma chains. These values, compared with those from species differences between the corresponding human and horse enzymes, suggest that isozyme developments in the class I enzyme resulted from separate gene duplications after the divergence of the human and equine evolutionary lines. All subunits exhibit some unique properties, with slightly closer similarity between the human gamma and horse enzyme subunits and somewhat greater deviations towards the human alpha subunit. Differences are large also in segments close to the active site zinc ligands and other functionally important positions. Species differences are distributed roughly equally between the two types of domain in the subunit, whereas isozyme differences are considerably more common in the catalytic than in the coenzyme-binding domain. These facts illustrate a functional divergence among the isozymes but otherwise similar changes during evolution. Polymorphic forms of beta and gamma subunits are characterized by single replacements at one and two positions, respectively, explaining known deviating properties. Class II and class III subunits are considerably more divergent. Their homology with class I isozymes exhibits only 60-65% positional identity. Hence, they reflect further steps towards the development of new enzymes, with variations well above the horse/human species levels, in contrast to the class I forms. Again, functionally important residues are affected, and patterns resembling those previously established for the divergently related

  9. [Effects of panthenol and carnitine on aldehyde metabolic enzymes in rats with tetrachloromethane-induced liver injury].

    PubMed

    Satanovskaia, V I; Pron'ko, P S; Gaĭshmanova, A V; Miskevich, D A

    2009-01-01

    Tetrachloromethane (2 g/kg, intragastric) produced a decrease in the activity of NAD- and NADH- dependent aldehyde dehydrogenases with high Km for aldehydes in rat liver. Panthenol and L-carnitine administered separately normalized the activity of aldehyde dehydrogenases, while a combination of the drugs did not produce any significant effect. PMID:19441727

  10. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11).

    PubMed

    Blanc, E M; Kelly, J F; Mark, R J; Waeg, G; Mattson, M P

    1997-08-01

    Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, disrupts coupling of muscarinic cholinergic receptors and metabotropic glutamate receptors to phospholipase C-linked GTP-binding proteins in cultured rat cerebrocortical neurons. At subtoxic concentrations, HNE markedly inhibited GTPase activity, inositol phosphate release, and elevation of intracellular calcium levels induced by carbachol (muscarinic agonist) and (RS)-3,5-dihydroxyphenyl glycine (metabotropic glutamate receptor agonist). Maximal impairment of agonist-induced responses occurred within 30 min of exposure to HNE. Other aldehydes, including malondialdehyde, had little effect on agonist-induced responses. Antioxidants that suppress lipid peroxidation did not prevent impairment of agonist-induced responses by HNE, whereas glutathione, which is known to bind and detoxify HNE, did prevent impairment of agonist-induced responses. HNE itself did not induce oxidative stress. Immunoprecipitation-western blot analysis using an antibody to HNE-protein conjugates showed that HNE can bind to G alpha(q/11). HNE also significantly suppressed inositol phosphate release induced by aluminum fluoride. Collectively, our data suggest that HNE plays a role in altering receptor-G protein coupling in neurons under conditions of oxidative stress that may occur both normally, and before cell degeneration and death in pathological settings. PMID:9231714

  11. Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer

    PubMed Central

    2013-01-01

    Introduction Quiescin sulfhydryl oxidase 1 (QSOX1) oxidizes sulfhydryl groups to form disulfide bonds in proteins. Tumor specific expression of QSOX1 has been reported for numerous tumor types. In this study, we investigate QSOX1 as a marker of breast tumor progression and evaluate the role of QSOX1 as it relates to breast tumor growth and metastasis. Methods Correlation of QSOX1 expression with breast tumor grade, subtype and estrogen receptor (ER) status was gathered through informatic analysis using the "Gene expression based Outcome for Breast cancer Online" (GOBO) web-based tool. Expression of QSOX1 protein in breast tumors tissue microarray (TMA) and in a panel of breast cancer cell lines was used to confirm our informatics analysis. To investigate malignant cell mechanisms for which QSOX1 might play a key role, we suppressed QSOX1 protein expression using short hairpin (sh) RNA in ER+ Luminal A-like MCF7, ER+ Luminal B-like BT474 and ER- Basal-like BT549 breast cancer cell lines. Results GOBO analysis revealed high levels of QSOX1 RNA expression in ER+ subtypes of breast cancer. In addition, Kaplan Meyer analyses revealed QSOX1 RNA as a highly significant predictive marker for both relapse and poor overall survival in Luminal B tumors. We confirmed this finding by evaluation of QSOX1 protein expression in breast tumors and in a panel of breast cancer cell lines. Expression of QSOX1 in breast tumors correlates with increasing tumor grade and high Ki-67 expression. Suppression of QSOX1 protein slowed cell proliferation as well as dramatic inhibition of MCF7, BT474 and BT549 breast tumor cells from invading through Matrigel™ in a modified Boyden chamber assay. Inhibition of invasion could be rescued by the exogenous addition of recombinant QSOX1. Gelatin zymography indicated that QSOX1 plays an important role in the function of MMP-9, a key mediator of breast cancer invasive behavior. Conclusions Taken together, our results suggest that QSOX1 is a novel

  12. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N.

  13. α,β-Unsaturated aldehyde of hyaluronan--Synthesis, analysis and applications.

    PubMed

    Buffa, Radovan; Šedová, Petra; Basarabová, Ivana; Moravcová, Martina; Wolfová, Lucie; Bobula, Tomáš; Velebný, Vladimír

    2015-12-10

    Hyaluronic acid (HA) modified with an aldehyde group (HA-CHO or HA-aldehyde) has been extensively used for various biomedical applications. The main advantage of the aldehyde moieties is the ability to react with a wide range of amino compounds under physiological conditions. Reactions of aldehydes with primary amines in water are reversible and equilibrium is thoroughly shifted towards starting aldehyde and amine. This work presents an unique modification of HA: α,β-unsaturated aldehyde of HA (4,5-anhydro-6(GlcNAc)-oxo HA or ΔHA-CHO), which allows the primary amines to be attached to HA more effectively in comparison to the saturated HA-CHO. Higher hydrolytic stability is caused by the conjugation of imine with an adjacent --C=C-- double bond. Two strategies for the preparation of unsaturated HA-aldehyde were developed and chemical structures were studied in details. Cross-linked materials prepared from this precursor are biocompatible and suitable for applications in drug delivery and regenerative medicine. PMID:26428127

  14. Dark Hydrazone Fluorescence Labeling Agents Enable Imaging of Cellular Aldehydic Load.

    PubMed

    Yuen, Lik Hang; Saxena, Nivedita S; Park, Hyun Shin; Weinberg, Kenneth; Kool, Eric T

    2016-08-19

    Aldehydes are key intermediates in many cellular processes, from endogenous metabolic pathways like glycolysis to undesired exogenously induced processes such as lipid peroxidation and DNA interstrand cross-linking. Alkyl aldehydes are well documented to be cytotoxic, affecting the functions of DNA and protein, and their levels are tightly regulated by the oxidative enzyme ALDH2. Mutations in this enzyme are associated with cardiac damage, diseases such as Fanconi anemia (FA), and cancer. Many attempts have been made to identify and quantify the overall level of these alkyl aldehydes inside cells, yet there are few practical methods available to detect and monitor these volatile aldehydes in real time. Here, we describe a multicolor fluorogenic hydrazone transfer ("DarkZone") system to label alkyl aldehydes, yielding up to 30-fold light-up response in vitro. A cell-permeant DarkZone dye design was applied to detect small-molecule aldehydes in the cellular environment. The new dye design also enabled the monitoring of cellular acetaldehyde production from ethanol over time by flow cytometry, demonstrating the utility of the DarkZone dyes for measuring and imaging the aldehydic load related to human disease. PMID:27326450

  15. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  16. Antimony(v) cations for the selective catalytic transformation of aldehydes into symmetric ethers, α,β-unsaturated aldehydes, and 1,3,5-trioxanes.

    PubMed

    Arias Ugarte, Renzo; Devarajan, Deepa; Mushinski, Ryan M; Hudnall, Todd W

    2016-07-01

    1-Diphenylphosphinonaphthyl-8-triphenylstibonium triflate ([][OTf]) was prepared in excellent yield by treating 1-lithio-8-diphenylphosphinonaphthalene with dibromotriphenylstiborane followed by halide abstraction with AgOTf. This antimony(v) cation was found to be stable toward oxygen and water, and exhibited exceptional Lewis acidity. The Lewis acidity of [][OTf] was exploited in the catalytic reductive coupling of a variety of aldehydes into symmetric ethers of type in good to excellent yields under mild conditions using Et3SiH as the reductant. Additionally, [][OTf] was found to selectively catalyze the Aldol condensation reaction to afford α-β unsaturated aldehydes () when aldehydes with 2 α-hydrogen atoms were used. Finally, [][OTf] catalyzed the cyclotrimerization of aliphatic and aromatic aldehydes to afford the industrially-useful 1,3,5 trioxanes () in good yields, and with great selectivity. This phosphine-stibonium motif represents one of the first catalytic systems of its kind that is able to catalyze these reactions with aldehydes in a controlled, efficient manner. The mechanism of these processes has been explored both experimentally and theoretically. In all cases the Lewis acidic nature of the antimony(v) cation was found to promote these reactions. PMID:27326797

  17. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin.

    PubMed

    Yao, Qingwei; Sheets, Matthew

    2006-07-01

    An air- and moisture-stable SeCSe-Pd(II) pincer complex was synthesized and found to catalyze the nucleophilic allylation of aldehydes with allyltributyltin. The allylation of a variety of aromatic and aliphatic aldehydes to give the corresponding homoallyl alcohols was performed at room temperature to 60 degrees C in yields ranging from 50% (for typical aliphatic aldehydes) to up to 97% (for aromatic aldehydes) using 5 x 10(-3) to 1 mol % of the Pd catalyst. NMR spectroscopic study indicated that a sigma-allylpalladium intermediate was formed and possibly functions as the nucleophilic species that undergoes addition to the aldehydes. PMID:16808533

  18. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin.

    PubMed

    Yao, Qingwei; Sheets, Matthew

    2006-07-01

    An air- and moisture-stable SeCSe-Pd(II) pincer complex was synthesized and found to catalyze the nucleophilic allylation of aldehydes with allyltributyltin. The allylation of a variety of aromatic and aliphatic aldehydes to give the corresponding homoallyl alcohols was performed at room temperature to 60 degrees C in yields ranging from 50% (for typical aliphatic aldehydes) to up to 97% (for aromatic aldehydes) using 5 x 10(-3) to 1 mol % of the Pd catalyst. NMR spectroscopic study indicated that a sigma-allylpalladium intermediate was formed and possibly functions as the nucleophilic species that undergoes addition to the aldehydes.

  19. Zinc-Catalyzed Dehydrogenative Cross-Coupling of Terminal Alkynes with Aldehydes: Access to Ynones.

    PubMed

    Tang, Shan; Zeng, Li; Liu, Yichang; Lei, Aiwen

    2015-12-21

    Because of the lack of redox ability, zinc has seldom been used as a catalyst in dehydrogenative cross-coupling reactions. Herein, a novel zinc-catalyzed dehydrogenative C(sp(2) )H/C(sp)H cross-coupling of terminal alkynes with aldehydes was developed, and provides a simple way to access ynones from readily available materials under mild reaction conditions. Good reaction selectivity can be achieved with a 1:1 ratio of terminal alkyne and aldehyde. Various terminal alkynes and aldehydes are suitable in this transformation. PMID:26564779

  20. Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation.

    PubMed

    Chu, Crystal K; Ziegler, Daniel T; Carr, Brian; Wickens, Zachary K; Grubbs, Robert H

    2016-07-11

    An aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation. PMID:27225538

  1. Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation.

    PubMed

    Chu, Crystal K; Ziegler, Daniel T; Carr, Brian; Wickens, Zachary K; Grubbs, Robert H

    2016-07-11

    An aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation.

  2. Transformations of several monoterpenoids in the presence of aldehydes in supercritical solvents

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Sivcev, V. P.; Il'ina, I. V.; Korchagina, D. V.; Statsenko, O. B.; Volcho, K. P.; Salakhutdinov, N. F.

    2013-03-01

    The reactivity of verbenol epoxide and isopulegol in supercritical solvents in the presence of aromatic aldehydes was studied using a flow type reactor and a heterogeneous catalyst (Al2O3) or no catalyst. The intramolecular transformations or interactions of reagents with the solvent prevailed in all cases; the yield of the products of intermolecular reactions of terpenoids with aldehydes was up to 1%. The aldehydes did not interact with verbenol epoxide but produced a considerable effect on the distribution of its isomerization products.

  3. Sulfhydryl protection and the oxygen effect on radiation-induced inactivation of r-chromatin in vitro. Influence of an OH scavenger: t-butanol

    SciTech Connect

    Herskind, C.

    1988-07-01

    Transcriptionally active r-chromatin from Tetrahymena has been irradiated in dilute phosphate buffer, pH 7.2, in the presence of the sulfhydryl compound 2-mercaptoethanol (MSH). MSH was more protective against radiation-induced inactivation of transcription under N/sub 2/ than under O/sub 2/. The OH scavenger, t-butanol, on the other hand, gives significantly less protection under N/sub 2/ than under O/sub 2/, apparently due to inactivation by secondary t-butanol radicals under anoxia as shown previously. However, MSH was found to restore most of the protective effect of t-butanol under N/sub 2/. Inactivation was studied as a function of MSH concentration (0.03-10 mM) at different, fixed concentrations of t-butanol (3-300 mM). The observed protection may be explained essentially in terms of (1) OH scavenging, (2) repair of DNA radicals by H-atom transfer from MSH under N/sub 2/ in competition with fixation of damage under O/sub 2/, and (3) protection against inactivation by secondary t-butanol radicals by H-atom transfer to these radicals. The sensitizing effect of oxygen in the presence of MSH is reduced by t-butanol and may even be reversed to produce an apparently protective effect. This finding is discussed in terms of residual inactivation by secondary radicals. The significance of OH scavengers as potential modifiers of oxygen enhancement ratio values is discussed.

  4. Significance of sulfhydryl compounds in the manifestation of fluoroacetate toxicity to the rat, brush-tailed possum, woylie and western grey kangaroo.

    PubMed

    Mead, R J; Moulden, D L; Twigg, L E

    1985-01-01

    Levels of citrate in kidneys and livers of rats with normal glutathione levels increased 6.8 and 1.7-fold respectively 2 h after dosing with 1.5 mg of compound 1080 (= 95% sodium fluoroacetate) per kilogram body weight. In animals with liver glutathione levels 15% of normal, increases in plasma and liver citrate levels after dosing with fluoroacetate were significantly greater than those of control animals. Cysteamine and N-acetylcysteine, like glutathione, partially protected aconitate hydratase from fluorocitrate inhibition in rat liver preparations but were unable to replace glutathione as a substrate for the defluorination of fluoroacetate in vitro. N-Acetylcysteine did not diminish plasma citrate levels of glutathione-deficient rats dosed with fluoroacetate, while cysteamine inhibited the rate of in vivo defluorination in glutathione-deficient brush-tailed possums. It is suggested that non-physiological sulfhydryl compounds are ineffective antidotes to fluoroacetate intoxication in vivo. The in vivo defluorination patterns of four mammal species with differing sensitivities to fluoroacetate did not indicate a direct relationship between tolerance and rate of defluorination and it is also suggested that a high level of activity of the glutathione-S-transferase responsible for the defluorination of fluoroacetate is not the major mechanism for circumventing fluoroacetate toxicity in resistant mammals.

  5. Involvement of protein tyrosine phosphorylation and reduction of cellular sulfhydryl groups in cell death induced by 1' -acetoxychavicol acetate in Ehrlich ascites tumor cells.

    PubMed

    Moffatt, Jerry; Kennedy, David Opare; Kojima, Akiko; Hasuma, Tadayoshi; Yano, Yoshihisa; Otani, Shuzo; Murakami, Akira; Koshimizu, Koichi; Ohigashi, Hajime; Matsui-Yuasa, Isao

    2002-02-20

    Elucidation of the mechanisms underlying potential anticancer drugs continues and unraveling these mechanisms would not only provide a conceptual framework for drug design but also promote use of natural products for chemotherapy. To further evaluate the efficacy of the anticancer activity of 1'-acetoxychavicol acetate (ACA), this study investigates the underlying mechanisms by which ACA induces death of Ehrlich ascites tumor cells. ACA treatment induced loss of cell viability, and Western blotting analysis revealed that the compound stimulated tyrosine phosphorylation of several proteins with 27 and 70 kDa proteins being regulated in both dose- and time-dependent manner prior to loss of viability. Protein tyrosine kinase inhibitor herbimycin A moderately protected cells from ACA-induced toxicity. In addition, cellular glutathione and protein sulfydryl groups were also significantly reduced both dose- and time-dependently during evidence of cell death. Replenishing thiol levels by antioxidant, N-acetylcysteine (NAC), an excellent supplier of glutathione and precursor of glutathione, substantially recovered the viability loss, but the recovery being time-dependent, as late addition of NAC (at least 30 min after ACA addition to cultures) was, however, ineffective. Addition of NAC to ACA treated cultures also abolished tyrosine phosphorylation of the 27 kDa protein. These results, at least partly, identify cellular sulfhydryl groups and protein tyrosine phosphorylation as targets of ACA cytotoxicity in tumor cells.

  6. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity.

    PubMed

    Stiti, Naim; Podgórska, Karolina; Bartels, Dorothea

    2014-03-01

    The cofactor-binding site of the NAD(+)-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2'- and 3'-hydroxyl groups of the adenosyl ribose ring of NAD(+) and repels the 2'-phosphate moiety of NADP(+). If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD(+) is altered and rendered the enzyme capable of using NADP(+). This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2'-phosphate of NADP(+). Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP(+). The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP(+). Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a "closed" cofactor binding site. The cofactor specificity was shifted even further in favor of NADP(+), as the mutant ALDH3H1E149T/V178R/I200V uses NADP(+) with almost 7-fold higher catalytic efficiency compared to NAD(+). Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.

  7. Mechanisms of alcohol liver damage: aldehydes, scavenger receptors, and autoimmunity.

    PubMed

    Duryee, Michael J; Willis, Monte S; Freeman, Thomas L; Kuszynski, Charles A; Tuma, Dean J; Klassen, Lynell W; Thiele, Geoffrey M

    2004-09-01

    While most of the investigations into the causative events in the development of alcoholic liver disease (ALD) have been focused on multiple factors, increasing interest has centered around the possible role of immune mechanisms in the pathogenesis and perpetuation of ALD. This is because many of the clinical features of ALD suggest that immune effector mechanisms may be contributing to liver tissue damage, as evidenced by the detection of circulating autoantibodies, and the presence of CD4+ and CD8+ lymphoid cells in the livers of patients with ALD. One mechanism that has been associated with the development of autoimmune responses is the modification (haptenation or adduction) of liver proteins with aldehydes or other products of oxidative stress. This is because it has been shown that these adducted proteins can induce specific immune responses, to the adduct, the adduct plus protein (conformational antigens), as well as the unmodified parts of the protein. More importantly, it is possible to demonstrate that adducted self-proteins can induce reactivity to the normal self-protein and thereby induce autoimmune responses. Therefore, it is the purpose of this manuscript to outline the mechanism(s) by which these modified self proteins can induce autoimmune reactivity, and thus play a role in the development and/or progression of ALD.

  8. Weak chemiluminescence of bilirubin and its stimulation by aldehydes.

    PubMed

    Watanabe, H; Usa, M; Kobayashi, M; Agatsuma, S; Inaba, H

    1992-01-01

    Bilirubin in an alkaline solution exhibits a weak chemiluminescence (CL) under aerobic conditions. This spontaneous CL was markedly enhanced by the addition of various aldehydes. The fluorescent emission spectrum of bilirubin, excited by weak intensity light at 350 nm, coincided with its CL emission spectrum (peak at 670 nm). CL emission from bilirubin was not quenched by active oxygen scavengers. This suggests that triplet oxygen reacts with bilirubin, and forms an oxygenated intermediate (hydroperoxide) as a primary emitter (oxidative scission of tetrapyrrole bonds in bilirubin is not involved in this CL). The Ehrlich reaction (test for monopyrroles) and hydrolsulphite reaction (test for dipyrroles) on the CL reaction mixture and unreacted bilirubin showed no differences. When the CL was initiated by singlet oxygen, rather than superoxide anion, monopyrrole, was detected in the reaction products by gel chromatography. The inhibitory effect of a scavenger of singlet oxygen on CL was eliminated in the presence of formaldehyde. Therefore, triplet carbonyl, formed by singlet oxygen through the dioxetane structure in bilirubin, is not an emitter. The reaction mechanism of bilirubin CL and the formation of a hydroperoxide intermediate is discussed in relation to the chemical structure of luciferin molecules from bioluminescent organisms.

  9. Does acute exposure to aldehydes impair pulmonary function and structure?

    PubMed

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group. PMID:27102012

  10. Aldehyde dehydrogenase induction in arsenic-exposed rat bladder epithelium.

    PubMed

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2016-01-01

    Arsenic is widely distributed in the environment. Many human cancers, including urothelial carcinoma (UC), show a dose-dependent relationship with arsenic exposure in the south-west coast of Taiwan (also known as the blackfoot disease (BFD) areas). However, the molecular mechanisms of arsenic-mediated UC carcinogenesis has not yet been defined. In vivo study, the rat bladder epithelium were exposed with arsenic for 48 h. The proteins were extracted from untreated and arsenic-treated rat bladder cells and utilized two-dimensional gel electrophoresis and mass spectrometry. Selected peptides were extracted from the gel and identified by quadrupole-time of flight (Q-TOF) Ultima-Micromass spectra. The significantly difference expression of proteins in arsenic-treated groups as compared with untreated groups was confirmed by immunohistochemistry (IHC) and western blotting. We found that thirteen proteins were down-regulated and nine proteins were up-regulated in arsenic-treated rat bladder cells when compared with untreated groups. The IHC and western blotting results confirmed that aldehyde dehydrogenase (ALDH) protein was up-regulated in arsenic-treated rat bladder epithelium. Expression of ALDH protein was significantly higher in UC patients from BFD areas than those from non-BFD areas using IHC (p=0.018). In conclusion, the ALDH protein expression could be used as molecular markers for arsenic-induced transformation.

  11. Studies of the condensation of sulfones with ketones and aldehydes.

    PubMed

    Garst, Michael E; Dolby, Lloyd J; Esfandiari, Shervin; Okrent, Rachel A; Avey, Alfred A

    2006-01-20

    [reaction: see text] The condensation of ketones or aldehydes with sulfones was shown to give a variety of products. Condensation of 2-methylcyclohexanone with dimethyl sulfone using potassium t-butoxide as base gave useful yields of 1,2-dimethylenecyclohexane. Under the same conditions, cycloheptanone, 3-methyl-2-butanone, and 2-butanone were converted to dienes. Remarkably, these reaction conditions converted acetophenone into p-terphenyl (10%) and (E)-1,4-diphenyl-3-penten-1-one (44%). Propiophenone was converted to 2'-methyl-p-terphenyl (61%). Using alpha-tetralone produced 1-methynaphthalene and naphthalene. No reaction took place with beta-tetralone. Using diethyl sulfone with alpha-tetralone lead to pure naphthalene. Condensation of isobutyraldehyde and dimethyl sulfone using potassium t-butoxide gave isoprene in low yield. Using benzaldehyde and benzyl phenyl sulfone in N,N-dimethylacetamide gave 1,2-diphenyl-1-phenylsulfonylethylene, N,N-dimethylcinnamide, and a complex condensation product. Only 1,2-diphenyl-1-phenylsulfonylethylene was obtained when the solvent was THF. PMID:16408963

  12. metal ion interactions of picoline-2-aldehyde thiosemicarbazone.

    PubMed

    Leggett, D J; McBryde, W A

    The reactions of picoline-2-aldehyde thiosemicarbazone (PATS) with silver, mercury, iron(II) and cobalt have been investigated in various environments. The compositions of the complexes have been investigated by continuous variation and molar ratio methods. Stability constants have been evaluated by means of SCOGS and a new program SQUAD. The formation constants, measured at 25 degrees and 0.10M ionic strength were as follows: Ag(PATS), logbeta(101) = 13.40; HgH(PATS), log beta(1110) = 23.6; HgH(2)(PATS)(2), log beta(1220) = 42.1; HgH(2)(PATS)(EDTA), log beta = 44.0; FeH(3)(PATS)(3), log beta(133) = 44.9; FeH(2)(PATS)(3), log beta(123) = 41.7; FeH(PATS)(3), log beta(113) = 38.4; Fe(PATS)(3), log beta(103) = 34.2. A tentative value for a cobalt complex is also suggested. A computer program, suitable for calculation of optimum conditions for a chemical analysis is also introduced and its use is illustrated for the silver-PATS-EDTA system.

  13. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  14. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  15. Aldehyde dehydrogenase induction in arsenic-exposed rat bladder epithelium.

    PubMed

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2016-01-01

    Arsenic is widely distributed in the environment. Many human cancers, including urothelial carcinoma (UC), show a dose-dependent relationship with arsenic exposure in the south-west coast of Taiwan (also known as the blackfoot disease (BFD) areas). However, the molecular mechanisms of arsenic-mediated UC carcinogenesis has not yet been defined. In vivo study, the rat bladder epithelium were exposed with arsenic for 48 h. The proteins were extracted from untreated and arsenic-treated rat bladder cells and utilized two-dimensional gel electrophoresis and mass spectrometry. Selected peptides were extracted from the gel and identified by quadrupole-time of flight (Q-TOF) Ultima-Micromass spectra. The significantly difference expression of proteins in arsenic-treated groups as compared with untreated groups was confirmed by immunohistochemistry (IHC) and western blotting. We found that thirteen proteins were down-regulated and nine proteins were up-regulated in arsenic-treated rat bladder cells when compared with untreated groups. The IHC and western blotting results confirmed that aldehyde dehydrogenase (ALDH) protein was up-regulated in arsenic-treated rat bladder epithelium. Expression of ALDH protein was significantly higher in UC patients from BFD areas than those from non-BFD areas using IHC (p=0.018). In conclusion, the ALDH protein expression could be used as molecular markers for arsenic-induced transformation. PMID:26482281

  16. Reaction of aminals of conjugated omega-dimethylamino aldehydes with indandione

    SciTech Connect

    Krasnaya, Zh.A.; Stytsenko, T.S.; Gusev, D.G.; Prokof'ev, E.P.

    1987-01-20

    Conjugated omega-dimethylamino ..beta..-diketones with two to five double bonds and trimethylidyne- and pentamethylidyneoxanine salts are formed in the condensation of animals of conjugated ..beta..-dimethylamino aldehydes with indandione.

  17. A general and efficient aldehyde decarbonylation reaction by using a palladium catalyst.

    PubMed

    Modak, Atanu; Deb, Arghya; Patra, Tuhin; Rana, Sujoy; Maity, Soham; Maiti, Debabrata

    2012-05-01

    A facile decarbonylation reaction of aldehydes has been developed by employing Pd(OAc)(2). A wide variety of substrates are decarbonylated, without using any exogenous ligand for palladium as well as CO-scavenger.

  18. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.

    PubMed

    Orozco, Lina M; Renz, Michael; Corma, Avelino

    2016-09-01

    Aldehydes possess relatively high chemical energy, which is the driving force for disproportionation reactions such as Cannizzaro and Tishchenko reactions. Generally, this energy is wasted if aldehydes are transformed into carboxylic acids with a sacrificial oxidant. Here, we describe a cascade reaction in which the surplus energy of the transformation is liberated as molecular hydrogen for the oxidation of heptanal to heptanoic acid by water, and the carboxylic acid is transformed into potentially industrially relevant symmetrical ketones by ketonic decarboxylation. The cascade reaction is catalyzed by monoclinic zirconium oxide (m-ZrO2 ). The reaction mechanism has been studied through cross-coupling experiments between different aldehydes and acids, and the final symmetrical ketones are formed by a reaction pathway that involves the previously formed carboxylic acids. Isotopic studies indicate that the carboxylic acid can be formed by a hydride shift from the adsorbed aldehyde on the metal oxide surface in the absence of noble metals. PMID:27539722

  19. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications.

  20. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications. PMID:25563951

  1. Copper catalyzed oxidative esterification of aldehydes with alkylbenzenes via cross dehydrogenative coupling.

    PubMed

    Rout, Saroj Kumar; Guin, Srimanta; Ghara, Krishna Kanta; Banerjee, Arghya; Patel, Bhisma K

    2012-08-01

    Copper(II) as the catalyst in a cross dehydrogenative coupling (CDC) reaction has been demonstrated for the synthesis of benzylic esters using aldehydes and alkylbenzenes as coupling partners. PMID:22817825

  2. Transcriptional activation of the aldehyde reductase YqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K-12.

    PubMed

    Lee, Changhan; Kim, Insook; Lee, Junghoon; Lee, Kang-Lok; Min, Bumchan; Park, Chankyu

    2010-08-01

    The reactive alpha-oxoaldehydes such as glyoxal (GO) and methylglyoxal (MG) are generated in vivo from sugars through oxidative stress. GO and MG are believed to be removed from cells by glutathione-dependent glyoxalases and other aldehyde reductases. We isolated a number of GO-resistant (GO(r)) mutants from Escherichia coli strain MG1655 on LB plates containing 10 mM GO. By tagging the mutations with the transposon TnphoA-132 and determining their cotransductional linkages, we were able to identify a locus to which most of the GO(r) mutations were mapped. DNA sequencing of the locus revealed that it contains the yqhC gene, which is predicted to encode an AraC-type transcriptional regulator of unknown function. The GO(r) mutations we identified result in missense changes in yqhC and were concentrated in the predicted regulatory domain of the protein, thereby constitutively activating the product of the adjacent gene yqhD. The transcriptional activation of yqhD by wild-type YqhC and its mutant forms was established by an assay with a beta-galactosidase reporter fusion, as well as with real-time quantitative reverse transcription-PCR. We demonstrated that YqhC binds to the promoter region of yqhD and that this binding is abolished by a mutation in the potential target site, which is similar to the consensus sequence of its homolog SoxS. YqhD facilitates the removal of GO through its NADPH-dependent enzymatic reduction activity by converting it to ethadiol via glycolaldehyde, as detected by nuclear magnetic resonance, as well as by spectroscopic measurements. Therefore, we propose that YqhC is a transcriptional activator of YqhD, which acts as an aldehyde reductase with specificity for certain aldehydes, including GO.

  3. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.

    PubMed

    Spite, Matthew; Baba, Shahid P; Ahmed, Yonis; Barski, Oleg A; Nijhawan, Kanchan; Petrash, J Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-07-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone ('core' aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte-endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C(16:0-20:4) phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C(16:0-20:4) phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are

  4. Photoredox Activation for the Direct β-Arylation of Ketones and Aldehydes

    PubMed Central

    Pirnot, Michael T.; Rankic, Danica A.; Martin, David B. C.; MacMillan, David W. C.

    2013-01-01

    The direct β-activation of saturated aldehydes and ketones has long been an elusive transformation. We found that photoredox catalysis in combination with organocatalysis can lead to the transient generation of 5π-electron β-enaminyl radicals from ketones and aldehydes that rapidly couple with cyano-substituted aryl rings at the carbonyl β-position. This mode of activation is suitable for a broad range of carbonyl β-functionalization reactions and is amenable to enantioselective catalysis. PMID:23539600

  5. Metal-free oxidative decarbonylative coupling of aromatic aldehydes with arenes: direct access to biaryls.

    PubMed

    Tang, Ren-Jin; He, Qing; Yang, Luo

    2015-04-01

    A metal-free oxidative decarbonylative coupling of aromatic aldehydes with electron-rich or electron-deficient arenes to produce biaryl compounds was developed. This novel coupling was proposed to proceed via a non-chain radical homolytic aromatic substitution (HAS) type mechanism, based on the substrate scope, ortho-regioselectivity, radical trapping experiments and DFT calculation studies. With the ready availability of aromatic aldehydes and arenes, metal-free conditions should make this coupling attractive for the biaryl synthesis.

  6. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    PubMed Central

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2015-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptides. Histidine dipeptides are present in micromolar to millimolar range in the tissues of vertebrates, where they are involved in a variety of physiological functions such as pH buffering, metal chelation, oxidant and aldehyde scavenging. Histidine dipeptides such as carnosine form Michael adducts with lipid-derived unsaturated aldehydes, and react with carbohydrate-derived oxo- and hydroxy- aldehydes forming products of unknown structure. Although these peptides react with electrophilic molecules at lower rate than glutathione, they can protect glutathione from modification by oxidant and they may be important for aldehyde quenching in glutathione-depleted cells or extracellular space where glutathione is scarce. Consistent with in vitro findings, treatment with carnosine has been shown to diminish ischemic injury, improve glucose control, ameliorate the development of complications in animal models of diabetes and obesity, promote wound healing and decrease atherosclerosis. The protective effects of carnosine have been linked to its anti-oxidant properties, it ability to promote glycolysis, detoxify reactive aldehydes and enhance histamine levels. Thus, treatment with carnosine and related histidine dipeptides may be a promising strategy for the prevention and treatment of diseases associated with high carbonyl load. PMID:23313711

  7. Analysis of a panel of rapidly growing mycobacteria for resistance to aldehyde-based disinfectants.

    PubMed

    De Groote, Mary Ann; Gibbs, Sara; de Moura, Vinicius Calado Nogueira; Burgess, Winona; Richardson, Kris; Kasperbauer, Shannon; Madinger, Nancy; Jackson, Mary

    2014-08-01

    After several accounts across the globe of mycobacteria outbreaks associated with medical procedures and aldehyde disinfectants resistance, we undertook an analysis of mycobacteria isolated from patients seen in a hospital in the United States between 1994 and 2008 to determine prevalence of resistance to aldehyde-based disinfectants. Out of the 117 clinical isolates screened, 6 isolates belonging to the emerging Mycobacterium abscessus group were found to display significant levels of resistance to glutaraldehyde and ortho-phthalaldehyde.

  8. Garner’s aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

    PubMed Central

    Passiniemi, Mikko

    2013-01-01

    Summary Since its introduction to the synthetic community in 1984, Garner’s aldehyde has gained substantial attention as a chiral intermediate for the synthesis of numerous amino alcohol derivatives. This review presents some of the most successful carbon chain elongation reactions, namely carbonyl alkylations and olefinations. The literature is reviewed with particular attention on understanding how to avoid the deleterious epimerization of the existing stereocenter in Garner’s aldehyde. PMID:24367429

  9. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.

    PubMed

    Frömmel, Jan; Tarkowski, Petr; Kopečný, David; Šebela, Marek

    2016-09-25

    Plant NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases. They participate in the metabolism of polyamines or osmoprotectants. The enzymes are characterized by their broad substrate specificity covering ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The isoenzyme 1 from tomato (Solanum lycopersicum; SlAMADH1) oxidizes aliphatic aldehydes very efficiently and converts also furfural, its derivatives or benzaldehyde, which are present at low concentrations in alcoholic distillates such as fruit brandy. In this work, SlAMADH1 was examined as a bioanalytical tool for their detection. These aldehydes arise from fermentation processes or thermal degradation of sugars and their presence is related to health complications after consumption including nausea, emesis, sweating, decrease in blood pressure, hangover headache, among others. Sixteen samples of slivovitz (plum brandy) from local producers in Moravia, Czech Republic, were analyzed for their aldehyde content using a spectrophotometric activity assay with SlAMADH1. In all cases, there were oxidative responses observed when monitoring NADH production in the enzymatic reaction. Aldehydes in the distillate samples were also subjected to a standard determination using reversed-phase HPLC with spectrophotometric and tandem mass spectrometric detection after a derivatization with 2,4-dinitrophenylhydrazine. Results obtained by both methods were found to correlate well for a majority of the analyzed samples. The possible applicability of SlAMADH1 for the evaluation of aldehyde content in food and beverages has now been demonstrated. PMID:26703808

  10. Aldehyde-Resistant Mycobacteria Associated with the Use of Endoscope Reprocessing Systems

    PubMed Central

    Fisher, Christopher W.; Fiorello, Anthony; Shaffer, Diana; Jackson, Mary

    2012-01-01

    Bacteria can develop resistance to antibiotics, but less is known about their ability to increase resistance to chemical disinfectants. This study randomly sampled three AERs in the USA using aldehydes for endoscope disinfection. Bacterial contamination was found post-disinfection in all AERs and some mycobacteria isolated demonstrated significant resistance to glutaraldehyde and OPA disinfectants. Bacteria can survive aldehyde-based disinfection and may pose a cross-contamination risk to patients. PMID:22325730

  11. DABO Boronate Promoted Conjugate Allylation of α,β-Unsaturated Aldehydes Using Copper(II) Catalysis.

    PubMed

    Roest, Pjotr C; Michel, Nicholas W M; Batey, Robert A

    2016-08-01

    The first catalytic method for the selective 1,4-conjugate allylation of α,β-unsaturated aldehydes is reported. The method employs an air-stable diethanolamine-complexed boronic acid (DABO boronate) as the allyl transfer reagent and promotes conjugate addition over 1,2-addition. A variety of aryl- and alkyl-substituted enals are tolerated, providing δ,ε-unsaturated aldehyde products in good yields and selectivities under mild conditions. PMID:27362535

  12. KAHA ligations that form aspartyl aldehyde residues as synthetic handles for protein modification and purification.

    PubMed

    Murar, Claudia E; Thuaud, Frédéric; Bode, Jeffrey W

    2014-12-31

    Aldehydes are widely recognized as valuable synthetic handles for the chemoselective manipulation of peptides and proteins. In this report, we show that peptides and small proteins containing the aspartic acid semialdehyde (Asa) side chain can be easily prepared by a chemoselective amide-forming ligation that results in the formation of the Asa residue at the ligation site. This strategy employs the α-ketoacid-hydroxylamine (KAHA) ligation in combination with a new isoxazolidine monomer that forms a side-chain aldehyde upon ligation. This monomer is easily prepared on a preparative scale by a catalytic, enantioselective approach and is readily introduced onto the N-terminus of a peptide segment by solid phase peptide synthesis. The ligated product can be further functionalized by bioorthogonal reactions between the aldehyde residue and alkoxyamines or hydrazides. We demonstrated that glucagon aldehyde, an unprotected 29-mer peptide prepared by KAHA ligation, can be site specifically and chemoselectively modified with biotin, dyes, aliphatic oximes, and hydroxylamines. We further describe a simple and high recovery one-step purification process based on the capture of a 29-mer glucagon aldehyde and a 76-mer ubiquitin aldehyde by an alkoxyamine-functionalized polyethylene glycol resin. The peptide or protein was released from the resin by addition of a hydroxylamine to provide the corresponding oximes.

  13. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids.

    PubMed

    Ross, Brian M; Babay, Slim; Malik, Imran

    2015-11-01

    Reactive oxygen species react with unsaturated fatty acids to form a variety of metabolites including aldehydes. Many aldehydes are volatile enough to be detected in headspace gases of blood or cultured cells and in exhaled breath, in particular propanal and hexanal which are derived from omega-3 and omega-6 polyunsaturated fatty acids, respectively. Aldehydes are therefore potential non-invasive biomarkers of oxidative stress and of various diseases in which oxidative stress is thought to play a role including cancer, cardiovascular disease and diabetes. It is unclear, however, how changes in the abundance of the fatty acid precursors, for example by altered dietary intake, affect aldehyde concentrations. We therefore fed male Wistar rats diets supplemented with either palm oil or a combination of palm oil plus an n-3 fatty acid (alpha-linolenic, eicosapentaenoic, or docosahexaenoic acids) for 4 weeks. Fatty acid analysis revealed large changes in the abundance of both n-3 and n-6 fatty acids in the liver with smaller changes observed in the brain. Despite the altered fatty acid abundance, headspace concentrations of C1-C8 aldehydes, and tissue concentrations of thiobarbituric acid reactive substances, did not differ between the 4 dietary groups. Our data suggest that tissue aldehyde concentrations are independent of fatty acid abundance, and further support their use as volatile biomarkers of oxidative stress.

  14. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.

    PubMed

    Jaušovec, Darja; Vogrinčič, Robert; Kokol, Vanja

    2015-02-13

    The chemo-enzymatic modification of cellulose nanofibers (CNFs) using laccase as biocatalysts and TEMPO or 4-Amino-TEMPO as mediators under mild aqueous conditions (pH 5, 30 °C) has been investigated to introduce surface active aldehyde groups. 4-Amino TEMPO turned out to be kinetically 0.5-times (50%) more active mediator, resulting to oxoammonium cation intermediacy generated and its in situ regeneration during the modification of CNFs. Accordingly, beside of around 750 mmol/kg terminally-located aldehydes, originated during CNFs isolation, the reaction resulted to about 140% increase of C6-located aldehydes at optimal conditions, without reducing CNFs crystallinity. While only the C6-aldehydes were wholly transformed into the carboxyls after additional post-treatment using NaOH according to the Cannizzaro reaction, the post-oxidation with air-oxygen in EtOH/water medium or NaClO2 resulted to no- or very small amounts of carboxyls created, respectively, at a simultaneous loss of all C6- and some terminal-aldehydes in the latter due to the formation of highly-resistant hemiacetal covalent linkages with available cellulose hydroxyls. The results indicated a new way of preparing and stabilizing highly reactive C6-aldehydes on cellulose, and their exploitation in the development of new nanocellulose-based materials.

  15. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.

    PubMed

    Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente

    2016-01-27

    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.

  16. [Fatty aldehydes of the plasmalogenic form of phosphatidylethanolamine in the vertebrate brain].

    PubMed

    Kruglova, E E

    1979-01-01

    Studies have been made on the composition of fatty aldehydes of plasmalogen form of ethanolamine phospholipid in the brain of 28 fish species (13 cartilaginous and 15 teleost species, exhibiting different level of organization of the nervous system, marine and freshwater, dwelling in different habitats), as well as in the brain of other vertebrates. It was found that in all primitive species of cartilaginous fish high degree of unsaturation of fatty aldehydes is observed; in higher species the degree of unsaturation is much lower. The highest degree of unsaturation of fatty aldehydes was demonstrated for abyssal species of cartilaginous and teleost fishes. In warm-water species which dwell in the upper layers, unlike all other fishes investigated, almost all fatty aldehydes are saturated. The ratio of unsaturated and saturated fatty aldehydes in fish brain depends on the entity of phylogenetic and ecological factors. Studies on other vertebrates show that in warm-blooded animals saturated fatty aldehydes predominate, whereas in cold-blooded-unsaturated ones are more abundant. PMID:314210

  17. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.; Martinez, A. |

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  18. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. PMID:24411140

  19. Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction

    PubMed Central

    Liao, Jianquan; Sun, Aijun; Xie, Yeqing; Isse, Toyoshi; Kawamoto, Toshihiro; Zou, Yunzeng; Ge, Junbo

    2012-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items—78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal—were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47phox NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47phox NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress–induced apoptosis. The protective role of ALDH2 against ER stress–induced cell death was probably mediated by Akt via a p47phox NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress

  20. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation.

    PubMed

    Neubauer, Regina; Neubauer, Andrea; Wölkart, Gerald; Schwarzenegger, Christine; Lang, Barbara; Schmidt, Kurt; Russwurm, Michael; Koesling, Doris; Gorren, Antonius C F; Schrammel, Astrid; Mayer, Bernd

    2013-09-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.

  1. A Novel Reaction Mediated by Human Aldehyde Oxidase: Amide Hydrolysis of GDC-0834

    PubMed Central

    Wong, Susan; Kirkpatrick, Donald S.; Liu, Lichuan; Khojasteh, S. Cyrus; Hop, Cornelis E. C. A.; Barr, John T.; Jones, Jeffrey P.; Halladay, Jason S.

    2015-01-01

    GDC-0834, a Bruton’s tyrosine kinase inhibitor investigated as a potential treatment of rheumatoid arthritis, was previously reported to be extensively metabolized by amide hydrolysis such that no measurable levels of this compound were detected in human circulation after oral administration. In vitro studies in human liver cytosol determined that GDC-0834 (R)-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo- 4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b] thiophene-2-carboxamide) was rapidly hydrolyzed with a CLint of 0.511 ml/min per milligram of protein. Aldehyde oxidase (AO) and carboxylesterase (CES) were putatively identified as the enzymes responsible after cytosolic fractionation and mass spectrometry-proteomics analysis of the enzymatically active fractions. Results were confirmed by a series of kinetic experiments with inhibitors of AO, CES, and xanthine oxidase (XO), which implicated AO and CES, but not XO, as mediating GDC-0834 amide hydrolysis. Further supporting the interaction between GDC-0834 and AO, GDC-0834 was shown to be a potent reversible inhibitor of six known AO substrates with IC50 values ranging from 0.86 to 1.87 μM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834. PMID:25845827

  2. The tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum and its complex with a viologen-accepting NADPH oxidoreductase.

    PubMed

    Strobl, G; Feicht, R; White, H; Lottspeich, F; Simon, H

    1992-03-01

    Purification of aldehyde oxidoreductase from C. thermoaceticum, the first detected enzyme able to reduce reversibly non-activated carboxylic acids to the corresponding aldehydes (White, H., Strobl, G., Feicht, R. & Simon, H. (1989) Eur. J. Biochem. 184, 89-96), results in the generation of multiple forms of the enzyme. The specific activities for the viologen-mediated dehydrogenation of butyraldehyde for the two main forms of the purification procedure are 530 and 450 U/mg. Two forms of the enzyme composed of alpha,beta- and alpha,beta,gamma-subunits, can be differentiated. The latter binds to red-Sepharose and can be eluted very specifically with NADPH. In contrast to the alpha,beta-types the trimeric forms also catalyse the reversible reduction of oxidised viologen with NADPH (VAPOR activity). The dimer alpha,beta can oligomerize and the alpha,beta,gamma-trimer can easily form various oligomers or split off the gamma-subunit. The apparent molecular masses of the subunits alpha,beta and gamma are 64, 14 and 43 kDa. The alpha,beta-form reveals an apparent molecular mass of 86 kDa containing about 29 iron, 25 acid-labile sulphur, 0.8 tungsten and forms about 1 mol pterine-6-carboxylic acid by permanganate oxidation. The corresponding values of the trimer showing a mass of 300 kDa, are about 82 Fe, 54 S, 3.4 W and 2.5 pterine-6-carboxylic acid. In addition, 1.7 mol of FAD could be found which seems to be a component of the gamma-subunit. The aldehyde oxidoreductase from C. thermoaceticum and that from C. formicoaceticum (White, H., Feicht, R., Huber, C., Lottspeich, F. & Simon, H. (1991) Biol. Chem. Hoppe-Seyler 372, 999-1005) show qualitative similarities as far as the Fe, S, W and pterin content and the broad substrate specificity are concerned. However, there are also surprisingly marked differences with respect to composition and amino-acid sequence.

  3. The mechanism of discrimination between oxidized and reduced coenzyme in the aldehyde dehydrogenase domain of Aldh1l1.

    PubMed

    Tsybovsky, Yaroslav; Malakhau, Yuryi; Strickland, Kyle C; Krupenko, Sergey A

    2013-02-25

    Aldh1l1, also known as 10-formyltetrahydrofolate dehydrogenase (FDH), contains the carboxy-terminal domain (Ct-FDH), which is a structural and functional homolog of aldehyde dehydrogenases (ALDHs). This domain is capable of catalyzing the NADP(+)-dependent oxidation of short chain aldehydes to their corresponding acids, and similar to most ALDHs it has two conserved catalytic residues, Cys707 and Glu673. Previously, we demonstrated that in the Ct-FDH mechanism these residues define the conformation of the bound coenzyme and the affinity of its interaction with the protein. Specifically, the replacement of Cys707 with an alanine resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme. We suggested that this was due to the loss of a covalent bond between the cysteine and the C4N atom of nicotinamide ring of NADP(+) formed during Ct-FDH catalysis. To obtain further insight into the functional significance of the covalent bond between Cys707 and the coenzyme, and the overall role of the two catalytic residues in the coenzyme binding and positioning, we have now solved crystal structures of Ct-FDH in the complex with thio-NADP(+) and the complexes of the C707S mutant with NADP(+) and NADPH. This study has allowed us to trap the coenzyme in the contracted conformation, which provided a snapshot of the conformational processing of the coenzyme during the transition from oxidized to reduced form. Overall, the results of this study further support the previously proposed mechanism by which Cys707 helps to differentiate between the oxidized and reduced coenzyme during ALDH catalysis.

  4. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes.

    PubMed

    Keller, J N; Mark, R J; Bruce, A J; Blanc, E; Rothstein, J D; Uchida, K; Waeg, G; Mattson, M P

    1997-10-01

    Removal of extracellular glutamate at synapses, by specific high-affinity glutamate transporters, is critical to prevent excitotoxic injury to neurons. Oxidative stress has been implicated in the pathogenesis of an array of prominent neurodegenerative conditions that involve degeneration of synapses and neurons in glutamatergic pathways including stroke, and Alzheimer's, Parkinson's and Huntington's diseases. Although cell culture data indicate that oxidative insults can impair key membrane regulatory systems including ion-motive ATPases and amino acid transport systems, the effects of oxidative stress on synapses, and the mechanisms that mediate such effects, are largely unknown. This study provides evidence that 4-hydroxynonenal, an aldehydic product of lipid peroxidation, mediates oxidation-induced impairment of glutamate transport and mitochondrial function in synapses. Exposure of rat cortical synaptosomes to 4-hydroxynonenal resulted in concentration- and time-dependent decreases in [3H]glutamate uptake, and mitochondrial function [assessed with the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)]. Other related aldehydes including malondialdehyde and hexanal had little or no effect on glutamate uptake or mitochondrial function. Exposure of synaptosomes to insults known to induce lipid peroxidation (FeSO4 and amyloid beta-peptide) also impaired glutamate uptake and mitochondrial function. The antioxidants propyl gallate and glutathione prevented impairment of glutamate uptake and MTT reduction induced by FeSO4 and amyloid beta-peptide, but not that induced by 4-hydroxynonenal. Western blot analyses using an antibody to 4-hydroxynonenal-conjugated proteins showed that 4-hydroxynonenal bound to multiple cell proteins including GLT-1, a glial glutamate transporter present at high levels in synaptosomes. 4-Hydroxynonenal itself induced lipid peroxidation suggesting that, in addition to binding directly to membrane regulatory proteins, 4

  5. In vitro binding of nitracrine to DNA in chromatin.

    PubMed

    Wilmańska, D; Szmigiero, L; Gniazdowski, M

    1989-01-01

    In the presence of sulfhydryl compounds nitracrine, an anticancer drug, binds covalently to DNA. The accessibility of DNA in chromatin both to nitracrine and to 8-methoxypsoralen, which was used as a reference compound in this study, when assayed in NaCl concentrations from 0 to 2 M show similar characteristics. The initial decrease reaches a minimum at 0.15 M NaCl above which dissociation of non-histone proteins and histones at higher ionic strengths is demonstrated by an increase in accessible sites. The relative accessibility of DNA in chromatin to nitracrine is, however, lower than that found for 8-methoxypsoralen. Partial dissociation of chromatin with 0.7 M NaCl increases the accessibility of DNA in chromatin when assayed in the absence of NaCl but has no apparent influence when estimated at ionic strength close to physiological conditions. PMID:2742691

  6. Complexes of nitracrine with DNA. Stoichiometry of binding.

    PubMed

    Szmigiero, L; Gniazdowski, M

    1981-01-01

    In the presence of sulfhydryl compounds, an anticancer drug 1-nitro-9-(3-N,N-dimethylaminopropylamino) acridine (nitracrine, Ledakrin) forms irreversible complexes of decreased template activity with DNA. Stoichiometry of the complexes was estimated using the drug labelled with 14C in the acridine ring or in the propyl chain and with 3H in the acridine ring. Up to 50 irreversibly bound 14C-nitracrine molecules were found per 10(3) nucleotides of calf thymus DNA in the presence of dithiothreitol (DTT). Considerably lower binding observed using 3H-labelled drug, particularly when the complexes were formed in the presence of mercaptoethanol (ME) indicates that substitution of tritium atoms occurred during the reaction. Relationship between stoichiometry and template activity in RNA synthesis in vitro system of the complexes was estimated in the paper. PMID:7198467

  7. Aldehyde measurements in indoor environments in Strasbourg (France)

    NASA Astrophysics Data System (ADS)

    Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, Ph.

    Formaldehyde and acetaldehyde concentrations have been measured in indoor environments of various public spaces (railway station, airport, shopping center, libraries, underground parking garage, etc.) of Strasbourg area (east of France). In addition, formaldehyde, acetaldehyde propionaldehyde and hexanal concentrations have been measured in 22 private homes in the same area. In most of the sampling sites, indoor and outdoor formaldehyde and acetaldehyde concentrations were measured simultaneously. Gaseous aldehydes levels were quantified by a conventional DNHP-derivatization method followed by liquid chromatography coupled to UV detection. Outdoor formaldehyde and acetaldehyde concentrations were both in the range 1-10 μg m -3, the highest values being measured at the airport and railway station. Indoor concentrations were strongly dependant upon the sampling sites. In homes, the average concentrations were 37 μg m -3 (living rooms) and 46 μg m -3 (bedrooms) for formaldehyde, 15 μg m -3 (living rooms) and 18 μg m -3 (bedrooms) for acetaldehyde, 1.2 μg m -3 (living rooms) and 1.6 μg m -3 (bedrooms) for propionaldehyde, 9 μg m -3 (living rooms) and 10 μg m -3 (bedrooms) for hexanal. However, concentrations as high as 123, 80 and 47 μg m -3 have been found for formaldehyde, acetaldehyde and hexanal respectively. In public spaces, the highest formaldehyde concentration (62 μg m -3) was found in a library and the highest concentration of acetaldehyde (26 μg m -3) in the hall of a shopping center. Additional measurements of formaldehyde and acetaldehyde were made inside a car both at rest or in a fluid or heavy traffic as well as in a room where cigarettes were smoked. Our data have been discussed and compared with those of previous studies.

  8. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle.

  9. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle. PMID:14756315

  10. Anti-ulcerogenic mechanisms of the sesquiterpene lactone onopordopicrin-enriched fraction from Arctium lappa L. (Asteraceae): role of somatostatin, gastrin, and endogenous sulfhydryls and nitric oxide.

    PubMed

    de Almeida, Ana Beatriz Albino; Luiz-Ferreira, Anderson; Cola, Maíra; Di Pietro Magri, Luciana; Batista, Leonia Maria; de Paiva, Joseilson Alves; Trigo, José Roberto; Souza-Brito, Alba R M

    2012-04-01

    Arctium lappa L. has been used in folk medicine as a diuretic, depurative, and digestive stimulant and in dermatological conditions. The mechanisms involved in the anti-ulcerogenic activity of the sesquiterpene onopordopicrin (ONP)-enriched fraction (termed the ONP fraction), obtained from A. lappa leaves, were studied. The gastroprotective mechanism of the ONP fraction was evaluated in experimental in vivo models in rodents, mimicking this disease in humans. ONP fraction (50 mg/kg, p.o.) significantly inhibited the mucosal injury induced by ethanol/HCl solution (75%), indomethacin/bethanecol (68.9%), and stress (58.3%). When the ONP fraction was investigated in pylorus ligature, it did not induce alteration in the gastric volume but did modify the pH and total acid concentration of gastric juice. ONP fraction significantly increased serum somatostatin levels (82.1±4.1 vs. control group 12.7±4 pmol/L) and decreased serum gastrin levels (62.6±6.04 vs. control group 361.5±8.2 μU/mL). Mucus production was not significantly altered by the ONP fraction. Gastroprotection by the ONP fraction was completely inhibited by N-ethylmaleimide treatment and did not modify the effect in the animals pretreated with l-N(G)-nitroarginine methyl ester. These results suggest an antisecretory mechanism involved with the antiulcerogenic effect of the ONP fraction. However, only endogenous sulfhydryls play an important role in gastroprotection of the ONP fraction.

  11. The Pivotal Role of Aldehyde Toxicity in Autism Spectrum Disorder: The Therapeutic Potential of Micronutrient Supplementation

    PubMed Central

    Jurnak, Frances

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by social and communication impairments as well as by restricted, repetitive patterns of behavior and interests. Genomic studies have not revealed dominant genetic errors common to all forms of ASD. So ASD is assumed to be a complex disorder due to mutations in hundreds of common variants. Other theories argue that spontaneous DNA mutations and/or environmental factors contribute to as much as 50% of ASD. In reviewing potential genetic linkages between autism and alcoholism, it became apparent that all theories of ASD are consistent with aldehyde toxicity, in which endogenous and exogenous aldehydes accumulate as a consequence of mutations in key enzymes. Aldehyde toxicity is characterized by cell-localized, micronutrient deficiencies in sulfur-containing antioxidants, thiamine (B1), pyridoxine (B6), folate, Zn2+, possibly Mg2+, and retinoic acid, causing oxidative stress and a cascade of metabolic disturbances. Aldehydes also react with selective cytosolic and membrane proteins in the cell of origin; then some types migrate to damage neighboring cells. Reactive aldehydes also form adducts with DNA, selectively mutating bases and inducing strand breakage. This article reviews the relevant genomic, biochemical, and nutritional literature, which supports the central hypothesis that most ASD symptoms are consistent with symptoms of aldehyde toxicity. The hypothesis represents a paradigm shift in thinking and has profound implications for clinical detection, treatment, and even prevention of ASD. Insight is offered as to which neurologically afflicted children might successfully be treated with micronutrients and which children are unlikely to be helped. The aldehyde toxicity hypothesis likely applies to other neurological disorders. PMID:27330305

  12. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    PubMed

    Choo, Young-Moo; Pelletier, Julien; Atungulu, Elizabeth; Leal, Walter S

    2013-01-01

    Antennae-specific odorant-degrading enzymes (ODEs) are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs). Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW), Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons. PMID:23826341

  13. Determination of lipid ester ozonides and core aldehydes by high-performance liquid chromatography with on-line mass spectrometry.

    PubMed

    Ravandi, A; Kuksis, A; Myher, J J; Marai, L

    1995-11-01

    Unsaturated triacylglycerols (TG) and choline (PC) and ethanolamine (PE) phosphatides of known structure were subjected to ozonization and reduction with triphenylphosphine to yield the corresponding lipid ester core aldehydes. Mono- and di-C9 aldehyde palmitoylglycerols were prepared from oleoyldipalmitoyl and oleoyllinoleoylpalmitoyl glycerols, respectively, while egg yolk PC and PE provided the mono-C5 and mono-C9 aldehydes of palmitoyl-and stearoyl glycerophospholipids. The aldehydes were isolated in the free form and as the dinitrophenylhydrazone (DNPH) derivatives by thin-layer chromatography (TLC). The intermediate ozonides, free aldehydes and hydrazones were identified by reversed phase high performance liquid chromatography (HPLC) with on-line negative ion thermospray and normal phase HPLC with on-line positive ion electrospray mass spectrometry (LC-MS). The synthetic aldehydes were used as carriers during isolation from natural sources and as reference compounds in quantitative analyses.

  14. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  15. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity

    PubMed Central

    2012-01-01

    Background Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. Results We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol) vs 0.14 g/L/OD600 (isobutyraldehyde)). Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR) activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600) and decreased isobutanol production (0.4 g/L/OD600). By assessing production by overexpression of each

  16. The use of pH-gradient ion-exchange chromatography to separate sheep liver cytoplasmic aldehyde dehydrogenase from mitochondrial enzyme contamination, and observations on the interaction between the pure cytoplasmic enzyme and disulfiram.

    PubMed Central

    Dickinson, F M; Hart, G J; Kitson, T M

    1981-01-01

    1. Sheep liver cytoplasmic aldehyde dehydrogenase can be purified from contamination with the mitochondrial form of the enzyme by pH-gradient ion-exchange chromatography. The method is simple, reproducible and efficient. 2. The purified cytoplasmic enzyme retains about 2% of its original activity in the presence of a large excess of disulfiram. This suggests that the disulfiram-reactive thiol groups are not essential for covalent interaction with the aldehyde substrate during catalysis, as has sometimes been suggested. 3. Between 1.5 and 2.0 molecules of disulfiram per tetrameric enzyme molecule account for the observed loss of activity, suggesting that the enzyme may have only two functional active sites. 4. Experiments show that disulfiram-modified enzyme retains the ability to bind NAD+ and NADH. PMID:7340819

  17. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  18. Charged tag founded in N-(1-chloroalkyl)pyridinium quaternization for quantification of fatty aldehydes.

    PubMed

    Cao, Yanjing; Guan, Qing; Sun, Tuanqi; Qi, Wanshu; Guo, Yinlong

    2016-09-21

    N-(1-chloroalkyl)pyridinium quaternization was developed for the derivatization of fatty aldehydes. Differing from common pre-charged reagents, non-charged pyridine and thionyl chloride were designed to add permanently charged tag on aldehydes. Pyridine was far less competitive than charged derivatives in ionization. Thionyl chloride in excess was quenched by deionized water, converting into less residual sulfur dioxide bubbles. Thus solutions could be tested directly by mass spectrometry without further post-treatments. Pyridine-d5 labeled fatty aldehydes were prepared as internal standards. Mixed derivatives were then analyzed by high performance liquid chromatography coupled to positive electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analytical parameters including reaction yield, stability, precision, linearity, and detection limits (LODs < 0.3 pg mL(-1)) were carefully validated. This method facilitated the analysis low content (ng mL(-1)) levels of free aliphatic aldehydes (C6C18) in human thyroid carcinoma and para-carcinoma tissue with a simple pretreatment procedure. Content of long chain nonvolatile aldehydes (C10C18) remarkably increased in thyroid carcinoma tissues (p < 0.05). PMID:27590548

  19. Aldehydes in Artic Snow at Barrow (AK) during the Barrow 2009 Field Campaign

    NASA Astrophysics Data System (ADS)

    Barret, Manuel; Houdier, Stephan; Gallet, Jean-Charles; Domine, Florent; Beine, Harry; Jacobi, Hans-Werner; Weibring, Petter; Walega, James; Fried, Alan; Richter, Dirk

    2010-05-01

    Aldehydes (RCHO) are key reactive intermediates in hydrocarbon oxidation and in OH cycling. They are also emitted and taken up by the snowpack and a combination of both physical and photochemical processes are likely involved. Since the photolysis of aldehydes is a source of HOx radicals, these exchanges can modify the oxidative capacity of the overlying air. Formaldehyde (HCHO), acetaldehyde (MeCHO), glyoxal (CHOCHO) and methylglyoxal (MeCOCHO) concentrations were measured in over 250 snow samples collected during the Barrow 2009 campaign between late February and mid April 2009. Both continental and marine snowpacks were studied as well as frost flowers on sea ice. We found that HCHO was the most abundant aldehyde (1 to 9 µg/L), but significant concentrations of dicarbonyls glyoxal and methylglyoxal were also measured for the first time in Arctic snow. Similar concentrations were measured for the continental and marine snowpacks but some frost flowers exhibited HCHO concentrations as high as 150 µg/L. Daily cycles in the surface snow were observed for HCHO and CH3CHO but also for the dicarbonyls and we concluded to a photochemical production of these species from organic precursors. Additional data such as gas phase concentrations for the measured aldehydes and snow physical properties (specific surface area, density …) will be used to discuss on the location of aldehydes in the snow. This is essential to identify and quantify the physical processes that occur during the exchange of trace gases between the snow and the atmosphere.

  20. Toxicity of polyunsaturated aldehydes of diatoms to Indo-Pacific bioindicator organism Echinometra mathaei.

    PubMed

    Sartori, Davide; Gaion, Andrea

    2016-01-01

    Although it is well known suitability of early developmental stages of sea urchin as recommended model for pollutant toxicity testing, little is known about the sensitivity of Indo-Pacific species Echinometra mathaei to polyunsaturated aldehydes. In this study, the effect of three short chain aldehydes, 2,4-decadienal (DD), 2,4-octadienal (OD) and 2,4-heptadienal (HD), normally found in many diatoms, such as Skeletonema costatum, Skeletonema marinoi and Thalassiosira rotula, was evaluated on larval development of E. mathaei embryos. Aldehydes affected larval development in a dose-dependent manner, in particular HD>OD>DD; the results of this study highlighted the higher sensitivity of this species toward aldehydes compared with data registered for other sea urchin species. In comparison with studies reported in the literature, contrasting results were observed during our tests; therefore, an increasing toxic effect was registered with decreasing the chain length of aldehydes. This work could provide new insights in the development of new toxicological assays toward most sensitive species. PMID:25945412

  1. Charged tag founded in N-(1-chloroalkyl)pyridinium quaternization for quantification of fatty aldehydes.

    PubMed

    Cao, Yanjing; Guan, Qing; Sun, Tuanqi; Qi, Wanshu; Guo, Yinlong

    2016-09-21

    N-(1-chloroalkyl)pyridinium quaternization was developed for the derivatization of fatty aldehydes. Differing from common pre-charged reagents, non-charged pyridine and thionyl chloride were designed to add permanently charged tag on aldehydes. Pyridine was far less competitive than charged derivatives in ionization. Thionyl chloride in excess was quenched by deionized water, converting into less residual sulfur dioxide bubbles. Thus solutions could be tested directly by mass spectrometry without further post-treatments. Pyridine-d5 labeled fatty aldehydes were prepared as internal standards. Mixed derivatives were then analyzed by high performance liquid chromatography coupled to positive electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analytical parameters including reaction yield, stability, precision, linearity, and detection limits (LODs < 0.3 pg mL(-1)) were carefully validated. This method facilitated the analysis low content (ng mL(-1)) levels of free aliphatic aldehydes (C6C18) in human thyroid carcinoma and para-carcinoma tissue with a simple pretreatment procedure. Content of long chain nonvolatile aldehydes (C10C18) remarkably increased in thyroid carcinoma tissues (p < 0.05).

  2. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts.

    PubMed

    Mano, Jun'ichi; Miyatake, Fumitaka; Hiraoka, Eiji; Tamoi, Masahiro

    2009-09-01

    Aldehydes produced under various environmental stresses can cause cellular injury in plants, but their toxicology in photosynthesis has been scarcely investigated. We here evaluated their effects on photosynthetic reactions in chloroplasts isolated from Spinacia oleracea L. leaves. Aldehydes that are known to stem from lipid peroxides inactivated the CO(2) photoreduction to various extents, while their corresponding alcohols and carboxylic acids did not affect photosynthesis. alpha,beta-Unsaturated aldehydes (2-alkenals) showed greater inactivation than the saturated aliphatic aldehydes. The oxygenated short aldehydes malondialdehyde, methylglyoxal, glycolaldehyde and glyceraldehyde showed only weak toxicity to photosynthesis. Among tested 2-alkenals, 2-propenal (acrolein) was the most toxic, and then followed 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal. While the CO(2)-photoreduction was inactivated, envelope intactness and photosynthetic electron transport activity (H(2)O --> ferredoxin) were only slightly affected. In the acrolein-treated chloroplasts, the Calvin cycle enzymes phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphophatase, sedoheptulose-1,7-bisphosphatase, aldolase, and Rubisco were irreversibly inactivated. Acrolein treatment caused a rapid drop of the glutathione pool, prior to the inactivation of photosynthesis. GSH exogenously added to chloroplasts suppressed the acrolein-induced inactivation of photosynthesis, but ascorbic acid did not show such a protective effect. Thus, lipid peroxide-derived 2-alkenals can inhibit photosynthesis by depleting GSH in chloroplasts and then inactivating multiple enzymes in the Calvin cycle.

  3. Brown Carbon Production in Aldehyde + Ammonium Sulfate Mixtures: Effects of Formaldehyde and Amines

    NASA Astrophysics Data System (ADS)

    Powelson, M.; De Haan, D. O.

    2012-12-01

    The formation of light-absorbing 'brown carbon,' or HULIS (humic- like substances), in atmospheric aerosol has an important impact on climate. However, the precursors responsible for brown carbon formation have not been identified. Several aldehydes present in clouds (methylglyoxal, glycolaldehyde, hydroxyacetone, glyoxal, and acetaldehyde) have the potential to create brown products when reacted with ammonium sulfate or primary amines such as methylamine or glycine. The formation of light-absorbing products from these reactions was characterized as a function of cloud-relevant pH (from 3- 6) using UV-Visible spectroscopy. Of the different aldehydes teste, the largest production rates of light-absorbing compounds were observed in reactions of glycolaldehyde and methylglyoxal. Primary amines produced more light- absorbing products than ammonium sulfate at lower concentrations. The addition of formaldehyde to any reaction with other aldehydes decreased the formation of light-absorbing products, while the addition of a small amount (1:5 mole ratio) of glycine to aldehyde + ammonium sulfate reactions can increase the production of light-absorbing products. These results suggest that the presence of primary amines significantly influence atmospheric brown carbon production by aldehydes even when much greater quantities of ammonium sulfate are present.

  4. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    PubMed

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods.

  5. Development of QSARs for predicting the joint effects between cyanogenic toxicants and aldehydes.

    PubMed

    Lin, Zhifen; Yin, Kedong; Shi, Ping; Wang, Liansheng; Yu, Hongxia

    2003-10-01

    Quantitative structure-activity relationship (QSAR) approaches are proposed in this study to predict the joint effects of mixture toxicity. The initial investigation studies the joint effects between cyanogenic toxicants and aldehydes to Photobacterium phosphoreum. Joint effects are found to result from the formation of a carbanion intermediate produced through the chemical interactions between cyanogenic toxicants and aldehydes. Further research indicates that the formation of carbanion intermediate is highly correlated with not only the charge of the carbon atom in the -CHO of aldehydes but also the charge of the carbon atom (C) in the carbochain of cyanogenic toxicants. The charge of the carbon atom in the -CHO of aldehydes is quantified by using the Hammett constant (sigma(p)), and then, sigma(p)-based QSAR models are proposed to describe the relationships between the joint effects and the chemical structures of the aldehydes. By using the charge of carbon atom (C) in the carbochain of cyanogenic toxicants, another QSAR model is proposed to describe the relationship between the joint effects and the chemical structures of cyanogenic toxicants.

  6. Concentration of simple aldehydes by sulfite-containing double-layer hydroxide minerals: implications for biopoesis

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.

  7. The Chemistry of Sites Binding Rubidium in Chlorella

    PubMed Central

    Cohen, Dan

    1962-01-01

    The chemistry of sites that specifically bind Rb in Chlorella pyrenoidosa has been investigated by changing or modifying specific chemical groups or bonds in the cell and observing changes in binding capacity. Boiling the cells in water or in 70 per cent ethanol did not affect binding capacities of the sites. These results suggest that the integrity of the sites is independent of both hydrogen bonds and hydrophobic bonds, and that the sites, therefore, do not consist of a protein or protein-lipid complex. At 30°C, both 1 M HCL and 0.5 to 1 M NaOH rapidly inactivated 70 per cent of the sites, but over a range of Ph 4.4 to 11.3, there was no effect. The sites are inactivated by strong chelating agents at 0.05 to 0.2 M and by reagents which reduce trivalent iron, and 4 to 10 atoms of iron per site are removed from the cells. Prolonged incubation in iron solutions, but not in solutions of Cu, Mn, or Mg, reversed to a considerable extent inactivation by EDTA. It is suggested that the sites probably bind trivalent iron tightly as chelation bridges which are essential to their structure. These structural bridges are broken when iron is removed by chelating agents or reduction, and are reformed in the presence of iron. Other experimental evidence indicates that amine, sulfhydryl, and carbonyl groups are not structural components of the sites. PMID:19873550

  8. Highly enantioselective reductive cyclization of acetylenic aldehydes via rhodium catalyzed asymmetric hydrogenation.

    PubMed

    Rhee, Jong Uk; Krische, Michael J

    2006-08-23

    Catalytic hydrogenation of acetylenic aldehydes 1a-12a using chirally modified cationic rhodium catalysts enables highly enantioselective reductive cyclization to afford cyclic allylic alcohols 1b-12b. Using an achiral hydrogenation catalyst, the chiral racemic acetylenic aldehydes 13a-15a engage in highly syn-diastereoselective reductive cyclizations to afford cyclic allylic alcohols 13b-15b. Ozonolysis of cyclization products 7b and 9b allows access to optically enriched alpha-hydroxy ketones 7c and 9c. Reductive cyclization of enyne 7a under a deuterium atmosphere provides the monodeuterated product deuterio-7b, consistent with a catalytic mechanism involving alkyne-carbonyl oxidative coupling followed by hydrogenolytic cleavage of the resulting oxametallacycle. These hydrogen-mediated transformations represent the first examples of the enantioselective reductive cyclization of acetylenic aldehydes. PMID:16910650

  9. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    NASA Astrophysics Data System (ADS)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.; Madix, Robert J.

    2016-10-01

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. Here we report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates that block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. Significant improvements in yield can be achieved by operating at higher temperatures, which render the site-blocking acrylates unstable.

  10. A molecularly defined iron-catalyst for the selective hydrogenation of α,β-unsaturated aldehydes.

    PubMed

    Wienhöfer, Gerrit; Westerhaus, Felix A; Junge, Kathrin; Ludwig, Ralf; Beller, Matthias

    2013-06-10

    A selective iron-based catalyst system for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohols is presented. Applying the defined iron-tetraphos complex [FeF(L)][BF4] (L = P(PhPPh2)3) in the presence of trifluoroacetic acid a broad range of aldehydes are reduced in high yields using low catalyst loadings (0.05-1 mol %). Excellent chemoselectivity for the reduction of aldehydes in the presence of other reducible moieties, for example, ketones, olefins, esters, etc. is achieved. Based on the in situ detected hydride species [FeH(H2)(L)](+) a catalytic cycle is proposed that is supported by computational calculations. PMID:23649662

  11. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    SciTech Connect

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  12. Palladium and platinum catalyzed addition of allylstannanes to aldehydes and imines

    SciTech Connect

    Nakamura, Hiroyuki; Yamamoto, Yoshinori

    1995-12-31

    The reaction of allylstannanes with aldehydes in THF was catalyzed by Pd(II) or Pt(II) complexes (10 mole %) either at room temperature or at reflux, giving the corresponding homoallyl alcohols in high to good yields. Among the catalysts examined, PtCl{sub 2}(PPh{sub 3}){sub 2} gave the best result. Aromatic, aliphatic, and {alpha},{beta}-unsaturated aldehydes can be utilized and even cyclohexanone undergoes the allylation reaction. Allyl and methallyltributylstannane reacted very smoothly. Crotyltributylstannane also reacted with aldehydes to give the branched homoallyl alcohols in good yields, but the reaction speed was slower than that of allylstannane. Detailed mechanistic studies of the Pd(II) catalyzed allylation, using NMR spectra, revealed that bis-{pi}-allyl palladium 5 is a key intermediate for the catalytic cycle and it exhibits nucleophilic reactivity.

  13. A molecularly defined iron-catalyst for the selective hydrogenation of α,β-unsaturated aldehydes.

    PubMed

    Wienhöfer, Gerrit; Westerhaus, Felix A; Junge, Kathrin; Ludwig, Ralf; Beller, Matthias

    2013-06-10

    A selective iron-based catalyst system for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohols is presented. Applying the defined iron-tetraphos complex [FeF(L)][BF4] (L = P(PhPPh2)3) in the presence of trifluoroacetic acid a broad range of aldehydes are reduced in high yields using low catalyst loadings (0.05-1 mol %). Excellent chemoselectivity for the reduction of aldehydes in the presence of other reducible moieties, for example, ketones, olefins, esters, etc. is achieved. Based on the in situ detected hydride species [FeH(H2)(L)](+) a catalytic cycle is proposed that is supported by computational calculations.

  14. Evolution of volatile aldehydes in Iberian ham matured under different processing conditions.

    PubMed

    Martín, L; Timón, M L; Petrón, M J; Ventanas, J; Antequera, T

    2000-04-01

    To evaluate the influence of the Iberian ham processing conditions in the evolution of volatile aldehydes, 35 hams were processed in two plants following different conditions of relative humidity and temperature. For this, free fatty acids, peroxide values and volatile aldehydes were quantified in the hams. The highest increases in free fatty acids were noted during the drying stage in both processing plants. The drying period also revealed the greatest increase in peroxide values, where the highest values were in those hams processed at higher temperatures. The temperature during post-salting and drying had a marked influence on the formation of volatile aldehydes, being responsible for the differences in volatile compounds of matured hams.

  15. Occupational Exposure to Volatile Organic Compounds and Aldehydes in the U.S. Trucking Industry

    PubMed Central

    DAVIS, M. E.; BLICHARZ, A. P.; HART, J. E.; LADEN, F.; GARSHICK, E.; SMITH, T. J.

    2008-01-01

    Diesel exhaust is a complex chemical mixture that has been linked to lung cancer mortality in a number of epidemiologic studies. However, the dose–response relationship remains largely undefined, and the specific components responsible for carcinogenicity have not been identified. Although previous focus has been on the particulate phase, diesel exhaust includes a vapor phase of numerous volatile organic compounds (VOCs) and aldehydes that are either known or suspected carcinogens, such as 1,3-butadiene, benzene, and formaldehyde. However, there are relatively few studies that quantify exposure to VOCs and aldehydes in diesel-heavy and other exhaust-related microenvironments. As part of a nationwide assessment of exposure to diesel exhaust in the trucking industry, we collected measurements of VOCs and aldehydes at 15 different U.S. trucking terminals and in city truck drivers (with 6 repeat site visits), observing average shift concentrations in truck cabs and at multiple background and work area locations within each terminal. In this paper, we characterize occupational exposure to 18 different VOCs and aldehydes, as well as relationships with particulate mass (elemental carbon in PM < 1 μ m and PM2.5) across locations to determine source characteristics. Our results show that occupational exposure to VOCs and aldehydes varies significantly across the different sampling locations within each terminal, with significantly higher exposures noted in the work environments over background levels (p < 0.01). A structural equation model performed well in predicting terminal exposures to VOCs and aldehydes as a function of job, background levels, weather conditions, proximity to a major road, and geographic location (R2 = 0.2–0.4 work area; R2 = 0.5–0.9 background). PMID:17993162

  16. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes.

    PubMed Central

    Hershko, A; Rose, I A

    1987-01-01

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. We now examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown. release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent. Direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown. Images PMID:3031653

  17. Synthesis of Discodermolide Subunits by S(E)2' Addition of Nonracemic Allenylstannanes to Aldehydes.

    PubMed

    Marshall, James A.; Lu, Zhi-Hui; Johns, Brian A.

    1998-02-01

    Three subunits, 15, 29, and 34, of the immunosuppressant discodermolide were prepared starting from (S)-3-[(tert-butyldimethylsilyl)oxy]-2-methylpropanal ((S)-1) and the enantioenriched allenylstannanes (P)-2a, (P)-2b, and (P)-31. The route to 15 involved BF(3)-promoted addition of stannane (P)-2a to aldehyde (S)-1 which afforded the syn,syn-homopropargylic alcohol adduct 3 in 97% yield. The derived p-methoxybenzylidene acetal 5 was treated with Red-Al to effect cleavage of the pivalate and reduction of the double bond leading to the (E)-allylic alcohol 6. Sharpless epoxidation and subsequent addition of Me(2)CuCNLi(2) yielded the syn,syn,syn,anti stereopentad, diol 8. Protection of the secondary alcohol and oxidation of the primary gave aldehyde 12, which was treated with the alpha-bromo allylsilane 13 and CrCl(2), followed by NaH to effect elimination to the diene 15. A similar sequence was employed to prepare aldehyde 29. In this case aldehyde (S)-1 was converted to the anti,syn-homopropargylic alcohol 20 by treatment with the allenyl indium reagent formed in situ from allenylstannane (P)-2b and InBr(3). Epoxy alcohol 24, prepared from alcohol 20 by the above-described sequence, was reduced with Red-Al to afford diol 25. Protection of the secondary alcohol and oxidation of the primary completed the synthesis of 29. The anti,syn-homopropargylic alcohol 32 was obtained through addition of the allenic indium reagent, from allenylstannane (P)-31, to aldehyde (S)-1. Protection of the derived diol 33 as the p-methoxybenzylidene acetal afforded the third subunit, acetylene 34. Addition of the lithio derivative of 34 to aldehyde 29 gave alcohol 35 with the carbinyl stereochemistry needed for C7 of discodermolide as the major product.

  18. Yttrium (amidate) complexes for catalytic C-N bond formation. Rapid, room temperature amidation of aldehydes.

    PubMed

    Thomson, Jaclyn A; Schafer, Laurel L

    2012-07-14

    Yttrium (amidate) precatalysts are highly active for the mild amidation of aldehydes with amines. Reactions occur at room temperature within 5 min in up to 98% isolated yield. These rare-earth systems are effective for this transformation in the absence of supplementary heat, light, base, or oxidants. The reaction proceeds with functionalized amines and/or aldehydes. A comparison of various amidate precatalysts in combination with reaction monitoring suggests that the targeted amide products formed during the reaction promote the formation of alternative catalytically active amidate species in situ.

  19. Application of a Sequential Reaction Model to PANS and Aldehyde Measurements in Two Urban Areas

    SciTech Connect

    Roberts, James M.; Stroud, C.; Jobson, B Tom T.; Trainer, Michael; Hereid, D.; Williams, E. J.; Fehsenfeld, Fred C.; Brune, W. H.; Martinez, M.; Harder, H.

    2001-12-15

    Measurements of peroxycarboxylic nitric anhydrides (= PAN, PPN, MPAN) and aldehydes (acetaldehyde, propanal, and methacrolein) were made at Nashville, Tennessee, in 1999 and Houston, Texas, in 2000. The data were interpreted with a sequential reaction model that included reaction of aldehydes with hydroxl radical and formation or loss of PANs mediated by peroxyacyl radicals. The comparison of the measured ratios with those predicted by the model showed disagreement for PAN/acetaldehyde and PPN/propanal in Nashville but agreement in Houston. These features are consistent with the relative importance of isoprene to PAN formation at each site.

  20. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciTech Connect

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J. )

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  1. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  2. Immobilization of DNA via oligonucleotides containing an aldehyde or carboxylic acid group at the 5' terminus.

    PubMed Central

    Kremsky, J N; Wooters, J L; Dougherty, J P; Meyers, R E; Collins, M; Brown, E L

    1987-01-01

    A general method for the immobilization of DNA through its 5'-end has been developed. A synthetic oligonucleotide, modified at its 5'-end with an aldehyde or carboxylic acid, was attached to latex microspheres containing hydrazide residues. Using T4 polynucleotide ligase and an oligonucleotide splint, a single stranded 98mer was efficiently joined to the immobilized synthetic fragment. After impregnation of the latex microspheres with the fluorescent dye, Nile Red and attachment of an aldehyde 16mer, 5 X 10(5) bead-DNA conjugates could be detected with a conventional fluorimeter. Images PMID:3562241

  3. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide.

    PubMed

    Grünenfelder, Claudio E; Kisunzu, Jessica K; Wennemers, Helma

    2016-07-18

    The tripeptide H-dPro-Pro-Asn-NH2 is presented as a catalyst for asymmetric conjugate addition reactions of aldehydes to maleimide. The peptidic catalyst promotes the reaction between various aldehydes and unprotected maleimide with high stereoselectivities and yields. The obtained products were readily derivatized to the corresponding pyrrolidines, lactams, lactones, and peptide-like compounds. (1) H NMR spectroscopic, crystallographic, and computational investigations provided insight into the conformational properties of H-dPro-Pro-Asn-NH2 and revealed the importance of hydrogen bonding between the peptide and maleimide for catalyzing the stereoselective C-C bond formation.

  4. Derivatization of vinyl aldehydes with anthrone prior to high-performance liquid chromatography with fluorometric detection

    SciTech Connect

    Miller, B.E.; Danielson, N.D.

    1988-04-01

    Precolumn high-performance liquid chromatography derivatization of several vinyl aldehydes, specifically acrolein, crotonaldehyde, and methacrolein, has been studied by use of the reagent anthrone. After selective condensation of these ..cap alpha..- or ..beta..-unsaturated aldehydes to form fluorescent benzanthrone derivatives, separation of these compounds was facile on a 10-cm C-18 column. Although ultraviolet detection was possible, fluorescent detection proved more versatile and sensitive. Four liquor samples were subsequently assayed for acrolein and crotonaldehyde. Linearity for these compounds in alcoholic solutions ranged from 0.02 to at least 14 ppm with detection limits reaching down to 0.005 ppm.

  5. Retention of fluorescent probes during aldehyde-free anhydrous freeze-substitution.

    PubMed

    Hyde, G J; Davies, D S; Cole, L; Ashford, A E

    2003-05-01

    Fluorescent probes are widely used for microscopy of live-cell processes, but few such probes can also be used with classically fixed or otherwise immobilized material, and none has been used without aldehyde fixation, which can introduce artefacts of structure and probe localization. Here we show that the fluorescence patterns in fungal hyphae loaded with chloromethyl aminocoumarin (CMAC), and then anhydrously freeze-substituted, without any aldehyde fixation, are similar to those seen in living hyphae. Probe loss into the mounting medium (Spurr's resin) with CMAC and five other probes tested indicated that some unwanted solubilization of probe occurred during embedding, but nevertheless vacuoles could be imaged by their retention of probe.

  6. Enantioselective Multicomponent Condensation Reactions of Phenols, Aldehydes, and Boronates Catalyzed by Chiral Biphenols.

    PubMed

    Barbato, Keith S; Luan, Yi; Ramella, Daniele; Panek, James S; Schaus, Scott E

    2015-12-01

    Chiral diols and biphenols catalyze the multicomponent condensation reaction of phenols, aldehydes, and alkenyl or aryl boronates. The condensation products are formed in good yields and enantioselectivities. The reaction proceeds via an initial Friedel-Crafts alkylation of the aldehyde and phenol to yield an ortho-quinone methide that undergoes an enantioselective boronate addition. A cyclization pathway was discovered while exploring the scope of the reaction that provides access to chiral 2,4-diaryl chroman products, the core of which is a structural motif found in natural products. PMID:26576776

  7. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  8. In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells.

    PubMed

    Cheah, Nuan P; Pennings, Jeroen L A; Vermeulen, Jolanda P; van Schooten, Frederik J; Opperhuizen, Antoon

    2013-04-01

    Tobacco smoke consists of thousands of harmful components. A major class of chemicals found in tobacco smoke is formed by aldehydes, in particular formaldehyde, acetaldehyde and acrolein. The present study investigates the gene expression changes in human lung alveolar epithelial cells upon exposure to formaldehyde, acrolein and acetaldehyde at sub-cytotoxic levels. We exposed A549 cells in vitro to aldehydes and non-aldehyde chemicals (nicotine, hydroquinone and 2,5-dimethylfuran) present in tobacco smoke and used microarrays to obtain a global view of the transcriptomic responses. We compared responses of the individual aldehydes with that of the non-aldehydes. We also studied the response of the aldehydes when present in a mixture at relative concentrations as present in cigarette smoke. Formaldehyde gave the strongest response; a total of 66 genes were more than 1.5-fold differentially expressed mostly involved in apoptosis and DNA damage related processes, followed by acetaldehyde (57 genes), hydroquinone (55 genes) and nicotine (8 genes). For acrolein and the mixture only one gene was upregulated involved in oxidative stress. No gene expression effect was found for exposure to 2,5-dimethylfuran. Overall, aldehyde responses are primarily indicative for genotoxicity and oxidative stress. These two toxicity mechanisms are linked to respiratory diseases such as cancer and COPD, respectively. The present findings could be important in providing further understanding of the role of aldehydes emitted from cigarette smoke in the onset of pulmonary diseases.

  9. Kinetics of forming aldehydes in frying oils and their distribution in French fries revealed by LC-MS-based chemometrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehydes are major secondary lipid oxidation products (LOPs) from heating vegetable oils and deep frying. The routes and reactions that generate aldehydes have been extensively investigated, but the sequences and kinetics of their formation in oils are poorly defined. In this study, a platform comb...

  10. In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells.

    PubMed

    Cheah, Nuan P; Pennings, Jeroen L A; Vermeulen, Jolanda P; van Schooten, Frederik J; Opperhuizen, Antoon

    2013-04-01

    Tobacco smoke consists of thousands of harmful components. A major class of chemicals found in tobacco smoke is formed by aldehydes, in particular formaldehyde, acetaldehyde and acrolein. The present study investigates the gene expression changes in human lung alveolar epithelial cells upon exposure to formaldehyde, acrolein and acetaldehyde at sub-cytotoxic levels. We exposed A549 cells in vitro to aldehydes and non-aldehyde chemicals (nicotine, hydroquinone and 2,5-dimethylfuran) present in tobacco smoke and used microarrays to obtain a global view of the transcriptomic responses. We compared responses of the individual aldehydes with that of the non-aldehydes. We also studied the response of the aldehydes when present in a mixture at relative concentrations as present in cigarette smoke. Formaldehyde gave the strongest response; a total of 66 genes were more than 1.5-fold differentially expressed mostly involved in apoptosis and DNA damage related processes, followed by acetaldehyde (57 genes), hydroquinone (55 genes) and nicotine (8 genes). For acrolein and the mixture only one gene was upregulated involved in oxidative stress. No gene expression effect was found for exposure to 2,5-dimethylfuran. Overall, aldehyde responses are primarily indicative for genotoxicity and oxidative stress. These two toxicity mechanisms are linked to respiratory diseases such as cancer and COPD, respectively. The present findings could be important in providing further understanding of the role of aldehydes emitted from cigarette smoke in the onset of pulmonary diseases. PMID:23416264

  11. Quantification of aldehyde terminated heparin by SEC-MALLS-UV for the surface functionalization of polycaprolactone biomaterials.

    PubMed

    Irvine, Scott A; Steele, Terry W J; Bhuthalingam, Ramya; Li, Min; Boujday, Souhir; Prawirasatya, Melissa; Neoh, Koon Gee; Boey, Freddy Yin Chiang; Venkatraman, Subbu S

    2015-08-01

    A straight forward strategy of heparin surface grafting employs a terminal reactive-aldehyde group introduced through nitrous acid depolymerization. An advanced method that allows simultaneously monitoring of both heparin molar mass and monomer/aldehyde ratio by size exclusion chromatography, multi-angle laser light scattering and UV-absorbance (SEC-MALLS-UV) has been developed to improve upon heparin surface grafting. Advancements over older methods allow quantitative characterization by direct (aldehyde absorbance) and indirect (Schiff-based absorbance) evaluation of terminal functional aldehydes. The indirect quantitation of functional aldehydes through labeling with aniline (and the formation of a Schiff-base) allows independent quantitation of both polymer mass and terminal functional groups with the applicable UV mass extinction coefficients determined. The protocol was subsequently used to synthesize an optimized heparin-aldehyde that had minimal polydispersity (PDI<2) and high reaction yields (yield >60% by mass). The 8 kDa weight averaged molar mass heparin-aldehyde was then grafted on polycaprolactone (PCL), a common implant material. This optimized heparin-aldehyde retained its antithrombin activity, assessed in freshly drawn blood or surface immobilized on PCL films. Anticoagulant activity was equal to or better than the 24 kDa unmodified heparin it was fragmented from. PMID:26052108

  12. Quantification of aldehyde terminated heparin by SEC-MALLS-UV for the surface functionalization of polycaprolactone biomaterials.

    PubMed

    Irvine, Scott A; Steele, Terry W J; Bhuthalingam, Ramya; Li, Min; Boujday, Souhir; Prawirasatya, Melissa; Neoh, Koon Gee; Boey, Freddy Yin Chiang; Venkatraman, Subbu S

    2015-08-01

    A straight forward strategy of heparin surface grafting employs a terminal reactive-aldehyde group introduced through nitrous acid depolymerization. An advanced method that allows simultaneously monitoring of both heparin molar mass and monomer/aldehyde ratio by size exclusion chromatography, multi-angle laser light scattering and UV-absorbance (SEC-MALLS-UV) has been developed to improve upon heparin surface grafting. Advancements over older methods allow quantitative characterization by direct (aldehyde absorbance) and indirect (Schiff-based absorbance) evaluation of terminal functional aldehydes. The indirect quantitation of functional aldehydes through labeling with aniline (and the formation of a Schiff-base) allows independent quantitation of both polymer mass and terminal functional groups with the applicable UV mass extinction coefficients determined. The protocol was subsequently used to synthesize an optimized heparin-aldehyde that had minimal polydispersity (PDI<2) and high reaction yields (yield >60% by mass). The 8 kDa weight averaged molar mass heparin-aldehyde was then grafted on polycaprolactone (PCL), a common implant material. This optimized heparin-aldehyde retained its antithrombin activity, assessed in freshly drawn blood or surface immobilized on PCL films. Anticoagulant activity was equal to or better than the 24 kDa unmodified heparin it was fragmented from.

  13. Progress in the preparation of peptide aldehydes via polymer supported IBX oxidation and scavenging by threonyl resin.

    PubMed

    Sorg, Gerhard; Thern, Bernd; Mader, Oliver; Rademann, Jörg; Jung, Günther

    2005-03-01

    Peptide aldehydes are of interest due to their inhibitory properties toward numerous classes of proteolytic enzymes such as caspases or the proteasome. A novel access to peptide aldehydes is described using a combination of solid phase peptide synthesis with polymer-assisted solution phase synthesis based on the oxidation of peptide alcohols with a mild and selective polymer-bound IBX derivative. The oxidation is followed by selective purification via scavenging the peptide aldehyde in a capture-release procedure using threonine attached to an aminomethyl resin. Peptide aldehydes are obtained in excellent purity and satisfying yield. The optical integrity of the C-terminal residue is conserved in a high degree. The procedures are compatible with the use of common side-chain protecting groups. The potential for using the method in parallel approaches is very advantageous. A small collection of new and known peptide aldehydes has been tested for inhibitory activity against caspases 1 and 3.

  14. Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD. PMID:25837679

  15. Peptidyl Aldehyde NK-1.8k Suppresses Enterovirus 71 and Enterovirus 68 Infection by Targeting Protease 3C

    PubMed Central

    Wang, Yaxin; Yang, Ben; Zhai, Yangyang; Rao, Zihe

    2015-01-01

    Enterovirus (EV) is one of the major causative agents of hand, foot, and mouth disease in the Pacific-Asia region. In particular, EV71 causes severe central nervous system infections, and the fatality rates from EV71 infection are high. Moreover, an outbreak of respiratory illnesses caused by an emerging EV, EV68, recently occurred among over 1,000 young children in the United States and was also associated with neurological infections. Although enterovirus has emerged as a considerable global public health threat, no antiviral drug for clinical use is available. In the present work, we screened our compound library for agents targeting viral protease and identified a peptidyl aldehyde, NK-1.8k, that inhibits the proliferation of different EV71 strains and one EV68 strain and that had a 50% effective concentration of 90 nM. Low cytotoxicity (50% cytotoxic concentration, >200 μM) indicated a high selective index of over 2,000. We further characterized a single amino acid substitution inside protease 3C (3Cpro), N69S, which conferred EV71 resistance to NK-1.8k, possibly by increasing the flexibility of the substrate binding pocket of 3Cpro. The combination of NK-1.8k and an EV71 RNA-dependent RNA polymerase inhibitor or entry inhibitor exhibited a strong synergistic anti-EV71 effect. Our findings suggest that NK-1.8k could potentially be developed for anti-EV therapy. PMID:25691647

  16. Interspecies differences in the metabolism of methotrexate: An insight into the active site differences between human and rabbit aldehyde oxidase.

    PubMed

    Choughule, Kanika V; Joswig-Jones, Carolyn A; Jones, Jeffrey P

    2015-08-01

    Several drug compounds have failed in clinical trials due to extensive biotransformation by aldehyde oxidase (AOX) (EC 1.2.3.1). One of the main reasons is the difficulty in scaling clearance for drugs metabolised by AOX, from preclinical species to human. Using methotrexate as a probe substrate, we evaluated AOX metabolism in liver cytosol from human and commonly used laboratory species namely guinea pig, monkey, rat and rabbit. We found that the metabolism of methotrexate in rabbit liver cytosol was several orders of magnitude higher than any of the other species tested. The results of protein quantitation revealed that the amount of AOX1 in human liver was similar to rabbit liver. To understand if the observed differences in activity were due to structural differences, we modelled rabbit AOX1 using the previously generated human AOX1 homology model. Molecular docking of methotrexate into the active site of the enzyme led to the identification of important residues that could potentially be involved in substrate binding and account for the observed differences. In order to study the impact of these residue changes on enzyme activity, we used site directed mutagenesis to construct mutant AOX1 cDNAs by substituting nucleotides of human AOX1 with relevant ones of rabbit AOX1. AOX1 mutant proteins were expressed in Escherichia coli. Differences in the kinetic properties of these mutants have been presented in this study.

  17. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase.

    PubMed

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD.

  18. Intermediate role of α-keto acids in the formation of Strecker aldehydes.

    PubMed

    Hidalgo, Francisco J; Delgado, Rosa M; Zamora, Rosario

    2013-11-15

    The ability of α-keto acids to covert amino acids into Strecker aldehydes was investigated in an attempt to both identify new pathways for Strecker degradation, and analyse the role of α-keto acids as intermediate compounds in the formation of Strecker aldehydes by oxidised lipids. The results obtained indicated that phenylalanine was converted into phenylacetaldehyde to a significant extent by all α-keto acids assayed; glyoxylic acid being the most reactive α-keto acid for this reaction. It has been proposed that the reaction occurs by formation of an imine between the keto group of the α-keto acid, and the amino group of the amino acid. This then undergoes an electronic rearrangement with the loss of carbon dioxide to produce a new imine. This final imine is the origin of both the Strecker aldehyde and the amino acid from which the α-keto acid is derived. When glycine was incubated in the presence of 4,5-epoxy-2-decenal, the amino acid was converted into glyoxylic acid, and this α-keto acid was then able to convert phenylalanine into phenylacetaldehyde. All these results suggest that Strecker aldehydes can be produced by amino acid degradation initiated by different reactive carbonyl compounds, included those coming from amino acids and proteins. In addition, α-keto acids may act as intermediates for the Strecker degradation of amino acids by oxidised lipids.

  19. Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...

  20. New HPLC methods to quantitate terpenoid aldehydes in foliage of cotton (Gossypium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton plant (Gossypium) produces protective terpenoid aldehydes in lysigenous pigment glands. These terpenoids include hemigossypolone, hemigossypolone-6-methyl ether, gossypol, gossypol-6-methyl ether, gossypol-6,6'-dimethyl ether, heliocides H1, H2, H3 and H4, and heliocides B1, B2, B3 and B4...

  1. Laboratory evaluation of an aldehyde scrubber system specifically for the detection of acrolein.

    PubMed

    Knighton, W Berk; Herndon, Scott C; Shorter, Joanne H; Miake-Lye, Richard C; Zahniser, Mark S; Akiyama, Kenichi; Shimono, Akio; Kitasaka, Kazuya; Shimajiri, Hatsumi; Sugihara, Koichi

    2007-11-01

    We demonstrate the use of an aldehyde scrubber system to resolve isobaric aldehyde/alkene interferences in a proton transfer reaction mass spectrometer (PTR-MS) by selectively removing the aldehydes from the gas mixture without loss of quantitative information for the alkene components. The aldehyde scrubber system uses a bisulfite solution, which scrubs carbonyl compounds from the gas stream by forming water-soluble carbonyl bisulfite addition products, and has been evaluated using a synthetic mixture of acrolein and isoprene. Trapping efficiencies of acrolein exceeded 97%, whereas the transmission efficiency of isoprene was better than 92%. Quantification of the PTR-MS response to acrolein was validated through an intercomparison study that included two derivatization methods, dinitrophenylhydrazine (DNPH) and O-(4-cyano-2-ethoxybenzyl)hydroxylamine (CNET), and a spectroscopic method using a quantum cascade laser infrared absorption spectroscopy (QCL) instrument. Finally, using cigarette smoke as a complex matrix, the acrolein content was assessed using the scrubber and compared with direct QCL-based detection. PMID:18069460

  2. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain

    PubMed Central

    Zambelli, Vanessa O.; Gross, Eric R.; Chen, Che-Hong; Gutierrez, Vanessa P.; Cury, Yara; Mochly-Rosen, Daria

    2014-01-01

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase 2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2=0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than wild-type mice. Finally, Alda-1 treatment was also beneficial when given even after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance. PMID:25163478

  3. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    PubMed

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  4. A HIGHLY STEREOSELECTIVE, NOVEL COUPLING REACTION BETWEEN ALKYNES WITH ALDEHYDES. (R828129)

    EPA Science Inventory

    In the presence of indium triflate or gallium chloride, a novel coupling between internal alkynes and aldehydes occurred to give unsaturated ketones and [4+1] annulation products.


    Graphical Abstrac...

  5. Modification of growth of neuroblastoma cells in syngeneic mice by aldehyde-treated neuroblastoma cells.

    PubMed

    Bertolini, L; Diamond, L; Revoltella, R

    1976-06-01

    Pretreatment of syngeneic strain A mice with aldehyde-fixed neuroblastoma cells (clone NB6R) almost completely protected the mice against challenge with viable NB6R cells. In contrast, tumor growth was enhanced in mice treated with fixed cells after challenge with viable cells.

  6. Aroma chemicals: Reference sources for perfume and flavour ingredients with special reference to cinnamic aldehyde.

    PubMed

    Collins, F W; Mitchell, J C

    1975-01-01

    Bibliographic sources for the complex subject of aroma chemicals are reviewed. The references are not comprehensive but are those which we found to be of value in finding out some of the opportunities for contact with a sensitizing chemical compound, cinnamic aldehyde.

  7. Enzymatic conversion of atmospheric aldehydes into alcohol in a phospholipid polymer film.

    PubMed

    Tanaka, Naoki; Watari, Akihiro; Tada, Tomoko; Asada, Tomoko; Kunugi, Shigeru; Lee, Yin-Fai; Yamada, Satoshi; Shuto, Kenshiro; Sakaki, Shujiro

    2009-02-01

    We developed a unique method for converting atmospheric aldehyde into alcohol using formaldehyde dehydrogenase from Pseudomonas putida (PFDH) doped in a polymer film. A film of poly(2-methacryloyloxyethylphosphorylcholine-co-n-butyl methacrylate) (PMB), which has a chemical structure similar to that of a biological membrane, was employed for its biocompatibility. A water-incorporated polymer film entrapping PFDH and its cofactor NAD(+) was obtained by drying a buffered solution of PMB, PFDH, and NAD(+). The aldehydes in the air were absorbed into the polymer film and then enzymatically oxidized by PFDH doped in the PMB film. Interestingly, alcohol and carboxylic acid were produced by the enzymatic reaction, indicating that PFDH catalyzes dismutation of aldehyde in the PMB film. Importantly, a PFDH-PMB film catalyzes aldehyde degradation without consuming the nucleotide cofactor, thereby allowing repeated use of the film. The activity of PFDH in the PMB film was higher than that in other common water-soluble polymers, suggesting that the hydrational state in a phospholipid polymer matrix is suitable for enzymatic activity.

  8. Analysis of endogenous aldehydes in human urine by static headspace gas chromatography-mass spectrometry.

    PubMed

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2016-03-11

    Endogenous aldehydes (EAs) generated during oxidative stress and cell processes are associated with many pathogenic and toxicogenic processes. The aim of this research was to develop a solvent-free and automated analytical method for the determination of EAs in human urine using a static headspace generator sampler coupled with gas chromatography-mass spectrometry (HS-GC-MS). Twelve significant EAs used as markers of different biochemical and physiological processes, namely short- and medium-chain alkanals, α,β-unsaturated aldehydes and dicarbonyl aldehydes have been selected as target analytes. Human urine samples (no dilution is required) were derivatized with O-2,3,4,5,6-pentafluorobenzylhydroxylamine in alkaline medium (hydrogen carbonate-carbonate buffer, pH 10.3). The HS-GC-MS method developed renders an efficient tool for the sensitive and precise determination of EAs in human urine with limits of detection from 1 to 15ng/L and relative standard deviations, (RSDs) from 6.0 to 7.9%. Average recoveries by enriching urine samples ranged between 92 and 95%. Aldehydes were readily determined at 0.005-50μg/L levels in human urine from healthy subjects, smokers and diabetic adults.

  9. The acid free asymmetric intermolecular α-alkylation of aldehydes in fluorinated alcohols.

    PubMed

    Xiao, Jian; Zhao, Kai; Loh, Teck-Peng

    2012-04-11

    The acid free asymmetric intermolecular α-alkylation of aldehydes with alcohols has been discovered using trifluoroethanol as solvent. This unprecedented system affords the enantioenriched functionalized primary alcohols (after NaBH(4) reduction) in high yields and good to excellent enantioselectivities with wide substrate scope in the absence of any acid additive.

  10. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase.

    PubMed

    Pirouzpanah, Saieed; Saieed, Pirouzpanah; Rashidi, Mohammad Reza; Reza, Rashidi Mohammad; Delazar, Abbas; Abbas, Delazar; Razavieh, Seyyed-Vali; Seyyedvali, Razavieh; Hamidi, Aliasghar; Aliasghar, Hamidi

    2006-01-01

    Ruta graveolens L. is a flavonoid-containing medicinal plant with various biological properties. In the present study, the effects of R. graveolens extract on aldehyde oxidase, a molybdenum hydroxylase, are investigated. Aldehyde oxidase was partially purified from liver homogenates of mature male guinea pigs by heat treatment and ammonium sulphate precipitation. The total extract was obtained by macerating the aerial parts of R. graveolens in MeOH 70% and the effect of this extract on the enzyme activity was assayed using phenanthridine, vanillin and benzaldehyde as substrates. Quercetin and its glycoside form, rutin were isolated, purified and identified from the extract and their inhibitory effects on the enzyme were investigated. R. graveolens extract exhibited a high inhibition on aldehyde oxidase activity (89-96%) at 100 microg/ml which was comparable with 10 microM of menadione, a specific potent inhibitor of aldehyde oxidase. The IC50 values for the inhibitory effect of extract against the oxidation of benzaldehyde, vanillin and phenanthridine were 10.4, 10.1, 43.2 microg/ml, respectively. Both quercetin and rutin at 10 microM caused 70-96% and 27-52% inhibition on the enzyme activity, respectively. Quercetin was more potent inhibitor than rutin, but both flavonols exerted their inhibitory effects mostly in a linear mixed-type.

  11. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    PubMed

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  12. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    NASA Astrophysics Data System (ADS)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  13. Fast determination of aldehyde preservatives by miniaturized capillary electrophoresis with amperometric detection.

    PubMed

    Li, Ying; Chen, Fang; Ge, Jinyuan; Tong, Fanghong; Deng, Zhaoyue; Shen, Fengwu; Gu, Qianxia; Ye, Jiannong; Chu, Qingcui

    2014-02-01

    A novel miniaturized CE with amperometric detection (mini-CE-AD) method has been developed for fast determination of aliphatic aldehyde preservatives, namely formaldehyde and glyoxal, in commodities. After derivatization with an electroactive compound 2-thiobarbituric acid, these two nonelectroactive aldehydes were converted to electroactive adducts, therefore detectable by mini-CE-AD approach. Under the optimum conditions, two aldehydes can be well-separated with the coexisting interferents as well as their homologs (acetaldehyde and methyl-glyoxal), and the LODs (S/N = 3) were achieved at nanogram-per-milliliter level (1.64-2.80 ng/mL) based on the online enrichment method of transient moving chemical reaction boundary. The proposed method has been applied for the analyses of above aldehyde preservatives in different real commodity samples including skincare products, baby lotion, and toothpaste, and the average recoveries were in the range of 94-105%, which should find a wide range of analytical applications as an alternative to conventional and microchip CE approaches.

  14. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study.

    PubMed

    Laurell Nash, Anna; Hertzberg, Robin; Wen, Ye-Qian; Dahlgren, Björn; Brinck, Tore; Moberg, Christina

    2016-03-01

    A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product.

  15. Nepetanal and nepetanoate: a new diterpene aldehyde and a benzene derivative ester from Nepeta juncea.

    PubMed

    Hussain, Javid; Jamila, Nargis; Khan, Farman Ullah; Devkota, Krishna Prasad; Shah, M Raza; Anwar, Saeed

    2009-07-01

    One new tricyclic clerodane type diterpene aldehyde nepetanal (1) and one new benzene derivative nepetanoate (2) have been isolated from a plant Nepeta juncea together with two known compounds oleanolic acid (3) and ursolic acid (4). The structures of the isolated compounds were elucidated by means of modern spectroscopic techniques and comparison with literature data.

  16. A general palladium-catalyzed carbonylative synthesis of chromenones from salicylic aldehydes and benzyl chlorides.

    PubMed

    Wu, Xiao-Feng; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2013-09-01

    Cute CO! An interesting and straightforward procedure for the carbonylative synthesis of chromenones from readily available salicylic aldehydes and benzyl chlorides has been developed (see scheme; DPPP = 1,3-bis(diphenylphosphino)propane). In the presence of a palladium catalyst, various coumarins were produced in good to excellent yields.

  17. Ultrasound assisted direct oxidative esterification of aldehydes and alcohols using graphite oxide and Oxone.

    PubMed

    Mirza-Aghayan, Maryam; Zonoubi, Somayeh; Molaee Tavana, Mahdieh; Boukherroub, Rabah

    2015-01-01

    A sonochemical procedure for direct oxidative esterification of aldehydes and alcohols using graphite oxide and Oxone in an alcoholic solvent is described. Mild reaction conditions, short reaction times, cost-effectiveness, and facile isolation of the products make the present system as a practical method. PMID:24929791

  18. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus

    PubMed Central

    Halavaty, Andrei S.; Rich, Rebecca L.; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R.; Myszka, David G.; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F.; Anderson, Wayne F.

    2015-01-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD+) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD+, NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme. PMID:25945581

  19. APPLICATION OF MULTISPECTRAL TECHNIQUES TO THE PRECISE IDENTIFICATION OF ALDEHYDES IN THE ENVIRONMENT

    EPA Science Inventory

    By using gas chromatography coupled with low- and high-resolution electron impact mass spectrometry, low- and high-resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy, eight straight-chain aldehydes were identified in a water sample taken...

  20. Two new irregular acyclic sesquiterpenes aldehydes from Santolina corsica essential oil.

    PubMed

    Ferrari, Bernard; Tomi, Félix; Richomme, Pascal; Casanova, Joseph

    2005-01-01

    Two isomeric irregular sesquiterpene aldehydes, namely 3,9-dimethyl-6-isopropyl-2(E),7(E),9-decatrienal and 3,9-dimethyl-6-isopropyl-2(Z),7(E),9-decatrienal, were isolated from the essential oil of Santolina corsica and their structures were elucidated by 1D and 2D NMR spectroscopy.

  1. Highly enantioselective Henry reactions of aromatic aldehydes catalyzed by an amino alcohol-copper(II) complex.

    PubMed

    Qin, Dan-Dan; Lai, Wen-Han; Hu, Di; Chen, Zheng; Wu, An-An; Ruan, Yuan-Ping; Zhou, Zhao-Hui; Chen, Hong-Bin

    2012-08-20

    Amino alcohol-Cu(II) catalyst: Highly enantioselective Henry reactions between aromatic aldehydes and nitromethane have been developed. The reactions were catalyzed by an easily available and operationally simple amino alcohol-copper(II) catalyst. In total, 38 substrates were tested and the R-configured products were obtained in good yields with excellent enantioselectivities. PMID:22791567

  2. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  3. A new device for formaldehyde and total aldehydes real-time monitoring.

    PubMed

    Sassine, Maria; Picquet-Varrault, Bénédicte; Perraudin, Emilie; Chiappini, Laura; Doussin, Jean François; George, Christian

    2014-01-01

    A new sensitive technique for the quantification of formaldehyde (HCHO) and total aldehydes has been developed in order to monitor these compounds, which are known to be involved in air quality issues and to have health impacts. Our approach is based on a colorimetric method where aldehydes are initially stripped from the air into a scrubbing solution by means of a turning coil sampler tube and then derivatised with 3-methylbenzothiazolinone-2-hydrazone in acid media (pH = -0.5). Hence, colourless aldehydes are transformed into blue dyes that are detected by UV-visible spectroscopy at 630 nm. Liquid core waveguide LCW Teflon® AF-2400 tube was used as innovative optical cells providing a HCHO detection limit of 4 pptv for 100 cm optical path with a time resolution of 15 min. This instrument showed good correlation with commonly used techniques for aldehydes analysis such as DNPH derivatisation chromatographic techniques with off-line and on-line samplers, and DOAS techniques (with deviation below 6%) for both indoor and outdoor conditions. This instrument is associated with simplicity and low cost, which is a prerequisite for indoor monitoring. PMID:23892614

  4. One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using aldehydes.

    PubMed

    Byun, Eunyoung; Hong, Bomi; De Castro, Kathlia A; Lim, Minkyung; Rhee, Hakjune

    2007-12-01

    One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using various aldehydes by Pd/C catalyst in aqueous 2-propanol solvent with ammonium formate as in situ hydrogen donor is illustrated. The reaction proceeded smoothly and selectively with excellent yield at room temperature. Our protocol presents a facile, economical, and environmentally benign alternative for reductive amination.

  5. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: aldehydes and ketones.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Huang, Grace L; Benhabib, Merwan; Chiesl, Thomas N; Mathies, Richard A

    2010-11-01

    A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼ 15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5-6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies. PMID:20967779

  6. Campholenic aldehyde ozonolysis: a possible mechanism for the formation of specific biogenic secondary organic aerosol constituents

    NASA Astrophysics Data System (ADS)

    Kahnt, A.; Iinuma, Y.; Mutzel, A.; Böge, O.; Claeys, M.; Herrmann, H.

    2013-08-01

    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised with 2,4-dinitrophenylhydrazine (DNPH) followed by Liquid Chromatography/negative ion Electrospray Ionisation Time-of-Flight Mass Spectrometry analysis and were compared to the gas-phase compounds detected by online Proton-Transfer-Reaction Mass Spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and MS2 and MS3 fragmentation studies. Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. m/z 201, C9H14O5 and m/z 215, C10H16O5), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The m/z 201 and 215 compounds were tentatively identified as a

  7. Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents

    NASA Astrophysics Data System (ADS)

    Kahnt, A.; Iinuma, Y.; Mutzel, A.; Böge, O.; Claeys, M.; Herrmann, H.

    2014-01-01

    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger, leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography/negative ion electrospray ionisation time-of-flight mass spectrometry analysis and were compared to the gas-phase compounds detected by online proton-transfer-reaction mass spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and additional mass spectrometry (MS2 and MS3 fragmentation studies). Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. m / z 201, C9H14O5 and m / z 215, C10H16O5), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The m / z 201 and 215

  8. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    PubMed Central

    2013-01-01

    Background Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs. Results Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 μM, WF-CS; 58.5 ± 8.2 μM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein. Conclusion Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation. PMID:23594194

  9. Asymmetric functional organozinc additions to aldehydes catalyzed by 1,1'-bi-2-naphthols (BINOLs).

    PubMed

    Pu, Lin

    2014-05-20

    Chiral alcohols are ubiquitous in organic structures. One efficient method to generate chiral alcohols is the catalytic asymmetric addition of a carbon nucleophile to a carbonyl compound since this process produces a C-C bond and a chiral center simultaneously. In comparison with the carbon nucleophiles such as an organolithium or a Grignard reagent, an organozinc reagent possesses the advantages of functional group tolerance and more mild reaction conditions. Catalytic asymmetric reactions of aldehydes with arylzincs, vinylzincs, and alkynylzincs to generate functional chiral alcohols are discussed in this Account. Our laboratory has developed a series of 1,1'-bi-2-naphthol (BINOL)-based chiral catalysts for the asymmetric organozinc addition to aldehydes. It is found that the 3,3'-dianisyl-substituted BINOLs are not only highly enantioselective for the alkylzinc addition to aldehydes, but also highly enantioselective for the diphenylzinc addition to aldehydes. A one-step synthesis has been achieved to incorporate Lewis basic amine groups into the 3,3'-positions of the partially hydrogenated H8BINOL. These H8BINOL-amine compounds have become more generally enantioselective and efficient catalysts for the diphenylzinc addition to aldehydes to produce various types of chiral benzylic alcohols. The application of the H8BINOL-amine catalysts is expanded by using in situ generated diarylzinc reagents from the reaction of aryl iodides with ZnEt2, which still gives high enantioselectivity and good catalytic activity. Such a H8BINOL-amine compound is further found to catalyze the highly enantioselective addition of vinylzincs, in situ generated from the treatment of vinyl iodides with ZnEt2, to aldehydes to give the synthetically very useful chiral allylic alcohols. We have discovered that the unfunctionalized BINOL in combination with ZnEt2 and Ti(O(i)Pr)4 can catalyze the terminal alkyne addition to aldehydes to produce chiral propargylic alcohols of high synthetic

  10. Scavenger receptors on sinusoidal liver endothelial cells are involved in the uptake of aldehyde-modified proteins.

    PubMed

    Duryee, Michael J; Freeman, Thomas L; Willis, Monte S; Hunter, Carlos D; Hamilton, Bartlett C; Suzuki, Hiroshi; Tuma, Dean J; Klassen, Lynell W; Thiele, Geoffrey M

    2005-11-01

    Scavenger receptors on sinusoidal liver endothelial cells (SECs) eliminate potentially harmful modified proteins circulating through the liver. It was shown recently that aldehyde-modified proteins bind to scavenger receptors and are associated with the development/progression of alcoholic liver diseases. For these studies, rat livers were perfused in situ with 125I-formaldehyde-bovine serum albumin (f-Alb) or 125I-malondialdehyde-acetaldehyde-bovine serum albumin (MAA-Alb) in the presence of known scavenger receptor ligands as inhibitors. Reverse transcription-polymerase chain reaction (RT-PCR) analysis and scavenger receptor Type A (SRA) knock-out mice were used to assess the role of these receptors in mediating immune responses. The degradation of 125I-f-Alb or 125I-MAA-Alb in whole livers and isolated SECs can be inhibited by known scavenger receptor ligands, including f-Alb, maleylated bovine albumin, and fucoidan. 125I-f-Alb could not be completely inhibited by MAA-Alb. In contrast, 125I-MAA-Alb was only partially inhibited with advanced glycosylated endproduct albumin. RT-PCR data show the presence of a number of scavenger receptors on SECs that may be responsible for the binding of MAA-modified proteins. SRA seems to be one of these receptors involved in the effects mediated by MAA-modified proteins. In a study using SRA knockout mice, it was shown that a decreased antibody response to MAA-Alb resulted. By RT-PCR, CD36, LOX-1, and SR-AI are the scavenger receptors most likely involved in the degradation of MAA-Alb.

  11. Scavenger receptors on sinusoidal liver endothelial cells are involved in the uptake of aldehyde-modified proteins.

    PubMed

    Duryee, Michael J; Freeman, Thomas L; Willis, Monte S; Hunter, Carlos D; Hamilton, Bartlett C; Suzuki, Hiroshi; Tuma, Dean J; Klassen, Lynell W; Thiele, Geoffrey M

    2005-11-01

    Scavenger receptors on sinusoidal liver endothelial cells (SECs) eliminate potentially harmful modified proteins circulating through the liver. It was shown recently that aldehyde-modified proteins bind to scavenger receptors and are associated with the development/progression of alcoholic liver diseases. For these studies, rat livers were perfused in situ with 125I-formaldehyde-bovine serum albumin (f-Alb) or 125I-malondialdehyde-acetaldehyde-bovine serum albumin (MAA-Alb) in the presence of known scavenger receptor ligands as inhibitors. Reverse transcription-polymerase chain reaction (RT-PCR) analysis and scavenger receptor Type A (SRA) knock-out mice were used to assess the role of these receptors in mediating immune responses. The degradation of 125I-f-Alb or 125I-MAA-Alb in whole livers and isolated SECs can be inhibited by known scavenger receptor ligands, including f-Alb, maleylated bovine albumin, and fucoidan. 125I-f-Alb could not be completely inhibited by MAA-Alb. In contrast, 125I-MAA-Alb was only partially inhibited with advanced glycosylated endproduct albumin. RT-PCR data show the presence of a number of scavenger receptors on SECs that may be responsible for the binding of MAA-modified proteins. SRA seems to be one of these receptors involved in the effects mediated by MAA-modified proteins. In a study using SRA knockout mice, it was shown that a decreased antibody response to MAA-Alb resulted. By RT-PCR, CD36, LOX-1, and SR-AI are the scavenger receptors most likely involved in the degradation of MAA-Alb. PMID:16105988

  12. Increased uptake of alpha-hydroxy aldehyde-modified low density lipoprotein by macrophage scavenger receptors.

    PubMed

    Kawamura, M; Heinecke, J W; Chait, A

    2000-07-01

    Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL. These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors.

  13. Aldehydes in Artic Snow at Barrow (AK) during the Barrow 2009 Field Campaign

    NASA Astrophysics Data System (ADS)

    Barret, M.; Houdier, S.; Gallet, J.; Domine, F.; Beine, H. J.; Jacobi, H.

    2009-12-01

    Aldehydes (RCHO) are key reactive intermediates in hydrocarbon oxidation and in OH cycling. They are also emitted and taken up by the snowpack and a combination of both physical and photochemical processes are likely involved. Since the photolysis of aldehydes is a source of HOx radicals, these exchanges can modify the oxidative capacity of the overlying air. Formaldehyde (HCHO), acetaldehyde (MeCHO), glyoxal (CHOCHO) and methylglyoxal (MeCOCHO) concentrations were measured in over 250 snow samples collected during the Barrow 2009 campaign between late February and mid April 2009. Both continental and marine snowpacks were studied as well as frost flowers on sea ice. We found that HCHO was the most abundant aldehyde (1 to 9 µg L-1), but significant concentrations of dicarbonyls glyoxal and methylglyoxal (up to 4.5 and 2.7 µg L-1, respectively) were also measured for the first time in Arctic snow. Similar concentrations were measured for the continental and marine snowpacks but some frost flowers exhibited HCHO concentrations as high as 150 µg L-1. Surface snow being in closer interaction with the atmosphere, it was monitored with a higher time resolution in order to investigate photochemical processes. Daily cycles were thus observed in the snow for HCHO and CH3CHO but also for the dicarbonyls and we concluded to a photochemical production of these species within the snow. Additional data such as gas phase concentrations for the measured aldehydes and snow physical properties (specific surface area, density …) will be used to discuss on the location of aldehydes in the snow. This is essential to identify and quantify the physical processes that occur during the exchange of trace gases between the snow and the atmosphere.

  14. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  15. The effects of alcohol and aldehyde dehydrogenases on disorders of hematopoiesis.

    PubMed

    Smith, Clay; Gasparetto, Maura; Jordan, Craig; Pollyea, Daniel A; Vasiliou, Vasilis

    2015-01-01

    Hematopoiesis involves the orderly production of millions of blood cells per second from a small number of essential bone marrow cells termed hematopoietic stem cells (HSCs). Ethanol suppresses normal hematopoiesis resulting in leukopenia, anemia, and thrombocytopenia and may also predispose to the development of diseases such as myelodysplasia (MDS) and acute leukemia. Currently the exact mechanisms by which ethanol perturbs hematopoiesis are unclear. The aldehyde dehydrogenase (ALDH) gene family plays a major role in the metabolism of reactive aldehydes derived from ethanol in the liver and other organs. At least one of the ALDH isoforms, ALDH1A1, is expressed at high levels in HSCs in humans, mice, and other organisms. Recent data indicate that ALDH1A1 and possibly other ALDH isoforms may metabolize reactive aldehydes in HSCs and other hematopoietic cells as they do in the liver and elsewhere. In addition, loss of these ALDHs leads to perturbation of a variety of cell processes that may predispose HSCs to disorders in growth and leukemic transformation. From these findings, we suggest a hypothesis that the cytopenias and possible increased risk of MDS and acute leukemia in heavy alcohol users is due to polymorphisms in genes responsible for metabolism of alcohol derived reactive aldehydes and repair of their DNA adducts in HSCs and other hematopoietic cells. In the article, we will summarize the biological properties of hematopoietic cells and diseases related to ethanol consumption, discuss molecular characteristics of ethanol metabolism, and describe a model to explain how ethanol derived reactive aldehydes may promote HSC damage. PMID:25427917

  16. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  17. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-04-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  18. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics

    PubMed Central

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.

    2012-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  19. Development of Selective Inhibitors for Human Aldehyde Dehydrogenase 3A1 (ALDH3A1) for the Enhancement of Cyclophosphamide Cytotoxicity

    PubMed Central

    Parajuli, Bibek; Georgiadis, Taxiarchis M.; Fishel, Melissa L.; Hurley, Thomas D.

    2014-01-01

    Aldehyde dehydrogenase 3A1 (ALDH3A1) plays an important role in many cellular oxidative processes, including cancer chemo-resistance by metabolizing activated forms of oxazaphosphorine drugs such as cyclophosphamide (CP) and its analogues such as mafosfamide (MF), ifosfamide (IFM), 4-hydroperoxycyclophosphamide (4-HPCP). Compounds that can selectively target ALDH3A1 may permit delineation of its roles in these processes and could restore chemosensitivity in cancer cells that express this isoenzyme. Here we report the detailed kinetic and structural characterization of an ALDH3A1 selective inhibitor, CB29, previously identified in a high throughput screen. Kinetic and crystallographic studies demonstrate that CB29 binds within the aldehyde substrate-binding site of ALDH3A1. Cellular proliferation of ALDH3A1-expressing lung adenocarcinoma (A549) and glioblastoma (SF767) cell lines, as well as the ALDH3A1 non-expressing lung fibroblast cells, CCD-13Lu, is unaffected by treatment with CB29 and its analogues alone. However, the sensitivity toward the anti-proliferative effects of mafosfamide is enhanced by treatment with CB29 and its analogue in the tumour cells. In contrast, the sensitivity of CCD-13Lu cells toward mafosfamide was unaffected by the addition of these same compounds. CB29 is chemically distinct from the previously reported small molecule inhibitors of ALDH isoenzymes and does not inhibit ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1 or ALDH2 isoenzymes at concentrations up to 250 μM. Thus, CB29 is a novel small molecule inhibitor of ALDH3A1, which may be useful as a chemical tool to delineate the role of ALDH3A1 in numerous metabolic pathways, including sensitizing ALDH3A1-positive cancer cells to oxazaphosphorines. PMID:24677340

  20. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    SciTech Connect

    Tian, Dayong; Lin, Zhifen; Zhou, Xianghong; Yin, Daqiang

    2013-10-15

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two

  1. Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber.

    PubMed

    Matsui, Kenji; Minami, Akari; Hornung, Ellen; Shibata, Hidetoshi; Kishimoto, Kyutaro; Ahnert, Volker; Kindl, Helmut; Kajiwara, Tadahiko; Feussner, Ivo

    2006-04-01

    Fatty acid 9/13-hydroperoxide lyase (9/13-HPL) in cucumber is an enzyme that can cleave either 9- or 13-hydroperoxides of polyunsaturated fatty acids to form C9- or C6-aldehydes, respectively, as products. In order to reveal the physiological function of 9/13-HPL, its expression profiles were analyzed, and it was found that 9/13-HPL expression was developmentally regulated and high in the hypocotyls, female flowers and mature fruits. However, its transcript as well as its activity was only induced by mechanical wounding in mature leaves. To analyze the biosynthesis of HPL-derived aldehydes in more detail we isolated and characterized the yet missing 9-lipoxygenase (LOX) that is mainly expressed in hypocotyls, cotyledons and flowers and that may provide HPL with fatty acid 9-hydroperoxides as substrates. As in the case with C6-aldehydes in most plant species, C9-aldehydes were also formed rapidly after disruption of the tissues. C9-aldehydes had fungicidal activities against fungal pathogens, Botrytis cinerea and Fusarium oxysporum. Because the concentration needed to cause toxic effect on the pathogens was almost equivalent to that found in disrupted tissues, the C9-aldehydes thus formed could be helpful to sterilize the wounds since they are less volatile in comparison to C6-aldehydes. PMID:16497344

  2. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification.

    PubMed

    Chan, Lai Wah; Heng, Paul W S

    2002-03-01

    Calcium alginate microspheres were prepared by an emulsification method and cross-linked with various aldehydes using different methods. Methanal and pentanedial produced low aggregation of microspheres while octanal and octadecanal produced the opposite effect. The latter two aldehydes displaced very little calcium ions from the alginate microspheres, indicating that the aggregation was due to the tackiness imparted by the aldehydes to the microsphere surface. Higuchi's model was not applicable to the drug release from microspheres in this study. The microspheres treated with methanal or pentanedial showed comparable dissolution T75% values which were significantly higher than that of the control. In contrast, octanal and octadecanal produced microspheres with lower dissolution T75% values. The drug contents of the microspheres treated with aldehydes were significantly lower than that of the control. There was insignificant interaction between the aldehydes and the drug. However, the aldehydes were found to impart acidity to the aqueous solution to varying extents, resulting in varying drug loss from the microspheres. The properties of the microspheres were also markedly affected by the method of incorporating the aldehyde. Soaking the microspheres in methanal solution produced microspheres with marked aggregation and low drug content. PMID:11808537

  3. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification.

    PubMed

    Chan, Lai Wah; Heng, Paul W S

    2002-03-01

    Calcium alginate microspheres were prepared by an emulsification method and cross-linked with various aldehydes using different methods. Methanal and pentanedial produced low aggregation of microspheres while octanal and octadecanal produced the opposite effect. The latter two aldehydes displaced very little calcium ions from the alginate microspheres, indicating that the aggregation was due to the tackiness imparted by the aldehydes to the microsphere surface. Higuchi's model was not applicable to the drug release from microspheres in this study. The microspheres treated with methanal or pentanedial showed comparable dissolution T75% values which were significantly higher than that of the control. In contrast, octanal and octadecanal produced microspheres with lower dissolution T75% values. The drug contents of the microspheres treated with aldehydes were significantly lower than that of the control. There was insignificant interaction between the aldehydes and the drug. However, the aldehydes were found to impart acidity to the aqueous solution to varying extents, resulting in varying drug loss from the microspheres. The properties of the microspheres were also markedly affected by the method of incorporating the aldehyde. Soaking the microspheres in methanal solution produced microspheres with marked aggregation and low drug content.

  4. Reductions of aldehydes and ketones with a readily available N-heterocyclic carbene borane and acetic acid

    PubMed Central

    Lamm, Vladimir; Pan, Xiangcheng

    2013-01-01

    Summary Acetic acid promotes the reduction of aldehydes and ketones by the readily available N-heterocyclic carbene borane, 1,3-dimethylimidazol-2-ylidene borane. Aldehydes are reduced over 1–24 h at room temperature with 1 equiv of acetic acid and 0.5 equiv of the NHC-borane. Ketone reductions are slower but can be accelerated by using 5 equiv of acetic acid. Aldehydes can be selectively reduced in the presence of ketones. On a small scale, products are isolated by evaporation of the reaction mixture and direct chromatography. PMID:23616812

  5. Cooperative binding of Agrobacterium tumefaciens VirE2 protein to single-stranded DNA.

    PubMed

    Sen, P; Pazour, G J; Anderson, D; Das, A

    1989-05-01

    The VirE2 protein of Agrobacterium tumefaciens Ti plasmid pTiA6 is a single-stranded-DNA-binding protein. Density gradient centrifugation studies showed that it exists as a tetramer in solution. Monomeric VirE2 active in DNA binding could also be obtained by using a different protein isolation procedure. VirE2 was found to be thermolabile; brief incubation at 37 degrees C abolished its DNA-binding activity. It was insensitive to the sulfhydryl-specific reagent N-ethylmaleimide. Removal of the carboxy-terminal 37 residues of the 533-residue VirE2 polypeptide led to complete loss of DNA-binding activity; however, chimeric fusion proteins containing up to 125 residues of the VirE2 C terminus were inactive in DNA binding. In nuclease protection studies, VirE2 protected single-stranded DNA against degradation by DNase I. Analysis of the DNA-VirE2 complex by electron microscopy demonstrated that VirE2 coats a single-stranded DNA molecule and that the binding of VirE2 to its substrate is cooperative. PMID:2708313

  6. Correlation of loss of activity of human aldehyde dehydrogenase with reaction of bromoacetophenone with glutamic acid-268 and cysteine-302 residues. Partial-sites reactivity of aldehyde dehydrogenase.

    PubMed Central

    Abriola, D P; MacKerell, A D; Pietruszko, R

    1990-01-01

    Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete. PMID:1968743

  7. Gas phase fragmentation of eta2 coordinated aldehydes in [VO2(eta2-OCHR)]-: aldehyde structure dictates the nature of the products.

    PubMed

    Waters, Tom; Khairallah, George N; O'Hair, Richard A J

    2009-09-28

    The gas phase fragmentation reactions of eta2 coordinated aldehydes in [VO2(eta2-OCHR)]-, which have previously been shown to play a role in the catalytic oxidation of alcohols to aldehydes, were examined using a combination of isotope labelling experiments and collision induced dissociation in a quadrupole ion trap mass spectrometer. The experimental data were interpreted with the aid of density functional theory calculations (DFT). The types of fragmentation reactions observed depend on the nature of the R group. When R = H, the dominant fragmentation channel involves formation of [VO2H2]-via loss of CO. Minor losses of H2 and CH2O are also observed. When R = Me, loss of H2 is observed to give rise to an ion at m/z 125 corresponding to the formula [V, O3, C2, H2]-. DFT calculations on the [VO2(eta2-OCHR)]- and their CID reaction products have identified minimum energy structures for all reactants and products involved. DFT calculations also provided insights into key intermediates on the potential energy surface associated with these fragmentation reactions, including: [(H2)VO2(CO)]- in the case of R = H; and [HVO2(eta1-OCHCH2)]- in the case of R = Me. The results presented provide insights into potential side reactions occurring during catalysis of alcohols over vanadium oxides, for instance, the over-oxidation of methanol to carbon monoxide. PMID:19727457

  8. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes.

    PubMed

    Krautwald, Simon; Sarlah, David; Schafroth, Michael A; Carreira, Erick M

    2013-05-31

    An important challenge in asymmetric synthesis is the development of fully stereodivergent strategies to access the full complement of stereoisomers of products bearing multiple stereocenters. In the ideal case, where four products are possible, applying distinct catalysts to the same set of starting materials under identical conditions would in a single step afford any given stereoisomer. Herein, we describe the realization of this concept in a fully stereodivergent dual-catalytic synthesis of γ,δ-unsaturated aldehydes bearing vicinal quaternary/tertiary stereogenic centers. The reaction is enabled by chiral iridium and amine catalysts, which activate the allylic alcohol and aldehyde substrates, respectively. Each catalyst exerts high local stereocontrol irrespective of the other's inherent preference. PMID:23723229

  9. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases

    SciTech Connect

    Khanna, Mary; Chen, Che-Hong; Kimble-Hill, Ann; Parajuli, Bibek; Perez-Miller, Samantha; Baskaran, Sulochanadevi; Kim, Jeewon; Dria, Karl; Vasiliou, Vasilis; Mochly-Rosen, Daria; Hurley, Thomas D.

    2012-10-23

    Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated {beta}-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype.

  10. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    PubMed

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes. PMID:26752344

  11. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    PubMed

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  12. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    NASA Astrophysics Data System (ADS)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  13. Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion

    PubMed Central

    Holder, Patrick G.; Jones, Lesley C.; Drake, Penelope M.; Barfield, Robyn M.; Bañas, Stefanie; de Hart, Gregory W.; Baker, Jeanne; Rabuka, David

    2015-01-01

    To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cysteine to formylglycine in aldehyde tags on intact monoclonal antibodies. During the development of these conditions, we discovered that pretreating FGE with copper(II) is required for high turnover rates and yields. After further investigation, we confirmed that both aerobic prokaryotic (Streptomyces coelicolor) and eukaryotic (Homo sapiens) FGEs contain a copper cofactor. The complete kinetic parameters for both forms of FGE are described, along with a proposed mechanism for FGE catalysis that accounts for the copper-dependent activity. PMID:25931126

  14. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    PubMed

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes.

  15. Quantitative Fluorescent Labeling of Aldehyde-Tagged Proteins for Single-Molecule Imaging

    PubMed Central

    Shi, Xinghua; Jung, Yonil; Lin, Li-Jung; Liu, Cheng; Wu, Cong; Cann, Isaac K. O.; Ha, Taekjip

    2012-01-01

    A major hurdle for molecular mechanistic studies of many proteins is the lack of a general method for fluorescent labeling with high efficiency, specificity, and speed. By incorporating an aldehyde motif genetically into a protein and improving the labeling kinetics substantially under mild conditions, we achieved fast, site-specific labeling of a protein with ~100% efficiency while maintaining the biological function. We demonstrate that an aldehyde-tagged protein can be specifically labeled in cell extracts without protein purification and then can be used in single-molecule pull-down analysis. We further show the unique power of our method in a series of single-molecule studies on the transient interactions and switching between two quantitatively labeled DNA polymerases on their processivity factor. PMID:22466795

  16. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    PubMed

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-01

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A.

  17. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes.

    PubMed

    Krautwald, Simon; Sarlah, David; Schafroth, Michael A; Carreira, Erick M

    2013-05-31

    An important challenge in asymmetric synthesis is the development of fully stereodivergent strategies to access the full complement of stereoisomers of products bearing multiple stereocenters. In the ideal case, where four products are possible, applying distinct catalysts to the same set of starting materials under identical conditions would in a single step afford any given stereoisomer. Herein, we describe the realization of this concept in a fully stereodivergent dual-catalytic synthesis of γ,δ-unsaturated aldehydes bearing vicinal quaternary/tertiary stereogenic centers. The reaction is enabled by chiral iridium and amine catalysts, which activate the allylic alcohol and aldehyde substrates, respectively. Each catalyst exerts high local stereocontrol irrespective of the other's inherent preference.

  18. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.

    PubMed

    Huynh-Ba, Tuong; Matthey-Doret, Walter; Fay, Laurent B; Bel Rhlid, Rachid

    2003-06-01

    Baker's yeast was shown to catalyze the transformation of cysteine-furfural conjugate into 2-furfurylthiol. The biotransformation's yield and kinetics were influenced by the reaction parameters such as pH, incubation mode (aerobic and anaerobic), and substrate concentration. 2-Furfurylthiol was obtained in an optimal 37% yield when cysteine-furfural conjugate at a 20 mM concentration was anaerobically incubated with whole cell baker's yeast at pH 8.0 and 30 degrees C. Similarly to 2-furfurylthiol, 5-methyl-2-furfurylthiol (11%), benzylthiol (8%), 2-thiophenemethanethiol (22%), 3-methyl-2-thiophenemethanethiol (3%), and 2-pyrrolemethanethiol (6%) were obtained from the corresponding cysteine-aldehyde conjugates by incubation with baker's yeast. This work indicates the versatile bioconversion capacity of baker's yeast for the generation of thiols from cysteine-aldehyde conjugates. Thanks to its food-grade character, baker's yeast provides a biochemical tool to produce thiols, which can be used as flavorings in foods and beverages.

  19. Practical methylenation reaction for aldehydes and ketones using new Julia-type reagents.

    PubMed

    Ando, Kaori; Kobayashi, Takahisa; Uchida, Nariaki

    2015-05-15

    A new Julia-type methylenation reagent, 1-methyl-2-(methylsulfonyl)benzimidazole (1e), reacts with a variety of aldehydes and ketones in the presence of either NaHMDS (-55 °C to rt) or t-BuOK (rt, 1 h) in DMF to give the corresponding terminal alkenes in high yields. The byproducts are easily removed, and the reaction conditions are mild and practical.

  20. Effects of aliphatic aldehydes on the growth and patulin production of Penicillium expansum in apple juice.

    PubMed

    Taguchi, Tomoyasu; Kozutsumi, Daisuke; Nakamura, Ruka; Sato, Yoshio; Ishihara, Atsushi; Nakajima, Hiromitsu

    2013-01-01

    The effects of 16 aliphatic aldehydes with 3-10 carbons on the growth and patulin production of Penicillium expansum were examined. When P. expansum spores were inoculated into apple juice broth, some alkenals, including 2-propenal, (E)-2-butenal, (E)-2-pentenal, and (E)-2-hexenal, inhibited fungal growth and patulin production. Their minimal inhibitory concentrations were 5, 50, 80, and 80 µg/mL respectively. Vital staining indicated that these alkenals killed mycelia within 4 h. Treatment of the spores with these aldehydes also resulted in rapid loss of germination ability, within 0.5-2 d. On the other hand, aliphatic aldehydes with 8-10 carbons significantly enhanced patulin production without affecting fungal growth: 300 µg/mL of octanal and 100 µg/mL of (E)-2-octenal increased the patulin concentrations in the culture broth by as much as 8.6- and 7.8-fold as compared to that of the control culture respectively. The expression of the genes involved in patulin biosynthesis in P. expansum was investigated in mycelia cultured in apple juice broth containing 300 µg/mL of octanal for 3.5, 5, and 7 d. Transcription of the msas gene, encoding 6-methylsalicylic acid synthase, which catalyzed the first step in the patulin biosynthetic pathway was remarkably high in the 3.5-d and 5-d-old cultures as compared with the control. However, octanal did not any increase the transcription of the msas in the 7-d-old culture or that of the other two genes, IDH and the peab1, in culture. Thus the enhanced patulin accumulation with supplementation with these aldehydes is attributable to the increased amount of the msas transcript.

  1. Electrophoretic characterization of aldehyde-fixed red blood cells, kidney cells, lynphocytes and chamber coatings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Ground-based electrokinetic data on the electrophoresis flight experiment to be flown on the Apollo-Soyuz Test Project experiment MA-011 are stipulated. Aldehyde-fixed red blood cells, embryonic kidney cells and lymphocytes were evaluated by analytical particle electrophoresis. The results which aided in the interpretation of the final analysis of the MA-011 experiment are documented. The electrophoresis chamber surface modifications, the buffer, and the material used in the column system are also discussed.

  2. Iridium-Catalyzed Allylation of Chiral β-Stereogenic Alcohols: Bypassing Discrete Formation of Epimerizable Aldehydes

    PubMed Central

    Schmitt, Daniel C.; Dechert-Schmitt, Anne-Marie R.; Krische, Michael J.

    2012-01-01

    The cyclometallated π-allyliridium 3,4-dinitro-C,O-benzoate complex modified by (R)- or (S)-Cl,MeO-BIPHEP promotes the transfer hydrogenative coupling of allyl acetate to β-stereogenic alcohols with good to excellent levels of catalyst-directed diastereoselectivity to furnish homoallylic alcohols. Remote electronic effects of the C,O-benzoate of the catalyst play a critical role in suppressing epimerization of the transient α-stereogenic aldehyde. PMID:23231774

  3. Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Ohman-Strickland, Pamela; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-05-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3 ± 15.1 μg/m3, 27.1 ± 15.7 μg/m3 and 2.3 ± 1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants.

  4. Copper-catalyst-controlled site-selective allenylation of ketones and aldehydes with propargyl boronates.

    PubMed

    Fandrick, Keith R; Ogikubo, Junichi; Fandrick, Daniel R; Patel, Nitinchandra D; Saha, Jaideep; Lee, Heewon; Ma, Shengli; Grinberg, Nelu; Busacca, Carl A; Senanayake, Chris H

    2013-03-15

    A practical and highly site-selective copper-PhBPE-catalyst-controlled allenylation with propargyl boronates has been developed. The methodology has shown to be tolerant of diverse ketones and aldehydes providing the allenyl adducts in high selectivity. The BPE ligand and boronate substituents were shown to direct the site selectivity for which either propargyl or allenyl adducts can be acquired in high selectivity. A model is proposed that explains the origin of the site selectivity. PMID:23438081

  5. Nitrous oxide activation by a cobalt(ii) complex for aldehyde oxidation under mild conditions.

    PubMed

    Corona, Teresa; Company, Anna

    2016-10-01

    Nitrous oxide (N2O) is a waste gas produced in many industrial processes with an important environmental impact. Thus, its application as an oxidant is highly desirable because it produces innocuous N2 as a by-product. In this work we report a new cobalt(ii) complex that reacts with N2O under mild conditions and the catalytic application of this system to carry out the oxidation of aldehydes. PMID:27445004

  6. Aqueous DMSO Mediated Conversion of (2-(Arylsulfonyl)vinyl)iodonium Salts to Aldehydes and Vinyl Chlorides.

    PubMed

    Zawia, Eman; Moran, Wesley J

    2016-01-01

    Vinyl(aryl)iodonium salts are useful compounds in organic synthesis but they are under-utilized and their chemistry is under-developed. Herein is described the solvolysis of some vinyl(phenyl)iodonium salts, bearing an arylsulfonyl group, in aqueous DMSO leading to aldehyde formation. This unusual process is selective and operates under ambient conditions. Furthermore, the addition of aqueous HCl and DMSO to these vinyl(aryl)iodonium salts allows their facile conversion to vinyl chlorides. PMID:27537866

  7. Synthesis of Tetrahydronaphthyridines from Aldehydes and HARP Reagents via Radical Pictet-Spengler Reactions.

    PubMed

    Jackl, Moritz K; Kreituss, Imants; Bode, Jeffrey W

    2016-04-15

    The combination of aldehydes with newly designed HARP (halogen amine radical protocol) reagents gives access to α-substituted tetrahydronaphthyridines. By using different HARP reagents, various regioisomeric structures can be prepared in a single operation. These products, which are of high value in medicinal chemistry, are formed in a predictable manner via a formal Pictet-Spengler reaction of electron-poor pyridines that would not participate in the corresponding polar reactions. PMID:27026179

  8. Nitrous oxide activation by a cobalt(ii) complex for aldehyde oxidation under mild conditions.

    PubMed

    Corona, Teresa; Company, Anna

    2016-10-01

    Nitrous oxide (N2O) is a waste gas produced in many industrial processes with an important environmental impact. Thus, its application as an oxidant is highly desirable because it produces innocuous N2 as a by-product. In this work we report a new cobalt(ii) complex that reacts with N2O under mild conditions and the catalytic application of this system to carry out the oxidation of aldehydes.

  9. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592.

    PubMed Central

    Yan, R T; Chen, J S

    1990-01-01

    Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay. Images PMID:2275527

  10. Aldehydes in Relation to Air Pollution Sources: A Case Study around the Beijing Olympics

    PubMed Central

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Strickland, Pamela Ohman; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-01-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3±15.1 μg/m3, 27.1±15.7 μg/m3 and 2.3±1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants. PMID:25883528

  11. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenol...

  12. A gatekeeper helix determines the substrate specificity of Sjögren–Larsson Syndrome enzyme fatty aldehyde dehydrogenase

    PubMed Central

    Keller, Markus A.; Zander, Ulrich; Fuchs, Julian E.; Kreutz, Christoph; Watschinger, Katrin; Mueller, Thomas; Golderer, Georg; Liedl, Klaus R.; Ralser, Markus; Kräutler, Bernhard; Werner, Ernst R.; Marquez, Jose A.

    2014-01-01

    Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren–Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a ‘gatekeeper’ helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site. Activity assays demonstrate that the gatekeeper helix is important for directing the substrate specificity of FALDH towards long-chain fatty aldehydes. The gatekeeper feature is conserved across membrane-associated aldehyde dehydrogenases. Finally, we provide insight into the previously elusive molecular basis of SLS-causing mutations. PMID:25047030

  13. An insight into the mechanism of the aerobic oxidation of aldehydes catalyzed by N-heterocyclic carbenes.

    PubMed

    Bortolini, O; Chiappe, C; Fogagnolo, M; Giovannini, P P; Massi, A; Pomelli, C S; Ragno, D

    2014-02-25

    N-Heterocyclic carbene catalysis for the aerobic oxidation and esterification of aromatic aldehydes was monitored by ESI-MS (MS/MS) and the key intermediates were intercepted and characterized using the charge-tag strategy. PMID:24413829

  14. Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells.

    PubMed

    Van Wassenhove, Lauren D; Mochly-Rosen, Daria; Weinberg, Kenneth I

    2016-09-01

    Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. PMID:27650066

  15. Nitric Oxide Mediates the Stress Response Induced by Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms. PMID:22022485

  16. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  17. Preparation and characterisation of gelatin-gum arabic aldehyde nanogels via inverse miniemulsion technique.

    PubMed

    Sarika, P R; James, Nirmala Rachel

    2015-05-01

    Gelatin-gum arabic aldehyde nanogels designed by a nanoreactor concept using inverse miniemulsion technique were reported. Stable separate miniemulsions were prepared from gelatin (Gel) and gum arabic aldehyde (GAA). These emulsions were intermixed under sonication to obtain cross-linked nanogels. During fusion, cross-linking occurred between aldehyde groups of GAA and amino groups of gelatin. The concentration of the surfactant and weight fraction of water in the inverse miniemulsion was optimised so as to yield nanogels with controlled particle size. Properties of the nanogels were studied by FT-IR spectroscopy, particle size analysis and XRD. Surface morphology of the nanogels was established by Scanning Electron Microscopy (SEM). SEM and particle size analysis confirmed that nanogels possess spherical morphology with an average diameter of 151 ± 6 nm. Hemolysis property of the nanogels was examined and the results indicated that the nanogels were hemocompatible. The in vitro cytotoxicity of the nanogels towards MCF-7 cells was evaluated by MTT assay and the nanogels showed nontoxic behaviour towards the cells. All these studies confirm that these nanogels are potential candidates in applications such as drug and gene delivery.

  18. Aldehydes and sugars from evolved precometary ice analogs: importance of ices in astrochemical and prebiotic evolution.

    PubMed

    de Marcellus, Pierre; Meinert, Cornelia; Myrgorodska, Iuliia; Nahon, Laurent; Buhse, Thomas; d'Hendecourt, Louis Le Sergeant; Meierhenrich, Uwe J

    2015-01-27

    Evolved interstellar ices observed in dense protostellar molecular clouds may arguably be considered as part of precometary materials that will later fall on primitive telluric planets, bringing a wealth of complex organic compounds. In our laboratory, experiments reproducing the photo/thermochemical evolution of these ices are routinely performed. Following previous amino acid identifications in the resulting room temperature organic residues, we have searched for a different family of molecules of potential prebiotic interest. Using multidimensional gas chromatography coupled to time-of-flight mass spectrometry, we have detected 10 aldehydes, including the sugar-related glycolaldehyde and glyceraldehyde--two species considered as key prebiotic intermediates in the first steps toward the synthesis of ribonucleotides in a planetary environment. The presence of ammonia in water and methanol ice mixtures appears essential for the recovery of these aldehydes in the refractory organic residue at room temperature, although these products are free of nitrogen. We finally point out the importance of detecting aldehydes and sugars in extraterrestrial environments, in the gas phase of hot molecular clouds, and, more importantly, in comets and in primitive meteorites that have most probably seeded the Earth with organic material as early as 4.2 billion years ago. PMID:25583475

  19. Aldehydes and sugars from evolved precometary ice analogs: importance of ices in astrochemical and prebiotic evolution.

    PubMed

    de Marcellus, Pierre; Meinert, Cornelia; Myrgorodska, Iuliia; Nahon, Laurent; Buhse, Thomas; d'Hendecourt, Louis Le Sergeant; Meierhenrich, Uwe J

    2015-01-27

    Evolved interstellar ices observed in dense protostellar molecular clouds may arguably be considered as part of precometary materials that will later fall on primitive telluric planets, bringing a wealth of complex organic compounds. In our laboratory, experiments reproducing the photo/thermochemical evolution of these ices are routinely performed. Following previous amino acid identifications in the resulting room temperature organic residues, we have searched for a different family of molecules of potential prebiotic interest. Using multidimensional gas chromatography coupled to time-of-flight mass spectrometry, we have detected 10 aldehydes, including the sugar-related glycolaldehyde and glyceraldehyde--two species considered as key prebiotic intermediates in the first steps toward the synthesis of ribonucleotides in a planetary environment. The presence of ammonia in water and methanol ice mixtures appears essential for the recovery of these aldehydes in the refractory organic residue at room temperature, although these products are free of nitrogen. We finally point out the importance of detecting aldehydes and sugars in extraterrestrial environments, in the gas phase of hot molecular clouds, and, more importantly, in comets and in primitive meteorites that have most probably seeded the Earth with organic material as early as 4.2 billion years ago.

  20. Iron(III)-catalyzed cyclization of alkynyl aldehyde acetals: experimental and computational studies.

    PubMed

    Xu, Tongyu; Yang, Qin; Li, Dongpo; Dong, Jinhua; Yu, Zhengkun; Li, Yuxue

    2010-08-01

    FeCl(3)6 H(2)O- and FeBr(3)-catalyzed Prins cyclization/halogenation of alkynyl aldehyde acetals has been realized with acetyl chloride or bromide as halogen source in dichloromethane to afford 2-(1-halobenzylidene or alkylidene)-substituted five-membered carbo- and heterocycles, and thus provides an alternative route for vinylic C-Cl and C-Br bond formation. Five- to eight-membered cyclic enones were efficiently synthesized by FeCl(3)6.H(2)O-catalyzed intramolecular cyclization of alkynyl aldehyde acetals in acetone under mild conditions. An oxocarbonium species generated in situ is proposed to initiate the reaction, and the target products are formed via vinylogous carbenium cation and oxete intermediates according to DFT calculations. Intermolecular reactions of alkynes and aldehyde acetals were also investigated with 20-40 mol% FeCl(3)6.H(2)O catalyst, and produced alpha,beta-unsaturated enones and chlorinated indene derivatives. The present protocol has applications in the synthesis of carbo-, oxa- and azacycles. PMID:20583061

  1. Aldehydes and sugars from evolved precometary ice analogs: Importance of ices in astrochemical and prebiotic evolution

    PubMed Central

    de Marcellus, Pierre; Meinert, Cornelia; Myrgorodska, Iuliia; Nahon, Laurent; Buhse, Thomas; d’Hendecourt, Louis Le Sergeant; Meierhenrich, Uwe J.

    2015-01-01

    Evolved interstellar ices observed in dense protostellar molecular clouds may arguably be considered as part of precometary materials that will later fall on primitive telluric planets, bringing a wealth of complex organic compounds. In our laboratory, experiments reproducing the photo/thermochemical evolution of these ices are routinely performed. Following previous amino acid identifications in the resulting room temperature organic residues, we have searched for a different family of molecules of potential prebiotic interest. Using multidimensional gas chromatography coupled to time-of-flight mass spectrometry, we have detected 10 aldehydes, including the sugar-related glycolaldehyde and glyceraldehyde—two species considered as key prebiotic intermediates in the first steps toward the synthesis of ribonucleotides in a planetary environment. The presence of ammonia in water and methanol ice mixtures appears essential for the recovery of these aldehydes in the refractory organic residue at room temperature, although these products are free of nitrogen. We finally point out the importance of detecting aldehydes and sugars in extraterrestrial environments, in the gas phase of hot molecular clouds, and, more importantly, in comets and in primitive meteorites that have most probably seeded the Earth with organic material as early as 4.2 billion years ago. PMID:25583475

  2. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    PubMed

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects.

  3. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs

    PubMed Central

    Bilgihan, K.; Bilgihan, A.; Turkozkan, N.

    1998-01-01

    BACKGROUND—The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions.
METHODS—In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours.
RESULTS—The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p>0.05). The corneal ALDH activities were found to be significantly decreased (p<0.05) and GST activities increased (p<0.05) in group III.
CONCLUSION—These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

 Keywords: excimer laser keratectomy; aldehyde dehydrogenase; glutathione S-transferase PMID:9602629

  4. Sources of formaldehyde, other aldehydes and terpenes in a new manufactured house.

    PubMed

    Hodgson, A T; Beal, D; McIlvaine, J E R

    2002-12-01

    Formaldehyde, less volatile aldehydes, and terpene hydrocarbons are generally the predominant air contaminants in new manufactured and site-built houses. This study was conducted to identify the major sources of these compounds in a typically constructed, new manufactured house and to evaluate several source reduction practices. Specimens of materials used within the house were collected. These were individually pre-conditioned for 19 +/- 4 days, and tested for emissions of formaldehyde and other target compounds using small-scale chambers. Several cabinetry materials, passage doors, and the plywood subfloor were the predominant sources of formaldehyde and other aldehydes. The plywood subfloor was the predominant terpene source. Whole-house emission rates for combined materials were predicted based on the emission factors and the corresponding material quantities. These predicted rates were compared with whole-house emission rates derived from measurements made at the house 3 months after its installation. For 10 of 14 target compounds including formaldehyde, the predicted and derived rates were within a factor of two. Four emission barriers applied to plywood were shown to reduce emission factors for formaldehyde, hexanal, and other aldehydes.

  5. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    PubMed

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms. PMID:22022485

  6. Evidence that Additions of Grignard Reagents to Aliphatic Aldehydes Do Not Involve Single-Electron-Transfer Processes.

    PubMed

    Otte, Douglas A L; Woerpel, K A

    2015-08-01

    Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism. PMID:26214553

  7. Asymmetric trifluoromethylation of aromatic aldehydes by cooperative catalysis with (IPr)CuF and quinidine-derived quaternary ammonium salt.

    PubMed

    Wu, Shaoxiang; Zeng, Wei; Wang, Qi; Chen, Fu-Xue

    2012-12-21

    A general enantioselective trifluoromethylation of aldehydes has been developed using (IPr)CuF and quinidine-derived quaternary ammonium salt as the cooperative catalyst. Thus, a wide range of aromatic aldehydes have been converted to the corresponding products in up to 92% yield and 81% ee at 2 mol% of catalyst loading. The greatly enhanced activity and enantioselectivity result from the initiative generation of active [(IPr)CuCF(3)] as well as additional coordination activation of other copper species. PMID:23085678

  8. Aerobic Copper-Promoted Radical-Type Cleavage of Coordinated Cyanide Anion: Nitrogen Transfer to Aldehydes To Form Nitriles.

    PubMed

    Wu, Qian; Luo, Yi; Lei, Aiwen; You, Jingsong

    2016-03-01

    We have disclosed for the first time the copper-promoted C≡N triple bond cleavage of coordinated cyanide anion under a dioxygen atmosphere, which enables a nitrogen transfer to various aldehydes. Mechanistic study of this unprecedented transformation suggests that the single electron-transfer process could be involved in the overall course. This protocol provides a new cleavage pattern for the cyanide ion and would eventually lead to a more useful synthetic pathway to nitriles from aldehydes. PMID:26907853

  9. Chemical characterization of binding properties of opacity-associated protein II from Neisseria gonorrhoeae.

    PubMed Central

    Bessen, D; Gotschlich, E C

    1987-01-01

    Binding of an opacity-associated protein II (PIIop) from Neisseria gonorrhoeae to eucaryotic macromolecules was studied. HeLa cell extracts were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose, and purified PIIop bound to approximately 50 distinct molecular species. The binding of PIIop to HeLa cell components was stable in high salt and nonionic detergent and was not inhibited by a variety of monosaccharides and polyionic substances. PIIop binding behavior was compared with that of two model carbohydrate-binding proteins, wheat germ agglutinin (WGA) and concanavalin A (ConA). Model glycoproteins (ovomucoid, fetuin, mucin, ovalbumin) inhibited binding by PIIop, WGA, and ConA to various degrees. HeLa cell glycopeptides, generated by pronase digestion of chloroform-methanol-extracted cells, were tested for their ability to inhibit binding by PIIop to Western blots of HeLa cell macromolecules. HeLa cell extracts inhibited PIIop binding before pronase treatment, but inhibitory activity was lost as a result of pronase digestion. Direct binding to defined glycosylated and nonglycosylated proteins revealed that ConA and WGA bound only glycoproteins, whereas PIIop bound to proteins lacking carbohydrate as well. PIIop binding to human and bovine serum albumins was of high affinity and required partial unfolding of albumin; native albumin was not bound by PIIop; however, both the denatured, reduced form of albumin and the compact, nonreduced form of carboxymethylated albumin were bound strongly by PIIop. Albumin-PIIop interaction did not involve covalent bond formation through sulfhydryl groups. The predominant binding interactions of PIIop found in this study were with protein rather than carbohydrate, and the chemical nature of the interactions is more complex than involvement of purely ionic or hydrophobic forces. Images PMID:3098683

  10. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    PubMed

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods.

  11. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    PubMed

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods. PMID:27128101

  12. Peptidyl aldehyde NK-1.8k suppresses enterovirus 71 and enterovirus 68 infection by targeting protease 3C.

    PubMed

    Wang, Yaxin; Yang, Ben; Zhai, Yangyang; Yin, Zheng; Sun, Yuna; Rao, Zihe

    2015-05-01

    Enterovirus (EV) is one of the major causative agents of hand, foot, and mouth disease in the Pacific-Asia region. In particular, EV71 causes severe central nervous system infections, and the fatality rates from EV71 infection are high. Moreover, an outbreak of respiratory illnesses caused by an emerging EV, EV68, recently occurred among over 1,000 young children in the United States and was also associated with neurological infections. Although enterovirus has emerged as a considerable global public health threat, no antiviral drug for clinical use is available. In the present work, we screened our compound library for agents targeting viral protease and identified a peptidyl aldehyde, NK-1.8k, that inhibits the proliferation of different EV71 strains and one EV68 strain and that had a 50% effective concentration of 90 nM. Low cytotoxicity (50% cytotoxic concentration, >200 μM) indicated a high selective index of over 2,000. We further characterized a single amino acid substitution inside protease 3C (3C(pro)), N69S, which conferred EV71 resistance to NK-1.8k, possibly by increasing the flexibility of the substrate binding pocket of 3C(pro). The combination of NK-1.8k and an EV71 RNA-dependent RNA polymerase inhibitor or entry inhibitor exhibited a strong synergistic anti-EV71 effect. Our findings suggest that NK-1.8k could potentially be developed for anti-EV therapy. PMID:25691647

  13. Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii.

    PubMed

    Dennis, M W; Kolattukudy, P E

    1991-06-01

    The final step in the synthesis of n-hydrocarbons in an animal and a higher plant involves enzymatic decarbonylation of aldehydes to the corresponding alkanes by loss of the carbonyl carbon. Whether such a novel reaction is involved in hydrocarbon synthesis in the colonial microalga, Botryococcus braunii, which is known to produce unusually high levels (up to 32% of dry weight) of n-C27, C29, and C31 alka-dienes and -trienes, was investigated. Dithioerythritol severely inhibited the incorporation of [1-14C]acetate into these hydrocarbons with accumulation of the label in the aldehyde fraction in the B. braunii cells. Microsomal preparations of the alga synthesized alkane from fatty acid and aldehyde in the absence of O2. Conversion of fatty acid to alkane required CoA, ATP, and NADH, whereas conversion of aldehyde to alkane did not require the addition of cofactors. That the alkane synthesis involves a decarbonylation was shown by the production of CO and heptadecane from octadecanal. CO was identified by adsorption to RhCl[(C6H6)3P]3. The decarbonylase had a pH optimum at 7.0, an apparent Km of 65 microM, a Vmax of 1.36 nmol/min/mg and was inhibited by the metal chelators EDTA, O-phenanthroline and 8-hydroxyquinoline. It was stimulated nearly threefold by 2 mM ascorbate and inhibited by the presence of O2. A partial (28%) retention of the aldehydic hydrogen of [1-3H]octadecanal in the heptadecane was observed; the remaining 3H was lost to H2O. The microsomal preparation also catalyzed the oxidation of 14CO to 14CO2, with a pH optimum of 7.0. This accounts for the nonstoichiometry of CO to heptadecane observed. In vivo studies with 14CO showed that the label was incorporated into metabolic products. This metabolic conversion of CO, not found in the previously examined hydrocarbon synthesizing systems, may be necessary for organisms that produce large amounts of hydrocarbons such as the present alga. The mechanism of the decarbonylation and the nature of the

  14. Distinct Roles of Jasmonates and Aldehydes in Plant-Defense Responses

    PubMed Central

    Chehab, E. Wassim; Kaspi, Roy; Savchenko, Tatyana; Rowe, Heather; Negre-Zakharov, Florence; Kliebenstein, Dan; Dehesh, Katayoon

    2008-01-01

    Background Many inducible plant-defense responses are activated by jasmonates (JAs), C6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids. Principal Findings This study conclusively establishes that jasmonates and C6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant

  15. Studies of vitamin E binding and transfer by a rat liver cytosolic protein

    SciTech Connect

    Posch, K.C.; Mavis, R.D.

    1986-05-01

    In vitro vitamin E binding and transfer were examined using a semipurified (sephadex G-75 fraction) vitamin E binding and transfer protein (VE-TBP) from the rat liver cytosol. Binding and transfer studies thus far indicate that the protein is very specific for d-..cap alpha..-tocopherol. Among the other lipophilic ligands examined only d-..gamma..-tocopherol at high concentrations was competitive with d-..cap alpha..-tocopherol binding. Specificity studies also indicate the protein to be stereospecific in nature since dl-..cap alpha..-tocopherol was only partially competitive. Studies using PMSF and NEM also indicate that neither a hydroxyl nor a sulfhydryl functional group on the protein is required for vitamin E binding. Transfer studies show that the VE-TBP is capable of specifically transferring equal amounts of vitamin E from liposomes to both mitochondria and microsomes when comparable protein concentrations are used. This indicates that no preferential transfer to one membrane type occurs. Pretreatment of mitochondria and microsomes with heat, pronase or trypsin also does not affect transfer of vitamin E. Thus, transfer of vitamin E is not dependent on a membrane protein. Finally, the VE-TBP is capable of unidirectional transport of vitamin E from prelabelled microsomes to vitamin E free liposomes.

  16. Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors.

    PubMed

    Ibrar, Aliya; Tehseen, Yildiz; Khan, Imtiaz; Hameed, Abdul; Saeed, Aamer; Furtmann, Norbert; Bajorath, Jürgen; Iqbal, Jamshed

    2016-10-01

    In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a-o) and coumarin-oxadiazole 11(a-h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16±0.06μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50=2.94±1.23μM for ARL1 and 0.12±0.05μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50=1.71±0.01μM for ARL1 and 0.11±0.001μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50=0.459±0.001μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.

  17. Rate constants for aqueous-phase reactions of hydroxyl radical ({center_dot}OH) with aldehydes and ketones

    SciTech Connect

    Allen, J.M.; Allen, S.K.

    1995-12-31

    A wide variety of aldehydes and ketones are formed in the troposphere by the gas-phase oxidation of hydrocarbons. These compounds are expected to readily partition into cloud, fog, and aquated aerosol drops where they can participate in a variety of aqueous-phase reactions. It has been previously demonstrated by other researchers that aqueous-phase photochemical reactions involving aromatic aldehydes and ketones may lead to the formation of hydrogen peroxide. Hydrogen peroxide is an important oxidant for S(IV) and is also an {center_dot}OH precursor. Aldehydes and ketones may also participate in other aqueous-phase reactions within atmospheric water drops including reactions with {center_dot}OH. Rate constants for reactions involving {center_dot}OH in aqueous solutions have been reported for only a limited number of tropospheric aldehydes and ketones. The authors have measured the rate constants for aqueous-phase reactions of {center_dot}OH with several tropospheric aldehydes and ketones by the technique of competition kinetics. Hydroxyl radicals were generated by continuous illumination at 313 nm of an aqueous acidified solution containing Fe(ClO{sub 4}){sub 3}, an {center_dot}OH scavenger, the aldehyde or ketone whose rate constant was to be measured, and a standard for which the rate constant for reaction with {center_dot}OH is well known. Nitrobenzene was used as the standard in all experiments. Loss of the aldehyde or ketone and the standard were monitored by HPLC. Losses attributable to direct photolysis and dark reactions were minimal.

  18. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli.

    PubMed

    Fatma, Zia; Jawed, Kamran; Mattam, Anu Jose; Yazdani, Syed Shams

    2016-09-01

    Long chain fatty alcohols have wide application in chemical industries and transportation sector. There is no direct natural reservoir for long chain fatty alcohol production, thus many groups explored metabolic engineering approaches for its microbial production. Escherichia coli has been the major microbial platform for this effort, however, terminal endogenous enzyme responsible for converting fatty aldehydes of chain length C14-C18 to corresponding fatty alcohols is still been elusive. Through our in silico analysis we selected 35 endogenous enzymes of E. coli having potential of converting long chain fatty aldehydes to fatty alcohols and studied their role under in vivo condition. We found that deletion of ybbO gene, which encodes NADP(+) dependent aldehyde reductase, led to >90% reduction in long chain fatty alcohol production. This feature was found to be strain transcending and reinstalling ybbO gene via plasmid retained the ability of mutant to produce long chain fatty alcohols. Enzyme kinetic study revealed that YbbO has wide substrate specificity ranging from C6 to C18 aldehyde, with maximum affinity and efficiency for C18 and C16 chain length aldehyde, respectively. Along with endogenous production of fatty aldehyde via optimized heterologous expression of cyanobaterial acyl-ACP reductase (AAR), YbbO overexpression resulted in 169mg/L of long chain fatty alcohols. Further engineering involving modulation of fatty acid as well as of phospholipid biosynthesis pathway improved fatty alcohol production by 60%. Finally, the engineered strain produced 1989mg/L of long chain fatty alcohol in bioreactor under fed-batch cultivation condition. Our study shows for the first time a predominant role of a single enzyme in production of long chain fatty alcohols from fatty aldehydes as well as of modulation of phospholipid pathway in increasing the fatty alcohol production.

  19. Toxicity of algal-derived aldehydes to two invertebrate species: do heavy metal pollutants have a synergistic effect?

    PubMed

    Taylor, Rebecca L; Caldwell, Gary S; Bentley, Matthew G

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24h LD(50) values of 7 and 20 microM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 microM of copper sulphate in solutions of decadienal resulted in the reduction of the 24h LD(50) of decadienal by approximately a third for both species. 1 microM of copper chloride in solutions of decadienal reduced the 24h LD(50) of decadienal to A. salina nauplii by approximately 11% and 1 microM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 microM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed. PMID:15927283

  20. Chemical-chemical interaction between cyanogenic toxicants and aldehydes: a mechanism-based QSAR approach to assess toxicological joint effects.

    PubMed

    Lin, Z; Wei, D; Wang, X; Yin, K; Zhao, D

    2004-04-01

    A QSAR approach was proposed to assess toxicological joint effects based on the mechanism of chemical-chemical interactions between cyanogenic toxicants and aldehydes. It has been observed that the chemical-chemical interaction between cyanogenic toxicants and aldehydes resulted in the formation of carbanion intermediates, and therefore this interaction led to different toxicological joint effects between cyanogenic toxicants and aldehydes. Analysis of this chemical-chemical interaction showed that the formation of carbanion intermediate highly depended on the charge of the carbon atom in the -CHO of aldehydes and this of the carbon atom (C*) in the carbochain of cyanogenic toxicant. By using the Hammett Constant (sigma(p)) to measure the charge of carbon atom in the -CHO of aldehydes, a mechanism-based QSAR approach (M = 0.316 - 4.386sigma(p) with r2 = 0.933, SE = 0.082, F = 55.389, p = 0.002, M = sum of toxic units) was proposed to assess the toxicological joint effects between alpha-hydroxy-isobutyronitrile and individual aliphatic aldehydes. Another one (M = 0.978 - 0.720sigma(p) with r2 = 0.852, SE = 0.152, F = 40.148, p = 0.0001) was also proposed to assess the toxicological joint effects between alpha-hydroxy-isobutyronitrile and individual aromatic aldehydes. Lastly, by using the charge of carbon atom (C*) in the carbochain of cyanogenic toxicant, a mechanism-based QSAR model (M = -0.161 - 7.721C* with r2 = 0.847, SE = 0.227, F = 27.657, p = 0.003) was derived to assess toxicological joint effects between p-nitrobenzaldehyde and cyanogenic toxicants.

  1. Temporary silicon connection strategies in intramolecular allylation of aldehydes with allylsilanes.

    PubMed

    Beignet, Julien; Jervis, Peter J; Cox, Liam R

    2008-07-18

    Three gamma-(amino)silyl-substituted allylsilanes 14a-c have been prepared in three steps from the corresponding dialkyldichlorosilane. The aminosilyl group has been used to link this allylsilane nucleophile to a series of beta-hydroxy aldehydes through a silyl ether temporary connection. The size of the alkyl substituents at the silyl ether tether governs the outcome of the reaction on exposure to acid. Thus, treatment of aldehyde (E)-9aa, which contains a dimethylsilyl ether connection between the aldehyde and allylsilane, with a range of Lewis and Brønsted acid activators provides an (E)-diene product. The mechanism of formation of this undesired product is discussed. Systems containing a sterically more bulky diethylsilyl ether connection react differently: thus in the presence of TMSOTf and a Brønsted acid scavenger, intramolecular allylation proceeds smoothly to provide two out of the possible four diastereoisomeric oxasilacycles, 23 (major) and 21 (minor). A diene product again accounts for the remaining mass balance in the reaction. This side product can be completely suppressed by using a sterically even more bulky diisopropylsilyl ether connection in the cyclization precursor, although this is now at the expense of a slight erosion in the 1,3-stereoinduction in the allylation products. The sense of 1,3-stereoinduction observed in these intramolecular allylations has been rationalized by using an electrostatic argument, which can also explain the stereochemical outcome of a number of related reactions. Levels of 1,4-stereoinduction in the intramolecular allylation are more modest but can be significantly improved in some cases by using a tethered (Z)-allylsilane in place of its (E)-stereoisomer. Oxidation of the major diastereoisomeric allylation product 23 under Tamao-Kumada conditions provides an entry into stereodefined 1,2-anti-2,4-syn triols 28.

  2. Betaine Accumulation and Betaine-Aldehyde Dehydrogenase in Spinach Leaves 1

    PubMed Central

    Pan, Shu-Mei; Moreau, Robert A.; Yu, Charles; Huang, Anthony H. C.

    1981-01-01

    Spinach leaf discs accumulated betaine when exposed to a mannitol solution of −20 bars. The accumulation was 12 micromoles per gram original fresh weight in a 24-hour period. Betaine-aldehyde dehydrogenase (EC 1.2.1.8) was assayed in various subcellular fractions prepared from spinach leaves, and it was found only in the soluble fraction. This cytosolic enzyme was purified 175-fold, and its properties were studied. The enzyme was relatively specific for betaine aldehyde as the substrate with an apparent Km value of 2.08 × 10−4 molar. It also exerted activity on other aldehyde analogs tested, but with lower Vmax and higher Km values. The enzyme was relatively specific for nicotinamide adenine dinucleotide as the coenzyme, having an apparent Km value of 9.46 × 10−6 molar; lower activities were observed when nicotinamide adenine dinucleotide phosphate or 3-acetyl pyridine adenine dinucleotide were tested as electron acceptors. The activity was enhanced by dithiothreitol and inhibited by p-chloromercuribenzoate, and the inhibition by p-chloromercuribenzoate was partially reversed by the subsequent addition of dithiothreitol. The activity was inhibited by high concentrations of NaCl and, to a lesser extent, proline. The equilibrium of the enzymic reaction was strongly in favor of betaine formation. The in vitro activity of the enzyme under optimal assay conditions was high enough to account for the amount of betaine accumulated under water stress conditions. The enzyme activity was the same in unstressed leaves and in leaves that had been water stressed for 24 hours. PMID:16661818

  3. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis.

    PubMed

    Krautwald, Simon; Schafroth, Michael A; Sarlah, David; Carreira, Erick M

    2014-02-26

    We describe the fully stereodivergent, dual catalytic α-allylation of linear aldehydes. The reaction proceeds via direct iridium-catalyzed substitution of racemic allylic alcohols with enamines generated in situ. The use of an Ir(P,olefin) complex and a diarylsilyl prolinol ether as catalysts in the presence of dimethylhydrogen phosphate as the promoter proved to be crucial for achieving high enantio- and diastereoselectivity (>99% ee, up to >20:1 dr). The utility of the method is demonstrated in a concise enantioselective synthesis of the antidepressant (-)-paroxetine. PMID:24506196

  4. Revisiting the reaction between diaminomaleonitrile and aromatic aldehydes: a green chemistry approach.

    PubMed

    Rivera, Augusto; Ríos-Motta, Jaime; León, Francisco

    2006-01-01

    The reaction between diaminomaleonitrile (DAMN) and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol), we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing "solvent-free" conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear polymers. The methodologies used have significant advantages with regards to cost and environmental considerations. PMID:18007392

  5. Selenium Catalyzed Oxidation of Aldehydes: Green Synthesis of Carboxylic Acids and Esters.

    PubMed

    Sancineto, Luca; Tidei, Caterina; Bagnoli, Luana; Marini, Francesca; Lenardão, Eder J; Santi, Claudio

    2015-01-01

    The stoichiometric use of hydrogen peroxide in the presence of a selenium-containing catalyst in water is here reported as a new ecofriendly protocol for the synthesis of variously functionalized carboxylic acids and esters. The method affords the desired products in good to excellent yields under very mild conditions starting directly from commercially available aldehydes. Using benzaldehyde as a prototype the gram scale synthesis of benzoic acid is described, in which the aqueous medium and the catalyst could be recycled at last five times while achieving an 87% overall yield.

  6. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  7. Structure of products of the condensation of. cap alpha. ,. beta. -unsaturated aldehydes with dimedone

    SciTech Connect

    Yurchenko, O.I.; Pushkareva, K.S.; Zheldubovskaya, G.A.; Komarov, N.V. Berkova, G.A.

    1987-10-10

    ..cap alpha..,..beta..-Acetylenic aldehydes and cinnamaldehyde in reaction with dimedone give the corresponding unsaturated bis(dimedonyl)methanes. In the case of acrolein and crotonaldehyde intramolecular cyclization occurs with the participation of hydroxyl of the dimedone fragment and the double bond with the formation of pyran systems. The PMR spectra were determined on Tesla BS-487C (80 MHz) and Tesla BS-467C (60 MHz) spectrometers in chloroform-d, pyridine-d/sub 5/, and trifluoroacetic acid solutions. Internal standards HMDS and methylene chloride.

  8. Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones under Ambient Atmosphere.

    PubMed

    Wang, Lianyue; Shang, SenSen; Li, Guosong; Ren, Lanhui; Lv, Ying; Gao, Shuang

    2016-03-01

    We report a new Fe(NO3)3·9H2O/9-azabicyclo[3.3.1]nonan-N-oxyl catalyst system that enables efficient aerobic oxidation of a broad range of primary and secondary alcohols to the corresponding aldehydes and ketones at room temperature with ambient air as the oxidant. The catalyst system exhibits excellent activity and selectivity for primary aliphatic alcohol oxidation. This procedure can also be scaled up. Kinetic analysis demonstrates that C-H bond cleavage is the rate-determining step and that cationic species are involved in the reaction. PMID:26859251

  9. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  10. Partial reversal of the acetaldehyde and butyraldehyde oxidation reactions catalysed by aldehyde dehydrogenases from sheep liver.

    PubMed Central

    Hart, G J; Dickinson, F M

    1978-01-01

    In the presence of acetic anhydride or butyric anhydride, liver aldehyde dehydrogenases catalyse the oxidation of NADH at pH 7.0 and 25 degrees C. The maximum velocities and Michaelis constants for NADH at saturating anhydride concentrations are independent of which anhydride is used, the values being V'max. = 12 min-1 and Km for NADH = 9 micrometer for the mitochondrial enzyme and V'max = 25 min-1 and Km for NADH = 20 micrometer for the cytoplasmic enzyme. Substitution of [4A-2H]NADH for NADH resulted in 2-fold and 4-fold decreases in rate for the mitochondrial and cytoplasmic enzymes respectively. PMID:217349

  11. Copper-Catalyzed Reaction of Trifluoromethylketones with Aldehydes via a Copper Difluoroenolate.

    PubMed

    Doi, Ryohei; Ohashi, Masato; Ogoshi, Sensuke

    2016-01-01

    A copper-catalyzed reaction of easily accessible α,α,α-trifluoromethylketones with various aldehydes affords difluoro-methylene compounds in the presence of diboron and NaOtBu. The key process of the reaction is the formation of a copper difluoroenolate by 1,2-addition of a borylcopper intermediate to α,α,α-trifluoromethylketones and subsequent β-fluoride elimination. Mechanistic studies including the isolation and characterization of a possible anionic copper alkoxide intermediate are also described. PMID:26514445

  12. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis.

    PubMed

    Krautwald, Simon; Schafroth, Michael A; Sarlah, David; Carreira, Erick M

    2014-02-26

    We describe the fully stereodivergent, dual catalytic α-allylation of linear aldehydes. The reaction proceeds via direct iridium-catalyzed substitution of racemic allylic alcohols with enamines generated in situ. The use of an Ir(P,olefin) complex and a diarylsilyl prolinol ether as catalysts in the presence of dimethylhydrogen phosphate as the promoter proved to be crucial for achieving high enantio- and diastereoselectivity (>99% ee, up to >20:1 dr). The utility of the method is demonstrated in a concise enantioselective synthesis of the antidepressant (-)-paroxetine.

  13. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  14. Ion-pair binding: is binding both binding better?

    PubMed

    Roelens, Stefano; Vacca, Alberto; Francesconi, Oscar; Venturi, Chiara

    2009-08-17

    It is often tempting to explain chemical phenomena on the basis of intuitive principles, but this practice can frequently lead to biased analysis of data and incorrect conclusions. One such intuitive principle is brought into play in the binding of salts by synthetic receptors. Following the heuristic concept that "binding both is binding better", it is widely believed that ditopic receptors capable of binding both ionic partners of a salt are more effective than monotopic receptors because of a cooperative effect. Using a newly designed ditopic receptor and a generalized binding descriptor, we show here that, when the problem is correctly formulated and the appropriate algorithm is derived, the cooperativity principle is neither general nor predictable, and that competition between ion binding and ion pairing may even lead to inhibition rather than enhancement of the binding of an ion to a ditopic receptor.

  15. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.

    PubMed

    Mao, Yinfei; Liu, Jinquan; He, Dinggen; He, Xiaoxiao; Wang, Kemin; Shi, Hui; Wen, Li

    2015-10-01

    Owing to its diversified structures, high affinity, and specificity for binding a wide range of non-nucleic acid targets, aptamer is a useful molecular recognition tool for the design of various biosensors. Herein, we report a new signal-on electrochemical biosensing platform which is based on an aptamer/target binding-induced strand displacement and triple-helix forming. The biosensing platform is composed of a signal transduction probe (STP) modified with a methylene blue (MB) and a sulfhydryl group, a triplex-forming oligonucleotides probe (TFO) and a target specific aptamer probe (Apt). Through hybridization with the TFO probe and the Apt probe, the self-assembled STP on Au electrode via Au-S bonding keeps its rigid structure. The MB on the STP is distal to the Au electrode surface. It is eT off state. Target binding releases the Apt probe and liberates the end of the MB tagged STP to fold back and form a triplex-helix structure with TFO (STP/TFO/STP), allowing MB to approach the Au electrode surface and generating measurable electrochemical signals (eT ON). As test for the feasibility and universality of this signal-on electrochemical biosensing platform, two aptamers which bind to adenosine triphosphate (ATP) and human α-thrombin (Tmb), respectively, are selected as models. The detection limit of ATP was 7.2 nM, whereas the detection limit of Tmb was 0.86 nM.

  16. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans.

    PubMed

    Sobreira, Tiago J P; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S L; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.

  17. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil.

    PubMed

    Drese, Jeffrey H; Talley, Anne D; Jones, Christopher W

    2011-03-21

    The fast pyrolysis of biomass is a potential route to the production of liquid biorenewable fuel sources. However, degradation of the bio-oil mixtures due to reaction of oxygenates, such as aldehydes and ketones, reduces the stability of the liquids and can impact long-term storage and shipping. Herein, solid aminosilica adsorbents are described for the selective adsorptive removal of reactive aldehyde and ketone species. Three aminosilica adsorbents are prepared through the reaction of amine-containing silanes with pore-expanded mesoporous silica. A fourth aminosilica adsorbent is prepared through the ring-opening polymerization of aziridine from pore-expanded mesoporous silica. Adsorption experiments with a representative mixture of bio-oil model compounds are presented using each adsorbent at room temperature and 45 °C. The adsorbent comprising only primary amines adsorbs the largest amount of aldehydes and ketones. The overall reactivity of this adsorbent increases with increasing temperature. Additional aldehyde screening experiments show that the reactivity of aldehydes with aminosilicas varies depending on their chemical functionality. Initial attempts to regenerate an aminosilica adsorbent by acid hydrolysis show that they can be at least partially regenerated for further use. PMID:21246749

  18. Proteomics Guided Discovery of Flavopeptins: Anti-Proliferative Aldehydes Synthesized by a Reductase Domain-Containing Nonribosomal Peptide Synthetase

    PubMed Central

    Chen, Yunqiu; McClure, Ryan A.; Zheng, Yupeng; Thomson, Regan J.; Kelleher, Neil L.

    2013-01-01

    Due to the importance of proteases in regulating cellular processes, the development of protease inhibitors has garnered great attention. Peptide-based aldehydes are a class of compounds that exhibit inhibitory activities against various proteases and proteasomes in the context of anti-proliferative treatments for cancer and other diseases. More than a dozen peptide-based natural products containing aldehydes have been discovered such as chymostatin, leupeptin, and fellutamide; however, the biosynthetic origin of the aldehyde functionality has yet to be elucidated. Herein we describe the discovery of a new group of lipopeptide aldehydes, the flavopeptins, and the corresponding biosynthetic pathway arising from an orphan gene cluster in Streptomyces sp. NRRL-F6652, a close relative of Streptomyces flavogriseus ATCC 33331. This research was initiated using a proteomics approach that screens for expressed enzymes involved in secondary metabolism in microorganisms. Flavopeptins are synthesized through a nonribosomal peptide synthetase containing a terminal NAD(P)H dependent reductase domain likely for the reductive release of the peptide with a C-terminal aldehyde. Solid phase peptide synthesis of several flavopeptin species and derivatives enabled structural verification and subsequent screening of biological activity. Flavopeptins exhibited submicromolar inhibition activities against cysteine proteases such as papain and calpain as well as the human 20S proteasome. They also showed anti-proliferative activities against multiple myeloma and lymphoma cell lines. PMID:23763305

  19. Cigarette smoke-induced reduction in binding of the salivary translocator protein is not mediated by free radicals.

    PubMed

    Nagler, R; Savulescu, D; Gavish, M

    2016-02-01

    Oral cancer is the most common malignancy of the head and neck and its main inducer is exposure to cigarette smoke (CS) in the presence of saliva. It is commonly accepted that CS contributes to the pathogenesis of oral cancer via reactive free radicals and volatile aldehydes. The 18 kDa translocator protein (TSPO) is an intracellular receptor involved in proliferation and apoptosis, and has been linked to various types of cancer. The presence of TSPO in human saliva has been linked to oral cancer, and its binding affinity to its ligand is reduced following exposure to CS. In the present study we wished to further investigate the mechanism behind the CS-induced reduction of TSPO binding by exploring the possible mediatory role of reactive oxygen species (ROS) and volatile aldehydes in this process. We first analyzed TSPO binding in control saliva and in saliva exposed to CS in the presence and absence of various antioxidants. These experiments found that TSPO binding ability was not reversed by any of the antioxidants added, suggesting that CS exerts its effect on TSPO via mechanisms that do not involve volatile aldehydes and free radicals tested. Next, we analyzed TSPO binding in saliva following addition of exogenous ROS in the form of H2O2. These experiments found that TSPO binding was enhanced due to the treatment, once again showing that the CS-induced TSPO binding reduction is not mediated by this common form of ROS. However, the previously reported CS-induced reduction in salivary TSPO binding together with the role of TSPO in cells and its link to cancer strongly suggest that TSPO has a critical role in the pathogenesis of CS-induced oral cancer. The importance of further elucidating the mechanisms behind it should be emphasized.

  20. Binding of HgII to high-affinity sites on bacteria inhibits reduction to Hg0 by mixed FeII/III phases.

    PubMed

    Mishra, Bhoopesh; O'Loughlin, Edward J; Boyanov, Maxim I; Kemner, Kenneth M

    2011-11-15

    Magnetite and green rust have been shown to reduce aqueous Hg(II) to Hg(0). In this study, we tested the ability of magnetite and green rust to reduce Hg(II) sorbed to 2 g · L(-1) of biomass (Bacillus subtilis), at high (50 μM) and low (5 μM) Hg loadings and at pH 6.5 and 5.0. At high Hg:biomass loading, where Hg(II) binding to biomass is predominantly through carboxyl functional groups, Hg L(III)-edge X-ray absorption spectroscopy showed reduction of Hg(II) to Hg(0) by magnetite. Reduction occurred within 2 h and 2 d at pH 6.5 and 5.0, respectively. At low Hg:biomass loading, where Hg(II) binds to biomass via sulfhydryl functional groups, Hg(II) was not reduced by magnetite at pH 6.5 or 5.0 after 2 months of reaction. Green rust, which is generally a stronger reductant than magnetite, reduced about 20% of the total Hg(II) bound to biomass via sulfhydryl groups to Hg(0) in 2 d. These results suggest that Hg(II) binding to carboxyl groups does not significantly inhibit the reduction of Hg(II) by magnetite. However, the binding of Hg(II) to biomass via sulfhydryl groups severely inhibits the ability of mixed Fe(II/III) phases like magnetite and green rust to reduce Hg(II) to Hg(0). The mobility of heavy metal contaminants in aquatic and terrestrial environments is greatly influenced by their speciation, especially their oxidation state. In the case of Hg, reduction of Hg(II) to Hg(0) can increase Hg mobility because of the volatility of Hg(0). Since Hg is typically present in aquatic and terrestrial systems at low concentrations, binding of Hg(II) to high-affinity sites on bacteria could have important implications for the potential reduction of Hg(II) to Hg(0) and the overall mobility of Hg in biostimulated subsurface environments. PMID:21913727