Science.gov

Sample records for aldehydes ketones alcohols

  1. Catalytic Amination of Alcohols, Aldehydes, and Ketones

    NASA Astrophysics Data System (ADS)

    Klyuev, M. V.; Khidekel', M. L.

    1980-01-01

    Data on the catalytic amination of alcohols and carbonyl compounds are examined, the catalysts for these processes are described, and the problems of their effectiveness, selectivity, and stability are discussed. The possible mechanisms of the reactions indicated are presented. The bibliography includes 266 references.

  2. Measurements Alcohols, Ketones, and Aldehydes During Trace-P

    NASA Astrophysics Data System (ADS)

    Apel, E. C.; Riemer, D. D.; Hills, A.; Lueb, R.; Fried, A.; Sachse, G.; Crawford, J.; Singh, H.; Blake, D.

    2002-12-01

    A sensitive and selective instrument (fast gas chromatographic mass spectrometer - FGCMS) was developed for the continuous measurement of oxygenated volatile organic compounds (OVOCs: alcohols, ketones and aldehydes (except for formaldehyde)) containing fewer than 6 carbon atoms and subsequently deployed during the NASA's TRACE-P (Transport and Chemical Evolution over the Pacific) experiment. This paper will briefly describe the instrument and present results obtained from 15 mission flights. Dramatic differences were observed in the mixing ratios and vertical profiles of the longer-lived species, acetone and methanol, compared to the shorter-lived species. For example, between 6 and 7 km, the median mixing ratios for the two longest lived species measured, acetone and methanol, are 765 pptv and 1061 pptv, respectively whereas the combined mixing ratio for all other species measured was less than 500 pptv. A large variety of air masses were encountered during this experiment and this is reflected in the behavior of the measured OVOCs. Relationships between the OVOCs and other trace species will be explored. Implications of these measurements for our current understanding of global tropospheric chemistry will be discussed.

  3. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts

    SciTech Connect

    Ide, Matthew S.; Hao, Bing; Neurock, Matthew; Davis, Robert J.

    2012-04-06

    The selective hydrogenation of unsaturated ketones (methyl vinyl ketone and benzalacetone) and unsaturated aldehydes (crotonaldehyde and cinnamaldehyde) was carried out with H₂ at 2 bar absolute over Pd/C, Pt/C, Ru/C, Au/C, Au/TiO₂, or Au/Fe₂O₃ catalysts in ethanol or water solvent at 333 K. Comparison of the turnover frequencies revealed Pd/C to be the most active hydrogenation catalyst, but the catalyst failed to produce unsaturated alcohols, indicating hydrogenation of the C=C bond was highly preferred over the C=O bond on Pd. The Pt and Ru catalysts were able to produce unsaturated alcohols from unsaturated aldehydes, but not from unsaturated ketones. Although Au/ Fe₂O₃ was able to partially hydrogenate unsaturated ketones to unsaturated alcohols, the overall hydrogenation rate over gold was the lowest of all of the metals examined. First-principles density functional theory calculations were therefore used to explore the reactivity trends of methyl vinyl ketone (MVK) and benzalacetone (BA) hydrogenation over model Pt(111) and Ru(0001) surfaces. The observed selectivity over these metals is likely controlled by the significantly higher activation barriers to hydrogenate the C=O bond compared with those required to hydrogenate the C=C bond. Both the unsaturated alcohol and the saturated ketone, which are the primary reaction products, are strongly bound to Ru and can react further to the saturated alcohol. The lower calculated barriers for the hydrogenation steps over Pt compared with Ru account for the higher observed turnover frequencies for the hydrogenation of MVK and BA over Pt. The presence of a phenyl substituent α to the C=C bond in BA increased the barrier for C=C hydrogenation over those associated with the C=C bond in MVK; however, the increase in barriers with phenyl substitution was not adequate to reverse the selectivity trend.

  4. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  5. Two-carbon homologation of aldehydes and ketones to a,ß-unsaturated aldehydes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched a,ß-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a...

  6. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  7. STIMULATION OF TARSAL RECEPTORS OF THE BLOWFLY BY ALIPHATIC ALDEHYDES AND KETONES

    PubMed Central

    Chadwick, L. E.; Dethier, V. G.

    1949-01-01

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of –2; for the lower limbs, about –10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase. PMID:18114559

  8. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    PubMed

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  9. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    SciTech Connect

    Gupta, Dhanoj; Antony, Bobby

    2014-08-07

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the cross sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.

  10. Photoredox Activation for the Direct β-Arylation of Ketones and Aldehydes

    PubMed Central

    Pirnot, Michael T.; Rankic, Danica A.; Martin, David B. C.; MacMillan, David W. C.

    2013-01-01

    The direct β-activation of saturated aldehydes and ketones has long been an elusive transformation. We found that photoredox catalysis in combination with organocatalysis can lead to the transient generation of 5π-electron β-enaminyl radicals from ketones and aldehydes that rapidly couple with cyano-substituted aryl rings at the carbonyl β-position. This mode of activation is suitable for a broad range of carbonyl β-functionalization reactions and is amenable to enantioselective catalysis. PMID:23539600

  11. Sources and concentrations of aldehydes and ketones in indoor environments in the UK

    SciTech Connect

    Crump, D.R.; Gardiner, D. )

    1989-01-01

    Individual aldehydes and ketones can be separated, identified and quantitatively estimated by trapping the 2,4-dinitrophenylhydrazine (DNPH) derivatives and analysis by HPLC. Appropriate methods and detection limits are reported. Many sources of formaldehyde have been identified by this means and some are found to emit other aldehydes and ketones. The application of this method to determine the concentration of these compounds in the atmospheres of buildings is described and the results compared with those obtained using chromotropic acid or MBTH.

  12. Mass spectral determination of aldehydes, ketones, and carboxylic acids using 1,1-dimethylhydrazine.

    PubMed

    McDaniel, C A; Howard, R W

    1985-03-01

    Analyses of nanogram to milligram quantities of aliphatic aldehydes, fatty acids, and unhindered aliphatic ketones such as those typically found in pheromonal blends have been effected by treating these mixtures with 1,1-dimethylhydrazine. The aldehydes and ketones formN,N-dimethylhydrazones, while the fatty acids form methyl esters. Structural elucidation of the reaction products was achieved using EI and CI gas chromatography-mass spectrometry.

  13. Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1986-11-01

    Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated parent. Water CI provides for an approximately 200:1 selectivity of carbonyl species over alkanes. No reagent ions are detected above 55 amu, allowing species as small as acetone, propanal, acetic acid, and methyl formate to be identified. When deuterate water was used as the reagent, only the carboxylic acids and ..beta..-diketones showed significant H/D exchange. The use of water CI to identify carbonyl compounds in a wastewater from the supercritical water extraction of lignite coal, in lemon oil, and in whiskey volatiles is discussed.

  14. Indium-mediated asymmetric Barbier-type propargylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    PubMed

    Haddad, Terra D; Hirayama, Lacie C; Buckley, Jannise J; Singaram, Bakthan

    2012-01-20

    We report a simple, efficient, and general method for the indium-mediated enantioselective propargylation of aromatic and aliphatic aldehydes under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 90%) and enantiomeric excess (up to 95%). The extension of this methodology to ketones demonstrated the need for electrophilic ketones more reactive than acetophenone as the reaction would not proceed with just acetophenone. Using the Lewis acid indium triflate [In(OTf)(3)] induced regioselective formation of the corresponding homoallenic alcohol product from acetophenone. However, this methodology demonstrated excellent chemoselectivity in formation of only the corresponding secondary homopropargylic alcohol product in the presence of a ketone functionality. Investigation of the organoindium intermediates under our reaction conditions shows the formation of allenylindium species, and we suggest that these species contain an indium(III) center. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  15. Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...

  16. Metal-Free Trifluoromethylation of Aromatic and Heteroaromatic Aldehydes and Ketones

    PubMed Central

    2015-01-01

    The ability to convert simple and common substrates into fluoroalkyl derivatives under mild conditions remains an important goal for medicinal and agricultural chemists. One representative example of a desirable transformation involves the conversion of aromatic and heteroaromatic ketones and aldehydes into aryl and heteroaryl β,β,β-trifluoroethylarenes and -heteroarenes. The traditional approach for this net transformation involves stoichiometric metals and/or multistep reaction sequences that consume excessive time, material, and labor resources while providing low yields of products. To complement these traditional strategies, we report a one-pot metal-free decarboxylative procedure for accessing β,β,β-trifluoroethylarenes and -heteroarenes from readily available ketones and aldehydes. This method features several benefits, including ease of operation, readily available reagents, mild reaction conditions, high functional-group compatibility, and scalability. PMID:25001876

  17. Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes.

    PubMed

    Aukema, Kelly G; Makris, Thomas M; Stoian, Sebastian A; Richman, Jack E; Münck, Eckard; Lipscomb, John D; Wackett, Lawrence P

    2013-10-04

    Aldehyde-deformylating oxygenase (ADO) catalyzes O2-dependent release of the terminal carbon of a biological substrate, octadecanal, to yield formate and heptadecane in a reaction that requires external reducing equivalents. We show here that ADO also catalyzes incorporation of an oxygen atom from O2 into the alkane product to yield alcohol and aldehyde products. Oxygenation of the alkane product is much more pronounced with C9-10 aldehyde substrates, so that use of nonanal as the substrate yields similar amounts of octane, octanal, and octanol products. When using doubly-labeled [1,2-(13)C]-octanal as the substrate, the heptane, heptanal and heptanol products each contained a single (13)C-label in the C-1 carbons atoms. The only one-carbon product identified was formate. [(18)O]-O2 incorporation studies demonstrated formation of [(18)O]-alcohol product, but rapid solvent exchange prevented similar determination for the aldehyde product. Addition of [1-(13)C]-nonanol with decanal as the substrate at the outset of the reaction resulted in formation of [1-(13)C]-nonanal. No (13)C-product was formed in the absence of decanal. ADO contains an oxygen-bridged dinuclear iron cluster. The observation of alcohol and aldehyde products derived from the initially formed alkane product suggests a reactive species similar to that formed by methane monooxygenase (MMO) and other members of the bacterial multicomponent monooxygenase family. Accordingly, characterization by EPR and Mössbauer spectroscopies shows that the electronic structure of the ADO cluster is similar, but not identical, to that of MMO hydroxylase component. In particular, the two irons of ADO reside in nearly identical environments in both the oxidized and fully reduced states, whereas those of MMOH show distinct differences. These favorable characteristics of the iron sites allow a comprehensive determination of the spin Hamiltonian parameters describing the electronic state of the diferrous cluster for the

  18. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    NASA Astrophysics Data System (ADS)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-02-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (uc(d)-allose and uc(d)-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars uc(d)-allose and uc(d)-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  19. Direct access to ketones from aldehydes via rhodium-catalyzed cross-coupling reaction with potassium trifluoro(organo)borates.

    PubMed

    Pucheault, Mathieu; Darses, Sylvain; Genet, Jean-Pierre

    2004-12-01

    A direct cross-coupling reaction of aromatic aldehydes with potassium trifluoro(organo)borates afforded ketones in high yields and under mild conditions in the presence of a rhodium catalyst and acetone. This new reaction, involving a formal aldehyde C-H bond activation, is believed to proceed via a Heck-type mechanism followed by hydride transfer to acetone.

  20. Rate constants for aqueous-phase reactions of hydroxyl radical ({center_dot}OH) with aldehydes and ketones

    SciTech Connect

    Allen, J.M.; Allen, S.K.

    1995-12-31

    A wide variety of aldehydes and ketones are formed in the troposphere by the gas-phase oxidation of hydrocarbons. These compounds are expected to readily partition into cloud, fog, and aquated aerosol drops where they can participate in a variety of aqueous-phase reactions. It has been previously demonstrated by other researchers that aqueous-phase photochemical reactions involving aromatic aldehydes and ketones may lead to the formation of hydrogen peroxide. Hydrogen peroxide is an important oxidant for S(IV) and is also an {center_dot}OH precursor. Aldehydes and ketones may also participate in other aqueous-phase reactions within atmospheric water drops including reactions with {center_dot}OH. Rate constants for reactions involving {center_dot}OH in aqueous solutions have been reported for only a limited number of tropospheric aldehydes and ketones. The authors have measured the rate constants for aqueous-phase reactions of {center_dot}OH with several tropospheric aldehydes and ketones by the technique of competition kinetics. Hydroxyl radicals were generated by continuous illumination at 313 nm of an aqueous acidified solution containing Fe(ClO{sub 4}){sub 3}, an {center_dot}OH scavenger, the aldehyde or ketone whose rate constant was to be measured, and a standard for which the rate constant for reaction with {center_dot}OH is well known. Nitrobenzene was used as the standard in all experiments. Loss of the aldehyde or ketone and the standard were monitored by HPLC. Losses attributable to direct photolysis and dark reactions were minimal.

  1. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-08

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.

  2. Selective synthesis of alpha,beta-unsaturated ketones by dibutyltin dimethoxide-catalyzed condensation of aldehydes with alkenyl trichloroacetates.

    PubMed

    Yanagisawa, Akira; Goudu, Riku; Arai, Takayoshi

    2004-11-11

    Various alpha,beta-unsaturated ketones were stereoselectively synthesized in high yields up to 94% by a condensation reaction between alkenyl trichloroacetates and aldehydes using dibutyltin dimethoxide as a catalyst in the presence of methanol. This process is superior to the classical Claisen-Schmidt condensation with respect to mildness of the base catalyst and product selectivity.

  3. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light.

    PubMed

    Tanaka, Atsuhiro; Hashimoto, Keiji; Kominami, Hiroshi

    2012-09-05

    Au/CeO(2) samples with various Au contents were prepared by the multistep (MS) photodeposition method. Their properties including Au particle size, particle dispersion, and photoabsorption were investigated and compared with properties of samples prepared by using the single-step (SS) photodeposition method. The MS- and SS-Au/CeO(2) samples were used for selective oxidation of benzyl alcohols to corresponding benzaldehydes in aqueous suspensions under irradiation by visible light from a green LED, and the correlations between reaction rates and physical properties of the MS- and SS-Au/CeO(2) samples were investigated. Difference in the two photodeposition methods was reflected in the average size and number of Au nanoparticles, for example, 92 nm and 1.3 × 10(12) (g-Au/CeO(2))(-1) for MS photodeposition and 59 nm and 4.8 × 10(12) (g-Au/CeO(2))(-1) for SS photodeposition in the case of 1.0 wt % Au samples. Fixation of larger Au particles resulted in strong photoabsorption of the MS-Au/CeO(2) samples at around 550 nm due to the surface plasmon resonance, and the Kubelka-Munk function of the photoabsorption linearly increased with increase in Au content up to 2.0 wt %, in contrast to the photoabsorption of SS-Au/CeO(2) samples, which was weak and was saturated even at around 0.5 wt %. Due to the strong photoabsorption, the MS-Au/CeO(2) samples exhibited reaction rates approximately twice larger than those of SS-Au/CeO(2) samples with the same Au contents, and apparent quantum efficiency of MS-Au/CeO(2) reached 4.9% at 0.4 mW cm(-2). Linear correlations were observed between reaction rates (r) and surface area of Au nanoparticles (S) in both MS- and SS-Au/CeO(2) samples, though the two slopes of r versus S plots were different, suggesting that oxidation of benzyl alcohol occurred on the Au surface and that S was one of the important factors controlling the reaction rate. Photocatalytic oxidation of benzyl alcohol having an amino group revealed that the Au/CeO(2

  4. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  5. [Aldehydes and ketones in silage: quantitative analysis by high performance liquid chromatography].

    PubMed

    Langin, D; Nguyen, P; Dumon, H; Malek, A

    1989-01-01

    Carbonyl compound toxicity is known in several species but no study has been carried out with ruminants. Such volatile compounds exist in silages. After condensation of aldehydes and ketones with 2,4-dinitrophenylhydrazine, quantitative analysis was performed with 37 silages. It was found that quantities of carbonyl compounds varied from 36 mg/kg of dry matter (DM) to 1,535 mg/kg DM with a mean value of 642 mg/kg DM. Ethanal was 63% of the total amount of carbonyl compounds (mol/kg DM). Other molecules were propanal, propanone, butanal (n- and iso-), butanone and n- and iso- pentanal. The total amount of carbonyl compounds correlated positively with the dry matter percentage and negatively with the pH, crude fiber, ash content and volatile fatty acids. Thus, carbonyl compounds seem to be dependent up on silage storage conditions. Lactic flora could be involved in the synthesis of these compounds.

  6. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    PubMed

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation.

  7. Polarity-Reversed Allylations of Aldehydes, Ketones, and Imines Enabled by Hantzsch Ester in Photoredox Catalysis.

    PubMed

    Qi, Li; Chen, Yiyun

    2016-10-10

    The polarity reversal (umpolung) reaction is an invaluable tool for reversing the chemical reactivity of carbonyl and iminyl groups, which subsequent cross-coupling reactions to form C-C bonds offers a unique perspective in synthetic planning and implementation. Reported herein is the first visible-light-induced polarity-reversed allylation and intermolecular Michael addition reaction of aldehydes, ketones, and imines. This chemoselective reaction has broad substrate scope and the engagement of alkyl imines is reported for the first time. The mechanistic investigations indicate the formation of ketyl (or α-aminoalkyl) radicals from single-electron reduction, where the Hantzsch ester is crucial as the electron/proton donor and the activator.

  8. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil.

    PubMed

    Drese, Jeffrey H; Talley, Anne D; Jones, Christopher W

    2011-03-21

    The fast pyrolysis of biomass is a potential route to the production of liquid biorenewable fuel sources. However, degradation of the bio-oil mixtures due to reaction of oxygenates, such as aldehydes and ketones, reduces the stability of the liquids and can impact long-term storage and shipping. Herein, solid aminosilica adsorbents are described for the selective adsorptive removal of reactive aldehyde and ketone species. Three aminosilica adsorbents are prepared through the reaction of amine-containing silanes with pore-expanded mesoporous silica. A fourth aminosilica adsorbent is prepared through the ring-opening polymerization of aziridine from pore-expanded mesoporous silica. Adsorption experiments with a representative mixture of bio-oil model compounds are presented using each adsorbent at room temperature and 45 °C. The adsorbent comprising only primary amines adsorbs the largest amount of aldehydes and ketones. The overall reactivity of this adsorbent increases with increasing temperature. Additional aldehyde screening experiments show that the reactivity of aldehydes with aminosilicas varies depending on their chemical functionality. Initial attempts to regenerate an aminosilica adsorbent by acid hydrolysis show that they can be at least partially regenerated for further use.

  9. Leaf uptake of methyl ethyl ketone and croton aldehyde by Castanopsis sieboldii and Viburnum odoratissimum saplings

    NASA Astrophysics Data System (ADS)

    Tani, Akira; Tobe, Seita; Shimizu, Sachie

    2013-05-01

    Methyl ethyl ketone (MEK) is an abundant ketone in the urban atmosphere and croton aldehyde (CA) is a strong irritant to eye, nose, and throat. The use of plants able to absorb these compounds is one suggested mitigation method. In order to investigate this method, we determined the uptake rate of these compounds by leaves of two tree species, Castanopsis sieboldii and Viburnum odoratissimum var. awabuki. Using a flow-through chamber method, we found that these species were capable of absorbing both compounds. We also confirmed that the uptake rate of these compounds normalized to the fumigated concentration (AN) was higher at higher light intensities and that there was a linear relationship between AN and stomatal conductance (gS) for both tree species. In concentration-varying experiments, the uptake of MEK and CA seemed to be restricted by partitioning of MEK between leaf water and air. The ratio of the intercellular VOC concentration (Ci) to the fumigated concentration (Ca) for CA was zero, and the ratio ranged from 0.63 to 0.76 for MEK. The more efficient CA uptake ability may be the result of higher partitioning of CA into leaf water. Our present and previous results also suggest that plant MEK uptake ability was different across plant species, depending on the VOC conversion speed inside leaves.

  10. Syn/anti isomerization of 2,4-dinitrophenylhydrazones in the determination of airborne unsymmetrical aldehydes and ketones using 2,4-dinitrophenylhydrazine derivation.

    PubMed

    Binding, N; Müller, W; Witting, U

    1996-10-01

    Aldehydes and ketones readily react with 2,4-dinitrophenylhydrazine (2,4-DNPH) to form the corresponding hydrazones. This reaction has been frequently used for the quantification of airborne carbonyl compounds. Since unsymmetrical aldehydes and ketones are known to form isomeric 2,4-dinitrophenylhydrazones (syn/ anti-isomers), the influence of isomerization on the practicability and accuracy of the 2,4-DNPH-method using 2,4-dinitrophenylhydrazine-coated solid sorbent samplers has been studied with three ketones (methyl ethyl ketone (MEK), methyl isopropyl ketone (MIPK), and methyl isobutyl ketone (MIBK)). With all three ketones the reaction with 2,4-DNPH resulted in mixtures of the isomeric hydrazones which were separated by HPLC and GC and identified by mass spectroscopy and (1)H nuclear magnetic resonance spectroscopy. The isomers show similar chromatographic behaviour in HPLC as well as in GC, thus leading to problems in quantification and interpretation of chromatographic results.

  11. Experimental verification, and domain definition, of structural alerts for protein binding: epoxides, lactones, nitroso, nitros, aldehydes and ketones.

    PubMed

    Nelms, M D; Cronin, M T D; Schultz, T W; Enoch, S J

    2013-01-01

    This study outlines how a combination of in chemico and Tetrahymena pyriformis data can be used to define the applicability domain of selected structural alerts within the profilers of the OECD QSAR Toolbox. Thirty-three chemicals were profiled using the OECD and OASIS profilers, enabling the applicability domain of six structural alerts to be defined, the alerts being: epoxides, lactones, nitrosos, nitros, aldehydes and ketones. Analysis of the experimental data showed the applicability domains for the epoxide, nitroso, aldehyde and ketone structural alerts to be well defined. In contrast, the data showed the applicability domains for the lactone and nitro structural alerts needed modifying. The accurate definition of the applicability domain for structural alerts within in silico profilers is important due to their use in the chemical category in predictive and regulatory toxicology. This study highlights the importance of utilizing multiple profilers in category formation.

  12. Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-Unsaturated Ketones

    PubMed Central

    Yu, Lei; Han, Mengting; Luan, Jie; Xu, Lin; Ding, Yuanhua; Xu, Qing

    2016-01-01

    Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5–10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its 1H NMR spectrum. PMID:27443482

  13. Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-Unsaturated Ketones

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Han, Mengting; Luan, Jie; Xu, Lin; Ding, Yuanhua; Xu, Qing

    2016-07-01

    Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5–10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its 1H NMR spectrum.

  14. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Rong, Jiewei; Wang, Shaowu; Yang, Gaosheng; Zhu, Xiancui; Zhang, Lijun

    2012-02-27

    A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields.

  15. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  16. Enantio- and diastereoselective Michael addition reactions of unmodified aldehydes and ketones with nitroolefins catalyzed by a pyrrolidine sulfonamide.

    PubMed

    Wang, Jian; Li, Hao; Lou, Bihshow; Zu, Liansuo; Guo, Hua; Wang, Wei

    2006-05-24

    Chiral (S)-pyrrolidine trifluoromethanesulfonamide has been shown to serve as an effective catalyst for direct Michael addition reactions of aldehydes and ketones with nitroolefins. A wide range of aldehydes and ketones as Michael donors and nitroolefins as acceptors participate in the process, which proceeds with high levels of enantioselectivity (up to 99 % ee) and diastereoselectivity (up to 50:1 d.r.). The methodology has been employed successfully in an efficient synthesis of the potent H(3) agonist Sch 50917. In addition, a practical three-step procedure for the preparation of (S)-pyrrolidine trifluoromethanesulfonamide has been developed. The high levels of stereochemical control attending Michael addition reactions catalyzed by this pyrrolidine sulfonamide, have been investigated by using ab initio and density functional methods. Transition state structures for the rate-limiting C--C bond-forming step, corresponding to re- and si-face addition to the reactive conformation of the key enamine intermediates have been calculated. Analysis of these structures indicates that hydrogen bonding plays an important role in catalysis and that the energy barrier for si-face attack in reactions of aldehydes to form 2R,3S products is lower than that for the re-face attack leading to 2S,3R products. In contrast, the energy barrier for re-face addition is lower than that for si-face addition in reactions of ketones. The computational results, which are in good agreement with the experimental observations, are discussed in the context of the stereochemical course of these Michael addition reactions.

  17. Breaking the dogma of aldolase specificity: Simple aliphatic ketones and aldehyde are nucleophiles for fructose-6-phosphate aldolase.

    PubMed

    Roldán, Raquel; Sanchez-Moreno, Israel; Scheidt, Thomas; Hélaine, Virgil; Lemaire, Marielle; Parella, Teodor; Clapés, Pere; Fessner, Wolf-Dieter; Guérard-Hélaine, Christine

    2017-03-07

    D-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible.

  18. Bisoxazoline-Lewis acid-catalyzed direct-electron demand oxo-hetero-Diels-Alder reactions of N-oxy-pyridine aldehyde and ketone derivatives.

    PubMed

    Landa, Aitor; Richter, Bo; Johansen, Rasmus Lyng; Minkkilä, Anna; Jørgensen, Karl Anker

    2007-01-05

    A general catalytic oxo-hetero-Diels-Alder reaction for pro-chiral aldehyde and ketone N-oxy-pyridines is presented. The catalytic and asymmetric oxo-hetero-Diels-Alder reaction of electron-rich dienes with N-oxy-pyridine-2-carbaldehyde and ketone derivatives, catalyzed by chiral copper(II)-bisoxazoline complexes, gives optically active six-membered oxygen heterocycles in moderate to good yields and with excellent enantioselectivities.

  19. Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase.

    PubMed

    Olson, L P; Luo, J; Almarsson, O; Bruice, T C

    1996-07-30

    The mechanism of oxidation of benzaldehyde to benzoic acid catalyzed by horse liver alcohol dehydrogenase (HLADH) has been investigated using the HLADH structure at 2.1 A resolution with NAD+ and pentafluorobenzyl alcohol in the active site [Ramaswamy et al. (1994) Biochemistry 33,5230-5237]. Constructs for molecular dynamics (MD) investigations with HLADH were obtained by a best-fit superimposition of benzaldehyde or its hydrate on the pentafluorobenzyl alcohol bound to the active site Zn(II)ion. Equilibrium bond lengths, angles, and dihedral parameters for Zn(II) bonding residues His67, Cys46, and Cys174 were obtained from small-molecule X-ray crystal structures and an ab initio-derived parameterization of zinc in HLADH [Ryde, U. (1995) Proteins: Struct., Funct., Genet. 21,40-56]. Dynamic simulations in CHARMM were carried out on the following three constructs to 100 ps: (MD1) enzyme with NAD+, benzaldehyde, and zinc-ligated HO-in the active site; (MD2) enzyme with NAD+ and hydrated benzaldehyde monoanion bound to zinc via the pro-R oxygen, with a proton residing on the pro-S oxygen; and (MD3) enzyme with NAD+ and hydrated benzaldehyde monoanion bound to zinc via the pro-S oxygen, with a proton residing on the pro-R oxygen. Analyses were done of 800 sample conformations taken in the last 40 ps of dynamics. Structures from MD1 and MD3 were used to define the initial spatial arrangements of reactive functionalities for semiempirical PM3 calculations. Using PM3, model systems were calculated of ground states and some transition states for aldehyde hydration, hydride transfer, and subsequent proton shuttling. With benzaldehyde and zinc-bound hydroxide ion in the active site, the oxygen of Zn(II)-OH resided at a distance of 2.8-5.5 A from the aldehyde carbonyl carbon during the dynamics simulation. This may be compared to the PM3 transition state for attack of the Zn(II)-OH oxygen on the benzaldehyde carbonyl carbon, which has an O...C distance of 1.877 A. HLADH

  20. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  1. Mild Deoxygenation of Aromatic Ketones and Aldehydes over Pd/C Using Polymethylhydrosiloxane as the Reducing Agent**

    PubMed Central

    Volkov, Alexey; Gustafson, Karl P J; Tai, Cheuk-Wai; Verho, Oscar; Bäckvall, Jan-E; Adolfsson, Hans

    2015-01-01

    Herein, a practical and mild method for the deoxygenation of a wide range of benzylic aldehydes and ketones is described, which utilizes heterogeneous Pd/C as the catalyst together with the green hydride source, polymethylhydrosiloxane. The developed catalytic protocol is scalable and robust, as exemplified by the deoxygenation of ethyl vanillin, which was performed on a 30 mmol scale in an open-to-air setup using only 0.085 mol % Pd/C catalyst to furnish the corresponding deoxygenated product in 93 % yield within 3 hours at room temperature. Furthermore, the Pd/C catalyst was shown to be recyclable up to 6 times without any observable decrease in efficiency and it exhibited low metal leaching under the reaction conditions. PMID:25728614

  2. Emissions of aldehydes and ketones from a two-stroke engine using ethanol and ethanol-blended gasoline as fuel.

    PubMed

    Magnusson, Roger; Nilsson, Calle; Andersson, Barbro

    2002-04-15

    Besides aliphatic gasoline, ethanol-blended gasoline intended for use in small utility engines was recently introduced on the Swedish market. For small utility engines, little data is available showing the effects of these fuels on exhaust emissions, especially concerning aldehydes and ketones (carbonyls). The objective of the present investigation was to study carbonyl emissions and regulated emissions from a two-stroke chain saw engine using ethanol, gasoline, and ethanol-blended gasoline as fuel (0%, 15%, 50%, 85%, and 100% ethanol). The effects of the ethanol-blending level and mechanical changes of the relative air/fuel ratio, lambda, on exhaust emissions was investigated, both for aliphatic and regular gasoline. Formaldehyde, acetaldehyde, and aromatic aldehydes were the most abundant carbonyls in the exhaust. Acetaldehyde dominated for all ethanol-blended fuels (1.2-12 g/kWh, depending on the fuel and lambda), and formaldehyde dominated for gasoline (0.74-2.3 g/kWh, depending on the type of gasoline and lambda). The main effects of ethanol blending were increased acetaldehyde emissions (30-44 times for pure ethanol), reduced emissions of all other carbonyls exceptformaldehyde and acrolein (which showed a more complex relation to the ethanol content), reduced carbon monoxide (CO) and ntirogen oxide (NO) emissions, and increased hydrocarbon (HC) and nitrogen dixodie (NO2) emissions. The main effects of increasing lambda were increased emissions of carbonyls and nitrogen oxides (NOx) and reduced CO and HC emissions. When the two types of gasoline are considered, benzaldehyde and tolualdehyde could be directly related to the gasoline content of aromatics or olefins, but also acrolein, propanal, crotonaldehyde, and methyl ethyl ketone mainly originated from aromatics or olefins, while the main source for formaldehyde, acetaldehyde, acetone, methacrolein, and butanal was saturated aliphatic hydrocarbons.

  3. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function.

    PubMed

    Rizzo, William B

    2014-03-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  4. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  5. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  6. Catalytic transformation of esters of 1,2-azido alcohols into α-amido ketones.

    PubMed

    Kim, Yongjin; Pak, Han Kyu; Rhee, Young Ho; Park, Jaiwook

    2016-05-05

    The esters of 1,2-azido alcohols were transformed into α-amido ketones without external oxidants through the Ru-catalyzed formation of N-H imines with the liberation of N2 followed by intramolecular migration of the acyl moiety. A wide range of α-amido ketones were obtained, and one-pot transformation into the corresponding oxazoles (or a thiazole) was demonstrated.

  7. Transition-Metal-Free Deacylative Cleavage of Unstrained C(sp(3))-C(sp(2)) Bonds: Cyanide-Free Access to Aryl and Aliphatic Nitriles from Ketones and Aldehydes.

    PubMed

    Ge, Jing-Jie; Yao, Chuan-Zhi; Wang, Mei-Mei; Zheng, Hong-Xing; Kang, Yan-Biao; Li, Yadong

    2016-01-15

    A transition-metal-free deacylative C(sp(3))-C(sp(2)) bond cleavage for the synthetically practical oxidative amination of ketones and aldehydes to nitriles is first described, using cheap and commercially abundant NaNO2 as the oxidant and the nitrogen source. Various nitriles bearing aryl, heteroaryl, alkyl, and alkenyl groups could be smoothly obtained from ketones and aldehydes in high yields, avoiding highly toxic cyanides or transition metals.

  8. Catalyst-controlled dioxygenation of olefins: an approach to peroxides, alcohols, and ketones.

    PubMed

    Xia, Xiao-Feng; Zhu, Su-Li; Gu, Zhen; Wang, Haijun; Li, Wei; Liu, Xiang; Liang, Yong-Min

    2015-06-05

    An efficient catalytic approach for the synthesis of substituted peroxides, alcohols, and ketones through a catalyst-controlled highly selective dioxygenation of olefins has been demonstrated. The reported methods are mild and practical, can be switched by the selection of different catalytic systems, and employ peroxide as an oxidant and a reagent at room temperature.

  9. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    PubMed

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels.

  10. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus.

    PubMed

    Musa, Musa M; Ziegelmann-Fjeld, Karla I; Vieille, Claire; Zeikus, J Gregory; Phillips, Robert S

    2007-01-05

    An enantioselective asymmetric reduction of phenyl ring-containing prochiral ketones to yield the corresponding optically active secondary alcohols was achieved with W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus (W110A TESADH) in Tris buffer using 2-propanol (30%, v/v) as cosolvent and cosubstrate. This concentration of 2-propanol was crucial not only to enhance the solubility of hydrophobic phenyl ring-containing substrates in the aqueous reaction medium, but also to shift the equilibrium in the reduction direction. The resulting alcohols have S-configuration, in agreement with Prelog's rule, in which the nicotinamide-adenine dinucleotide phosphate (NADPH) cofactor transfers its pro-R hydride to the re face of the ketone. A series of phenyl ring-containing ketones, such as 4-phenyl-2-butanone (1a) and 1-phenyl-1,3-butadione (2a), were reduced with good to excellent yields and high enantioselectivities. On the other hand, 1-phenyl-2-propanone (7a) was reduced with lower ee than 2-butanone derivatives. (R)-Alcohols, the anti-Prelog products, were obtained by enantiospecific oxidation of (S)-alcohols through oxidative kinetic resolution of the rac-alcohols using W110A TESADH in Tris buffer/acetone (90:10, v/v).

  11. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone.

    PubMed

    Bulut, Dalia; Duangdee, Nongnaphat; Gröger, Harald; Berkessel, Albrecht; Hummel, Werner

    2016-07-15

    The stereoselective synthesis of chiral 1,3-diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of β-hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a β-hydroxy-β-trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2-trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the β-hydroxy-β-trifluoromethyl ketone was identified after purification and subsequent MALDI-TOF mass spectrometric analysis. As a result, a new NADP(+) -dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the β-hydroxy-β-trifluoromethyl ketone to its corresponding 1,3-diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N- or C-terminal His-tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N-terminal His-tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the β-hydroxy-β-trifluoromethyl ketone.

  12. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciTech Connect

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J. )

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  13. Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitriles with aldehydes: chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles.

    PubMed

    Zhang, Song-Lin; Deng, Zhu-Qin

    2016-07-26

    A copper-catalyzed transfer aldol type reaction of β-hydroxy ketones or nitriles with aldehydes is reported, which enables chemo- and stereoselective access to (E)-α,β-unsaturated ketones and (E)-acrylonitriles. A key step of the in situ copper(i)-promoted retro-aldol reaction of β-hydroxy ketones or nitriles is proposed to generate a reactive Cu(i) enolate or cyanomethyl intermediate, which undergoes ensuing aldol condensation with aldehydes to deliver the products. This reaction uses 1.2 mol% Cu(IPr)Cl (IPr denotes 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) as the catalyst in the presence of 6.0 mol% NaOtBu cocatalyst at room temperature or 70 °C. A range of aryl and heteroaryl aldehydes as well as acrylaldehydes are compatible with many useful functional groups being tolerated. Under the mild and weakly basic conditions, competitive Cannizzaro-type reaction of benzaldehydes and side reactions of base-sensitive functional groups can be effectively suppressed, which show synthetic advantages of this reaction compared to classic aldol reactions. The synthetic potential of this reaction is further demonstrated by the one-step synthesis of biologically active quinolines and 1,8-naphthyridine in excellent yields (up to 91%). Finally, a full catalytic cycle for this reaction has been constructed using DFT computational studies in the context of a retro-aldol/aldol two-stage mechanism. A rather flat reaction energy profile is found indicating that both stages are kinetically facile, which is consistent with the mild reaction conditions.

  14. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    NASA Astrophysics Data System (ADS)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  15. Aldehyde dehydrogenase activity in Lactococcus chungangensis: Application in cream cheese to reduce aldehyde in alcohol metabolism.

    PubMed

    Konkit, Maytiya; Choi, Woo Jin; Kim, Wonyong

    2016-03-01

    Previous studies have shown that the metabolic capability of colonic microflora may be at least as high as that of the liver or higher than that of the whole human body. Aldehyde dehydrogenase (ALDH) is an enzyme produced by these bacteria that can metabolize acetaldehyde, produce from ethanol to acetate. Lactococcus species, which is commonly used as a starter in dairy products, was recently found to possess the ALDH gene, and the activity of this enzyme was determined. In this study, the ALDH activity of Lactococcus chungangensis CAU 28(T) and 11 other type strains in the genus Lactococcus was studied. Only 5 species, 3 of dairy origin (Lactococcus lactis ssp. lactis KCTC 3769(T), Lactococcus lactis ssp. cremoris KCCM 40699(T), and Lactococcus raffinolactis DSM 20443(T)) and 2 of nondairy origin (Lactococcus fujiensis NJ317(T) and L. chungangensis CAU 28(T)), showed ALDH activity and possessed a gene encoding ALDH. All of these strains were capable of making cream cheese. Among the strains, L. chungangensis produced cream cheese that contained the highest level of ALDH and was found to reduce the level of acetaldehyde in the serum of mice. These results predict a promising role for L. chungangensis CAU28(T) to be used in cheese that can be developed as functional food.

  16. Ketone-alcohol hydrogen-transfer equilibria: is the biooxidation of halohydrins blocked?

    PubMed

    Bisogno, Fabricio R; García-Urdiales, Eduardo; Valdés, Haydee; Lavandera, Iván; Kroutil, Wolfgang; Suárez, Dimas; Gotor, Vicente

    2010-09-24

    To ensure the quasi-irreversibility of the oxidation of alcohols coupled with the reduction of ketones in a hydrogen-transfer (HT) fashion, stoichiometric amounts of α-halo carbonyl compounds have been employed as hydrogen acceptors. The reason that these substrates lead to quasi-quantitative conversions has been tacitly attributed to both thermodynamic and kinetic effects. To provide a clear rationale for this behavior, we investigate herein the redox equilibrium of a selected series of ketones and 2-propanol by undertaking a study that combines experimental and theoretical approaches. First, the activity of the (R)-specific alcohol dehydrogenase from Lactobacillus brevis (LBADH) with these substrates was studied. The docking of acetophenone/(R)-1-phenyethanol and α-chloroacetophenone/(S)-2-chloro-1-phenylethanol in the active site of the enzyme confirms that there seems to be no structural reason for the lack of reactivity of halohydrins. This assumption is confirmed by the fact that the corresponding aluminum-catalyzed Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reactions afford similar conversions to those obtained with LBADH, showing that the observed reactivity is independent of the catalyst employed. While the initial rates of the enzymatic reductions and the IR ν(C=O) values contradict the general belief that electron-withdrawing groups increase the electrophilicity of the carbonyl group, the calculated ΔG values of the isodesmic redox transformations of these series of ketones/alcohols with 2-propanol/acetone support the thermodynamic control of the reaction. As a result, a general method to predict the degree of conversion obtained in the HT-reduction process of a given ketone based on the IR absorption band of the carbonyl group is proposed, and a strategy to achieve the HT oxidation of halohydrins is also shown.

  17. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli.

    PubMed

    Fatma, Zia; Jawed, Kamran; Mattam, Anu Jose; Yazdani, Syed Shams

    2016-09-01

    Long chain fatty alcohols have wide application in chemical industries and transportation sector. There is no direct natural reservoir for long chain fatty alcohol production, thus many groups explored metabolic engineering approaches for its microbial production. Escherichia coli has been the major microbial platform for this effort, however, terminal endogenous enzyme responsible for converting fatty aldehydes of chain length C14-C18 to corresponding fatty alcohols is still been elusive. Through our in silico analysis we selected 35 endogenous enzymes of E. coli having potential of converting long chain fatty aldehydes to fatty alcohols and studied their role under in vivo condition. We found that deletion of ybbO gene, which encodes NADP(+) dependent aldehyde reductase, led to >90% reduction in long chain fatty alcohol production. This feature was found to be strain transcending and reinstalling ybbO gene via plasmid retained the ability of mutant to produce long chain fatty alcohols. Enzyme kinetic study revealed that YbbO has wide substrate specificity ranging from C6 to C18 aldehyde, with maximum affinity and efficiency for C18 and C16 chain length aldehyde, respectively. Along with endogenous production of fatty aldehyde via optimized heterologous expression of cyanobaterial acyl-ACP reductase (AAR), YbbO overexpression resulted in 169mg/L of long chain fatty alcohols. Further engineering involving modulation of fatty acid as well as of phospholipid biosynthesis pathway improved fatty alcohol production by 60%. Finally, the engineered strain produced 1989mg/L of long chain fatty alcohol in bioreactor under fed-batch cultivation condition. Our study shows for the first time a predominant role of a single enzyme in production of long chain fatty alcohols from fatty aldehydes as well as of modulation of phospholipid pathway in increasing the fatty alcohol production.

  18. RESEARCH NOTE: INTERFERENCES DUE TO OZONE-SCAVENGING REAGENTS IN THE GC-ECD DETERMINATION OF ALDEHYDES AND KETONS AS THE O-(2,3,4,5,6-PENTAFLUOROBENZYL)OXIMES

    EPA Science Inventory

    Six potential ozone-scavenging reagents were tested for possible interference in the GC-ECD determination of aldehydes and ketones after derivatization with O-(2,3,4,5,6-pentafluorobenzyl)oxylamine (PFBOA). All six-nitrite, cynaide, methanoate (formate), indigo-55'-disulfonate d...

  19. Nickel-catalyzed enantioselective alkylative coupling of alkynes and aldehydes: synthesis of chiral allylic alcohols with tetrasubstituted olefins.

    PubMed

    Yang, Yun; Zhu, Shou-Fei; Zhou, Chang-Yue; Zhou, Qi-Lin

    2008-10-29

    A highly efficient nickel-catalyzed asymmetric alkylative coupling of alkynes, aldehydes, and dimethylzinc has been realized by using bulky spirobiindane phosphoramidite ligands, affording allylic alcohols with a tetrasubstituted olefin functionality in high yields, high regioselectivities, and excellent enantioselectivities.

  20. Facile preparation of oxazole-4-carboxylates and 4-ketones from aldehydes using 3-oxazoline-4-carboxylates as intermediates.

    PubMed

    Murai, Kenichi; Takahara, Yusuke; Matsushita, Tomoyo; Komatsu, Hideyuki; Fujioka, Hiromichi

    2010-08-06

    A novel 2-step synthesis of oxazole-4-carboxylates from aldehydes was developed, which is characterized by the utilization of 3-oxazoline-4-carboxylates as synthetic intermediates. The facile preparation of 4-keto-oxazole derivatives from 3-oxazoline-4-carboxylates based on their interesting reactivity toward Grignard reagents is also described.

  1. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    SciTech Connect

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  2. ALCOHOL OXIDATION - A COMPARATIVE STUDY OF DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alco...

  3. SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...

  4. Reversible Interconversion between Alkanes, Alkenes, Alcohols and Ketones under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Shipp, J.; Hartnett, H. E.; Gould, I. R.; Shock, E.; Williams, L. B.

    2011-12-01

    Many transformation reactions involving hydrocarbons that occur in deep sedimentary systems and determine petroleum compositions occur in the presence of H2O. Hydrothermal transformations of organic material are thought to provide carbon sources for microbes in deep ocean sediments. Hydrothermal conditions may also mimic the conditions where life developed on an early Earth. Nevertheless, much remains to be learned about the mechanisms of hydrothermal organic reactions, including ways in which various reactions are interrelated and how reactions compete with each other. It can be argued that metastable equilibrium states develop over geological timescales and at geochemically relevant temperatures, suggesting that reactions occur under thermodynamic rather than kinetic control. The extent to which reactions are reversible, and how product distributions are determined, are primary tests of the metastable equilibrium model. Seewald (2001, GCA 65, 1641-1664) showed that under hydrothermal conditions and in the presence of a redox buffer, simple alkanes and alkenes undergo oxidation, reduction, and hydration reactions. He proposed a reaction scheme where alkanes interconvert with alkenes, followed by stepwise hydration of alkenes to alcohols, oxidation to ketones, and finally conversion to carboxylic acids, which can undergo decarboxylation. Here we describe experiments that further develop the scope of these functional group interconversions, determine relative reaction kinetics, and provide insight into competing reactions. Hydrothermal experiments were performed at 300°C and 100 MPa in gold capsules for 12 to 144 hours. The reactant structures were based on cyclohexane with one and two methyl groups that served as regio- and stereochemical markers for the reactions. Starting with the alkanes, the observed products include the corresponding alkenes, alcohols, ketones and enones, in support of the Seewald reaction scheme. Our experiments add a branch to this scheme

  5. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Nair, R V; Bennett, G N; Papoutsakis, E T

    1994-01-01

    A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA (J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Appl. Environ. Microbiol. 56:1576-1583, 1990) of Clostridium acetobutylicum ATCC 824 and sequenced. The 2,619-bp aad codes for a 96,517-Da protein. Primer extension analysis identified two transcriptional start sites 83 and 243 bp upstream of the aad start codon. The N-terminal section of AAD shows homology to aldehyde dehydrogenases of bacterial, fungal, mammalian, and plant origin, while the C-terminal section shows homology to alcohol dehydrogenases of bacterial (which includes three clostridial alcohol dehydrogenases) and yeast origin. AAD exhibits considerable amino acid homology (56% identity) over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli. Expression of aad from a plasmid in C. acetobutylicum showed that AAD, which appears as a approximately 96-kDa band in denaturing protein gels, provides elevated activities of NADH-dependent butanol dehydrogenase, NAD-dependent acetaldehyde dehydrogenase and butyraldehyde dehydrogenase, and a small increase in NADH-dependent ethanol dehydrogenase. A 957-bp open reading frame that could potentially encode a 36,704-Da protein was identified upstream of aad. Images PMID:8300540

  6. Kinetics of alpha-hydroxy-alkylperoxyl radicals in oxidation processes. HO2*-initiated oxidation of ketones/aldehydes near the tropopause.

    PubMed

    Hermans, Ive; Müller, Jean-François; Nguyen, Thanh Lam; Jacobs, Pierre A; Peeters, Jozef

    2005-05-19

    A comparative theoretical study is presented on the formation and decomposition of alpha-hydroxy-alkylperoxyl radicals, Q(OH)OO* (Q = RR'C:), important intermediates in the oxidation of several classes of oxygenated organic compounds in atmospheric chemistry, combustion, and liquid-phase autoxidation of hydrocarbons. Detailed potential energy surfaces (PESs) were computed for the HOCH2O2* <==>HO2* + CH2O reaction and its analogues for the alkyl-substituted RCH(OH)OO* and R2C(OH)OO* and the cyclic cyclo-C6H10(OH)OO*. The state-of-the-art ab initio methods G3 and CBS-QB3 and a nearly converged G2M//B3LYP-DFT variant were found to give quasi-identical results. On the basis of the G2M//B3LYP-DFT PES, the kinetics of the approximately equal to 15 kcal/mol endothermal alpha-hydroxy-alkylperoxyl decompositions and of the reverse HO2*+ ketone/aldehyde reactions were evaluated using multiconformer transition state theory. The excellent agreement with the available experimental (kinetic) data validates our methodologies. Contrary to current views, HO2* is found to react as fast with ketones as with aldehydes. The high forward and reverse rates are shown to lead to a fast Q(OH)OO* <==>HO2* + carbonyl quasi-equilibrium. The sizable [Q(OH)OO*]/[carbonyl] ratios predicted for formaldehyde, acetone, and cyclo-hexanone at the low temperatures (below 220 K) of the earth's tropopause are shown to result in efficient removal of these carbonyls through fast subsequent Q(OH)OO* reactions with NO and HO2*. IMAGES model calculations indicate that at the tropical tropopause the HO2*-initiated oxidation of formaldehyde and acetone may account for 30% of the total removal of these major atmospheric carbonyls, thereby also substantially affecting the hydroxyl and hydroperoxyl radical budgets and contributing to the production of formic and acetic acids in the upper troposphere and lower stratosphere. On the other hand, an RRKM-master equation analysis shows that hot alpha

  7. Mutation of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction.

    PubMed

    Patel, Jay M; Musa, Musa M; Rodriguez, Luis; Sutton, Dewey A; Popik, Vladimir V; Phillips, Robert S

    2014-08-21

    Alcohol dehydrogenases (ADHs) are enzymes that catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. We have been studying a thermostable, nicotinamide-adenine dinucleotide phosphate (NADP(+))-dependent, secondary ADH from Thermoanaerobacter ethanolicus (TeSADH). In the current work, we expanded our library of TeSADH and adopted the site-saturation mutagenesis approach in creating a comprehensive mutant library at W110. We used phenylacetone as a model substrate to study the effectiveness of our library because this substrate showed low enantioselectivity in our previous work when reduced using W110A TeSADH. Five of the newly designed W110 mutants reduced phenylacetone at >99.9% ee, and two of these mutants exhibit an enantiomeric ratio (E-value) of over 100. These five mutants also reduced 1-phenyl-2-butanone and 4-phenyl-2-butanone to their corresponding (S)-configured alcohols in >99.9% ee. These new mutants of TeSADH will likely have synthetic utility for reduction of aromatic ketones in the future.

  8. Influence of fermentation conditions on specific activity of the enzymes alcohol and aldehyde dehydrogenase from yeasts.

    PubMed

    Mauricio, J C; Ortega, J M

    1993-01-01

    The effects of anaerobic, semi-aerobic and short aeration fermentation conditions and the addition of ergosterol and oleic acid to musts on the specific activity of alcohol and aldehyde dehydrogenase (ADH and ALDH) from two yeast species, Saccharomyces cerevisiae and Torulaspora delbrueckii, were studied. ADH I biosynthesis only occurred during the first few hours of fermentation. ADH II from S. cerevisiae and ALDH-NADP+ from the two yeast species behaved as constitutive enzymes under all fermentation conditions. ADH II from T. delbrueckii was only synthesized in small amounts, and its activity was always lower than in S. cerevisiae, where it was responsible for the termination of alcoholic fermentation during the steady growth phase.

  9. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 1: aldehydes and ketones

    NASA Astrophysics Data System (ADS)

    Barsanti, Kelley C.; Pankow, James F.

    The term "accretion reactions" is introduced here to refer to the large collection of reactions by which atmospheric organic molecules can add mass, especially as by combination with other organic molecules. A general thermodynamic approach is developed for evaluating the tendency of atmospheric constituents (e.g., C 10 aldehydes) to undergo accretion reactions (e.g., dimerization) and thereby form less volatile molecules (e.g., aldol condensation products) that may subsequently condense and so contribute to the levels of organic particulate matter (OPM) observed in the atmosphere. As an example, gaseous compounds A and B may contribute to OPM formation by the net overall reaction A g+B g=C liq. This reaction may occur according to any of three kinetic schemes. Scheme I: (1) A g+B g=C g (accretion in the gas phase): then (2) C g=C liq (condensation of the accretion product); Scheme II: (1) B g=B liq (condensation of B); then (2) A g+B liq=C liq (heterogeneous accretion reaction of gaseous A with condensed B); or Scheme III: (1) A g+B g=A liq+B liq (condensation of A and B); then (2) A liq+B liq=C liq (accretion of A with B within the PM phase). For all three schemes, the net overall reaction remains A g+B g=C liq. The overall thermodynamic tendency of the net reaction remains the same regardless of the actual predominating kinetic mechanism. If an accretion reaction between two atmospheric components is to produce significant new OPM, appreciable amounts of the product C must form, and the vapor pressure of C must be relatively low so that a significant proportion of C can condense into the multicomponent liquid OPM phase. This study considers the thermodynamics of accretion reactions of atmospheric aldehydes including: (a) hydration, polymerization (i.e., oligomer formation), hemiacetal/acetal formation; and (b) aldol condensation. It was concluded regarding OPM formation that: (1) the reactions in the first group are not thermodynamically favored, either in the

  10. Evaluation of silica gel cartridges coated in situ with acidified 2,4-dinitrophenylhydrazine for sampling aldehydes and ketones in air.

    PubMed

    Tejada, S B

    1986-01-01

    A procedure for coating in situ silica gel in prepacked cartridges with 2,4-dinitrophenylhydrazine (DNPH) acidified with hydrochloric acid is described. The coated cartridge was compared with a validated DNPH impinger method for sampling organic carbonyl compounds (aldehydes and ketones) in diluted automotive exhaust emissions and in ambient air for subsequent analysis of the DNPH derivatives by high performance liquid chromatography. Qualitative and quantitative data are presented that show that the two sampling devices are equivalent. The coated cartridge is ideal for long-term sampling of carbonyls at sub to low parts-per-billion level in ambient air or for short-term sampling of carbonyls at low ppb to parts-per-million level in diluted automotive exhaust emissions. An unknown degradation product of acrolein has been tentatively identified as x-acrolein. The disappearance of acrolein in the analytical sample matrix correlates quantitatively almost on a mole for mole basis with the growth of x-acrolein. The sum of the concentration of acrolein and x-acrolein appears to be invariant with time.

  11. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    PubMed Central

    Nicholas, H. B.; Persson, B.; Jörnvall, H.; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same composition. This level of similarity fails to support the suggested gene fusion. PMID:8580855

  12. Catalyst free synthesis of α-fluoro-β-hydroxy ketones/α-fluoro-ynols via electrophilic fluorination of tertiary propargyl alcohols using Selectfluor™ (F-TEDA-BF4).

    PubMed

    Naveen, Naganaboina; Balamurugan, Rengarajan

    2017-03-01

    A facile method for the synthesis of α-fluoro-β-hydroxy ketones/α-fluoro-ynols from tertiary propargyl alcohols under electrophilic fluorination conditions using F-TEDA-BF4 has been presented. The products bear pharmaceutically important α-fluoro ketone, gem-diaryl and fluorohydrin moieties in the same molecule. Interestingly, this catalyst free protocol results in monofluorination.

  13. Deprotonation and reductive addition reactions of hypervalent aluminium dihydride compounds containing substituted pyrrolyl ligands with phenols, ketones, and aldehydes.

    PubMed

    Chen, I-Chun; Ho, Shi-Mau; Chen, Ya-Chi; Lin, Che-Yu; Hu, Ching-Han; Tu, Cheng-Yi; Datta, Amitabha; Huang, Jui-Hsien; Lin, Chia-Her

    2009-10-28

    The reactivities of [C4H2N(CH2NMe2)2]AlH2 (1) with primary and secondary amines, phenols, ketones, and phenyl isothiocyanate were examined. Reactions of 1 with one or two equivalents of 2,6-dichloroaniline in methylene chloride generated [C4H2N(CH2NMe2)2]AlH(NHC6H3-2,6-Cl2) (2) and [C4H2N(CH2NMe2)2]Al(NHC6H3-2,6-Cl2)2 (3), respectively, following hydrogen elimination. Similarly, the reactions of 1 with one or two equivalents of carbazole afforded [C4H2N(CH2NMe2)2]AlH(NC12H8) (4) or [C4H2N(CH2NMe2)2]Al(NC12H8)2 (5) by deprotonating the acidic N-H of carbazole. Reacting 1 with one equivalent of 2,6-diisopropylphenol in diethyl ether formed an aluminium phenoxo compound [C4H2N(CH2NMe2)2]AlH(OC6H3-2,6-iPr2) (6), by deprotonation of phenol as well with the elimination of one equivalent hydrogen. Further reaction of 6 with one equivalent of 2,4,6-trimethylacetophenone in methylene chloride generated [C4H2N(CH2NMe2)2]Al(OC6H3-2,6-iPr2)[OC(=CH2)(C6H2-2,4,6-Me3)] (7) by deprotonating the methyl proton of the acetophenone. Similar deprotonation occurred when 1 reacted with two equivalents of 2,4,6-trimethylacetophenone in methylene chloride to generate [C4H2N(CH2NMe2)2]Al[OC(=CH2)(C6H2-2,4,6-Me3)]2 (8). Compounds [C4H2N(CH2NMe2)2]Al(OCHPh2)2 (9), and [C4H2N(CH2NMe2)2]Al(SCHNPh)2 (10) could also be obtained by reacting 1 with two equivalents of benzophenone and phenyl isothiocyanate, respectively through hydroalumination. The 1H NMR spectra of 10 showed broad signals for the CH2N and NMe2 groups, which represent dynamical fluctuations of the molecules in solution state. The estimated energy barrier (DeltaG(c)(double dagger)) from the coalescence temperature for the fluctuation was estimated at 17.1 Kcal mol(-1). The solid-state structures of compounds 2, 3, 5, 7, 9, and 10 have been determined.

  14. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level.

    PubMed

    Shibahara, Fumitoshi; Krische, Michael J

    2008-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation employing isopropanol as terminal reductant, π-unsaturated compounds (1,3-dienes, allenes, 1,3-enynes and alkynes) reductively couple to aldehydes to furnish products of carbonyl addition. In the absence of isopropanol, π-unsaturated compounds couple directly from the alcohol oxidation level to form identical products of carbonyl addition. Such "alcohol-unsaturate C-C couplings" enable carbonyl allylation, propargylation and vinylation from the alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Thus, direct catalytic C-H functionalization of alcohols at the carbinol carbon is achieved.

  15. Monitoring cytotoxic potentials of furfuryl alcohol and 2-furyl methyl ketone in mice.

    PubMed

    Sujatha, P S

    2008-01-01

    Furfuryl alcohol (FA) and 2-furyl methyl ketone (2FMK) are two dietary furans with wide industrial applications and also found in a variety of food items. In a mouse test system, the mutagenicity of these two compounds after five days of exposure has been reported. In the present study histopathological changes and biochemical alterations after a period of 5-90 days of exposure have been evaluated in target organs like liver and kidney. Hepatotoxicity in the form of pycnosis, vacuolation and focal necrosis was observed after 60 and 90 days of treatment with 2000 and 4000 ppm of FA. Kidney showed damage to tubular epithelium only after treatment with 4000 ppm of FA. 2-FMK did not show any noticeable damage to liver or kidney. Significant variations in total protein content and activity of aspartate and alanine aminotransferase (ASAT and ALAT) were observed in both liver and kidney after longer exposure to both the furans. There was an increased expression of two proteins of 92 and 94 KD in the liver of treated animals irrespective of the concentration or duration. It is apparent from the present study that dietary contamination with furans has definite hepatic and renal toxicity potentials in man.

  16. Unexpected ring-opening reactions of aziridines with aldehydes catalyzed by nucleophilic carbenes under aerobic conditions.

    PubMed

    Liu, Yan-Kai; Li, Rui; Yue, Lei; Li, Bang-Jing; Chen, Ying-Chun; Wu, Yong; Ding, Li-Sheng

    2006-04-13

    [reaction: see text] The chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene was investigated under aerobic conditions. Unexpected carboxylates of 1,2-amino alcohols from the corresponding aldehydes, rather than the acyl anion ring-opened beta-amino ketones, were exclusively obtained. A plausible mechanism for this unprecedented carbene-mediated reaction was also proposed.

  17. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    PubMed Central

    Xiang, Yizhi; Kruse, Norbert

    2016-01-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson–Schulz–Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies. PMID:27708269

  18. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    NASA Astrophysics Data System (ADS)

    Xiang, Yizhi; Kruse, Norbert

    2016-10-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ~97% can be n-aldehydes. While the product slate contains ~60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  19. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins.

    PubMed

    Xiang, Yizhi; Kruse, Norbert

    2016-10-06

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  20. Fe(OTf)3-catalyzed α-benzylation of aryl methyl ketones with electrophilic secondary and aryl alcohols.

    PubMed

    Pan, Xiaojuan; Li, Minghao; Gu, Yanlong

    2014-01-01

    Acid-catalyzed Friedel-Crafts alkylation of 1,3-dicarbonyl compounds with electrophilic alcohols, is known to be an effective C-C bond forming reaction. However, until now, this reaction has not been amenable for α-alkylation of aryl methyl ketones because of the notoriously low nucleophilicities of these compounds. Therefore, α-alkylation of aryl methyl ketone relies on precious metal catalysts and also, the use of primary alcohols is mandatory. In this study, we found that a system composed of a Fe(OTf)3 catalyst and chlorobenzene solvent is sufficient to promote the title Friedel-Crafts reaction by using benzhydrols as electrophiles. 3,4-Dihydro-9-(2-hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-xanthen-1(2H)-one was also applicable as an electrophile in this type of benzylation reaction. On the basis of this result, a three-component reaction of salicylaldehyde, dimedone, and aryl methyl ketone was also developed, and this provided an efficient way for the synthesis of densely substituted 4H-chromene derivatives.

  1. A ketone/alcohol polymer for cycle of electrolytic hydrogen-fixing with water and releasing under mild conditions

    NASA Astrophysics Data System (ADS)

    Kato, Ryo; Yoshimasa, Keisuke; Egashira, Tatsuya; Oya, Takahiro; Oyaizu, Kenichi; Nishide, Hiroyuki

    2016-09-01

    Finding a safe and efficient carrier of hydrogen is a major challenge. Recently, hydrogenated organic compounds have been studied as hydrogen storage materials because of their ability to stably and reversibly store hydrogen by forming chemical bonds; however, these compounds often suffer from safety issues and are usually hydrogenated with hydrogen at high pressure and/or temperature. Here we present a ketone (fluorenone) polymer that can be moulded as a plastic sheet and fixes hydrogen via a simple electrolytic hydrogenation at -1.5 V (versus Ag/AgCl) in water at room temperature. The hydrogenated alcohol derivative (the fluorenol polymer) reversibly releases hydrogen by heating (80 °C) in the presence of an aqueous iridium catalyst. Both the use of a ketone polymer and the efficient hydrogen fixing with water as a proton source are completely different from other (de)hydrogenated compounds and hydrogenation processes. The easy handling and mouldable polymers could suggest a pocketable hydrogen carrier.

  2. A practical catalytic asymmetric addition of alkyl groups to ketones.

    PubMed

    García, Celina; LaRochelle, Lynne K; Walsh, Patrick J

    2002-09-18

    Many catalysts will promote the asymmetric addition of alkylzinc reagents to aldehydes. In contrast, there are no reports of additions to ketones that are both general and highly enantioselective. We describe herein a practical catalytic asymmetric addition of ethyl groups to ketones. The catalyst is derived from reaction of camphor sulfonyl chloride and trans-1,2-diaminocyclohexane. The resulting diketone is reduced with NaBH4 to give the C2-symmetric exo diastereomer. Use of this ligand with titanium tetraisopropoxide and dialkylzinc at room temperature results in enantioselective addition of the alkyl group to the ketone. The resulting tertiary alcohols are isolated with high enantiomeric excess (all cases give greater than 87% ee, except one). The reaction has been run with 37 mmol (5 g) 3-methylacetophenone and 2 mol % catalyst to afford 73% yield of the resulting tertiary alcohol with 99% ee.

  3. Enantioselective Diels-Alder reaction of 1,2-dihydropyridines with aldehydes using β-amino alcohol organocatalyst.

    PubMed

    Kohari, Yoshihito; Okuyama, Yuko; Kwon, Eunsang; Furuyama, Taniyuki; Kobayashi, Nagao; Otuki, Teppei; Kumagai, Jun; Seki, Chigusa; Uwai, Koji; Dai, Gang; Iwasa, Tatsuo; Nakano, Hiroto

    2014-10-17

    The enantioselective Diels-Alder reaction of 1,2-dihydropyridines with aldehydes using an easily prepared optically active β-amino alcohol catalyst was found to provide optically active isoquinuclidines, an efficient synthetic intermediate of pharmaceutically important compounds such as oseltamivir phosphate, with a satisfactory chemical yield and enantioselectivity (up to 96%, up to 98% ee). In addition, the obtained highly optically pure isoquinuclidine was easily converted to an optically active piperidine having four successive carbon centers.

  4. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    PubMed

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells.

  5. Development of a headspace GC/MS analysis for carbonyl compounds (aldehydes and ketones) in household products after derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine.

    PubMed

    Sugaya, Naeko; Sakurai, Katsumi; Nakagawa, Tomoo; Onda, Nobuhiko; Onodera, Sukeo; Morita, Masatoshi; Tezuka, Masakatsu

    2004-05-01

    Carbonyl compounds (aldehydes and ketones) are suspected to be among the chemical compounds responsible for Sick Building Syndrome and Multiple Chemical Sensitivities. A headspace gas chromatography/mass spectrometry (GC/MS) analysis for these compounds was developed using derivatization of the compounds into volatile derivatives with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA). For GC/MS detection, two ionization modes including electron impact ionization (EI) and negative chemical ionization (NCI) were compared. The NCI mode seemed to be better because of its higher selectivity and sensitivity. This headspace GC/MS (NCI mode) was employed as analysis for aldehydes and ketones in materials (fiber products, adhesives, and printed materials). Formaldehyde was detected in the range of N.D. (not detected) to 39 microg/g; acetaldehyde, N.D. to 4.1 microg/g; propionaldehyde, N.D. to 1.0 microg/g; n-butyraldehyde, N.D. to 0.10 microg/g; and acetone, N.D. to 3.1 microg/g in the samples analyzed.

  6. Mechanism of the addition of nonenolizable aldehydes and ketones to (Di)metallenes (R(2)X=YR(2), X = Si, Ge Y = C, Si, Ge): a density functional and multiconfigurational perturbation theory study.

    PubMed

    Mosey, Nicholas J; Baines, Kim M; Woo, Tom K

    2002-11-06

    The mechanism of the addition of nonenolizable aldehydes and ketones to group 14 (di)metallenes has been examined through a theoretical study of the addition of formaldehyde to Si=C, Ge=C, Si=Si, Si=Ge, and Ge=Ge bonds at the B3LYP/6-311++G(d,p) and CAS-MCQDPT2/6-31++G(d,p) levels of theory. The reaction pathways located can be grouped as either involving the formation of singlet diradical or zwitterionic intermediates or as concerted processes. Within each group of reaction pathways, several different mechanisms have been located, with not all mechanisms being available to all of the (di)metallenes. It was found that for reactions in which a Si-O bond results (i.e., addition to Si=C, Si=Si, and Si=Ge) both diradical and zwitterionic intermediates are possible; however, the formation of diradical intermediates was not found for reactions that result in the formation of a Ge-O bond (addition to Ge=C and Ge=Ge). The underlying cause of this pathway selectivity is examined, as well as the effect of solvent on the relative energies of the pathways. The results of the study shed light on the cause of experimentally obtained results regarding the mechanism of the reaction of (di)metallenes with nonenolizable ketones and aldehydes.

  7. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    PubMed

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in total, with 21-28 replacements between any pair of the alpha/beta/gamma chains. These values, compared with those from species differences between the corresponding human and horse enzymes, suggest that isozyme developments in the class I enzyme resulted from separate gene duplications after the divergence of the human and equine evolutionary lines. All subunits exhibit some unique properties, with slightly closer similarity between the human gamma and horse enzyme subunits and somewhat greater deviations towards the human alpha subunit. Differences are large also in segments close to the active site zinc ligands and other functionally important positions. Species differences are distributed roughly equally between the two types of domain in the subunit, whereas isozyme differences are considerably more common in the catalytic than in the coenzyme-binding domain. These facts illustrate a functional divergence among the isozymes but otherwise similar changes during evolution. Polymorphic forms of beta and gamma subunits are characterized by single replacements at one and two positions, respectively, explaining known deviating properties. Class II and class III subunits are considerably more divergent. Their homology with class I isozymes exhibits only 60-65% positional identity. Hence, they reflect further steps towards the development of new enzymes, with variations well above the horse/human species levels, in contrast to the class I forms. Again, functionally important residues are affected, and patterns resembling those previously established for the divergently related

  8. Vertical transport of steroid alcohols and ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Gagosian, Robert B.; Smith, Steven O.; Nigrelli, Gale E.

    1982-07-01

    The vertical flux and free steroid alcohol (sterol) and ketone composition of particulate material was determined using sediment traps deployed at 389, 988, 3755 and 5068 m at a station in the equatorial North Atlantic, PARFLUX E. Cholest-5-en-3β-ol (cholesterol) was found to be the dominant sterol in all the traps. This compound had a maximum flux at 988 m, accounting for more than 90% of the sterols at this depth. Inputs from mesopelagic Zooplankton populations living in or migrating to depths between the 389 and 988 m traps appear to be responsible for this distribution. The deeper two traps exhibited an increased flux of phytosterols relative to cholesterol, probably due to (a) the incorporation of labile phytoplankton remains in fecal pellets and rapid transport into the deep sea and (b) differential dissolution of heterogeneous large particles. A maximum of 5-22% of the sterols produced in the euphotic zone were present in the 389 m trap. This value drops to less than 1% for the 5068 m trap, 200 m above the sediment surface. In general steroid ketone fluxes gradually decreased with depth. Δ4-Stenones were found in greater abundance than their saturated counterparts. Cholest-4-en-3-one was the major steroid ketone detected in all the traps. A five-fold increase with depth in the cholest-4-en-3-one to cholesterol ratio is most likely due to microbial oxidation of sterols to steroid ketones, or higher Δ4-stenone inputs relative to sterols from organisms.

  9. Metabolic basis of ethylene glycol monobutyl ether (2-butoxyethanol) toxicity: role of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Ghanayem, B.I.; Burka, L.T.; Matthews, H.B.

    1987-07-01

    2-Butoxyethanol (BE) is a massively produced glycol ether of which more than 230 million pounds was produced in the United States in 1983. It is extensively used in aerosols and cleaning agents intended for household use. This creates a high potential for human exposure during its manufacturing and use. A single exposure of rats to BE causes severe hemolytic anemia accompanied by secondary hemoglobinuria as well as liver and kidney damage. Butoxyacetic acid (BAA) was earlier identified as a urinary metabolite of BE. In addition, we have recently identified two additional urinary metabolites of BE, namely, BE-glucuronide and BE-sulfate conjugates. The current studies were undertaken to investigate the metabolic basis of BE-induced hematotoxicity in male F344 rats. Treatment of rats with pyrazole (alcohol dehydrogenase inhibitor) protected rats against BE-induced hematotoxicity and inhibited BE metabolism to BAA. Pyrazole inhibition of BE metabolism to BAA was accompanied by increased BE metabolism to BE-glucuronide and BE-sulfate as determined by quantitative high-performance liquid chromatography analysis of BE metabolites in urine. There was approximately a 10-fold decrease in the ratio of BAA to BE-glucuronide + BE-sulfate in the urine of rats treated with pyrazole + BE compared to rats treated with BE alone. Pretreatment of rats with cyanamide (aldehyde dehydrogenase inhibitor) also significantly protected rats against BE-induced hematotoxicity and modified BE metabolism in a manner similar to that caused by pyrazole. Administration of equimolar doses of BE, the metabolic intermediate butoxyacetaldehyde, or the ultimate metabolite BAA caused similar hematotoxic effects. Cyanamide also protected rats against butoxyacetaldehyde-induced hematotoxicity.

  10. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase.

    PubMed

    Lowe, Edward D; Gao, Guang-Yao; Johnson, Louise N; Keung, Wing Ming

    2008-08-14

    The ALDH2*2 gene encoding the inactive variant form of mitochondrial aldehyde dehydrogenase (ALDH2) protects nearly all carriers of this gene from alcoholism. Inhibition of ALDH2 has hence become a possible strategy to treat alcoholism. The natural product 7-O-glucosyl-4'-hydroxyisoflavone (daidzin), isolated from the kudzu vine ( Peruraria lobata), is a specific inhibitor of ALDH2 and suppresses ethanol consumption. Daidzin is the active principle in a herbal remedy for "alcohol addiction" and provides a lead for the design of improved ALDH2. The structure of daidzin/ALDH2 in complex at 2.4 A resolution shows the isoflavone moiety of daidzin binding close to the aldehyde substrate-binding site in a hydrophobic cleft and the glucosyl function binding to a hydrophobic patch immediately outside the isoflavone-binding pocket. These observations provide an explanation for both the specificity and affinity of daidzin (IC50 =80 nM) and the affinity of analogues with different substituents at the glucosyl position.

  11. Microbial metabolism of amino alcohols. Metabolism of ethanolamine and 1-aminopropan-2-ol in species of Erwinia and the roles of amino alcohol kinase and amino alcohol O-phosphate phospho-lyase in aldehyde formation

    PubMed Central

    Jones, Alan; Faulkner, Anne; Turner, John M.

    1973-01-01

    1. Growth of Erwinia carotovora N.C.P.P.B. 1280 on media containing 1-aminopropan-2-ol compounds or ethanolamine as the sole N source resulted in the excretion of propionaldehyde or acetaldehyde respectively. The inclusion of (NH4)2SO4 in media prevented aldehyde formation. 2. Growth, microrespirometric and enzymic evidence implicated amino alcohol O-phosphates as aldehyde precursors. An inducibly formed ATP–amino alcohol phosphotransferase was partially purified and found to be markedly stimulated by ADP, unaffected by NH4+ ions and more active with ethanolamine than with 1-aminopropan-2-ol compounds. Amino alcohol O-phosphates were deaminated by an inducible phospho-lyase to give the corresponding aldehydes. This enzyme, separated from the kinase during purification, was more active with ethanolamine O-phosphate than with 1-aminopropan-2-ol O-phosphates. Activity of the phospho-lyase was unaffected by a number of possible effectors, including NH4+ ions, but its formation was repressed by the addition of (NH4)2SO4 to growth media. 3. E. carotovora was unable to grow with ethanolamine or 1-aminopropan-2-ol compounds as sources of C, the production of aldehydes during utilization as N sources being attributable to the inability of the microbe to synthesize aldehyde dehydrogenase. 4. Of seven additional strains of Erwinia examined similar results were obtained only with Erwinia ananas (N.C.P.P.B. 441) and Erwinia milletiae (N.C.P.P.B. 955). PMID:4357716

  12. Room-Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    PubMed

    El-Demellawi, Jehad K; Holt, Christopher R; Abou-Hamad, Edy; Al-Talla, Zeyad A; Saih, Youssef; Chaieb, Sahraoui

    2015-07-01

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from biolabeling to hydrogen production, their reactivities with their solvents and their catalytic properties remain still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g., isopropanol) into ketones and hydrogen. This catalytic reaction was monitored by gas chromatography, pH measurements, mass spectroscopy, and solid-state NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their reactivity in solvents in general, as well as being candidates in catalysis.

  13. Substrate Specificity and Subcellular Localization of the Aldehyde-Alcohol Redox-coupling Reaction in Carp Cones*

    PubMed Central

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-01-01

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment. PMID:24217249

  14. Differential Contributions of Alcohol and Nicotine-Derived Nitrosamine Ketone (NNK) to White Matter Pathology in the Adolescent Rat Brain

    PubMed Central

    Tong, Ming; Yu, Rosa; Silbermann, Elizabeth; Zabala, Valerie; Deochand, Chetram; de la Monte, Suzanne M.

    2015-01-01

    Aim Epidemiologic studies have demonstrated high rates of smoking among alcoholics, and neuroimaging studies have detected white matter atrophy and degeneration in both smokers and individuals with alcohol-related brain disease (ARBD). These findings suggest that tobacco smoke exposure may be a co-factor in ARBD. The present study examines the differential and additive effects of tobacco-specific nitrosamine (NNK) and ethanol exposures on the structural and functional integrity of white matter in an experimental model. Methods Adolescent Long Evans rats were fed liquid diets containing 0 or 26% ethanol for 8 weeks. In weeks 3–8, rats were treated with nicotine-derived nitrosamine ketone (NNK) (2 mg/kg, 3×/week) or saline by i.p. injection. In weeks 7–8, the ethanol group was binge-administered ethanol (2 g/kg; 3×/week). Results Ethanol, NNK and ethanol + NNK caused striking degenerative abnormalities in white matter myelin and axons, with accompanying reductions in myelin-associated glycoprotein expression. Quantitative RT-PCR targeted array and heatmap analyses demonstrated that ethanol modestly increased, whereas ethanol + NNK sharply increased expression of immature and mature oligodendroglial genes, and that NNK increased immature but inhibited mature oligodendroglial genes. In addition, NNK modulated expression of neuroglial genes in favor of growth cone collapse and synaptic disconnection. Ethanol- and NNK-associated increases in FOXO1, FOXO4 and NKX2-2 transcription factor gene expression could reflect compensatory responses to brain insulin resistance in this model. Conclusion Alcohol and tobacco exposures promote ARBD by impairing myelin synthesis, maturation and integrity via distinct but overlapping mechanisms. Public health measures to reduce ARBD should target both alcohol and tobacco abuses. PMID:26373813

  15. Genetic polymorphisms of alcohol dehydrogense-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers.

    PubMed

    Yokoyama, Akira; Mizukami, Takeshi; Yokoyama, Tetsuji

    2015-01-01

    Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) modulate exposure levels to ethanol/acetaldehyde. Endoscopic screening of 6,014 Japanese alcoholics yielded high detection rates of esophageal squamous cell carcinoma (SCC; 4.1%) and head and neck SCC (1.0%). The risks of upper aerodigestive tract SCC/dysplasia, especially of multiple SCC/dysplasia, were increased in a multiplicative fashion by the presence of a combination of slow-metabolizing ADH1B*1/*1 and inactive heterozygous ALDH2*1/*2 because of prolonged exposure to higher concentrations of ethanol/acetaldehyde. A questionnaire asking about current and past facial flushing after drinking a glass (≈180 mL) of beer is a reliable tool for detecting the presence of inactive ALDH2. We invented a health-risk appraisal (HRA) model including the flushing questionnaire and drinking, smoking, and dietary habits. Esophageal SCC was detected at a high rate by endoscopic mass-screening in high HRA score persons. A total of 5.0% of 4,879 alcoholics had a history of (4.0%) or newly diagnosed (1.0%) gastric cancer. Their high frequency of a history of gastric cancer is partly explained by gastrectomy being a risk factor for alcoholism because of altered ethanol metabolism, e.g., by blood ethanol level overshooting. The combination of H. pylori-associated atrophic gastritis and ALDH2*1/*2 showed the greatest risk of gastric cancer in alcoholics. High detection rates of advanced colorectal adenoma/carcinoma were found in alcoholics, 15.7% of 744 immunochemical fecal occult blood test (IFOBT)-negative alcoholics and 31.5% of the 393 IFOBT-positive alcoholics. Macrocytosis with an MCV≥106 fl increased the risk of neoplasia in the entire aerodigestive tract of alcoholics, suggesting that poor nutrition as well as ethanol/acetaldehyde exposure plays an important role in neoplasia.

  16. Inhibition of human alcohol and aldehyde dehydrogenases by cimetidine and assessment of its effects on ethanol metabolism.

    PubMed

    Lai, Ching-Long; Li, Yeung-Pin; Liu, Chiu-Ming; Hsieh, Hsiu-Shan; Yin, Shih-Jiun

    2013-02-25

    Previous studies have reported that cimetidine, an H2-receptor antagonist used to treat gastric and duodenal ulcers, can inhibit alcohol dehydrogenases (ADHs) and ethanol metabolism. Human alcohol dehydrogenases and aldehyde dehydrogenases (ALDHs), the principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition by cimetidine of alcohol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and aldehyde oxidation by ALDH1A1 and ALDH2 at pH 7.5 and a cytosolic NAD(+) concentration. Cimetidine acted as competitive or noncompetitive inhibitors for the ADH and ALDH isozymes/allozymes with near mM inhibition constants. The metabolic interactions between cimetidine and ethanol/acetaldehyde were assessed by computer simulation using the inhibition equations and the determined kinetic constants. At therapeutic drug levels (0.015 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μM) in target tissues, cimetidine could weakly inhibit (<5%) the activities of ADH1B2 and ADH1B3 in liver, ADH2 in liver and small intestine, ADH4 in stomach, and ALDH1A1 in the three tissues, but not significantly affect ADH1A, ADH1B1, ADH1C1/2, or ALDH2. At higher drug levels, which may accumulate in cells (0.2 mM), the activities of the weakly-inhibited enzymes may be decreased more significantly. The quantitative effects of cimetidine on metabolism of ethanol and other physiological substrates of ADHs need further investigation.

  17. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  18. Folate, alcohol, and aldehyde dehydrogenase 2 polymorphism and the risk of oral and pharyngeal cancer in Japanese.

    PubMed

    Matsuo, Keitaro; Rossi, Marta; Negri, Eva; Oze, Isao; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Yatabe, Yasushi; Hasegawa, Yasuhisa; Tanaka, Hideo; Tajima, Kazuo; La Vecchia, Carlo

    2012-03-01

    Folate consumption is inversely associated with the risk of oral and pharyngeal cancer (OPC) and potentially interacts with alcohol drinking in the risk of OPC. Aldehyde dehydrogenase 2 (ALDH2) gene polymorphism is known to interact with alcohol consumption. The aim of this study was to investigate potential interaction between folate, alcohol drinking, and ALDH2 polymorphism in the risk of OPC in a Japanese population. The study group comprised 409 head and neck cancer cases and 1227 age-matched and sex-matched noncancer controls; of these, 251 cases and 759 controls were evaluated for ALDH rs671 polymorphism. Associations were assessed by odds ratios and 95% confidence intervals in multiple logistic regression models. We observed an inverse association between folate consumption and OPC risk. The odds ratio for high folate intake was 0.53 (95% confidence interval: 0.36-0.77) relative to low intake (P trend=0.003). This association was consistent across strata of sex, age, smoking, and ALDH2 genotypes. Interaction between folate consumption, drinking, and ALDH2 genotype was remarkable (three-way interaction, P<0.001). We observed significant interaction among folate, drinking, and ALDH2 genotype in the Japanese population.

  19. Silver(I) and copper(I) cocatalyzed tandem reaction of 2-alkynylbenzaldoximes with aldehydes or alcohols: approach to 4-carboxylated isoquinolines.

    PubMed

    Wang, Xianbo; Yu, Xingxin

    2014-09-05

    A novel and efficient route for the preparation of 4-carboxylated isoquinolines via a Ag(I) and Cu(I) cocatalyzed tandem reaction of 2-alkynylbenzaldoximes with aldehydes or alcohols in moderate to good yields is described. The reaction proceeds smoothly to produce C-N and C-O bonds in a one-pot procedure with structural complexity and molecular diversity.

  20. [Effect of Bacillus natto-fermented product (BIOZYME) on blood alcohol, aldehyde concentrations after whisky drinking in human volunteers, and acute toxicity of acetaldehyde in mice].

    PubMed

    Sumi, H; Yatagai, C; Wada, H; Yoshida, E; Maruyama, M

    1995-04-01

    Effects of Bacillus natto-fermented product (BIOZYME) on blood alcohol and aldehyde concentrations after drinking whisky (corresponding to 30-65 ml ethanol) were studied in 21 healthy volunteers. When 100 ml of BIOZYME was orally administrated to the volunteers before drinking whisky, the time delay of both blood factors to attain maximum concentrations were observed. The maximum decrease in blood alcohol and aldehyde concentrations were about 23% and 45% (p < 0.005), respectively, at 1 hr after drinking whisky. The aldehyde lowering effect of BIOZYME was continued for at least 4 hr after whisky drinking. Concentration of the breath alcohol was also sharply decreased by BIOZYME administration. The breath alcohol concentration in the administered group (0.18 +/- 0.11 mg/l) was found to be lowered about 44% than that of the control group (0.32 +/- 0.11 mg/l) (p < 0.0005, n = 21), at 1 hr after drinking whisky. In acute toxicity experiments of aldehyde in mice (12 mmol AcH/mg), BIOZYME showed the survival effect as with alpha-D-Ala (134% increase of the living, at 40 min after i.p. administration) (p < 0.005, n = 22). These findings reveal the Bacillus natto produced BIOZYME as a reasonable, safety and useful anti-hangover agent.

  1. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    DOE PAGES

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; ...

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important componentmore » in making biofuels production from lignocellulosic biomass feasible.« less

  2. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    SciTech Connect

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important component in making biofuels production from lignocellulosic biomass feasible.

  3. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  4. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    NASA Astrophysics Data System (ADS)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi

    2017-01-01

    The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO2). This system demonstrated a higher catalytic property than Au/CeO2 and Pd/CeO2 under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH3ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO2 or ZrO2) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO2 photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  5. Differential Sphingolipid and Phospholipid Profiles in Alcohol and Nicotine-Derived Nitrosamine Ketone (NNK) Associated White Matter Degeneration

    PubMed Central

    Yalcin, Emine B.; Nunez, Kavin; Tong, Ming; de la Monte, Suzanne M.

    2015-01-01

    Background Alcohol-mediated neurodegeneration is associated with white matter (WM) atrophy due to targeting of myelin and oligodendrocytes. However, variability in disease severity suggests co-factors contribute to WM degeneration. We examined the potential co-factor role of the tobacco-specific nitrosamine, nicotine-derived nitrosamine ketone (NNK), since smoking causes WM atrophy and most heavy drinkers consume tobacco products. Methods This 8-week study of Long Evans rats had 4 treatment groups: control; NNK-2 mg/kg, 3×/wk in Wks 3–8; ethanol (chronic-26% caloric + binge-2 g/kg, 3×/week in Wks 7–8); and ethanol+NNK. Exposure effects on WM lipid biochemical profiles and in situ distributions were examined using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and tandem mass spectrometry. Results NNK mainly caused WM fiber degeneration and fiber loss, ethanol caused demyelination, and dual exposures had additive effects. Ethanol and ethanol+NNK decreased WM (including corpus callosum) and/or gray matter (hypothalamus, cortex, medial temporal) levels of several phosphatidylserine (PS), phosphatidylinositol (PI) and sphingolipid (sulfatide; ST) species, while NNK increased or had minimal effect on these lipids. Ethanol+NNK had broader and larger inhibitory effects on phospholipids and sulfatides than ethanol or NNK alone. Principle component analysis clustered control with NNK, and ethanol with ethanol+NNK groups, highlighting the independent ethanol-rather than NNK-driven responses. Conclusion Chronic ethanol exposures decreased several phospholipid and sphingolipid species in brain, while concomitant NNK exposures exacerbated these effects. These findings support our hypothesis that tobacco smoking is a pathogenic co-factor in alcohol-mediated WM degeneration. PMID:26756797

  6. Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2013-10-01

    Within the aqueous atmospheric environment free radical reactions are an important degradation process for organic compounds. Nevertheless, non-radical oxidants like hydrogen peroxide and ozone also contribute to the degradation and conversion of this substance group (Tilgner und Herrmann, 2010). In this work kinetic investigations of non-radical reactions were conducted using UV/Vis spectroscopy (dual-beam spectrophotometer and Stopped Flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acids as well as methacrolein (MACR) and methyl vinyl ketone (MVK) towards H2O2 and ozone. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH· ~ 109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated turnovers change the picture to more important H2O2 reactions especially when compared to the nitrate radical. For some reactions also mechanistic suggestions are given.

  7. Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2014-05-01

    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH • ~109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given.

  8. Raspberry Ketone

    MedlinePlus

    Raspberry ketone is a chemical from red raspberries, as well as kiwifruit, peaches, grapes, apples, other berries, vegetables such as rhubarb, and the bark of yew, maple, and pine trees. People take raspberry ketone by mouth for ...

  9. Titanium superoxide--a stable recyclable heterogeneous catalyst for oxidative esterification of aldehydes with alkylarenes or alcohols using TBHP as an oxidant.

    PubMed

    Dey, Soumen; Gadakh, Sunita K; Sudalai, A

    2015-11-21

    Titanium superoxide efficiently catalysed the oxidative esterification of aldehydes with alkylarenes or alcohols, under truly heterogeneous conditions, to afford the corresponding benzyl and alkyl esters in excellent yields. Mechanistic studies have established that this "one pot" direct oxidative esterification process proceeds through a radical pathway, proven by a FTIR spectral study of a titanium superoxide-aldehyde complex as well as spin trapping experiments with TEMPO. The intramolecular version of this protocol has been successfully demonstrated in the concise synthesis of 3-butylphthalide, an anti-convulsant drug.

  10. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  11. L-Proline: an efficient N,O-bidentate ligand for copper-catalyzed aerobic oxidation of primary and secondary benzylic alcohols at room temperature.

    PubMed

    Zhang, Guofu; Han, Xingwang; Luan, Yuxin; Wang, Yong; Wen, Xin; Ding, Chengrong

    2013-09-18

    A novel and highly practical copper-catalyzed aerobic alcohol oxidation system with L-proline as the ligand at room temperature has been developed. A wide range of primary and secondary benzylic alcohols tested have been smoothly transformed into corresponding aldehydes and ketones with high yields and selectivities.

  12. Radical-Induced Metal and Solvent-Free Cross-Coupling Using TBAI-TBHP: Oxidative Amidation of Aldehydes and Alcohols with N-Chloramines via C-H Activation.

    PubMed

    Achar, Tapas Kumar; Mal, Prasenjit

    2015-01-02

    A solvent-free cross-coupling method for oxidative amidation of aldehydes and alcohols via a metal-free radial pathway has been demonstrated. The proposed methodology uses the TBAI-TBHP combination which efficiently induces metal-free C-H activation of aldehydes under neat conditions at 50 °C or ball-milling conditions at room temperature.

  13. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    PubMed Central

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R.; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  14. Aldehyde Dehydrogenase 2 (ALDH2) Polymorphism and the Risk of Alcoholic Liver Cirrhosis among East Asians: A Meta-Analysis

    PubMed Central

    He, Lei; Luo, Hesheng

    2016-01-01

    Purpose The aldehyde dehydrogenase 2 (ALDH2) gene has been implicated in the development of alcoholic liver cirrhosis (ALC) in East Asians. However, the results are inconsistent. In this study, a meta-analysis was performed to assess the associations between the ALDH2 polymorphism and the risk of ALC. Materials and Methods Relevant studies were retrieved by searching PubMed, Web of Science, CNKI, Wanfang and Veipu databases up to January 10, 2015. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using either the fixed- or random effects model. Results A total of twelve case-control studies included 1003 cases and 2011 controls were included. Overall, the ALDH2 polymorphism was associated with a decreased risk of ALC (*1/*2 vs. *1/*1: OR=0.78, 95% CI: 0.61–0.99). However, in stratification analysis by country, we failed to detect any association among Chinese, Korean or Japanese populations. Conclusion The pooled evidence suggests that ALDH2 polymorphism may be an important protective factor for ALC in East Asians. PMID:27189280

  15. Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer.

    PubMed

    van Iersel MF; Brouwer-Post; Rombouts; Abee

    2000-05-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor. This highly controllable system combines short contact times between yeast and wort with the reduction of off-flavors to concentrations below threshold values. In the present study, the influence of immobilization of yeast to DEAE-cellulose on sugar fermentation and aldehyde reduction was monitored. Immobilized cells showed higher activities of hexokinase and pyruvate decarboxylase compared to cells grown in batch culture. In addition, a higher glucose flux was observed, with enhanced excretion of main fermentation products, indicating a reduction in the flux of sugar used for biomass production. ADH activity was higher in immobilized cells compared to that in suspended cells. However, during prolonged production a decrease was observed in NAD-specific ADH activity, whereas NADP-specific activity increased in the immobilized cells. The shifts in enzyme activities and glucose flux correlate with a higher in vivo reduction capacity of the immobilized cells.

  16. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    PubMed

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  17. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  18. Readily available sulfamide-amine alcohols for enantioselective phenylacetylene addition to aldehydes in the absence of Ti(O(i)Pr)4.

    PubMed

    Mao, Jincheng; Wan, Boshun; Wu, Fan; Lu, Shiwei

    2005-05-15

    Ephedrine-derived sulfamide-amine alcohol 3 was found to be an effective catalyst for the asymmetric phenylacetylene addition to aldehydes at room temperature without using Ti(O(i)Pr)4 and Zn(OTf)2. It afforded the propargylic alcohols in high yields (up to 99%) and good enantioselectivities (up to 84% ee), which were much higher than that based on N-methylephedrine under the same reaction conditions. Its weakly coordinative sulfonamide moiety of the ligand plays an important role for further acceleration and stereocontrol in the alkynylation.

  19. Alcohol and Aldehyde Dehydrogenases Contribute to Sex-Related Differences in Clearance of Zolpidem in Rats

    PubMed Central

    Peer, Cody J.; Strope, Jonathan D.; Beedie, Shaunna; Ley, Ariel M.; Holly, Alesia; Calis, Karim; Farkas, Ronald; Parepally, Jagan; Men, Angela; Fadiran, Emmanuel O.; Scott, Pamela; Jenkins, Marjorie; Theodore, William H.; Sissung, Tristan M.

    2016-01-01

    Objectives: The recommended zolpidem starting dose was lowered in females (5 mg vs. 10 mg) since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK) is unknown. We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH) expression. Methods: Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, ± disulfiram (ADH/ALDH pathway inhibitor) to compare PK changes induced by sex and gonadal hormones. PK analyses were conducted in rat plasma and rat brain. Key findings: Sex differences in PK were evident: females had a higher CMAX (112.4 vs. 68.1 ug/L) and AUC (537.8 vs. 231.8 h∗ug/L) than uncastrated males. Castration induced an earlier TMAX (0.25 vs. 1 h), greater CMAX (109.1 vs. 68.1 ug/L), and a corresponding AUC increase (339.7 vs. 231.8 h∗ug/L). Administration of disulfiram caused more drastic CMAX and TMAX changes in male vs. female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations. Conclusion: These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens. PMID:27574509

  20. Selective oxidation of alcohols using photoactive VO@g-C3N4.

    EPA Science Inventory

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.

  1. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men

    PubMed Central

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2015-01-01

    Background Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics. Methods The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission. Results High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67–2.94] and 1.39 [0.99–1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28–0.49] and 0.51 [0.37–0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45–0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl). Conclusions The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast

  2. Recent advances in biotechnological applications of alcohol dehydrogenases.

    PubMed

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  3. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  4. Ketones urine test

    MedlinePlus

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  5. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.

    PubMed Central

    Larroy, Carol; Fernández, M Rosario; González, Eva; Parés, Xavier; Biosca, Josep A

    2002-01-01

    YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae. PMID:11742541

  6. A molecularly defined iron-catalyst for the selective hydrogenation of α,β-unsaturated aldehydes.

    PubMed

    Wienhöfer, Gerrit; Westerhaus, Felix A; Junge, Kathrin; Ludwig, Ralf; Beller, Matthias

    2013-06-10

    A selective iron-based catalyst system for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohols is presented. Applying the defined iron-tetraphos complex [FeF(L)][BF4] (L = P(PhPPh2)3) in the presence of trifluoroacetic acid a broad range of aldehydes are reduced in high yields using low catalyst loadings (0.05-1 mol %). Excellent chemoselectivity for the reduction of aldehydes in the presence of other reducible moieties, for example, ketones, olefins, esters, etc. is achieved. Based on the in situ detected hydride species [FeH(H2)(L)](+) a catalytic cycle is proposed that is supported by computational calculations.

  7. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  8. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  9. Green, Catalytic Oxidation of Alcohols in Water

    NASA Astrophysics Data System (ADS)

    ten Brink, Gerd-Jan; Arends, Isabel W. C. E.; Sheldon, Roger A.

    2000-03-01

    Alcohol oxidations are typically performed with stoichiometric reagents that generate heavy-metal waste and are usually run in chlorinated solvents. A water-soluble palladium(II) bathophenanthroline complex is a stable recyclable catalyst for the selective aerobic oxidation of a wide range of alcohols to aldehydes, ketones, and carboxylic acids in a biphasic water-alcohol system. The use of water as a solvent and air as the oxidant makes the reaction interesting from both an economic and environmental point of view.

  10. Selective heterogeneous catalytic hydrogenation of ketone (C═O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach.

    PubMed

    Shah, Muhammad Tariq; Balouch, Aamna; Rajar, Kausar; Sirajuddin; Brohi, Imdad Ali; Umar, Akrajas Ali

    2015-04-01

    Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 μg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.

  11. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians.

    PubMed

    Yokoyama, Akira; Omori, Tai; Yokoyama, Tetsuji

    2010-01-01

    The ethanol in alcoholic beverages and the acetaldehyde associated with alcohol consumption are Group 1 human carcinogens (WHO, International Agency for Research on Cancer). The combination of alcohol consumption, tobacco smoking, the inactive heterozygous aldehyde dehydrogenase-2 genotype (ALDH2*1/*2) and the less-active homozygous alcohol dehydrogenase-1B genotype (ADH1B*1/*1) increases the risk of squamous cell carcinoma (SCC) in the upper aerodigestive tract (UADT) in a multiplicative fashion in East Asians. In addition to being exposed to locally high levels of ethanol, the UADT is exposed to a very high concentration of acetaldehyde from a variety of sources, including that as an ingredient of alcoholic beverages per se and that found in tobacco smoke; acetaldehyde is also produced by salivary microorganisms and mucosal enzymes and is present as blood acetaldehyde. The inefficient degradation of acetaldehyde by weakly expressed ALDH2 in the UADT may be cri! tical to the local accumulation of acetaldehyde, especially in ALDH2*1/*2 carriers. ADH1B*1/*1 carriers tend to experience less intense alcohol flushing and are highly susceptible to heavy drinking and alcoholism. Heavy drinking by persons with the less-active ADH1B*1/*1 leads to longer exposure of the UADT to salivary ethanol and acetaldehyde. The ALDH2*1/*2 genotype is a very strong predictor of synchronous and metachronous multiple SCCs in the UADT. High red cell mean corpuscular volume (MCV), esophageal dysplasia, and melanosis in the UADT, all of which are frequently found in ALDH2*1/*2 drinkers, are useful for identifying high-risk individuals. We invented a simple flushing questionnaire that enables prediction of the ALDH2 phenotype. New health appraisal models that include ALDH2 genotype, the simple flushing questionnaire, or MCV are powerful tools for devising a new strategy for prevention and screening for UADT cancer in East Asians.

  12. Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes

    SciTech Connect

    Gaffney, J.S.; Tanner, R.L.

    1988-01-01

    We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

  13. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b)...

  14. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b)...

  15. Alcohol and aldehyde dehydrogenase from Saccharomyces cerevisiae: specific activity and influence on the production of acetic acid, ethanol and higher alcohols in the first 48 h of fermentation of grape must.

    PubMed

    Millán, C; Mauricio, J C; Ortega, J M

    1990-01-01

    The changes in the specific activity of alcohol dehydrogenase (ADH-I and ADH-II) and aldehyde dehydrogenases [AIDH-NADP+ and AIDH-NAD(P)+] from Saccharomyces cerevisiae during the first 48 h of fermentation of grape must were investigated. The biosynthesis of ADH-I and AIDH-NADP+ took place basically during the adaptation of the yeasts to the must (first 4 h), while that of ADH-II occurred immediately after exponential growth (after 12 h). From the products produced by the yeast, only the specific rate of production of ethanol was found to be directly related to the specific activity of ADH-I.

  16. Cancer screening of upper aerodigestive tract in Japanese alcoholics with reference to drinking and smoking habits and aldehyde dehydrogenase-2 genotype.

    PubMed

    Yokoyama, A; Ohmori, T; Muramatsu, T; Higuchi, S; Yokoyama, T; Matsushita, S; Matsumoto, M; Maruyama, K; Hayashida, M; Ishii, H

    1996-11-04

    In this study, 1,000 Japanese male alcoholics were consecutively screened by upper gastrointestinal endoscopy with esophageal iodine staining. Associations among cancer-detection rates, drinking and smoking habits, and aldehyde dehydrogenase-2 (ALDH2) genotypes were evaluated. A total of 53 patients (5.3%) had histologically confirmed cancer. Esophageal cancer was diagnosed in 36, gastric cancer in 17, and oropharyngolaryngeal cancer in 9 patients: 8 of the esophageal-cancer patients were multiple-cancer patients, with additional cancer(s) in the stomach and/or oropharyngolaryngeal region. Multiple logistic regression revealed that use of stronger alcoholic beverages (whisky or shochu) in contrast with lighter beverages (sake or beer) and smoking of 50 pack-years or more increased the risks for esophageal (odds ratio 3.2 and 2.8 respectively), oropharyngolaryngeal (4.8 and 5.1 respectively) and multiple cancer (10.5 and 11.8 respectively). The inactive form of ALDH2, encoded by the gene ALDH2*1/2*2 prevalent in Orientals, exposes them to higher blood levels of acetaldehyde, a recognized animal carcinogen, after drinking. This inactive ALDH2 was detected in 19/36 (52.8%) patients with esophageal cancer, in 5/9 (55.6%) patients with oropharyngolaryngeal cancer, and in 7/8 (87.5%) patients with multiple cancer. All of these gene frequencies far exceeded that in a large alcoholic cohort (80/655, 12.2%). The triple combination of the risk factors of the inactive ALDH2, stronger alcoholic beverages and heavy smoking was more commonly associated with multiple-cancer patients than with patients with esophageal cancer alone (62.5% vs. 7.1%). These results show that the 3 risk factors are important for the development of upper-aerodigestive-tract cancer in Japanese alcoholics. For these high-risk drinkers, regimented screening appears to be indicated.

  17. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Zorzano, A. ); Herrera, E. )

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  18. Differential Contributions of Alcohol and the Nicotine-Derived Nitrosamine Ketone (NNK) to Insulin and Insulin-Like Growth Factor Resistance in the Adolescent Rat Brain

    PubMed Central

    Tong, Ming; Yu, Rosa; Deochand, Chetram; de la Monte, Suzanne M.

    2015-01-01

    Aims Since epidemiologic studies suggest that tobacco smoke toxins, e.g. the nicotine-derived nitrosamine ketone (NNK) tobacco-specific nitrosamine, can be a co-factor in alcohol-related brain disease (ARBD), we examined the independent and additive effects of alcohol and NNK exposures on spatial learning/memory, and brain insulin/IGF signaling, neuronal function and oxidative stress. Methods Adolescent Long Evans rats were fed liquid diets containing 0 or 26% caloric ethanol for 8 weeks. During weeks 3–8, rats were treated with i.p. NNK (2 mg/kg, 3×/week) or saline. In weeks 7–8, ethanol groups were binge-administered ethanol (2 g/kg; 3×/week). In week 8, at 12 weeks of age, rats were subjected to Morris Water Maze tests. Temporal lobes were used to assess molecular indices of insulin/IGF resistance, oxidative stress and neuronal function. Results Ethanol and NNK impaired spatial learning, and NNK ± ethanol impaired memory. Linear trend analysis demonstrated worsening performance from control to ethanol, to NNK, and then ethanol + NNK. Ethanol ± NNK, caused brain atrophy, inhibited insulin signaling through the insulin receptor and Akt, activated GSK-3β, increased protein carbonyl and 3-nitrotyrosine, and reduced acetylcholinesterase. NNK increased NTyr. Ethanol + NNK had synergistic stimulatory effects on 8-iso-PGF-2α, inhibitory effects on p-p70S6K, tau and p-tau and trend effects on insulin-like growth factor type 1 (IGF-1) receptor expression and phosphorylation. Conclusions Ethanol, NNK and combined ethanol + NNK exposures that begin in adolescence impair spatial learning and memory in young adults. The ethanol and/or NNK exposures differentially impair insulin/IGF signaling through neuronal growth, survival and plasticity pathways, increase cellular injury and oxidative stress and reduce expression of critical proteins needed for neuronal function. PMID:26373814

  19. Sulfoximine-mediated syntheses of optically active alcohols. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stark, C. J., Jr.

    1978-01-01

    Several routes are described for the production of optically active secondary and tertiary alcohols. In all cases, the asymmetry emanates from the use of (+)-(S)-N,S-dimethyl-S-phenyl-sulfoximine (1) at some point in the variation of the diastereomers. One route relies upon the separation of the diastereomers produced from the condensation of (+)-(S)-(N-methylphenyl-sulfonimidoyl) methyllithium with prochiral aldehydes and ketones. Subsequent carbon-sulfur bond cleavage of the separated diastereomeric beta-hydroxysulfoximines yields optically active alcohols. Alternatively, beta-hydroxysulfoximines were produced from the reduction of chiral beta-ketosulfoximines. The reductions were most successfully achieved with diborane generated externally and bubbled into a toluene solution of the ketone at -78 C. Optically active alcohols were also produced from prochiral ketones by reduction with diborane or lithium aluminum hydride complexes of resolved diastereomers of beta-hydroxysulfoximines.

  20. Does acute exposure to aldehydes impair pulmonary function and structure?

    PubMed

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group.

  1. Ketones blood test

    MedlinePlus

    ... Ketones - serum; Nitroprusside test; Ketone bodies - serum; Ketones - blood ... A blood sample is needed. ... When the needle is inserted to draw blood, some people feel slight ... there may be some throbbing or a slight bruise. This soon ...

  2. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Su, Li; Ye, Xiangju; Meng, Sugang; Fu, Xianliang; Chen, Shifu

    2016-10-01

    A series of ternary chalcogenides, zinc indium sulphide (ZnIn2S4), were synthesized by a simple solvothermal method with different solvents. The structure, textural, and optical properties of the resulting materials were thoroughly characterized by several techniques. The as-prepared ZnIn2S4 samples could all be employed as excellent photocatalysts to activate O2 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light illumination. The results showed that ZnIn2S4 prepared in ethanol solvent (ZIS-EtOH) exhibited the highest photocatalytic activity among the screened samples. The differences of photocatalytic performance for ZnIn2S4 samples prepared in different media were mainly attributed to the different levels of exposed {0001} special facets caused by the exposure extent of the basic crystal plane. In addition, rad O2- and positive holes were proved to be the main active species during the photocatalytic process. Combined with the previous reports, a possible photocatalytic mechanism for the selective oxidation of benzyl alcohol to benzaldehyde over ZnIn2S4 sample was proposed.

  3. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of patients with brain tumor

    PubMed Central

    Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2017-01-01

    Introduction Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) exist in the brain. Alcohol dehydrogenase and ALDH are also present in brain tumor cells. Moreover, the activity of class I isoenzymes was significantly higher in cancer than healthy brain cells. The activity of these enzymes in tumor tissue is reflected in the serum and could thus be helpful for diagnostics of brain neoplasms. The aim of this study was to investigate the potential role of ADH and ALDH as markers for brain tumors. Material and methods Serum samples were taken for routine biochemical investigation from 115 patients suffering from brain tumors (65 glioblastomas, 50 meningiomas). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. Results There was a significant increase in the activity of ADH I isoenzyme and ADH total in the sera of brain tumor patients compared to the controls. The diagnostic sensitivity for ADH I was 78%, specificity 85%, and positive and negative predictive values were 86% and 76% respectively. The sensitivity and specificity of ADH I increased with the stage of the carcinoma. Area under receiver-operating characteristic curve for ADH I was 0.71. Conclusions The results suggest a potential role for ADH I as a marker for brain tumor. PMID:28261287

  4. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry.

    PubMed

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76-1.16] in abstainers with *2, 1.00 [0.80-1.26] in *1/*1 drinkers, 0.71 [0.54-0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28-6.13] in abstainers with *2, 1.89 [0.89-4.51] in *1/*1 drinkers, 2.35 [1.06-5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2 displayed a

  5. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  6. Diastereoselective Construction of Functionalized Homoallylic Alcohols by Ni-Catalyzed Diboron-Promoted Coupling of Dienes and Aldehydes

    PubMed Central

    Cho, Hee Yeon; Morken, James P.

    2009-01-01

    The nickel-catalyzed reaction of carbonyls and dienes was accomplished in a regio- and stereo-selective fashion employing a stoichiometric amount of bis(pinacolato)diboron. This reductive coupling furnishes an allyl boronic esters as the reaction product, a compound which was readily converted to the derived allylic alcohol by oxidative work-up. PMID:18998642

  7. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    PubMed

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols.

  8. Aldehyde-alcohol reactions catalyzed under mild conditions by chromium(III) terephthalate metal organic framework (MIL-101) and phosphotungstic acid composites.

    PubMed

    Bromberg, Lev; Hatton, T Alan

    2011-12-01

    Porous materials based on chromium(III) terephthalate metal organic frameworks (MIL-101) and their composites with phosphotungstic acid (PTA) were studied as heterogeneous acid catalysts in aldehyde-alcohol reactions exemplified by acetaldehyde-phenol (A-P) condensation and dimethylacetal formation from benzaldehyde and methanol (B-M reaction). The MIL-101 was synthesized solvothermically in water, and the MIL101/PTA composite materials were obtained by either impregnation of the already prepared MIL-101 porous matrix with phosphotungstic acid solution or by solvothermic treatment of aqueous mixtures of Cr(NO(3))(3), and terephthalic and phosphotungstic acids. The MIL101/PTA materials appeared to be effective catalysts for both A-P and B-M reactions occurring at room temperature, with half-lives ranging from 0.5 h (A-P) to 1.5-2 h (B-M) and turnover numbers over 600 for A-P and over 2900 for the B-M reaction, respectively. A synergistic effect of the strong acidic moieties (PTA) addition to mildly acidic Brønsted and Lewis acid cites of the MIL-101 was observed with the MIL101/PTA composites. The ability of the PTA and MIL101/PTA materials to strongly absorb and condense acetaldehyde vapors was discovered, with the MIL101/PTA absorbing over 10-fold its dry weight of acetaldehyde condensate at room temperature. The acetaldehyde was converted rapidly to crotonaldehyde and higher-molecular-weight compounds while in contact with MIL-101 and MIL101/PTA materials. The stability of the MIL-101 and MIL101/PTA catalysts was assessed within four cycles of the 1-day alcohol-aldehyde reactions in terms of the overall catalyst recovery, PTA or Cr content, and reaction rate constants in each cycle. The loss of the catalyst over 4 cycles was approximately 10 wt % for all tested catalysts due to the incomplete recovery and minute dissolution of the components. The reaction rates in all cycles remained unchanged and the catalyst losses stopped after the third cycle. The developed

  9. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-01-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions. PMID:27671606

  10. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-09-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions.

  11. Highly Concentrated Catalytic Asymmetric Allylation of Ketones

    PubMed Central

    Wooten, Alfred J.; Kim, Jeung Gon; Walsh, Patrick J.

    2008-01-01

    We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80–99%) with high enantioselectivities (79–95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84–87%). PMID:17249767

  12. Highly concentrated catalytic asymmetric allylation of ketones.

    PubMed

    Wooten, Alfred J; Kim, Jeung Gon; Walsh, Patrick J

    2007-02-01

    [reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).

  13. Highly enantioselective addition of terminal alkynes to aldehydes catalyzed by a new chiral beta-sulfonamide alcohol/Ti(OiPr)4/Et2Zn/R3N catalyst system.

    PubMed

    Qiu, Li; Wang, Quan; Lin, Li; Liu, Xiaodong; Jiang, Xianxing; Zhao, Qingyang; Hu, Guowen; Wang, Rui

    2009-02-01

    A new catalytic system, generated from the readily available and inexpensive beta-sulfonamide alcohol L*, Ti(O(i)Pr)(4), Et(2)Zn, and tertiary amine base (R(3)N), effectively catalyzes the enantioselective addition of various terminal alkynes including some quite challenging alkynes to aldehydes in good yields and excellent enantioselectivities. Up to 96% yield and >99% enantioselectivity were achieved with the use of N,N-diisoproylethylamine (DIPEA) as an additive in this asymmetric addition.

  14. Enantioselective synthesis of syn/anti-1,3-amino alcohols via proline-catalyzed sequential alpha-aminoxylation/alpha-amination and Horner-Wadsworth-Emmons olefination of aldehydes.

    PubMed

    Jha, Vishwajeet; Kondekar, Nagendra B; Kumar, Pradeep

    2010-06-18

    A novel and general method for asymmetric synthesis of both syn/anti-1,3-amino alcohols is described. The method uses proline-catalyzed sequential alpha-aminoxylation/ alpha-amination and Horner-Wadsworth-Emmons (HWE) olefination of aldehydes as the key step. By using this method, a short synthesis of a bioactive molecule, (R)-1-((S)-1-methylpyrrolidin-2-yl)-5-phenylpentan-2-ol, is also accomplished.

  15. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    SciTech Connect

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M. . E-mail: Elizabeth.ellis@strath.ac.uk

    2006-01-15

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V {sub max} of 2141 {+-} 500 nmol/min/mg and a K {sub m} of 11 {+-} 4 {mu}M. This enzyme was inhibited by pyrazole with a K {sub I} of 3.1 {+-} 0.57 {mu}M. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V {sub max} of 115 nmol/min/mg and a K {sub m} of 15 {+-} 2 {mu}M and was not inhibited by pyrazole.

  16. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase.

    PubMed

    Wexler, Margaret; Bond, Philip L; Richardson, David J; Johnston, Andrew W B

    2005-12-01

    Using DNA obtained from the metagenome of an anaerobic digestor in a waste water treatment plant, we constructed a gene library cloned in the wide host-range cosmid pLAFR3. One cosmid enabled Rhizobium leguminosarum to grow on ethanol as sole carbon and energy source, this being due to the presence of a gene, termed adhEMeta. The AdhEMeta protein most closely resembles the AdhE alcohol dehydrogenase of Clostridium acetobutylicum, where it catalyses the formation of ethanol and butanol in a two-step reductive process. However, cloned adhEMeta did not confer ethanol utilization ability to Escherichia coli or to Pseudomonas aeruginosa, even though it was transcribed in both these hosts. Further, cell-free extracts of E. coli and R. leguminosarum containing cloned adhEMeta had butanol and ethanol dehydrogenase activities when assayed in vitro. In contrast to the well-studied AdhE proteins of C. acetobutylicum and E. coli, the enzyme specified by adhEMeta is not inactivated by oxygen and it enables alcohol to be catabolized. Cloned adhEMeta did, however, confer one phenotype to E. coli. AdhE- mutants of E. coli fail to ferment glucose and introduction of adhEMeta restored the growth of such mutants when grown under fermentative conditions. These observations show that the use of wide host-range vectors enhances the efficacy with which metagenomic libraries can be screened for genes that confer novel functions.

  17. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  18. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    PubMed

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.

  19. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    PubMed

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding.

  20. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs

    SciTech Connect

    Baylon, Rebecca A. L.; Sun, Junming; Martin, Kevin J.; Venkitasubramanian, Padmesh; Wang, Yong

    2016-01-01

    Dwindling petroleum reserves combined with increased energy demand and political factors encouraging an increase in energy independence have led to a large amount of research on sustainable alternatives. To this end, biomass conversion has been recognized as themost readily viable technology to produce biofuel concerning our reliance on liquid fuels for transportation and has the advantage of being easily integrated into our heavy use of combustion engines. The interest in biomass conversion has also resulted in reduced costs and a greater abundance of bio-oil, a mixture of hundreds of oxygenates including alcohols, aldehydes, carboxylic acids, and ketones. However, the presence of carboxylic acids in bio-oil derived from lignocellulose pyrolysis leads to low pH, instability, and corrosiveness. In addition, carboxylic acids (i.e. acetic acid) can also be produced via fermentation of sugars. This can be accomplished by a variety of homoacetogenic microorganisms that can produce acetic acid with 100% carbon yield.

  1. Enantioselective rhodium(I)-catalyzed hydrogenation of trifluoromethyl ketones.

    PubMed

    Kuroki, Y; Sakamaki, Y; Iseki, K

    2001-02-08

    [figure: see text] The asymmetric hydrogenation of trifluoromethyl ketones to yield chiral alpha-trifluoromethyl alcohols with enantiomeric excesses up to 98% was achieved in the presence of chiral rhodium-(amidephosphine-phosphinite) complexes.

  2. Selective Oxidation of Alcohols Using Photoactive VO@g??C3N4

    EPA Pesticide Factsheets

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.This dataset is associated with the following publication:Verma, S., R.B. Nasir Baig, M. Nadagouda , and R. Varma. Selective oxidation of alcohols using photoactive VO@g-C3N4.. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1094-1098, (2015).

  3. Laboratory Studies of Aedes aegypti Attraction to Ketones, Sulfides, and Primary Chloroalkanes Tested Alone and in Combination with L-Lactic Acid.

    PubMed

    Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R

    2015-03-01

    The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.

  4. Cascade Michael addition/cycloketalization of cyclic 1,3-dicarbonyl compounds: important role of the tethered alcohol of α,β-unsaturated carbonyl compounds on reaction rate and regioselectivity.

    PubMed

    Yao, Hongliang; Song, Liyan; Liu, Yuan; Tong, Rongbiao

    2014-09-19

    Reactions of α,β-unsaturated aldehydes and cyclic 1,3-dicarbonyl compounds proceed primarily by cascade Knoevenagel condensation/six-π-electron electrocyclization (K6EC, formal [3 + 3] cycloaddition), while α,β-unsaturated ketones usually react with cyclic 1,3-dicarbonyl compounds in a 1,4-addition manner. This paper discloses our findings that under acidic conditions, α,β-unsaturated carbonyl compounds (ketones and aldehydes) with a tethered alcohol react with cyclic 1,3-dicarbonyl compounds in a highly regioselective 1,4-addition fashion via in situ generation of a hypothetical α-methylene cyclic oxonium ion as the reactive Michael acceptor. Our studies uncovered the important effect of the tethered alcohol on the reaction rate and/or efficiency and some new mechanistic aspects of the cascade Michael addition/cycloketalization. Finally, the substrate scope was examined, and 43 analogues of penicipyrone and tenuipyrone were prepared in good to excellent yields.

  5. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity.

  6. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones.

    PubMed

    Hoyos, Pilar; Sinisterra, Josep-Vicent; Molinari, Francesco; Alcántara, Andrés R; Domínguez de María, Pablo

    2010-02-16

    The development of efficient syntheses for enantiomerically enriched alpha-hydroxy ketones is an important research focus in the pharmaceutical industry. For example, alpha-hydroxy ketones are found in antidepressants, in selective inhibitors of amyloid-beta protein production (used in the treatment of Alzheimer's), in farnesyl transferase inhibitors (Kurasoin A and B), and in antitumor antibiotics (Olivomycin A and Chromomycin A3). Moreover, alpha-hydroxy ketones are of particular value as fine chemicals because of their utility as building blocks for the production of larger molecules. They can also be used in preparing many other important structures, such as amino alcohols, diols, and so forth. Several purely chemical synthetic approaches have been proposed to afford these compounds, together with some organocatalytic strategies (thiazolium-based carboligations, proline alpha-hydroxylations, and so forth). However, many of these chemical approaches are not straightforward, lack selectivity, or are economically unattractive because of the large number of chemical steps required (usually combined with low enantioselectivities). In this Account, we describe three different biocatalytic approaches that have been developed to efficiently produce alpha-hydroxy ketones: (i) The use of thiamine diphosphate-dependent lyases (ThDP-lyases) to catalyze the umpolung carboligation of aldehydes. Enantiopure alpha-hydroxy ketones are formed from inexpensive aldehydes with this method. Some lyases with a broad substrate spectrum have been successfully characterized. Furthermore, the use of biphasic media with recombinant whole cells overexpressing lyases leads to productivities of approximately 80-100 g/L with high enantiomeric excesses (up to >99%). (ii) The use of hydrolases to produce alpha-hydroxy ketones by means of (in situ) dynamic kinetic resolutions (DKRs). Lipases are able to successfully resolve racemates, and many outstanding examples have been reported. However

  7. Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens.

    PubMed

    Anke, H; Casser, I; Steglich, W; Pommer, E H

    1987-04-01

    Phlebiakauranol aldehyde and the corresponding alcohol were isolated from cultures of Punctularia atropurpurascens. The aldehyde but not the alcohol exhibited strong antifungal activity against several phytopathogens as well as antibacterial and cytotoxic activities. Two acetylated derivatives prepared from the aldehyde showed only very weak antifungal and antibacterial and moderate cytotoxic activities. We therefore assume, that the aldehyde group together with the high number of hydroxyl groups are responsible for the biological activity of the compound.

  8. Solar photochemical oxidation of alcohols using catalytic hydroquinone and copper nanoparticles under oxygen: oxidative cleavage of lignin models.

    PubMed

    Mitchell, Lorna J; Moody, Christopher J

    2014-11-21

    Alcohols are converted into to their corresponding carbonyl compounds using catalytic amounts of 1,4-hydroquinone with a copper nanoparticle electron transfer mediator with oxygen as the terminal oxidant in acetone as solvent under visible light irradiation. These conditions employing biorenewable hydroquinone as reagent were developed from initial experiments using stoichiometric amounts of 1,4-benzoquinone as oxidant. A range of benzylic and aliphatic primary and secondary alcohols are oxidized, affording the corresponding aldehydes or ketones in moderate to excellent yields. The methodology is also applicable to the oxidative degradation of lignin model compounds that undergo C-C bond cleavage to give simple aromatic compounds.

  9. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle.

    PubMed

    Sato, Shinya; Miyazono, Sadaharu; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-30

    Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light.

  10. Checking for Ketones

    MedlinePlus

    ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy ...

  11. Purification and characterization of an NADH-dependent alcohol dehydrogenase from Candida maris for the synthesis of optically active 1-(pyridyl)ethanol derivatives.

    PubMed

    Kawano, Shigeru; Yano, Miho; Hasegawa, Junzo; Yasohara, Yoshihiko

    2011-01-01

    A novel (R)-specific alcohol dehydrogenase (AFPDH) produced by Candida maris IFO10003 was purified to homogeneity by ammonium sulfate fractionation, DEAE-Toyopearl, and Phenyl-Toyopearl, and characterized. The relative molecular mass of the native enzyme was found to be 59,900 by gel filtration, and that of the subunit was estimated to be 28,900 on SDS-polyacrylamide gel electrophoresis. These results suggest that the enzyme is a homodimer. It required NADH as a cofactor and reduced various kinds of carbonyl compounds, including ketones and aldehydes. AFPDH reduced acetylpyridine derivatives, β-keto esters, and some ketone compounds with high enantioselectivity. This is the first report of an NADH-dependent, highly enantioselective (R)-specific alcohol dehydrogenase isolated from a yeast. AFPDH is a very useful enzyme for the preparation of various kinds of chiral alcohols.

  12. Induced axial chirality in biocatalytic asymmetric ketone reduction.

    PubMed

    Agudo, Rubén; Roiban, Gheorghe-Doru; Reetz, Manfred T

    2013-02-06

    Catalytic asymmetric reduction of prochiral ketones of type 4-alkylidene cyclohexanone with formation of the corresponding axially chiral R-configurated alcohols (up to 99% ee) was achieved using alcohol dehydrogenases, whereas chiral transition-metal catalysts fail. Reversal of enantioselectivity proved to be possible by directed evolution based on saturation mutagenesis (up to 98% ee (S)). Utilization of ketone with a vinyl bromide moiety allows respective R- and S-alcohols to be exploited as key compounds in Pd-catalyzed cascade reactions.

  13. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color... should come over below 111 °C. and none above 117 °C. (d) Odor. Characteristic odor. (e) Specific...

  14. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective

    PubMed Central

    2015-01-01

    Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause “type-2 alkene toxicity” through additive interactions

  15. Development of a prediction model and estimation of cumulative risk for upper aerodigestive tract cancer on the basis of the aldehyde dehydrogenase 2 genotype and alcohol consumption in a Japanese population

    PubMed Central

    Koyanagi, Yuriko N.; Ito, Hidemi; Oze, Isao; Hosono, Satoyo; Tanaka, Hideo; Abe, Tetsuya; Shimizu, Yasuhiro; Hasegawa, Yasuhisa

    2017-01-01

    Alcohol consumption and the aldehyde dehydrogenase 2 (ALDH2) polymorphism are associated with the risk of upper aerodigestive tract cancer, and a significant gene–environment interaction between the two has been confirmed in a Japanese population. To aid the development of a personalized prevention strategy, we developed a risk-prediction model and estimated absolute risks stratified by a combination of the ALDH2 genotype and alcohol consumption. We carried out two age-matched and sex-matched case–control studies: one (630 cases and 1260 controls) for model derivation and the second (654 cases and 654 controls) for external validation. On the basis of data from the derivation study, a prediction model was developed by fitting a conditional logistic regression model using the following predictors: age, sex, smoking, drinking, and the ALDH2 genotype. The risk model, including a combination of the ALDH2 genotype and alcohol consumption, provided high discriminatory accuracy and good calibration in both the derivation and the validation studies: C statistics were 0.82 (95% confidence interval 0.80–0.84) and 0.83 (95% confidence interval 0.81–0.85), respectively, and the calibration plots of both studies remained close to the ideal calibration line. Cumulative risks were obtained by combining odds ratios estimated from the risk model with the age-specific incidence rate and population size. For heavy drinkers with a heterozygous genotype, the cumulative risk at age 80 was above 20%. In contrast, risk in the other groups was less than 5%. In conclusion, modification of alcohol consumption according to the ALDH2 genotype will have a major impact on upper aerodigestive tract cancer prevention. These findings represent a simple and practical model for personalized cancer prevention. PMID:26862830

  16. Inhibition of serine proteases by peptidyl fluoromethyl ketones

    SciTech Connect

    Imperiali, B.; Abeles, R.H.

    1986-07-01

    Peptidyl fluoromethyl ketones that are specific inhibitors of the serine proteases ..cap alpha..-chymotrypsin and porcine pancreatic elastase were synthesized. By analogy with the corresponding aldehydes it is assumed that the fluoromethyl ketones react with the ..gamma..-OH group of the active site serine to form a stable hemiacetal. /sup 19/F NMR studies of the chymotrypsin-bound trifluoromethyl ketone inhibitors Ac-Leu-ambo-Phe-CF/sub 3//sup 1/ and Ac-ambo-Phe-CF/sub 3/ clearly indicate that the carbonyl carbon is tetrahedral at the active site of the enzyme. The inhibitor is bound as either the stable hydrat or the hemiacetal, involving the active site serine. The effect of varying the number of amino acid residues in the peptidyl portion of the inhibitor and the number of fluorines in the fluoromethyl ketone moiety is examined. In the series of trifluoromethyl ketone elastase inhibitors, the lowering of K/sub i/ concomitant with the change from a dipeptide analogue to a tetrapeptide analogue correlates well with the variation in V/K for hydrolysis of the corresponding amide substrates. This trend is indicative of the inhibitors acting as transition-state analogues. In addition to chain length, the number of fluorine substituents also affects the K/sub i/. In the case of chymotrypsin, the K/sub i/ for Ac-Leu-ambo-Phe-CF/sub 3/ is 30-fold lower than that for Ac-Leu-ambo-Phe-CF/sub 2/H. With elastase this trend is not as profound. In all cases, however, the difluoro- and trifluoromethyl ketones are better inhibitors than the monofluoromethyl and nonfluorinated analogues. This improvement must be associated with both the degree of hydration of the fluoromethyl ketones and the significant effect that fluorine substitution has on lowering the first pK/sub a/ of the hemiacetal hydroxyl. The monofluoromethyl ketone inhibitor of chymotrypsin, Ac-Leu-ambo-Phe-CFH/sub 2/, is a weak competitive inhibitor.

  17. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGES

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; ...

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  18. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli.

    PubMed

    Coursolle, Dan; Lian, Jiazhang; Shanklin, John; Zhao, Huimin

    2015-09-01

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg L(-1) long chain alcohol/alkane products including a 57 mg L(-1) titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  19. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    SciTech Connect

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  20. First examples of oxidizing secondary alcohols to ketones in the presence of the disulfide functional group: synthesis of novel diketone disulfides.

    PubMed

    Fang, X; Bandarage, U K; Wang, T; Schroeder, J D; Garvey, D S

    2001-06-01

    The disulfide functionality is present in a number of organic compounds of interest in the fields of both chemistry and biology. Because the disulfide group is known to be highly susceptible to further oxidation by a wide range of agents, performing a chemoselective oxidation without further oxidizing the disulfide moiety poses a synthetic challenge. Reported herein are the first examples of such a chemoselective oxidation in which a series of novel secondary alcohol disulfides 2a-f have been converted to the corresponding symmetrical diketones 3a-f utilizing a modified Swern oxidation.

  1. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  2. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  3. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  4. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 002 TOXICOLOGICAL REVIEW OF METHYL ISOBUTYL KETONE ( CAS No . 108 - 10 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2003 U.S . Environmental Protection Agency Washington DC DISCLAIMER This document has been reviewed in accordan

  5. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 009 www.epa.gov / iris TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE ( CAS No . 78 - 93 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been r

  6. Substrate-Directed Hydroacylation: Rh-Catalyzed Coupling of Vinyl Phenols and Non-Chelating Aldehydes

    PubMed Central

    Murphy, Stephen K.; Bruch, Achim

    2014-01-01

    We report a protocol for branched-selective hydroacylation of vinylphenols with aryl, alkenyl and alkyl aldehydes. This cross-coupling yields α-aryl ketones that can be cyclized to benzofurans, and it enables access to eupomatenoid natural products in four steps or less from eugenol. Excellent reactivity and high levels of branched regioselectivity are obtained. We propose that aldehyde decarbonylation is overcome by using an anionic directing group on the olefin and a small bite-angle diphosphine ligand. PMID:24478146

  7. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  8. Mechanism of the reactions of alcohols with o-benzynes.

    PubMed

    Willoughby, Patrick H; Niu, Dawen; Wang, Tao; Haj, Moriana K; Cramer, Christopher J; Hoye, Thomas R

    2014-10-01

    We have studied reactions of secondary and primary alcohols with benzynes generated by the hexadehydro-Diels-Alder (HDDA) reaction. These alcohols undergo competitive addition vs dihydrogen transfer to produce aryl ethers vs reduced benzenoid products, respectively. During the latter process, an equivalent amount of oxidized ketone (or aldehyde) is formed. Using deuterium labeling studies, we determined that (i) it is the carbinol C-H and adjacent O-H hydrogen atoms that are transferred during this process and (ii) the mechanism is consistent with a hydride-like transfer of the C-H. Substrates bearing an internal trap attached to the reactive, HDDA-derived benzyne intermediate were used to probe the kinetic order of the alcohol trapping agent in the H2-transfer as well as in the alcohol addition process. The H2-transfer reaction is first order in alcohol. Our results are suggestive of a concerted H2-transfer process, which is further supported by density functional theory (DFT) computational studies and results of a kinetic isotope effect experiment. In contrast, alcohol addition to the benzyne is second order in alcohol, a previously unrecognized phenomenon. Additional DFT studies were used to further probe the mechanistic aspects of the alcohol addition process.

  9. The partitioning of ketones between the gas and aqueous phases

    NASA Astrophysics Data System (ADS)

    Betterton, Eric A.

    Most ketones are not significantly hydrated; they therefore retain their chromophore and they could be photolytically degraded in solution yielding a variety of products including carboxylic acids, aldehydes and radicals. It is difficult to accurately model the partitioning of ketones between the gas phase and aqueous phase because of the lack suitable estimates of the Henry's Law constants; consequently the fate and environmental effects of ketones cannot be confidently predicted. Here we report the experimental determination of the Henry's Law constants of a series of ketones that has yielded a simple straight line equation to predict the Henry's Law constants of simple aliphatic ketones: log H ∗ =0.23Σσ ∗ + 1.51; where H ∗ is the effective Henry's Law constant (M atm -1, and Σσ ∗ is the Taft polar substituents constants. The results for 25°C are (M atm -1) CH 3COCH 3, 32; C 6H 5COCH 3, 110; CH 2ClCOCH 3, 59; CH 3COCOCH 3, 74; CF 3COCH 3, 138. Acetophenone appears to have an abnormally high H ∗. Most low molecular weight aliphatic ketones are predicted to characterized by H ∗⩾30 M atm -1 and therefore they are expected to be found in the aqueous phase at concentrations of ⩾5 - 0.5 μM (given a typical gas-phase concentration range of 1-10 ppbv). The expected rate of decomposition of ketones due to photolysis in hydrometers is briefly discussed.

  10. Alcohol

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Alcohol KidsHealth > For Kids > Alcohol Print A A A What's in this article? ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  11. Highly efficient and direct heterocyclization of dipyridyl ketone to N,N-bidentate ligands

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Dyers, Leon Jr; Mason, Richard Jr; Amoyaw, Prince; Bu, Xiu R.

    2005-01-01

    [reaction: see text] Reaction of various aromatic aldehydes with 2,2'-dipyridyl ketone and ammonium acetate in hot acetic acid provides ready access to a series of substituted 1-pyridylimidazo[1,5-a]pyridines, a class of ligands possessing an N,N-bidentate feature, in good yields.

  12. Fe(III) halides as effective catalysts in carbon-carbon bond formation: synthesis of 1,5-dihalo-1,4-dienes, alpha,beta-unsaturated ketones, and cyclic ethers.

    PubMed

    Miranda, Pedro O; Díaz, David D; Padrón, Juan I; Ramírez, Miguel A; Martín, Víctor S

    2005-01-07

    Iron(III) halides have proven to be excellent catalysts in the coupling of acetylenes and aldehydes. When terminal acetylenes were used the main products obtained were 1,5-dihalo-1,4-dienes with (E,Z)-stereochemistry contaminated in some cases with (E)-alpha,beta-unsaturated ketones. The former carbonyl derivatives were the sole products isolated when nonterminal aromatic alkynes were used. When homopropargylic alcohols were used, a Prins-type cyclization occurred yielding 2-alkyl-4-halo-5,6-dihydro-2H-pyrans. In addition, anhydrous ferric halides are also shown to be excellent catalysts for the standard Prins cyclization with homoallylic alcohols. Isolation of an intermediate acetal, calculations, and alkyne hydration studies provide substantiation of a proposed mechanism.

  13. Enantioselective Reduction of Ketones and Imines Catalyzed by (CN-Box)Re(V)-Oxo Complexes

    PubMed Central

    Nolin, Kristine A.; Ahn, Richard W.; Kobayashi, Yusuke; Kennedy-Smith, Joshua J.

    2012-01-01

    The development and application of chiral, non-racemic Re(V)-oxo complexes to the enantioselective reduction of prochiral ketones is described. In addition to the enantioselective reduction of prochiral ketones, we report the application of these complexes to (1) a tandem Meyer-Schuster rearrangement/reduction to access enantioenriched allylic alcohols and (2) the enantioselective reduction of imines. PMID:20623567

  14. Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824

    PubMed Central

    Fontaine, Lisa; Meynial-Salles, Isabelle; Girbal, Laurence; Yang, Xinghong; Croux, Christian; Soucaille, Philippe

    2002-01-01

    The adhE2 gene of Clostridium acetobutylicum ATCC 824, coding for an aldehyde/alcohol dehydrogenase (AADH), was characterized from molecular and biochemical points of view. The 2,577-bp adhE2 codes for a 94.4-kDa protein. adhE2 is expressed, as a monocistronic operon, in alcohologenic cultures and not in solventogenic cultures. Primer extension analysis identified two transcriptional start sites 160 and 215 bp upstream of the adhE2 start codon. The expression of adhE2 from a plasmid in the DG1 mutant of C. acetobutylicum, a mutant cured of the pSOL1 megaplasmid, restored butanol production and provided elevated activities of NADH-dependent butyraldehyde and butanol dehydrogenases. The recombinant AdhE2 protein expressed in E. coli as a Strep-tag fusion protein and purified to homogeneity also demonstrated NADH-dependent butyraldehyde and butanol dehydrogenase activities. This is the second AADH identified in C. acetobutylicum ATCC 824, and to our knowledge this is the first example of a bacterium with two AADHs. It is noteworthy that the two corresponding genes, adhE and adhE2, are carried by the pSOL1 megaplasmid of C. acetobutylicum ATCC 824. PMID:11790753

  15. Ketones: metabolism's ugly duckling.

    PubMed

    VanItallie, Theodore B; Nufert, Thomas H

    2003-10-01

    Ketones were first discovered in the urine of diabetic patients in the mid-19th century; for almost 50 years thereafter, they were thought to be abnormal and undesirable by-products of incomplete fat oxidation. In the early 20th century, however, they were recognized as normal circulating metabolites produced by liver and readily utilized by extrahepatic tissues. In the 1920s, a drastic "hyperketogenic" diet was found remarkably effective for treatment of drug-resistant epilepsy in children. In 1967, circulating ketones were discovered to replace glucose as the brain's major fuel during the marked hyperketonemia of prolonged fasting. Until then, the adult human brain was thought to be entirely dependent upon glucose. During the 1990s, diet-induced hyperketonemia was found therapeutically effective for treatment of several rare genetic disorders involving impaired neuronal utilization of glucose or its metabolic products. Finally, growing evidence suggests that mitochondrial dysfunction and reduced bioenergetic efficiency occur in brains of patients with Parkinson's disease (PD) and Alzheimer's disease (AD). Because ketones are efficiently used by mitochondria for ATP generation and may also help protect vulnerable neurons from free radical damage, hyperketogenic diets should be evaluated for ability to benefit patients with PD, AD, and certain other neurodegenerative disorders.

  16. Characterization of volatile compounds of Mezcal, an ethnic alcoholic beverage obtained from Agave salmiana.

    PubMed

    De León-Rodríguez, Antonio; González-Hernández, Lidia; Barba de la Rosa, Ana P; Escalante-Minakata, Pilar; López, Mercedes G

    2006-02-22

    Commercial mezcals (white, white with worm, rested, rested with worm, and aged) produced from Agave salmiana were analyzed by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). Thirty-seven compounds were identified, and nine of them were classified as major compounds of mezcal (MCM). Saturated alcohols, ethyl acetate, ethyl 2-hydroxypropanoate, and acetic acid form the MCM group. Minor compounds of mezcal group include other alcohols, aldehydes, ketones, large chain ethyl esters, organic acids, furans, terpenes, alkenes, and alkynes. Most of the compounds found in mezcals in this study are similar to those present in tequilas and other alcoholic beverages. However, mezcals contain unique compounds such as limonene and pentyl butanoate, which can be used as markers for the authenticity of mezcal produced from A. salmiana.

  17. Alcohol

    MedlinePlus

    ... parents and other adults use alcohol socially — having beer or wine with dinner, for example — alcohol seems ... besides just hanging out in someone's basement drinking beer all night. Plan a trip to the movies, ...

  18. A HIGHLY STEREOSELECTIVE, NOVEL COUPLING REACTION BETWEEN ALKYNES WITH ALDEHYDES. (R828129)

    EPA Science Inventory

    In the presence of indium triflate or gallium chloride, a novel coupling between internal alkynes and aldehydes occurred to give unsaturated ketones and [4+1] annulation products.


    Graphical Abstrac...

  19. SmI(2)-promoted oxidation of aldehydes in the presence of electron-rich heteroatoms.

    PubMed

    Smith, Amos B; Lee, Dongjoo; Adams, Christopher M; Kozlowski, Marisa C

    2002-12-12

    [reaction: see text] The Evans-Tishchenko reaction provides an efficient and practical solution for the oxidation of aldehydes possessing sensitive electron-rich heteroatoms to the corresponding esters. Careful selection of the sacrificial beta-hydroxy ketone provides considerable subsequent flexibility to access the desired carboxylic acid.

  20. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  1. Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols.

    PubMed

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki; Fukui, Toshiaki; Xing, Xin-Hui

    2013-04-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent K(m) values for the cofactors NAD(P)(+) and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O-20% 2-propanol and H2O-50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols.

  2. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    PubMed Central

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  3. Stereoselective Reduction of Prochiral Ketones by Plant and Microbial Biocatalysts

    PubMed Central

    Javidnia, K.; Faghih-Mirzaei, E.; Miri, R.; Attarroshan, M.; Zomorodian, K.

    2016-01-01

    Chiral alcohols are the key chiral building blocks to many enantiomerically pure pharmaceuticals. The biocatalytic approach in asymmetric reduction of corresponding prochiral ketones to the preparation of these optically pure substances is one of the most promising routes. The stereoselective reduction of different kinds of prochiral ketones catalyzed by various plants and microorganisms was studied in this work. Benzyl acetoacetate, methyl 3-oxopentanoate, ethyl 3-oxopentanoate, and ethyl butyryl acetate were chosen as the model substrates for β-ketoesters. Benzoyl acetonitrile, 3-chloro propiophenone, and 1-acetyl naphthalene were chosen as aromatic aliphatic ketones. Finally, 2-methyl benzophenone and 4-chloro benzophenone were selected as diaryl ketones. Plant catalysis was conducted by Daucus carota, Brassica rapa, Brassica oleracea, Pastinaca sativa, and Raphnus sativus. For microbial catalysis, Aspergillus foetidus, Penicillum citrinum, Saccharomyces carlbergensis, Pichia fermentans, and Rhodotrula glutinis were chosen. Chiral alcohols were obtained in high yields and with optical purity. A superiority in the microorganisms' performance in the bioreduction of prochiral ketones was detected. Among microorganisms, Rhodotrula glutinis showed remarkable results with nearly all substrates and is proposed for future studies. PMID:27168684

  4. Chromium(II)-catalyzed enantioselective arylation of ketones

    PubMed Central

    Wang, Gang; Sun, Shutao; Mao, Ying; Xie, Zhiyu

    2016-01-01

    The chromium-catalyzed enantioselective addition of carbo halides to carbonyl compounds is an important transformation in organic synthesis. However, the corresponding catalytic enantioselective arylation of ketones has not been reported to date. Herein, we report the first Cr-catalyzed enantioselective addition of aryl halides to both arylaliphatic and aliphatic ketones with high enantioselectivity in an intramolecular version, providing facile access to enantiopure tetrahydronaphthalen-1-ols and 2,3-dihydro-1H-inden-1-ols containing a tertiary alcohol. PMID:28144349

  5. Characterization of five fatty aldehyde dehydrogenase enzymes from Marinobacter and Acinetobacter: structural insights into the aldehyde binding pocket.

    PubMed

    Bertram, Jonathan H; Mulliner, Kalene M; Shi, Ke; Plunkett, Mary H; Nixon, Peter; Serratore, Nicholas A; Douglas, Christopher J; Aihara, Hideki; Barney, Brett M

    2017-04-07

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage, and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid, and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572 and WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal, and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificity of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD(+) cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how the catalysis by the enzyme is accomplished is also provided.Importance: This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids, and provides a likely picture of how the fatty aldehyde and NAD(+) is bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and the comparisons of specificity for the five enzymes that were characterized, correlations may be drawn to the potential roles played by specific residues within the structure.

  6. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    NASA Astrophysics Data System (ADS)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  7. One-pot synthesis of β-acetamido ketones using boric acid at room temperature.

    PubMed

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products.

  8. Synthesis of o-(Dimethylamino)aryl Ketones and Acridones by the Reaction of 1,1-Dialkylhydrazones and Arynes

    PubMed Central

    Dubrovskiy, Anton V.; Larock, Richard C.

    2011-01-01

    A novel, efficient route to biologically and pharmaceutically important o-(dimethylamino)aryl ketones and acridones has been developed starting from readily available 1,1-dimethylhydrazones of aldehydes and o-(trimethylsilyl)aryl triflates. The reaction proceeds under mild conditions, tolerates a wide range of functional groups, and provides the final products in good to excellent yields. PMID:21744843

  9. Alcohol

    MedlinePlus

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria ... change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  10. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  11. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts.

    PubMed

    Liu, Wei-Peng; Yuan, Ming-Lei; Yang, Xiao-Hui; Li, Ke; Xie, Jian-Hua; Zhou, Qi-Lin

    2015-04-11

    Highly efficient iridium catalyzed asymmetric transfer hydrogenation of simple ketones with ethanol as a hydrogen donor has been developed. By using chiral spiro iridium catalysts (S)- a series of alkyl aryl ketones were hydrogenated to chiral alcohols with up to 98% ee.

  12. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    PubMed

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  13. Ketone bodies as signaling metabolites

    PubMed Central

    Newman, John C.; Verdin, Eric

    2014-01-01

    Traditionally, the ketone body β-hydroxybutyrate (βOHB) has been looked upon as a carrier of energy from liver to peripheral tissues during fasting or exercise. However, βOHB also signals via extracellular receptors and acts as an endogenous inhibitor of histone deacetylases (HDACs). These recent findings support a model in which βOHB functions to link the environment, in this case the diet, and gene expression via chromatin modifications. Here, we review the regulation and functions of ketone bodies, the relationship between ketone bodies and calorie restriction, and the implications of HDAC inhibition by the ketone body βOHB in the modulation of metabolism, and diseases of aging. PMID:24140022

  14. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  15. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Wine § 24.183 Use...

  16. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Wine § 24.183 Use...

  17. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.

    PubMed

    Chen, Lu; Bromberger, Paul David; Nieuwenhuiys, Gavin; Hatti-Kaul, Rajni

    2016-01-01

    Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling

  18. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  19. Aldehyde-stabilized cryopreservation.

    PubMed

    McIntyre, Robert L; Fahy, Gregory M

    2015-12-01

    We describe here a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC), which demonstrates the relevance and utility of advanced cryopreservation science for the neurobiological research community. ASC is a new brain-banking technique designed to facilitate neuroanatomic research such as connectomics research, and has the unique ability to combine stable long term ice-free sample storage with excellent anatomical resolution. To demonstrate the feasibility of ASC, we perfuse-fixed rabbit and pig brains with a glutaraldehyde-based fixative, then slowly perfused increasing concentrations of ethylene glycol over several hours in a manner similar to techniques used for whole organ cryopreservation. Once 65% w/v ethylene glycol was reached, we vitrified brains at -135 °C for indefinite long-term storage. Vitrified brains were rewarmed and the cryoprotectant removed either by perfusion or gradual diffusion from brain slices. We evaluated ASC-processed brains by electron microscopy of multiple regions across the whole brain and by Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) imaging of selected brain volumes. Preservation was uniformly excellent: processes were easily traceable and synapses were crisp in both species. Aldehyde-stabilized cryopreservation has many advantages over other brain-banking techniques: chemicals are delivered via perfusion, which enables easy scaling to brains of any size; vitrification ensures that the ultrastructure of the brain will not degrade even over very long storage times; and the cryoprotectant can be removed, yielding a perfusable aldehyde-preserved brain which is suitable for a wide variety of brain assays.

  20. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin.

    PubMed

    Yao, Qingwei; Sheets, Matthew

    2006-07-07

    An air- and moisture-stable SeCSe-Pd(II) pincer complex was synthesized and found to catalyze the nucleophilic allylation of aldehydes with allyltributyltin. The allylation of a variety of aromatic and aliphatic aldehydes to give the corresponding homoallyl alcohols was performed at room temperature to 60 degrees C in yields ranging from 50% (for typical aliphatic aldehydes) to up to 97% (for aromatic aldehydes) using 5 x 10(-3) to 1 mol % of the Pd catalyst. NMR spectroscopic study indicated that a sigma-allylpalladium intermediate was formed and possibly functions as the nucleophilic species that undergoes addition to the aldehydes.

  1. Alcohol conversion

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  2. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    PubMed

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  3. Synthesis of chiral alpha-amino aldehydes linked by their amine function to solid support.

    PubMed

    Cantel, Sonia; Heitz, Annie; Martinez, Jean; Fehrentz, Jean-Alain

    2004-09-01

    The anchoring of an alpha-amino-acid derivative by its amine function on to a solid support allows some chemical reactions starting from the carboxylic acid function. This paper describes the preparation of alpha-amino aldehydes linked to the support by their amine function. This was performed by reduction with LiAlH4 of the corresponding Weinreb amide linked to the resin. The aldehydes obtained were then involved in Wittig or reductive amination reactions. In addition, the linked Weinreb amide was reacted with methylmagnesium bromide to yield the corresponding ketone. After cleavage from the support, the compounds were obtained in good to excellent yields and characterized.

  4. Transition metal free catalytic hydroboration of aldehydes and aldimines by amidinato silane.

    PubMed

    Bisai, Milan Kumar; Pahar, Sanjukta; Das, Tamal; Vanka, Kumar; Sen, Sakya S

    2017-02-21

    The transition metal free catalytic hydroboration of aldehydes and ketones is very limited and has not been reported with a well-defined silicon(iv) compound. Therefore, we chose to evaluate the previously reported silicon(iv) hydride [PhC(NtBu)2SiHCl2], (1) as a single component catalyst and found that it catalyzes the reductive hydroboration of a range of aldehydes with pinacolborane (HBpin) under ambient conditions. In addition, compound 1 can catalyze imine hydroboration. DFT calculation was carried out to understand the mechanism.

  5. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    SciTech Connect

    Tasayco, M.L.; Prestwich, G.D. )

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.

  6. Volatilization of ketones from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1982-01-01

    The overall mass-transfer coefficients for the volatilization from water of acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured simultaneously with the oxygen-absorption coefficient in a laboratory stirred water bath. The liquid-film and gas-film coefficients of the two-film model were determined for the ketones from the overall coefficients, and both film resistances were important for volatilization of the ketones.The liquid-film coefficients for the ketones varied with the 0.719 power of the molecular-diffusion coefficient, in agreement with the literature. The liquid-film coefficients showed a variable dependence on molecular weight, with the dependence ranging from the −0.263 power for acetone to the −0.378 power for 2-octanone. This is in contrast with the literature where a constant −0.500 power dependence on the molecular weight is assumed.The gas-film coefficients for the ketones showed no dependence on molecular weight, in contrast with the literature where a −0.500 power is assumed.

  7. Catalytic ionic hydrogenation of ketones using tungsten or molybdenum organometallic species

    DOEpatents

    Voges, Mark; Bullock, R. Morris

    2000-01-01

    The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes. The functional group is selected from groups represented by the formulas R(C.dbd.O)R' and R(C.dbd.O)H, wherein R and R' are selected from hydrogen or any alkyl or aryl group. The active catalyst for the process has the form: [CpM(CO).sub.2 (PR*.sub.3) L].sup.+ A.sup.-, where Cp=.eta..sup.5 -R.sup..tangle-solidup..sub.m C.sub.5 H.sub.5-m and R.sup..tangle-solidup. represents an alkyl group or a halogen (F, Cl, Br, I) or R.sup..tangle-solidup. =OR' (where R'=H, an alkyl group or an aryl group) or R.sup..tangle-solidup. =CO.sub.2 R' (where R'=H, an alkyl group or an aryl group) and m=0 to 5; M represents a molybdenum atom or a tungsten atom; R*.sub.3 represents three hydrocarbon groups selected from a cyclohexyl group (C.sub.6 H.sub.11), a methyl group (CH.sub.3), and a phenyl group (C.sub.6 H.sub.5) and all three R* groups can be the same or different or two of the three groups can be the same; L represents a ligand; and A.sup.- represents an anion. In another embodiment, one, two or three of the R* groups can be an OR*.

  8. Catalytic ionic hydrogenation of ketones using tungsten or molybdenum catalysts with increased lifetimes

    DOEpatents

    Bullock, R. Morris; Kimmich, Barbara F. M.; Fagan, Paul J.; Hauptman, Elisabeth

    2003-09-02

    The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes and the catalyst used in the process. The reactants include a functional group which is selected from groups represented by the formulas R*(C.dbd.O)R' and R*(C.dbd.O)H, wherein R* and R' are selected from hydrogen or any alkyl or aryl group. The process includes reacting the organic compound in the presence of hydrogen and a catalyst to form a reaction mixture. The catalyst is prepared by reacting Ph.sub.3 C.sup.+ A.sup.- with a metal hydride. A.sup.- represents an anion and can be BF.sub.4.sup.-, PF.sub.6.sup.-, CF.sub.3 SO.sub.3.sup.- or Bar'.sub.4.sup.-, wherein Ar'=3,5-bis(trifluoromethyl)phenyl. The metal hydride is represented by the formula: HM(CO).sub.2 [.eta..sup.5 :.eta..sup.1 --C.sub.5 H.sub.4 (XH.sub.2).sub.n PR.sub.2 ] wherein M represents a molybdenum (Mo) atom or a tungsten (W) atom; X is a carbon atom, a silicon atom or a combination of carbon (C) and silicon (Si) atoms; n is any positive integer; R represents two hydrocarbon groups selected from H, an aryl group and an alkyl group, wherein both R groups can be the same or different. The metal hydride is reacted with Ph.sub.3 C.sup.+ A.sup.- either before reacting with the organic compound or in the reaction mixture.

  9. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gómez-Palomino, Alejandro; Solà, Ricard; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or α- and β-hydroxy ketones.

  10. Triggering the approach of an arene or heteroarene towards an aldehyde via Lewis acid-aldehyde communication.

    PubMed

    Pratihar, Sanjay

    2016-03-14

    The present work reports a combined experimental/computational study of the Lewis acid promoted hydroxyalkylation reaction involving aldehyde and arene/heteroarene and reveals a mechanism in which the rate determining aldehyde to alcohol formation via a four-member cyclic transition state (TS) involves a transfer of hydrogen from arene/heteroarene C-H to aldehyde oxygen with the breaking of the C-H bond and formation of C-C and O-H bonds. The effect of different Sn(iv) derivatives on the hydroxyalkylation reaction from different in situ NMR and computational studies reveals that although the exergonic formation of the intermediate and its gained electrophilicity at the carbonyl carbon drive the reaction in SnCl4 compared to other Sn(iv) derivatives, the overall reaction is low yielding because of its stable intermediate. With respect to different aldehydes, LA promoted hydroxylation was found to be more feasible for an electron withdrawing aldehyde compared to electron rich aldehyde because of lower stability, enhanced electrophilicity gained at the aldehyde center, and a lower activation barrier between its intermediate and TS in the former as compared to the latter. The relative stability of the LA-aldehyde adduct decreases in the order SnCl4 > AlCl3 > InCl3 > BF3 > ZnCl2 > TiCl4 > SiCl4, while the activation barrier (ΔG(#)) between intermediate and transition states increases in the order AlCl3 < SnCl4 < InCl3 < BF3 < TiCl4 < ZnCl2 < SiCl4. On the other hand, the activation barriers in the case of different arenes/heteroarenes are in the order of indole < furan < anisole < thiophene < toluene < benzene < chlorobenzene < cyanobenzene, which suggests a facile reaction in the case of indole and the most difficult reaction in the case of cyanobenzene. The ease of formation of the corresponding diaryl methyl carbocation from the alcohol-LA intermediate is responsible for the determination of the undesired product and is found to be more viable in the case of strong

  11. Mn(0)-mediated chemoselective reduction of aldehydes. Application to the synthesis of α-deuterioalcohols.

    PubMed

    Jiménez, Tania; Barea, Elisa; Oltra, J Enrique; Cuerva, Juan M; Justicia, José

    2010-10-15

    A mild, simple, safe, chemoselective reduction of different kinds of aldehydes to the corresponding alcohols mediated by the Mn dust/water system is described. In addition to this, the use of D(2)O leads to the synthesis of α-deuterated alcohols and constitutes an efficient, inexpensive alternative for the preparation of these compounds.

  12. Synthesis of (α,α-difluoropropargyl)phosphonates via aldehyde-to-alkyne homologation.

    PubMed

    Pajkert, Romana; Röschenthaler, Gerd-Volker

    2013-04-19

    An efficient synthetic methodology to a series of novel alkynes bearing a difluoromethylenephosphonate function via a Corey-Fuchs-type sequence starting from (diethoxyphosphoryl)difluoroacetic aldehyde is described. Dehydrobromination of the intermediate (3,3-dibromodifluoroallyl)phosphonate with potassium tert-butoxide gave rise to the corresponding bromoalkyne, whereas upon treatment with lithium base, the generation of ((diethoxyphosphoryl)difluoropropynyl)lithium has been achieved for the first time. The synthetic potential of this lithium reagent was further demonstrated by its reactions with selected electrophiles such as aldehydes, ketones, triflates, chlorophosphines, and chlorosilanes, leading to the corresponding propargyl phosphonates in good to excellent yields. However, in the case, of sterically hindered aldehydes, (α-fluoroallenyl)phosphonates were the solely isolated products.

  13. Synthesis of o-(dimethylamino)aryl ketones, acridones, acridinium salts, and 1H-indazoles by the reaction of hydrazones and arynes.

    PubMed

    Dubrovskiy, Anton V; Larock, Richard C

    2012-12-21

    A novel, efficient route to biologically and pharmaceutically important o-(dimethylamino)aryl ketones, acridones, acridinium salts, and 1H-indazoles has been developed starting from readily available hydrazones of aldehydes and o-(trimethylsilyl)aryl triflates. The reaction proceeds through arynes under mild conditions, tolerates a wide range of functional groups, and provides the final products in good to excellent yields.

  14. Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water.

    PubMed

    Zhao, Lei-Min; Meng, Qing-Yuan; Fan, Xiang-Bing; Ye, Chen; Li, Xu-Bing; Chen, Bin; Ramamurthy, Vaidhyanathan; Tung, Chen-Ho; Wu, Li-Zhu

    2017-03-06

    Selective oxidation of alcohols to aldehydes/ketones has been achieved with the help of 3-mercaptopropionic acid (MPA)-capped CdSe quantum dot (MPA-CdSe QD) and visible light. Visible-light-prompted electron-transfer reaction initiates the oxidation. The thiyl radical generated from the thiolate anion adsorbed on a CdSe QD plays a key role by abstracting the hydrogen atom from the C-H bond of the alcohol (R(1) CH(OH)R(2) ). The reaction shows high efficiency, good functional group tolerance, and high site-selectivity in polyhydroxy compounds. The generality and selectivity reported here offer a new opportunity for further applications of QDs in organic transformations.

  15. OLFACTORY RESPONSES OF BLOWFLIES TO ALIPHATIC ALDEHYDES

    PubMed Central

    Dethier, V. G.

    1954-01-01

    The response of the blowfly Phormia regina to stimulation by aldehydes in the vapor phase has been studied by means of a specially designed olfactometer. The median rejection threshold and the maximum acceptance threshold were selected as criteria of response. For both acceptance and rejection the distribution of thresholds in the population is normal with respect to the logarithm of concentration. When thresholds are expressed as molar concentrations, the values decrease progressively as chain length is increased. There is no attraction beyond decanal and no rejection beyond dodecanal. When thresholds are expressed as activities, most members of the aldehyde series are approximately equally stimulating at rejection and equally stimulating at acceptance. The relationship is most exact over the middle range of chain lengths. There is a tendency for the terminal members to stimulate at higher activities. These relationships are in close agreement with those which were found earlier to apply to the normal aliphatic alcohols. The similarity between the relative actions of the members of the two series suggests that the relation of equal olfactory stimulation at equal thermodynamic activities by homologous aliphatic compounds at least for homologues of intermediate chain length may be of rather general application in olfaction. PMID:13174780

  16. Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.

    2007-01-01

    Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.

  17. Catalytic conversion of aliphatic alcohols on carbon nanomaterials: The roles of structure and surface functional groups

    NASA Astrophysics Data System (ADS)

    Tveritinova, E. A.; Zhitnev, Yu. N.; Chernyak, S. A.; Arkhipova, E. A.; Savilov, S. V.; Lunin, V. V.

    2017-03-01

    Carbon nanomaterials with the structure of graphene and different compositions of the surface groups are used as catalysts for the conversion of C2-C4 aliphatic alcohols. The conversions of ethanol, propanol- 1, propanol-2, butanol-1, butanol-2, and tert-butanol on carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are investigated. Oxidized and nonoxidized multiwalled carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are synthesized. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning and transmission electronic microscopies, Brunauer-Emmett-Teller method, derivatographic analyses, and the pulsed microcatalytic method are used to characterize comprehensively the prepared catalysts. It was established that all of the investigated carbon nanomaterials (with the exception of nondoped carbon nanoflakes) are bifunctional catalysts for the conversion of aliphatic alcohols, and promote dehydration reactions with the formation of olefins and dehydrogenation reactions with the formation of aldehydes or ketones. Nanoflakes doped with nitrogen are inert with respect to secondary alcohols and tert-butanol. The role of oxygen-containing and nitrogen-containing surface groups, and of the geometrical structure of the carbon matrix of graphene nanocarbon materials in the catalytic conversion of aliphatic alcohols, is revealed. Characteristics of the conversion of aliphatic alcohols that are associated with their structure are identified.

  18. A DFT study on the reaction pathways for carbon-carbon bond-forming reactions between propargylic alcohols and alkenes or ketones catalyzed by thiolate-bridged diruthenium complexes.

    PubMed

    Sakata, Ken; Miyake, Yoshihiro; Nishibayashi, Yoshiaki

    2009-01-05

    The reaction pathways of two types of the carbon-carbon bond-forming reactions catalyzed by thiolate-bridged diruthenium complexes have been investigated by density-functional-theory calculations. It is clarified that both carbon-carbon bond-forming reactions proceed through a ruthenium-allenylidene complex as a common reactive intermediate. The attack of pi electrons on propene or the vinyl alcohol on the ruthenium-allenylidene complex is the first step of the reaction pathways. The reaction pathways are different after the attack of nucleophiles on the ruthenium-alkynyl complex. In the reaction with propene, the carbon-carbon bond-forming reaction proceeds through a stepwise process, whereas in the reaction with vinyl alcohol, it proceeds through a concerted process. The interactions between the ruthenium-allenylidene complex and propene or vinyl alcohol have been investigated by applying a simple way of looking at orbital interactions.

  19. Characterisation of aroma volatiles of indigenous alcoholic beverages: burukutu and pito.

    PubMed

    Onyenekwe, Paul C; Erhabor, Graham Osas; Akande, Sarah A

    2016-01-01

    Pito and burukutu are indigenous alcoholic beverages in Nigeria, and are fermentation products of Sorghum bicolor and Sorghum vulgare. The production is similar to that of beer, which involves steeping, malting, mashing and fermenting. A total of 30 volatile organic compounds were identified by gas chromatography. These compounds can be broadly grouped into alkanols, phenols, acids, esters, ketones and aldehydes. Although few acids are present, they are dominant (30.887% and 27.669%) and followed by esters (26.467% and 27.442%) in pito and burukutu, respectively. Alkanols constitute the next dominant group after acids and esters; however, ethanol was not identified as a constituent. The health and social implication of the constituents are explained.

  20. Diastereoselective Radical Hydroacylation of Alkylidenemalonates with Aliphatic Aldehydes Initiated by Photolysis of Hypervalent Iodine(III) Reagents.

    PubMed

    Selvakumar, Sermadurai; Sakamoto, Ryu; Maruoka, Keiji

    2016-05-04

    Diastereoselective radical hydroacylation of chiral alkylidenemalonates with aliphatic aldehydes is realized by the combination of a hypervalent iodine(III) reagent and UV-light irradiation. The reaction is initiated by the photolysis of hypervalent iodine(III) reagents under mild, metal-free conditions, and is the first example of diastereoselective addition of acyl radicals to olefins to afford chiral ketones in a highly stereoselective fashion. The obtained optically active ketones are useful chiral synthons, as exemplified by the short formal synthesis of (-)-methyleneolactocin.

  1. [The role of hepatic and erythrocyte aldehyde dehydrogenase in the development of burn toxemia in rats].

    PubMed

    Solov'eva, A G

    2009-01-01

    The study was designed to examine catalytic properties of non-specific aldehyde dehydrogenase from rat liver and erythrocyte as the main markers of endogenous intoxication after burn. Enzymatic activity was assayed from changes in the rate of NADH synthesis during acetaldehyde oxidation. Burn was shown to decrease it both in the liver and in erythrocytes which resulted in the accumulation of toxic aldehydes and the development of intoxication. Simultaneous fall in alcohol dehydrogenase and lactate dehydrogenase activities is supposed to contribute to the decrease of aldehyde dehydrogenase activity as a result of thermal injury.

  2. Ketone body metabolism and cardiovascular disease

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.

    2013-01-01

    Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451

  3. Asymmetric Synthesis of Tertiary Benzylic Alcohols

    PubMed Central

    Antczak, Monika I.; Cai, Feng; Ready, Joseph M.

    2010-01-01

    Vinyl, aryl and alkynyl organometallics add to ketones containing a stereogenic sulfoxide. Tertiary alcohols are generated in diastereomerically and enantiomerically pure form. Reductive lithiation converts the sulfoxide into a variety of useful functional groups. PMID:21142190

  4. Acyclovir-induced nephrotoxicity: the role of the acyclovir aldehyde metabolite.

    PubMed

    Gunness, Patrina; Aleksa, Katarina; Bend, John; Koren, Gideon

    2011-11-01

    For decades, acyclovir-induced nephrotoxicity was believed to be secondary to crystalluria. Clinical evidence of nephrotoxicity in the absence of crystalluria suggests that acyclovir induces direct insult to renal tubular cells. We postulated that acyclovir is metabolized by the alcohol dehydrogenase (ADH) enzyme to acyclovir aldehyde, which is metabolized by the aldehyde dehydrognase 2 (ALDH2) enzyme to 9-carboxymethoxymethylguanine (CMMG). We hypothesized that acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity. Human renal proximal tubular (HK-2) cells were used as our in vitro model. Western blot and enzymes activities assays were performed to determine whether the HK-2 cells express ADH and ALDH2 isozymes, respectively. Cytotoxicity (measured as a function of cell viability) assays were conducted to determine (1) whether the acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity and (2) whether CMMG induces cell death. A colorimetric assay was performed to determine whether acyclovir was metabolized to an aldehyde in vitro. Our results illustrated that (1) HK-2 cells express ADH and ALDH2 isozymes, (2) 4-methylpyrazole rendered significant protection against cell death, (3) CMMG does not induce cell death, and (4) acyclovir was metabolized to an aldehyde in tubular cells. These data indicate that acyclovir aldehyde is produced in HK-2 cells and that inhibition of its production by 4-methylpyrazole offers significant protection from cell death in vitro, suggesting that acyclovir aldehyde may cause the direct renal tubular insult associated with acyclovir.

  5. Highly functionalized tertiary-carbinols and carbinamines from the asymmetric γ-alkoxyallylboration of ketones and ketimines with the borabicyclodecanes.

    PubMed

    Muñoz-Hernández, Lorell; Seda, Luis A; Wang, Bo; Soderquist, John A

    2014-08-01

    The first asymmetric γ-alkoxyallylboration of representative ketones provides β-alkoxy tert-homoallylic alcohols 10 whose diastereoselectivities range from 99% syn (acetophenone) to 99% anti (pinacolone) both with high ee (>95%). This distribution is attributable to the c/t isomerization of the BBD reagents and the greater reactivity of 7 vs 1 and of aromatic vs alkyl ketones. A ketone-based direct synthesis of a fostriecin intermediate and the tert-amine 26 are reported, each with high selectivities.

  6. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food.

    PubMed

    Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek

    2010-01-01

    Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in

  7. Oxidative metabolism: glucose versus ketones.

    PubMed

    Prince, Allison; Zhang, Yifan; Croniger, Colleen; Puchowicz, Michelle

    2013-01-01

    The coupling of upstream oxidative processes (glycolysis, beta-oxidation, CAC turnover) to mitochondrial oxidative phosphorylation (OXPHOS) under the driving conditions of energy demand by the cell results in the liberation of free energy as ATP. Perturbations in glycolytic CAC or OXPHOS can result in pathology or cell death. To better understand whole body energy expenditure during chronic ketosis, we used a diet-induced rat model of ketosis to determine if high-fat-carbohydrate-restricted "ketogenic" diet results in changes in total energy expenditure (TEE). Consistent with previous reports of increased energy expenditure in mice, we hypothesized that rats fed ketogenic diet for 3 weeks would result in increased resting energy expenditure due to alterations in metabolism associated with a "switch" in energy substrate from glucose to ketone bodies. The rationale is ketone bodies are a more efficient fuel than glucose. Indirect calorimetric analysis revealed a moderate increase in VO2 and decreased VCO2 and heat with ketosis. These results suggest ketosis induces a moderate uncoupling state and less oxidative efficiency compared to glucose oxidation.

  8. Ketones suppress brain glucose consumption.

    PubMed

    LaManna, Joseph C; Salem, Nicolas; Puchowicz, Michelle; Erokwu, Bernadette; Koppaka, Smruta; Flask, Chris; Lee, Zhenghong

    2009-01-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as beta-hydroxybutyrate (beta HB) and acetoacetate (AcAc), as occurs with fasting, prolonged starvation or chronic feeding of a high fat/low carbohydrate diet (ketogenic diet). In this study, the local cerebral metabolic rate of glucose consumption (CMRglu; microM/min/100g) was calculated in the cortex and cerebellum of control and ketotic rats using Patlak analysis. Rats were imaged on a rodent PET scanner and MRI was performed on a 7-Tesla Bruker scanner for registration with the PET images. Plasma glucose and beta HB concentrations were measured and 90-minute dynamic PET scans were started simultaneously with bolus injection of 2-Deoxy-2[18F]Fluoro-D-Glucose (FDG). The blood radioactivity concentration was automatically sampled from the tail vein for 3 min following injection and manual periodic blood samples were taken. The calculated local CMRGlu decreased with increasing plasma BHB concentration in the cerebellum (CMRGlu = -4.07*[BHB] + 61.4, r2 = 0.3) and in the frontal cortex (CMRGlu = -3.93*[BHB] + 42.7, r2 = 0.5). These data indicate that, under conditions of ketosis, glucose consumption is decreased in the cortex and cerebellum by about 10% per each mM of plasma ketone bodies.

  9. Catalytic Synthesis of N-Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents.

    PubMed

    Luescher, Michael U; Bode, Jeffrey W

    2015-09-07

    Commercially available SnAP (stannyl amine protocol) reagents allow the transformation of aldehydes and ketones into a variety of N-unprotected heterocycles. By identifying new ligands and reaction conditions, a robust catalytic variant that expands the substrate scope to previously inaccessible heteroaromatic substrates and new substitution patterns was realized. It also establishes the basis for a catalytic enantioselective process through the use of chiral ligands.

  10. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: a promising biocatalyst for an asymmetric hydrogen transfer bioreduction.

    PubMed

    Inoue, Kousuke; Makino, Yoshihide; Itoh, Nobuya

    2005-07-01

    To find microorganisms that could reduce phenyl trifluoromethyl ketone (PTK) to (S)-1-phenyltrifluoroethanol [(S)-PTE], styrene-assimilating bacteria (ca. 900 strains) isolated from soil samples were screened. We found that Leifsonia sp. strain S749 was the most suitable strain for the conversion of PTK to (S)-PTE in the presence of 2-propanol as a hydrogen donor. The enzyme corresponding to the reaction was purified homogeneity, characterized and designated Leifsonia alcohol dehydrogenase (LSADH). The purified enzyme had a molecular weight of 110,000 and was composed of four identical subunits (molecular weight, 26,000). LSADH required NADH as a cofactor, showed little activity with NADPH, and reduced a wide variety of aldehydes and ketones. LSADH catalyzed the enantioselective reduction of some ketones with high enantiomeric excesses (e.e.): PTK to (S)-PTE (>99% e.e.), acetophenone to (R)-1-phenylethanol (99% e.e.), and 2-heptanone to (R)-2-heptanol (>99% e.e.) in the presence of 2-propanol without an additional NADH regeneration system. Therefore, it would be a useful biocatalyst.

  11. Discovery and exploitation of AZADO: the highly active catalyst for alcohol oxidation.

    PubMed

    Iwabuchi, Yoshiharu

    2013-01-01

    The oxidation of primary and secondary alcohols to the corresponding aldehydes (or carboxylic acids) or ketones is a fundamental transformation in organic synthesis. Stable organic nitroxyl radicals as represented by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (1) have been used extensively to catalyze the oxidation of a number of alcohol substrates employing environmentally benign co-oxidants such as bleach (NaOCl) or PhI(OAc)2. Although TEMPO oxidation is better known as a method for selective oxidation of primary alcohols to the corresponding aldehydes, the TEMPO-based method is not very efficient for the oxidation of structurally hindered secondary alcohols. We designed and synthesized 2-azaadamantane N-oxyl [AZADO (11)] and 1-Me-AZADO (20), a structurally less hindered class of nitroxyl radical. AZADOs were found to exhibit excellent catalytic activity enabling oxidation of a variety of alcohols with which TEMPO exhibits poor reactivity. Based on structure-activity relationships (SAR) employing AZADO (11), 1-Me-AZADO (20), 1,3-dimethyl-AZADO (33), 9-azabicyclo[3.3.1]nonane-N-oxyl [ABNO (34)] and 9-azanoradamantane N-oxyl [Nor-AZADO (37)], we concluded that the α-methyl group flanked nearby the nitroxyl group affects the reactivity for the oxidation of sterically hindered alcohols and the azaadamantane skeleton contributes to the high turnover of the catalyst. The highly active nature of AZADOs spurred us to exploit their further use in alcohol oxidations. A facile, green, one-pot oxidation of primary alcohols to carboxylic acids with broad substrate applicability has been developed by employing an expedient catalytic system consisting of the oxoammonium salt [1-Me-AZADO(+)X(-) (X=Cl, BF4)]/NaClO2. The synthetic use of AZADOs and the related nitroxyl radicals/oxoammonium salts-based methods for alcohol oxidation have been demonstrated in several total syntheses of natural products. We also describe the development of a Nor-AZADO (37)/DIAD/AcOH method that

  12. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  13. Phototautomerization of Acetaldehyde to Vinyl Alcohol: A Primary Process in UV-Irradiated Acetaldehyde from 295 to 335 nm.

    PubMed

    Clubb, Alexander E; Jordan, Meredith J T; Kable, S H; Osborn, David L

    2012-12-06

    The concentrations of organic acids, key species in the formation of secondary organic aerosols, are underestimated by atmospheric chemistry models by a factor of ∼2. Vinyl alcohol (VA, CH2═CHOH, ethenol) has been suggested as a precursor to formic acid, but sufficient tropospheric sources of VA have not been identified. Here, we show that VA is formed upon irradiation of neat acetaldehyde (CH3CHO) in the actinic ultraviolet region, between 295 and 330 nm. Besides the well-known photochemical products CO and CH4, we infer up to a 15% quantum yield of VA at 20 Torr acetaldehyde pressure and a photolysis wavelength of 330 nm. The experiments confirm a recent model predicting phototautomerization of acetaldehyde to VA and imply that photolysis of small aldehydes and ketones could provide tropospheric sources of enols sufficient to impact organic acid budgets. We also report absolute infrared absorption cross sections of VA.

  14. Storage stability of ketones on carbon adsorbents.

    PubMed

    Prado, C; Alcaraz, M J; Fuentes, A; Garrido, J; Periago, J F

    2006-09-29

    Activated coconut carbon constitutes the more widely used sorbent for preconcentration of volatile organic compounds in sampling workplace air. Water vapour is always present in the air and its adsorption on the activated carbon surface is a serious drawback, mainly when sampling polar organic compounds, such as ketones. In this case, the recovery of the compounds diminishes; moreover, ketones can be decomposed during storage. Synthetic carbons contain less inorganic impurities and have a lower capacity for water adsorption than coconut charcoal. The aim of this work was to evaluate the storage stability of various ketones (acetone, 2-butanone, 4-methyl-2-pentanone and cyclohexanone) on different activated carbons and to study the effect of adsorbed water vapour under different storage conditions. The effect of storage temperature on extraction efficiencies was significant for each ketone in all the studied sorbents. Recovery was higher when samples were stored at 4 degrees C. The results obtained for storage stability of the studied ketones showed that the performance of synthetic carbons was better than for the coconut charcoals. The water adsorption and the ash content of the carbons can be a measure of the reactive sites that may chemisorb ketones or catalize their decomposition. Anasorb 747 showed good ketone stability at least for 7 days, except for cyclohexanone. After 30-days storage, the stability of the studied ketones was excellent on Carboxen 564. This sorbent had a nearly negligible ash content and the adsorbed water was much lower than for the other sorbents tested.

  15. Fueling Performance: Ketones Enter the Mix.

    PubMed

    Egan, Brendan; D'Agostino, Dominic P

    2016-09-13

    Ketone body metabolites serve as alternative energy substrates during prolonged fasting, calorie restriction, or reduced carbohydrate (CHO) availability. Using a ketone ester supplement, Cox et al. (2016) demonstrate that acute nutritional ketosis alters substrate utilization patterns during exercise, reduces lactate production, and improves time-trial performance in elite cyclists.

  16. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  17. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    PubMed

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO < CH3CHO < CH3COCH3 (the highest yield being 10(-4) times lower than the initial ˙CH2OO˙ concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  18. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  19. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii.

    PubMed Central

    Ismaiel, A A; Zhu, C X; Colby, G D; Chen, J S

    1993-01-01

    Two primary alcohols (1-butanol and ethanol) are major fermentation products of several clostridial species. In addition to these two alcohols, the secondary alcohol 2-propanol is produced to a concentration of about 100 mM by some strains of Clostridium beijerinckii. An alcohol dehydrogenase (ADH) has been purified to homogeneity from two strains (NRRL B593 and NESTE 255) of 2-propanol-producing C. beijerinckii. When exposed to air, the purified ADH was stable, whereas the partially purified ADH was inactivated. The ADHs from the two strains had similar structural and kinetic properties. Each had a native M(r) of between 90,000 and 100,000 and a subunit M(r) of between 38,000 and 40,000. The ADHs were NADP(H) dependent, but a low level of NAD(+)-linked activity was detected. They were equally active in reducing aldehydes and 2-ketones, but a much lower oxidizing activity was obtained with primary alcohols than with secondary alcohols. The kcat/Km value for the alcohol-forming reaction appears to be a function of the size of the larger alkyl substituent on the carbonyl group. ADH activities measured in the presence of both acetone and butyraldehyde did not exceed activities measured with either substrate present alone, indicating a common active site for both substrates. There was no similarity in the N-terminal amino acid sequence between that of the ADH and those of fungi and several other bacteria. However, the N-terminal sequence had 67% identity with those of two other anaerobes, Thermoanaerobium brockii and Methanobacterium palustre. Furthermore, conserved glycine and tryptophan residues are present in ADHs of these three anaerobic bacteria and ADHs of mammals and green plants. Images PMID:8349550

  20. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    PubMed

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass.

  1. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases

    SciTech Connect

    Khanna, Mary; Chen, Che-Hong; Kimble-Hill, Ann; Parajuli, Bibek; Perez-Miller, Samantha; Baskaran, Sulochanadevi; Kim, Jeewon; Dria, Karl; Vasiliou, Vasilis; Mochly-Rosen, Daria; Hurley, Thomas D.

    2012-10-23

    Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated {beta}-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype.

  2. Palladium and platinum catalyzed addition of allylstannanes to aldehydes and imines

    SciTech Connect

    Nakamura, Hiroyuki; Yamamoto, Yoshinori

    1995-12-31

    The reaction of allylstannanes with aldehydes in THF was catalyzed by Pd(II) or Pt(II) complexes (10 mole %) either at room temperature or at reflux, giving the corresponding homoallyl alcohols in high to good yields. Among the catalysts examined, PtCl{sub 2}(PPh{sub 3}){sub 2} gave the best result. Aromatic, aliphatic, and {alpha},{beta}-unsaturated aldehydes can be utilized and even cyclohexanone undergoes the allylation reaction. Allyl and methallyltributylstannane reacted very smoothly. Crotyltributylstannane also reacted with aldehydes to give the branched homoallyl alcohols in good yields, but the reaction speed was slower than that of allylstannane. Detailed mechanistic studies of the Pd(II) catalyzed allylation, using NMR spectra, revealed that bis-{pi}-allyl palladium 5 is a key intermediate for the catalytic cycle and it exhibits nucleophilic reactivity.

  3. Transition-metal-free coupling reaction of vinylcyclopropanes with aldehydes catalyzed by tin hydride.

    PubMed

    Ieki, Ryosuke; Kani, Yuria; Tsunoi, Shinji; Shibata, Ikuya

    2015-04-13

    Donor-acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition-metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2 SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2 SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition-metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor-acceptor cyclopropanes.

  4. Metathesis reactions of tris(adamantylimido)methylrhenium and aldehydes and imines

    SciTech Connect

    Wang, W.D.; Espenson, J.H.

    1999-11-22

    The tris(imido)methylrhenium compound CH{sub 3}Re(NAd){sub 3} (Ad = 1-adamantyl) was prepared and characterized. It reacts with aromatic aldehydes ArCHO forming the imines ArCH{double{underscore}bond} NAd. The reaction occurs in three stages, during which CH{sub 3}Re(NAd){sub 2}O and CH{sub 3}Re(NAd)O{sub 2} could be detected. In the third and slowest stage CH{sub 3}ReO{sub 3} (MTO) was formed, eventually in quantitative yield. The second-order rate constant for PhCHO in C{sub 6}D{sub 6} at 298 K is 1.4 x 10{sup {minus}4} L/mol s. Electron-donating substituents at the para-position of ArCHO cause a significant diminution in rate. Treated by the Hammett equation, the reaction constant is {rho} = +0.90. The reactions between CH{sub 3}Re(NAd){sub 3} and linear aliphatic aldehydes occur much faster than do reactions of nonlinear aliphatic or aromatic aldehydes, indicating an important steric effect. Ketones do not react. The imidorhenium complex evidently undergoes a metathesis reaction with the aldehyde. Analogously, CH{sub 3}Re(NAd){sub 3} reacts with imines. Imine-imine metathesis is catalyzed by MTO homogeneously and by MTO supported on Nb{sub 2}O{sub 5}.

  5. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  6. The Potential of Photochemical Transition Metal Reactions in Prebiotic Organic Synthesis. I. Observed Conversion of Methanol into Ethylene Glycol as Possible Prototype for Sugar Alcohol Formation

    NASA Astrophysics Data System (ADS)

    Eisch, John J.; Munson, Peter R.; Gitua, John N.

    2004-10-01

    Photochemical processes involving redox reactions between metal ions and organic substrates possess the versatile potential for having harnessed solar energy for prebiotic organic synthesis. The present study in our Laboratory has shown that ultraviolet irradiation of transition metal ions such as of Ni, Co, Fe, Cu and Ti dissolved in primary or secondary alcohols causes photoreduction of the metal ions with the concomitant oxidation of the alcohol to aldehyde or ketone. An observed accompaniment of this novel `light' reaction has been the known `dark' pinacol reaction, whereby the carbonyl derivative underwent bimolecular coupling to the diol by the photogenerated reduced transition metal reagent. These tandem `light-dark' processes possess the potential for the stepwise synthesis of dimeric 1,2-diols from simpler alcohols under conditions that might have prevailed on the prebiotic earth. Experiments reported here have demonstrated that such a tandem `light-dark' conversion of methanol into ethylene glycol, via formaldehyde, does in fact occur, when nickel(II) acetylacetonate solutions in methanol undergo prolonged irradiation at 185-254 nm. Since ethylene glycol can be considered as the simplest sugar alcohol, these findings may provide novel insight into the prebiotic oligomerization of formaldehyde into higher sugar alcohols or even sugars.

  7. Biogenic aldehyde(s) derived from the action of monoamine oxidase may mediate the antidipsotropic effect of daidzin.

    PubMed

    Keung, W M

    2001-01-30

    Daidzin, a major active principle of an ancient herbal treatment for 'alcohol addiction', was first shown to suppress ethanol intake in Syrian golden hamsters. Since then this activity has been confirmed in Wistar rats, Fawn hooded rats, genetically bred alcohol preferring P rats and African green moneys under various experimental conditions, including two-level operant, two-bottle free-choice, limited access, and alcohol-deprivation paradigms. In vitro, daidzin is a potent and selective inhibitor of mitochondrial aldehyde dehydrogenase (ALDH-2). However, in vivo, it does not affect overall acetaldehyde metabolism in golden hamsters. Using isolated hamster liver mitochondria and 5-hydroxytryptamine (5-HT) and dopamine (DA) as the substrates, we demonstrated that daidzin inhibits the second but not the first step of the MAO/ALDH-2 pathway, the major pathway that catalyzes monoamine metabolism in mitochondria. Correlation studies using structural analogs of daidzin led to the hypothesis that the mitochondrial MAO/ALDH-2 pathway may be the site of action of daidzin and that one or more biogenic aldehydes such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or DOPAL derived from the action of monoamine oxidase (MAO) may be mediators of its antidipsotropic action.

  8. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    SciTech Connect

    Kamiguchi, Satoshi; Okumura, Kazu; Nagashima, Sayoko; Chihara, Teiji

    2015-12-15

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is stored in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.

  9. Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines

    SciTech Connect

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM; Helm, Monte L.; Appel, Aaron M.

    2014-09-05

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidation with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  10. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  11. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, J.P.; Evans, R.J.

    1987-04-06

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  12. Microsphere coated substrate containing reactive aldehyde groups

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  13. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  14. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism

    PubMed Central

    Bromberger, Paul David; Nieuwenhuiys, Gavin; Hatti-Kaul, Rajni

    2016-01-01

    Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling

  15. Safety assessment of MIBK (methyl isobutyl ketone).

    PubMed

    Johnson, Wilbur

    2004-01-01

    MIBK (Methyl Isobutyl Ketone) is an aliphatic ketone that functions as both a denaturant and solvent in cosmetic products. Current use in cosmetic products is very limited, but MIBK is reported to be used in one nail correction pen (volume = 3 ml) at a concentration of 21%. The maximum percutaneous absorption rate in guinea pigs is 1.1 micromol/min/cm2 at 10 to 45 min. Metabolites include 4-hydroxy-4-methyl-2-pentanone (oxidation product) and 4-methyl-2-pentanol (4-MPOL) (reduction product). Values for the serum half-life and total clearance time of MIBK in animals were 66 min and 6 h, respectively. In clinical tests, most of the absorbed MIBK had been eliminated from the body 90 min post exposure. MIBK was not toxic via the oral or dermal route of exposure in acute, short-term, or subchronic animal studies, except that nephrotoxicity was observed in rats dosed with 1 g/kg in a short-term study. MIBK was an ocular and skin irritant in animal tests. Ocular irritation was noted in 12 volunteers exposed to 200 ppm MIBK for 15 min in a clinical test. A depression of the vestibulo-oculomotor reflex was seen with intravenous infusion of MIBK (in an emulsion) at 30 microM/kg/min in female rats. The no-observed-effect level in rats exposed orally to MIBK was 50 mg/kg. Both gross and microscopic evidence of lung damage were reported in acute inhalation toxicity studies in animals. Short-term and subchronic inhalation exposures (as low as 100 ppm) produced effects in the kidney and liver that were species and sex dependent. Dermal doses of 300 or 600 mg/kg for 4 months in rats produced reduced mitotic activity in hair follicles, increased thickness of horny and granular cell layers of the epidermis, a decrease in the number of reactive centers in follicles (spleen), an increase in the number of iron-containing pigments in the area of the red pulp (spleen), and a reduction in the lipid content of the cortical layer of the adrenal glands. Neuropathological changes in the most

  16. An algorithm for the deconvolution of mass spectroscopic patterns in isotope labeling studies. Evaluation for the hydrogen-deuterium exchange reaction in ketones.

    PubMed

    Gruber, Christian C; Oberdorfer, Gustav; Voss, Constance V; Kremsner, Jennifer M; Kappe, C Oliver; Kroutil, Wolfgang

    2007-07-20

    An easy to use computerized algorithm for the determination of the amount of each labeled species differing in the number of incorporated isotope labels based on mass spectroscopic data is described and evaluated. Employing this algorithm, the microwave-assisted synthesis of various alpha-labeled deuterium ketones via hydrogen-deuterium exchange with deuterium oxide was optimized with respect to time, temperature, and degree of labeling. For thermally stable ketones the exchange of alpha-protons was achieved at 180 degrees C within 40-200 min. Compared to reflux conditions, the microwave-assisted protocol led to a reduction of the required reaction time from 75-94 h to 40-200 min. The alpha-labeled deuterium ketones were reduced by biocatalytic hydrogen transfer to the corresponding enantiopure chiral alcohols and the deconvolution algorithm validated by regression analysis of a mixture of labeled and unlabeled ketones/alcohols.

  17. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.

    PubMed

    Li, Yan-Yun; Yu, Shen-Luan; Shen, Wei-Yi; Gao, Jing-Xing

    2015-09-15

    Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4

  18. The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat.

    PubMed Central

    Shaw, S; Jayatilleke, E

    1990-01-01

    Hepatic lipid peroxidation has been implicated in the pathogenesis of alcohol-induced liver injury, but the mechanism(s) by which ethanol metabolism or resultant free radicals initiate lipid peroxidation is not fully defined. The role of the molybdenum-containing enzymes aldehyde oxidase and xanthine oxidase in the generation of such free radicals was investigated by measuring alkane production (lipoperoxidation products) in isolated rat hepatocytes during ethanol metabolism. Inhibition of aldehyde oxidase and xanthine oxidase (by feeding tungstate at 100 mg/day per kg) decreased alkane production (80-95%), whereas allopurinol (20 mg/kg by mouth), a marked inhibitor of xanthine oxidase, inhibited alkane production by only 35-50%. Addition of acetaldehyde (0-100 microM) (in the presence of 50 microM-4-methylpyrazole) increased alkane production in a dose-dependent manner (Km of aldehyde oxidase for acetaldehyde 1 mM); menadione, an inhibitor of aldehyde oxidase, virtually inhibited alkane production. Desferrioxamine (5-10 microM) completely abolished alkane production induced by both ethanol and acetaldehyde, indicating the importance of catalytic iron. Thus free radicals generated during the metabolism of acetaldehyde by aldehyde oxidase may be a fundamental mechanism in the initiation of alcohol-induced liver injury. PMID:2363695

  19. DIFFERENTIATING THE TOXICITY OF CARCINOGENIC ALDEHYDES FROM NONCARCINOGENIC ALDEHYDES IN THE RAT NOSE USING CDNA ARRAYS

    EPA Science Inventory

    Differentiating the Toxicity of Carcinogenic Aldehydes from Noncarcinogenic Aldehydes in the Rat Nose Using cDNA Arrays.

    Formaldehyde is a widely used aldehyde in many industrial settings, the tanning process, household products, and is a contaminant in cigarette smoke. H...

  20. Synthesis of o-(Dimethylamino)aryl Ketones, Acridones, Acridinium Salts, and 1H-Indazoles by the Reaction of Hydrazones and Arynes

    PubMed Central

    Dubrovskiy, Anton V.; Larock, Richard C.

    2012-01-01

    A novel, efficient route to biologically and pharmaceutically important o-(dimethylamino)aryl ketones, acridones, acridinium salts, and 1H-indazoles has been developed starting from readily available hydrazones of aldehydes and o-(trimethylsilyl)aryl triflates. The reaction proceeds through arynes under mild conditions, tolerates a wide range of functional groups, and provides the final products in good to excellent yields. PMID:23206164

  1. Asymmetric reduction of α-amino ketones with a KBH4 solution catalyzed by chiral Lewis acids.

    PubMed

    He, Peng; Zheng, Haifeng; Liu, Xiaohua; Lian, Xiangjin; Lin, Lili; Feng, Xiaoming

    2014-10-13

    An efficient enantioselective reduction of α-amino ketones with potassium borohydride solution catalyzed by chiral N,N'-dioxide-metal complex catalysts was accomplished under mild reaction conditions for the first time. It provided a simple, convenient, and practical approaches for obtaining synthetically important chiral β-amino alcohols in good to excellent yields (up to 98%) and enantioselectivities (up to 97% ee).

  2. Transfer hydrogenation using recyclable polyurea-encapsulated palladium: efficient and chemoselective reduction of aryl ketones.

    PubMed

    Yu, Jin-Quan; Wu, Hai-Chen; Ramarao, Chandrashekar; Spencer, Jonathan B; Ley, Steven V

    2003-03-21

    A robust and recyclable palladium catalyst [Pd0EnCat] has been prepared by ligand exchange of polyurea-encapsulated palladium(II) acetate with formic acid, resulting in deposition of Pd(0) in the support material; Pd0EnCat is shown to be a highly efficient transfer hydrogenation catalyst for chemoselective reduction of a wide range of aryl ketones to benzyl alcohols.

  3. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  4. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis.

    PubMed

    Rowland, Owen; Zheng, Huanquan; Hepworth, Shelley R; Lam, Patricia; Jetter, Reinhard; Kunst, Ljerka

    2006-11-01

    A waxy cuticle that serves as a protective barrier against uncontrolled water loss and environmental damage coats the aerial surfaces of land plants. It is composed of a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very-long-chain fatty acids and their derivatives. We report here the molecular cloning and characterization of CER4, a wax biosynthetic gene from Arabidopsis (Arabidopsis thaliana). Arabidopsis cer4 mutants exhibit major decreases in stem primary alcohols and wax esters, and slightly elevated levels of aldehydes, alkanes, secondary alcohols, and ketones. This phenotype suggested that CER4 encoded an alcohol-forming fatty acyl-coenzyme A reductase (FAR). We identified eight FAR-like genes in Arabidopsis that are highly related to an alcohol-forming FAR expressed in seeds of jojoba (Simmondsia chinensis). Molecular characterization of CER4 alleles and genomic complementation revealed that one of these eight genes, At4g33790, encoded the FAR required for cuticular wax production. Expression of CER4 cDNA in yeast (Saccharomyces cerevisiae) resulted in the accumulation of C24:0 and C26:0 primary alcohols. Fully functional green fluorescent protein-tagged CER4 protein was localized to the endoplasmic reticulum in yeast cells by confocal microscopy. Analysis of gene expression by reverse transcription-PCR indicated that CER4 was expressed in leaves, stems, flowers, siliques, and roots. Expression of a beta-glucuronidase reporter gene driven by the CER4 promoter in transgenic plants was detected in epidermal cells of leaves and stems, consistent with a dedicated role for CER4 in cuticular wax biosynthesis. CER4 was also expressed in all cell types in the elongation zone of young roots. These data indicate that CER4 is an alcohol-forming FAR that has specificity for very-long-chain fatty acids and is responsible for the synthesis of primary alcohols in the epidermal cells of aerial tissues and in roots.

  5. On the role of microsomal aldehyde dehydrogenase in metabolism of aldehydic products of lipid peroxidation.

    PubMed

    Antonenkov, V D; Pirozhkov, S V; Panchenko, L F

    1987-11-30

    To elucidate a possible role of membrane-bound aldehyde dehydrogenase in the detoxication of aldehydic products of lipid peroxidation, the substrate specificity of the highly purified microsomal enzyme was investigated. The aldehyde dehydrogenase was active with different aliphatic aldehydes including 4-hydroxyalkenals, but did not react with malonic dialdehyde. When Fe/ADP-ascorbate-induced lipid peroxidation of arachidonic acid was carried out in an in vitro system, the formation of products which react with microsomal aldehyde dehydrogenase was observed parallel with malonic dialdehyde accumulation.

  6. Enantioselective Ethylation of Various Aldehydes Catalyzed by Readily Accessible Chiral Diols.

    PubMed

    Gök, Yaşar; Kiliçarslan, Seda; Gök, Halil Zeki; Karayiğit, İlker Ümit

    2016-08-01

    Four chiral C2 -symmetric diols were synthesized in a straightforward three-step reaction and demonstrated excellent enantioselectivities and good overall yields. Their catalytic activities were examined via the addition of diethylzinc to various aldehydes. The enantioselective addition of diethylzinc to 2-methoxybenzaldehyde gave the corresponding chiral secondary alcohol with high yields (up to 95%) and moderate to good enantiomeric excess (up to 88%). All synthesized ligands were evaluated in the addition of diethylzinc to various aldehydes in the presence of an additional metal such as Ti(IV) complexes. Chirality 28:593-598, 2016. © 2016 Wiley Periodicals, Inc.

  7. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  8. Aldehyde Detection in Electronic Cigarette Aerosols

    PubMed Central

    2017-01-01

    Acetaldehyde, acrolein, and formaldehyde are the principal toxic aldehydes present in cigarette smoke and contribute to the risk of cardiovascular disease and noncancerous pulmonary disease. The rapid growth of the use of electronic cigarettes (e-cigarettes) has raised concerns over emissions of these harmful aldehydes. This work determines emissions of these aldehydes in both free and bound (aldehyde–hemiacetal) forms and other carbonyls from the use of e-cigarettes. A novel silicon microreactor with a coating phase of 4-(2-aminooxyethyl)-morpholin-4-ium chloride (AMAH) was used to trap carbonyl compounds in the aerosols of e-cigarettes via oximation reactions. AMAH–aldehyde adducts were measured using gas chromatography–mass spectrometry. 1H nuclear magnetic resonance spectroscopy was used to analyze hemiacetals in the aerosols. These aldehydes were detected in the aerosols of all e-cigarettes. Newer-generation e-cigarette devices generated more aldehydes than the first-generation e-cigarettes because of higher battery power output. Formaldehyde–hemiacetal was detected in the aerosols generated from some e-liquids using the newer e-cigarette devices at a battery power output of 11.7 W and above. The emission of these aldehydes from all e-cigarettes, especially higher levels of aldehydes from the newer-generation e-cigarette devices, indicates the risk of using e-cigarettes. PMID:28393137

  9. Microbial production of natural raspberry ketone.

    PubMed

    Beekwilder, Jules; van der Meer, Ingrid M; Sibbesen, Ole; Broekgaarden, Mans; Qvist, Ingmar; Mikkelsen, Joern D; Hall, Robert D

    2007-10-01

    Raspberry ketone is an important compound for the flavour industry. It is frequently used in products such as soft drinks, sweets, puddings and ice creams. The compound can be produced by organic synthesis. Demand for "natural" raspberry ketone is growing considerably. However, this product is extremely expensive. Consequently, there is a remaining desire to better understand how raspberry ketone is synthesized in vivo, and which genes and enzymes are involved. With this information we will then be in a better position to design alternative production strategies such as microbial fermentation. This article focuses on the identification and application of genes potentially linked to raspberry ketone synthesis. We have isolated candidate genes from both raspberry and other plants, and these have been introduced into bacterial and yeast expression systems. Conditions have been determined that result in significant levels of raspberry ketone, up to 5 mg/L. These results therefore lay a strong foundation for a potentially renewable source of "natural" flavour compounds making use of plant genes.

  10. Directed reductive amination of beta-hydroxy-ketones: convergent assembly of the ritonavir/lopinavir core.

    PubMed

    Menche, Dirk; Arikan, Fatih; Li, Jun; Rudolph, Sven

    2007-01-18

    An efficient procedure for the directed reductive amination of beta-hydroxy-ketones (3) for the stereoselective preparation of 1,3-syn-amino alcohols (6) is reported. The operationally simple protocol uses Ti(iOPr)4 for coordination of the intermediate imino alcohol (5) and PMHS as the reducing agent. The method was expanded to an asymmetric aldol reductive amination sequence to allow a highly convergent synthesis of the hydroxy-amine core of the HIV-protease inhibitors ritonavir and lopinavir. [reaction: see text].

  11. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    PubMed Central

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol

  12. Ketone ester effects on metabolism and transcription.

    PubMed

    Veech, Richard L

    2014-10-01

    Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value.

  13. Ketone ester effects on metabolism and transcription

    PubMed Central

    Veech, Richard L.

    2014-01-01

    Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value. PMID:24714648

  14. Aromatic ketones with terminal vinyl groups

    SciTech Connect

    Uvarova, L.R.; Burykina, L.K.; Zubareva, M.M.; Polyanskii, I.D.

    1988-12-20

    The Friedel-Crafts acylation of a hydrocarbon by an acylating agent containing bromoalkyl substituents gave a series of new ketones. Their subsequent dehydrobromination with potassium tert-butoxide gave high yields of aromatic ketones containing terminal vinyl groups. The reaction was conducted both with /beta/-bromoethylbenzene and with 4-(/beta/-bromoethyl)-benzoyl chloride and also with both compounds simultaneously. The structures of the synthesized compounds were confirmed by the PMR, IR, UV, and mass spectra and also by the data from elemental analysis.

  15. Stereoselective Formation of Fully Substituted Ketone Enolates.

    PubMed

    Haimov, Elvira; Nairoukh, Zackaria; Shterenberg, Alexander; Berkovitz, Tiran; Jamison, Timothy F; Marek, Ilan

    2016-04-25

    The application of stereochemically defined acyclic fully substituted enolates of ketones to the enantioselective synthesis of quaternary carbon stereocenters would be highly valuable. Herein, we describe an approach leading to the formation of several new stereogenic centers through a combined metalation-addition of a carbonyl-carbamoyl transfer to reveal in situ stereodefined α,α-disubstituted enolates of ketone as a single stereoisomer. This approach could produce a series of aldol and Mannich products from enol carbamate with excellent diastereomeric ratios.

  16. Catalytic photooxidation of alcohols by an unsymmetrical tetra(pyridyl)pyrazine-bridged dinuclear Ru complex.

    PubMed

    Chen, Weizhong; Rein, Francisca N; Scott, Brian L; Rocha, Reginaldo C

    2011-05-09

    The dinuclear complexes [(tpy)Ru(tppz)Ru(bpy)(L)](n+) (where L is Cl(-) or H(2)O, tpy and bpy are the terminal ligands 2,2':6',2''-terpyridine and 2,2'-bipyridine, and tppz is the bridging backbone 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were prepared and structurally and electronically characterized. The mononuclear complexes [(tpy)Ru(tppz)](2+) and [(tppz)Ru(bpy)(L)](m+) were also prepared and studied for comparison. The proton-coupled, multi-electron photooxidation reactivity of the aquo dinuclear species was shown through the photocatalytic dehydrogenation of a series of primary and secondary alcohols. Under simulated solar irradiation and in the presence of a sacrificial electron acceptor, the photoactivated chromophore-catalyst complex (in aqueous solutions at room temperature and ambient pressure conditions) can perform the visible-light-driven conversion of aliphatic and benzylic alcohols into the corresponding carbonyl products (i.e., aldehydes or ketones) with 100% product selectivity and several tens of turnover cycles, as probed by NMR spectroscopy and gas chromatography. Moreover, for aliphatic substrates, the activity of the photocatalyst was found to be highly selective toward secondary alcohols, with no significant product formed from primary alcohols. Comparison of the activity of this tppz-bridged complex with that of the analogue containing a back-to-back terpyridine bridge (tpy-tpy, i.e., 6',6''-bis(2-pyridyl)-2,2':4',4'':2'',2'''-quaterpyridine) demonstrated that the latter is a superior photocatalyst toward the oxidation of alcohols. The much stronger electronic coupling with significant delocalization across the strongly electron-accepting tppz bridge facilitates charge trapping between the chromophore and catalyst centers and therefore is presumably responsible for the decreased catalytic performance.

  17. The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2012-12-01

    Studies of hydrothermal reactions involving organic compounds suggest complex, possibly reversible, reaction pathways that link functional groups from reduced alkanes all the way to oxidized carboxylic acids. Ketones represent a critical functional group because they occupy a central position in the reaction pathway, at the point where Csbnd C bond cleavage is required for the formation of the more oxidized carboxylic acids. The mechanisms for the critical bond cleavage reactions in ketones, and how they compete with other reactions are the focus of this experimental study. We studied a model ketone, dibenzylketone (DBK), in H2O at 300 °C and 70 MPa for up to 528 h. Product analysis was performed as a function of time at low DBK conversions to reveal the primary reaction pathways. Reversible interconversion between ketone, alcohol, alkene and alkane functional groups is observed in addition to formation of radical coupling products derived from irreversible Csbnd C and Csbnd H homolytic bond cleavage. The product distributions are time-dependent but the bond cleavage products dominate. The major products that accumulate at longer reaction times are toluene and larger, dehydrogenated structures that are initially formed by radical coupling. The hydrogen atoms generated by dehydrogenation of the coupling products are predominantly consumed in the formation of toluene. Even though bond cleavage products dominate, no carboxylic acids were observed on the timescale of the reactions under the chosen experimental conditions.

  18. Structurally simple pyridine N-oxides as efficient organocatalysts for the enantioselective allylation of aromatic aldehydes.

    PubMed

    Pignataro, Luca; Benaglia, Maurizio; Annunziata, Rita; Cinquini, Mauro; Cozzi, Franco

    2006-02-17

    A series of structurally simple pyridine N-oxides have readily been assembled from inexpensive amino acids and tested as organocatalysts in the allylation of aldehydes with allyl(trichloro)silane to afford homoallylic alcohols. (S)-proline-based catalysts afforded the products derived from aromatic aldehydes in fair to good yields and in up to 84% enantiomeric excess (ee). The allylation of heteroaromatic, unsaturated, and aliphatic aldehydes was less satisfactory. By running the reaction in the presence of achiral and chiral additives and structurally different catalysts, we collected some insights into the relationship between the stereochemical outcome and the catalyst's structural features. Even if the ee's obtained are inferior to the best values observed with other catalysts, this work concurs to show that structurally simple pyridine N-oxides can also promote the allylation reaction with satisfactory stereocontrol.

  19. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol.

    PubMed

    Xu, Bingjun; Liu, Xiaoying; Haubrich, Jan; Friend, Cynthia M

    2010-01-01

    Selective coupling of oxygenates is critical to many synthetic processes, including those necessary for the development of alternative fuels. We report a general process for selective coupling of aldehydes and methanol as a route to ester synthesis. All steps are mediated by oxygen-covered metallic gold nanoparticles on Au(111). Remarkably, cross-coupling of methanol with formaldehyde, acetaldehyde, benzaldehyde and benzeneacetaldehyde to methyl esters is promoted by oxygen-covered Au(111) below room temperature with high selectivity. The high selectivity is attributed to the ease of nucleophilic attack of the aldehydes by the methoxy intermediate-formed from methanol on the surface-which yields the methyl esters. The competing combustion occurs via attack of both methanol and the aldehydes by oxygen. The mechanistic model constructed in this study provides insight into factors that control selectivity and clearly elucidates the crucial role of Au nanoparticles as active species in the catalytic oxidation of alcohols, even in solution.

  20. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  1. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed

    Burdette, D; Zeikus, J G

    1994-08-15

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling.

  2. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed Central

    Burdette, D; Zeikus, J G

    1994-01-01

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002

  3. Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea.

    PubMed

    Timpson, Leanne M; Alsafadi, Diya; Mac Donnchadha, Cillín; Liddell, Susan; Sharkey, Michael A; Paradisi, Francesca

    2012-01-01

    Haloarchaeal alcohol dehydrogenases are of increasing interest as biocatalysts in the field of white biotechnology. In this study, the gene adh12 from the extreme halophile Haloarcula marismortui (HmADH12), encoding a 384 residue protein, was cloned into two vectors: pRV1 and pTA963. The resulting constructs were used to transform host strains Haloferax volcanii (DS70) and (H1209), respectively. Overexpressed His-tagged recombinant HmADH12 was purified by immobilized metal-affinity chromatography (IMAC). The His-tagged protein was visualized by SDS-PAGE, with a subunit molecular mass of 41.6 kDa, and its identity was confirmed by mass spectrometry. Purified HmADH12 catalyzed the interconversion between alcohols and aldehydes and ketones, being optimally active in the presence of 2 M KCl. It was thermoactive, with maximum activity registered at 60°C. The NADP(H) dependent enzyme was haloalkaliphilic for the oxidative reaction with optimum activity at pH 10.0. It favored a slightly acidic pH of 6.0 for catalysis of the reductive reaction. HmADH12 was significantly more tolerant than mesophilic ADHs to selected organic solvents, making it a much more suitable biocatalyst for industrial application.

  4. Oxidation of alcohols and activated alkanes with Lewis acid-activated TEMPO.

    PubMed

    Nguyen, Thuy-Ai D; Wright, Ashley M; Page, Joshua S; Wu, Guang; Hayton, Trevor W

    2014-11-03

    The reactivity of MCl3(η(1)-TEMPO) (M = Fe, 1; Al, 2; TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) with a variety of alcohols, including 3,4-dimethoxybenzyl alcohol, 1-phenyl-2-phenoxyethanol, and 1,2-diphenyl-2-methoxyethanol, was investigated using NMR spectroscopy and mass spectrometry. Complex 1 was effective in cleanly converting these substrates to the corresponding aldehyde or ketone. Complex 2 was also able to oxidize these substrates; however, in a few instances the products of overoxidation were also observed. Oxidation of activated alkanes, such as xanthene, by 1 or 2 suggests that the reactions proceed via an initial 1-electron concerted proton-electron transfer (CPET) event. Finally, reaction of TEMPO with FeBr3 in Et2O results in the formation of a mixture of FeBr3(η(1)-TEMPOH) (23) and [FeBr2(η(1)-TEMPOH)]2(μ-O) (24), via oxidation of the solvent, Et2O.

  5. The oxidation of chiral alcohols catalyzed by catalase in organic solvents

    SciTech Connect

    Magner, E.; Klibanov, A.M.

    1995-04-20

    The catalytic properties of bovine liver catalase have been investigated in organic solvents. In tetrahydrofuran, dioxane, and acetone (all containing 1% to 3% of water), the enzyme breaks down tert-butyl hydroperoxide several fold faster than in pure water. Furthermore, the rate of catalase-catalyzed production of tert-butanol from tert-butyl hydroperoxide increases more than 400-fold upon transition from aqueous buffer to ethanol as the reaction medium. The mechanistic rationale for this striking effect is that in aqueous buffer the rate-limiting step of the enzymatic process involves the reduction of catalase`s compound 1 by tert-butyl hydroperoxide. In ethanol, an additional step in the reaction scheme becomes available in which ethanol, greatly outcompeting the hydroperoxide, is oxidized by compound 1 regenerating the free enzyme. In solvents, such as acetonitrile or tetrahydrofuran, which themselves are not oxidizable by compound 1, catalase catalyzes the oxidation of numerous primary and secondary alcohols with tert-butyl hydroperoxide to the corresponding aldehydes or ketones. The enzymatic oxidation of some chiral alcohols (2,3-butanediol, citronellol, and menthol) under these conditions occurs enantioselectively. Examination of the enantioselectivity for the oxidation of 2,3-butanediol in a series of organic solvents reveals a considerable solvent dependence.

  6. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  7. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  8. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  9. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  10. Vapor pressures and gas-film coefficients for ketones

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Comparison of handbook vapor pressures for seven ketones with more recent literature data showed large differences for four of the ketones. Gas-film coefficients for the volatilization of these ketones from water determined by two different methods were in reasonable agreement. ?? 1987.

  11. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  12. [Dopamine content in blood and activity of alcohol-transforming enzymes in alcoholism].

    PubMed

    Kharchenko, N K

    1997-01-01

    An increase of alcohol dehydrogenase activity is observed in patients with chronic alcoholism at the first stage of the disease under normal indices of activity of aldehyde dehydrogenase, aspartate- and alanine aminotransferase and thymol sample that evidences for the induction of alcohol dehydrogenase synthesis in the liver. At the second stage of alcoholism the activity of alcohol dehydrogenase, aspartate- and alanine aminotransferase, the index of thymol sample increase while activity of aldehyde dehydrogenase decreases that indicates to organic destructive changes in the liver. At the third stage of alcoholism one can observe the decrease in activity of alcohol dehydrogenase, aldehyde dehydrogenase and alanine aminotransferase relative to activity of these enzymes at the second stage, that can evidence for the increase of the possibility of the processes of synthesis of the liver. The correlation of alcohol dehydrogenase activity to that of aldehyde dehydrogenase in the process of formation and development of alcoholism is shifted towards the progressive accumulation of acetaldehyde. Parallel increase of dopamine concentration in blood creates conditions for formation of morphine-like alcaloides--products of condensation of acetaldehide with dopamine.

  13. Thiourea-Catalyzed Enantioselective Cyanosilylation of Ketones

    PubMed Central

    Fuerst, Douglas E.; Jacobsen, Eric N.

    2011-01-01

    The new chiral amino thiourea catalyst 3d promotes the highly enantioselective cyanosilylation of a wide variety of ketones. The hindered tertiary amine substituent plays a crucial role both with regard to stereoinduction and reactivity, suggesting a cooperative mechanism involving electrophile activation by thiourea and nucleophile activation by the amine. PMID:15969569

  14. Regioselective hydroformylation of allylic alcohols.

    PubMed

    Lightburn, Thomas E; De Paolis, Omar A; Cheng, Ka H; Tan, Kian L

    2011-05-20

    A highly regioselective hydroformylation of allylic alcohols is reported toward the synthesis of β-hydroxy-acid and aldehyde products. The selectivity is achieved through the use of a ligand that reversibly binds to alcohols in situ, allowing for a directed hydroformylation to occur. The application to trisubstituted olefins was also demonstrated, which yields a single diastereomer product consistent with a stereospecific addition of CO and hydrogen.

  15. Identification and Characterization of an Antennae-Specific Aldehyde Oxidase from the Navel Orangeworm

    PubMed Central

    Choo, Young-Moo; Pelletier, Julien; Atungulu, Elizabeth; Leal, Walter S.

    2013-01-01

    Antennae-specific odorant-degrading enzymes (ODEs) are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes – the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs). Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW), Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13–16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13–16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons. PMID:23826341

  16. The Pivotal Role of Aldehyde Toxicity in Autism Spectrum Disorder: The Therapeutic Potential of Micronutrient Supplementation

    PubMed Central

    Jurnak, Frances

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by social and communication impairments as well as by restricted, repetitive patterns of behavior and interests. Genomic studies have not revealed dominant genetic errors common to all forms of ASD. So ASD is assumed to be a complex disorder due to mutations in hundreds of common variants. Other theories argue that spontaneous DNA mutations and/or environmental factors contribute to as much as 50% of ASD. In reviewing potential genetic linkages between autism and alcoholism, it became apparent that all theories of ASD are consistent with aldehyde toxicity, in which endogenous and exogenous aldehydes accumulate as a consequence of mutations in key enzymes. Aldehyde toxicity is characterized by cell-localized, micronutrient deficiencies in sulfur-containing antioxidants, thiamine (B1), pyridoxine (B6), folate, Zn2+, possibly Mg2+, and retinoic acid, causing oxidative stress and a cascade of metabolic disturbances. Aldehydes also react with selective cytosolic and membrane proteins in the cell of origin; then some types migrate to damage neighboring cells. Reactive aldehydes also form adducts with DNA, selectively mutating bases and inducing strand breakage. This article reviews the relevant genomic, biochemical, and nutritional literature, which supports the central hypothesis that most ASD symptoms are consistent with symptoms of aldehyde toxicity. The hypothesis represents a paradigm shift in thinking and has profound implications for clinical detection, treatment, and even prevention of ASD. Insight is offered as to which neurologically afflicted children might successfully be treated with micronutrients and which children are unlikely to be helped. The aldehyde toxicity hypothesis likely applies to other neurological disorders. PMID:27330305

  17. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts.

    PubMed

    Mano, Jun'ichi; Miyatake, Fumitaka; Hiraoka, Eiji; Tamoi, Masahiro

    2009-09-01

    Aldehydes produced under various environmental stresses can cause cellular injury in plants, but their toxicology in photosynthesis has been scarcely investigated. We here evaluated their effects on photosynthetic reactions in chloroplasts isolated from Spinacia oleracea L. leaves. Aldehydes that are known to stem from lipid peroxides inactivated the CO(2) photoreduction to various extents, while their corresponding alcohols and carboxylic acids did not affect photosynthesis. alpha,beta-Unsaturated aldehydes (2-alkenals) showed greater inactivation than the saturated aliphatic aldehydes. The oxygenated short aldehydes malondialdehyde, methylglyoxal, glycolaldehyde and glyceraldehyde showed only weak toxicity to photosynthesis. Among tested 2-alkenals, 2-propenal (acrolein) was the most toxic, and then followed 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal. While the CO(2)-photoreduction was inactivated, envelope intactness and photosynthetic electron transport activity (H(2)O --> ferredoxin) were only slightly affected. In the acrolein-treated chloroplasts, the Calvin cycle enzymes phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphophatase, sedoheptulose-1,7-bisphosphatase, aldolase, and Rubisco were irreversibly inactivated. Acrolein treatment caused a rapid drop of the glutathione pool, prior to the inactivation of photosynthesis. GSH exogenously added to chloroplasts suppressed the acrolein-induced inactivation of photosynthesis, but ascorbic acid did not show such a protective effect. Thus, lipid peroxide-derived 2-alkenals can inhibit photosynthesis by depleting GSH in chloroplasts and then inactivating multiple enzymes in the Calvin cycle.

  18. Thermochemistry and bond dissociation energies of ketones.

    PubMed

    Hudzik, Jason M; Bozzelli, Joseph W

    2012-06-14

    Ketones are a major class of organic chemicals and solvents, which contribute to hydrocarbon sources in the atmosphere, and are important intermediates in the oxidation and combustion of hydrocarbons and biofuels. Their stability, thermochemical properties, and chemical kinetics are important to understanding their reaction paths and their role as intermediates in combustion processes and in atmospheric chemistry. In this study, enthalpies (ΔH°(f 298)), entropies (S°(T)), heat capacities (C(p)°(T)), and internal rotor potentials are reported for 2-butanone, 3-pentanone, 2-pentanone, 3-methyl-2-butanone, and 2-methyl-3-pentanone, and their radicals corresponding to loss of hydrogen atoms. A detailed evaluation of the carbon-hydrogen bond dissociation energies (C-H BDEs) is also performed for the parent ketones for the first time. Standard enthalpies of formation and bond energies are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), CBS-QB3, and G3MP2B3 levels of theory using isodesmic reactions to minimize calculation errors. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the entropies and heat capacities. The recommended ideal gas-phase ΔH°(f 298), from the average of the CBS-QB3 and G3MP2B3 levels of theory, as well as the calculated values for entropy and heat capacity are shown to compare well with the available experimental data for the parent ketones. Bond energies for primary, secondary, and tertiary radicals are determined; here, we find the C-H BDEs on carbons in the α position to the ketone group decrease significantly with increasing substitution on these α carbons. Group additivity and hydrogen-bond increment values for these ketone radicals are also determined.

  19. Steric vs. electronic effects in the Lactobacillus brevis ADH-catalyzed bioreduction of ketones.

    PubMed

    Rodríguez, Cristina; Borzęcka, Wioleta; Sattler, Johann H; Kroutil, Wolfgang; Lavandera, Iván; Gotor, Vicente

    2014-01-28

    Lactobacillus brevis ADH (LBADH) is an alcohol dehydrogenase that is commonly employed to reduce alkyl or aryl ketones usually bearing a methyl, an ethyl or a chloromethyl as a small ketone substituent to the corresponding (R)-alcohols. Herein we have tested a series of 24 acetophenone derivatives differing in their size and electronic properties for their reduction employing LBADH. After plotting the relative activity against the measured substrate volumes we observed that apart from the substrate size other effects must be responsible for the activity obtained. Compared to acetophenone (100% relative activity), other small substrates such as propiophenone, α,α,α-trifluoroacetophenone, α-hydroxyacetophenone, and benzoylacetonitrile had relative activities lower than 30%, while medium-sized ketones such as α-bromo-, α,α-dichloro-, and α,α-dibromoacetophenone presented relative activities between 70% and 550%. Moreover, the comparison between the enzymatic activity and the obtained final conversions using an excess or just 2.5 equiv. of the hydrogen donor 2-propanol, denoted again deviations between them. These data supported that these hydrogen transfer (HT) transformations are mainly thermodynamically controlled. For instance, bulky α-halogenated derivatives could be quantitatively reduced by LBADH even employing 2.5 equiv. of 2-propanol independently of their kinetic values. Finally, we found good correlations between the IR absorption band of the carbonyl groups and the degrees of conversion obtained in these HT processes, making this simple method a convenient tool to predict the success of these transformations.

  20. Joining Astrobiology to Medicine, Resurrecting Ancient Alcohol Metabolism

    NASA Astrophysics Data System (ADS)

    Carrigan, M. A.; Uryasev, O.; Davis, R. W.; Chamberlin, S. G.; Benner, S. A.

    2010-04-01

    We apply an astrobiological approach to understand how primates responded to the emergence of ethanol in their environment by resurrecting two enzymes involved in the degradation of ethanol, alcohol dehydrogenase and aldehyde dehydrgenase.

  1. Rh(III)-Catalyzed Diastereoselective C–H Bond Addition/Cyclization Cascade of Enone Tethered Aldehydes

    PubMed Central

    Boerth, Jeffrey A.

    2016-01-01

    The Rh(III)-catalyzed cascade addition of a C–H bond across alkene and carbonyl π-bonds is reported. The reaction proceeds under mild reaction conditions with low catalyst loading. A range of directing groups were shown to be effective as was the functionalization of alkenyl in addition to aromatic C(sp2)–H bonds. When the enone and aldehyde electrophile were tethered together, cyclic β-hydroxy ketones with three contiguous stereocenters were obtained with high diastereoselectivity. The intermolecular three-component cascade reaction was demonstrated for both aldehyde and imine electrophiles. Moreover, the first x-ray structure of a cationic Cp*Rh(III) enolate with interatomic distances consistent with an η3-bound enolate is reported. PMID:26918112

  2. Highly Efficient and Selective Hydrogenation of Aldehydes: A Well-Defined Fe(II) Catalyst Exhibits Noble-Metal Activity

    PubMed Central

    2016-01-01

    The synthesis and application of [Fe(PNPMe-iPr)(CO)(H)(Br)] and [Fe(PNPMe-iPr)(H)2(CO)] as catalysts for the homogeneous hydrogenation of aldehydes is described. These systems were found to be among the most efficient catalysts for this process reported to date and constitute rare examples of a catalytic process which allows selective reduction of aldehydes in the presence of ketones and other reducible functionalities. In some cases, TONs and TOFs of up to 80000 and 20000 h–1, respectively, were reached. On the basis of stoichiometric experiments and computational studies, a mechanism which proceeds via a trans-dihydride intermediate is proposed. The structure of the hydride complexes was also confirmed by X-ray crystallography. PMID:27660732

  3. Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility.

    PubMed

    Larraufie, Marie-Helene; Yang, Wan Seok; Jiang, Elise; Thomas, Ajit G; Slusher, Barbara S; Stockwell, Brent R

    2015-11-01

    Introducing a reactive carbonyl to a scaffold that does not otherwise have an electrophilic functionality to create a reversible covalent inhibitor is a potentially useful strategy for enhancing compound potency. However, aldehydes are metabolically unstable, which precludes the use of this strategy for compounds to be tested in animal models or in human clinical studies. To overcome this limitation, we designed ketone-based functionalities capable of forming reversible covalent adducts, while displaying high metabolic stability, and imparting improved water solubility to their pendant scaffold. We tested this strategy on the ferroptosis inducer and experimental therapeutic erastin, and observed substantial increases in compound potency. In particular, a new carbonyl erastin analog, termed IKE, displayed improved potency, solubility and metabolic stability, thus representing an ideal candidate for future in vivo cancer therapeutic applications.

  4. Recent Developments in the Use of Organoboranes in Organic Synthesis

    ERIC Educational Resources Information Center

    Cragg, G. M. L.

    1969-01-01

    Describes how the carbonylation of organoboranes in a suitable solvent can produce various alcohols, ketones, aldehydes and oxymethylation derivatives. The synthesis of alpha-alkylated ketone using alkylboranes is discussed. (RR)

  5. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  6. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    PubMed

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  7. Ketone body metabolism and its defects.

    PubMed

    Fukao, Toshiyuki; Mitchell, Grant; Sass, Jörn Oliver; Hori, Tomohiro; Orii, Kenji; Aoyama, Yuka

    2014-07-01

    Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with "mild" SCOT mutations may have nonketotic periods. T2-deficient patients with "mild" mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.

  8. The Oxidation of Secondary Alcohols with Cr (VI).

    ERIC Educational Resources Information Center

    Mason, Timothy J.

    1982-01-01

    Describes experiments in which acid chromate oxidation rates of four secondary alcohols are determined and related to the differences in strain relief involved in the conversion of the alcohols to their respective ketone products. All four oxidations can be completed in a 4-hour laboratory period. (Author/JN)

  9. Preparation of Pt@Fe2O3 nanowires and their catalysis of selective oxidation of olefins and alcohols.

    PubMed

    Hong, Haiyan; Hu, Lei; Li, Min; Zheng, Junwei; Sun, Xuhui; Lu, Xinhua; Cao, Xueqin; Lu, Jianmei; Gu, Hongwei

    2011-07-25

    Iron oxide coated platinum nanowires (Pt@Fe(2)O(3)NWs) with a diameter of 2.8 nm have been prepared by the oxygen oxidation of FePt NWs in oleylamine. These "cable"-like NWs were characterised by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and X-ray absorption fine structure analysis. These Pt@Fe(2)O(3) NWs were used as "non-support" heterogeneous catalysts in oxidation of olefins and alcohols. The results revealed that it is an active and highly selective catalyst. Styrene derivatives were tested with molecular oxygen as the sole oxidant, with benzaldehyde successfully obtained from styrene in an absolute yield of 31%, whereas the use of tert-butyl hydroperoxide as the sole oxidant in the oxidation of alcohols led to yields of more than 80% of the corresponding ketone or aldehyde. This unsupported catalyst was found to be more active (TOF=96.5 h(-1)) than other reported Fe(2)O(3) nanoparticle catalysts and could be recycled multiple times without any notable decrease in activity. Our findings will extend the use of such nanomaterial catalysts to new catalytic systems.

  10. Intercalation of Aldehydes into Vanadyl Phosphate

    NASA Astrophysics Data System (ADS)

    Melánová, Klára; Beneš, Ludvík.; Zima, Vítězslav; Votinský, Jiří

    2001-02-01

    Intercalates of VOPO4 with several aliphatic aldehydes, benzaldehyde, and 4-methylbenzaldehyde were prepared and characterized by thermogravimetric analysis, X-ray diffractometry, and IR and UV-vis spectroscopies. Aliphatic aldehyde intercalates are unstable and the guests undergo aldol condensation and oxidation. The arrangement of the guest molecules in the interlayer space of the host is discussed. A part of aliphatic aldehydes is anchored to the host layers by coordination of their carbonyl oxygen to the vanadium atom; the rest is probably bonded by weak van der Waals forces. In the benzaldehyde and 4-methylbenzaldehyde intercalates, all guest molecules are coordinated to the vanadium atoms with their benzene rings perpendicular to the sheets of the host.

  11. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  12. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum.

    PubMed

    Asiimwe, Theodore; Krause, Katrin; Schlunk, Ines; Kothe, Erika

    2012-08-01

    We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats.

  13. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study.

    PubMed

    Laurell Nash, Anna; Hertzberg, Robin; Wen, Ye-Qian; Dahlgren, Björn; Brinck, Tore; Moberg, Christina

    2016-03-07

    A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product.

  14. Alcoholism: genes and mechanisms.

    PubMed

    Oroszi, Gabor; Goldman, David

    2004-12-01

    Alcoholism is a chronic relapsing/remitting disease that is frequently unrecognized and untreated, in part because of the partial efficacy of treatment. Only approximately one-third of patients remain abstinent and one-third have fully relapsed 1 year after withdrawal from alcohol, with treated patients doing substantially better than untreated [1]. The partial effectiveness of strategies for prevention and treatment, and variation in clinical course and side effects, represent a challenge and an opportunity to better understand the neurobiology of addiction. The strong heritability of alcoholism suggests the existence of inherited functional variants of genes that alter the metabolism of alcohol and variants of other genes that alter the neurobiologies of reward, executive cognitive function, anxiety/dysphoria, and neuronal plasticity. Each of these neurobiologies has been identified as a critical domain in the addictions. Functional alleles that alter alcoholism-related intermediate phenotypes include common alcohol dehydrogenase 1B and aldehyde dehydrogenase 2 variants that cause the aversive flushing reaction; catechol-O-methyltransferase (COMT) Val158Met leading to differences in three aspects of neurobiology: executive cognitive function, stress/anxiety response, and opioid function; opioid receptor micro1 (OPRM1) Asn40Asp, which may serve as a gatekeeper molecule in the action of naltrexone, a drug used in alcoholism treatment; and HTTLPR, which alters serotonin transporter function and appears to affect stress response and anxiety/dysphoria, which are factors relevant to initial vulnerability, the process of addiction, and relapse.

  15. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  16. Oxidation of Aromatic Aldehydes Using Oxone

    ERIC Educational Resources Information Center

    Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.

    2007-01-01

    The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…

  17. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  18. Biomimetic flavin-catalyzed aldehyde oxidation.

    PubMed

    Murray, Alexander T; Matton, Pascal; Fairhurst, Nathan W G; John, Matthew P; Carbery, David R

    2012-07-20

    The oxidation of alkyl and aryl aldehydes to their corresponding carboxylic acids has been achieved through the action of a biomimetic bridged flavin catalyst. The reaction uses readily available 35% aqueous hydrogen peroxide and is operationally simple. The oxidation is a green and sustainable reaction, obviating chlorinated solvents with minimal byproducts.

  19. Biomarkers of exposure to endogenous oxidative and aldehyde stress.

    PubMed

    Bruce, W Robert; Lee, Owen; Liu, Zhen; Marcon, Norman; Minkin, Salomon; O'Brien, Peter J

    2011-08-01

    We observed an unexpectedly strong association of three different endogenous aldehydes and noted that the association could be explained by multiple reactions in which oxidative stress increased the formation of endogenous aldehydes and endogenous aldehydes increased oxidative stress. These interactions make it reasonable to assess multiple exposures to endogenous oxidative and aldehyde stress with less specific measures such as advanced glycation end-products or protein carbonyls.

  20. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  1. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  2. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  3. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  4. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  5. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  6. Asymmetric Functional Organozinc Additions to Aldehydes Catalyzed by 1,1′-Bi-2-naphthols (BINOLs)†

    PubMed Central

    2015-01-01

    Conspectus Chiral alcohols are ubiquitous in organic structures. One efficient method to generate chiral alcohols is the catalytic asymmetric addition of a carbon nucleophile to a carbonyl compound since this process produces a C–C bond and a chiral center simultaneously. In comparison with the carbon nucleophiles such as an organolithium or a Grignard reagent, an organozinc reagent possesses the advantages of functional group tolerance and more mild reaction conditions. Catalytic asymmetric reactions of aldehydes with arylzincs, vinylzincs, and alkynylzincs to generate functional chiral alcohols are discussed in this Account. Our laboratory has developed a series of 1,1′-bi-2-naphthol (BINOL)-based chiral catalysts for the asymmetric organozinc addition to aldehydes. It is found that the 3,3′-dianisyl-substituted BINOLs are not only highly enantioselective for the alkylzinc addition to aldehydes, but also highly enantioselective for the diphenylzinc addition to aldehydes. A one-step synthesis has been achieved to incorporate Lewis basic amine groups into the 3,3′-positions of the partially hydrogenated H8BINOL. These H8BINOL–amine compounds have become more generally enantioselective and efficient catalysts for the diphenylzinc addition to aldehydes to produce various types of chiral benzylic alcohols. The application of the H8BINOL–amine catalysts is expanded by using in situ generated diarylzinc reagents from the reaction of aryl iodides with ZnEt2, which still gives high enantioselectivity and good catalytic activity. Such a H8BINOL–amine compound is further found to catalyze the highly enantioselective addition of vinylzincs, in situ generated from the treatment of vinyl iodides with ZnEt2, to aldehydes to give the synthetically very useful chiral allylic alcohols. We have discovered that the unfunctionalized BINOL in combination with ZnEt2 and Ti(OiPr)4 can catalyze the terminal alkyne addition to aldehydes to produce chiral propargylic alcohols

  7. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.

    PubMed

    Andersson, Robert; Boutonnet, Magali; Järås, Sven

    2012-07-20

    An on-line gas chromatographic (GC) system has been developed for rapid and accurate product analysis in catalytic conversion of syngas (a mixture of H₂ and CO) to alcohols, so called "higher alcohol synthesis (HAS)". Conversion of syngas to higher alcohols is an interesting second step in the route of converting coal, natural gas and possibly biomass to liquid alcohol fuel and chemicals. The presented GC system and method are developed for analysis of the products formed from syngas using alkali promoted MoS₂ catalysts, however it is not limited to these types of catalysts. During higher alcohol synthesis not only the wanted short alcohols (∼C₂-C₅) are produced, but also a great number of other products in smaller or greater amounts, they are mainly short hydrocarbons (olefins, paraffins, branched, non-branched), aldehydes, esters and ketones as well as CO₂, H₂O. Trace amounts of sulfur-containing compounds can also be found in the product effluent when sulfur-containing catalysts are used and/or sulfur-containing syngas is feed. In the presented GC system, most of them can be separated and analyzed within 60 min without the use of cryogenic cooling. Previously, product analysis in "higher alcohol synthesis" has in most cases been carried out partly on-line and partly off-line, where the light gases (gases at room temp) are analyzed on-line and liquid products (liquid at room temp) are collected in a trap for later analysis off-line. This method suffers from many drawbacks compared to a complete on-line GC system. In this paper an on-line system using an Agilent 7890 gas chromatograph equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD), together with an Agilent 6890 with sulfur chemiluminescence dual plasma detector (SCD) is presented. A two-dimensional GC system with Deans switch (heart-cut) and two capillary columns (HP-FFAP and HP-Al₂O₃) was used for analysis of the organic products on the FIDs. Light

  8. Renal conservation of ketone bodies during starvation.

    PubMed

    Sapir, D G; Owen, O E

    1975-01-01

    Renal handling of acetoacetate and beta-hydroxybutyrate was studied in 12 obese subjects undergoing total starvation. Simultaneously, the acetoacetate, beta-hydroxybutyrate, and inulin clearance rates were measured, and acetoacetate and beta-hydroxybutyrate reabsorption rates were calculated. Renal clearance of blood acetoacetate and beta-hydroxybutyrate remained constant. In contrast, acetoacetate reabsorption rate increased significantly from 47 plus or minus 10 mumoles/min on day 3 to 106 plus or minus 15, 89 plus or minus 10, and 96 plus or minus 10 mumoles/min on days 10, 17, and 24, respectively. Similarly, beta-hydroxybutyrate reabsorption rate increased significantly from 154 plus or minus 27 mumoles/min on day 3 to 419 plus or minus 53, 399 plus or minus 25, and 436 plus or minus 53 mumoles/min on days 10, 17, and 24, respectively. Both acetoacetate and beta-hydroxybutyrate reabsorption rates increased linearly when plotted against their filtered loads. Thus, no tubular maximal transport rate exists for acetoacetate or beta-hydroxybutyrate during physiologic ketonemia. Conservation 450-500 mmoles of ketone bodies/day prevents large urinary losses of cations during prolonged starvation. Since ammonium becomes the major cation excreted during prolonged fasting, the increased renal reabsorption of ketone bodies minimizes body protein loss and aids in maintaining high circulating acetoacetate and beta-hydroxybutyrate concentrations.

  9. From α-arylation of olefins to acylation with aldehydes: a journey in regiocontrol of the Heck reaction.

    PubMed

    Ruan, Jiwu; Xiao, Jianliang

    2011-08-16

    solvents. Evidence shows that the concentration of the cationic Pd(II)-olefin species along the ionic pathway is increased as a result of hydrogen bonding between the hydrogen bond donor and the halide anion. More recently, we reported that cheaper and greener alcohols allow the Heck arylation of electron-rich olefins to proceed in a much faster, productive, and totally α-regioselective manner, circumventing the need for an ionic medium or hydrogen bond donor salt. In particular, aryl chlorides with diverse properties have been demonstrated to be viable substrates for the first time. Significantly, it appears that ethylene glycol facilitates both the oxidative addition of ArCl to Pd(0) and the subsequent dissociation of chloride from Pd(II). A closely related reaction, acylation of aryl halides with aldehydes, was also developed. Proceeding via the intermediacy of an electron-rich enamine, this Pd-pyrrolidine cooperative catalysis affords alkyl aryl ketones in a straightforward manner, extending the Heck reaction from olefins to aldehydes.

  10. Synthesis of pyrazole containing α-amino acids via a highly regioselective condensation/aza-Michael reaction of β-aryl α,β-unsaturated ketones.

    PubMed

    Gilfillan, Lynne; Artschwager, Raik; Harkiss, Alexander H; Liskamp, Rob M J; Sutherland, Andrew

    2015-04-21

    A synthetic approach for the preparation of a new class of highly conjugated unnatural α-amino acids bearing a 5-arylpyrazole side-chain has been developed. Horner-Wadsworth-Emmons reaction of an aspartic acid derived β-keto phosphonate ester with a range of aromatic aldehydes gave β-aryl α,β-unsaturated ketones. Treatment of these with phenyl hydrazine followed by oxidation allowed the regioselective synthesis of pyrazole derived α-amino acids. As well as evaluating the fluorescent properties of the α-amino acids, their synthetic utility was also explored with the preparation of a sulfonyl fluoride derivative, a potential probe for serine proteases.

  11. One-Step Conversion of Methyl Ketones to Acyl Chlorides.

    PubMed

    Zaragoza, Florencio

    2015-10-16

    Treatment of aromatic and heteroaromatic methyl ketones with sulfur monochloride and catalytic amounts of pyridine in refluxing chlorobenzene leads to the formation of acyl chlorides. Both electron-rich and electron-poor aryl methyl ketones can be used as starting materials. The resulting C1-byproduct depends on the precise reaction conditions chosen.

  12. Deaminative and decarboxylative catalytic alkylation of amino acids with ketones.

    PubMed

    Kalutharage, Nishantha; Yi, Chae S

    2013-12-16

    It cuts two ways: The cationic [Ru-H] complex catalyzes selective coupling of α- and β-amino acids with ketones to form α-alkylated ketone products. The reaction involves CC and CN bond cleavage which result in regio- and stereoselective alkylation using amino acids. A broad substrate scope and high functional-group tolerance is demonstrated.

  13. IRIS TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE (2003 Final)

    EPA Science Inventory

    EPA is announcing the release of the final report, "Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS)". The updated Summary for Methyl Ethyl Ketone and accompanying Quickview have also been added to the IRIS Database.

  14. IRIS Toxicological Review of Methyl Ethyl Ketone (2003 Final)

    EPA Science Inventory

    EPA announced the release of the final report, Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS). The updated Summary for Methyl Ethyl Ketone and accompanying toxicological review have been added to the IRIS Database....

  15. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  16. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  17. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  18. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  19. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  20. Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones.

    PubMed

    Havel, Jan; Weuster-Botz, Dirk

    2007-07-01

    The obligate photoautotrophic cyanobacterium Synechococcus PCC7942 and the photoheterotrophic heterocystous cyanobacterium Noctoc muscorum are able to reduce prochiral ketones asymmetrically to optical pure chiral alcohols without light. An example is the synthesis of S-pentafluoro(phenyl-)ethanol with an enantiomeric excess >99% if 2'-3'-4'-5'-6'-pentafluoroacetophenone is used as substrate. If no light is available for regeneration of the cofactor nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH), glucose is used as cosubstrate. Membrane disintegration during asymmetric reduction promotes cytosolic energy generating metabolic pathways. Observed regulatory effects depicted by an adenosine triphosphate (ATP) to nicotinamide adenine dinucleotide phosphate (oxidized form) (NADP(+)) ratio of 3:1 for efficient cofactor recycling indicate a metabolization via glycolisis. The stoichiometric formation of the by-product acetate (1 mol acetate/1 mol chiral alcohol) indicates homoacetic acid fermentation for cofactor regeneration including the obligate photoautotrophic cyanobacterium Synechococcus PCC7942.

  1. Role of Alcohol Metabolism in Non-Alcoholic Steatohepatitis

    PubMed Central

    Baker, Susan S.; Baker, Robert D.; Liu, Wensheng; Nowak, Norma J.; Zhu, Lixin

    2010-01-01

    Background Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD), associated with obesity and insulin resistance. Previous studies suggested that intestinal bacteria produced more alcohol in obese mice than lean animals. Methodology/Principal Findings To investigate whether alcohol is involved in the pathogenesis of NASH, the expression of inflammation, fibrosis and alcohol metabolism related genes in the liver tissues of NASH patients and normal controls (NCs) were examined by microarray (NASH, n = 7; NC, n = 4) and quantitative real-time PCR (NASH, n = 6; NC, n = 6). Genes related to liver inflammation and fibrosis were found to be elevated in NASH livers compared to normal livers. The most striking finding is the increased gene transcription of alcohol dehydrogenase (ADH) genes, genes for catalase and cytochrome P450 2E1, and aldehyde dehydrogenase genes. Immunoblot analysis confirmed the increased expression of ADH1 and ADH4 in NASH livers (NASH, n = 9; NC, n = 4). Conclusions/Significance The augmented activity of all the available genes of the pathways for alcohol catabolism suggest that 1) alcohol concentration was elevated in the circulation of NASH patients; 2) there was a high priority for the NASH livers to scavenge alcohol from the circulation. Our data is the first human evidence that suggests alcohol may contribute to the development of NAFLD. PMID:20221393

  2. CNN pincer ruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies.

    PubMed

    Baratta, Walter; Baldino, Salvatore; Calhorda, Maria José; Costa, Paulo J; Esposito, Gennaro; Herdtweck, Eberhardt; Magnolia, Santo; Mealli, Carlo; Messaoudi, Abdelatif; Mason, Sax A; Veiros, Luis F

    2014-10-13

    Reaction of [RuCl(CNN)(dppb)] (1-Cl) (HCNN=2-aminomethyl-6-(4-methylphenyl)pyridine; dppb=Ph2 P(CH2 )4 PPh2 ) with NaOCH2 CF3 leads to the amine-alkoxide [Ru(CNN)(OCH2 CF3 )(dppb)] (1-OCH2 CF3 ), whose neutron diffraction study reveals a short RuO⋅⋅⋅HN bond length. Treatment of 1-Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)]⋅(EtOH)n (1-OEt⋅n EtOH), which equilibrates with the hydride [RuH(CNN)(dppb)] (1-H) and acetaldehyde. Compound 1-OEt⋅n EtOH reacts reversibly with H2 leading to 1-H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1-OEt⋅n EtOH and 1-H reveal hydrogen bond interactions and exchange processes. The chloride 1-Cl catalyzes the hydrogenation (5 atm of H2 ) of ketones to alcohols (turnover frequency (TOF) up to 6.5×10(4) h(-1) , 40 °C). DFT calculations were performed on the reaction of [RuH(CNN')(dmpb)] (2-H) (HCNN'=2-aminomethyl-6-(phenyl)pyridine; dmpb=Me2 P(CH2 )4 PMe2 ) with acetone and with one molecule of 2-propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru-hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key "amide" intermediate. Regeneration of the hydride complex may occur by reaction with 2-propanol or with H2 ; both pathways have low barriers and are alcohol assisted.

  3. Bioactivation to an aldehyde metabolite--possible role in the onset of toxicity induced by the anti-HIV drug abacavir.

    PubMed

    Grilo, Nádia M; Charneira, Catarina; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2014-01-30

    Aldehydes are highly reactive molecules, which can be generated during numerous physiological processes, including the biotransformation of drugs. Several non-P450 enzymes participate in their metabolism albeit alcohol dehydrogenase and aldehyde dehydrogenase are the ones most frequently involved in this process. Endogenous and exogenous aldehydes have been strongly implicated in multiple human pathologies. Their ability to react with biomacromolecules (e.g. proteins) yielding covalent adducts is suggested to be the common primary mechanism underlying the toxicity of these reactive species. Abacavir is one of the options for combined anti-HIV therapy. Although individual susceptibilities to adverse effects differ among patients, abacavir is associated with idiosyncratic hypersensitivity drug reactions and an increased risk of cardiac dysfunction. This review highlights the current knowledge on abacavir metabolism and discusses the potential role of bioactivation to an aldehyde metabolite, capable of forming protein adducts, in the onset of abacavir-induced toxic outcomes.

  4. Aldehyde-induced xanthine oxidase activity in raw milk.

    PubMed

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  5. Dehydration, Dehydrogenation, and Condensation of Alcohols on Supported Oxide Catalysts Based on Cyclic (WO3)3 and (MoO3)3 Clusters

    SciTech Connect

    Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.; Dohnalek, Zdenek

    2014-01-01

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlying reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.

  6. A sulfonated poly (aryl ether ether ketone ketone) isomer: synthesis and DMFC performance

    SciTech Connect

    Kim, Yu Seung; Liu, Baijun; Hu, Wei; Jiang, Zhenhua; Robertson, Gilles; Guiver, Michael

    2009-01-01

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily-prepared PEEKK post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported analogues and eveluated Nafion membranes.

  7. Individual variation in hepatic aldehyde oxidase activity.

    PubMed

    Al-Salmy, H S

    2001-04-01

    Aldehyde oxidase (AO) is a molybdo-flavo enzyme expressed predominantly in the liver, lung, and kidney. AO plays a major role in oxidation of aldehydes, as well as oxidation of various N-heterocyclic compounds of pharmacological and toxicological importance including antiviral (famciclovir), antimalarial (quinine), antitumour (methotrexate), and nicotine. The aim of this study was to investigate cytosolic aldehyde oxidase activity in human liver. Cytosolic AO was characterised using both the metabolism of N-[(2-dimethylamino)ethyl] acridine-4-carboxamide (DACA) and benzaldehyde to form DACA-9(10H)-acridone (quantified by HPLC with fluorescence detection) and benzoic acid (quantified spectrophotometrically). Thirteen livers (10 female, 3 male) were examined. The intrinsic clearance (Vmax/Km) of DACA varied 18-fold (0.03-0.50 m/min/mg). Vmax ranged from 0.20-3.10 nmol/ min/mg, and Km ranged from 3.5-14.2 microM. In the same specimens, the intrinsic clearance for benzaldehyde varied 5-fold (0.40-1.8 ml/min/mg). Vmax ranged from 3.60-12.6 nmol/min/mg and Km ranged from 3.6-14.6 microM. Furthermore, there were no differences in AO activity between male and female human livers, nor was there any relationship to age of donor (range 29-73 years), smoking status, or disease status. In conclusion, our results showed that there are variations in AO activity in human liver. These variations in aldehyde oxidase activity might reflect individual variations or they might be due to AO stability during processing and storage.

  8. Revisiting the Meerwein-Ponndorf-Verley Reduction: A Sustainable Protocol for Transfer Hydrogenation of Aldehydes and Ketones

    EPA Science Inventory

    The metal-catalyzed transfer hydrogenation of carbonyl compounds has received much interest because of the immense number of opportunities that exist to prepare high-value products. This reaction is featured in numerous multi-step organic syntheses and is arguably the most import...

  9. LEWIS ACID-CATALYZED REACTIONS IN PROTIC MEDIA - LANTHANIDE-CATALYZED REACTIONS OF INDOLES WITH ALDEHYDES OR KETONES. (R826123)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats

    NASA Astrophysics Data System (ADS)

    Ballesteros, R.; Monedero, E.; Guillén-Flores, J.

    2011-05-01

    Biodiesel from animal fats appears as an alternative for conventional diesel in automotive consumption. Animal fats are classified into three categories, although only one of them can be used for biodiesel production, according to regulation. Due to its novelty, researchers testing animal-fat biodiesel on diesel engines focus only on regulated emissions. In this paper, the experiments carried out analyze carbonyl compounds emissions, due to its highly atmospheric reactivity, to complete the characterization of the total emissions in this kind of biofuel. Two fuels, a reference petro-diesel and a pure animal-fat biodiesel, were tested in a 4-cylinder, direct injection, diesel engine Nissan Euro 5 M1D-Bk. Samples were collected in 4 different operating modes and 3 points along the exhaust line. The analyses of samples were made in a high performance liquid chromatography, following the method recommended by the CARB to analyze air quality. Results show, on the one hand, a significant rise in carbonyl emissions, almost three times at the mode with highest hydrocarbon emissions, when biodiesel is used. On the other hand, on average, a reduction of 90% of carbonyl emissions when exhaust gases go through the different post-treatment systems installed. Despite this reduction, specific reactivity does not decrease substantially.

  11. Intermittent trickling bed filter for the removal of methyl ethyl ketone and methyl isobutyl ketone.

    PubMed

    Farnazo, Danvir Mark C; Nisola, Grace M; Han, Mideok; Yoo, Namjong; Chung, Wook-Jin

    2012-05-01

    Biodegradations of methyl ethyl ketone and methyl isobutyl ketone were performed in intermittent biotrickling filter beds (ITBF) operated at two different trickling periods: 12 h/day (ITBF-12) and 30 min/day (ITBF-0.5). Ralstonia sp. MG1 was able to degrade both ketones as evidenced by growth kinetic experiments. Results show that trickling period is an important parameter to achieve high removal performance and to maintain the robustness of Ralstonia sp. MG1. Overall, ITBF-12 outperformed ITBF-0.5 regardless of the target compound. ITBF-12 had high performance recovery at various inlet gas concentrations. The higher carbon dioxide production rates in ITBF-12 suggest higher microbial activity than in ITBF-0.5. Additionally, lower concentrations of absorbed volatile organic compound (VOC) in trickling solutions of ITBF-12 systems also indicate VOC removal through biodegradation. Pressure drop levels in ITBF-12 were relatively higher than in ITBF-0.5 systems, which can be attributed to the decrease in packed bed porosity as Ralstonia sp. MG1 grew well in ITBF-12. Nonetheless, the obtained pressure drop levels did not have any adverse effect on the performance of ITBF-12. Biokinetic constants were also obtained which indicated that ITBF-12 performed better than ITBF-0.5 and other conventional biotrickling filter systems.

  12. A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis of Imines and Benzimidazoles from Nitroarenes and Aldehydes.

    PubMed

    Schwob, Tobias; Kempe, Rhett

    2016-11-21

    The use of abundantly available transition metals in reactions that have been preferentially mediated by rare noble metals, for example, hydrogenations, is a desirable aim in catalysis and an attractive strategy for element conservation. The observation of novel selectivity patterns with such inexpensive metal catalysts is especially appealing. Herein, we report a novel, robust, and reusable cobalt catalyst that permits the selective hydrogenation of nitroarenes in the presence of highly hydrogenation-sensitive functional groups, as well as the direct synthesis of imines from nitroarenes and aldehydes or ketones in the presence of such substituents. Furthermore, we introduce the first base-metal-mediated direct synthesis of benzimidazoles from nitroarenes and aldehydes. Functional groups that are easy to hydrogenate are again well tolerated.

  13. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke.

    PubMed

    Yin, Junxiang; Han, Pengcheng; Tang, Zhiwei; Liu, Qingwei; Shi, Jiong

    2015-11-01

    Stroke is one of the leading causes of death. Growing evidence indicates that ketone bodies have beneficial effects in treating stroke, but their underlying mechanism remains unclear. Our previous study showed ketone bodies reduced reactive oxygen species by using NADH as an electron donor, thus increasing the NAD(+)/NADH ratio. In this study, we investigated whether mitochondrial NAD(+)-dependent Sirtuin 3 (SIRT3) could mediate the neuroprotective effects of ketone bodies after ischemic stroke. We injected mice with either normal saline or ketones (beta-hydroxybutyrate and acetoacetate) at 30 minutes after ischemia induced by transient middle cerebral artery (MCA) occlusion. We found that ketone treatment enhanced mitochondria function, reduced oxidative stress, and therefore reduced infarct volume. This led to improved neurologic function after ischemia, including the neurologic score and the performance in Rotarod and open field tests. We further showed that ketones' effects were achieved by upregulating NAD(+)-dependent SIRT3 and its downstream substrates forkhead box O3a (FoxO3a) and superoxide dismutase 2 (SOD2) in the penumbra region since knocking down SIRT3 in vitro diminished ketones' beneficial effects. These results provide us a foundation to develop novel therapeutics targeting this SIRT3-FoxO3a-SOD2 pathway.

  14. Engineering of Bacterial Methyl Ketone Synthesis for Biofuels

    PubMed Central

    Goh, Ee-Been; Baidoo, Edward E. K.; Keasling, Jay D.

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C11 to C15 (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications. PMID:22038610

  15. Engineering of bacterial methyl ketone synthesis for biofuels.

    PubMed

    Goh, Ee-Been; Baidoo, Edward E K; Keasling, Jay D; Beller, Harry R

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C₁₁ to C₁₅ (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.

  16. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  17. Class 2 aldehyde dehydrogenase. Characterization of the hamster enzyme, sensitive to daidzin and conserved within the family of multiple forms.

    PubMed

    Hjelmqvist, L; Lundgren, R; Norin, A; Jörnvall, H; Vallee, B; Klyosov, A; Keung, W M

    1997-10-13

    Mitochondrial (class 2) hamster aldehyde dehydrogenase has been purified and characterized. Its primary structure has been determined and correlated with the tertiary structure recently established for this class from another species. The protein is found to represent a constant class within a complex family of multiple forms. Variable segments that occur in different species correlate with non-functional segments, in the same manner as in the case of the constant class of alcohol dehydrogenases (class III type) of another protein family, but distinct from the pattern of the corresponding variable enzymes. Hence, in both these protein families, overall variability and segment architectures behave similarly, with at least one 'constant' form in each case, class III in the case of alcohol dehydrogenases, and at least class 2 in the case of aldehyde dehydrogenases.

  18. Pressure dependence in the methyl vinyl ketone + OH and methacrolein + OH oxidation reactions: an electronic structure study.

    PubMed

    Ochando-Pardo, Montserrat; Nebot-Gil, Ignacio; González-Lafont, Angels; Lluch, José M

    2005-08-12

    High-level electronic structure calculations were carried out for the study of the reaction pathways in the OH-initiated oxidations of methyl vinyl ketone (MVK) and methacrolein (MACR). For the two conformers of MVK (called synperiplanar and antiperiplanar), the addition channels of OH to the terminal and central carbon atom of the double bond dominate the overall rate constant, whereas the abstraction of the methyl hydrogen atoms has no significant kinetic role. In the case of MACR, only the antiperiplanar conformer is important in its reactivity. In addition, the lower Gibbs free energy barrier for MACR corresponds to the aldehydic hydrogen abstraction reaction, which will be somewhat more favorable than the addition processes. The subtle balance between the different pathways (additions versus abstractions) serves to give an understanding of the pressure dependence of the rate constants of these tropospheric oxidation processes.

  19. Substrate-controlled Michael additions of chiral ketones to enones.

    PubMed

    Fàbregas, Mireia; Gómez-Palomino, Alejandro; Pellicena, Miquel; Reina, Daniel F; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-12-05

    Substrate-controlled Michael additions of the titanium(IV) enolate of lactate-derived ketone 1 to acyclic α,β-unsaturated ketones in the presence of a Lewis acid (TiCl4 or SnCl4) provide the corresponding 2,4-anti-4,5-anti dicarbonyl compounds in good yields and excellent diastereomeric ratios. Likely, the nucleophilic species involved in such additions are bimetallic enolates that may add to enones through cyclic transition states. Finally, further studies indicate that a structurally related β-benzyloxy chiral ketone can also participate in such stereocontrolled conjugate additions.

  20. Genetics of alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2014-01-01

    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD.

  1. Biosynthesis of C9-aldehydes in the moss Physcomitrella patens.

    PubMed

    Stumpe, Michael; Bode, Julia; Göbel, Cornelia; Wichard, Thomas; Schaaf, Andreas; Frank, Wolfgang; Frank, Markus; Reski, Ralf; Pohnert, Georg; Feussner, Ivo

    2006-03-01

    After wounding, the moss Physcomitrella patens emits fatty acid derived volatiles like octenal, octenols and (2E)-nonenal. Flowering plants produce nonenal from C18-fatty acids via lipoxygenase and hydroperoxide lyase reactions, but the moss exploits the C20 precursor arachidonic acid for the formation of these oxylipins. We describe the isolation of the first cDNA (PpHPL) encoding a hydroperoxide lyase from a lower eukaryotic organism. The physiological pathway allocation and characterization of a downstream enal-isomerase gives a new picture for the formation of fatty acid derived volatiles from lower plants. Expression of a fusion protein with a yellow fluorescent protein in moss protoplasts showed that PpHPL was found in clusters in membranes of plastids. PpHPL can be classified as an unspecific hydroperoxide lyase having a substrate preference for 9-hydroperoxides of C18-fatty acids but also the predominant substrate 12-hydroperoxy arachidonic acid is accepted. Feeding experiments using arachidonic acid show an increase in the 12-hydroperoxide being metabolized to C8-aldehydes/alcohols and (3Z)-nonenal, which is rapidly isomerized to (2E)-nonenal. PpHPL knock out lines failed to emit (2E)-nonenal while formation of C8-volatiles was not affected indicating that in contrast to flowering plants, PpHPL is only involved in formation of a specific subset of volatiles.

  2. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  3. Bleaching of kraft plus using dioxiranes: Structural effect of ketones

    SciTech Connect

    Chen, J.; Wearing, J.T.

    1996-10-01

    Recent developments in totally chlorine-free (TCF) bleaching of kraft pulps have led to a new finding showing that dimethyldioxirane (DMD), formed by reaction of peroxymonosulphate with acetone, is a very effective and selective bleaching agent. Because of the high volatility of acetone, careful design and special equipment are needed for the DMD bleaching process in order to meet operational safety, health and emission control requirements. Other ketones are considered as alternatives to acetone for dioxirane bleaching; however, the use of alternative ketones exhibits different responses in bleaching compared to acetone. This paper examines the bleaching performance of a number of selected ketones in light of different chemical structures and properties of the ketones as well as bleaching variables.

  4. Novel ketone diet enhances physical and cognitive performance

    PubMed Central

    Murray, Andrew J.; Knight, Nicholas S.; Cole, Mark A.; Cochlin, Lowri E.; Carter, Emma; Tchabanenko, Kirill; Pichulik, Tica; Gulston, Melanie K.; Atherton, Helen J.; Schroeder, Marie A.; Deacon, Robert M. J.; Kashiwaya, Yoshihiro; King, M. Todd; Pawlosky, Robert; Rawlins, J. Nicholas P.; Tyler, Damian J.; Griffin, Julian L.; Robertson, Jeremy; Veech, Richard L.; Clarke, Kieran

    2016-01-01

    Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson’s disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.—Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance. PMID:27528626

  5. Novel ketone diet enhances physical and cognitive performance.

    PubMed

    Murray, Andrew J; Knight, Nicholas S; Cole, Mark A; Cochlin, Lowri E; Carter, Emma; Tchabanenko, Kirill; Pichulik, Tica; Gulston, Melanie K; Atherton, Helen J; Schroeder, Marie A; Deacon, Robert M J; Kashiwaya, Yoshihiro; King, M Todd; Pawlosky, Robert; Rawlins, J Nicholas P; Tyler, Damian J; Griffin, Julian L; Robertson, Jeremy; Veech, Richard L; Clarke, Kieran

    2016-12-01

    Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [(31)P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.-Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.

  6. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.

    PubMed

    Men, Lijie; Wang, Yinsheng

    2007-01-01

    Yeast alcohol dehydrogenase (YADH) plays an important role in the conversion of alcohols to aldehydes or ketones. YADH-1 is a zinc-containing protein, and it accounts for the major part of ADH activity in growing baker's yeast. To gain insight into how oxidative modification of the enzyme affects its function, we exposed YADH-1 to hydrogen peroxide in vitro and assessed the oxidized protein by LC-MS/MS analysis of proteolytic cleavage products of the protein and by measurements of enzymatic activity, zinc release, and thiol/thiolate loss. The results illustrated that Cys43 and Cys153, which reside at the active site of the protein, could be selectively oxidized to cysteine sulfinic acid (Cys-SO2H) and cysteine sulfonic acid (Cys-SO3H). In addition, H2O2 induced the formation of three disulfide bonds: Cys43-Cys153 in the catalytic domain, Cys103-Cys111 in the noncatalytic zinc center, and Cys276-Cys277. Therefore, our results support the notion that the oxidation of cysteine residues in the zinc-binding domain of proteins can go beyond the formation of disulfide bond(s); the formation of Cys-SO2H and Cys-SO3H is also possible. Furthermore, most methionines could be oxidized to methionine sulfoxides. Quantitative measurement results revealed that, among all the cysteine residues, Cys43 was the most susceptible to H2O2 oxidation, and the major oxidation products of this cysteine were Cys-SO2H and Cys-SO3H. The oxidation of Cys43 might be responsible for the inactivation of the enzyme upon H2O2 treatment.

  7. Preclinical and clinical pharmacology of alcohol dependence.

    PubMed

    Tambour, Sophie; Quertemont, Etienne

    2007-02-01

    In recent years, advances in neuroscience led to the development of new medications to treat alcohol dependence and especially to prevent alcohol relapse after detoxification. Whereas the earliest medications against alcohol dependence were fortuitously discovered, recently developed drugs are increasingly based on alcohol's neurobiological mechanisms of action. This review discusses the most recent developments in alcohol pharmacotherapy and emphasizes the neurobiological basis of anti-alcohol medications. There are currently three approved drugs for the treatment of alcohol dependence with quite different mechanisms of action. Disulfiram is an inhibitor of the enzyme aldehyde dehydrogenase and acts as an alcohol-deterrent drug. Naltrexone, an opiate antagonist, reduces alcohol craving and relapse in heavy drinking, probably via a modulation of the mesolimbic dopamine activity. Finally, acamprosate helps maintaining alcohol abstinence, probably through a normalization of the chronic alcohol-induced hyperglutamatergic state. In addition to these approved medications, many other drugs have been suggested for preventing alcohol consumption on the basis of preclinical studies. Some of these drugs remain promising, whereas others have produced disappointing results in preliminary clinical studies. These new drugs in the field of alcohol pharmacotherapy are also discussed, together with their mechanisms of action.

  8. Rotational Spectroscopy of Methyl Vinyl Ketone

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Methyl vinyl ketone, MVK, along with previously studied by our team methacrolein, is a major oxidation product of isoprene, which is one of the primary contributors to annual global VOC emissions. In this talk we present the analysis of the rotational spectrum of MVK recorded at room temperature in the 50 -- 650 GHz region using the Lille spectrometer. The spectroscopic characterization of MVK ground state will be useful in the detailed analysis of high resolution infrared spectra. Our study is supported by high level quantum chemical calculations to model the structure of the two stable s-trans and s-cis conformers and to obtain the harmonic force field parameters, internal rotation barrier heights, and vibrational frequencies. In the Doppler-limited spectra the splittings due to the internal rotation of methyl group are resolved, therefore for analysis of this molecule we used the Rho-Axis-Method Hamiltonian and RAM36 code to fit the rotational transitions. At the present time the ground state of two conformers is analyzed. Also we intend to study some low lying excited states. The analysis is in progress and the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged.

  9. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    PubMed

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae.

  10. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  11. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  12. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon Family Groups www.al-anon.org National Institute on Alcohol ...

  13. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities

    PubMed Central

    Chen, Che-Hong; Ferreira, Julio Cesar Batista; Gross, Eric R.; Mochly-Rosen, Daria

    2014-01-01

    A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme. PMID:24382882

  14. Relationships within the aldehyde dehydrogenase extended family.

    PubMed Central

    Perozich, J.; Nicholas, H.; Wang, B. C.; Lindahl, R.; Hempel, J.

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project. PMID:10210192

  15. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    PubMed

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  16. A green chemistry approach to a more efficient asymmetric catalyst: solvent-free and highly concentrated alkyl additions to ketones.

    PubMed

    Jeon, Sang-Jin; Li, Hongmei; Walsh, Patrick J

    2005-11-30

    There is a great demand for development of catalyst systems that are not only efficient and highly enantioselective but are also environmentally benign. Herein we report investigations into the catalytic asymmetric addition of alkyl and functionalized alkyl groups to ketones under highly concentrated and solvent-free conditions. In comparison with standard reaction conditions employing toluene and hexanes, the solvent-free and highly concentrated conditions permit reduction in catalyst loading by a factor of 2- to 40-fold. These new conditions are general and applicable to a variety of ketones and dialkylzinc reagents to provide diverse tertiary alcohols with high enantioselectivities. Using cyclic conjugated enones, we have performed a tandem asymmetric addition/diastereoselective epoxidation using the solvent-free addition conditions followed by introduction of a 5.5 M decane solution of tert-butyl hydroperoxide (TBHP) to generate epoxy alcohols. This one-pot procedure allows access to syn epoxy alcohols with three contiguous stereocenters with excellent enantio- and diastereoselectivities and high yields. Both the solvent-free asymmetric additions and asymmetric addition/diastereoselective epoxidation reactions have been conducted on larger scale (5 g substrate) with 0.5 mol % catalyst loadings. In these procedures, enantioselectivities equal to or better than 92% were obtained with isolated yields of 90%. The solvent-free and highly concentrated conditions are a significant improvement over previous solvent-based protocols. Further, this chemistry represents a rare example of a catalytic asymmetric reaction that is highly enantioselective under more environmentally friendly solvent-free conditions.

  17. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... 84 Alcohol Alert Number 84 Print Version The Genetics of Alcoholism Why can some people have a ... to an increased risk of alcoholism. Cutting-Edge Genetic Research in Alcoholism Although researchers already have made ...

  18. Method for producing hydrocarbon and alcohol mixtures. [Patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1980-12-01

    It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  19. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant

    SciTech Connect

    Perez-Miller, Samantha; Younus, Hina; Vanam, Ram; Chen, Che-Hong; Mochly-Rosen, Daria; Hurley, Thomas D.

    2010-04-19

    In approximately one billion people, a point mutation inactivates a key detoxifying enzyme, aldehyde dehydrogenase (ALDH2). This mitochondrial enzyme metabolizes toxic biogenic and environmental aldehydes, including the endogenously produced 4-hydroxynonenal (4HNE) and the environmental pollutant acrolein, and also bioactivates nitroglycerin. ALDH2 is best known, however, for its role in ethanol metabolism. The accumulation of acetaldehyde following the consumption of even a single alcoholic beverage leads to the Asian alcohol-induced flushing syndrome in ALDH2*2 homozygotes. The ALDH2*2 allele is semidominant, and heterozygotic individuals show a similar but less severe phenotype. We recently identified a small molecule, Alda-1, that activates wild-type ALDH2 and restores near-wild-type activity to ALDH2*2. The structures of Alda-1 bound to ALDH2 and ALDH2*2 reveal how Alda-1 activates the wild-type enzyme and how it restores the activity of ALDH2*2 by acting as a structural chaperone.

  20. Selective Reductions. 46. Effect of the Steric Requirement at the 2- Position of Apopinene on Chiral Reductions. B-Iso-2-n-Propylapopinocampheyl-9- Borabicyclo(3.3.1)Nonane as Improved Reagents for the Chiral Reduction of Alpha, Beta-Acetylenic Ketones and Alpha-Keto Esters

    DTIC Science & Technology

    1991-01-17

    prepared in situ from methyllithium and cuprous iodide. (+)-2-n-Propylapopinene was synthesized by Schlosser metallation of (+)-ac- pinene followed by...into its components, ac- pinene and 9-BBN with the less reactive ketones resultingo iuAchiral reduction.8 The dehydroboration is suppressed by...cc- pinene . 10 A comparison-of the enantiomeric e cesses of the product alcohols obtained from the reduction of prochiral’acetylenic ketones showsthat 2

  1. Aldose Reductase-catalyzed Reduction of Aldehyde Phospholipids

    PubMed Central

    Srivastava, Sanjay; Spite, Matthew; Trent, John O.; West, Matthew B.; Ahmed, Yonis; Bhatnagar, Aruni

    2012-01-01

    SUMMARY Oxidation of unsaturated phospholipids results in the generation of aldehyde side chains that remain esterified to the phospholipid backbone. Such “core” aldehydes elicit immune responses and promote inflammation. However, the biochemical mechanisms by which phospholipid aldehydes are metabolized or detoxified are not well understood. In the studies reported here, we examined whether aldose reductase (AR), which reduces hydrophobic aldehydes, metabolizes phospholipid aldehydes. Incubation with AR led to the reduction of 5-oxovaleroyl, 7-oxo-5-heptenoyl, 5-hydroxy-6-oxo-caproyl, and 5-hydroxy-8-oxo-6-octenoyl phospholipids generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The enzyme also catalyzed the reduction of phospholipid aldehydes generated from the oxidation of 1-alkyl, and 1-alkenyl analogs of PAPC, and 1-palmitoyl-2-arachidonoyl phosphatidic acid or phosphoglycerol. Aldose reductase catalyzed the reduction of chemically synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (POVPC) with a Km of 10 μM. Addition of POVPC to the culture medium led to incorporation and reduction of the aldehyde in COS-7 and THP-1 cells. Reduction of POVPC in these cells was prevented by the AR inhibitors sorbinil and tolrestat and was increased in COS-7 cells overexpressing AR. Together, these observations suggest that AR may be a significant participant in the metabolism of several structurally diverse phospholipid aldehydes. This metabolism may be a critical regulator of the pro-inflammatory and immunogenic effects of oxidized phospholipids. PMID:15465833

  2. The epimerization of peptide aldehydes--a systematic study.

    PubMed

    Ganneau, Cécile; Moulin, Aline; Demange, Luc; Martinez, Jean; Fehrentz, Jean-Alain

    2006-07-01

    Peptide aldehydes are interesting targets as enzyme inhibitors, and can be used for pseudopeptide chemistry or ligation. However, they are known to be subjected to epimerization during synthesis or purification. By (1)H NMR, a model dipeptide aldehyde can be used to check the possible epimerization occurring during synthesis. Various purification methods were investigated, but none was free from epimerization.

  3. Extraction of protactinium from mineral acid-alcohol media.

    PubMed

    Alian, A; Sanad, W; Shabana, R

    1968-07-01

    The extraction of protactinium with organic solvents has been investigated in the presence of water-miscible alcohols and acetone. These additives were found to increase considerably the extraction of protactinium in the cases of trilaurylamine, tributyl phosphate and isobutyl methyl ketone. The influence was less in the case of thenoyltrifluoroacetone. In mixtures of an acid with various alcohols, the influence depended on the alcohol concentration, the acidity and on the chain lengths and dielectric constants of the alcohol introduced into the extraction system.

  4. DEVELOPMENTAL EXPRESSION OF ALDEHYDE DEHYDROGENASE IN RAT: A COMPARISON OF LIVER AND LUNG DEVELOPMENT

    EPA Science Inventory

    Metabolism is one of the major determinants for age-related susceptibility changes to chemicals. Aldehydes are highly reactive molecules present in the environment and can be produced during biotransformation of xenobiotics. Aldehyde dehydrogenases (ALDH) are important in aldehyd...

  5. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines.

    PubMed

    Zuo, Weiwei; Lough, Alan J; Li, Young Feng; Morris, Robert H

    2013-11-29

    A rational approach is needed to design hydrogenation catalysts that make use of Earth-abundant elements to replace the rare elements such as ruthenium, rhodium, and palladium that are traditionally used. Here, we validate a prior mechanistic hypothesis that partially saturated amine(imine)diphosphine ligands (P-NH-N-P) activate iron to catalyze the asymmetric reduction of the polar bonds of ketones and imines to valuable enantiopure alcohols and amines, with isopropanol as the hydrogen donor, at turnover frequencies as high as 200 per second at 28°C. We present a direct synthetic approach to enantiopure ligands of this type that takes advantage of the iron(lI) ion as a template. The catalytic mechanism is elucidated by the spectroscopic detection of iron hydride and amide intermediates.

  6. Water-enhanced solvation of organic solutes in ketone and ester solvents

    SciTech Connect

    Lee, J.H.; Brunt, V. van; King, C.J. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA )

    1994-05-01

    Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, and 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.

  7. Cerebral metabolic adaptation and ketone metabolism after brain injury.

    PubMed

    Prins, Mayumi L

    2008-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the 'post-weaned/adult' brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain's capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation.

  8. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    PubMed

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  9. Measurements of Oxygenated Organic Chemicals In the Pacific Troposphere During TRACE-P: Higher Aldehydes (less than C(sub 1)), Their Sources, and Potential Role In Atmospheric Oxidation

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Herlth, D.; Viezee, W.; Fried, A.; Jackob, D.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Airborne measurements of a large number of oxygenated organics were carried out in the Pacific troposphere (to 12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measurements included acetaldehyde, propanaldehyde, acetone, methylethyl ketone, methanol, ethanol, PAM and organic nitrates. Independent measurements of formaldehyde, peroxides, and tracers were also available. Highly polluted as well as pristine air masses were sampled. Oxygenated organics were abundant in the clean In troposphere and were greatly enhanced in the outflow regions from Asia. Extremely high concentrations of aldehydes could be measured in the troposphere. It is not possible to explain the large abundances of aldehydes in the background troposphere without invoking significant oceanic sources. A strong correlation between the observed mixing ratios of formaldehyde and acetaldehyde is present. We infer that higher aldehydes (such as acetaldehyde and propanaldehyde) may provide a large source of formaldehyde and sequester Cox throughout the troposphere. The atmospheric behavior of acetone, methylethyl ketone, and methanol is generally indicative of their common terrestrial sources with a Image contribution from biomass/biofuel burning. A vast body of data has been collected and it is being analyzed both statistically and with the help of models to better understand the role that oxygenated organics play in the atmosphere and to unravel their sources and sinks. These results will be presented.

  10. Synthesis and Applications of iso-Hajos–Parrish Ketones**

    PubMed Central

    Eagan, James M.; Hori, Masahiro; Wu, Jianbin; Kanyiva, Kyalo Stephen; Snyder, Scott A.

    2015-01-01

    Although numerous natural products possess ring systems and functionality for which “iso-Hajos–Parrish” ketones would be of value, such building blocks have not been exploited to the same degree as the more typical Hajos–Parrish hydrindane. Herein we outline an efficient three-step synthesis of such materials fueled by a simple method for the rapid preparation of highly functionalized cyclopentenones, several of which are new chemical entities that would be challenging to access through other approaches. We then show how one iso-Hajos–Parrish ketone can be converted into two distinct natural product analogs as well as one natural product. As one indication of the value of these new building blocks, that latter target was obtained in 10 steps, having previously been accessed in 18 steps using the Hajos–Parrish ketone. PMID:25974879

  11. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    PubMed

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-05

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified.

  12. Catalytic Intramolecular Ketone Alkylation with Olefins by Dual Activation.

    PubMed

    Lim, Hee Nam; Dong, Guangbin

    2015-12-07

    Two complementary methods for catalytic intramolecular ketone alkylation reactions with unactivated olefins, resulting in Conia-ene-type reactions, are reported. The transformations are enabled by dual activation of both the ketone and the olefin and are atom-economical as stoichiometric oxidants or reductants are not required. Assisted by Kool's aniline catalyst, the reaction conditions can be both pH- and redox-neutral. A broad range of functional groups are thus tolerated. Whereas the rhodium catalysts are effective for the formation of five-membered rings, a ruthenium-based system that affords the six-membered ring products was also developed.

  13. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution.

    PubMed

    Zhao, Shu-Feng; Horne, Mike; Bond, Alan M; Zhang, Jie

    2015-07-15

    Electrochemical reduction of aromatic ketones, including acetophenone, benzophenone and 4-phenylbenzophenone, has been undertaken in 1-butyl-3-methylimidazolium-based ionic liquids containing tetrafluoroborate ([BF4](-)), trifluoromethanesulfonate ([TfO](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) anions in the presence of carbon dioxide in order to investigate the ketone substituent effect and the influence of the acidic proton on the imidazolium cation (C2-H) on bulk electrolysis product distribution. For acetophenone, the minor products were dimers (<10%) in all ionic liquids, which are the result of acetophenone radical anion coupling. For benzophenone and 4-phenylbenzophenone, no dimers were formed due to steric hindrance. In these cases, even though carboxylic acids were obtained, the main products generated were alcohols (>50%) derived from proton coupled electron transfer reactions involving the electrogenerated radical anions and C2-H. In the cases of both acetophenone and benzophenone, the product distribution is essentially independent of the ionic liquid anion. By contrast, 4-phenylbenzophenone shows a product distribution that is dependent on the ionic liquid anion. Higher yields of carboxylic acids (∼40%) are obtained with [TfO](-) and [FAP](-) anions because in these ionic liquids the C2-H is less acidic, making the formation of alcohol less favourable. In comparison with benzophenone, a higher yield of carboxylic acid (>30% versus ∼15%) was obtained with 4-phenylbenzophenone in all ionic liquids due to the weaker basicity of 4-phenylbenzophenone radical anion.

  14. Third international symposium on alcohol fuels technology

    SciTech Connect

    1980-04-01

    At the opening of the Symposium, Dr. Sharrah, Senior Vice President of Continental Oil Company, addressed the attendees, and his remarks are included in this volume. The Symposium was concluded by workshops which addressed specific topics. The topical titles are as follows: alcohol uses; production; environment and safety; and socio-economic. The workshops reflected a growing confidence among the attendees that the alcohols from coal, remote natural gas and biomass do offer alternatives to petroleum fuels. Further, they may, in the long run, prove to be equal or superior to the petroleum fuels when the aspects of performance, environment, health and safety are combined with the renewable aspect of the biomass derived alcohols. Although considerable activity in the production and use of alcohols is now appearing in many parts of the world, the absence of strong, broad scale assessment and support for these fuels by the United States Federal Government was a noted point of concern by the attendees. The environmental consequence of using alcohols continues to be more benign in general than the petroleum based fuels. The exception is the family of aldehydes. Although the aldehydes are easily suppressed by catalysts, it is important to understand their production in the combustion process. Progress is being made in this regard. Of course, the goal is to burn the alcohols so cleanly that catalytic equipment can be eliminated. Separate abstracts are prepared for the Energy Data Base for individual presentations.

  15. Genes contributing to the development of alcoholism: an overview.

    PubMed

    Edenberg, Howard J

    2012-01-01

    Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case-control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that encode two enzymes involved in alcohol metabolism-alcohol dehydrogenase and aldehyde dehydrogenase. Accumulating evidence indicates that variations in numerous other genes have smaller but measurable effects.

  16. A One-Pot Synthesis of 2-Aminopyrimidines from Ketones, Arylacetylenes, and Guanidine.

    PubMed

    Schmidt, Elena Yu; Tatarinova, Inna V; Protsuk, Nadezhda I; Ushakov, Igor' A; Trofimov, Boris A

    2017-01-06

    The three-component reaction of ketones, arylacetylenes, and guanidine catalyzed by the KOBu(t)/DMSO system leads to 2-aminopyrimidines in up to 80% yield. Depending on structure of the starting ketones, the aromatization of intermediate dihydropyrimidines occurs either with loss of hydrogen molecules or methylbenzenes. The latter process takes place in the ketones, in which one of the substituents is not a methyl group. The reaction conditions are tolerable for dialkyl-, aryl(hetaryl) alkyl-, and cycloalkyl ketones.

  17. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae

    PubMed Central

    Adeboye, Peter Temitope; Bettiga, Maurizio; Olsson, Lisbeth

    2017-01-01

    The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase Ald5, phenylacrylic acid decarboxylase Pad1, and alcohol acetyltransferases Atf1 and Atf2, were hypothesised to be involved. Corresponding genes for the four enzymes were overexpressed in a S. cerevisiae strain named APT_1. The ability of APT_1 to tolerate and convert the three phenolic compounds was tested. APT_1 was also compared to strains B_CALD heterologously expressing coniferyl aldehyde dehydrogenase from Pseudomonas, and an ald5Δ strain, all previously reported. APT_1 exhibited the fastest conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. Using the intermediates and conversion products of each compound, the catabolic route of coniferyl aldehyde, ferulic acid and p-coumaric acid in S. cerevisiae was studied in greater detail. PMID:28205618

  18. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  19. Formation of alcohol conversion catalysts

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2001-01-01

    The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

  20. Diversity-oriented synthesis of chromenes via metal-free domino reactions from ketones and phenols.

    PubMed

    Xue, Wei-Jian; Li, Qi; Gao, Fang-fang; Zhu, Yan-ping; Wang, Jun-gang; Zhang, Wei; Wu, An-Xin

    2012-08-13

    Functionalized chromenes have been synthesized via highly selective metal-free domino reactions from ketones and phenols. 2H-Chromenes, 4H-chromenes, spiran and benzocyclopentane can be respectively prepared starting from the corresponding cyclic ketones, aryl methyl ketones, acetone, and 3-pentanone.

  1. Crystal morphology and phase identifications in poly(aryl ether ketones)s and their copolymers

    SciTech Connect

    Ho, R.M.; Cheng, S.Z.D.; Hsiao, B.S.

    1995-12-01

    A series of poly(aryl ether ketone ketone)s prepared from diphenyl ether (DPE) and terephthalic acid M or isophthalic acid (T) have been investigated. PEKK(T) has been reported to exhibit two polymorphism (form I and form II) based on wide angle X-ray diffraction (WAXD) and electron diffraction (ED) experiments.

  2. Utility of ketone measurement in the prevention, diagnosis and management of diabetic ketoacidosis.

    PubMed

    Misra, S; Oliver, N S

    2015-01-01

    Ketone measurement is advocated for the diagnosis of diabetic ketoacidosis and assessment of its severity. Assessing the evidence base for ketone measurement in clinical practice is challenging because multiple methods are available but there is a lack of consensus about which is preferable. Evaluating the utility of ketone measurement is additionally problematic because of variability in the biochemical definition of ketoacidosis internationally and in the proposed thresholds for ketone measures. This has led to conflicting guidance from expert bodies on how ketone measurement should be used in the management of ketoacidosis. The development of point-of-care devices that can reliably measure the capillary blood ketone β-hydroxybutyrate (BOHB) has widened the spectrum of applications of ketone measurement, but whether the evidence base supporting these applications is robust enough to warrant their incorporation into routine clinical practice remains unclear. The imprecision of capillary blood ketone measures at higher values, the lack of availability of routine laboratory-based assays for BOHB and the continued cost-effectiveness of urine ketone assessment prompt further discussion on the role of capillary blood ketone assessment in ketoacidosis. In the present article, we review the various existing methods of ketone measurement, the precision of capillary blood ketone as compared with other measures, its diagnostic accuracy in predicting ketoacidosis and other clinical applications including prevention, assessment of severity and resolution of ketoacidosis.

  3. Reversible catalytic dehydrogenation of alcohols for energy storage

    PubMed Central

    Bonitatibus, Peter J.; Chakraborty, Sumit; Doherty, Mark D.; Siclovan, Oltea; Jones, William D.; Soloveichik, Grigorii L.

    2015-01-01

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this report, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. This reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels. PMID:25588879

  4. A kinetic estimate of the free aldehyde content of aldoses

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The relative free aldehyde content of eight hexoses and four pentoses has been estimated within about 10% from the rate constants for their reaction with urazole (1,2,4-triazole-3,5-dione). These values of the percent free aldehyde are in agreement with those estimated from CD measurements, but are more accurate. The relative free aldehyde contents for the aldoses were then correlated to various literature NMR measurements to obtain the absolute values. This procedure was also done for three deoxyaldoses, which react much more rapidly than can be accounted for by the free aldehyde content. This difference in reactivity between aldoses and deoxyaldoses is due to the inductive effect of the H versus the OH on C-2'. This may help explain why deoxyribonucleosides hydrolyze much more rapidly than ribonucleosides.

  5. Silver-catalyzed synthesis of amides from amines and aldehydes

    DOEpatents

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  6. Enzymatic method for determining ketone body ratio in arterial blood.

    PubMed

    Uno, S; Takehiro, O; Tabata, R; Ozawa, K

    1995-12-01

    We have developed a new, sensitive, and rapid method for measuring the ketone body concentration in arterial blood and determining the arterial blood ketone body ratio. The procedure involves the sequential use of the enzymes 3-hydroxybutyrate dehydrogenase (3-HBDH; EC 1.1.1.30) and NADH oxidase, followed by a color-generating reaction with the hydrogen peroxide produced by the oxidase reaction. The amount of oxidized chromogen produced is proportional to the 3-hydroxybutyrate (3-HBA) concentration. The acetoacetate (AcAc) concentration is obtained after complete conversion of the AcAc to 3-HBA, in the presence of 3-HBDH. The total 3-HBA concentration is measured and then subtracted from the total ketone body concentration to give the AcAc concentration. This procedure may be applied to plasma samples and the absorbance change measured with an automated chemistry analyzer. Ketone body concentration may be determined over the range 0 to 400 mumol/L. The analysis takes approximately 12 min and requires only 30 microL of plasma.

  7. Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance

    DTIC Science & Technology

    2015-12-01

    and cellular energy homeostasis . Analysis of patient data indicated that higher OXCT1 levels are associated with docetaxel chemotherapy resistance...knock down induced metabolic inefficiency upon docetaxel treatment Since OXCT1 is a metabolic enzyme involved in energy homeostasis , next, to...ketone body metabolism and cellular energy homeostasis . Analysis of our previous data from patient needle biopsy samples indicated that higher

  8. Organocatalytic enantioselective indole alkylations of alpha,beta-unsaturated ketones.

    PubMed

    Chen, Wei; Du, Wei; Yue, Lei; Li, Rui; Wu, Yong; Ding, Li-Sheng; Chen, Ying-Chun

    2007-03-07

    The C3-selective enantioselective Michael-type Friedel-Crafts alkylations of indoles with nonchelating alpha,beta-unsaturated alkyl ketones, catalysed by a chiral primary amine derived from natural cinchonine, were investigated. The reactions, in the presence of 30 mol% catalyst, were smoothly conducted at 0 to -20 degrees C. Moderate to good ee (47-89%) has been achieved.

  9. Photoreactivity of. cap alpha. -fluorinated phenyl alkyl ketones

    SciTech Connect

    Wagner, P.J.; Thomas, M.J.; Puchalski, A.E.

    1986-11-26

    The photoreactivities of the mono-, di-, and tri-..cap alpha..-fluorinated acetophenones have been compared to that of acetophenone itself. All four ketones have similar triplet excitation energies; the three fluorinated ketones have reduction potentials 0.5-0.7 eV lower than that of acetophenone. Triplet reactivity toward alkylbenzenes keeps increasing with fluorine substitution, since the rate-determining step becomes charge-transfer complexation as the ketone reduction potential decreases. The primary/tertiary C-H selectivity toward p-cymene increases with the number of fluorines. Triplet reactivity toward cyclopentane also is increased by fluorination but peaks at two fluorines, since the lowest triplet switches from n,..pi..* to ..pi..,..pi..* with two or three fluorines and ..pi..,..pi..* triplets are unreactive in simple hydrogen atom abstraction. In contrast, ..cap alpha..-fluorination of valerophenone does not significantly increase the rate of triplet ..gamma..-hydrogen abstraction. The inductive effect on reactivity apparently is offset by a conformational effect. The ..cap alpha..-fluorinated phenones give predominantly cyclobutanols instead of Norrish type II elimination. ..cap alpha..-Fluoroacetophenone forms predominantly acetophenone and HF when irradiated with 2-propanol, in what appears to be a short chain process involving electron transfer to ketone followed by fluoride ion loss. Finally, the radical coupling products in these reactions are formed in varying yields, depending on solvent and additives.

  10. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  11. Ketone body metabolism and sleep homeostasis in mice.

    PubMed

    Chikahisa, Sachiko; Shimizu, Noriyuki; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2014-04-01

    A link has been established between energy metabolism and sleep homeostasis. The ketone bodies acetoacetate and β-hydroxybutyrate, generated from the breakdown of fatty acids, are major metabolic fuels for the brain under conditions of low glucose availability. Ketogenesis is modulated by the activity of peroxisome proliferator-activated receptor alpha (PPARα), and treatment with a PPAR activator has been shown to induce a marked increase in plasma acetoacetate and decreased β-hydroxybutyrate in mice, accompanied by increased slow-wave activity during non-rapid eye movement (NREM) sleep. The present study investigated the role of ketone bodies in sleep regulation. Six-hour sleep deprivation increased plasma ketone bodies and their ratio (acetoacetate/β-hydroxybutyrate) in 10-week-old male mice. Moreover, sleep deprivation increased mRNA expression of ketogenic genes such as PPARα and 3-hydroxy-3-methylglutarate-CoA synthase 2 in the brain and decreased ketolytic enzymes such as succinyl-CoA: 3-oxoacid CoA transferase. In addition, central injection of acetoacetate, but not β-hydroxybutyrate, markedly increased slow-wave activity during NREM sleep and suppressed glutamate release. Central metabolism of ketone bodies, especially acetoacetate, appears to play a role in the regulation of sleep homeostasis.

  12. Chiral Ketone and Iminium Catalysts for Olefin Epoxidation

    NASA Astrophysics Data System (ADS)

    Wong, O. Andrea; Shi, Yian

    Organo-catalyzed asymmetric epoxidation has received much attention in the past 30 years and significant progress has been made for various types of olefins. This review will cover the advancement made in the field of chiral ketone and chiral iminium salt-catalyzed epoxidations.

  13. Ketonization of Cuphea oil for the production of 2-undecanone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...

  14. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    PubMed

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.

  15. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E

    DOE PAGES

    Clarkson, Sonya M.; Hamilton-Brehm, Scott D.; Giannone, Richard J.; ...

    2014-12-03

    Background: Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria is important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains such as Thermoanaerobacter spp. may also enable improvements in candidate CBP microorganisms. Results: T. pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30more » mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated vs. 73 downregulated. Only 86 proteins exhibited a 2-fold change in abundance in either direction. Of these, 53 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least 2-fold by furfural and were targeted for further investigation: Teth39_1597, encodes a predicted butanol dehydrogenase (BdhA) and Teth39_1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. AKR also showed significant activity with NADPH, but only with four carbon butyr

  16. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester

    PubMed Central

    Hashim, Sami A.; VanItallie, Theodore B.

    2014-01-01

    Ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (βHB), were considered harmful metabolic by-products when discovered in the mid-19th century in the urine of patients with diabetic ketoacidosis. It took physicians many years to realize that KBs are normal metabolites synthesized by the liver and exported into the systemic circulation to serve as an energy source for most extrahepatic tissues. Studies have shown that the brain (which normally uses glucose for energy) can readily utilize KBs as an alternative fuel. Even when there is diminished glucose utilization in cognition-critical brain areas, as may occur early in Alzheimer’s disease (AD), there is preliminary evidence that these same areas remain capable of metabolizing KBs. Because the ketogenic diet (KD) is difficult to prepare and follow, and effectiveness of KB treatment in certain patients may be enhanced by raising plasma KB levels to ≥2 mM, KB esters, such as 1,3-butanediol monoester of βHB and glyceryl-tris-3-hydroxybutyrate, have been devised. When administered orally in controlled dosages, these esters can produce plasma KB levels comparable to those achieved by the most rigorous KD, thus providing a safe, convenient, and versatile new approach to the study and potential treatment of a variety of diseases, including epilepsy, AD, and Parkinson’s disease. PMID:24598140

  17. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester.

    PubMed

    Hashim, Sami A; VanItallie, Theodore B

    2014-09-01

    Ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (βHB), were considered harmful metabolic by-products when discovered in the mid-19th century in the urine of patients with diabetic ketoacidosis. It took physicians many years to realize that KBs are normal metabolites synthesized by the liver and exported into the systemic circulation to serve as an energy source for most extrahepatic tissues. Studies have shown that the brain (which normally uses glucose for energy) can readily utilize KBs as an alternative fuel. Even when there is diminished glucose utilization in cognition-critical brain areas, as may occur early in Alzheimer's disease (AD), there is preliminary evidence that these same areas remain capable of metabolizing KBs. Because the ketogenic diet (KD) is difficult to prepare and follow, and effectiveness of KB treatment in certain patients may be enhanced by raising plasma KB levels to ≥2 mM, KB esters, such as 1,3-butanediol monoester of βHB and glyceryl-tris-3-hydroxybutyrate, have been devised. When administered orally in controlled dosages, these esters can produce plasma KB levels comparable to those achieved by the most rigorous KD, thus providing a safe, convenient, and versatile new approach to the study and potential treatment of a variety of diseases, including epilepsy, AD, and Parkinson's disease.

  18. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols.

    PubMed

    Jin, Zhu; Wong, Adison; Foo, Jee Loon; Ng, Joey; Cao, Ying-Xiu; Chang, Matthew Wook; Yuan, Ying-Jin

    2016-04-01

    Fatty aldehydes and alcohols are valuable precursors used in the industrial manufacturing of a myriad of specialty products. Herein, we demonstrate the de novo production of odd chain-length fatty aldehydes and fatty alcohols in Saccharomyces cerevisiae by expressing a novel biosynthetic pathway involving cytosolic thioesterase, rice α-dioxygenase and endogenous aldehyde reductases. We attained production titers of ∼20 mg/l fatty aldehydes and ∼20 mg/l fatty alcohols in shake flask cultures after 48 and 60 h respectively without extensive fine-tuning of metabolic fluxes. In contrast to prior studies which relied on bi-functional fatty acyl-CoA reductase to produce even chain-length fatty alcohols, our biosynthetic route exploits α-oxidation reaction to produce odd chain-length fatty aldehyde intermediates without using NAD(P)H cofactor, thereby conserving cellular resource during the overall synthesis of odd chain-length fatty alcohols. The biosynthetic pathway presented in this study has the potential to enable sustainable and efficient synthesis of fatty acid-derived chemicals from processed biomass.

  19. Sensitive Determination of Volatile Organic Compounds and Aldehydes in Tattoo Inks.

    PubMed

    Lim, Hyun-Hee; Shin, Ho-Sang

    2017-02-01

    As the popularity of body art including tattoo ink has increased, the safety associated with it has become an important interest. In this study, twenty volatile organic compounds (VOCs) and two aldehydes in tattoo inks were identified and quantified. Headspace and gas chromatography-mass spectrometry (HS GC-MS) for the VOCs and HS GC-MS based on derivatization with 2,2,2-trifluoroethylhydrazine (TFEH) for aldehydes was developed. Benzene, chloroform, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, propylbenzene, chlorobenzene, tert-butylbenzene, 1,3,5-trimethylbenzene, styrene, 1,2,4-trimethylbenzene, 2-chlorotoluene, 4-chlorotoluene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene and isopropyl alcohol were detected with the concentration range of 0.02-207,000 mg/kg in 16 different tattoo inks. Formaldehyde and acetaldehyde were detected with the concentration range of 0.4-308 mg/kg in the same samples. Our analytical results represent solvents used intentionally or non-intentionally in tattoo inks, and thus they may provide important information for national regulation.

  20. Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application

    PubMed Central

    Koppaka, Vindhya; Thompson, David C.; Chen, Ying; Ellermann, Manuel; Nicolaou, Kyriacos C.; Juvonen, Risto O.; Petersen, Dennis; Deitrich, Richard A.; Hurley, Thomas D.

    2012-01-01

    Aldehyde dehydrogenases (ALDHs) belong to a superfamily of enzymes that play a key role in the metabolism of aldehydes of both endogenous and exogenous derivation. The human ALDH superfamily comprises 19 isozymes that possess important physiological and toxicological functions. The ALDH1A subfamily plays a pivotal role in embryogenesis and development by mediating retinoic acid signaling. ALDH2, as a key enzyme that oxidizes acetaldehyde, is crucial for alcohol metabolism. ALDH1A1 and ALDH3A1 are lens and corneal crystallins, which are essential elements of the cellular defense mechanism against ultraviolet radiation-induced damage in ocular tissues. Many ALDH isozymes are important in oxidizing reactive aldehydes derived from lipid peroxidation and thereby help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes have been reported in various human cancers and are associated with cancer relapse. As a direct consequence of their significant physiological and toxicological roles, inhibitors of the ALDH enzymes have been developed to treat human diseases. This review summarizes known ALDH inhibitors, their mechanisms of action, isozyme selectivity, potency, and clinical uses. The purpose of this review is to 1) establish the current status of pharmacological inhibition of the ALDHs, 2) provide a rationale for the continued development of ALDH isozyme-selective inhibitors, and 3) identify the challenges and potential therapeutic rewards associated with the creation of such agents. PMID:22544865

  1. Application of Novel Method to Measure Endogenous VOCs in Exhaled Breath Condensate Before and After Exposure to Diesel Exhaust

    EPA Science Inventory

    Polar volatile organic compounds (PVOCs) such as aldehydes, ketones, and alcohols are byproducts of normal human metabolism and are present in exhaled breath and blood. Environmental exposures, individual activities, and disease states can perturb normal metabolic processes and ...

  2. 40 CFR 442.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles,...

  3. PHOTOCATALYTIC REACTORS AND KINETICS FOR CLEAN CHEMICAL SYNTHESIS [POSTER PRESENTATION

    EPA Science Inventory

    Semiconductor photocatalysis has been tested at a potential technology for synthesizing alcohols, ketones and aldehydes from linear and cyclic hydrocarbons. The technology couples UV light with photocatalyst overcoming many of the drawbacks of conventional reacors. Various hydr...

  4. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  5. Photoreduction and ketone-sensitized reduction of alkaloids.

    PubMed

    Görner, Helmut; Miskolczy, Zsombor; Megyesi, Mónika; Biczók, László

    2011-01-01

    The photoprocesses of berberine, palmatine, coralyne, sanguinarine, flavopereirine and ellipticine were studied in several solvents. The quantum yields Φ(Δ) of singlet molecular oxygen formation of berberine, palmatine and sanguinarine are moderate in dichloromethane (0.2-0.6) and much smaller in acetonitrile or trifluoroethanol. For the other alkaloids examined, Φ(Δ) is rather independent of solvent polarity. The direct and ketone-sensitized photolysis, using steady-state irradiation at 313 nm or 248/308 nm laser pulses, was studied by absorption and fluorescence spectroscopy. Thereby, radicals were observed yielding eventually dihydro derivatives as major products, which are thermally back-converted on admission of oxygen. The quantum yield of conversion of alkaloids to dihydroalkaloids is enhanced in the presence of triethylamine. The reaction in the presence of ketones and electron or H-atom donors has a quantum yield of close to unity.

  6. Novel Aldehyde-Terminated Dendrimers; Synthesis and Cytotoxicity Assay

    PubMed Central

    Hamidi, Aliasghar; Sharifi, Simin; Davaran, Soodabeh; Ghasemi, Saeed; Omidi, Yadollah; Rashidi, Mohammad-Reza

    2012-01-01

    Introduction Polyamidoamine (PAMAM) dendrimers are a unique family of dendritic polymers with numerous pharmaceutical and biomedical applications. One major problem with these polymers is their cytotoxicity. The purpose of this study was to synthesize novel dendrimers with aldehyde terminal groups and compare their cytotoxicity with that of dendri¬mers containing amine-terminated groups. Methods G1(first generation) and G2 (second generation) dendrimers with amine-terminated groups were synthesized by divergent method and then the amine-terminated groups were converted to the aldehyde groups using surface modification of the functional group inversion (FGI) method. The cytotoxicity of the novel G1 and G2 polyamidoaldehyde (PAMAL) dendrimers together with that of G1 and G2 PAMAM-NH2 dendrimers was investigated by MTT assay using MCF-7 cell line. Results The results showed that cytotoxicity of dendrimers with aldehyde-terminated groups is much lower than that of G1 and G2 PAMAM-NH2 dendri¬mers. Conclusion Dendrimers with aldehyde-terminated groups could be used as novel and convenient carriers for drug delivery with low cytotoxic effect compared with the amine-terminated dendrimers. The results revealed that the same generations of the dendri¬mers with aldehyde-terminated groups are far less toxic than the corresponding amine-terminated dendrimers. PMID:23678447

  7. Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance

    DTIC Science & Technology

    2014-10-01

    was upregulated in a subset of patients and the upregulation was associated with chemotherapy resistance. In vitro analysis showed that OXCT1 was...hypothesis that OXCT1 plays important role prostate cancer chemotherapy sensitivity. 15. SUBJECT TERMS chemosensitivity, OXCT1, docetaxel...prostate cancer resistance to docetaxel-based chemotherapy has never been tested. OXCT1 encodes the rate limiting enzyme converting ketone bodies to

  8. A constitutive model of polyether-ether-ketone (PEEK).

    PubMed

    Chen, Fei; Ou, Hengan; Lu, Bin; Long, Hui

    2016-01-01

    A modified Johnson-Cook (JC) model was proposed to describe the flow behaviour of polyether-ether-ketone (PEEK) with the consideration of coupled effects of strain, strain rate and temperature. As compared to traditional JC model, the modified one has better ability to predict the flow behaviour at elevated temperature conditions. In particular, the yield stress was found to be inversely proportional to temperature from the predictions of the proposed model.

  9. Thiomethylation of ketones by sulphide-alkaline solutions and formaldehyde

    SciTech Connect

    Ulendeyeva, A.D.; Samigullin, I.I.; Nasteka, V.I.

    1993-12-31

    An investigation has been made of the thiomethylation of ketones by formaldehyde with mercaptides, sodium sulphide and their mixture. It is possible to regenerate 78-100 rel.% of the sulphide-alkaline solutions under mild conditions (20-50{degrees}C, atmospheric pressure) without feeding a catalyst, with the simultaneous production of ketosulphide concentrate - a less toxic product with properties of practical benefit. 7 refs., 2 figs., 2 tabs.

  10. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

    PubMed Central

    2014-01-01

    Background Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy. Results We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia. Conclusions Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss. PMID:25228990

  11. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  12. Transgenic mouse models for alcohol metabolism, toxicity, and cancer.

    PubMed

    Heit, Claire; Dong, Hongbin; Chen, Ying; Shah, Yatrik M; Thompson, David C; Vasiliou, Vasilis

    2015-01-01

    Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remain to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol-metabolizing enzymes and GSH-synthesizing enzymes and their relevance to alcohol research.

  13. Transgenic Mouse Models for Alcohol Metabolism, Toxicity and Cancer

    PubMed Central

    Heit, Claire; Dong, Hongbin; Chen, Ying; Shah, Yatrik M.; Thompson, David C.; Vasiliou, Vasilis

    2015-01-01

    Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remains to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol metabolizing enzymes and GSH synthesizing enzymes and their relevance to alcohol research. PMID:25427919

  14. Chiral N-phosphonyl imine chemistry: asymmetric synthesis of alpha-alkyl beta-amino ketones by reacting phosphonyl imines with ketone-derived enolates.

    PubMed

    Ai, Teng; Han, Jianlin; Chen, Zhong-Xiu; Li, Guigen

    2009-02-01

    A series of new chiral syn-alpha-branched beta-amino ketones has been synthesized by reacting chiral phosphonyl imines with ketone-derived enolates. The N-protection group on imine auxiliary was found to be crucial to the asymmetric induction. The absolute stereochemistry has been unambiguously determined by converting a product to a known sample.

  15. Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase

    SciTech Connect

    Gadda, G.; Orville, A.; Pennati, A.; Francis, K.; Quaye, O.; Yuan, H.; Rungsrisuriyachai, K.; Finnegan, S.; Mijatovic, S.; Nguyen, T.

    2008-06-08

    Choline oxidase (E.C. 1.1.3.17) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active site of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.

  16. Preparation of 1-C-glycosyl aldehydes by reductive hydrolysis.

    PubMed

    Sipos, Szabolcs; Jablonkai, István

    2011-09-06

    Reductive hydrolysis of various protected glycosyl cyanides was carried out using DIBAL-H to form aldimine alane intermediates which were then hydrolyzed under mildly acidic condition to provide the corresponding aldehyde derivatives. While 1-C-formyl glycal and 2-deoxy glycosyl derivatives were stable during isolation and storage 1-C-glycosyl formaldehydes in the gluco, galacto and manno series were sensitive and decomposition occurred by 2-alkyloxy elimination. A one-pot method using N,N'-diphenylethylenediamine to trap these aldehydes in stable form was developed. Reductive hydrolysis of glycosyl cyanides offers valuable aldehyde building blocks in a convenient way which can be applied in the synthesis of complex C-glycosides.

  17. Synthesis of biotinylated aldehyde polymers for biomolecule conjugation.

    PubMed

    Alconcel, Steevens N S; Kim, Sung Hye; Tao, Lei; Maynard, Heather D

    2013-06-25

    Biotinylated polymers with side-chain aldehydes were prepared for use as multifunctional scaffolds. Two different biotin-containing chain transfer agents (CTAs) and an aldehyde-containing monomer, 6-oxohexyl acrylate (6OHA), are synthesized. Poly(ethylene glycol) methyl ether acrylate (PEGA) and 6OHA are copolymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of the biotinylated CTAs. The resulting polymers are analyzed by GPC and(1) H NMR spectroscopy. The polymer end groups contained a disulfide bond, which could be readily reduced in solution to remove the biotin. Reactivity of the aldehyde side chains is demonstrated by oxime and hydrazone formation at the polymer side chains, and conjugate formation of fluorescently labeled polymers with streptavidin is investigated by gel electrophoresis.

  18. [Acetaldehyde and some biochemical parameters in alcoholic intoxications].

    PubMed

    Vasil'eva, E V; Morozov, Iu E; Lopatkin, O N; Zarubin, V V; Mamedov, V K

    2004-01-01

    The need in comprehensive gas chromatography and biochemistry examinations is grounded for cadaver expertise in order to cope with issues related with alcoholic intoxication. Descriptions of 3 examination methods of biological fluids are elucidated, i.e. gas chromatography, electrophoresis and fixing of a degree of endogenous intoxication. The concentration of acetaldehyde in 3 body media (blood, urine and liquor) are analyzed in detail; the isoenzyme spectra of lactate-, alcohol- and aldehyde dehydrogenase as well as the contents of medium molecules in death of alcohol poisonings and due to mechanical trauma are also in the focus of attention.

  19. Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis

    PubMed Central

    2015-01-01

    Direct β-alkylation of saturated aldehydes has been accomplished by synergistically combining photoredox catalysis and organocatalysis. Photon-induced enamine oxidation provides an activated β-enaminyl radical intermediate, which readily combines with a wide range of Michael acceptors to produce β-alkyl aldehydes in a highly efficient manner. Furthermore, this redox-neutral, atom-economical C–H functionalization protocol can be achieved both inter- and intramolecularly. Mechanistic studies by various spectroscopic methods suggest that a reductive quenching pathway is operable. PMID:24754456

  20. Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dual-Bed Catalyst Systems.

    PubMed

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-03-09

    For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C12 oxygenates can be achieved under mild conditions. In the second bed, the C12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization.

  1. National Institute on Alcohol Abuse and Alcoholism

    MedlinePlus

    ... Alcohol Awareness Month April is Alcohol Awareness Month Biosensor Challenge Learn more College Drinking Learn More Alcohol Dependence Get the facts Alcohol Awareness Month Biosensor Challenge College Drinking Alcohol Dependence Latest News New & ...

  2. Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1

    PubMed Central

    Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2015-01-01

    Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction

  3. Advanced selective non-invasive ketone body detection sensors based on new ionophores

    NASA Astrophysics Data System (ADS)

    Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.

    2014-12-01

    New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.

  4. Alcohols toxicology

    SciTech Connect

    Wimer, W.W.; Russell, J.A.; Kaplan, H.L.

    1984-01-01

    A comprehensive reference volume which summarizes literature reports of the known consequences of human and animal contact with alcohols and alcohol-derived substances is presented. Following a discussion of alcohol nomenclature and a brief history of alcohols, the authors have provided detailed chapters on the toxicology of methanol, ethanol, normal and isopropanol, and the butanols. Properties of these alcohols are compared; industrial hygiene and exposure limits are discussed. Additional sections are included covering processing and production technology and exhaust emissions studies. Of particular interest are the section containing abstracts and synopses of principal works and the extensive bibliography of studies dating from the 1800s. 331 references, 26 figures, 56 tables

  5. Schiff and pseudo-Schiff reagents: the reactions and reagents of Hugo Schiff, including a classification of various kinds of histochemical reagents used to detect aldehydes.

    PubMed

    Dapson, R W

    2016-11-01

    During the 1860's, Hugo Schiff studied many reactions between amines and aldehydes, some of which have been used in histochemistry, at times without credit to Schiff. Much controversy has surrounded the chemical structures and reaction mechanisms of the compounds involved, but modern analytical techniques have clarified the picture. I review these reactions here. I used molecular modeling software to investigate dyes that contain primary amines representing eight chemical families. All dyes were known to perform satisfactorily for detecting aldehydes in tissue sections. The models verified the correct chemical structures at various points in their reactions and also determined how decolorization occurred in those with "leuco" forms. Decolorization in the presence of sulfurous acid can occur by either adduction or reduction depending on the dye. The final condensation product with aldehyde was determined to be either a C-sulfonic acid adduct on the carbonyl carbon atom or an aminal at the same atom. Based on the various outcomes, I have placed the dyes and their reactions into five categories. Because Hugo Schiff studied the reactions between aldehydes and amines with and without various acids or alcohol, it is only proper to call each of them Schiff reactions that used various types of Schiff reagents.

  6. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol.

    PubMed

    Mohamed Subarkhan, M; Ramesh, R

    2015-03-05

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E=P or As; X=Cl or Br; L=NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d(5)) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx≠gy≠gz) at 77K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (Ru(III)-Ru(III)/Ru(IV)-Ru(IV); Ru(III)-Ru(III)/Ru(II)-Ru(II)) within the potential range of 0.38-0.86V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent Ru(V)O species is proposed as catalytic intermediate for the catalytic cycle.

  7. Hydride-mediated homogeneous catalysis. Catalytic reduction of. alpha. ,. beta. -unsaturated ketones using ((Ph sub 3 P)CuH) sub 6 and H sub 2

    SciTech Connect

    Mahoney, W.S.; Stryker, J.M. )

    1989-11-22

    Hydride-mediated reduction of {alpha},{beta}-unsaturated ketones catalytic in the hydride reagent is reported using ((Ph{sub 3}P)CuH){sub 6} and molecular hydrogen. The reaction proceeds at room temperature and is highly regioselective, affording either the product of conjugate reduction or complete 1,4- and 1,2-reduction to the saturated alcohol, depending on reaction conditions. In the presence of excess phosphine, the process is homogeneous and chemoselective: isolated double bonds are not hydrogenated, even under forcing conditions. This novel catalytic reduction appears to proceed via the heterolytic activation of molecular hydrogen by highly reactive copper(I) enolate and alkoxide intermediates.

  8. A Cu-Catalyzed, pH-Neutral, Aerobic, Room Temperature Construction of High Enantiopurity Peptidyl Ketones from Peptidic S-Acylthiosalicylamides

    PubMed Central

    Liebeskind, Lanny S.; Yang, Hao; Li, Hao

    2009-01-01

    Described herein is a Cu-catalyzed transformation of peptidic thiol esters and boronic acids into peptidyl ketones that takes place at room temperature in DMF or in DMF/H2O open to air and uses only catalytic quantities of a Cu carboxylate to mediate the reaction. This aerobic transformation occurs only at a thiol ester capable of coordinating to Cu through its S-appendage and is hampered neither by racemization of the reactants or products, nor by the presence of disulfides or of unprotected phenols, alcohols, or indoles. PMID:19145620

  9. Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition.

    PubMed

    Wood, Michael R; Noetzel, Meredith J; Tarr, James C; Rodriguez, Alice L; Lamsal, Atin; Chang, Sichen; Foster, Jarrett J; Smith, Emery; Chase, Peter; Hodder, Peter S; Engers, Darren W; Niswender, Colleen M; Brandon, Nicholas J; Wood, Michael W; Duggan, Mark E; Conn, P Jeffrey; Bridges, Thomas M; Lindsley, Craig W

    2016-09-01

    This Letter describes the chemical optimization of a novel series of M4 PAMs based on a non-enolizable ketone core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent, selective and CNS penetrant; however, the compound was highly cleared in vitro and in vivo. SAR provided analogs for which M4 PAM potency and CNS exposure were maintained; yet, clearance remained high. Metabolite identification studies demonstrated that this series was subject to rapid, and near quantitative, reductive metabolism to the corresponding secondary alcohol metabolite that was devoid of M4 PAM activity.

  10. Enantioselective Pd-catalyzed allylation of acyclic α-fluorinated ketones.

    PubMed

    Wang, Wengui; Shen, Haiming; Wan, Xiao-Long; Chen, Qing-Yun; Guo, Yong

    2014-07-03

    Significant synthetic challenges remain for the asymmetric synthesis of tertiary α-fluoro ketones, which are potentially useful molecules for the development of drugs, agrochemicals, and functional materials. Herein, we describe the development of a method for the catalytic enantioselective synthesis of tertiary α-fluoro ketones via the Tsuji-Trost reaction of racemic acyclic α-fluorinated ketones. Enantioenriched acyclic α-cabonyl tertiary fluorides can be produced with the aid of a palladium/phosphinooxazoline catalyst.

  11. Regio- and Stereoselective Modification of Chiral α-Amino Ketones by Pd-Catalyzed Allylic Alkylation.

    PubMed

    Huwig, Kai; Schultz, Katharina; Kazmaier, Uli

    2015-07-27

    Chiral α-amino ketones are excellent nucleophiles for stereoselective palladium-catalyzed allylic alkylations. Both chiral as well as achiral allylic substrates can be applied, while the stereochemical outcome of the reaction is controlled by the chiral ketone enolate. The substituted amino ketones formed can be reduced stereoselectively, and up to five consecutive stereogenic centers can be obtained. This approach can be used for the synthesis of highly substituted piperidine derivatives.

  12. Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans.

    PubMed

    Huang, Chao; Wu, Hong; Liu, Qiu-ping; Li, Yuan-yuan; Zong, Min-hua

    2011-05-11

    The effects of five representative aldehydes in lignocellulosic hydrolysates on the growth and the lipid accumulation of oleaginous yeast Trichosporon fermentans were investigated for the first time. There was no relationship between the hydrophobicity and the toxicity of aldehyde, and 5-hydroxymethylfurfural was less toxic than aromatic aldehydes and furfural. Binary combination of aromatic aldehydes caused a synergistic inhibitory effect, but combination of furan and aromatic aldehydes reduced the inhibition instead. A longer lag phase was found due to the presence of aldehydes and the decrease of sugar consumption rate, but more xylose was utilized by T. fermentans in the presence of aldehydes, especially at their low concentrations. The variation of malic enzyme activity was not related to the delay of lipid accumulation. Furthermore, the inhibition of aldehydes on cell growth was more dependent on inoculum size, temperature, and initial pH than that on lipid content.

  13. A versatile and green mechanochemical route for aldehyde-oxime conversions.

    PubMed

    Aakeröy, Christer B; Sinha, Abhijeet S; Epa, Kanishka N; Spartz, Christine L; Desper, John

    2012-11-28

    A robust, facile and solvent-free mechanochemical path for aldehyde-oxime transformations using hydroxylamine and NaOH is explored; the method is suitable for aromatic and aliphatic aldehydes decorated with a range of substituents.

  14. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  15. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.183 Use...

  16. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.183 Use...

  17. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.183 Use...

  18. Interaction of aldehydes derived from lipid peroxidation and membrane proteins

    PubMed Central

    Pizzimenti, Stefania; Ciamporcero, Eric; Daga, Martina; Pettazzoni, Piergiorgio; Arcaro, Alessia; Cetrangolo, Gianpaolo; Minelli, Rosalba; Dianzani, Chiara; Lepore, Alessio; Gentile, Fabrizio; Barrera, Giuseppina

    2013-01-01

    A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA) and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE) is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation, and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions. PMID:24027536

  19. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    PubMed Central

    Álvarez-Corral, Míriam; López-Sánchez, Cristóbal; Jiménez-González, Leticia; Rosales, Antonio; Muñoz-Dorado, Manuel; Rodríguez-García, Ignacio

    2007-01-01

    Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans. PMID:17288601

  20. Palladium-catalysed mono-α-alkenylation of ketones with alkenyl tosylates.

    PubMed

    Wu, Yong; Fu, Wai Chung; Chiang, Chien-Wei; Choy, Pui Ying; Kwong, Fuk Yee; Lei, Aiwen

    2017-01-16

    The first example of palladium-catalysed selective mono-α-alkenylation of ketones with alkenyl tosylates is described. In the presence of a Pd/XPhos catalyst system (0.1-1.0 mol%), the reaction provides mono-α-alkenylated ketones in good yields and exhibits excellent substrate tolerance. Highly congested, tri- and tetra-substituted alkenyl tosylates react smoothly and even problematic heteroaryl and aliphatic ketones are applicable substrates. Notably, small β,γ-unsaturated ketones are successfully prepared using acetone as a simple three-carbon feedstock.

  1. Stereoselective synthesis of cyclohexanones via phase transfer catalyzed double addition of nucleophiles to divinyl ketones.

    PubMed

    Silvanus, Andrew C; Groombridge, Benjamin J; Andrews, Benjamin I; Kociok-Köhn, Gabriele; Carbery, David R

    2010-11-05

    Functionalized cyclohexanones are formed in excellent yield and diastereoselectivity from a phase transfer catalyzed double addition of active methylene pronucleophiles to nonsymmetrical divinyl ketones.

  2. A focused review of the role of ketone bodies in health and disease.

    PubMed

    Akram, Muhammad

    2013-11-01

    Ketone bodies are produced in the liver and are utilized in other tissues in the body as an energy source when hypoglycemia occurs in the body. There are three ketone bodies: acetoacetate, beta hydroxy butyrate, and acetone. Ketone bodies are usually present in the blood, and their level increases during fasting and starvation. They are also found in the blood of neonates and pregnant women. In diabetic ketoacidosis, high levels of ketone bodies are produced in response to low insulin levels and high levels of counter-regulatory hormones.

  3. Alcohol Use Disorders

    MedlinePlus

    ... Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol ... less effect than before? Found that when the effects of alcohol were wearing off, you had withdrawal symptoms, such ...

  4. The synthesis of N,O-ferrocenyl pyrrolidine-containing ligands and their application in the diethyl- and diphenylzinc addition to aromatic aldehydes.

    PubMed

    Ahern, Theresa; Müller-Bunz, Helge; Guiry, Patrick J

    2006-09-29

    A facile route to a series of planar chiral N,O-ferrocenyl pyrrolidine-containing ligands with varying substituents at the nitrogen and oxygen donor atoms is described. The oxygen donor atom was introduced via a diastereoselective ortho-metalation of N-methylpyrrolidinyl and N-allylpyrrolidinyl ferrocene intermediates and was quenched with various ketones. The nitrogen substituent was varied through deallylation and subsequent derivatization of a secondary pyrrolidine. The efficacy of these novel ligands was investigated in the enantioselective addition of diethylzinc and diphenylzinc to aromatic aldehydes. The ligands proved highly effective in the diethylzinc addition to benzaldehyde that resulted in high yields of up to 99% and enantioselectivities (ee's) of up to 95%. The role of planar chirality was explored and the results indicated that the planar chirality, and not the central chirality, of the ferrocenyl ligands was the dominant stereo-controlling element. Employment of a mixed ethyl-phenylzinc reagent in the phenylation of aromatic aldehydes led to a mixture of the two additional products, and the phenylated product was obtained in up to 37% ee.

  5. Effects of trifluoromethyl ketones on the motility of Proteus vulgaris.

    PubMed

    Wolfart, Krisztina; Molnar, Annamaria; Kawase, Masami; Motohashi, Noboru; Molnar, Joseph

    2004-09-01

    In the present study, we showed the inhibition of motility by trifluoromethyl ketone (TF) derivatives (1-8) in Proteus vulgaris (P. vulgaris) cultures. Among them, 1-(2-benzoxazoyl)-3,3,3-trifluoro-2-propanone (1) showed a much stronger inhibitory effect on the motility of P. vulgaris than other TF compounds at 10% MIC. Our results suggest the possibility of an inhibitory action of TF compounds on the proton motive forces by affecting the action of biological motor and proton efflux in the membranes, resulting in a reduction of the ratio of running and the increased number of tumbling and non-motile cells.

  6. Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase.

    PubMed

    Inoue, Kazuko; Mizuo, Hitoshi; Kawaguchi, Shinki; Fukuda, Katsuyuki; Kusano, Kazutomi; Yoshimura, Tsutomu

    2014-08-01

    Lenvatinib is a multityrosine kinase inhibitor that inhibits vascular endothelial growth factor receptors, and is being developed as an anticancer drug. P450s are involved in one of the elimination pathways of lenvatinib, and mono-oxidized metabolites, such as N-oxide (M3) and desmethylated metabolite (M2), form in rats, dogs, monkeys, and humans. Meanwhile, two other oxidative metabolites are produced only in monkey and human liver S9 fractions, and their structures have been identified using high-resolution mass spectrometry as a quinolinone form of lenvatinib (M3') and a quinolinone form of desmethylated lenvatinib (M2'). The formation of M3' from lenvatinib occurred independently of NADPH and was effectively inhibited by typical inhibitors of aldehyde oxidase, indicating the involvement of aldehyde oxidase, but not P450s, in this pathway. M2' was a dioxidized metabolite arising from a combination of mono-oxidation and desmethylation and could only be produced from M2 in a NADPH-independent manner; M2' could not be generated from M3 or M3'. These results suggested that M2' is formed from lenvatinib by a unique two-step pathway through M2. Although both lenvatinib and M2 were substrates for aldehyde oxidase, an enzyme kinetic study indicated that M2 was a much more favorable substrate than lenvatinib. No inhibitory activities of lenvatinib, M2', or M3' and no significant inhibitory activities of M2 or M3 on aldehyde oxidase were observed, suggesting a low possibility of drug-drug interactions in combination therapy with substrates of aldehyde oxidase.

  7. New preparation of diethyl methylformylphosphonate dimethylhydrazone: A reagent for aldehyde homologation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phosphonate reagent, diethyl methylformyl-2-phosphonate dimethylhydrazone contains a protected aldehyde group instead of the usual ester group. It can be used for the two-carbon homologation of aldehydes to a, ß-unsaturated aldehydes. The reagent can be prepared in good overall yield (82%) and...

  8. Biosynthesis of odd-chain fatty alcohols in Escherichia coli.

    PubMed

    Cao, Ying-Xiu; Xiao, Wen-Hai; Liu, Duo; Zhang, Jin-Lai; Ding, Ming-Zhu; Yuan, Ying-Jin

    2015-05-01

    Engineered microbes offer the opportunity to design and implement artificial molecular pathways for renewable production of tailored chemical commodities. Targeted biosynthesis of odd-chain fatty alcohols is very challenging in microbe, due to the specificity of fatty acids synthase for two-carbon unit elongation. Here, we developed a novel strategy to directly tailor carbon number in fatty aldehydes formation step by incorporating α-dioxygenase (αDOX) from Oryza sativa (rice) into Escherichia coli αDOX oxidizes Cn fatty acids (even-chain) to form Cn-1 fatty aldehydes (odd-chain). Through combining αDOX with fatty acyl-acyl carrier protein (-ACP) thioesterase (TE) and aldehyde reductase (AHR), the medium odd-chain fatty alcohols profile (C11, C13, C15) was firstly established in E. coli. Also, medium even-chain alkanes (C12, C14) were obtained by substitution of AHR to aldehyde decarbonylase (AD). The titer of odd-chain fatty alcohols was improved from 7.4mg/L to 101.5mg/L in tube cultivation by means of fine-tuning endogenous fatty acyl-ACP TE (TesA'), αDOX, AHRs and the genes involved in fatty acids metabolism pathway. Through high cell density fed-batch fermentation, a titer of 1.95g/L odd-chain fatty alcohols was achieved, which was the highest reported titer in E. coli. Our system has greatly expanded the current microbial fatty alcohols profile that provides a new brand solution for producing complex and desired molecules in microbes.

  9. Effects of isoflavones on alcohol pharmacokinetics and alcohol-drinking behavior in rats.

    PubMed

    Lin, R C; Li, T K

    1998-12-01

    Puerarin, daidzin, and daidzein are 3 major isoflavonoid compounds isolated from Pueraria lobata, an edible vine used widely in China for various medicinal purposes. We studied the antiinebriation and the antidipsotropic effects of these antioxidants in rats. Daidzin and daidzein shortened alcohol-induced sleep time (loss of righting reflex) in rats that were given ethanol intragastrically but not in those given ethanol intraperitoneally. When daidzin was given to animals intragastrically with the ethanol solution, the blood alcohol concentration (BAC) was found to peak later and be lower than in control rats that were given only the ethanol solution. BACs also receded more slowly if daidzin was fed to the animals. None of the 3 isoflavonoid compounds administered orally affected liver alcohol dehydrogenase or aldehyde dehydrogenase activities, as was reported for intraperitoneal administration. Further experiments indicated that the suppression of the BAC by daidzin was due mainly to delay of stomach emptying. All 3 compounds suppressed voluntary alcohol consumption in alcohol-preferring rats. The decrease in alcohol consumption was accompanied by an increase in water intake, so that the total volume of liquid consumed daily remained unchanged. Daily food consumption and body weight gain were not affected. Alcohol preference returned to baseline levels after the isoflavonoids were discontinued. We postulate that the suppression of alcohol reinforcement produced by these compounds is mediated centrally in the brain reward pathway.

  10. Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions.

    PubMed

    Nakazono, M; Tsuji, H; Li, Y; Saisho, D; Arimura, S; Tsutsumi, N; Hirai, A

    2000-10-01

    It is known that alcoholic fermentation is important for survival of plants under anaerobic conditions. Acetaldehyde, one of the intermediates of alcoholic fermentation, is not only reduced by alcohol dehydrogenase but also can be oxidized by aldehyde dehydrogenase (ALDH). To determine whether ALDH plays a role in anaerobic metabolism in rice (Oryza sativa L. cv Nipponbare), we characterized a cDNA clone encoding mitochondrial ALDH from rice (Aldh2a). Analysis of sub-cellular localization of ALDH2a protein using green fluorescent protein and an in vitro ALDH assay using protein extracts from Escherichia coli cells that overexpressed ALDH2a indicated that ALDH2a functions in the oxidation of acetaldehyde in mitochondria. A Southern-blot analysis indicated that mitochondrial ALDH is encoded by at least two genes in rice. We found that the Aldh2a mRNA was present at high levels in leaves of dark-grown seedlings, mature leaf sheaths, and panicles. It is interesting that expression of the rice Aldh2a gene, unlike the expression of the tobacco (Nicotiana tabacum) Aldh2a gene, was induced in rice seedlings by submergence. Experiments with ruthenium red, which is a blocker of Ca(2+) fluxes in rice as well as maize (Zea mays), suggest that the induction of expression of Adh1 and Pdc1 by low oxygen stress is regulated by elevation of the cytosolic Ca(2+) level. However, the induction of Aldh2a gene expression may not be controlled by the cytosolic Ca(2+) level elevation. A possible involvement of ALDH2a in the submergence tolerance of rice is discussed.

  11. Ruthenium(II)-PNN pincer complex catalyzed dehydrogenation of benzyl alcohol to ester: A DFT study

    NASA Astrophysics Data System (ADS)

    Tao, Jingcong; Wen, Li; Lv, Xiaobo; Qi, Yong; Yin, Hailiang

    2016-04-01

    The molecular mechanism of the dehydrogenation of primary alcohol to ester catalyzed by the ruthenium(II)-PNN pincer complex Ru(H)(η2-BH4)(PNN), [PNN: (2-(di-tert-butylphosphinomethyl)-6-(diethlaminomethyl)-pyridine)] has been investigated using density functional theory calculations. The catalytic cycle includes three stages: (stage I) alcohol dehydrogenation to form aldehyde, (stage II) coupling of aldehyde with alcohol to give hemiacetal or ester, and (stage III) hemiacetal dehydrogenation to form ester. Two dehydrogenation reactions occur via the β-H elimination mechanism rather than the bifunctional double hydrogen transfer mechanism, which could be rationalized as the fluxional behavior of the BH4- ligand. At the second stage, the coupling reaction requires alcohol or the ruthenium catalyst as mediator. The formation of hemiacetal through the alcohol-mediated pathway is kinetically favorable than the ruthenium catalyst-mediated one, which may be attributed to the smaller steric hindrance when the aldehyde approaches the alcohol moiety in the reaction system. Our results would be helpful for experimental chemists to design more effective transition metal catalysts for dehydrogenation of alcohols.

  12. Isoflavonoid compounds extracted from Pueraria lobata suppress alcohol preference in a pharmacogenetic rat model of alcoholism.

    PubMed

    Lin, R C; Guthrie, S; Xie, C Y; Mai, K; Lee, D Y; Lumeng, L; Li, T K

    1996-06-01

    The extract from an edible vine, Pueraria lobata, has long been used in China to lessen alcohol intoxication. We have previously shown that daidzin, one of the major components from this plant extract, is efficacious in lowering blood alcohol levels and shortens sleep time induced by alcohol ingestion. This study was conducted to test the antidipsotropic effect of daidzin and two other major isoflavonoids, daidzein and puerarin, from Pueraria lobata administered by the oral route. An alcohol-preferring rat model, the selectively-bred P line of rats, was used for the study. All three isoflavonoid compounds were effective in suppressing voluntary alcohol consumption by the P rats. When given orally to P rats at a dose of 100 mg/kg/day, daidzein, daidzin, and puerarin decreased ethanol intake by 75%, 50%, and 40%, respectively. The decrease in alcohol consumption was accompanied by an increase in water intake, so that the total fluid volume consumed daily remained unchanged. The effects of these isoflavonoid compounds on alcohol and water intake were reversible. Suppression of alcohol consumption was evident after 1 day of administration and became maximal after 2 days. Similarly, alcohol preference returned to baseline levels 2 days after discontinuation of the isoflavonoids. Rats receiving the herbal extracts ate the same amounts of food as control animals, and they gained weight normally during the experiments. When administered orally, none of these compounds affected the activities of liver alcohol dehydrogenase and aldehyde dehydrogenase. Therefore, the reversal of alcohol preference produced by these compounds may be mediated via the CNS. Data demonstrate that isoflavonoid compounds extracted from Pueraria lobata is effective in suppressing the appetite for alcohol when taken orally, raising the possibility that other constituents of edible plants may exert similar and more potent actions.

  13. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  14. Synthesis, conformational parameters and packing considerations of methyl bispyridyl ketones

    NASA Astrophysics Data System (ADS)

    Weck, Christian; Katzsch, Felix; Gruber, Tobias

    2015-10-01

    The crystal structures of two bispyridyl ketones featuring either two methyl residues or one methyl and one bromomethyl residue, respectively, are presented. In order to elucidate the influence of the substituents, a comprehensive comparison with the non-methylated mother compound has been performed. A special focus lies thereby on the relative position of the heteroatoms and their free electron pairs. The two methyl groups at the bispyridyl ketone result in two molecules in the asymmetric unit adopting rather different conformations. Due to the fast crystallization conditions and a melting point differing from the literature, a polymorph close to a local minimum in the energy hypersurface seems possible. After introducing a bromine atom to one of the two methyl groups, the molecular conformation is very similar to the unsubstituted molecule. The packing of both title compounds is dominated by weak contacts of the C-H⋯π and C-H⋯Y type (Y = O, N) and C-H⋯Br- and Br⋯π-contacts for the brominated molecule.

  15. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions.

  16. Acidic Condensation of BODIPYs with Aldehydes: A Quick and Versatile Route to Alkenyl-BODIPYs and C(sp(3) )-Connected DYEmers.

    PubMed

    Ahrens, Johannes; Cordes, Birte; Wicht, Richard; Wolfram, Benedikt; Bröring, Martin

    2016-07-18

    The condensation of aldehydes with BODIPY (boron dipyrrin) luminophores was investigated. Formaldehyde can be used to connect two BODIPYs at each of the three pyrrolic C positions (α-, β-, and β'-positions) in a quick and highly selective manner, yielding new DYEmers (di- and oligomeric BODIPY derivatives) with varied photophysical properties. Benzaldehydes form DYEmers only at the β- and the β'-positions. For aliphatic aldehydes the DYEmer formation competes with the elimination of water from a proposed alcohol intermediate, leading to the formation of α- and β-alkenyl-BODIPYs. 2-Phenylacetaldehyde and similar precursors exclusively yield elimination products. These acid-mediated transformations are valuable alternatives to the well-established, base-promoted Knoevenagel condensation protocol that is typically employed in the preparation of BODIPYs with near infrared (NIR)-shifted absorptions.

  17. The Protective Effects of Buzui on Acute Alcoholism in Mice

    PubMed Central

    Wen, Da-Chao; Gao, Shu-di; Hu, Xiao-yu; Yi, Cheng

    2016-01-01

    This study was designed to investigate the role of a traditional buzui recipe in anti-inebriation treatment. Buzui consists of Fructus Schisandrae Chinensis, Fructus Chebulae, Fructus Mume, Fructus Crataegi, Endothelium Corneum Gigeriae Galli, and Excrementum Bombycis. The buzui mixture was delivered by gavage, and ethanol was delivered subsequent to the final treatment. The effects of buzui on the righting reflex, inebriation rates, and the survival curve are depicted. Blood alcohol concentrations, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, and alkaline phosphatase (ALP) levels were recorded. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and superoxide dismutase (SOD), as well as malonaldehyde (MDA) levels, were also measured. Our results demonstrated that a traditional buzui recipe showed significant effects on promoting wakefulness and the prevention of acute alcohol intoxication, accelerating the metabolism of alcohol in the liver and reducing the oxidative damage caused by acute alcoholism. PMID:26884793

  18. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies.

    PubMed

    Blanco, Carlos A; Andrés-Iglesias, Cristina; Montero, Olimpio

    2016-06-10

    Beer consumers are accustomed to a product that offers a pleasant and well-defined taste. However, in alcohol-free and alcohol-reduced beers these characteristics are totally different from those in regular beer. Therefore, it is important to evaluate and determine the different flavor compounds that affect organoleptic characteristics to obtain a product that does not contain off-flavors, or taste of grass or wort. The taste defects in alcohol-free beer are mainly attributed to loss of aromatic esters, insufficient aldehydes, reduction or loss of different alcohols, and an indeterminate change in any of its compounds during the dealcoholization process. The dealcoholization processes that are commonly used to reduce the alcohol content in beer are shown, as well as the negative consequences of these processes to beer flavor. Possible strategies to circumvent such negative consequences are suggested.

  19. Characterization of synthetic routes to 'Bromo-DragonFLY' and benzodifuranyl isopropylamine homologues utilizing ketone intermediates. Part 1: synthesis of ketone precursors.

    PubMed

    O'Connor, Richard E; Keating, John J

    2014-01-01

    Bromo-DragonFLY (BDF) and many of its analogues are misused as recreational drugs due to their potency as psychoactive substances. To date, none of the published routes to these designer amphetamines have exploited a ketone intermediate. It is well known that benzyl methyl ketone (BMK) can be employed as a precursor in the synthesis of amphetamine. Similarly, it is reasonable to assume that ketone precursors may potentially be utilized in the clandestine synthesis of BDF and its homologues. This paper describes the multifaceted synthesis of novel precursor ketones structurally related to BDF, namely benzodifuranyl propanone 16, its tetrahydrobenzodifuranyl homologue 8, and their brominated analogues 12 and 20. Their characterization by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy ((1) H-NMR), carbon nuclear magnetic resonance spectroscopy ((13) C-NMR), high performance liquid chromatography (HPLC), gas chromatography (GC) and mass spectrometry (MS) is also described.

  20. Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats

    PubMed Central

    Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.

    2015-01-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189