Science.gov

Sample records for aldh enzymatic activity

  1. Isoflurane Preconditioning Confers Cardioprotection by Activation of ALDH2

    PubMed Central

    Lang, Xiao-E; Wang, Xiong; Zhang, Ke-Rang; Lv, Ji-Yuan; Jin, Jian-Hua; Li, Qing-Shan

    2013-01-01

    The volatile anesthetic, isoflurane, protects the heart from ischemia/reperfusion (I/R) injury. Aldehyde dehydrogenase 2 (ALDH2) is thought to be an endogenous mechanism against ischemia-reperfusion injury possibly through detoxification of toxic aldehydes. We investigated whether cardioprotection by isoflurane depends on activation of ALDH2.Anesthetized rats underwent 40 min of coronary artery occlusion followed by 120 min of reperfusion and were randomly assigned to the following groups: untreated controls, isoflurane preconditioning with and without an ALDH2 inhibitor, the direct activator of ALDH2 or a protein kinase C (PKCε) inhibitor. Pretreatment with isoflurane prior to ischemia reduced LDH and CK-MB levels and infarct size, while it increased phosphorylation of ALDH2, which could be blocked by the ALDH2 inhibitor, cyanamide. Isolated neonatal cardiomyocytes were treated with hypoxia followed by reoxygenation. Hypoxia/reoxygenation (H/R) increased cardiomyocyte apoptosis and injury which were attenuated by isoflurane and forced the activation of ALDH2. In contrast, the effect of isoflurane-induced protection was almost abolished by knockdown of ALDH2. Activation of ALDH2 and cardioprotection by isoflurane were substantially blocked by the PKCε inhibitor. Activation of ALDH2 by mitochondrial PKCε plays an important role in the cardioprotection of isoflurane in myocardium I/R injury. PMID:23468836

  2. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    SciTech Connect

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  3. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. PMID:26577527

  4. ALDH3A1 Plays a Functional Role in Maintenance of Corneal Epithelial Homeostasis

    PubMed Central

    Mehta, Gaurav; Orlicky, David J.; Thompson, David C.; Jester, James V.; Vasiliou, Vasilis

    2016-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1) and ALDH3A1 are corneal crystallins. They protect inner ocular tissues from ultraviolet radiation (UVR)-induced oxidative damage through catalytic and non-catalytic mechanisms. Additionally, ALDH3A1 has been postulated to play a regulatory role in the corneal epithelium based on several studies that report an inverse association between ALDH3A1 expression and corneal cell proliferation. The underlying molecular mechanisms and the physiological significance of such association remain poorly understood. In the current study, we established Tet-On human corneal epithelial cell (hTCEpi) lines, which express tetracycline-inducible wild-type (wt) or catalytically-inactive (mu) ALDH3A1. Utilizing this cellular model system, we confirmed that human ALDH3A1 decreases corneal cell proliferation; importantly, this effect appears to be partially mediated by its enzymatic activity. Mechanistically, wt-ALDH3A1, but not mu-ALDH3A1, promotes sequestering of tumor suppressor p53 in the nucleus. In the mouse cornea, however, augmented cell proliferation is noted only in Aldh1a1-/-/3a1-/- double knockout (DKO) mice, indicating in vivo the anti-proliferation effect of ALDH3A1 can be rescued by the presence of ALDH1A1. Interestingly, the hyper-proliferative epithelium of the DKO corneas display nearly complete loss of p53 expression, implying that p53 may be involved in ALDH3A1/1A1-mediated effect. In hTCEpi cells grown in high calcium concentration, mRNA levels of a panel of corneal differentiation markers were altered by ALDH3A1 expression and modulated by its enzyme activity. In conclusion, we show for the first time that: (i) ALDH3A1 decreases corneal epithelial proliferation through both non-enzymatic and enzymatic properties; (ii) ALDH1A1 contributes to the regulation of corneal cellular proliferation in vivo; and (iii) ALDH3A1 modulates corneal epithelial differentiation. Collectively, our studies indicate a functional role of ALDH3A1 in the

  5. ALDH2 Activator Inhibits Increased Myocardial Infarction Injury by Nitroglycerin Tolerance

    PubMed Central

    Sun, Lihan; Ferreira, Julio Cesar Batista; Mochly-Rosen, Daria

    2012-01-01

    Nitroglycerin, which helps impaired cardiac function as it is converted to nitric oxide, is used worldwide to treat patients with various ischemic and congestive cardiac diseases, including angina pectoris. Nevertheless, after continuous treatment, the benefits of nitroglycerin are limited by the development of tolerance to the drug. Nitroglycerin tolerance is a result of inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme essential for cardioprotection in animals subjected to myocardial infarction (MI). Here we tested the hypothesis that the tolerance that develops as a result of sustained nitroglycerin treatment increases cardiac injury by subsequent MI. In a rat model of MI, 16 hours of prior, sustained nitroglycerin treatment (7.2 mg/kg/day) resulted in infarcts that were twice as large as those in untreated control animals and in diminished cardiac function at 3 days and 2 weeks after the MI. We also sought to identify a potential treatment to protect against this increased cardiac damage. Nitroglycerin inhibited ALDH2 activity in vitro, an effect that was blocked by Alda-1, an activator of ALDH2. Co-administration of Alda-1 (16 mg/kg/day) with the nitroglycerin prevented the nitroglycerin-induced increase in cardiac dysfunction after MI in rats, at least in part by enhancing metabolism of reactive aldehyde adducts that impair normal protein functions. If our animal studies showing that nitroglycerin tolerance increases cardiac injury upon ischemic insult are corroborated in humans, activators of ALDH2 such as Alda-1 may help to protect MI patients from this nitroglycerin-induced increase in cardiac injury, while maintaining the cardiac benefits of the increased nitric oxide concentrations produced by nitroglycerin. PMID:22049071

  6. Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations

    PubMed Central

    Martinez-Cruzado, Lucia; Tornin, Juan; Santos, Laura; Rodriguez, Aida; García-Castro, Javier; Morís, Francisco; Rodriguez, Rene

    2016-01-01

    Tumors evolve from initial tumorigenic events into increasingly aggressive behaviors in a process usually driven by subpopulations of cancer stem cells (CSCs). Mesenchymal stromal/stem cells (MSCs) may act as the cell-of-origin for sarcomas, and CSCs that present MSC features have been identified in sarcomas due to their ability to grow as self-renewed floating spheres (tumorspheres). Accordingly, we previously developed sarcoma models using human MSCs transformed with relevant oncogenic events. To study the evolution/emergence of CSC subpopulations during tumor progression, we compared the tumorigenic properties of bulk adherent cultures and tumorsphere-forming subpopulations both in the sarcoma cell-of-origin models (transformed MSCs) and in their corresponding tumor xenograft-derived cells. Tumor formation assays showed that the tumorsphere cultures from xenograft-derived cells, but not from the cell-of-origin models, were enriched in CSCs, providing evidence of the emergence of bona fide CSCs subpopulations during tumor progression. Relevant CSC-related factors, such as ALDH1 and SOX2, were increasingly upregulated in CSCs during tumor progression, and importantly, the increased levels and activity of ALDH1 in these subpopulations were associated with enhanced tumorigenicity. In addition to being a CSC marker, our findings indicate that ALDH1 could also be useful for tracking the malignant potential of CSC subpopulations during sarcoma evolution. PMID:27292183

  7. Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations.

    PubMed

    Martinez-Cruzado, Lucia; Tornin, Juan; Santos, Laura; Rodriguez, Aida; García-Castro, Javier; Morís, Francisco; Rodriguez, Rene

    2016-01-01

    Tumors evolve from initial tumorigenic events into increasingly aggressive behaviors in a process usually driven by subpopulations of cancer stem cells (CSCs). Mesenchymal stromal/stem cells (MSCs) may act as the cell-of-origin for sarcomas, and CSCs that present MSC features have been identified in sarcomas due to their ability to grow as self-renewed floating spheres (tumorspheres). Accordingly, we previously developed sarcoma models using human MSCs transformed with relevant oncogenic events. To study the evolution/emergence of CSC subpopulations during tumor progression, we compared the tumorigenic properties of bulk adherent cultures and tumorsphere-forming subpopulations both in the sarcoma cell-of-origin models (transformed MSCs) and in their corresponding tumor xenograft-derived cells. Tumor formation assays showed that the tumorsphere cultures from xenograft-derived cells, but not from the cell-of-origin models, were enriched in CSCs, providing evidence of the emergence of bona fide CSCs subpopulations during tumor progression. Relevant CSC-related factors, such as ALDH1 and SOX2, were increasingly upregulated in CSCs during tumor progression, and importantly, the increased levels and activity of ALDH1 in these subpopulations were associated with enhanced tumorigenicity. In addition to being a CSC marker, our findings indicate that ALDH1 could also be useful for tracking the malignant potential of CSC subpopulations during sarcoma evolution. PMID:27292183

  8. ALDH1A1 induces resistance to CHOP in diffuse large B-cell lymphoma through activation of the JAK2/STAT3 pathway

    PubMed Central

    Jiang, Jinqiong; Liu, Yiping; Tang, Youhong; Li, Li; Zeng, Ruolan; Zeng, Shan; Zhong, Meizuo

    2016-01-01

    Increasing evidence has shown that aldehyde dehydrogenase 1A1 (ALDH1A1), a detoxifying enzyme, is responsible for chemoresistance in a variety of tumors. Although the majority of patients with diffuse large B-cell lymphoma (DLBCL) can be cured with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), chemoresistance is a common cause of treatment failure. This study aims to investigate the significance of ALDH1A1 expression and the mechanism by which ALDH1A1 is involved in the chemoresistance of DLBCL cells. ALDH1A1 expression was assessed in 88 DLBCL tissues by immunohistochemistry. The association between ALDH1A1 expression and outcome was evaluated. We also investigated the effect of ALDH1A1 on CHOP resistance in DLBCL cells using functional analysis. ALDH1A1 expression levels were upregulated in patients with stable or progressive disease after CHOP and its expression positively correlated with expression of STAT3 and p-STAT3. In keeping with these observations, ALDH1A1 expression was significantly associated with short survival of DLBCL patients who received CHOP chemotherapy. In functional assays in Pfeiffer cells, overexpression of ALDH1A1 conferred resistance to CHOP, while silencing of ALDH1A1 using short hairpin RNA had the opposite effect. Furthermore, we also observed that ALDH1A1 could regulate the JAK2/STAT3 pathway, while inhibition of the JAK2/STAT3 pathway by WP1066 negated the effect of ALDH1A1 overexpression. These observations reveal that ALDH1A1 induces resistance to CHOP through activation of the JAK2/STAT3 pathway in DLBCL, and its targeting provides a potential strategic approach for reversing CHOP resistance. PMID:27621650

  9. Induction of ALDH activity in intestinal dendritic cells by Lactobacillus plantarum NRIC0380.

    PubMed

    Yoshida, Tadashi; Enomoto, Mai; Nakayama, Sayuri; Adachi, Yu; Fujiwara, Wataru; Sugiyama, Hisashi; Shimojoh, Manabu; Okada, Sanae; Hattori, Makoto

    2013-01-01

    Lactic acid bacteria have been reported to have various immune-regulating activities. We also found in the previous study that the oral administration of heat-killed Lactobacillus plantarum NRIC0380 induced CD4(+)CD25(+)Foxp3(+) cells (Treg cells). We examine in this present study the influence of NRIC0380 on the function of intestinal dendritic cells (DCs) in vitro and in vivo. The aldehyde dehydrogenase (ALDH) activity was significantly induced in DCs obtained from the mesenteric lymph node (MLN) by culturing with NRIC0380. The oral administration of NRIC0380 also significantly increased ALDH-positive DCs in MLN. NRIC0380 significantly enhanced the production of TGF-β from MLN cells in vitro. These effects were not apparent in cells from the Peyer's patch (PP) and spleen (SPL). NRIC0380 also significantly enhanced the expression of B7-H1 on DCs of all organs in vitro. The effects of NRIC0380 on DCs, especially those located in MLN, might be involved in its function to induce Treg cells. PMID:24018660

  10. Enzymatically active ultrathin pepsin membranes.

    PubMed

    Raaijmakers, Michiel J T; Schmidt, Thomas; Barth, Monika; Tutus, Murat; Benes, Nieck E; Wessling, Matthias

    2015-05-11

    Enzymatically active proteins enable efficient and specific cleavage reactions of peptide bonds. Covalent coupling of the enzymes permits immobilization, which in turn reduces autolysis-induced deactivation. Ultrathin pepsin membranes were prepared by facile interfacial polycondensation of pepsin and trimesoyl chloride. The pepsin membrane allows for simultaneous enzymatic conversion and selective removal of digestion products. The large water fluxes through the membrane expedite the transport of large molecules through the pepsin layers. The presented method enables the large-scale production of ultrathin, cross-linked, enzymatically active membranes. PMID:25779668

  11. A novel dithiocarbamate analogue with potentially decreased ALDH inhibition has copper-dependent proteasome-inhibitory and apoptosis-inducing activity in human breast cancer cells

    PubMed Central

    Wang, Fei; Zhai, Shumei; Liu, Xiaojun; Li, Liwen; Wu, Shirley; Dou, Q. Ping; Yan, Bing

    2013-01-01

    Dithiocarbamates are a class of sulfur-based metal-chelating compounds with various applications in medicine. We reported previously that certain members of dithiocarbamates, such as diethyldithiocarbamate, disulfiram (DSF) and pyrrolidine dithiocarbamate (PDTC), were able to bind with tumor cellular copper to inhibit tumor growth through the inhibition of proteasome activity and induction of cancer cell apoptosis. Since the DSF is an irreversible inhibitor of aldehyde dehydrogenase (ALDH), its ALDH-inhibitory activity might potentially affect its usefulness as an anti-cancer drug. For the purpose of selecting potent anti-cancer compounds that are not ALDH inhibitors and mapping out preliminary structure–activity relationship trends for these novel compounds, we synthesized a series of PDTC analogues and chose three novel compounds to study their ALDH-inhibitory activity, proteasome-inhibitory activity as well as the cancer cell apoptosis-inducing activity. The results showed that compared to DSF, compound 9 has less ALDH inhibition activity, and the in vitro results also proved the positive effects of 9-Cu in proteasome inhibition and apoptosis induction in breast cancer cells, suggesting that 9 as a lead compound could be developed into a novel proteasome inhibitor anti-cancer drug. PMID:21035945

  12. Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine

    PubMed Central

    2014-01-01

    Background Plant ALDH10 enzymes are aminoaldehyde dehydrogenases (AMADHs) that oxidize different ω-amino or trimethylammonium aldehydes, but only some of them have betaine aldehyde dehydrogenase (BADH) activity and produce the osmoprotectant glycine betaine (GB). The latter enzymes possess alanine or cysteine at position 441 (numbering of the spinach enzyme, SoBADH), while those ALDH10s that cannot oxidize betaine aldehyde (BAL) have isoleucine at this position. Only the plants that contain A441- or C441-type ALDH10 isoenzymes accumulate GB in response to osmotic stress. In this work we explored the evolutionary history of the acquisition of BAL specificity by plant ALDH10s. Results We performed extensive phylogenetic analyses and constructed and characterized, kinetically and structurally, four SoBADH variants that simulate the parsimonious intermediates in the evolutionary pathway from I441-type to A441- or C441-type enzymes. All mutants had a correct folding, average thermal stabilities and similar activity with aminopropionaldehyde, but whereas A441S and A441T exhibited significant activity with BAL, A441V and A441F did not. The kinetics of the mutants were consistent with their predicted structural features obtained by modeling, and confirmed the importance of position 441 for BAL specificity. The acquisition of BADH activity could have happened through any of these intermediates without detriment of the original function or protein stability. Phylogenetic studies showed that this event occurred independently several times during angiosperms evolution when an ALDH10 gene duplicate changed the critical Ile residue for Ala or Cys in two consecutive single mutations. ALDH10 isoenzymes frequently group in two clades within a plant family: one includes peroxisomal I441-type, the other peroxisomal and non-peroxisomal I441-, A441- or C441-type. Interestingly, high GB-accumulators plants have non-peroxisomal A441- or C441-type isoenzymes, while low-GB accumulators

  13. Discovery of a series of aromatic lactones as ALDH1/2-directed inhibitors

    PubMed Central

    Buchman, Cameron D.; Mahalingan, Krishna K.; Hurley, Thomas D.

    2015-01-01

    In humans, the aldehyde dehydrogenase superfamily consists of 19 isoenzymes which mostly catalyze the NAD(P)+-dependent oxidation of aldehydes. Many of these isoenzymes have overlapping substrate specificities and therefore their potential physiological functions may overlap. Thus the development of new isoenyzme-selective probes would be able to better delineate the function of a single isoenyzme and its individual contribution to the metabolism of a particular substrate. This specific study was designed to find a novel modulator of ALDH2, a mitochondrial ALDH isoenzyme most well-known for its role in acetaldehyde oxidation. 53 compounds were initially identified to modulate the activity of ALDH2 by a high-throughput esterase screen from a library of 63,000 compounds. Of these initial 53 compounds, 12 were found to also modulate the oxidation of propionaldehyde by ALDH2. Single concentration measurements at 10 μM compound were performed using ALDH1A1, ALDH1A2, ALDH1A3, ALDH2, ALDH1B1, ALDH3A1, ALDH4A1, and/or ALDH5A1 to determine the selectivity of these 12 compounds towards ALDH2. Four of the twelve compounds shared an aromatic lactone structure and were found to be potent inhibitors of the ALDH1/2 isoenzymes, but have no inhibitory effect on ALDH3A1, ALDH4A1 or ALDH5A1. Two of the aromatic lactones show selectivity within the ALDH1/2 class, and one appears to be selective for ALDH2 compared to all other isoenzymes tested. PMID:25641190

  14. The prognostic roles of ALDH1 isoenzymes in gastric cancer

    PubMed Central

    Li, Kai; Guo, Xiaoguang; Wang, Ziwei; Li, Xiaofeng; Bu, Youquan; Bai, Xuefeng; Zheng, Liansheng; Huang, Ying

    2016-01-01

    Increased aldehyde dehydrogenase 1 (ALDH1) activity has been determined to be present in the stem cells of several kinds of cancers including gastric cancer (GC). Nevertheless, which ones of ALDH1’s isoenzymes are leading to ALDH1 activity remains elusive. In this study, we examined the prognostic value and hazard ratio (HR) of individual ALDH1 isoenzymes in patients with GC using “The Kaplan–Meier plotter” database. mRNA high expression level of ALDH1A1 was not found to be significantly correlated with the overall survival (OS) of all patients with GC followed for 20 years, HR =0.86 (95% confidence interval [CI]: 0.7–1.05), P=0.13. mRNA high expression level of ALDH1A2 was also not significantly correlated with OS for all patients with GC, HR =1.13 (95% CI: 0.91–1.41), P=0.25. mRNA high expression level of ALDH1A3 was found to be significantly correlated with worsened OS in either intestinal-type patients, HR =2.24 (95% CI: 1.44–3.49), P=0.00026, or diffuse-type patients, HR =1.91 (95% CI: 1.02–3.59), P=0.04. Interestingly, mRNA high expression level of ALDH1B1 was found to be significantly correlated with better OS for all patients with GC, HR =0.66 (95% CI: 0.53–0.81), P=7.8e–05, and mRNA high expression level of ALDH1L1 was found to be significantly correlated with worsened OS for all patients with GC, HR =1.23 (95% CI: 1–1.51), P=0.048. Furthermore, our results also indicate that ALDH1A3 and ALDH1L1 are potential major contributors to the ALDH1 activity in GC, since mRNA high expression levels of ALDH1A3 and ALDH1L1 were found to be significantly correlated with worsened OS for all patients with GC. Based on our study, ALDH1A3 and ALDH1L1 are potential prognostic markers and therapeutic targets for patients with GC. PMID:27354812

  15. The impact of mitochondrial aldehyde dehydrogenase (ALDH2) activation by Alda-1 on the behavioral and biochemical disturbances in animal model of depression.

    PubMed

    Stachowicz, Aneta; Głombik, Katarzyna; Olszanecki, Rafał; Basta-Kaim, Agnieszka; Suski, Maciej; Lasoń, Władysław; Korbut, Ryszard

    2016-01-01

    The etiology of depression remains still unclear. Recently, it has been proposed, that mitochondrial dysfunction may be associated with development of mood disorders, such as depression, bipolar disorder and anxiety disorders. Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda-1, a small-molecule activator of ALDH2, on depressive- and anxiety-like behaviors in an animal model of depression - the prenatally stressed rats - using behavioral, molecular and proteomic methods. Prolonged Alda-1 administration significantly increased the climbing time, tended to reduce the immobility time and increased the swimming time of the prenatally stressed rats in the forced swim test. Moreover, treatment of prenatally stressed rats with Alda-1 significantly increased number of entries into the open arms of the maze and the time spent therein, as assessed by elevated plus-maze test. Such actions were associated with reduction of plasma 4-HNE-protein content, decrease of TNF-α mRNA and increase of PGC-1α (regulator of mitochondrial biogenesis) mRNA level in the frontal cortex and hippocampus of the prenatally stressed rats as well as with normalization of peripheral immune parameters and significant changes in expression of 6 and 4 proteins related to mitochondrial functions in the frontal cortex and hippocampus, respectively. Collectively, ALDH2 activation by Alda-1 led to a significant attenuation of depressive- and anxiety-like behaviors in the prenatally stressed rats. The pattern of changes suggested mitoprotective effect of Alda-1, however the exact functional consequences of the revealed alterations require further investigation. PMID:26254233

  16. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.

    PubMed

    Cheng, Jonathan D; Valianou, Matthildi; Canutescu, Adrian A; Jaffe, Eileen K; Lee, Hyung-Ok; Wang, Hao; Lai, Jack H; Bachovchin, William W; Weiner, Louis M

    2005-03-01

    Tumor-associated fibroblasts are functionally and phenotypically distinct from normal fibroblasts that are not in the tumor microenvironment. Fibroblast activation protein is a 95 kDa cell surface glycoprotein expressed by tumor stromal fibroblasts, and has been shown to have dipeptidyl peptidase and collagenase activity. Site-directed mutagenesis at the catalytic site of fibroblast activation protein, Ser624 --> Ala624, resulted in an approximately 100,000-fold loss of fibroblast activation protein dipeptidyl peptidase (DPP) activity. HEK293 cells transfected with wild-type fibroblast activation protein, enzymatic mutant (S624A) fibroblast activation protein, or vector alone, were inoculated subcutaneously into immunodeficient mouse to assess the contribution of fibroblast activation protein enzymatic activity to tumor growth. Overexpression of wild-type fibroblast activation protein showed growth potentiation and enhanced tumorigenicity compared with both fibroblast activation protein S624A and vector-transfected HEK293 xenografts. HEK293 cells transfected with fibroblast activation protein S624A showed tumor growth rates and tumorigenicity potential similar only to vector-transfected HEK293. In vivo assessment of fibroblast activation protein DPP activity of these tumors showed enhanced enzymatic activity of wild-type fibroblast activation protein, with only baseline levels of fibroblast activation protein DPP activity in either fibroblast activation protein S624A or vector-only xenografts. These results indicate that the enzymatic activity of fibroblast activation protein is necessary for fibroblast activation protein-driven tumor growth in the HEK293 xenograft model system. This establishes the proof-of-principle that the enzymatic activity of fibroblast activation protein plays an important role in the promotion of tumor growth, and provides an attractive target for therapeutics designed to alter fibroblast activation protein-induced tumor growth by targeting

  17. Proliferating pancreatic beta-cells upregulate ALDH.

    PubMed

    Liu, Yinglan; Jiang, Xiaoxin; Zeng, Yong; Zhou, Hui; Yang, Jing; Cao, Renxian

    2014-12-01

    High levels of aldehyde dehydrogenase (ALDH) activity have been regarded as a specific feature of progenitor cells and stem cells. Hence, as an indicator of ALDH activity, aldefluor fluorescence has been widely used for the identification and isolation of stem and progenitor cells. ALDH activity was recently detected in embryonic mouse pancreas, and specifically and exclusively in adult centroacinar and terminal duct cells, suggesting that these duct cells may harbor cells of endocrine and exocrine differentiation potential in the adult pancreas. Here, we report the presence of aldefluor+ beta-cells in a beta-cell proliferation model, partial pancreatectomy. The aldefluor+ beta-cells are essentially all positive for Ki-67 and expressed high levels of cell-cycle activators such as CyclinD1, CyclinD2, and CDK4, suggesting that they are mitotic cells. Our data thus reveal a potential change in ALDH activity of proliferating beta-cells, which provides a novel method for the isolation and analysis of proliferating beta-cells. Moreover, our data also suggest that aldefluor lineage-tracing is not a proper method for analyzing progenitor or stem activity in the adult pancreas. PMID:25028343

  18. Aldehyde dehydrogenase (ALDH) in Alzheimer's and Parkinson's disease.

    PubMed

    Grünblatt, Edna; Riederer, Peter

    2016-02-01

    Evidence suggests that aldehyde dehydrogenase (ALDH; E.C. 1.2.1.3) gene, protein expression and activity are substantially decreased in the substantia nigra of patients with Parkinson's disease (PD). This holds especially true for cytosolic ALDH1A1, while mitochondrial ALDH2 is increased in the putamen of PD. Similarly, in Alzheimer's disease (AD) several studies in genetic, transcriptomic, protein and animal models suggest ALDH involvement in the neurodegeneration processes. Such data are in line with findings of increased toxic aldehydes, like for example malondialdehyde, nonenal, 3,4-dihydroxyphenylacetaldehyde and others. Genetic, transcriptomic and protein alterations may contribute to such data. Also in vitro and in vivo experimental work points to an important role of ALDH in the pathology of neurodegenerative disorders. Aims at investigating dysfunctions of aldehyde detoxification are suitable to define genetic/molecular targets for new therapeutic strategies balancing amine metabolism in devastating disorders like PD and probably also AD. PMID:25298080

  19. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations

    PubMed Central

    Arnold, Samuel L.; Kent, Travis; Hogarth, Cathryn A.; Schlatt, Stefan; Prasad, Bhagwat; Haenisch, Michael; Walsh, Thomas; Muller, Charles H.; Griswold, Michael D.; Amory, John K.; Isoherranen, Nina

    2015-01-01

    Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types. PMID:25502770

  20. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1

    PubMed Central

    Morgan, Cynthia A.; Hurley, Thomas D.

    2014-01-01

    The human aldehyde dehydrogenase (ALDH) superfamily consists of at least 19 enzymes that metabolize endogenous and exogenous aldehydes. Currently, there are no commercially available inhibitors that target ALDH1A1 but have little to no effect on the structurally and functionally similar ALDH2. Here we present the first human ALDH1A1 structure, as the apoenzyme and in complex with its cofactor NADH to a resolution of 1.75 Å and 2.1 Å, respectfully. Structural comparisons of the cofactor binding sites in ALDH1A1 with other closely related ALDH enzymes illustrate a high degree of similarity. In order to minimize discovery of compounds that inhibit both isoenzymes by interfering with their conserved cofactor binding sites, this study reports the use of an in vitro, NAD+-independent, esterase-based high-throughput screen (HTS) of 64,000 compounds to discover novel, selective inhibitors of ALDH1A1. We describe 256 hits that alter the esterase activity of ALDH1A1. The effects on aldehyde oxidation of 67 compounds were further analyzed, with 30 selectively inhibiting ALDH1A1 compared to ALDH2 and ALDH3A1. One compound inhibited ALDH1A1 and ALDH2, while another inhibited ALDH1A1, ALDH2, and the more distantly related ALDH3A1. The results presented here indicate that this in vitro enzyme activity screening protocol successfully identified ALDH1A1 inhibitors with a high degree of isoenzyme selectivity. The compounds identified via this screen plus the screening methodology itself represent a starting point for the development of highly potent and selective inhibitors of ALDH1A1 that may be utilized to better understand the role of this enzyme in both normal and disease states. PMID:25450233

  1. Enzymatic Activity of Xyloglucan Xylosyltransferase 51[OPEN

    PubMed Central

    Culbertson, Alan T.; Chou, Yi-Hsiang; Smith, Adrienne L.; Young, Zachary T.; Tietze, Alesia A.; Cottaz, Sylvain

    2016-01-01

    Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a β-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone. PMID:27208276

  2. Enzymatic Activity of Xyloglucan Xylosyltransferase 5.

    PubMed

    Culbertson, Alan T; Chou, Yi-Hsiang; Smith, Adrienne L; Young, Zachary T; Tietze, Alesia A; Cottaz, Sylvain; Fauré, Régis; Zabotina, Olga A

    2016-07-01

    Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a β-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone. PMID:27208276

  3. Nanoparticle Mediated Remote Control of Enzymatic Activity

    PubMed Central

    Knecht, Leslie D.; Ali, Nur; Wei, Yinan; Hilt, J. Zach; Daunert, Sylvia

    2012-01-01

    Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide-crosslinked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HADST. This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe3O4 nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields. PMID:22989219

  4. Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells.

    PubMed

    Kumar, Ravinash Krishna; Li, Mei; Olof, Sam N; Patil, Avinash J; Mann, Stephen

    2013-02-11

    The fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments. PMID:23027575

  5. ALDH1A3: A Marker of Mesenchymal Phenotype in Gliomas Associated with Cell Invasion

    PubMed Central

    Hu, Huimin; Huang, Hua; Bao, Zhaoshi; Yang, Pei; Wang, Yinyan; You, Gan; Yan, Wei; Jiang, Tao; Wang, Jiangfei; Zhang, Wei

    2015-01-01

    Aldehyde dehydrogenases (ALDH) is a family of enzymes including 19 members. For now, ALDH activity had been wildly used as a marker of cancer stem cells (CSCs). But biological functions of relevant isoforms and their clinical applications are still controversial. Here, we investigate the clinical significance and potential function of ALDH1A3 in gliomas. By whole-genome transcriptome microarray and mRNA sequencing analysis, we compared the expression of ALDH1A3 in high- and low- grade gliomas as well as different molecular subtypes. Microarray analysis was performed to identify the correlated genes of ALDH1A3. We further used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis to explore the biological function of ALDH1A3. Finally, by mRNA knockdown we revealed the relationship between ALDH1A3 and the ability of tumor invasion. ALDH1A3 overexpression was significantly associated with high grade as well as the higher mortality of gliomas in survival analysis. ALDH1A3 was characteristically highly expressed in Mesenchymal (Mes) subtype gliomas. Moreover, we found that ALDH1A3 was most relevant to extracellular matrix organization and cell adhesion biological process, and the ability of tumor invasion was suppressed after ALDH1A3 knockdown in vitro. In conclusion, ALDH1A3 can serve as a novel marker of Mes phenotype in gliomas with potential clinical prognostic value. The expression of ALDH1A3 is associated with tumor cell invasion. PMID:26575197

  6. Discovery of NCT-501, a Potent and Selective Theophylline-Based Inhibitor of Aldehyde Dehydrogenase 1A1 (ALDH1A1).

    PubMed

    Yang, Shyh-Ming; Yasgar, Adam; Miller, Bettina; Lal-Nag, Madhu; Brimacombe, Kyle; Hu, Xin; Sun, Hongmao; Wang, Amy; Xu, Xin; Nguyen, Kimloan; Oppermann, Udo; Ferrer, Marc; Vasiliou, Vasilis; Simeonov, Anton; Jadhav, Ajit; Maloney, David J

    2015-08-13

    Aldehyde dehydrogenases (ALDHs) metabolize reactive aldehydes and possess important physiological and toxicological functions in areas such as CNS, metabolic disorders, and cancers. Increased ALDH (e.g., ALDH1A1) gene expression and catalytic activity are vital biomarkers in a number of malignancies and cancer stem cells, highlighting the need for the identification and development of small molecule ALDH inhibitors. A new series of theophylline-based analogs as potent ALDH1A1 inhibitors is described. The optimization of hits identified from a quantitative high throughput screening (qHTS) campaign led to analogs with improved potency and early ADME properties. This chemotype exhibits highly selective inhibition against ALDH1A1 over ALDH3A1, ALDH1B1, and ALDH2 isozymes as well as other dehydrogenases such as HPGD and HSD17β4. Moreover, the pharmacokinetic evaluation of selected analog 64 (NCT-501) is also highlighted. PMID:26207746

  7. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma

    PubMed Central

    Xia, Jiliang; Gu, Zhimin; Wendlandt, Erik; Zhan, Xin; Janz, Siegfried; Tricot, Guido; Zhan, Fenghuang

    2014-01-01

    We reported previously that increased expression of aldehyde dehydrogenase 1 (ALDH1) in multiple myeloma (MM) is a marker of tumor-initiating cells (TICs) that is further associated with chromosomal instability (CIN). Here we demonstrate that member A1 of the ALDH1 family of proteins, ALDH1A1, is most abundantly expressed in myeloma. Enforced expression of ALDH1A1 in myeloma cells led to increased clonogenicity, tumor formation in mice, and resistance to myeloma drugs in vitro and in vivo. The mechanism underlying these phenotypes included the ALDH1A1-dependent activation of drug-efflux pump, ABCB1, and survival proteins, AKT and BCL2. Over expression of ALDH1A1 in myeloma cells led to increased mRNA and protein levels of NIMA-related kinase 2 (NEK2), whereas shRNA-mediated knock down of NEK2 decreased drug efflux pump activity and drug resistance. The activation of NEK2 in myeloma cells relied on the ALDH1A1-dependent generation of the retinoid X receptor α (RXRα) ligand, 9-cis retinoic acid (9CRA) – not the retinoic acid receptor α (RARα) ligand, all-trans retinoic acid (ATRA). These findings implicate the ALDH1A1-RXRα-NEK2 pathway in drug resistance and disease relapse in myeloma and suggest that specific inhibitors of ALDH1A1 are worthy of consideration for clinical development of new approaches to overcome drug resistance in myeloma. PMID:25230277

  8. Retinal Targets ALDH Positive Cancer Stem Cell and Alters the Phenotype of Highly Metastatic Osteosarcoma Cells

    PubMed Central

    Mu, Xiaodong; Patel, Stuti; Mektepbayeva, Damel; Mahjoub, Adel; Huard, Johnny; Weiss, Kurt

    2015-01-01

    Aldehyde dehydrogenase (ALDH) is a cancer stem cell marker. Retinoic acid has antitumor properties, including the induction of apoptosis and inhibition of proliferation. Retinal, the precursor of retinoic acid, can be oxidized to retinoic acid by dehydrogenases, including ALDH. We hypothesized that retinal could potentially be transformed to retinoic acid with higher efficiency by cancer stem cells, due to the higher ALDH activity. We previously observed that ALDH activity is greater in highly metastatic K7M2 osteosarcoma (OS) cells than in nonmetastatic K12 OS cells. We also demonstrated that ALDH activity correlates with clinical metastases in bone sarcoma patients, suggesting that ALDH may be a therapeutic target specific to cells with high metastatic potential. Our current results demonstrated that retinal preferentially affected the phenotypes of ALDH-high K7M2 cells in contrast to ALDH-low K12 cells, which could be mediated by the more efficient transformation of retinal to retinoic acid by ALDH in K7M2 cells. Retinal treatment of highly metastatic K7M2 cells decreased their proliferation, invasion capacity, and resistance to oxidative stress. Retinal altered the expression of metastasis-related genes. These observations indicate that retinal may be used to specifically target metastatic cancer stem cells in OS. PMID:26819566

  9. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    PubMed Central

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  10. PKC-ALDH2 Pathway Plays a Novel Role in Adipocyte Differentiation

    PubMed Central

    Yu, Yu-Hsiang; Liao, Pei-Ru; Guo, Chien-Jung; Chen, Che-Hong; Mochly-Rosen, Daria; Chuang, Lee-Ming

    2016-01-01

    The ALDH2 gene encodes the mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme involved in ethanol clearance through acetaldehyde metabolism. ALDH2 also catalyzes the metabolism of other bioreactive aldehydes, including propionaldehyde, butyraldehyde, and 4-hydroxykenals (4-HNE). Increased levels of 4-HNE in adipose tissue positively correlate with obesity and insulin resistance. However, it remains unclear whether ALDH2 is involved in regulation of adipocyte differentiation. Here, we found that ALDH2 protein levels were lower in white adipose tissue of high-fat diet-fed mice and ob/ob mice relative to lean mice. Knockdown of ALDH2 expression in 3T3-L1 preadipocytes caused an increase in intracellular 4-HNE, thereby attenuated adipocyte differentiation. By contrast, an ALDH2 activator, Alda-1, significantly accelerated adipogenesis, which was accompanied by an increase in adipogenic gene expression. Consistently, adipogenesis was reduced when protein kinase C ε (PKCε), an ALDH2 phosphorylating activator, was silenced in 3T3-L1 preadipocytes, whereas treatment with a PKCε agonist in 3T3-L1 preadipocytes enhanced adipogenesis. Whole-genome microarray profiling of Alda-1-treated cells demonstrated several upregulated transcripts encoding proteins involved in metabolism and the majority of these transcripts are for proteins involved in PPAR signaling pathways. Furthermore, PKCε-ALDH2 interaction alleviates 4-HNE induced aberrant PPARγ regulation on adipogenesis. Taken together, these results demonstrate that ALDH2 activation enhances adipogenesis and signaling pathways involving PPARγ. Thus, activation of PKCε-ALDH2 regulatory axis may be a therapeutic target for treating obesity and type 2 diabetes. PMID:27575855

  11. PKC-ALDH2 Pathway Plays a Novel Role in Adipocyte Differentiation.

    PubMed

    Yu, Yu-Hsiang; Liao, Pei-Ru; Guo, Chien-Jung; Chen, Che-Hong; Mochly-Rosen, Daria; Chuang, Lee-Ming

    2016-01-01

    The ALDH2 gene encodes the mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme involved in ethanol clearance through acetaldehyde metabolism. ALDH2 also catalyzes the metabolism of other bioreactive aldehydes, including propionaldehyde, butyraldehyde, and 4-hydroxykenals (4-HNE). Increased levels of 4-HNE in adipose tissue positively correlate with obesity and insulin resistance. However, it remains unclear whether ALDH2 is involved in regulation of adipocyte differentiation. Here, we found that ALDH2 protein levels were lower in white adipose tissue of high-fat diet-fed mice and ob/ob mice relative to lean mice. Knockdown of ALDH2 expression in 3T3-L1 preadipocytes caused an increase in intracellular 4-HNE, thereby attenuated adipocyte differentiation. By contrast, an ALDH2 activator, Alda-1, significantly accelerated adipogenesis, which was accompanied by an increase in adipogenic gene expression. Consistently, adipogenesis was reduced when protein kinase C ε (PKCε), an ALDH2 phosphorylating activator, was silenced in 3T3-L1 preadipocytes, whereas treatment with a PKCε agonist in 3T3-L1 preadipocytes enhanced adipogenesis. Whole-genome microarray profiling of Alda-1-treated cells demonstrated several upregulated transcripts encoding proteins involved in metabolism and the majority of these transcripts are for proteins involved in PPAR signaling pathways. Furthermore, PKCε-ALDH2 interaction alleviates 4-HNE induced aberrant PPARγ regulation on adipogenesis. Taken together, these results demonstrate that ALDH2 activation enhances adipogenesis and signaling pathways involving PPARγ. Thus, activation of PKCε-ALDH2 regulatory axis may be a therapeutic target for treating obesity and type 2 diabetes. PMID:27575855

  12. The ALDH2 genotype, alcohol intake, and liver-function biomarkers among Japanese male workers.

    PubMed

    Takeshita, T; Yang, X; Morimoto, K

    2000-06-01

    A highly prevalent, atypical genotype in low Km aldehyde dehydrogenase (ALDH2) may influence alcohol-induced liver injury because of higher production of acetaldehyde in the liver. In the present study, we examined relationships between the ALDH2 genotype, alcohol intake, and liver-function biomarkers among Japanese male workers. Study subjects were 385 male workers in a metal plant in Japan, who were free from hepatic viruses and did not have higher aminotransferase activities (<100). The subjects completed a questionnaire on alcohol drinking habits and other lifestyles. The ALDH2 genotype was determined by the PCR method followed by restriction-enzyme digestion. In the moderately and heavily drinking groups, those with ALDH2*1/*2 exhibited significantly lower levels than those with ALDH2*1/*1 for all three parameters of liver function, whereas no such differences were observed in the least-drinking group. Multiple linear-regression analysis, adjusting for age, obesity, and smoking habits, revealed that aspartate aminotransferase activity was positively associated with alcohol intake only in those with ALDH2*1/*1. On the other hand, alanine transferase activity was negatively associated with alcohol intake only in those with ALDH2*1/*2. The present study indicates that effects of alcohol intake on liver-function biomarkers are likely to be modified by the ALDH2 genotype in adult males. PMID:10942105

  13. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  14. Study on beta-galactosidase enzymatic activity of herbal yogurt.

    PubMed

    Chowdhury, Banani Ray; Chakraborty, Runu; Raychaudhuri, Utpal

    2008-03-01

    Different types of herbal yogurts were developed by mixing standardized milk with pretreated herbs, namely tulsi leaf (Ocimum sanctum), pudina leaf (Mentha arvensis) and coriander leaf (Coriandrum sativum), with leaves separately and a 1:1 (v/v) mixture of the strains of lactic starter cultures---Lactobacillus acidophilus (NCIM 2903) and Lactobacillus plantarum (NCIM 2083)-followed by incubation at 40 degrees C for 6 h. The beta-galactosidase enzymatic activity of the abovementioned herbal yogurts was determined and interestingly noted to exhibit higher enzymatic activity compared with the control yogurt (without any herbs). Among all herbal yogurts, tulsi yogurt had the maximum beta-galactosidase activity. PMID:17852503

  15. ALDH1B1 is a potential stem / progenitor marker for multiple pancreas progenitor pools

    PubMed Central

    Ioannou, Marilia; Serafimidis, Ioannis; Arnes, Luis; Sussel, Lori; Singh, Surendra; Vasiliou, Vasilis; Gavalas, Anthony

    2013-01-01

    Aldehyde Dehydrogenase (ALDH) genes are increasingly associated with stem / progenitor cell status but their role in the maintenance of pluripotency remains uncertain. In a screen conducted for downstream Ngn3 target genes using ES derived pancreas progenitors we identified Aldh1b1, encoding a mitochondrial enzyme, as one of the genes strongly up regulated in response to Ngn3 expression. We found both by in situ hybridization and immunofluorescence using a specific antibody that ALDH1B1 is exclusively expressed in the emerging pancreatic buds of the early embryo (9.5 dpc) in a Pdx1 dependent manner. Around the time of secondary transition, ALDH1B1 expression was restricted in the tip tripotent progenitors of the branching epithelium and in a subset of the trunk epithelium. Expression in the latter was Ngn3 dependent. Subsequently, ALDH1B1 expression persisted only in the tip cells that become restricted to the exocrine lineage and declined rapidly as these cells mature. In the adult pancreas we identified rare ALDH1B1+ cells that become abundant following pancreas injury in either the caerulein or streptozotocin paradigms. Blocking ALDH catalytic activity in pancreas embryonic explants resulted in reduced size of the explants and accelerated differentiation suggesting for the first time that ALDH activity may be necessary in the developing pancreas for the maintenance and expansion of progenitor pools. PMID:23142317

  16. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  17. Enzymatic activity of rodents acclimated to cold and long scotophase

    NASA Astrophysics Data System (ADS)

    Fourie, F. Le R.; Haim, A.

    1980-09-01

    Rodents representative of a diurnal species ( Rhabdomys pumilio) as well as a nocturnal species ( Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.

  18. Macrophage Migration Inhibitory Factor (MIF) Enzymatic Activity and Lung Cancer

    PubMed Central

    Mawhinney, Leona; Armstrong, Michelle E; O’ Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2014-01-01

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif P1G). Primary tumor growth was significantly attenuated in both Mif-KO and Mif P1G mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems. PMID:25826675

  19. High ALDH Activity Identifies Chemotherapy-Resistant Ewing's Sarcoma Stem Cells That Retain Sensitivity to EWS-FLI1 Inhibition

    PubMed Central

    Gul, Naheed; Katuri, Varalakshmi; O'Neill, Alison; Kong, Yali; Brown, Milton L.; Toretsky, Jeffrey A.; Loeb, David M.

    2010-01-01

    Background Cancer stem cells are a chemotherapy-resistant population capable of self-renewal and of regenerating the bulk tumor, thereby causing relapse and patient death. Ewing's sarcoma, the second most common form of bone tumor in adolescents and young adults, follows a clinical pattern consistent with the Cancer Stem Cell model – remission is easily achieved, even for patients with metastatic disease, but relapse remains frequent and is usually fatal. Methodology/Principal Findings We have isolated a subpopulation of Ewing's sarcoma cells, from both human cell lines and human xenografts grown in immune deficient mice, which express high aldehyde dehydrogenase (ALDHhigh) activity and are enriched for clonogenicity, sphere-formation, and tumor initiation. The ALDHhigh cells are resistant to chemotherapy in vitro, but this can be overcome by the ATP binding cassette transport protein inhibitor, verapamil. Importantly, these cells are not resistant to YK-4-279, a small molecule inhibitor of EWS-FLI1 that is selectively toxic to Ewing's sarcoma cells both in vitro and in vivo. Conclusions/Significance Ewing's sarcoma contains an ALDHhigh stem-like population of chemotherapy-resistant cells that retain sensitivity to EWS-FLI1 inhibition. Inhibiting the EWS-FLI1 oncoprotein may prove to be an effective means of improving patient outcomes by targeting Ewing's sarcoma stem cells that survive standard chemotherapy. PMID:21085683

  20. Essential role of aldehyde dehydrogenase 1A3 (ALDH1A3) for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway

    PubMed Central

    Shao, Chunli; Sullivan, James P.; Girard, Luc; Augustyn, Alexander; Yenerall, Paul; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Shay, Jerry W.; Wistuba, Ignacio I.; Minna, John D.

    2014-01-01

    Purpose Lung cancer stem cells (CSCs) with elevated aldehyde dehydrogenase (ALDH) activity are self-renewing, clonogenic and tumorigenic. The purpose of our study is to elucidate the mechanisms by which lung CSCs are regulated. Experimental Design A genome-wide gene expression analysis was performed to identify genes differentially expressed in the ALDH+ vs. ALDH− cells. RT-PCR, western blot and Aldefluor assay were used to validate identified genes. To explore the function in CSCs we manipulated their expression followed by colony and tumor formation assays. Results We identified a subset of genes that were differentially expressed in common in ALDH+ cells, among which ALDH1A3 was the most upregulated gene in ALDH+ vs. ALDH− cells. ShRNA-mediated knockdown of ALDH1A3 in NSCLCs resulted in a dramatic reduction in ALDH activity, clonogenicity and tumorigenicity, indicating that ALDH1A3 is required for tumorigenic properties. By contrast, overexpression of ALDH1A3 by itself it was not sufficient to increase tumorigenicity. The ALDH+ cells also expressed more activated Signal Transducers and Activators of Transcription 3 (STAT3) than ALDH− cells. Inhibition of STAT3 or its activator EZH2 genetically or pharmacologically diminished the level of ALDH+ cells and clonogenicity. Unexpectedly, ALDH1A3 was highly expressed in female, never smokers, well differentiated tumors, or adenocarcinoma. ALDH1A3 low expression was associated with poor overall survival. Conclusion Our data show that ALDH1A3 is the predominant ALDH isozyme responsible for ALDH activity and tumorigenicity in most NSCLCs, and that inhibiting either ALDH1A3 or the STAT3 pathway are potential therapeutic strategies to eliminate the ALDH+ subpopulation in NSCLCs. PMID:24907115

  1. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein–protein interactions with HPRT1

    PubMed Central

    Vasiliou, Vasilis; Sandoval, Monica; Backos, Donald S.; Jackson, Brian C.; Chen, Ying; Reigan, Philip; Lanaspa, Miguel A.; Johnson, Richard J.; Koppaka, Vindhya; Thompson, David C.

    2013-01-01

    Gout, a common form of inflammatory arthritis, is strongly associated with elevated uric acid concentrations in the blood (hyperuricemia). A recent study in Icelanders identified a rare missense single nucleotide polymorphism (SNP) in the ALDH16A1 gene, ALDH16A1*2, to be associated with gout and serum uric acid levels. ALDH16A1 is a novel and rather unique member of the ALDH superfamily in relation to its gene and protein structures. ALDH16 genes are present in fish, amphibians, protista, bacteria but absent from archaea, fungi and plants. In most mammalian species, two ALDH16A1 spliced variants (ALDH16A1, long form and ALDH16A1_v2, short form) have been identified and both are expressed in HepG-2, HK-2 and HK-293 human cell lines. The ALDH16 proteins contain two ALDH domains (as opposed to one in the other members of the superfamily), four transmembrane and one coiled-coil domains. The active site of ALDH16 proteins from bacterial, frog and lower animals contain the catalytically important cysteine residue (Cys-302); this residue is absent from the mammalian and fish orthologs. Molecular modeling predicts that both the short and long forms of human ALDH16A1 protein would lack catalytic activity but may interact with the hypoxanthine-guanine phosphoribosyltransferase (HPRT1) protein, a key enzyme involved in uric acid metabolism and gout. Interestingly, such protein-protein interactions with HPRT1 are predicted to be impaired for the long or short forms of ALDH16A1*2. These results lead to the intriguing possibility that association between ALDH16A1 and HPRT1 may be required for optimal HPRT activity with disruption of this interaction possibly contributing to the hyperuricemia seen in ALDH16A1*2 carriers. PMID:23348497

  2. Pesticide influence on soil enzymatic activities.

    PubMed

    Sannino, F; Gianfreda, L

    2001-11-01

    The influence of four pesticides, e.g. glyphosate, paraquat, atrazine, and carbaryl, on the activities of invertase, urease and phosphatase of twenty-two soils, numbered as 1-22, was investigated. Soils displayed a general variability of enzyme activities with invertase being more abundant than urease and phosphatase in the order listed. The addition of glyphosate and paraquat activated invertase and urease activities in several soils. Increments of invertase activity ranged from a very low increase (+4%) up to +204% in soils 11 and 14, respectively. Smaller increases were measured for urease. A general inhibitory effect (from 5% to 98%) was observed for phosphatase in the presence of glyphosate. The effects of atrazine and carbaryl on the three soil enzymes were evaluated against that exhibited by methanol, the solvent used for their solubilization. In almost all soils, atrazine further inhibited invertase activity with respect to the inhibitory effect shown by methanol. By contrast, consistent activation effects (from 61% to 10217%) were measured for urease with methanol alone and/or methanol-pesticide mixtures. Contradictory results were observed with phosphatase. Similarities found between the results obtained with enzymes in soils and those measured with synthetic enzyme complexes (e.g. free enzymes and/or clay-, organo-, and organo-clay-enzyme complexes) exposed to the same pesticides allowed some relationships between responses of soil enzymes to pesticides and soil properties to be hypothesized. PMID:11680737

  3. Enzymatic activation of a matrix metalloproteinase inhibitor†

    PubMed Central

    Major Jourden, Jody L.; Cohen, Seth M.

    2010-01-01

    Matrix metalloproteinase inhibitors (MMPi) possessing a glucose protecting group on the zinc-binding group (ZBG) show a dramatic increase in inhibitory activity upon cleavage by β-glucosidase. PMID:20449263

  4. Disruption of the Sjögren-Larsson Syndrome Gene Aldh3a2 in Mice Increases Keratinocyte Growth and Retards Skin Barrier Recovery.

    PubMed

    Naganuma, Tatsuro; Takagi, Shuyu; Kanetake, Tsukasa; Kitamura, Takuya; Hattori, Satoko; Miyakawa, Tsuyoshi; Sassa, Takayuki; Kihara, Akio

    2016-05-27

    The fatty aldehyde dehydrogenase (FALDH) ALDH3A2 is the causative gene of Sjögren Larsson syndrome (SLS). To date, the molecular mechanism underlying the symptoms characterizing SLS has been poorly understood. Using Aldh3a2(-/-) mice, we found here that Aldh3a2 was the major FALDH active in undifferentiated keratinocytes. Long-chain base metabolism was greatly impaired in Aldh3a2(-/-) keratinocytes. Phenotypically, the intercellular spaces were widened in the basal layer of the Aldh3a2(-/-) epidermis due to hyperproliferation of keratinocytes. Furthermore, oxidative stress-induced genes were up-regulated in Aldh3a2(-/-) keratinocytes. Upon keratinocyte differentiation, the activity of another FALDH, Aldh3b2, surpassed that of Aldh3a2 As a result, Aldh3a2(-/-) mice were indistinguishable from wild-type mice in terms of their whole epidermis FALDH activity, and their skin barrier function was uncompromised under normal conditions. However, perturbation of the stratum corneum caused increased transepidermal water loss and delayed barrier recovery in Aldh3a2(-/-) mice. In conclusion, Aldh3a2(-/-) mice replicated some aspects of SLS symptoms, especially at the basal layer of the epidermis. Our results suggest that hyperproliferation of keratinocytes via oxidative stress responses may partly contribute to the ichthyosis symptoms of SLS. PMID:27053112

  5. Human ALDH1B1 polymorphisms may affect the metabolism of acetaldehyde and all-trans retinaldehyde – in vitro studies and computational modeling

    PubMed Central

    Jackson, Brian C.; Reigan, Philip; Miller, Bettina; Thompson, David C.; Vasiliou, Vasilis

    2014-01-01

    Purpose To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity. Methods Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD+) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined. Results ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD+ binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD+ poorly. Conclusions ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD+ binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism. PMID:25413692

  6. Development of Selective Inhibitors for Human Aldehyde Dehydrogenase 3A1 (ALDH3A1) for the Enhancement of Cyclophosphamide Cytotoxicity

    PubMed Central

    Parajuli, Bibek; Georgiadis, Taxiarchis M.; Fishel, Melissa L.; Hurley, Thomas D.

    2014-01-01

    Aldehyde dehydrogenase 3A1 (ALDH3A1) plays an important role in many cellular oxidative processes, including cancer chemo-resistance by metabolizing activated forms of oxazaphosphorine drugs such as cyclophosphamide (CP) and its analogues such as mafosfamide (MF), ifosfamide (IFM), 4-hydroperoxycyclophosphamide (4-HPCP). Compounds that can selectively target ALDH3A1 may permit delineation of its roles in these processes and could restore chemosensitivity in cancer cells that express this isoenzyme. Here we report the detailed kinetic and structural characterization of an ALDH3A1 selective inhibitor, CB29, previously identified in a high throughput screen. Kinetic and crystallographic studies demonstrate that CB29 binds within the aldehyde substrate-binding site of ALDH3A1. Cellular proliferation of ALDH3A1-expressing lung adenocarcinoma (A549) and glioblastoma (SF767) cell lines, as well as the ALDH3A1 non-expressing lung fibroblast cells, CCD-13Lu, is unaffected by treatment with CB29 and its analogues alone. However, the sensitivity toward the anti-proliferative effects of mafosfamide is enhanced by treatment with CB29 and its analogue in the tumour cells. In contrast, the sensitivity of CCD-13Lu cells toward mafosfamide was unaffected by the addition of these same compounds. CB29 is chemically distinct from the previously reported small molecule inhibitors of ALDH isoenzymes and does not inhibit ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1 or ALDH2 isoenzymes at concentrations up to 250 μM. Thus, CB29 is a novel small molecule inhibitor of ALDH3A1, which may be useful as a chemical tool to delineate the role of ALDH3A1 in numerous metabolic pathways, including sensitizing ALDH3A1-positive cancer cells to oxazaphosphorines. PMID:24677340

  7. Bioorthogonal Enzymatic Activation of Caged Compounds.

    PubMed

    Ritter, Cornelia; Nett, Nathalie; Acevedo-Rocha, Carlos G; Lonsdale, Richard; Kräling, Katja; Dempwolff, Felix; Hoebenreich, Sabrina; Graumann, Peter L; Reetz, Manfred T; Meggers, Eric

    2015-11-01

    Engineered cytochrome P450 monooxygenase variants are reported as highly active and selective catalysts for the bioorthogonal uncaging of propargylic and benzylic ether protected substrates, including uncaging in living E. coli. observed selectivity is supported by induced-fit docking and molecular dynamics simulations. This proof-of-principle study points towards the utility of bioorthogonal enzyme/protecting group pairs for applications in the life sciences. PMID:26356324

  8. ALDH Expression Characterizes G1-Phase Proliferating Beta Cells during Pregnancy

    PubMed Central

    Zhang, Lijuan; Wang, Lin; Liu, Xiaoliang; Zheng, Dongming; Liu, Sishi; Liu, Caixia

    2014-01-01

    High levels of aldehyde dehydrogenase (ALDH) activity have been detected in various progenitor and stem cells. Thus, Aldefluor fluorescence, which represents precisely the ALDH activity, has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Recently, ALDH activity was detected in embryonic and adult mouse pancreas, specifically in adult centroacinar and terminal duct cells supposed to harbor endocrine and exocrine progenitor cells in the adult pancreas. Nevertheless, ALDH activity and aldeflour fluorescence have not been examined in beta cells. Here, we report a dynamic increase in the number of aldeflour+ beta cells during pregnancy. Interestingly, nearly all these aldeflour+ beta cells are positive for Ki-67, suggesting that they are in an active cell cycle (G1, S and M phases). To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells) and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells). Our data show little aldeflour+ beta cells that were positive for either PHH3, or BrdU, suggesting that beta cells activate ALDH and become Aldefluor+ when they enter G1-phase of active cell cycle, but may downregulate ALDH when they leave G1-phase and enter S phase. Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells. Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas. PMID:24787690

  9. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds

    PubMed Central

    Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M; Kagawa, Shingo; Rustgi, Sabrina L; Noguchi, Chiaki; Guha, Manti; Srinivasan, Satish; Amanuma, Yusuke; Ohashi, Shinya; Muto, Manabu; Klein-Szanto, Andres J; Noguchi, Eishi; Avadhani, Narayan G; Nakagawa, Hiroshi

    2016-01-01

    A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of

  10. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds.

    PubMed

    Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M; Kagawa, Shingo; Rustgi, Sabrina L; Noguchi, Chiaki; Guha, Manti; Srinivasan, Satish; Amanuma, Yusuke; Ohashi, Shinya; Muto, Manabu; Klein-Szanto, Andres J; Noguchi, Eishi; Avadhani, Narayan G; Nakagawa, Hiroshi

    2016-01-01

    A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of

  11. Mechanisms involved in the protection of UV-induced protein inactivation by the corneal crystallin ALDH3A1.

    PubMed

    Estey, Tia; Cantore, Miriam; Weston, Philip A; Carpenter, John F; Petrash, J Mark; Vasiliou, Vasilis

    2007-02-16

    Various lines of evidence have shown that ALDH3A1 (aldehyde dehydrogenase 3A1) plays a critical and multifaceted role in protecting the cornea from UV-induced oxidative stress. ALDH3A1 is a corneal crystallin, which is defined as a protein recruited into the cornea for structural purposes without losing its primary function (i.e. metabolism). Although the primary role of ALDH3A1 in the metabolism of toxic aldehydes has been clearly demonstrated, including the detoxification of aldehydes produced during UV-induced lipid peroxidation, the structural role of ALDH3A1 in the cornea remains elusive. We therefore examined the potential contribution of ALDH3A1 in maintaining the optical integrity of the cornea by suppressing the aggregation and/or inactivation of other proteins through chaperone-like activity and other protective mechanisms. We found that ALDH3A1 underwent a structural transition near physiological temperatures to form a partially unfolded conformation that is suggestive of chaperone activity. Although this structural transition alone did not correlate with any protection, ALDH3A1 substantially reduced the inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal and malondialdehyde when co-incubated with NADP(+), reinforcing the importance of the metabolic function of this corneal enzyme in the detoxification of toxic aldehydes. A large excess of ALDH3A1 also protected glucose-6-phosphate dehydrogenase from inactivation because of direct exposure to UVB light, which suggests that ALDH3A1 may shield other proteins from damaging UV rays. Collectively, these data demonstrate that ALDH3A1 can reduce protein inactivation and/or aggregation not only by detoxification of reactive aldehydes but also by directly absorbing UV energy. This study provides for the first time mechanistic evidence supporting the structural role of the corneal crystallin ALDH3A1 as a UV-absorbing constituent of the cornea. PMID:17158879

  12. Refined Geographic Distribution of the Oriental ALDH2*504Lys (nee 487Lys) Variant

    PubMed Central

    Li, Hui; Borinskaya, Svetlana; Yoshimura, Kimio; Kal’ina, Nina; Marusin, Andrey; Stepanov, Vadim A.; Qin, Zhendong; Khaliq, Shagufta; Lee, Mi-Young; Yang, Yajun; Mohyuddin, Aisha; Gurwitz, David; Mehdi, Syed Qasim; Rogaev, Evgeny; Jin, Li; Yankovsky, Nikolay K.; Kidd, Judith R.; Kidd, Kenneth K.

    2010-01-01

    Summary Mitochondrial aldehyde dehydrogenase (ALDH2) is one of the most important enzymes in human alcohol metabolism. The oriental ALDH2*504Lys variant functions as a dominant negative greatly reducing activity in heterozygotes and abolishing activity in homozygotes. This allele is associated with serious disorders such as alcohol liver disease, late onset Alzheimer disease, colorectal cancer, and esophageal cancer, and is best known for protection against alcoholism. Many hundreds of papers in various languages have been published on this variant, providing allele frequency data for many different populations. To develop a highly refined global geographic distribution of ALDH2*504Lys, we have collected new data on 4,091 individuals from 86 population samples and assembled published data on a total of 80,691 individuals from 366 population samples. The allele is essentially absent in all parts of the world except East Asia. The ALDH2*504Lys allele has its highest frequency in Southeast China, and occurs in most areas of China, Japan, Korea, Mongolia, and Indochina with frequencies gradually declining radially from Southeast China. As the indigenous populations in South China have much lower frequencies than the southern Han migrants from Central China, we conclude that ALDH2*504Lys was carried by Han Chinese as they spread throughout East Asia. Esophageal cancer, with its highest incidence in East Asia, may be associated with ALDH2*504Lys because of a toxic effect of increased acetaldehyde in the tissue where ingested ethanol has its highest concentration. While the distributions of esophageal cancer and ALDH2*504Lys do not precisely correlate, that does not disprove the hypothesis. In general the study of fine scale geographic distributions of ALDH2*504Lys and diseases may help in understanding the multiple relationships among genes, diseases, environments, and cultures. PMID:19456322

  13. PARP1 Val762Ala polymorphism reduces enzymatic activity

    SciTech Connect

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin . E-mail: tong@iarc.fr; Shen Yan

    2007-03-02

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K {sub m} of PARP1-Ala762 was increased to a 1.2-fold of the K {sub m} of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K {sub m}. This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism.

  14. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses.

    PubMed

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-06-01

    Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses. PMID:25873668

  15. Targeting ALDHbright human carcinoma initiating cells with ALDH1A1- specific CD8+ T cells

    PubMed Central

    Visus, Carmen; Wang, Yangyang; Lozano-Leon, Antonio; Ferris, Robert L.; Silver, Susan; Szczepanski, Miroslaw J.; Brand, Randall E.; Ferrone, Cristina R.; Whiteside, Theresa L.; Ferrone, Soldano; DeLeo, Albert B.; Wang, Xinhui

    2011-01-01

    Purpose Tumor cells expressing elevated aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms have been identified as ALDHbright cells and have the properties attributed to cancer initiating cells (CIC). CIC represent the subpopulation of tumor cells that are resistant to conventional cancer treatments and highly tumorigenic in immunodeficient mice. They are considered to be responsible for tumor recurrence and metastasis. The ALDH1A1 isoform was previously identified as a tumor antigen recognized by CD8+ T cells. This study examines the ability of ALDH1A1-specific CD8+ T cells to eliminate ALDHbright cells and control tumor growth and metastases. Experimental Design ALDHbright cells were isolated by flow cytometry from HLA-A2+ human head and neck, breast and pancreas carcinoma cell lines using ALDEFLUOR® and tested for their tumorigenicity in immunodeficient mice. ALDH1A1-specific CD8+ T cells were generated in vitro and tested for their ability to eliminate CIC in vitro and in vivo by adoptive transfer to immunodeficient mice bearing human tumor xenografts. Results ALDHbright cells isolated by flow cytometry from HLA-A2+ breast, head and neck and pancreas carcinoma cell lines at low numbers (500 cells) were tumorigenic in immunodeficient mice. ALDHbright cells present in these cell lines, xenografts or surgically removed lesions were recognized by ALDH1A1-specific CD8+ T cells in vitro. Adoptive therapy with ALDH1A1-specific CD8+ T cells eliminated ALDHbright cells, inhibited tumor growth, metastases or prolonged survival of xenograft-bearing immunodeficient mice. Conclusions The results of this translational study strongly support the potential of ALDH1A1-based immunotherapy to selectively target CIC in human cancer. PMID:21856769

  16. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  17. Controlling the enzymatic activity of a restriction enzyme by light

    PubMed Central

    Schierling, Benno; Noël, Ann-Josée; Wende, Wolfgang; Hien, Le Thi; Volkov, Eugeny; Kubareva, Elena; Oretskaya, Tatiana; Kokkinidis, Michael; Römpp, Andreas; Spengler, Bernhard; Pingoud, Alfred

    2010-01-01

    For many applications it would be desirable to be able to control the activity of proteins by using an external signal. In the present study, we have explored the possibility of modulating the activity of a restriction enzyme with light. By cross-linking two suitably located cysteine residues with a bifunctional azobenzene derivative, which can adopt a cis- or trans-configuration when illuminated by UV or blue light, respectively, enzymatic activity can be controlled in a reversible manner. To determine which residues when cross-linked show the largest “photoswitch effect,” i.e., difference in activity when illuminated with UV vs. blue light, > 30 variants of a single-chain version of the restriction endonuclease PvuII were produced, modified with azobenzene, and tested for DNA cleavage activity. In general, introducing single cross-links in the enzyme leads to only small effects, whereas with multiple cross-links and additional mutations larger effects are observed. Some of the modified variants, which carry the cross-links close to the catalytic center, can be modulated in their DNA cleavage activity by a factor of up to 16 by illumination with UV (azobenzene in cis) and blue light (azobenzene in trans), respectively. The change in activity is achieved in seconds, is fully reversible, and, in the case analyzed, is due to a change in V max rather than K m. PMID:20080559

  18. Physisorption of enzymatically active chymotrypsin on titania colloidal particles.

    PubMed

    Derr, Ludmilla; Dringen, Ralf; Treccani, Laura; Hildebrand, Nils; Ciacchi, Lucio Colombi; Rezwan, Kurosch

    2015-10-01

    In this study we use a straightforward experimental method to probe the presence and activity of the proteolytic enzyme α-chymotrypsin adsorbed on titania colloidal particles. We show that the adsorption of α-chymotrypsin on the particles is irreversible and pH-dependent. At pH 8 the amount of adsorbed chymotrypsin is threefold higher compared to the adsorption at pH 5. However, we observe that the adsorption is accompanied by a substantial loss of enzymatic activity, and only around 6-9% of the initial enzyme activity is retained. A Michaelis-Menten kinetics analysis of both unbound and TiO2-bound chymotrypsin shows that the K(M) value is increased from ∼10 μM for free chymotrypsin to ∼40 μM for the particle bound enzyme. Such activity decrease could be related by the hindered accessibility of substrate to the active site of adsorbed chymotrypsin, or by adsorption-induced structural changes. Our simple experimental method does not require any complex technical equipment, can be applied to a broad range of hydrolytic enzymes and to various types of colloidal materials. Our approach allows an easy, fast and reliable determination of particle surface-bound enzyme activity and has high potential for development of future enzyme-based biotechnological and industrial processes. PMID:26072448

  19. Aberrant expression of aldehyde dehydrogenase 1A (ALDH1A) subfamily genes in acute lymphoblastic leukaemia is a common feature of T-lineage tumours.

    PubMed

    Longville, Brooke A C; Anderson, Denise; Welch, Mathew D; Kees, Ursula R; Greene, Wayne K

    2015-01-01

    The class 1A aldehyde dehydrogenase (ALDH1A) subfamily of genes encode enzymes that function at the apex of the retinoic acid (RA) signalling pathway. We detected aberrant expression of ALDH1A genes, particularly ALDH1A2, in a majority (72%) of primary paediatric T cell acute lymphoblastic leukaemia (T-ALL) specimens. ALDH1A expression was almost exclusive to T-lineage, but not B-lineage, ALL. To determine whether ALDH1A expression may have relevance to T-ALL cell growth and survival, the effect of inhibiting ALDH1A function was measured on a panel of human ALL cell lines. This revealed that T-ALL proliferation had a higher sensitivity to modulation of ALDH1A activity and RA signalling as compared to ALL cell lines of B-lineage. Consistent with these findings, the genes most highly correlated with ALDH1A2 expression were involved in cell proliferation and apoptosis. Evidence that such genes may be targets of regulation via RA signalling initiated by ALDH1A activity was provided by the TNFRSF10B gene, encoding the apoptotic death receptor TNFRSF10B (also termed TRAIL-R2), which negatively correlated with ALDH1A2 and showed elevated transcription following treatment of T-ALL cell lines with the ALDH1A inhibitor citral (3,7-dimethyl-2,6-octadienal). These data indicate that ALDH1A expression is a common event in T-ALL and supports a role for these enzymes in the pathobiology of this disease. PMID:25208926

  20. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase.

    PubMed

    Hamre, Anne Grethe; Eide, Kristine B; Wold, Hanne H; Sørlie, Morten

    2015-04-30

    For decades, the enzymatic conversion of recalcitrant polysaccharides such as cellulose and chitin was thought to solely rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. Here, we have examined the initial rate enhancement an LPMO (CBP21) has on the hydrolytic enzymes (ChiA, ChiB, and ChiC) of the chitinolytic machinery of Serratia marcescens through determinations of apparent k(cat) (k(cat)(app)) values on a β-chitin substrate. k(cat)(app) values were determined to be 1.7±0.1 s(-1) and 1.7±0.1 s(-1) for the exo-active ChiA and ChiB, respectively and 1.2±0.1 s(-1) for the endo-active ChiC. The addition of CBP21 boosted the k(cat)(app) values of ChiA and ChiB giving values of 11.1±1.5 s(-1) and 13.9±1.4 s(-1), while there was no effect on ChiC (0.9±0.1 s(-1)). PMID:25812992

  1. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  2. ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac apoptosis and oxidative stress

    PubMed Central

    Gao, Yawen; Xu, Yan; Hua, Songwen; Zhou, Shenghua; Wang, Kangkai

    2015-01-01

    The anthracycline chemotherapy drug doxorubicin (DOX) is cardiotoxic. This study aimed to explore the effect of acetaldehyde dehydrogenase 2 (ALDH2), a detoxifying protein, on DOX-induced cardiotoxicity and unveil the underlying mechanisms. BALB/c mice were randomly divided in four groups: control group (no treatment), DOX group (DOX administration for myocardial damage induction), DOX + Daidzin group (DOX administration + Daidzin, an ALDH2 antagonist) and DOX + Alda-1 group (DOX administration + Alda-1, an ALDH2 agonist). Then, survival, haemodynamic parameters, expression of pro- and anti-apoptosis markers, reactive oxygen species (ROS) and 4-Hydroxynonenal (4-HNE) levels, expression and localization of NADPH oxidase 2 (NOX2) and its cytoplasmic subunit p47PHOX, and ALDH2 expression and activity were assessed. Mortality rates of 0, 35, 5, and 70% were obtained in the control, DOX, DOX + Alda-1, and DOX + Daidzin groups, respectively, at the ninth weekend. Compared with control animals, DOX treatment resulted in significantly reduced left ventricular systolic pressure (LVSP) and ± dp/dt, and overtly increased left ventricular end-diastolic pressure (LVEDP); increased Bax expression and caspase-3/7 activity, and reduced Bcl-2 expression in the myocardium; increased ROS (about 2 fold) and 4-HNE adduct (3 fold) levels in the myocardium; increased NOX2 protein expression and membrane translocation of P47PHOX. These effects were aggravated in the DOX + Daidzin group, DOX + Alda-1 treated animals showed partial or complete alleviation. Finally, Daidzin further reduced the DOX-repressed ALDH2 activity, which was partially rescued by Alda-1. These results indicated that ALDH2 attenuates DOX-induced cardiotoxicity by inhibiting oxidative stress, NOX2 expression and activity, and reducing myocardial apoptosis. PMID:26221217

  3. Development and validation of a 96-well cellular assay for the discovery of ALDH1A1 inhibitors.

    PubMed

    Ming, Wenyu; Ma, Wenzhen; Chen, Lisa H; Volk, Catherine; Michael, Mervyn Dodson; Xu, Yanping; Zhang, Fang; Wang, Xiaojun

    2013-07-01

    Retinoic acid, the active metabolite of vitamin A, plays important roles in various physiological and pathological processes. The two-step production of retinoic acid from vitamin A (retinol) is catalyzed by alcohol dehydrogenases and aldehyde dehydrogenases, which are potential therapeutic targets for numerous diseases, such as obesity, diabetes, and cancer. Currently, the lack of a suitable high-throughput cellular assay hinders efforts to identify therapeutic small molecular inhibitors of aldehyde dehydrogenase, such as ALDH1A1. In this report, we utilized high-content imaging technology and a commercially available cell permeable ALDH substrate to develop a 96-well cellular ALDH1A1 assay. This assay has a robust and sensitive readout and is amenable to automation. With this cellular assay, we identified potent selective ALDH1A1 inhibitors to explore the role of retinoic acid production in various preclinical disease models. PMID:23957476

  4. ALDH1B1 links alcohol consumption and diabetes.

    PubMed

    Singh, Surendra; Chen, Ying; Matsumoto, Akiko; Orlicky, David J; Dong, Hongbin; Thompson, David C; Vasiliou, Vasilis

    2015-08-01

    Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme sharing 65% and 72% sequence identity with ALDH1A1 and ALDH2 proteins, respectively. Compared to the latter two ALDH isozymes, little is known about the physiological functions of ALDH1B1. Studies in humans indicate that ALDH1B1 may be associated with alcohol sensitivity and stem cells. Our recent in vitro studies using human ALDH1B1 showed that it metabolizes acetaldehyde and retinaldehyde. To investigate the in vivo role of ALDH1B1, we generated and characterized a global Aldh1b1 knockout mouse line. These knockout (KO) mice are fertile and show overtly good health. However, ethanol pharmacokinetic analysis revealed ∼40% increase in blood acetaldehyde levels in KO mice. Interestingly, the KO mice exhibited higher fasting blood glucose levels. Collectively, we show for the first time the functional in vivo role of ALDH1B1 in acetaldehyde metabolism and in maintaining glucose homeostasis. This mouse model is a valuable tool to investigate the mechanism by which alcohol may promote the development of diabetes. PMID:26086111

  5. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping.

    PubMed

    Vasiliou, V; Bairoch, A; Tipton, K F; Nebert, D W

    1999-08-01

    As currently being performed with an increasing number of superfamilies, a standardized gene nomenclature system is proposed here, based on divergent evolution, using multiple alignment analysis of all 86 eukaryotic aldehyde dehydrogenase (ALDH) amino-acid sequences known at this time. The ALDHs represent a superfamily of NAD(P)(+)-dependent enzymes having similar primary structures that oxidize a wide spectrum of endogenous and exogenous aliphatic and aromatic aldehydes. To date, a total of 54 animal, 15 plant, 14 yeast, and three fungal ALDH genes or cDNAs have been sequenced. These ALDHs can be divided into a total of 18 families (comprising 37 subfamilies), and all nonhuman ALDH genes are named here after the established human ALDH genes, when possible. An ALDH protein from one gene family is defined as having approximately < or = 40% amino-acid identity to that from another family. Two members of the same subfamily exhibit approximately > or = 60% amino-acid identity and are expected to be located at the same subchromosomal site. For naming each gene, it is proposed that the root symbol 'ALDH' denoting 'aldehyde dehydrogenase' be followed by an Arabic number representing the family and, when needed, a letter designating the subfamily and an Arabic number denoting the individual gene within the subfamily; all letters are capitalized in all mammals except mouse and fruit fly, e.g. 'human ALDH3A1 (mouse, Drosophila Aldh3a1).' It is suggested that the Human Gene Nomenclature Guidelines (http://++www.gene.ucl.ac.uk/nomenclature/guidelines.h tml) be used for all species other than mouse and Drosophila. Following these guidelines, the gene is italicized, whereas the corresponding cDNA, mRNA, protein or enzyme activity is written with upper-case letters and without italics, e.g. 'human, mouse or Drosophila ALDH3A1 cDNA, mRNA, or activity'. If an orthologous gene between species cannot be identified with certainty, sequential naming of these genes will be carried out

  6. Enzymatic activity inside and outside of water-stable aggregates in soils under different land use

    NASA Astrophysics Data System (ADS)

    Garbuz, S. A.; Yaroslavtseva, N. V.; Kholodov, V. A.

    2016-03-01

    A method is presented for assessing the distribution of enzymatic activity inside and outside of water-stable aggregates. Two samples of water-stable aggregates >1 mm have been isolated from dry aggregates of 1-2 mm. To determine the enzymatic activity, a substrate has been added to one of the samples without disaggregation; the other sample has been preliminarily disaggregated. Enzymatic activity within waterstable aggregates has been assessed from the difference between the obtained results under the supposition that the penetration of substrate within the water-saturated aggregates is hampered, and enzymatic reactions occur only at the periphery. The levels and distributions of enzymatic (peroxidase, polyphenol oxidase, and catalase) activities in water-stable aggregates of soddy-podzolic soils under forest and plowland and typical chernozems of long-term field experiments have been studied. The peroxidase, polyphenol oxidase, and catalase activities of water-stable aggregates vary from 6 to 23, from 7 to 30, and from 5 to 7 mmol/(g h), respectively. The ratio between the enzymatic activities inside and outside of soil aggregates showed a higher dependence on soil type and land use, as well as on the input of organic matter and the structural state, than the general activity level in water-stable aggregates.

  7. Adsorption-Induced Changes in Ribonuclease A Structure and Enzymatic Activity on Solid Surfaces

    PubMed Central

    2015-01-01

    Ribonuclease A (RNase A) is a small globular enzyme that lyses RNA. The remarkable solution stability of its structure and enzymatic activity has led to its investigation to develop a new class of drugs for cancer chemotherapeutics. However, the successful clinical application of RNase A has been reported to be limited by insufficient stability and loss of enzymatic activity when it was coupled with a biomaterial carrier for drug delivery. The objective of this study was to characterize the structural stability and enzymatic activity of RNase A when it was adsorbed on different surface chemistries (represented by fused silica glass, high-density polyethylene, and poly(methyl-methacrylate)). Changes in protein structure were measured by circular dichroism, amino acid labeling with mass spectrometry, and in vitro assays of its enzymatic activity. Our results indicated that the process of adsorption caused RNase A to undergo a substantial degree of unfolding with significant differences in its adsorbed structure on each material surface. Adsorption caused RNase A to lose about 60% of its native-state enzymatic activity independent of the material on which it was adsorbed. These results indicate that the native-state structure of RNase A is greatly altered when it is adsorbed on a wide range of surface chemistries, especially at the catalytic site. Therefore, drug delivery systems must focus on retaining the native structure of RNase A in order to maintain a high level of enzymatic activity for applications such as antitumor chemotherapy. PMID:25420087

  8. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  9. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde dehydrogenase 2 (ALDH2) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements monitor the blue shift of the NADH fluorescence spectrum to study ...

  10. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ALDH2 catalyzes oxidation of toxic aldehydes to their corresponding carboxylic acids. Magnesium ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements have monitored the blue shift of the NADH fluorescence spectrum to elucidate the extent of...

  11. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Vallooran, Jijo J.; Zabara, Alexandru; Mezzenga, Raffaele

    2014-05-01

    Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them into a highly confined environment. We show that the enzymatic activity of a model enzyme, horseradish peroxidase (HRP), can be accurately controlled by relaxing its confinement within the cubic phases' water channels, when the aqueous channel diameters are systematically swollen with varying amount of hydration-enhancing sugar ester. The in-meso activity and kinetics of HRP are then systematically investigated by UV-vis spectroscopy, as a function of the size of the aqueous mesophase channels. The enzymatic activity of HRP increases with the swelling of the water channels. In swollen mesophases with water channel diameter larger than the HRP size, the enzymatic activity is more than double that measured in standard mesophases, approaching again the enzymatic activity of free HRP in bulk water. We also show that the physically-entrapped enzymes in the mesophases exhibit a restricted-diffusion-induced initial lag period and report the first observation of in-meso enzymatic kinetics significantly deviating from the normal Michaelis-Menten behaviour observed in free solutions, with deviations vanishing when enzyme confinement is released by swelling the mesophase.Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them

  12. Research of enzymatic activities of fresh juice and water infusions from dry herbs.

    PubMed

    Chudnicka, Alina; Matysik, Grazyna

    2005-06-01

    Research was done on the presence of enzymes in juice obtained from fresh plant material from Chamomilla recutita L. (Rauschel)-anthodium, Lamium album L.-flos, Calendula officinalis L.-flos, Plantaginis lanceolata L.-folium and Euphrasiae rostkoviana Hayne-herba, and in the prepared water infusion of these materials; the objective was to determine the activity of enzymes which beside biologically active substances may have an influence of the final therapeutic effect of the applied plant preparations. The research was conducted by means of the API ZYM system (bioMerieux). Higher enzymatic activities were found in fresh juices of the examined plant material than in prepared water infusions from dried plants. In both cases naphthol-AS-BI-phosphohydrolase should have highest activity. The second one in terms of activity out of 17 studied enzymes was acidic phosphatase. The highest enzymatic activity of fresh juice was found in Lamii albi flos and Calendulae officinalis flos. Water infusions showed the highest enzymatic activity in Lamii albi flos, Chamomille recutita anthodium and Plantaginis lanceolata folium. Drying the plant material resulted in decreased enzymatic activities but not in the case of naphthol-AS-BI-phosphohydrolase and acidic phosphatase which showed very low activities. The complex composition of plant materials in terms of content of biologically active substances may imply that the therapeutic effect might be directly related to the quantity and activity of plant enzymes present in preparations applied in therapeutics. PMID:15894139

  13. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2016-01-01

    Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules. PMID:26805855

  14. Thrombolytic efficacy and enzymatic activity of rt-PA-loaded echogenic liposomes.

    PubMed

    Bader, Kenneth B; Bouchoux, Guillaume; Peng, Tao; Klegerman, Melvin E; McPherson, David D; Holland, Christy K

    2015-08-01

    Echogenic liposomes (ELIP), that can encapsulate both recombinant tissue-type plasminogen activator (rt-PA) and microbubbles, are under development to improve the treatment of thrombo-occlusive disease. However, the enzymatic activity, thrombolytic efficacy, and stable cavitation activity generated by this agent has yet to be evaluated and compared to another established ultrasound-enhanced thrombolytic scheme. A spectrophotometric method was used to compare the enzymatic activity of the rt-PA incorporated into ELIP (t-ELIP) to that of rt-PA. An in vitro flow model was employed to measure the thrombolytic efficacy and dose of ultraharmonic emissions from stable cavitation for 120-kHz ultrasound exposure of three treatment schemes: rt-PA, rt-PA and the perfluorocarbon-filled microbubble Definity(®), and t-ELIP. The enzymatic activity of rt-PA incorporated into t-ELIP was 28 % that of rt-PA. Thrombolytic efficacy of t-ELIP or rt-PA and Definity(®) was equivalent when the dose of t-ELIP was adjusted to produce comparable enzymatic activity. Sustained bubble activity was nucleated from Definity but not from t-ELIP exposed to 120-kHz ultrasound. These results emphasize the advantages of encapsulating a thrombolytic and the importance of incorporating an insoluble gas required to promote sustained, stable cavitation activity. PMID:25829338

  15. Immobilization of Enzymes to Silver Island Films for Enhanced Enzymatic Activity

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    Hypothesis The performance of the enzyme-based biosensors depends on the enzymatic activity and the use of an appropriate technique for immobilization of enzymes. The incorporation of silver island films (SIFs) into the enzyme-based biosensors is expected to enhance the enzymatic activity and to increase the detectability of analytes of interest. Experiments Two enzymes, β-galactosidase (β-Gal) and alkaline phosphatase (AP) were immobilized onto SIFs using the interactions of avidin-modified enzymes with (i) a monolayer of biotinylated bovine serum albumin (b-BSA) and/or (ii) a monolayer of biotinylated poly(ethylene-glycol)-amine (BEA molecular weight: 550 to 10000 Da). To confirm the effect of SIFs on enzymatic activity, two control surfaces (no silver) were also employed. Findings No enhancement in enzymatic activity for β-Gal on all SIFs was observed, which was attributed to the inhibition of β-Gal activity due to direct interactions of β-Gal with SIFs. The AP activity on SIFs with BEA was significantly larger than that observed on SIFs with b-BSA, where a 300% increase in AP activity was observed as compared to control surfaces. These observations suggest that SIFs can significantly enhance AP activity, which could help improve the detection limits of ELISAs and immunoassays that employ AP. PMID:24267340

  16. A Survey of Enzymatic Activity in Commercially Available Pool and Spa Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pool water treatment products currently available commercially claim that they work effectively by possessing enzyme activity (specifically lipase) that degrades common oil (lipid) contaminants found in pool water. Currently, there is no standard in measuring the enzymatic activity of these enz...

  17. A Survey of Enzymatic Activity in Commercially Available Pool and Spa Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pool water treatment products currently available commercially claim that they work effectively by possessing enzyme activity (specifically lipase) that degrades common oil (lipid) contaminants found in pool water. Currently, there is no standard in measuring the enzymatic activity of these en...

  18. Plant oligoadenylates: enzymatic synthesis, isolation, and biological activities

    SciTech Connect

    Devash, Y.; Reichman, M.; Sela, I.; Reichenbach, N.L.; Suhadolnik, R.J.

    1985-01-29

    An enzyme that converts (/sup 3/H, /sup 32/P)ATP, with a /sup 3/H:/sup 32/P ratio of 1:1, to oligoadenylates with the same /sup 3/H:/sup 32/P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of /sup 3/H:/sup 32/P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems.

  19. Enzymatic hydrolysis of rice protein with papain and antioxidation activity of hydrolysate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzymatic hydrolysis technology of rice protein and the antioxidant activity of the hydrolysate were studied. Substrate concentration,enzyme dose,pH value and temperature were selected as factors to optimize the hydrolysis parameters with single—factor and orthogonal tests. Results show the opti...

  20. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-01-01

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods. PMID:25679050

  1. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  2. Effect of restricted motion in high temperature on enzymatic activity of the pancreas

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.; Smirnova, G. I.

    1980-01-01

    Effects of 30 day hypodynamia coupled with high temperature (35-36 C) on enzymatic activity of the pancreas of male adult rats were studied. The test animals were divided into four groups. Group one served as controls (freedom of movement and a temperature of 25-26 C, considered optimal). The remaining animals were divided into three additional groups: Group two freedom of movement but high temperature (35-36 C); group three hypodynamia but an optimal temperature; group four hypodynamia and 35-36 C. Considerable change in the enzymatic activity in the pancreas of the four groups is observed in three experimental groups (two, three, and four) as compared to the control (group one). The results indicate that adaption of the organism to the thermal factor and restricted movement is accompanied by a change in the enzymatic spectrum of the pancreas. With the combined effect of these two stresses under conditions of the adaption of the organism especially sharp shifts occur in the enzymatic activity.

  3. Analysis of rat cytosolic 9-cis-retinol dehydrogenase activity and enzymatic characterization of rat ADHII.

    PubMed

    Popescu, G; Napoli, J L

    2000-01-01

    We report the characterization of two enzymes that catalyze NAD(+)-dependent 9-cis-retinol dehydrogenase activity in rat liver cystol. Alcohol dehydrogenase class I (ADHI) contributes > 80% of the NA D+-dependent 9-cis-retinol dehydrogenase activity recovered, whereas alcohol dehydrogenase class II (ADHII), not identified previously at the protein level, nor characterized enzymatically in rat, accounts for approximately 2% of the activity. Rat ADHII exhibits properties different from those described for human ADHII. Moreover, rat ADHII-catalyzed rates of ethanol dehydrogenation are markedly lower than octanol or retinoid dehydrogenation rates. Neither ethanol nor 4-methylpyrazole inhibits the 9-cis-retinol dehydrogenase activity of rat ADHII. We propose that ADHII represents the previously observed additional retinoid oxidation activity of rat liver cytosol which occurred in the presence of either ethanol or 4-methylpyrazole. We also show that human and rat ADHII differ considerably in enzymatic properties. PMID:10606766

  4. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.

    PubMed

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  5. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    PubMed Central

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  6. Aldehyde Dehydrogenase Activity Identifies a Population of Human Skeletal Muscle Cells With High Myogenic Capacities

    PubMed Central

    Vauchez, Karine; Marolleau, Jean-Pierre; Schmid, Michel; Khattar, Patricia; Chapel, Alain; Catelain, Cyril; Lecourt, Séverine; Larghéro, Jérôme; Fiszman, Marc; Vilquin, Jean-Thomas

    2009-01-01

    Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH+ cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH, Aldefluor, identified brightly stained (ALDHbr) cells with low side scatter (SSClo), in enzymatically dissociated muscle biopsies, thereafter abbreviated as SMALD+ (for skeletal muscle ALDH+) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD+/CD34− and SMALD+/CD34+ cells. These sub-populations did not initially express endothelial (CD31), hematopoietic (CD45), and myogenic (CD56) markers. Upon sorting, however, whereas SMALD+/CD34+ cells developed in vitro as a heterogeneous population of CD56− cells able to differentiate in adipoblasts, the SMALD+/CD34− fraction developed in vitro as a highly enriched population of CD56+ myoblasts able to form myotubes. Moreover, only the SMALD+/CD34− population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy. PMID:19738599

  7. Members of the Chloride Intracellular Ion Channel Protein Family Demonstrate Glutaredoxin-Like Enzymatic Activity

    PubMed Central

    Al Khamici, Heba; Brown, Louise J.; Hossain, Khondker R.; Hudson, Amanda L.; Sinclair-Burton, Alxcia A.; Ng, Jane Phui Mun; Daniel, Elizabeth L.; Hare, Joanna E.; Cornell, Bruce A.; Curmi, Paul M. G.; Davey, Mary W.; Valenzuela, Stella M.

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function. PMID:25581026

  8. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.

    PubMed

    Holmes, Roger S

    2015-06-01

    Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes. PMID:25446856

  9. Directed enzymatic activation of 1-D DNA tiles.

    PubMed

    Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John

    2015-02-24

    The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies. PMID:25625898

  10. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6.

    PubMed

    Sridar, Chitra; Kent, Ute M; Notley, Lisa M; Gillam, Elizabeth M J; Hollenberg, Paul F

    2002-06-01

    Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K(I) of 0.9 microM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity. PMID:12023523

  11. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    PubMed

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. PMID:23744750

  12. Enzymatic assay for calmodulins based on plant NAD kinase activity

    SciTech Connect

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  13. Transcriptional regulation of the human ALDH1A1 promoter by the oncogenic homeoprotein TLX1/HOX11

    PubMed Central

    Rice, Kim L.; Heidari, Mansour; Taplin, Ross H.; Kees, Ursula R.; Greene, Wayne K.

    2009-01-01

    The homeoprotein TLX1, which is essential to spleen organogenesis and oncogenic when aberrantly expressed in immature T cells, functions as a bifunctional transcriptional regulator, being capable of activation or repression depending on cell type and/or promoter context. However, the detailed mechanisms by which it regulates the transcription of target genes such as ALDH1A1 remains to be elucidated. We therefore functionally assessed the ability of TLX1 to regulate ALDH1A1 expression in two hematopoietic cell lines, PER-117 T-leukemic cells and human erythroleukemic (HEL) cells, by use of luciferase reporter and mobility shift assays. We showed that TLX1 physically interacts with the general transcription factor TFIIB via its homeodomain, and identified two activities in respect to TLX1-mediated regulation of the CCAAT box-containing ALDH1A1 promoter. The first involved CCAAT-dependent transcriptional repression via perturbation of GATA factor-containing protein complexes assembled at a non-canonical TATA (GATA) box. A structurally intact homeodomain was essential for repression by TLX1 although direct DNA binding was not required. The second activity, which involved CCAAT-independent transcriptional activation did not require an intact homeodomain, indicating that the activation and repression functions of TLX1 are distinct. These findings confirm ALDH1A1 gene regulation by TLX1 and support an indirect model for TLX1 function, in which protein-protein interactions, rather than DNA binding at specific sites, are crucial for its transcriptional activity.

  14. Measuring In Vitro ATPase Activity for Enzymatic Characterization.

    PubMed

    Rule, Chelsea S; Patrick, Marcella; Sandkvist, Maria

    2016-01-01

    Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical role in a diverse array of cellular functions. These dynamic proteins can generate energy for mechanical work, such as protein trafficking and degradation, solute transport, and cellular movements. The protocol described here is a basic assay for measuring the in vitro activity of purified ATPases for functional characterization. Proteins hydrolyze ATP in a reaction that results in inorganic phosphate release, and the amount of phosphate liberated is then quantitated using a colorimetric assay. This highly adaptable protocol can be adjusted to measure ATPase activity in kinetic or endpoint assays. A representative protocol is provided here based on the activity and requirements of EpsE, the AAA+ ATPase involved in Type II Secretion in the bacterium Vibrio cholerae. The amount of purified protein needed to measure activity, length of the assay and the timing and number of sampling intervals, buffer and salt composition, temperature, co-factors, stimulants (if any), etc. may vary from those described here, and thus some optimization may be necessary. This protocol provides a basic framework for characterizing ATPases and can be performed quickly and easily adjusted as necessary. PMID:27584824

  15. The Influence of Encroaching Woodland on Grassland Enzymatic Activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. The assumption is that the soil microbial activity in the remain...

  16. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  17. ENZYMATIC ACTIVITIES RELATED TO THE DECOMPOSITION OF CONIFEROUS LEAF LITTER

    EPA Science Inventory

    The rate of CO2 evolution at 23C and 75% moisture content for a diverse group of coniferous leaf litter samples from Oregon was measured. Significant correlations (1% level) were observed between the rate of CO2 evolution and the activity of amylase, cellulase, and xylanase (r=0....

  18. Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma--derived CD44(+)ALDH1(+) cells.

    PubMed

    Chen, Yi-Wei; Chen, Kuan-Hsuan; Huang, Pin-I; Chen, Yu-Chih; Chiou, Guang-Yu; Lo, Wen-Liang; Tseng, Ling-Ming; Hsu, Han-Sui; Chang, Kuo-Wei; Chiou, Shih-Hwa

    2010-11-01

    Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer worldwide. Signal transducers and activators of transcription 3 (STAT3) signaling is reported to promote tumor malignancy and recurrence in HNSCC. Cucurbitacins, triterpenoid derivatives, are strong STAT3 inhibitors with anticancer properties. Recent studies have shown aldehyde dehydrogenase 1 (ALDH1) to be a marker of cancer stem cells (CSC) in HNSCC. The aim of this study was to investigate the therapeutic effect of cucurbitacin I in HNSCC-derived CSCs. Using immunohistochemical analysis, we firstly showed that CD44, ALDH1, and phosphorylated STAT3 (p-STAT3) were higher in high-grade HNSCCs, and that triple positivity for CD44/ALDH1/p-STAT3 indicated a worse prognosis for HNSCC patients. Secondly, CD44(+)ALDH1(+) cells isolated from seven HNSCC patients showed greater tumorigenicity, radioresistance, and high expression of stemness (Bmi-1/Oct-4/Nanog) and epithelial-mesenchymal-transitional (Snail/Twist) genes as p-STAT3 level increased. Furthermore, we found that cucurbitacin I (JSI-124) can effectively inhibit the expression of p-STAT3 and capacities for tumorigenicity, sphere formation, and radioresistance in HNSCC-CD44(+)ALDH1(+). Notably, 150 nmol/L cucurbitacin I effectively blocked STAT3 signaling and downstream survivin and Bcl-2 expression, and it induced apoptosis in HNSCC-CD44(+)ALDH1(+). Moreover, microarray data indicated that 100 nmol/L cucurbitacin I facilitated CD44(+)ALDH1(+) cells to differentiate into CD44⁻ALDH1⁻ and enhanced the radiosensitivity of HNSCC-CD44(+)ALDH1(+). Xenotransplant experiments revealed that cucurbitacin I combined with radiotherapy significantly suppressed tumorigenesis and lung metastasis and further improved the survival rate in HNSCC-CD44(+)ALDH1(+)-transplanted immunocompromised mice. Taken together, our data show that cucurbitacin I, STAT3 inhibitor, reduces radioresistant, distant-metastatic, and CSC-like properties of HNSCC-CD44(+)ALDH1(+) cells

  19. mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism

    PubMed Central

    Ge, Wei; Ren, Jun

    2012-01-01

    Abstract Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been shown to benefit myopathic changes following alcohol intake, although the precise mechanism is still unclear. This study was designed to evaluate the role of ALDH2 on chronic alcohol intake-induced myocardial geometric and functional damage with a focus on autophagic signalling. Wild-type friendly virus B (FVB) and transgenic mice overexpressing ALDH2 driven by chicken β-actin promoter were fed a 4% alcohol liquid diet for 12 weeks. Cardiac geometry and function were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate the essential autophagy markers, Akt and AMP-dependent protein kinase (AMPK) as well as their downstream signalling mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3). Alcohol intake altered cardiac geometry and function as demonstrated by lessened LV wall and septal thickness, enlarged end systolic and diastolic diameters, decreased fractional shortening and cell shortening, the effects of which were mitigated by ALDH2 transgene. Chronic alcohol intake triggered myocardial autophagy as shown by LC3B II isoform switch, as well as decreased phosphorylation of mTOR, the effects of which were ablated by ALDH2. Chronic alcohol intake suppressed phosphorylation of Akt and AMPK, which was reconciled by ALDH2. Levels of Notch1 and STAT3 phosphorylation were dampened by chronic alcohol intake in FVB but not ALDH2 myocardium. Moreover, the γ-secretase Notch inhibitor N-[N-(3,5-difluorophenacetyl)-1-alany1]-S-phenyglycine t-butyl ester exacerbated ethanol-induced cardiomyocyte contractile dysfunction, apoptosis and autophagy. In summary, these findings suggested that ALDH2 elicits cardioprotection against chronic alcohol intake-induced cardiac geometric and functional anomalies by inhibition of autophagy possibly via restoring the Akt-mTOR-STAT3-Notch signalling cascade. PMID:21609394

  20. Evolution of robusta green coffee redox enzymatic activities with maturation.

    PubMed

    Montavon, Philippe; Bortlik, Karlheinz

    2004-06-01

    Oxidation reactions in coffee involve redox-sensitive polyphenols and appear to control the fragmentation of coffee storage proteins both in solution and during roasting. Coffee-specific nitrogenous flavor precursors may derive from this process. Accordingly, data converge to suggest that the redox status of the green bean before roasting might control the development of subsequent redox reactions during roasting. Consequently, we decided to identify biological events that may trigger or prevent oxidation during maturation of the coffee cherry and set the final redox status of the green bean. In a previous study, we observed that the sensitivity of green coffee to oxidative processes decreased along maturation. By using the very same samples originating from open-pollinated Robusta clones, we followed the activity of three essential redox enzymes: catalase (CAT), peroxidase (POD) and polyphenoloxidase (PPO). While CAT and POD activities increased with maturation, PPO activities decreased. Thanks to the identification of an atypical immature subclass, it appeared that CAT might be an essential factor in setting the final redox status of the green bean before the roasting event. PMID:15161235

  1. Activation of polymeric materials towards enzymatic postgrafting and cross-linking.

    PubMed

    Fatarella, E; Ciabatti, I; Cortez, J

    2012-10-10

    A methodology to activate inert polymeric materials to enzymatic functionalisation is described herein. Plasma irradiation can be used to graft compounds containing a moiety that is reactive towards an enzyme of interest. Subsequently, such enzyme can be used to either postgraft functional compounds or cross-link the polymeric materials. Argon plasma was utilised to graft 2-aminoethyl methacrylate onto cotton and wool fibres, introducing surface alkylamine groups to impart reactivity towards transglutaminase and tyrosinase. The efficiency of plasma grafting was verified by ATR-FTIR. Enzyme postgrafting of fluorescent peptides coupled with confocal microscopy was used to demonstrate transglutaminase activity towards cotton, a material typically inert to this enzyme. The grafting of alkylamines onto wool resulted in additional cross-linking by both enzymes, leading to significantly increased yarn breaking load and elongation at break. This technology permits the activation of inert materials towards enzymatic postgrafting, with applications in fields as diverse as textiles and biomaterials. PMID:22975121

  2. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    PubMed Central

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, vmax decreased significantly (P < 0.05) and KM increased (although not always significantly) with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  3. Immobilization of inorganic pyrophosphatase on nanodiamond particles retaining its high enzymatic activity.

    PubMed

    Rodina, Elena V; Valueva, Anastasiya V; Yakovlev, Ruslan Yu; Vorobyeva, Nataliya N; Kulakova, Inna I; Lisichkin, Georgy V; Leonidov, Nikolay B

    2015-01-01

    Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase. PMID:26489420

  4. Enzymatic activity in the presence of surfactants commonly used in dissolution media, Part 1: Pepsin.

    PubMed

    Guzman, Maria L; Marques, Margareth R; Olivera Me, Maria E; Stippler, Erika S

    2016-01-01

    The United States Pharmacopeia (USP) General Chapters Dissolution 〈711〉 and Disintegration and Dissolution of Dietary Supplements 〈2040〉 allows the use of enzymes in dissolution media when gelatin capsules do not conform to dissolution specifications due to cross linking. Possible interactions between enzymes and surfactants when used together in dissolution media could result in loss of the enzymatic activity. Pepsin is an enzyme commonly used in dissolution media, and in this work, the activity of pepsin was determined in the presence of different surfactants as usually found in case of dissolution tests of certain gelatin capsule formulations. Pepsin enzymatic activity was determined according to the Ninth Edition of the Food Chemicals Codex (FCC) 9 method, in dissolution conditions: simulated gastric fluid, 37 °C and 50 rpm. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), polysorbate 80 (Tween 80) and octoxynol 9 (Triton X100) in concentrations above and below their critical micellar concentrations were selected. Results showed a significant reduction in the activity of pepsin at all the concentrations of SDS assayed. On the contrary, CTAB, Tween 80, and Triton X100 did not alter the enzymatic activity at of pepsin any of the concentration assayed. This data demonstrates a rational selection of the surfactant to be used when pepsin is required in dissolution test. PMID:27047734

  5. Enzymatic activity in the presence of surfactants commonly used in dissolution media, Part 1: Pepsin

    PubMed Central

    Guzman, Maria L; Marques, Margareth R; Olivera ME, Maria E; Stippler, Erika S

    2016-01-01

    The United States Pharmacopeia (USP) General Chapters Dissolution 〈711〉 and Disintegration and Dissolution of Dietary Supplements 〈2040〉 allows the use of enzymes in dissolution media when gelatin capsules do not conform to dissolution specifications due to cross linking. Possible interactions between enzymes and surfactants when used together in dissolution media could result in loss of the enzymatic activity. Pepsin is an enzyme commonly used in dissolution media, and in this work, the activity of pepsin was determined in the presence of different surfactants as usually found in case of dissolution tests of certain gelatin capsule formulations. Pepsin enzymatic activity was determined according to the Ninth Edition of the Food Chemicals Codex (FCC) 9 method, in dissolution conditions: simulated gastric fluid, 37 °C and 50 rpm. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), polysorbate 80 (Tween 80) and octoxynol 9 (Triton X100) in concentrations above and below their critical micellar concentrations were selected. Results showed a significant reduction in the activity of pepsin at all the concentrations of SDS assayed. On the contrary, CTAB, Tween 80, and Triton X100 did not alter the enzymatic activity at of pepsin any of the concentration assayed. This data demonstrates a rational selection of the surfactant to be used when pepsin is required in dissolution test. PMID:27047734

  6. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry

    PubMed Central

    2015-01-01

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507

  7. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity.

    PubMed

    Ma, Yanan; Han, Chao; Chen, Jinyin; Li, Haiyun; He, Kun; Liu, Aixin; Li, Duochuan

    2015-01-01

    Plant-pathogenic fungi produce cellulases. However, little information is available on cellulase as an elicitor in plant-pathogen interactions. Here, an endocellulase (EG1) was isolated from Rhizoctonia solani. It contains a putative protein of 227 amino acids with a signal peptide and a family-45 glycosyl hydrolase domain. Its aspartic acid (Asp) residue at position 32 was changed to alanine (Ala), resulting in full loss of its catalytic activity. Wild-type and mutated forms of the endoglucanase were expressed in yeast and purified to homogeneity. The purified wild-type and mutant forms induced cell death in maize, tobacco and Arabidopsis leaves, and the transcription of three defence marker genes in maize and tobacco and 10 genes related to defence responses in maize. Moreover, they also induced the accumulation of reactive oxygen species (ROS), medium alkalinization, Ca(2+) accumulation and ethylene biosynthesis of suspension-cultured tobacco cells. Similarly, production of the EG1 wild-type and mutated forms in tobacco induced cell death using the Potato virus X (PVX) expression system. In vivo, expression of EG1 was also related to cell death during infection of maize by R. solani. These results provide direct evidence that the endoglucanase is an elicitor, but its enzymatic activity is not required for its elicitor activity. PMID:24844544

  8. Local modulation of steroid action: rapid control of enzymatic activity

    PubMed Central

    Charlier, Thierry D.; Cornil, Charlotte A.; Patte-Mensah, Christine; Meyer, Laurence; Mensah-Nyagan, A. Guy; Balthazart, Jacques

    2015-01-01

    Estrogens can induce rapid, short-lived physiological and behavioral responses, in addition to their slow, but long-term, effects at the transcriptional level. To be functionally relevant, these effects should be associated with rapid modulations of estrogens concentrations. 17β-estradiol is synthesized by the enzyme aromatase, using testosterone as a substrate, but can also be degraded into catechol-estrogens via hydroxylation by the same enzyme, leading to an increase or decrease in estrogens concentration, respectively. The first evidence that aromatase activity (AA) can be rapidly modulated came from experiments performed in Japanese quail hypothalamus homogenates. This rapid modulation is triggered by calcium-dependent phosphorylations and was confirmed in other tissues and species. The mechanisms controlling the phosphorylation status, the targeted amino acid residues and the reversibility seem to vary depending of the tissues and is discussed in this review. We currently do not know whether the phosphorylation of the same amino acid affects both aromatase and/or hydroxylase activities or whether these residues are different. These processes provide a new general mechanism by which local estrogen concentration can be rapidly altered in the brain and other tissues. PMID:25852459

  9. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. PMID:26477613

  10. Enzymatically active biomimetic micropropellers for the penetration of mucin gels

    PubMed Central

    Walker, Debora; Käsdorf, Benjamin T.; Jeong, Hyeon-Ho; Lieleg, Oliver; Fischer, Peer

    2015-01-01

    In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus. PMID:26824056

  11. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    SciTech Connect

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken; Nishino, Takeshi; Pai, Emil F.

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.

  12. Microbial and enzymatic activity of soil contaminated with azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Kucharski, Jan; Wyszkowska, Jadwiga

    2015-10-01

    The use of fungicides in crop protection still effectively eliminates fungal pathogens of plants. However, fungicides may dissipate to various elements of the environment and cause irreversible changes. Considering this problem, the aim of the presented study was to evaluate changes in soil biological activity in response to contamination with azoxystrobin. The study was carried out in the laboratory on samples of sandy loam with a pH of 7.0 in 1 Mol KCl dm(-3). Soil samples were treated with azoxystrobin in one of four doses: 0.075 (dose recommended by the manufacturer), 2.250, 11.25 and 22.50 mg kg(-1) soil DM (dry matter of soil). The control soil sample did not contain fungicide. Bacteria were identified based on 16S rRNA gene sequencing, and fungi were identified by internal transcribed spacer (ITS) region sequencing. The study revealed that increased doses of azoxystrobin inhibited the growth of organotrophic bacteria, actinomycetes and fungi. The fungicide also caused changes in microbial biodiversity. The lowest values of the colony development (CD) index were recorded for fungi and the ecophysiological (EP) index for organotrophic bacteria. Azoxystrobin had an inhibitory effect on the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. Dehydrogenases were found to be most resistant to the effects of the fungicide, while alkaline phosphatase in the soil recovered the balance in the shortest time. Four species of bacteria from the genus Bacillus and two species of fungi from the genus Aphanoascus were isolated from the soil contaminated with the highest dose of azoxystrobin (22.50 mg kg(-1)). PMID:26343782

  13. Enzymatic Activity Assays for Base Excision Repair Enzymes in Cell Extracts from Vertebrate Cells

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Wilson, Samuel H.

    2016-01-01

    We previously reported enzymatic activity assays for the base excision repair (BER) enzymes DNA polymerase β (pol β), aprataxin (APTX), and flap endonuclease 1 (FEN1) in cell extracts from Saccharomyces cerevisiae (Çağlayan and Wilson, 2014). Here, we describe a method to prepare cell extracts from vertebrate cells to investigate these enzymatic activities for the processing of the 5′-adenylated-sugar phosphate-containing BER intermediate. This new protocol complements our previous publication. The cell lines used are wild-type and APTX-deficient human lymphoblast cells from an Ataxia with Oculomotor Apraxia Type 1 (AOA1) disease patient, wild-type and APTX-null DT40 chicken B cells, and mouse embryonic fibroblast (MEF) cells. This protocol is a quick and efficient way to make vertebrate cell extracts without using commercial kits. PMID:27390764

  14. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  15. Enzymatic vitreolysis with recombinant tissue plasminogen activator for vitreomacular traction

    PubMed Central

    Raczyńska, Dorota; Lipowski, Paweł; Zorena, Katarzyna; Skorek, Andrzej; Glasner, Paulina

    2015-01-01

    Aims The aim of our research was to gain data about the efficacy of intravitreal injections of a recombinant tissue plasminogen activator (rTPA) in dissolving vitreoretinal tractions (VRTs). Materials and methods The study group consisted of patients of our Ophthalmology Clinic who had received an injection of rTPA (TPA Group) for an existent vitreomacular traction confirmed by optical coherence tomography and stereoscopic examinations. The control group consisted of patients who had declined treatment despite the existence of a vitreomacular traction confirmed by the same diagnostic methods. Each group consisted of 30 people (30 eyes). The observation period was 6 months. Conclusion In both groups some of the VRTs had dissolved. In the TPA group the traction dissolved in 10 patients (33.33%) and in the control group only in 5 (16.67%). It is also important to point out that the mean baseline membrane thickness was higher in the TPA group than in the control group. Observing patients in both groups we noticed that the dissolution of vitreoretinal membrane occurred most frequently in those cases where the membrane was thin. In the TPA group, the mean membrane thickness after 6 months decreased considerably. At the same time, no significant change in the membrane thickness could be observed in the control group. Observation of the retinal thickness allows us to draw the following conclusion: in the TPA group, the retinal thickness in the macular area (edema) had decreased over the study period, whereas in the control group it had increased. In those cases where the traction had dissolved, the edema of the retina decreased by the end of the 6-month period in both groups. In the TPA group, the dissolution of the membrane occurred most often within 3 months from the primary injection. Based on statistics, we can confirm that in the control group there was a decrease in visual acuity during the 6 months of the study period. At the same time, visual acuity in the TPA

  16. The subunit composition of human extracellular superoxide dismutase (EC-SOD) regulate enzymatic activity

    PubMed Central

    Petersen, Steen V; Valnickova, Zuzana; Oury, Tim D; Crapo, James D; Chr Nielsen, Niels; Enghild, Jan J

    2007-01-01

    Background Human extracellular superoxide dismutase (EC-SOD) is a tetrameric metalloenzyme responsible for the removal of superoxide anions from the extracellular space. We have previously shown that the EC-SOD subunit exists in two distinct folding variants based on differences in the disulfide bridge pattern (Petersen SV, Oury TD, Valnickova Z, Thøgersen IB, Højrup P, Crapo JD, Enghild JJ. Proc Natl Acad Sci USA. 2003;100(24):13875–80). One variant is enzymatically active (aEC-SOD) while the other is inactive (iEC-SOD). The EC-SOD subunits are associated into covalently linked dimers through an inter-subunit disulfide bridge creating the theoretical possibility of 3 dimers (aa, ai or ii) with different antioxidant potentials. We have analyzed the quaternary structure of the endogenous EC-SOD disulfide-linked dimer to investigate if these dimers in fact exist. Results The analyses of EC-SOD purified from human tissue show that all three dimer combinations exist including two homo-dimers (aa and ii) and a hetero-dimer (ai). Because EC-SOD is a tetramer the dimers may combine to generate 5 different mature EC-SOD molecules where the specific activity of each molecule is determined by the ratio of aEC-SOD and iEC-SOD subunits. Conclusion This finding shows that the aEC-SOD and iEC-SOD subunits combine in all 3 possible ways supporting the presence of tetrameric enzymes with variable enzymatic activity. This variation in enzymatic potency may regulate the antioxidant level in the extracellular space and represent a novel way of modulating enzymatic activity. PMID:17937792

  17. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Kim, Hyun-Seok; Jiang, Haiyan; Coleman, Mitchell C; Spitz, Douglas R; Gius, David

    2011-02-01

    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise. PMID:21386137

  18. Fusion-Triggered Switching of Enzymatic Activity on an Artificial Cell Membrane

    PubMed Central

    Mukai, Masaru; Sasaki, Yoshihiro; Kikuchi, Jun-ichi

    2012-01-01

    A nanosensory membrane device was constructed for detecting liposome fusion through changes in an enzymatic activity. Inspired by a biological signal transduction system, the device design involved functionalized liposomal membranes prepared by self-assembly of the following molecular components: a synthetic peptide lipid and a phospholipid as matrix membrane components, a Schiff's base of pyridoxal 5′-phosphate with phosphatidylethanolamine as a thermo-responsive artificial receptor, NADH-dependent L-lactate dehydrogenase as a signal amplifier, and Cu2+ ion as a signal mediator between the receptor and enzyme. The enzymatic activity of the membrane device was adjustable by changing the matrix lipid composition, reflecting the thermotropic phase transition behavior of the lipid membranes, which in turn controlled receptor binding affinity toward the enzyme-inhibiting mediator species. When an effective fusogen anionic polymer was added to these cationic liposomes, membrane fusion occurred, and the functionalized liposomal membranes responded with changes in enzymatic activity, thus serving as an effective nanosensory device for liposome fusion detection. PMID:22778625

  19. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    PubMed

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. PMID:24398221

  20. Enzymatic activation of autotaxin by divalent cations without EF-hand loop region involvement.

    PubMed

    Lee, J; Jung, I D; Nam, S W; Clair, T; Jeong, E M; Hong, S Y; Han, J W; Lee, H W; Stracke, M L; Lee, H Y

    2001-07-15

    Autotaxin (ATX) is a recently described member of the nucleotide pyrophosphatase/phosphodiesterase (NPP) family of proteins with potent tumor cell motility-stimulating activity. Like other NPPs, ATX is a glycoprotein with peptide sequences homologous to the catalytic site of bovine intestinal alkaline phosphodiesterase (PDE) and the loop region of an EF-hand motif. The PDE active site of ATX has been associated with the motility-stimulating activity of ATX. In this study, we examined the roles of the EF-hand loop region and of divalent cations on the enzymatic activities of ATX. Ca(2+) or Mg(2+) was each demonstrated to increase the PDE activity of ATX in a concentration-dependent manner, whereas incubation of ATX with chelating agents abolished this activity, indicating a requirement for divalent cations. Non-linear regression analysis of enzyme kinetic data indicated that addition of these divalent cations increases reaction velocity predominantly through an effect on V(max.) Three mutant proteins, Ala(740)-, Ala(742)-, and Ala(751)-ATX, in the EF-hand loop region of ATX had enzymatic activity comparable to that of the wild-type protein. A deletion mutation of the entire loop region resulted in slightly reduced PDE activity but normal motility-stimulating activity. However, the PDE activity of this same deletion mutant remained sensitive to augmentation by cations, strongly implying that cations exert their effect by interactions outside of the EF-hand loop region. PMID:11389881

  1. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines

    PubMed Central

    Hanavan, Paul D.; Borges, Chad R.; Katchman, Benjamin A.; Faigel, Douglas O.; Ho, Thai H.; Ma, Chen-Ting; Sergienko, Eduard A.; Meurice, Nathalie; Petit, Joachim L.; Lake, Douglas F.

    2015-01-01

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a “proof-of-principle” that enzymatic inhibition of QSOX1 may have clinical relevancy. PMID:26158899

  2. DNA-fueled molecular machine for label-free and non-enzymatic ultrasensitive detection of telomerase activity.

    PubMed

    Sun, Panpan; Ran, Xiang; Liu, Chaoqun; Liu, Chaoying; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2016-08-01

    Herein, a non-enzymatic and label-free strategy based on DNA-fueled molecular machine was developed for ultrasensitive detection of telomerase activity in cancer cell extracts even at the single-cell level. PMID:27405851

  3. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  4. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    PubMed

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %). PMID:27469174

  5. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss

    USGS Publications Warehouse

    Sinsabaugh, R. L.; Carreiro, M.M.; Repert, D.A.

    2002-01-01

    Decomposition of plant material is a complex process that requires interaction among a diversity of microorganisms whose presence and activity is subject to regulation by a wide range of environmental factors. Analysis of extracellular enzyme activity (EEA) provides a way to relate the functional organization of microdecomposer communities to environmental variables. In this study, we examined EEA in relation to litter composition and nitrogen deposition. Mesh bags containing senescent leaves of Quercus borealis (red oak), Acer rubrum (red maple) and Cornus florida (flowering dogwood) were placed on forest floor plots in southeastern New York. One-third of the plots were sprayed monthly with distilled water. The other plots were sprayed monthly with NH4NO3 solution at dose rates equivalent to 2 or 8 g N m-2 y-1. Mass loss, litter composition, fungal mass, and the activities of eight enzymes were measured on 13 dates for each litter type. Dogwood was followed for one year, maple for two, oak for three, For each litter type and treatment, enzymatic turnover activities were calculated from regressions of LN (%mass remaining) vs. cumulative activity. The decomposition of dogwood litter was more efficient than that of maple and oak. Maple litter had the lowest fungal mass and required the most enzymatic work to decompose, even though its mass loss rate was twice that of oak. Across litter types, N amendment reduced apparent enzymatic efficiencies and shifted EEA away from N acquisition and toward P acquisition, and away from polyphenol oxidation and toward polysaccharide hydrolysis. The effect of these shifts on decomposition rate varied with litter composition: dogwood was stimulated, oak was inhibited and maple showed mixed effects. The results show that relatively small shifts in the activity of one or two critical enzymes can significantly alter decomposition rates.

  6. Ectopic overexpression of the aldehyde dehydrogenase ALDH21 from Syntrichia caninervis in tobacco confers salt and drought stress tolerance.

    PubMed

    Yang, Honglan; Zhang, Daoyuan; Li, Haiyan; Dong, Lingfeng; Lan, Haiyan

    2015-10-01

    Aldehyde dehydrogenases are important enzymes that play vital roles in mitigating oxidative/electrophilic stress when plants are exposed to environmental stress. An aldehyde dehydrogenase gene from Syntrichia caninervis, ScALDH21, was introduced into tobacco using Agrobacterium-mediated transformation to generate ScALDH21-overexpressing tobacco plants to investigate its effect on drought and salt resistance. Detached leaves from ScALDH21-overexpressing tobacco plants showed less water loss than those from nontransgenic plants. When subjected to drought and salt stress, transgenic plants displayed higher germination ratios, higher root lengths, greater fresh weight, higher proline accumulation, lower malondialdehyde (MDA) contents and stronger photosynthetic capacities, as well as higher activities of antioxidant enzymes, i.e., superoxide dismutase, catalase and peroxidase, compared with control plants. Therefore, ScALDH21 overexpression in transgenic tobacco plants can enhance drought and salt tolerance and can be used as a candidate gene for the molecular breeding of salt- and drought-tolerant plants. PMID:26202169

  7. Impaired Regulation of ALDH2 Protein Expression Revealing a Yet Unknown Epigenetic Impact of rs886205 on Specific Methylation of a Negative Regulatory Promoter Region in Alcohol-Dependent Patients.

    PubMed

    Haschemi Nassab, Mani; Rhein, Mathias; Hagemeier, Lars; Kaeser, Marius; Muschler, Marc; Glahn, Alexander; Pich, Andreas; Heberlein, Annemarie; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge; Hillemacher, Thomas

    2016-01-01

    Acetaldehyde, the carcinogenic metabolite of ethanol known to provoke aversive symptoms of alcohol consumption, is predominantly eliminated by aldehyde dehydrogenase 2 (ALDH2). Reduced ALDH2 activity correlates with low alcohol tolerance and low risk for alcohol dependence. The ALDH2 promoter polymorphism rs886205 (A>G) is associated with decreased promoter activity, but a molecular mechanism and allele-dependent ALDH2 protein expression has not been described yet. On the basis of allele-dependent epigenetic effects, we analyzed the rs886205 genotype, methylation rates of cytosine-phosphatidyl-guanine (CpG)-sites within a regulatory promoter region and ALDH2 protein levels in 82 alcohol-dependent patients during a 2-week withdrawal and compared them to 34 matched controls. Patients without the G-allele of rs886205 showed higher methylation of the promoter region than controls and readily adapted epigenetically as well as on protein level during withdrawal, while patients with the G-allele displayed retarded methylation readjustment and no change in ALDH2 protein levels. Our data provide novel insights into an unknown genetic-epigenetic interaction, revealing impaired ALDH2 protein expression in patients with the G-allele of rs886205. Additionally, we checked for an association between rs886205 and protection against alcohol dependence and found a trend association between the G-allele and protection against alcohol dependence that needs replication in a larger Caucasian cohort. PMID:26339786

  8. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    DOEpatents

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  9. Number of nitrate groups determines reactivity and potency of organic nitrates: a proof of concept study in ALDH-2−/− mice

    PubMed Central

    Wenzel, P; Hink, U; Oelze, M; Seeling, A; Isse, T; Bruns, K; Steinhoff, L; Brandt, M; Kleschyov, A L; Schulz, E; Lange, K; Weiner, H; Lehmann, J; Lackner, K J; Kawamoto, T; Münzel, T; Daiber, A

    2007-01-01

    Background and purpose: Mitochondrial aldehyde dehydrogenase (ALDH-2) has been shown to provide a pathway for bioactivation of organic nitrates and to be prone to desensitization in response to highly potent, but not to less potent, nitrates. We therefore sought to support the hypothesis that bioactivation by ALDH-2 critically depends on the number of nitrate groups within the nitrovasodilator. Experimental approach: Nitrates with one (PEMN), two (PEDN; GDN), three (PETriN; glyceryl trinitrate, GTN) and four (pentaerithrityl tetranitrate, PETN) nitrate groups were investigated. Vasodilatory potency was measured in isometric tension studies using isolated aortic segments of wild type (WT) and ALDH-2−/− mice. Activity of the cGMP-dependent kinase-I (reflected by levels of phosphorylated VAsodilator Stimulated Phosphoprotein, P-VASP) was quantified by Western blot analysis, mitochondrial dehydrogenase activity by HPLC. Following incubation of isolated mitochondria with PETN, PETriN-chromophore and PEDN, metabolites were quantified using chemiluminescence nitrogen detection and mass spectrometry. Key results: Compared to WT, vasorelaxation in response to PETN, PETriN and GTN was attenuated about 10fold in ALDH-2−/− mice, identical to WT vessels preincubated with inhibitors of ALDH-2. Reduced vasodilator potency correlated with reduced P-VASP formation and diminished biotransformation of the tetranitrate- and trinitrate-compounds. None of these findings were observed for PEDN, GDN and PEMN. Conclusions and implications: Our results support the crucial role of ALDH-2 in bioactivating highly reactive nitrates like GTN, PETN and PETriN. ALDH-2-mediated relaxation by organic nitrates therefore depends mainly on the number of nitrate groups. Less potent nitrates like PEDN, GDN and PEMN are apparently biotransformed by other pathways. PMID:17220910

  10. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    PubMed

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-01

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine. PMID:27070402

  11. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  12. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.

    PubMed

    Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio

    2015-11-01

    During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation. PMID:26386703

  13. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity

    PubMed Central

    Kalb, Suzanne R.; Boyer, Anne E.; Barr, John R.

    2015-01-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A–G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  14. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    PubMed

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-09-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  15. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts.

    PubMed

    Hong, Yang-Hee; Jung, Eun Young; Park, Yooheon; Shin, Kwang-Soon; Kim, Tae Young; Yu, Kwang-Won; Chang, Un Jae; Suh, Hyung Joo

    2013-01-01

    This study describes increases in extraction efficiency and the bioconversion of catechins after treatment with several commercial enzymes. Tannase was also used to improve the anti-radical activities of green tea extracts. Enzymatic treatment with various commercial enzymes was introduced to improve the extraction efficiency of polyphenols. The total polyphenol, flavonoid, and catechin contents and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of the green tea extract treated with Viscozyme (VG) were significantly higher than those treated with other commercial enzymatic extractions (p<0.05). More than 95% of the epigallocatechingallate (EGCG) and of the epicatechingallate (ECG) was hydrolyzed to epigallocatechin (EGC) and to epicatechin (EC) in successive 20 min treatments with Viscozyme and tannase (TG). Due to its hydrolytic activity, treatment involving tannase resulted in a significant release of gallic acid (GA), EGC, and EC, leading to greater radical scavenging activities. Regarding the IC(50) values of the DPPH and 2,2-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, the green tea extract treated with TG showed values of 131.23 and 28.83 µg/mL, VG showed values of 224.70 and 32.54 µg/mL, and normal green tea extract (NG) showed values of 241.11 and 66.27 µg/mL, respectively. These results indicate that successive treatment with Viscozyme and tannase improves the extraction efficiency of polyphenols and increases radical scavenging activities. PMID:23291774

  16. Sensing Enzymatic Activity by Exposure and Selection of DNA-Encoded Probes.

    PubMed

    Jetson, Rachael R; Krusemark, Casey J

    2016-08-01

    A sensing approach is applied to encode quantitative enzymatic activity information into DNA sequence populations. The method utilizes DNA-linked peptide substrates as activity probes. Signal detection involves chemical manipulation of a probe population downstream of sample exposure and application of purifying, selective pressure for enzyme products. Selection-induced changes in DNA abundance indicate sample activity. The detection of protein kinase, protease, and farnesyltransferase activities is demonstrated. The assays were employed to measure enzyme inhibition by small molecules and activity in cell lysates using parallel DNA sequencing or quantitative PCR. This strategy will allow the extensive infrastructure for genetic analysis to be applied to proteomic assays, which has a number of advantages in throughput, sensitivity, and sample multiplexing. PMID:27355201

  17. Glycation of Ribonuclease A affects its enzymatic activity and DNA binding ability.

    PubMed

    Dinda, Amit Kumar; Tripathy, Debi Ranjan; Dasgupta, Swagata

    2015-11-01

    Prolonged non-enzymatic glycation of proteins results in the formation of advanced glycation end products (AGEs) that cause several diseases. The glycation of Ribonuclease A (RNase A) at pH 7.4 and 37 °C with ribose, glucose and fructose has been monitored by UV-vis, fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption ionization spectroscopy-time of flight (MALDI-TOF) methods. The enzymatic activity and DNA binding ability of glycated RNase A was also investigated by an agarose gel-based assay. A precipitation assay examined the ribonucleolytic activity of the glycated enzyme. An increase in incubation time resulted in the formation of high molecular weight AGEs with a decrease in ribonucleolytic activity. Ribose exhibits the highest potency as a glycating agent and showed the greatest reduction in the ribonucleolytic activity of the enzyme. Interestingly, glycated RNase A was unable to bind with the ribonuclease inhibitor (RI) and DNA. The glycated form of the protein was also found to be ineffective in DNA melting unlike native RNase A. PMID:26365067

  18. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    PubMed

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-01-01

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance. PMID:27525929

  19. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg).

    PubMed

    Chalamaiah, M; Jyothirmayi, T; Diwan, Prakash V; Dinesh Kumar, B

    2015-09-01

    Previously, we have reported the composition, molecular mass distribution and in vivo immunomodulatory effects of common carp roe protein hydrolysates. In the current study, antioxidative activity and functional properties of common carp (Cyprinus carpio) roe (egg) protein hydrolysates, prepared by pepsin, trypsin and Alcalase, were evaluated. The three hydrolysates showed excellent antioxidant activities in a dose dependent manner in various in vitro models such as 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline-6)-sulfonic acid (ABTS(+)) radical scavenging activity, ferric reducing antioxidant power (FRAP) and ferrous ion (Fe(2+)) chelating ability. Enzymatic hydrolysis significantly increased protein solubility of the hydrolysates to above 62 % over a wide pH range (2-12). Carp roe hydrolysates exhibited good foaming and emulsification properties. The results suggest that bioactive carp roe protein hydrolysates (CRPHs) with good functional properties could be useful in health food/nutraceutical/pharmaceutical industry for various applications. PMID:26344996

  20. Novel, dually radiolabeled peptides for simultaneous monitoring of enzymatic activity and protein targets

    SciTech Connect

    Efrem Mebrahtu, Suzanne Lapi

    2012-12-13

    This application investigated a novel imaging approach to develop methods to incorporate multiple radionuclides into a single peptide at chemoselective sites for simultaneous monitoring of cell-bound protein targets as well as specific enzymatic activity, both of which are associated with enhanced tumor growth and metastasis. This imaging construct was synthesized in such a manner so that the PET radionuclide will remain associated with the tumor cells and the SPECT radionuclide was cleaved from the imaging agent. Measurement of the PET agent only will yield information about the tumor marker density while measurement of the amount of co-localization and mismatch of the two radionuclides will yield information about the enzymatic activity. This coincident measuring technique using both PET and SPECT agents allows us to draw correlations involving the interactions of enzymes (cathepsin, serine-protease urokinase (uPA) and matrix metalloproteases) and other cellular proteins which play a role in cancer growth and metastasis. This technique will allow for studies in xenograft or genetic models of cancer in the same animal at the same time, thus eliminating problems that may occur when trying to invoke comparisons across animals or timepoints. By using radionuclide imaging as opposed to other imaging modalities, this technique has the potential to be translatable and can exploit the high specific activity probes which can be generated with radiotracers. The proof of principle test of this system investigated simultaneous monitoring of matrix metalloprotease (MMP) activity in the extracellular matrix (ECM) as well as density of integrins on the cell surface, both of which can serve as tumor markers. The outcomes/deliverables of this project were as follows: 1. Peptides were synthesized dually labeled at chemospecific sites with PET and SPECT agents. 2. Stability (intrinsic and to radiolysis) and specific activity of these labeled compounds were determined. 3. The

  1. Isolation of Enzymatically Active Replication Complexes from Feline Calicivirus-Infected Cells

    PubMed Central

    Green, Kim Y.; Mory, Aaron; Fogg, Mark H.; Weisberg, Andrea; Belliot, Gaël; Wagner, Mariam; Mitra, Tanaji; Ehrenfeld, Ellie; Cameron, Craig E.; Sosnovtsev, Stanislav V.

    2002-01-01

    A membranous fraction that could synthesize viral RNA in vitro in the presence of magnesium salt, ribonucleotides, and an ATP-regenerating system was isolated from feline calicivirus (FCV)-infected cells. The enzymatically active component of this fraction was designated FCV replication complexes (RCs), by analogy to other positive-strand RNA viruses. The newly synthesized RNA was characterized by Northern blot analysis, which demonstrated the production of both full-length (8.0-kb) and subgenomic-length (2.5-kb) RNA molecules similar to those synthesized in FCV-infected cells. The identity of the viral proteins associated with the fraction was investigated. The 60-kDa VP1 major capsid protein was the most abundant viral protein detected. VP2, a minor structural protein encoded by open reading frame 3 (ORF3), was also present. Nonstructural proteins associated with the fraction included the precursor polypeptides Pro-Pol (76 kDa) and p30-VPg (43 kDa), as well as the mature nonstructural proteins p32 (derived from the N-terminal region of the ORF1 polyprotein), p30 (the putative “3A-like” protein), and p39 (the putative nucleoside triphosphatase). The isolation of enzymatically active RCs containing both viral and cellular proteins should facilitate efforts to dissect the contributions of the virus and the host to FCV RNA replication. PMID:12163578

  2. Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins.

    PubMed

    Wu, Changzhu; Böttcher, Christoph; Haag, Rainer

    2015-02-01

    The enormous potential of nanogel scaffolds for protein encapsulation has been widely recognized. However, constructing stable polymeric nanoscale networks in a facile, mild, and controllable fashion still remains a technical challenge. Here, we present a novel nanogel formation strategy using horseradish peroxidase (HRP) catalyzed crosslinking on phenolic derivatized dendritic polyglycerol (dPG) in the presence of H2O2 in an inverse miniemulsion. This "enzymatic nanogelation" approach was efficient to produce stable 200 nm dPG nanogel particles, and was performed under physiological conditions, thus making it particularly beneficial for encapsulating biological proteins. Purification of the nanogels was easy to handle and practical because there was no need for a post-quenching step. Interestingly, the use of dPG resulted in higher HRP laden nanogels than for linear polyethylene glycol (PEG) analogs, which illustrates the benefits of dendritic backbones in nanogels for protein encapsulation. In addition, the mild immobilization contributed to the enhanced thermal stability and reusability of HRP. The nanogel preparation could be easily optimized to achieve the best HRP activity. Furthermore, a second enzyme, Candida antarctica lipase B (CalB), was successfully encapsulated and optimized for activity in dPG nanogels by the same enzymatic methodology, which shows the perspective applications of such techniques for encapsulation of diverse proteins. PMID:25519490

  3. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.

    PubMed

    Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc

    2013-02-15

    The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. PMID:23206919

  4. Enzymatic activity of Microsporum canis and Trichophyton mentagrophytes from breeding rabbits with and without skin lesions.

    PubMed

    Cafarchia, Claudia; Figueredo, Luciana A; Coccioli, Carmela; Camarda, Antonio; Otranto, Domenico

    2012-01-01

    Microsporum canis and Trichophyton mentagrophytes are zoophilic dermatophytes which can cause skin infections in animals and humans. The clinical expression of this infection strongly varies depending on host, fungal species as well as enzyme production. No comparative studies are available on the enzymatic activities of M. canis and T. mentagrophytes isolated from breeding rabbits. Thus, the aim of this work was to assess the capability of M. canis and T. mentagrophytes isolated from rabbits both with and without lesions in producing different enzymes. The relationship of dermatophyte enzymatic activities and presence/absence of skin lesions has also been investigated. A total of 260 isolates of T. mentagrophytes and 25 isolates of M. canis sampled both from healthy and lesioned skin of rabbits, as well as from air samples of positive farms were examined. The results showed that T. mentagrophytes and M. canis from rabbits produce different enzymes. However, only elastase and gelatinase were linked to the appearance of lesions in T. mentagrophytes infections, whereas lipase in those by M. canis. PMID:22175244

  5. Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.

    PubMed

    Lewandowski, Angela T; Yi, Hyunmin; Luo, Xiaolong; Payne, Gregory F; Ghodssi, Reza; Rubloff, Gary W; Bentley, William E

    2008-02-15

    We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is followed by covalent assembly of the target protein onto the scaffold surface upon enzymatic activation of the protein's "pro-tag." For our demonstration, the model target protein is green fluorescent protein (GFP) genetically fused with a pentatyrosine pro-tag at its C-terminus, which assembles onto both two-dimensional chips and within fully packaged microfluidic devices in situ and under flow. Our surface-assembly approach enables spatial selectivity and orientational control under mild experimental conditions. We believe that our integrated approach harnessing genetic manipulation, in situ enzymatic activation, and electro-assembly makes it advantageous for a wide variety of bioMEMS and biosensing applications that require facile "biofunctionalization" of microfabricated devices. PMID:17625789

  6. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains. PMID:26993531

  7. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates.

    PubMed

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2015-03-01

    In the previous study, we have found that polysaccharides isolated from Sargassum horneri exhibited bioactivities. The aim of this study was to investigate the antioxidant and moisture-preserving activities of molecular weight alteration of Sargassum horneri polysaccharide in vitro. For this purpose, the homogeneous active polysaccharide SHP was isolated from Sargassum horneri, and response surface methodology was employed to optimize the enzymatic degradation conditions to get SHP-derived fragments with different molecular weight. Results proved that the polysaccharide is capable of scavenging both ABTS and DPPH radicals in vitro. The study revealed that the polysaccharides had strong moisture-absorption and -retention capacities as compared to propanediol and glycerin. Furthermore, these data demonstrated that molecular weight had a certain effect on antioxidant activities and strong moisture-retention capacities of the polysaccharide from Sargassum horneri. PMID:25572719

  8. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation.

    PubMed

    Latham, Jonathan; Henry, Jean-Marc; Sharif, Humera H; Menon, Binuraj R K; Shepherd, Sarah A; Greaney, Michael F; Micklefield, Jason

    2016-01-01

    Despite major recent advances in C-H activation, discrimination between two similar, unactivated C-H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant 'chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C-H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C-H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C-H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps. PMID:27283121

  9. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation

    PubMed Central

    Latham, Jonathan; Henry, Jean-Marc; Sharif, Humera H.; Menon, Binuraj R. K.; Shepherd, Sarah A.; Greaney, Michael F.; Micklefield, Jason

    2016-01-01

    Despite major recent advances in C–H activation, discrimination between two similar, unactivated C–H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant ‘chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C–H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C–H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C–H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps. PMID:27283121

  10. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    PubMed

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. PMID:25308659

  11. ALDH/CD44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas.

    PubMed

    Adams, April; Warner, Kristy; Pearson, Alexander T; Zhang, Zhaocheng; Kim, Hong Sun; Mochizuki, Daiki; Basura, Gregory; Helman, Joseph; Mantesso, Andrea; Castilho, Rogério M; Wicha, Max S; Nör, Jacques E

    2015-09-29

    A small sub-population of cells characterized by increased tumorigenic potential, ability to self-renew and to differentiate into cells that make up the tumor bulk, has been characterized in some (but not all) tumor types. These unique cells, namedcancer stem cells, are considered drivers of tumor progression in these tumors. The purpose of this work is to understand if cancer stem cells play a functional role in the tumorigenesis of salivary gland mucoepidermoid carcinomas. Here, we investigated the expression of putative cancer stem cell markers (ALDH, CD10, CD24, CD44) in primary human mucoepidermoid carcinomas by immunofluorescence, in vitro salisphere assays, and in vivo tumorigenicity assays in immunodeficient mice. Human mucoepidermoid carcinoma cells (UM-HMC-1, UM-HMC-3A, UM-HMC-3B) sorted for high levels of ALDH activity and CD44 expression (ALDHhighCD44high) consistently formed primary and secondary salispheres in vitro, and showed enhanced tumorigenic potential in vivo (defined as time to tumor palpability, tumor growth after palpability), when compared to ALDHlowCD44low cells. Cells sorted for CD10/CD24, and CD10/CD44 showed varying trends of salisphere formation, but consistently low in vivo tumorigenic potential. And finally, cells sorted for CD44/CD24 showed inconsistent results in salisphere formation and tumorigenic potential assays when different cell lines were evaluated. Collectively, these data demonstrate that salivary gland mucoepidermoid carcinomas contain a small population of cancer stem cells with enhanced tumorigenic potential and that are characterized by high ALDH activity and CD44 expression. These results suggest that patients with mucoepidermoid carcinoma might benefit from therapies that ablate these highly tumorigenic cells. PMID:26449187

  12. Enzymatic digestive activity and absorption efficiency in Tagelus dombeii upon Alexandrium catenella exposure

    NASA Astrophysics Data System (ADS)

    Fernández-Reiriz, M. J.; Navarro, J. M.; Cisternas, B. A.; Babarro, J. M. F.; Labarta, U.

    2013-12-01

    We analyzed absorption efficiency (AE) and digestive enzyme activity (amylase, cellulase complex, and laminarinase) of the infaunal bivalve Tagelus dombeii originating from two geographic sites, Corral-Valdivia and Melinka-Aysén, which have different long-term paralytic shellfish poisoning (PSP) exposure rates. We report the effects of past feeding history (origin) on T. dombeii exposed to a mixed diet containing the toxic dinoflagellate Alexandrium catenella and another dinoflagellate-free control diet over a 12-day period in the laboratory. Absorption efficiency values of T. dombeii individuals that experienced PSP exposure in their habitat (Melinka-Aysén) remained unchanged during exposure to toxic food in the laboratory. In contrast, T. dombeii from a non-PSP exposure field site (Corral-Valdivia) showed a significant reduction in AE with toxic exposure time. This study established that the amylase and cellulase complexes were the most important enzymes in the digestive glands of Tagelus from both sites. The temporal evolution of enzymatic activity under toxic diet was fitted to exponential (amylase and cellulase) and to a logarithmic (laminarinase) models. In all fits, we found significant effect of origin in the model parameters. At the beginning of the experiment, higher enzymatic activity was observed for clams from Corral-Valdivia. The amylase activity decreased with time exposure for individuals from Corral and increased for individuals from Melinka. Cellulase activity did not vary over time for clams from Corral, but increased for individuals from Melinka and laminarinase activity decreased over time for individuals from Corral and remained unchanged over time for Melinka. A feeding history of exposure to the dinoflagellate A. catenella was reflected in the digestive responses of both T. dombeii populations.

  13. Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage.

    PubMed

    Shi, Nian-Qiu; Gao, Wei; Xiang, Bai; Qi, Xian-Rong

    2012-01-01

    The use of activable cell-penetrating peptides (ACPPs) as molecular imaging probes is a promising new approach for the visualization of enzymes. The cell-penetrating function of a polycationic cell-penetrating peptide (CPP) is efficiently blocked by intramolecular electrostatic interactions with a polyanionic peptide. Proteolysis of a proteinase-sensitive substrate present between the CPP and polyanionic peptide affords dissociation of both domains and enables the activated CPP to enter cells. This ACPP strategy could also be used to modify antitumor agents for tumor-targeting therapy. Here, we aimed to develop a conjugate of ACPP with antitumor drug doxorubicin (DOX) sensitive to matrix metalloproteinase-2 and -9 (MMP-2/9) for tumor-targeting therapy purposes. The ACPP-DOX conjugate was successfully synthesized. Enzymatic cleavage of ACPP-DOX conjugate by matrix metalloproteinase (MMP)-2/9 indicated that the activation of ACPP-DOX occurred in an enzyme concentration-dependent manner. Flow cytometry and laser confocal microscope studies revealed that the cellular uptake of ACPP-DOX was enhanced after enzymatic-triggered activation and was higher in HT-1080 cells (overexpressed MMPs) than in MCF-7 cells (under-expressed MMPs). The antiproliferative assay showed that ACPP had little toxicity and that ACPP-DOX effectively inhibited HT-1080 cell proliferation. These experiments revealed that the ACPP-DOX conjugate could be triggered by MMP-2/9, which enabled the activated CPP-DOX to enter cells. ACPP-DOX conjugate may be a potential prodrug delivery system used to carry antitumor drugs for MMP-related tumor therapy. PMID:22619516

  14. Ontogeny of nitric oxide synthase I and III protein expression and enzymatic activity in the guinea pig hippocampus.

    PubMed

    Kimura, K A; Reynolds, J N; Brien, J F

    1999-09-01

    60. NOS enzymatic activity increased throughout prenatal and postnatal life, and attained highest activity in the adult. The developmental profile of NOS III protein expression was similar to that for NOS enzymatic activity. There was differential expression of NOS I protein, which was low in the GD 50 fetus and increased rapidly during fetal development to attain adult level by GD 62. These data suggest that the guinea pig is a reliable animal model in which to investigate the roles of NO in normal hippocampal development and in mediating neuronal injury in this brain region. PMID:10521566

  15. Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan.

    PubMed

    Younes, Islem; Hajji, Sawssen; Frachet, Véronique; Rinaudo, Marguerite; Jellouli, Kemel; Nasri, Moncef

    2014-08-01

    Chitin was recovered through enzymatic deproteinization of the shrimp processing by-products. Different microbial and fish viscera proteases were tested for their deproteinization efficiency. High levels of protein removal of about 77±3% and 78±2% were recorded using Bacillus mojavensis A21 and Balistes capriscus proteases, respectively, after 3h of hydrolysis at 45°C using an enzyme/substrate ratio of 20U/mg. Therefore, these two crude proteases were used separately for chitin extraction and then chitosan preparation by N-deacetylation. Chitin and chitosan samples were then characterized by 13 Cross polarization magic angle spinning nuclear magnetic resonance (CP/MAS)-NMR spectroscopy and compared to samples prepared through chemical deproteinization. All chitins and chitosans showed identical spectra. Chitosans prepared through enzymatic deproteinization have practically the same acetylation degree but higher molecular weights compared to that obtained through chemical process. Antimicobial, antioxidant and antitumoral activitities of chitosan-M obtained by treatment with A21 proteases and chitosan-C obtained by alkaline treatment were investigated. Results showed that both chitosans inhibited the growth of most Gram-negative, Gram-positive bacteria and fungi tested. Furthermore, both chitosans exhibited antioxidant and antitumor activities which was dependent on the molecular weight. PMID:24950313

  16. Chemical interaction of disulfiram with nitrosodimethylamine after in vitro enzymatic activation

    SciTech Connect

    Tacchi, A.M.; Bertram, B.; Wiessler, M.

    1984-02-01

    The in vitro reaction between disulfiram (DSF) and N-nitroso(/sup 14/C)dimethylamine ((/sup 14/C)NDMA) was studied. Incubations of DSF with (/sup 14/C)NDMA were carried out in the presence of rat liver microsomes, control 9000 g (S9) supernatant fraction and phenobarbital-induced S9 fraction. HPLC analysis and liquid scintillation measurement provided evidence for the formation of methyldiethyldithiocarbamate (MeDDTC) as a product of the reaction between diethyldithiocarbamate (DDTC), the main active metabolite of DSF and the 'methyl-cation' released by NDMA after enzymatic activation. The amount of MeDDTC found here was consistent with the rate of oxidation of NDMA to formaldehyde. Scintillation counting confirmed that other radioactive peaks, not due to MeDDTC, were unrelated to the methylation of L-cysteine by (/sup 14/C)NDMA.

  17. A Redundant Role of Human Thyroid Peroxidase Propeptide for Cellular, Enzymatic, and Immunological Activity

    PubMed Central

    Góra, Monika; Buckle, Ashley M.; Porebski, Benjamin T.; Kemp, E. Helen; Sutton, Brian J.; Czarnocka, Barbara; Banga, J. Paul

    2014-01-01

    Background: Thyroid peroxidase (TPO) is a dimeric membrane-bound enzyme of thyroid follicular cells, responsible for thyroid hormone biosynthesis. TPO is also a common target antigen in autoimmune thyroid disease (AITD). With two active sites, TPO is an unusual enzyme, and thus there is much interest in understanding its structure and role in AITD. Homology modeling has shown TPO to be composed of different structural modules, as well as a propeptide sequence. During the course of studies to obtain homogeneous preparations of recombinant TPO for structural studies, we investigated the role of the large propeptide sequence in TPO. Methods: An engineered recombinant human TPO preparation expressed in Chinese hamster ovary (CHO) cells lacking the propeptide (TPOΔpro; amino acid residues 21–108) was characterized and its properties compared to wild-type TPO. Plasma membrane localization was determined by cell surface protein biotinylation, and biochemical studies were performed to evaluate enzymatic activity and the effect of deglycosylation. Immunological investigations using autoantibodies from AITD patients and other epitope-specific antibodies that recognize conformational determinants on TPO were evaluated for binding to TPOΔpro by flow cytometry, immunocytochemistry, and capture enzyme-linked immunosorbent assay. Molecular modeling and dynamics simulation of TPOΔpro comprising a dimer of myeloperoxidase-like domains was performed in order to investigate the impact of propeptide removal and the role of glycosylation. Results: The TPOΔpro was expressed on the cell surface at comparable levels to wild-type TPO. The TPOΔpro was enzymatically active and recognized by patients' autoantibodies and a panel of epitope-specific antibodies, confirming structural integrity of the two major conformational determinants recognized by autoantibodies. Faithful intracellular trafficking and N-glycosylation of TPOΔpro was also maintained. Molecular modeling and dynamics

  18. Subchronic exposure to ethyl tertiary butyl ether resulting in genetic damage in Aldh2 knockout mice.

    PubMed

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2013-09-15

    Ethyl tertiary butyl ether (ETBE) is biofuel additive recently used in Japan and some other countries. Limited evidence shows that ETBE has low toxicity. Acetaldehyde (AA), however, as one primary metabolite of ETBE, is clearly genotoxic and has been considered to be a potential carcinogen. The aim of this study was to evaluate the effects of ALDH2 gene on ETBE-induced genotoxicity and metabolism of its metabolites after inhalation exposure to ETBE. A group of wild-type (WT) and Aldh2 knockout (KO) C57BL/6 mice were exposed to 500ppm ETBE for 1-6h, and the blood concentrations of ETBE metabolites, including AA, tert-butyl alcohol and 2-methyl-1,2-propanediol, were measured. Another group of mice of WT and KO were exposed to 0, 500, 1750, or 5000ppm ETBE for 6h/day with 5 days per weeks for 13 weeks. Genotoxic effects of ETBE in these mice were measured by the alkaline comet assay, 8-hydroxyguanine DNA-glycosylase modified comet assay and micronucleus test. With short-term exposure to ETBE, the blood concentrations of all the three metabolites in KO mice were significantly higher than the corresponding concentrations of those in WT mice of both sexes. After subchronic exposure to ETBE, there was significant increase in DNA damage in a dose-dependent manner in KO male mice, while only 5000ppm exposure significantly increased DNA damage in male WT mice. Overall, there was a significant sex difference in genetic damage in both genetic types of mice. These results showed that ALDH2 is involved in the detoxification of ETBE and lack of enzyme activity may greatly increase the sensitivity to the genotoxic effects of ETBE, and male mice were more sensitive than females. PMID:23810710

  19. Pertussis toxin analog with reduced enzymatic and biological activities is a protective immunogen.

    PubMed Central

    Kimura, A; Mountzouros, K T; Schad, P A; Cieplak, W; Cowell, J L

    1990-01-01

    Bordetella pertussis TOX3201 has a 12-base-pair insertion in the S1 subunit gene of pertussis toxin (PTX), which encodes for a 4-amino-acid insertion between residues 107 and 108 of the mature S1 subunit (Black et al., Science 240:656-659, 1988). This mutant strain has been shown to secrete a holotoxin analog of PTX, designated CRM3201, with reduced ADP-ribosyltransferase activity. In the present study, we evaluated the biochemical, biological, and immunoprotective activities of purified CRM3201. Assay of enzymatic activities showed that CRM3201 had 20 to 30% of the ADP-ribosyltransferase activity and 55 to 60% of the NAD glycohydrolase activity of native PTX. CRM3201, however, had only 2 to 6% of the activity of PTX in clustering CHO cells, promoting leukocytosis, inducing histamine sensitization, and potentiating an anaphylactic response to bovine serum albumin. In contrast, activities associated with the B oligomer (binding to fetuin, hemagglutination of goose erythrocytes, and lymphocyte mitogen activity) were comparable to those of native PTX. Injection of BALB/c mice with CRM3201 mixed with Al(OH)3 elicited high titers of antibody to PTX (as measured by enzyme-linked immunosorbent assay), which neutralized a leukocytosis-promoting dose of PTX in these mice and neutralized PTX in a CHO cell assay. Passive transfer of the anti-CRM3201 antibody protected 20-day-old Swiss-Webster mice against a lethal aerosol challenge with B. pertussis 18323. Active immunization with CRM3201 significantly reduced lung colonization in adult BALB/c mice with a B. pertussis respiratory infection. These results demonstrate (i) that the reduced ADP-ribosyltransferase activity of CRM3201 is associated with reductions in certain biological and toxic activities of PTX (the enzymatic and biological activities are not, however, totally concordant); (ii) that CRM3201 possesses a functional B oligomer; and (iii) that CRM3201 can induce toxin-neutralizing antibodies which protect mice

  20. Critical Roles of Clostridium difficile Toxin B Enzymatic Activities in Pathogenesis

    PubMed Central

    Li, Shan; Shi, Lianfa; Yang, Zhiyong; Zhang, Yongrong; Perez-Cordon, Gregorio; Huang, Tuxiong; Ramsey, Jeremy; Oezguen, Numan; Savidge, Tor C.

    2014-01-01

    TcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (VHH) library raised against TcdB, we identified two VHH antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB in in vivo toxicity using a sensitive systemic challenge model in mice. Consistent with these in vitro results, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy. PMID:25404023

  1. Chemical and enzymatic reductive activation of acylfulvene to isomeric cytotoxic reactive intermediates

    PubMed Central

    Pietsch, Kathryn E.; Neels, James F.; Yu, Xiang; Gong, Jiachang; Sturla, Shana J.

    2011-01-01

    Acylfulvenes, a class of semisynthetic analogues of the sesquiterpene natural product illudin S, are cytotoxic towards cancer cells. The minor structural changes between illudin S and AFs translate to an improved therapeutic window in preclinical cell-based assays and xenograft models. AFs are, therefore, unique tools for addressing the chemical and biochemical basis of cytotoxic selectivity. AFs elicit cytotoxic responses by alkylation of biological targets, including DNA. While AFs are capable of direct alkylation, cytosolic reductive bioactivation to an electrophilic intermediate is correlated with enhanced cytotoxicity. Data obtained in this study illustrates chemical aspects of the process of AF activation. By tracking reaction mechanisms with stable isotope-labeled reagents, enzymatic versus chemical activation pathways for AF were compared for reactions involving the NADPH-dependent enzyme prostaglandin reductase 1 (PTGR1) or sodium borohydride, respectively. These two processes resulted in isomeric products that appear to give rise to similar patterns of DNA modification. The chemically activated isomer has been newly isolated and chemically characterized in this study, including an assessment of its relative stereochemistry, and stability at varying pH and under bioassay conditions. In mammalian cancer cells, this chemically activated analog was shown to not rely on further cellular activation to significantly enhance cytotoxic potency, in contrast to the requirements of AF. On the basis of this study, we anticipate that the chemically activated form of AF will serve as a useful chemical probe for evaluating biomolecular interactions independent of enzyme-mediated activation. PMID:21939268

  2. Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage.

    PubMed

    Ronsoni, Marcelo Fernando; Remor, Aline Pertile; Lopes, Mark William; Hohl, Alexandre; Troncoso, Iris H Z; Leal, Rodrigo Bainy; Boos, Gustavo Luchi; Kondageski, Charles; Nunes, Jean Costa; Linhares, Marcelo Neves; Lin, Kátia; Latini, Alexandra Susana; Walz, Roger

    2016-04-01

    Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13-17 % of MRCCE activities and show a moderate to strong effect (r = 0.37-0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery. PMID:26586405

  3. GTP cyclohydrolase I expression and enzymatic activity are present in caveolae of endothelial cells

    PubMed Central

    Peterson, Timothy E.; d’Uscio, Livius V.; Cao, Sheng; Wang, Xiao-Li; Katusic, Zvonimir S.

    2009-01-01

    Tetrahydrobiopterin is an essential cofactor required for the synthesis of nitric oxide. GTP cyclohydrolase I (GTPCH I) is the rate limiting enzyme for tetrahydrobiopterin production in endothelial cells, yet little is known about the subcellular localization of this enzyme. In this study, we demonstrate that GTPCH I is localized to caveolar membrane microdomains along with caveolin-1 and endothelial nitric oxide synthase. GTPCH I activity was detected in isolated caveolar membranes from cultured endothelial cells. Confocal and electron microscopy analyses confirmed GTPCH I colocalization with caveolin-1. Consistent with in vitro studies, GTPCH I activity was evident in isolated caveolar microdomains from lung homogenates of wild-type mice. Importantly, a two-fold increase in GTPCH I activity was detected in the aortas of caveolin-1 deficient mice suggesting that caveolin-1 may be involved in the control of GTPCH I enzymatic activity. Indeed, overexpression of caveolin-1 inhibits GTPCH I activity, and tetrahydrobiopterin biosynthesis is activated by disruption of caveolae structure. These studies demonstrate that GTPCH I is targeted to caveolae microdomains in vascular endothelial cells and tetrahydrobiopterin production occurs in close proximity to endothelial nitric oxide synthase. Additionally, our findings provide new insights into the regulation of GTPCH I activity by the caveolar coat protein, caveolin-1. PMID:19104007

  4. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  5. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    SciTech Connect

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  6. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    PubMed

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. PMID:26836977

  7. Exonic splicing signals impose constraints upon the evolution of enzymatic activity.

    PubMed

    Falanga, Alessia; Stojanović, Ozren; Kiffer-Moreira, Tina; Pinto, Sofia; Millán, José Luis; Vlahoviček, Kristian; Baralle, Marco

    2014-05-01

    Exon splicing enhancers (ESEs) overlap with amino acid coding sequences implying a dual evolutionary selective pressure. In this study, we map ESEs in the placental alkaline phosphatase gene (ALPP), absent in the corresponding exon of the ancestral tissue-non-specific alkaline phosphatase gene (ALPL). The ESEs are associated with amino acid differences between the transcripts in an area otherwise conserved. We switched out the ALPP ESEs sequences with the sequence from the related ALPL, introducing the associated amino acid changes. The resulting enzymes, produced by cDNA expression, showed different kinetic characteristics than ALPL and ALPP. In the organism, this enzyme will never be subjected to selection because gene splicing analysis shows exon skipping due to loss of the ESE. Our data prove that ESEs restrict the evolution of enzymatic activity. Thus, suboptimal proteins may exist in scenarios when coding nucleotide changes and consequent amino acid variation cannot be reconciled with the splicing function. PMID:24692663

  8. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-03-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells.

  9. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    PubMed Central

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-01-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells. PMID:24603274

  10. The Effects of Storage Conditions on the Preservation of Enzymatic Activity in Bone

    PubMed Central

    Cosby, Christi N.; Troiano, Nancy W.; Kacena, Melissa A.

    2009-01-01

    Alkaline phosphatase and acid phosphatase are two major enzymatic measures of osteoblastic and osteoclastic activity, respectively. As a result, the preservation of the enzymes in bone specimens to near in vivo accuracy is essential. Despite standardization of the staining process, several factors related to the storage of blocks and slides before sectioning and staining impact the level of enzymes detected in the tissue. Block condition (intact, faced, or unstained) as well as environment (temperature and length of time in storage) affect alkaline phosphatase preservation while the acid phosphatase enzyme remains unaffected. We conclude that to optimally preserve alkaline phosphatase enzyme, methacrylate-embedded undecalcified murine bones should be stored as intact blocks. After sectioning, the faced blocks should be stored at 4°C for optimal enzyme staining of future sections. Furthermore, it is best to stain sections immediately after sectioning. PMID:20686670

  11. Incomplete penetrance of biallelic ALDH1A3 mutations.

    PubMed

    Plaisancié, Julie; Brémond-Gignac, Dominique; Demeer, Bénédicte; Gaston, Véronique; Verloes, Alain; Fares-Taie, Lucas; Gerber, Sylvie; Rozet, Jean-Michel; Calvas, Patrick; Chassaing, Nicolas

    2016-04-01

    The formation of a properly shaped eye is a complex developmental event that requires the coordination of many induction processes and differentiation pathways. Microphthalmia and anophthalmia (MA) represent the most severe defects that can affect the ocular globe during embryonic development. When genetic, these ocular disorders exhibit large genetic heterogeneity and extreme variable expressivity. Around 20 monogenic diseases are known to be associated with MA as main phenotype and the penetrance of mutations is usually full in the patients. Some of these genes encode proteins involved in the vitamin A pathway, tightly regulated during eye development. One of those retinoic acid synthesis genes is ALDH1A3 and biallelic mutations in that gene have been recently found to lead to MA phenotype in patients. Interestingly, we report here the lack of ocular defect in a girl carrying the same homozygous mutation in the ALDH1A3 gene than the affected members of her family. Thus, this report brings new information for the phenotype-genotype correlation of ALDH1A3 mutations and raises important questions, especially in terms of genetic counselling given to the patients and their families. Furthermore, these data contribute to the more general understanding that we have for the complex genetic inheritance of these MA phenotypes. PMID:26873617

  12. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  13. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts

    PubMed Central

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0–3 mm, transitional zone (TZ) 3–7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98–0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86–113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem. PMID:27625645

  14. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts.

    PubMed

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0-3 mm, transitional zone (TZ) 3-7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98-0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86-113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem. PMID:27625645

  15. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions

    PubMed Central

    Yokogawa, Mariko; Tsushima, Takashi; Noda, Nobuo N.; Kumeta, Hiroyuki; Enokizono, Yoshiaki; Yamashita, Kazuo; Standley, Daron M.; Takeuchi, Osamu; Akira, Shizuo; Inagaki, Fuyuhiko

    2016-01-01

    Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus—the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions. PMID:26927947

  16. Optical Detection of Enzymatic Activity and Inhibitors on Non-Covalently Functionalized Fluorescent Graphene Oxide.

    PubMed

    Kang, Tae Woog; Jeon, Su-Ji; Kim, Hye-In; Park, Jung Hyun; Yim, DaBin; Lee, Hye-Rim; Ju, Jong-Min; Kim, Man-Jin; Kim, Jong-Ho

    2016-05-24

    It has been of great interest to measure the activity of acetylcholinesterase (AChE) and its inhibitor, as AChE is known to accelerate the aggregation of the amyloid beta peptides that underlie Alzheimer's disease. Herein, we report the development of graphene oxide (GO) fluorescence-based biosensors for the detection of AChE activity and AChE inhibitors. To this end, GO was non-covalently functionalized with phenoxy-modified dextran (PhO-dex-GO) through hydrophobic interaction; the resulting GO showed excellent colloidal stability and intense fluorescence in various aqueous solutions as compared to pristine GO and the GO covalently functionalized with dextran. The fluorescence of PhO-dex-GO remarkably increased as AChE catalyzed the hydrolysis of acetylthiocholine (ATCh) to give thiocholine and acetic acid. It was found that the turn-on fluorescence response of PhO-dex-GO to AChE activity was induced by protonation of carboxyl groups on it from the product of the enzymatic hydrolysis reaction, acetic acid. On the basis of its turn-on fluorescence response, PhO-dex-GO was able to report kinetic and thermodynamic parameters involving a maximum velocity, a Michaelis constant, and an inhibition dissociation constant for AChE activity and inhibition. These parameters enable us to determine the activity of AChE and the efficiency of the inhibitor. PMID:27136042

  17. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions.

    PubMed

    Yokogawa, Mariko; Tsushima, Takashi; Noda, Nobuo N; Kumeta, Hiroyuki; Enokizono, Yoshiaki; Yamashita, Kazuo; Standley, Daron M; Takeuchi, Osamu; Akira, Shizuo; Inagaki, Fuyuhiko

    2016-01-01

    Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus-the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions. PMID:26927947

  18. ALDH1A3, a metabolic target for cancer diagnosis and therapy.

    PubMed

    Duan, Jiang-Jie; Cai, Jiao; Guo, Yu-Feng; Bian, Xiu-Wu; Yu, Shi-Cang

    2016-09-01

    Metabolism reprogramming has been linked with the initiation, metastasis, and recurrence of cancer. The aldehyde dehydrogenase (ALDH) family is the most important enzyme system for aldehyde metabolism. The human ALDH family is composed of 19 members. ALDH1A3 participates in various physiological processes in human cells by oxidizing all-trans-retinal to retinoic acid. ALDH1A3 expression is regulated by many factors, and it is associated with the development, progression, and prognosis of cancers. In addition, ALDH1A3 influences a diverse range of biological characteristics within cancer stem cells and can act as a marker for these cells. Thus, growing evidence indicates that ALDH1A3 has the potential to be used as a target for cancer diagnosis and therapy. PMID:26991532

  19. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments

    SciTech Connect

    Meyer-Reil, L.

    1987-08-01

    Seasonal and spatial distributions of extracellular enzymatic activities and microbial incorporations of dissolved organic substrates were followed in sediments of the brackish water Kiel Bight (Baltic Sea). Enzymatic hydrolysis of polymeric organic compounds was determined by means of fluorogenic substrates; incorporation of dissolved organic substrates into microbial biomass was measured by using tritiated substances (acetate, leucine, and thymidine). Based on a recently developed core injection technique, substrates were injected in microliter portions into undisturbed sediment cores. Enzymatic and incorporation activities underwent strong seasonal variations related to the enrichment of organic material in the sediment surface following sedimentation events. The input of the phytoplankton bloom during autumn caused stimulation of both enzymatic hydrolysis of polymeric organic compounds and microbial incorporation of dissolved organic substrates. Following input by spring phytoplankton bloom, mainly incorporation activities were stimulated. In late spring the development of the benthic fauna obviously greatly influenced microbial activities. During summer individual periods of high microbial activities were observed which might be traced back to short-term sedimentation events.

  20. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  1. Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase.

    PubMed

    Sepasi Tehrani, H; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Kiany, A; Atri, M S; Ariaeenejad, Sh; Kavousi, K; Saboury, A A

    2013-12-01

    Catalase is an important antioxidant enzyme that catalyzes the disproportionation of H2O2 into harmless water and molecular oxygen. Due to various applications of the enzyme in different sectors of industry as well as medicine, the enhancement of stability of the enzyme is important. Effect of various classes of compatible as well as noncompatible osmolytes on the enzymatic activity, disaggregation, and thermal stability of bovine liver catalase have been investigated. Compatible osmolytes, proline, xylitol, and valine destabilize the denatured form of the enzyme and, therefore, increase its disaggregation and thermal stability. The increase in the thermal stability is accompanied with a slight increase of activity in comparison to the native enzyme at 25 °C. On the other hand, histidine, a noncompatible osmolyte stabilizes the denatured form of the protein and hence causes an overall decrease in the thermal stability and enzymatic activity of the enzyme. Chemometric results have confirmed the experimental results and have provided insight into the distribution and number of mole fraction components for the intermediates. The increase in melting temperature (Tm) and enzymatic rate could be further amplified by the intrinsic effect of temperature enhancement on the enzymatic activity for the industrial purposes. PMID:23249140

  2. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis.

    PubMed

    Jin, Shengfang; Chen, Jiang; Chen, Lizao; Histen, Gavin; Lin, Zhizhong; Gross, Stefan; Hixon, Jeffrey; Chen, Yue; Kung, Charles; Chen, Yiwei; Fu, Yufei; Lu, Yuxuan; Lin, Hui; Cai, Xiujun; Yang, Hua; Cairns, Rob A; Dorsch, Marion; Su, Shinsan M; Biller, Scott; Mak, Tak W; Cang, Yong

    2015-07-21

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated. PMID:26150517

  3. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  4. Enzymatic properties of immobilized Alcaligenes faecalis cells with cell-associated beta-glucosidase activity

    SciTech Connect

    Wheatly, M.A.; Phillips, C.R.

    1984-06-01

    Enzymatic properties of Alcaligenes faecalis cells immobilized in polyacrylamide were characterized and compared with those reported for the extracted enzyme, and with those measured for free cells. Many of the properties reflected those of the extracted enzyme rather than those measured in the free whole cells prior to immobilization, suggesting cell disruption during immobilization. These properties included the pH activity profile, a slightly broader pH stability profile, and the activation energy. Electron micrographs showed evidence of cell debris among the polymer matrix. The immobilized cells were not viable, and did not consume glucose. Thermal stability was less after immobilization with a half-line of 16 h at 45 degrees C, and 3.5 h at 50 degrees C. The immobilized preparation was more stable when stored lyophilized rather than in buffer, losing 23 and 52% activity, respectively, after six months. The enzyme was irreversibly inhibited by both acetate and citrate buffers. If the immobilized enzyme is to be used in conjunction with cellulases from Trichoderma reesei for cellulase saccharification, the optimal conditions would be pH 5.5 and 45 degrees C in a buffer containing no carboxylic acid groups.

  5. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    PubMed

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose. PMID:12852452

  6. Bioengineering of stainless steel surface by covalent immobilization of enzymes. Physical characterization and interfacial enzymatic activity.

    PubMed

    Caro, Anne; Humblot, Vincent; Méthivier, Christophe; Minier, Michel; Barbes, Lucica; Li, Joachim; Salmain, Michèle; Pradier, Claire-Marie

    2010-09-01

    Two hydrolytic enzymes, namely lysozyme and trypsin, were covalently immobilized onto stainless steel surfaces using wet chemistry processes. The immobilization strategy took advantage of the spontaneous physisorption of the polymer poly(ethylene imine) (PEI) onto stainless steel to yield a firmly attached, thin organic layer containing a high density of primary amine functions. Both enzymes were then covalently grafted to the surface via a glutaraldehyde cross-linker. Alternatively, a thicker underlayer of PEI was chemisorbed by cross-linking two PEI layers by glutaraldehyde. The effective presence of both enzymes on the stainless steel surfaces and their relative amount were assessed by immunochemical assays employing specific anti-enzyme antibodies. Eventually, the hydrolytic activity of the immobilized enzymes was evaluated by local enzymatic tests with suitable substrates. This work demonstrates that, although the amount of enzymes did not vary significantly with the underlayer thickness, their hydrolytic activity could be much improved by increasing the distance from the oxide surface and, likely, by favoring their accessibility. Our data suggest that the immobilization of enzymes on solid oxide surfaces is feasible and efficient, and that the enzymes retain catalytic activity. It may thus provide a promising route towards biofilm-resistant materials. PMID:20566201

  7. Downregulation of Rubisco Activity by Non-enzymatic Acetylation of RbcL.

    PubMed

    Gao, Xiang; Hong, Hui; Li, Wei-Chao; Yang, Lili; Huang, Jirong; Xiao, You-Li; Chen, Xiao-Ya; Chen, Gen-Yun

    2016-07-01

    Atmospheric carbon dioxide (CO2) is assimilated by the most abundant but sluggish enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Here we show that acetylation of lysine residues of the Rubisco large subunit (RbcL), including Lys201 and Lys334 in the active sites, may be an important mechanism in the regulation of Rubisco activities. It is well known that Lys201 reacts with CO2 for carbamylation, a prerequisite for both carboxylase and oxygenase activities of Rubisco, and Lys334 contacts with ribulose-1,5-bisphosphate (RuBP). The acetylation level of RbcL in plants is lower during the day and higher at night, inversely correlating with the Rubisco carboxylation activity. A search of the chloroplast proteome database did not reveal a canonical acetyltransferase; instead, we found that a plant-derived metabolite, 7-acetoxy-4-methylcoumarin (AMC), can non-enzymatically acetylate both native Rubisco and synthesized RbcL peptides spanning Lys334 or Lys201. Furthermore, lysine residues were modified by synthesized 4-methylumbelliferone esters with different electro- and stereo-substitutes, resulting in varied Rubisco activities. 1-Chloroethyl 4-methylcoumarin-7-yl carbonate (ClMC) could transfer the chloroethyl carbamate group to lysine residues of RbcL and completely inactivate Rubisco, whereas bis(4-methylcoumarin-7-yl) carbonate (BMC) improved Rubisco activity through increasing the level of Lys201 carbamylation. Our findings indicate that RbcL acetylation negatively regulates Rubisco activity, and metabolic derivatives can be designed to dissect and improve CO2 fixation efficiency of plants through lysine modification. PMID:27109602

  8. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  9. Formation of marine snow and enhanced enzymatic activities in oil-contaminated seawater

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; McKay, L.; Yang, T.; Rhodes, B.; Nigro, L.; Gutierrez, T.; Teske, A.; Arnosti, C.

    2010-12-01

    The fate of oil spilled into the ocean depends on its composition, as well as on biological, chemical, and physical characteristics of the spill site. We investigated the effects of oil addition from the Deepwater Horizon (DH) spill on otherwise uncontaminated water collected close to the spill site. Incubation on a roller table mimicked the physical dynamics of natural seawater, leading to the formation of marine snow-oil aggregates. We measured the enzymatic activities of heterotrophic microbes associated with the aggregates and in the surrounding water, and assessed microbial population and community composition as oil-marine snow aggregates formed and aged in the water. Surface seawater taken near the spill site in May 2010 that had no visible crude oil was incubated in 1-l glass bottles with (oil-bottles) and without (no-oil bottles) a seawater-oil mixture collected from the same site. In the oil-bottles formation of brownish, densely packed marine snow (2-3 cm diameter) was observed within the first hour of the roller table incubation. In contrast no-oil bottles showed aggregate formation only after 3 days, and aggregates were almost transparent, less abundant, and smaller in size (< 1cm diameter). Subsamples of the water surrounding the aggregates were taken throughout 21 days of the roller table incubation, and analyzed for bacterial abundance and community structure as well as the activities of hydrolytic enzymes that are used by heterotrophic bacteria to degrade organic matter. We monitored oil-degrading activities with MUF-stearate and -butyrate, and also measured b-glucosidase, alkaline phosphatase, aminopeptidase, and six different polysaccharide hydrolase activities. Enzymatic activities were up to one order of magnitude higher in the oil-bottles compared with the no-oil bottles throughout the entire incubation time. Butyrate hydrolysis was elevated throughout the time course of the incubation, and stearate hydrolysis was particularly high over the

  10. Single-molecule kinetics under force: probing protein folding and enzymatic activity with optical tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley

    2010-03-01

    Weak non-covalent bonds between and within single molecules govern many aspects of biological structure and function (e.g. DNA base-paring, receptor-ligand binding, protein folding, etc.) In living systems, these interactions are often subject to mechanical forces, which can greatly alter their kinetics and activity. My group develops and applies novel single-molecule manipulation techniques to explore and quantify these force-dependent kinetics. Using optical tweezers, we have quantified the force-dependent unfolding and refolding kinetics of different proteins, including the cytoskeletal protein spectrin in collaboration with E. Evans's group [1], and the A2 domain of the von Willebrand factor blood clotting protein in collaboration with T. Springer's group [2]. Furthermore, we have studied the kinetics of the ADAMTS13 enzyme acting on a single A2 domain, and have shown that physiolgical forces in the circulation can act as a cofactor for enzymatic cleavage, regulating hemostatic activity [2]. References: 1. E. Evans, K. Halvorsen, K. Kinoshita, and W.P. Wong, Handbook of Single Molecule Biophysics, P. Hinterdorfer, ed., Springer (2009). 2. X. Zhang, K. Halvorsen, C.-Z. Zhang, W.P. Wong, and T.A. Springer, Science 324 (5932), 1330-1334 (2009).

  11. α-Galactosidase-A Loaded-Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration.

    PubMed

    Cabrera, Ingrid; Abasolo, Ibane; Corchero, José L; Elizondo, Elisa; Gil, Pilar Rivera; Moreno, Evelyn; Faraudo, Jordi; Sala, Santi; Bueno, Dolores; González-Mira, Elisabet; Rivas, Merche; Melgarejo, Marta; Pulido, Daniel; Albericio, Fernando; Royo, Miriam; Villaverde, Antonio; García-Parajo, Maria F; Schwartz, Simó; Ventosa, Nora; Veciana, Jaume

    2016-04-01

    Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules, such as lipids, glycoproteins, and mucopolysaccharides. For instance, the lack of α-galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology. Enzyme replacement therapy, which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme. In this work, the unprecedented increased enzymatic activity and intracellular penetration achieved by the association of a human recombinant GLA to nanoliposomes functionalized with Arginine-Glycine-Aspartic acid (RGD) peptides is reported. Moreover, these new GLA loaded nanoliposomes lead to a higher efficacy in the reduction of the GLA substrate named globotriasylceramide in a cellular model of Fabry disease, than that achieved by the same concentration of the free enzyme. The preparation of these new liposomal formulations by DELOS-SUSP, based on the depressurization of a CO2 -expanded liquid organic solution, shows the great potential of this CO2 -based methodology for the one-step production of protein-nanoliposome conjugates as bioactive nanomaterials with therapeutic interest. PMID:26890358

  12. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future. PMID:25376489

  13. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    PubMed Central

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  14. Green Tea and Bone Marrow Transplantation: From Antioxidant Activity to Enzymatic and Multidrug-resistance Modulation.

    PubMed

    Peluso, Ilaria; Palmery, Maura; Vitalone, Annabella

    2016-10-25

    Epigallocatechin-3-gallate (EGCG), the main flavonoid of green tea (GT), could play an active role in the prevention of oxidative-stress-related diseases, such as hematologic malignancies. Some effects of EGCG are not imputable to antioxidant activity, but involve modulation of antioxidant enzymes and uric acid (UA) levels. The latter is the major factor responsible of the plasma non-enzymatic antioxidant capacity (NEAC). However, hyperuricemia is a frequent clinical feature caused by tumor lysis syndrome or cyclosporine side effects, both before and after bone marrow transplantation (BMT). Besides this, food-drug interactions could be associated with GT consumption and could have clinical implications. The molecular mechanisms involved in the redox and drug metabolizing/transporting pathways were discussed, with particular reference to the potential role of GT and EGCG in BMT. Moreover, on reviewing data on NEAC, isoprostanes, uric acid, and various enzymes from human studies on GT, its extract, or EGCG, an increase in NEAC, without effect on isoprostanes, and contrasting results on UA and enzymes were observed. Currently, few and contrasting available evidences suggest caution for GT consumption in BMT patients and more studies are needed to better understand the potential impact of EGCG on oxidative stress and metabolizing/transporting systems. PMID:26047551

  15. Molecular characterization and enzymatic activity of laccases in two Pleurotus spp. with different pathogenic behaviour.

    PubMed

    Punelli, Federico; Reverberi, Massimo; Porretta, Daniele; Nogarotto, Sara; Fabbri, Anna A; Fanelli, Corrado; Urbanelli, Sandra

    2009-03-01

    Pleurotus eryngii and P. ferulae, two species belonging to the P. eryngii complex, synthesize laccases, ligninolytic enzymes that play a role in the host-pathogen interaction in the first step of infection. Ecological studies have shown that although both fungi have been recognized as saprophytes, P. eryngii weakly pathogenic when colonizing the roots and stems of Eryngium campestre, whereas P. ferulae is mostly pathogenic to Ferula communis. The paper describes the genomic organization of four putative laccase genes (lac1, lac2, lac3, and lac5-like gene; gene names were assigned on the basis of sequence homologies) of P. eryngii and P. ferulae. The mRNA expression and enzymatic activity of the laccases were analysed under culture conditions where a source of lignin (wheat bran) or lyophilized roots of E. campestre or F. communis were present. These experiments indicated that the four lac-like genes were differentially regulated in the two mushrooms. Specifically, the addition of the lyophilized roots of the respective host plant to the culture media induced an advance in the mRNA expression of the four lac-like genes and a seven-fold higher total laccase activity in P. ferulae than in P. eryngii. The results obtained are discussed in relation to the possible role of laccases in the interaction of P. eryngii and P. ferulae with their respective host. PMID:19116166

  16. A 96-well electrochemical method for the screening of enzymatic activities.

    PubMed

    Abdellaoui, Sofiène; Noiriel, Alexandre; Henkens, Robert; Bonaventura, Celia; Blum, Loïc J; Doumèche, Bastien

    2013-04-01

    The rapid electrochemical screening of enzyme activities in bioelectronics is still a challenging issue. In order to solve this problem, we propose to use a 96-well electrochemical assay. This system is composed of 96 screen-printed electrodes on a printed circuit board adapted from a commercial system (carbon is used as the working electrode and silver chloride as the counter/reference electrode). The associated device allows for the measurements on the 96 electrodes to be performed within a few seconds. In this work, we demonstrate the validity of the screening method with the commercial laccase from the fungus Trametes versicolor. The signal-to-noise ratio (S/N) is found to be the best way to analyze the electrochemical signals. The S/N follows a saturation-like mechanism with a dynamic linear range of two decades ranging from 0.5 to 75 ng of laccase (corresponding to enzymatic activities from 62 × 10(-6) to 9.37 × 10(-3) μmol min(-1)) and a sensitivity of 3027 μg(-1) at +100 mV versus Ag/AgCl. Laccase inhibitors (azide and fluoride anions), pH optima, and interfering molecules could also be identified within a few minutes. PMID:23461701

  17. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance.

    PubMed

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-01-01

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities. PMID:26584633

  18. Three in one: Identification, expression and enzymatic activity of lysozymes in amphioxus.

    PubMed

    Xu, Na; Pan, Junli; Liu, Shousheng; Xue, Qinggang; Zhang, Shicui

    2014-10-01

    The lysozymes identified so far in animals belong to the g-type, c-type, and i-type. Vertebrate animals possess only the former two types, i.e., g- and c-types, while all the three types have been reported in invertebrates. Here we demonstrate that (1) three cDNAs that encode g-, c-, and i-type lysozymes, respectively, were identified in a single species of the amphioxus Branchiostoma japonicum; (2) all the 3-type genes displayed distinct tissue-specific expression pattern; (3) recombinant g-, c-, and i-type lysozymes all exhibited enzymatic activities; and (4) native g-, c-, and i-type lysozymes were identified in the different tissues of amphioxus. Collectively, these results suggest the presence of all the 3-type lysozymes in a single animal species, first such data ever reported. The presence of biologically active i-type lysozyme in amphioxus also suggests that i-type lysozyme gene is retained at least in Protochordata, contrasting to the previous proposal that i-type lysozyme gene has been lost in a common ancestor of all chordates. PMID:24968076

  19. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  20. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance

    PubMed Central

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-01-01

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities. PMID:26584633

  1. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals.

    PubMed

    Reboreda, Rosa; Caçador, Isabel

    2008-02-01

    Extracellular enzymatic activity (EEA) of five enzymes (peroxidase, phenol oxidase, beta-glucosidase, beta-N-acetylglucosaminidase and acid phosphatase) was analysed in sediments colonised by Spartina maritima in two salt marshes (Rosário and Pancas) of the Tagus estuary (Portugal) with different characteristics such as sediment parameters and metal contaminant levels. Our aim was a better understanding of the influence of the halophyte on microbial activity in the rhizosphere under different site conditions, and its potential consequences for metal cycling and phytoremediation in salt marshes. Acid phosphatase and beta-N-acetylglucosaminidase presented significantly higher EEA in Rosário than in Pancas, whereas the opposite occurred for peroxidase. This was mainly attributed to differences in organic matter between the two sites. A positive correlation between root biomass and EEA of hydrolases (beta-glucosidase, beta-N-acetylglucosaminidase and acid phosphatase) was found, indicating a possible influence of the halophyte in sediment microbial function. This would potentially affect metal cycling in the rhizosphere through microbial reactions. PMID:17935772

  2. Different Quaternary Structures of Human RECQ1 Are Associated with Its Dual Enzymatic Activity

    PubMed Central

    Muzzolini, Laura; Beuron, Fabienne; Patwardhan, Ardan; Popuri, Venkateswarlu; Cui, Sheng; Niccolini, Benedetta; Rappas, Mathieu; Freemont, Paul S; Vindigni, Alessandro

    2007-01-01

    RecQ helicases are essential for the maintenance of chromosome stability. In addition to DNA unwinding, some RecQ enzymes have an intrinsic DNA strand annealing activity. The function of this dual enzymatic activity and the mechanism that regulates it is, however, unknown. Here, we describe two quaternary forms of the human RECQ1 helicase, higher-order oligomers consistent with pentamers or hexamers, and smaller oligomers consistent with monomers or dimers. Size exclusion chromatography and transmission electron microscopy show that the equilibrium between the two assembly states is affected by single-stranded DNA (ssDNA) and ATP binding, where ATP or ATPγS favors the smaller oligomeric form. Our three-dimensional electron microscopy reconstructions of human RECQ1 reveal a complex cage-like structure of approximately 120 Å × 130 Å with a central pore. This oligomeric structure is stabilized under conditions in which RECQ1 is proficient in strand annealing. In contrast, competition experiments with the ATPase-deficient K119R and E220Q mutants indicate that RECQ1 monomers, or tight binding dimers, are required for DNA unwinding. Collectively, our findings suggest that higher-order oligomers are associated with DNA strand annealing, and lower-order oligomers with DNA unwinding. PMID:17227144

  3. Angiotensin-converting enzyme inhibitory and antioxidant activities of enzymatically synthesized phenolic and vitamin glycosides.

    PubMed

    Charles, Rajachristu Einstein; Ponrasu, Thangavel; Sivakumar, Ramaiah; Divakar, Soundar

    2009-03-01

    Amyloglucosidase from Rhizopus mould and beta-glucosidase from sweet almond were employed for the preparation of phenolic and vitamin glycosides of vanillin, N-vanillylnonanamide, DL-dopa, dopamine, curcumin, alpha-tocopherol (vitamin E), pyridoxine (vitamin B(6)), ergocalciferol (vitamin D(2)), thiamin (vitamin B(1)) and riboflavin (vitamin B(2)). Approx. 20 enzymatically prepared phenolic and vitamin glycosides were subjected to ACE (angiotensin-converting enzyme) inhibition activity measurements, and 14 glycosides were tested for antioxidant activities. Both phenolic and vitamin glycosides exhibited IC(50) values for ACE inhibition in the 0.52+/-0.03-3.33+/-0.17 mM range and antioxidant activities ranging from 0.8+/-0.04 to 1.18+/-0.06 mM. Comparable ACE inhibition values were observed between free phenols and vitamin glycosides. However, antioxidant activities of glycosides were, in general, lesser than those of free phenols. Best IC(50) value for ACE inhibition were observed for 11-O-(D-fructofuranosyl)thiamin (0.52+/-0.03 mM), 3-hydroxy-4-O-(6-D-sorbitol)phenylalanine (0.56+/-0.03 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.61+/-0.03 mM), 4-O-(D-galactopyranosyl)vanillin (0.61+/-0.03 mM) and pyridoxine-D-glucoside (0.84+/-0.04 mM). Similarly, best IC(50) values for antioxidant activity were observed for 1,7-O-(bis-beta-D-glucopyranosyl)curcumin (0.8+/-0.04 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.9+/-0.05 mM), 3-hydroxy-4-O-(beta-D-galactopyranosyl-(1'-->4)beta-D-glucopyranosyl)phenylalanine (0.9+/-0.05 mM), 20-O-(D-glucopyranosyl)ergocalciferol (0.9+/-0.05 mM) and dopamine-D-galactoside (0.93+/-0.05 mM). PMID:18547170

  4. Highly efficient recombinant production and purification of streptococcal cysteine protease streptopain with increased enzymatic activity.

    PubMed

    Lane, Michael D; Seelig, Burckhard

    2016-05-01

    Streptococcus pyogenes produces the cysteine protease streptopain (SpeB) as a critical virulence factor for pathogenesis. Despite having first been described seventy years ago, this protease still holds mysteries which are being investigated today. Streptopain can cleave a wide range of human proteins, including immunoglobulins, the complement activation system, chemokines, and structural proteins. Due to the broad activity of streptopain, it has been challenging to elucidate the functional results of its action and precise mechanisms for its contribution to S. pyogenes pathogenesis. To better study streptopain, several expression and purification schemes have been developed. These methods originally involved isolation from S. pyogenes culture but were more recently expanded to include recombinant Escherichia coli expression systems. While substantially easier to implement, the latter recombinant approach can prove challenging to reproduce, often resulting in mostly insoluble protein and poor purification yields. After extensive optimization of a wide range of expression and purification conditions, we applied the autoinduction method of protein expression and developed a two-step column purification scheme that reliably produces large amounts of purified soluble and highly active streptopain. This method reproducibly yielded 3 mg of streptopain from 50 mL of expression culture at >95% purity, with an activity of 5306 ± 315 U/mg, and no remaining affinity tags or artifacts from recombinant expression. This improved method therefore enables the facile production of the important virulence factor streptopain at higher yields, with no purification scars that might bias functional studies, and with an 8.1-fold increased enzymatic activity compared to previously described procedures. PMID:26773742

  5. Tissue-specific bioenergetic effects and increased enzymatic activities following acute sublethal peroral exposure to cyanide in the mallard duck.

    PubMed

    Ma, J; Pritsos, C A

    1997-02-01

    Protection of wildlife and in particular migratory birds, which are protected by the Migratory Bird Treaty Act, from cyanide waste in and around gold mining operations is an important environmental issue. We have investigated the bioenergetic effects of sublethal peroral cyanide exposure using the mallard duck (Anus platyrhynchos) as a model migratory bird. At cyanide concentrations well below levels considered safe by the mining industry and some regulatory agencies (50 ppm weak acid dissociable (WAD) cyanide) significant depletions of heart, liver, and brain tissue ATP levels were observed. Tissue ATP levels were restored to normal by 24 hr postexposure. Rhodanese and 3-mercaptopyruvate sulfurtransferase activities were determined in these tissues both for basal activity and post-cyanide exposure. Only brain tissue showed increased enzymatic activity following cyanide exposure, suggesting tissue-specific regulation of these enzymatic activities. These studies suggest that 50 ppm WAD cyanide is not a safe level of cyanide in water where avian wildlife exposure can occur. PMID:9070352

  6. The Use of Adenovirus Dodecahedron in the Delivery of an Enzymatic Activity in the Cell

    PubMed Central

    Sumarheni; Gallet, Benoit; Fender, Pascal

    2016-01-01

    Penton-dodecahedron (Pt-Dd) derived from adenovirus type 3 is a symmetric complex of pentameric penton base plus fiber which can be produced in the baculovirus system at a high concentration. The size of Pt-Dd is smaller than the virus, but this virus-like particle (VLP) has the major proteins recognized by specific receptors on the surface of almost all types of cell. In this study, by direct observation with fluorescence microscopy on a fixed and living cell, the intracellular trafficking and localization of Pt-Dd labeled with fluorescence dyes in the cytoplasm of HeLa Tub-GFP showed a rapid internalization characteristic. Subsequently, the linkage of horseradish peroxidase (HRP) with Pt-Dd as the vector demonstrated an efficient system to deliver this enzyme into the cell without interfering its enzymatic activity as shown by biochemical and cellular experiments. These results were supported by additional studies using Bs-Dd or free form of the HRP used as the control. Overall, this study strengthens the potential role of Pt-Dd as an alternative vector for delivering therapeutic agents. PMID:27242929

  7. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion.

    PubMed

    López-Barrios, Lidia; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A

    2016-07-15

    Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity. PMID:26948633

  8. Musashi-1 Expression is a Prognostic Factor in Ovarian Adenocarcinoma and Correlates with ALDH-1 Expression.

    PubMed

    Chen, Pu-xiang; Li, Qiao-yan; Yang, Zhulin

    2015-09-01

    The presence of cancer stem-like cells (CSCs) has been demonstrated to be associated with tumor metastasis, chemoresistance, and rapid recurrence of various tumors. The impact of CSC-related markers in the metastasis and prognosis of ovarian cancer has not been well established. In this study, the protein expression of musashi-1 and ALDH1 was measured using immunohistochemistry. Results demonstrated that the percentage of positive musashi-1 and ALDH1 expression were significantly higher in ovarian serous adenocarcinomas, mucinous adenocarcinomas and clear cell adenocarcinomas than in cystadenomas and normal tissues. The percentage of positive musashi-1 and ALDH1 expression were significantly lower in patients identified with clinical stage I or II ovarian adenocarcinomas without lymph node metastasis compared to patients with clinical stage III or IV tumors and lymph node metastasis. The expression of musashi-1 and ALDH1 was found to be highly consistent in ovarian adenocarcinomas. Univariate Kaplan-Meier analysis showed a negative correlation between musashi-1 or ALDH1 expression and overall survival. Multivariate Cox regression analysis showed that positive expression of musashi-1 or ALDH1 in ovarian adenocarcinoma was an independent predictor of poor prognosis. Our study suggested that musashi-1 and ALDH1 expression are closely related to metastasis of ovarian adenocarcinoma. The positive expression of musashi-1 and ALDH1 might be a poor-prognostic factor of ovarian adenocarcinoma. PMID:25971681

  9. Mutation of Asn28 Disrupts the Dimerization and Enzymatic Activity of SARS 3CL

    SciTech Connect

    Barrila, J.; Gabelli, S; Bacha, U; Amzel, M; Freire, E

    2010-01-01

    Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many of the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.

  10. Elimination of ALDH+ breast tumor initiating cells by docosahexanoic acid and/or gamma tocotrienol through SHP-1 inhibition of Stat3 signaling.

    PubMed

    Xiong, Ailian; Yu, Weiping; Liu, Yaobin; Sanders, Bob G; Kline, Kimberly

    2016-05-01

    Study investigated the ability of docosahexaenoic acid (DHA) alone and in combination with gamma-tocotrienol (γT3) to eliminate aldehyde dehydrogenase positive (ALDH+) cells and to inhibit mammosphere formation, biomarker and functional assay for tumor initiating cells (TICs), respectively, in human triple negative breast cancer cells (TNBCs), and investigated possible mechanisms of action. DHA upregulated Src homology region 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) protein levels and suppressed levels of phosphorylated signal transducer and activator of transcription-3 (pStat3) and its downstream mediators c-Myc, and cyclin D1. siRNA to SHP-1 enhanced the percentage of ALDH+ cells and Stat-3 signaling, as well as inhibited, in part, the ability of DHA to reduce the percentage of ALDH+ cells and Stat-3 signaling. γT3 alone and in combination with DHA reduced ALDH+ TNBCs, up-regulated SHP-1 protein levels, and suppressed Stat-3 signaling. Taken together, data demonstrate the anti-TIC potential of achievable concentrations of DHA alone as well as in combination with γT3. PMID:25648304

  11. Sca-1+ cells from fetal heart with high aldehyde dehydrogenase activity exhibit enhanced gene expression for self-renewal, proliferation, and survival.

    PubMed

    Dey, Devaveena; Pan, Guodong; Varma, Nadimpalli Ravi S; Palaniyandi, Suresh Selvaraj

    2015-01-01

    Stem/progenitor cells from multiple tissues have been isolated based on enhanced activity of cytosolic aldehyde dehydrogenase (ALDH) enzyme. ALDH activity has emerged as a reliable marker for stem/progenitor cells, such that ALDH(bright/high) cells from multiple tissues have been shown to possess enhanced stemness properties (self-renewal and multipotency). So far though, not much is known about ALDH activity in specific fetal organs. In this study, we sought to analyze the presence and activity of the ALDH enzyme in the stem cell antigen-1-positive (Sca-1+) cells of fetal human heart. Biochemical assays showed that a subpopulation of Sca-1+ cells (15%) possess significantly high ALDH1 activity. This subpopulation showed increased expression of self-renewal markers compared to the ALDH(low) fraction. The ALDH(high) fraction also exhibited significant increase in proliferation and pro-survival gene expression. In addition, only the ALDH(high) and not the ALDH(low) fraction could give rise to all the cell types of the original population, demonstrating multipotency. ALDH(high) cells showed increased resistance against aldehyde challenge compared to ALDH(low) cells. These results indicate that ALDH(high) subpopulation of the cultured human fetal cells has enhanced self-renewal, multipotency, high proliferation, and survival, indicating that this might represent a primitive stem cell population within the fetal human heart. PMID:25861413

  12. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems. PMID:26915106

  13. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    PubMed

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive. PMID:19430937

  14. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  15. Proteins and enzymatic activities in Erbaluce grape berries with different response to the withering process.

    PubMed

    Vincenzi, Simone; Tolin, Serena; Cocolin, Luca; Rantsiou, Kalliopi; Curioni, Andrea; Rolle, Luca

    2012-06-30

    During the off-vine natural withering process of Erbaluce (white) grapes to obtain "Erbaluce Caluso" Passito wine, some berries change in color from green-yellow to blue. This phenomenon appears at different extents in different years and might be related to several parameters, such as temperature and humidity during withering, grape composition and Botrytis cinerea loading. To better understand the mechanism involved in color variation, the metabolic changes corresponding to this event were studied. At the end of the withering process berries with different colors were separated using a reflectance spectrophotometer, obtaining three color classes identified as "green" (L*=40.3, a*=-0.56, b*=15.20), "gold" (L*=37.7, a*=5.01, b*=14.12) and "blue" (L*=28.6, a*=0.89, b*=-0.67). The three groups of berries had different water contents, the blue berries containing about 30% less water than the green ones. Samples were crushed and the juices were analyzed. The juice yield for blue berries was less than 50% of that of the other two classes, confirming their higher dehydration level. Protein extraction from de-seeded berries was carried out using two different protocols, the first involving a treatment with phenol (to remove polyphenolic substances) and the second based on an extraction with a mild detergent (to recover the proteins to be used for enzymatic analyses). No trace of laccase activity was found in any of the samples, although DNA analysis, by quantitative PCR, suggested the presence of B. cinerea infection in the blue grapes. Chitinase activity of the blue berries was only 30% of that of the other two samples, as confirmed also by zymographic analysis on electrophoretic gels. The same was found also for esterase activity, which was lower (of about 85%) in the blue berries, which, in contrast, showed the highest beta-glucosidase activity. The electrophoretic analysis of the protein extracts revealed strong differences among the samples. Compared to the green and

  16. Positive regulation of the enzymatic activity of gastric H(+),K(+)-ATPase by sialylation of its β-subunit.

    PubMed

    Fujii, Takuto; Watanabe, Midori; Shimizu, Takahiro; Takeshima, Hiroshi; Kushiro, Keiichiro; Takai, Madoka; Sakai, Hideki

    2016-06-01

    The gastric proton pump (H(+),K(+)-ATPase) consists of a catalytic α-subunit (αHK) and a glycosylated β-subunit (βHK). βHK glycosylation is essential for the apical trafficking and stability of αHK in gastric parietal cells. Here, we report the properties of sialic acids at the termini of the oligosaccharide chains of βHK. Sialylation of βHK was found in LLC-PK1 cells stably expressing αHK and βHK by staining of the cells with lectin-tagged fluorescent polymeric nanoparticles. This sialylation was also confirmed by biochemical studies using sialic acid-binding lectin beads and an anti-βHK antibody. The sialic acids of βHK are cleaved enzymatically by neuraminidase (sialidase) and nonenzymatically by an acidic solution (pH5). Interestingly, the enzymatic activity of H(+),K(+)-ATPase was significantly decreased by cleavage of the sialic acids of βHK. In contrast, βHK was not sialylated in the gastric tubulovesicles prepared from the stomach of fed hogs. The H(+),K(+)-ATPase activity in these tubulovesicles was not significantly altered by neuraminidase. Importantly, the sialylation of βHK was observed in the gastric samples prepared from the stomach of famotidine (a histamine H2 receptor antagonist)-treated rats, but not histamine (an acid secretagogue)-treated rats. The enzymatic activity of H(+),K(+)-ATPase in the samples of the famotidine-treated rats was significantly higher than in the histamine-treated rats. The effects of famotidine were weakened by neuraminidase. These results indicate that βHK is sialylated at neutral or weakly acidic pH, but not at acidic pH, suggesting that the sialic acids of βHK positively regulate the enzymatic activity of αHK. PMID:26922883

  17. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum. PMID:24605815

  18. Heavy metal concentrations and enzymatic activities in the functional zone sediments of Haizhou Bay, Lianyungang, Jiangsu, China.

    PubMed

    Li, Yu; Liu, Fu-cheng

    2015-11-01

    Surface sediments were collected at 31 sites covering five functional zones of Haizhou Bay, Lianyungang, Jiangsu, China. Heavy metal concentrations and enzymatic activity of phosphatase and urease were determined on a dry-weight basis of sediments. Metal concentrations in sediments were comparable to the Chinese National Standard of Marine Sediment Quality and were as follows: Cu, 8.60-55.8 mg kg(-1); Zn, 107-384 mg kg(-1); Pb, 33.6-200 mg kg(-1); Cd, 0.24-2.57 mg kg(-1); Cr, 30.3-92.1 mg kg(-1); As, 12.9-110 mg kg(-1); Ni, 15.8-49.6 mg kg(-1); Mn, 379-1272 mg kg(-1); and Fe, 13,790-38,240 mg kg(-1). A geoaccumulation index (I geo) was calculated to help researchers understand the status of pollutants in the sediments. I geo showed that Cd and As contamination existed in the study area. The mobility of the metals and the relationship between heavy metal concentrations of chemical fractions and enzymatic activities were also investigated. Results showed that Cd and Mn had higher mobility than other metals, and enzymatic activities may play an important role in controlling the bioavailability and transformation trend of heavy metals from one fraction to another in sediments. PMID:26431704

  19. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    PubMed

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment. PMID:26189585

  20. Influence of short-time imidacloprid and acetamiprid application on soil microbial metabolic activity and enzymatic activity.

    PubMed

    Wang, Fei; Yao, Jun; Chen, Huilun; Yi, Zhengji; Choi, Martin M F

    2014-09-01

    The influence of two neonicotinoids, i.e., imidacloprid (IMI) and acetamiprid (ACE), on soil microbial activities was investigated in a short period of time using a combination of the microcalorimetric approach and enzyme tests. Thermodynamic parameters such as Q T (J g(-1) soil), ∆H met (kJ mol(-1)), J Q/S (J g(-1) h(-1)), k (h(-1)), and soil enzymatic activities, dehydrogenase, phosphomonoesterase, arginine deaminase, and urease, were used to evaluate whole metabolic activity changes and acute toxicity following IMI and ACE treatment. Various profiles of thermogenic curves reflect different soil microbial activities. The microbial growth rate constant k, total heat evolution Q T (expect for IMI), and inhibitory ratio I show linear relationship with the doses of IMI and ACE. Q T for IMI increases at 0.0-20 μg g(-1) and then decreases at 20-80 μg g(-1), possibly attributing to the presence of tolerant microorganisms. The 50 % inhibitory ratios (IC50) of IMI and ACE are 95.7 and 77.2 μg g(-1), respectively. ACE displays slightly higher toxicity than IMI. Plots of k and Q T against microbial biomass-C indicate that the k and Q T are growth yield-dependent. IMI and ACE show 29.6; 40.4 and 23.0; and 23.3, 21.7, and 30.5 % inhibition of dehydrogenase, phosphomonoesterase, and urease activity, respectively. By contrast, the arginine deaminase activity is enhanced by 15.2 and 13.2 % with IMI and ACE, respectively. The parametric indices selected give a quantitative dose-response relationship of both insecticides and indicate that ACE is more toxic than IMI due to their difference in molecular structures. PMID:24819438

  1. Pretreatment and Enzymatic Hydrolysis

    SciTech Connect

    2006-06-01

    Activities in this project are aimed at overcoming barriers associated with high capital and operating costs and sub-optimal sugar yields resulting from pretreatment and subsequent enzymatic hydrolysis of biomass.

  2. Nickel hydroxide nanoparticle activated semi-metallic TiO(2) nanotube arrays for non-enzymatic glucose sensing.

    PubMed

    Gao, Zhi-Da; Guo, Jing; Shrestha, Nabeen K; Hahn, Robert; Song, Yan-Yan; Schmuki, Patrik

    2013-11-11

    Semi-metallic TiO2 nanotube arrays (TiOx Cy NTs) have been decorated uniformly with Ni(OH)2 nanoparticles without the aid of a polymer binder. The resulting hybrid nanotube arrays exhibit excellent catalytic activity towards non-enzymatic glucose electro-oxidation. The anodic current density of the glucose oxidation is significantly improved compared with traditional TiO2 nanotubes decorated with Ni(OH)2 . Moreover, the Ni(OH)2 /TiOx Cy NT-based electrode shows a fast response, high sensitivity, wide linear range, good selectivity and stability towards glucose electro-oxidation, and thus provides a promising and cost-effective sensing platform for non-enzymatic glucose detection. PMID:24115116

  3. Effect of commercial cellulases and refining on kraft pulp properties: correlations between treatment impacts and enzymatic activity components.

    PubMed

    Cui, Li; Meddeb-Mouelhi, Fatma; Laframboise, François; Beauregard, Marc

    2015-01-22

    The importance of enzymes as biotechnological catalysts for paper industry is now recognized. In this study, five cellulase formulations were used for fibre modification. The number of PFI revolutions decreased by about 50% while achieving the same freeness value (decrease in CSF by 200 mL) with the enzymatic pretreatment. The physical properties of handsheets were modified after enzymatic pretreatment followed by PFI refining. A slight decrease in tear strength was observed with enzymes C1 and C4 at pH 7 while the most decrease in tear was observed after C2, C3, C5 treatments. C1 and C4 which had xylanase activity improved paper properties, while other enzymes had a negative impact. Therefore, the intricate balance between cellulolytic and hemicellulolytic activity is the key to optimizing biorefining and paper properties. It was also observed that C1 impact was pH dependent, which supports the importance of pH in developing an enzymatic strategy for refining energy reduction. PMID:25439885

  4. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  5. Prognostic value of ALDH1 expression in lung cancer: a meta-analysis

    PubMed Central

    Huo, Wei; Du, Min; Pan, Xinyan; Zhu, Xiaomin; Li, Zhimin

    2015-01-01

    Objective: ALDH1 has recently been reported as a marker of cancer stem-like cells in lung cancer. However, the predictive value of ALDH1 in lung cancer remains controversial. In this study, we aimed to evaluate the association of ALDH1 expression with the clinicopathological features and outcomes of lung cancer patients through a meta-analysis. Methods: Publications that assessed the clinical or prognostic significance of ALDH1 in lung cancer up to October 2014 were identified. A meta-analysis was performed to clarify the association between ALDH1 expression and clinical outcomes. Results: Ten eligible publications with 1836 patients were included. The analysis of these data showed that ALDH1 expression was highly correlated with lymph node metastasis (pooled OR = 1.45, 95% CI: 1.04-2.02, P = 0.027), decreased overall survival (pooled RR: 2.25, 95% CI: 1.15-4.41, P = 0.019), and decreased disease-free survival (pooled RR: 1.63, 95% CI: 1.01-2.64, P = 0.047). Conclusion: Patients with ALDH1-positive lung cancer had poor prognosis, which was associated with common clinicopathological poor prognostic factors. PMID:25932135

  6. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men

    PubMed Central

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-01-01

    ABSTRACT Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35–69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (Ptrend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (Ptrend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (Ptrend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  7. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate

  8. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    PubMed Central

    Koch, Claudia; Eber, Fabian J; Azucena, Carlos; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas; Bittner, Alexander M; Jeske, Holger; Gliemann, Hartmut; Eiben, Sabine; Geiger, Fania C

    2016-01-01

    monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'. PMID:27335751

  9. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies.

    PubMed

    Koch, Claudia; Eber, Fabian J; Azucena, Carlos; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas; Bittner, Alexander M; Jeske, Holger; Gliemann, Hartmut; Eiben, Sabine; Geiger, Fania C; Wege, Christina

    2016-01-01

    monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'. PMID:27335751

  10. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  11. Guinea pig phospholipase B, identification of the catalytic serine and the proregion involved in its processing and enzymatic activity.

    PubMed

    Nauze, Michel; Gonin, Lauriane; Chaminade, Brigitte; Perès, Christine; Hullin-Matsuda, Francoise; Perret, Bertrand; Chap, Hugues; Gassama-Diagne, Ama

    2002-11-15

    Guinea pig phospholipase B (GPPLB) is a glycosylated ectoenzyme of intestinal brush border membrane. It displays a broad substrate specificity and is activated by trypsin cleavage. The primary sequence contains four tandem repeat domains (I to IV) and several serines in lipase consensus sequences. We used site-directed mutagenesis to demonstrate that only the serine 399 present in repeat II is responsible for the various enzymatic activities of GPPLB. Furthermore, we characterized for the first time the retinyl esterase activity of the enzyme. We also constructed and expressed in COS-7 cells, an NH(2)-terminal repeat I deletion mutant which was detected at a very low level by immunoblot. However, confocal microscopy study showed a strong intracellular accumulation with a weak membrane expression of the mutated protein, indicating a role of the NH(2)-terminal repeat I in the processing of GPPLB. Nevertheless, the Western blot-detected protein presented a glycosylation and trypsin sensitivity patterns similar to wild type PLB. The mutant is also fully active without trypsin treatment, in contrast to native enzyme. Thus, we propose a structural model for GPPLB, in which the repeat I constitutes a lid covering the active site and impairing enzymatic activity, its removal by trypsin leading to an active protein. PMID:12194976

  12. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity.

    PubMed

    Guo, Shihui; Skala, Wolfgang; Magdolen, Viktor; Briza, Peter; Biniossek, Martin L; Schilling, Oliver; Kellermann, Josef; Brandstetter, Hans; Goettig, Peter

    2016-01-01

    Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology. PMID:26582203

  13. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost.

    PubMed

    Wang, Xiaojuan; Zhang, Wenwei; Gu, Jie; Gao, Hua; Qin, Qingjun

    2016-10-01

    Aerobic composting is an effective method for the disposal and utilization of kitchen waste. However, the addition of a bulking agent is necessary during kitchen waste composting because of its high moisture content and low C/N ratio. In order to select a suitable bulking agent, we investigated the influence of leaf litter (LL), sawdust (SD), and wheat straw (WS) on the enzymatic activity, microbial community functional diversity, and maturity indices during the kitchen waste composting process. The results showed that the addition of WS yielded the highest maturity (the C/N ratio decreased from 25 to 13, T value = 0.5, and germination index (GI) = 114.7%), whereas the compost containing SD as a bulking agent had the lowest maturity (GI = 32.4%). The maximum cellulase and urease activities were observed with the WS treatment on day 8, whereas the SD treatment had the lowest cellulase activity and the LL treatment had the lowest urease activity. The compost temperature and microbial activity (as the average well color development) showed that bulking the composts with SD prolonged the composting process. The diversity index based on the community-level physiological profile showed that the composts bulked with LL and WS had greater microbial community functional diversity compared with those bulked with SD. Thus, the maturity indexes and enzymatic activities suggest that WS is a suitable bulking agent for use in kitchen waste composting systems. PMID:26895274

  14. Enzymatic Activity of the Soybean Ecto-Apyrase GS52 Is Essential for Stimulation of Nodulation1[W][OA

    PubMed Central

    Tanaka, Kiwamu; Nguyen, Cuong T.; Libault, Marc; Cheng, Jianlin; Stacey, Gary

    2011-01-01

    Nitrogen is an essential nutrient for plant growth. In the Rhizobium-legume symbiosis, root nodules are the sites of bacterial nitrogen fixation, in which atmospheric nitrogen is converted into a form that plants can utilize. While recent studies suggested an important role for the soybean (Glycine max) ecto-apyrase GS52 in rhizobial root hair infection and root nodule formation, precisely how this protein impacts the nodulation process remains undetermined. In this study, the biochemical characteristics of the GS52 enzyme were investigated. Computer modeling of the GS52 apyrase structure identified key amino acid residues important for catalytic activity, which were subsequently mutagenized. Although the GS52 enzyme exhibited broad substrate specificity, its activity on pyrimidine nucleotides and diphosphate nucleotides was significantly higher than on ATP. This result was corroborated by structural modeling of GS52, which predicted a low specificity for the adenine base within the substrate-binding pocket of the enzyme. The wild-type enzyme and its inactive mutant forms were expressed in soybean roots in order to evaluate the importance of GS52 enzymatic activity for nodulation. The results indicated a clear correlation between GS52 enzymatic activity and nodule number. Altogether, our study indicates that the catalytic activity of the GS52 apyrase, likely acting on extracellular nucleotides, is critical for rhizobial infection and nodulation. PMID:21346172

  15. Predictive modelling of growth and measurement of enzymatic synthesis and activity by a cocktail of selected Enterobacteriaceae and Aeromonas hydrophila.

    PubMed

    Braun, P; Sutherland, J P

    2005-11-25

    The possibility was examined of developing a predictive model that would predict food spoilage by combining microbial growth (increase in cellular number) with extracellular enzymatic activity of a cocktail of five strains of Enterobacteriaceae: Escherichia coli, Enterobacter agglomerans, Klebsiella oxytoca, Klebsiella pneumoniae and Proteus vulgaris and one Aeromonas hydrophila strain. Estimations of growth and enzyme activity were made within a three-dimensional matrix of conditions: temperature 2-20 degrees C, pH value 4.0-7.5 and water activity (a(w)) 0.95-0.995. A mathematical model was constructed which predicted growth based on increases in cell number. However, although notable effects of extracellular lipases and proteases were detected, it was not possible to model enzymatic activity and prepare a combined model because the data did not follow the characteristic profile that would allow curve-fitting. Nevertheless, the model for microbial growth and information relating to enzyme activity will be made freely available in a database on the internet. PMID:16154655

  16. Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii.

    PubMed

    Pedri, Z C; Lozano, L M S; Hermann, K L; Helm, C V; Peralta, R M; Tavares, L B B

    2015-11-01

    Lignocellulose is the most abundant environmental component and a renewable organic resource in soil. There are some filamentous fungi which developed the ability to break down and use cellulose, hemicellulose and lignin as an energy source. The objective of this research was to analyze the effect of three nitrogen resources (ammonium sulfate, saltpetre, soybean) in the holocellulolitic activity of Lentinula edodes EF 50 using as substrate sawdust E. benthamii. An experimental design mixture was applied with repetition in the central point consisting of seven treatments (T) of equal concentrations of nitrogen in ammonium sulfate, potassium nitrate and soybean. The enzymatic activity of avicelase, carboxymetilcellulase, β-glucosidase, xylanases and manganese peroxidase was determined. The humidity, pH, water activity (aw) and qualitative analysis of mycelial growth in 8 times of cultivation were evaluated. The results showed negative effect on enzyme production in treatments with maximum concentration of ammonium sulfate and potassium nitrate. The treatments with cooked soybean flour expressed higher enzymatic activities in times of 3, 6 and 9 days of culture, except in the activity of manganese peroxidase. The highest production was observed in the treatment with ammonium sulfate, and soybean (83.86 UI.L-1) at 20 days of cultivation. PMID:26675911

  17. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    SciTech Connect

    Doherty, R.E.; Haywood-Small, S.L.; Sisley, K.; Cross, N.A.

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Isolated ALDH{sup Hi} PC3 cells preferentially form primitive holoclone-type colonies. Black-Right-Pointing-Pointer Primitive holoclone colonies are predominantly ALDH{sup Lo} but contain rare ALDH{sup Hi} cells. Black-Right-Pointing-Pointer Holoclone-forming cells are not restricted to the ALDH{sup Hi} population. Black-Right-Pointing-Pointer ALDH phenotypic plasticity occurs in PC3 cells (ALDH{sup Lo} to ALDH{sup Hi} and vice versa). Black-Right-Pointing-Pointer ALDH{sup Hi} cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDH{sup Lo} cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDH{sup Hi} population, or whether all ALDH{sup Hi} cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDH{sup Hi} cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDH{sup Hi} cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDH{sup Lo} population can develop ALDH{sup Hi} populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDH{sup Hi} cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in

  18. JNK1/2 regulate Bid by direct phosphorylation at Thr59 in response to ALDH1L1

    PubMed Central

    Prakasam, A; Ghose, S; Oleinik, N V; Bethard, J R; Peterson, Y K; Krupenko, N I; Krupenko, S A

    2014-01-01

    BH3 interacting-domain death agonist (Bid) is a BH3-only pro-apoptotic member of the Bcl-2 family of proteins. Its function in apoptosis is associated with the proteolytic cleavage to the truncated form tBid, mainly by caspase-8. tBid translocates to mitochondria and assists Bax and Bak in induction of apoptosis. c-Jun N-terminal kinase (JNK)-dependent alternative processing of Bid to jBid was also reported. We have previously shown that the folate stress enzyme 10-formyltetrahydrofolate dehydrogenase (ALDH1L1) activates JNK1 and JNK2 in cancer cells as a pro-apoptotic response. Here we report that in PC-3 prostate cancer cells, JNK1/2 phosphorylate Bid at Thr59 within the caspase cleavage site in response to ALDH1L1. In vitro, all three JNK isoforms, JNK 1–3, phosphorylated Thr59 of Bid with JNK1 being the least active. Thr59 phosphorylation protected Bid from cleavage by caspase-8, resulting in strong accumulation of the full-length protein and its translocation to mitochondria. Interestingly, although we did not observe jBid in response to ALDH1L1 in PC-3 cells, transient expression of Bid mutants lacking the caspase-8 cleavage site resulted in strong accumulation of jBid. Of note, a T59D mutant mimicking constitutive phosphorylation revealed more profound cleavage of Bid to jBid. JNK-driven Bid accumulation had a pro-apoptotic effect in our study: small interfering RNA silencing of either JNK1/2 or Bid prevented Bid phosphorylation and accumulation, and rescued ALDH1L1-expressing cells. As full-length Bid is a weaker apoptogen than tBid, we propose that the phosphorylation of Bid by JNKs, followed by the accumulation of the full-length protein, delays attainment of apoptosis, and allows the cell to evaluate the stress and make a decision regarding the response strategy. This mechanism perhaps can be modified by the alternative cleavage of phospho-T59 Bid to jBid at some conditions. PMID:25077544

  19. Inhibitory effect of pinostrobin from Renealmia alpinia, on the enzymatic and biological activities of a PLA2.

    PubMed

    Gómez-Betancur, Isabel; Pereañez, Jaime Andrés; Patiño, Arley Camilo; Benjumea, Dora

    2016-08-01

    Pinostrobin is a flavanone isolated from Renealmia alpinia, a plant used in folk medicine to treat snakebites. We tested the inhibitory ability of pinostrobin on the enzymatic, anticoagulant, myotoxic and edema-inducing activities of a PLA2 isolated from Crotalus durissus cumanensis venom. The compound displayed IC50 values of 1.76mM and 1.85mM (95% Confidence intervals: 1.34-2.18 and 1.21-2.45) on the PLA2 enzymatic activity, when either aggregated or monodispersed substrates were used, respectively. When mice were injected with PLA2 preincubated with 0.4, 2.0 and 4.0mM of pinostrobin, myotoxic activity induced by the PLA2 was inhibited up to 87%. Nevertheless, these values decreased up to 56% when the pinostrobin was injected into muscle after PLA2. Pinostrobin inhibited edema-forming and anticoagulant activities of the PLA2. In order to have insights on the mode of action of pinostrobin, intrinsic fluorescence and ultraviolet studies were performed. Results suggest that pinostrobin interacts directly with the PLA2. These findings were supported by molecular docking results, which suggested that pinostrobin forms hydrogen bonds with residues His48 and Asp49 of PLA2, besides, a π-π stacking interactions with those of residues Phe5 and Trp31, and rings C of flavanone and Tyr52 of the toxin. PMID:27109758

  20. Protein expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 in young patients with oral squamous cell carcinoma.

    PubMed

    Kaminagakura, E; Caris, A; Coutinho-Camillo, C; Soares, F A; Takahama-Júnior, A; Kowalski, L P

    2016-06-01

    The purpose of this study was to evaluate the expression of the enzymes involved in the biotransformation of tobacco and alcohol. A study group of 41 young patients (≤40 years old) with oral squamous cell carcinoma (OSCC) was compared to 59 control subjects (≥50 years old) with tumours of similar clinical stages and topographies. The immunohistochemical expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 was evaluated using the tissue microarray technique. There was a predominance of males, smokers, and alcohol drinkers in both groups. Most tumours were located in the tongue (43.9% vs. 50.8%), were well-differentiated (63.4% vs. 56.6%), and were in clinical stages III or IV (80.5% vs. 78.0%). No difference was observed in the expression of CYP1A1, ALDH1A1, or ALDH2 between the two groups. CYP1A1 and ALDH2 protein expression had no influence on the prognosis. The immunoexpression of CYP1B1 was significantly higher in the control group than in the young group (P<0.001). The 5-year relapse-free survival was better in patients with CYP1B1 overexpression vs. protein underexpression (64% vs. 25%; P<0.05), regardless of age. ALDH1A1 expression improved relapse-free survival in young patients. These results suggest a lower risk of recurrence with increased metabolism of carcinogens by CYP1B1. Further studies involving other genes and proteins are necessary to complement the results of this research. PMID:26944893

  1. Modeling-Dependent Protein Characterization of the Rice Aldehyde Dehydrogenase (ALDH) Superfamily Reveals Distinct Functional and Structural Features

    PubMed Central

    Kotchoni, Simeon O.; Jimenez-Lopez, Jose C.; Gao, Dongying; Edwards, Vincent; Gachomo, Emma W.; Margam, Venu M.; Seufferheld, Manfredo J.

    2010-01-01

    The completion of the rice genome sequence has made it possible to identify and characterize new genes and to perform comparative genomics studies across taxa. The aldehyde dehydrogenase (ALDH) gene superfamily encoding for NAD(P)+-dependent enzymes is found in all major plant and animal taxa. However, the characterization of plant ALDHs has lagged behind their animal- and prokaryotic-ALDH homologs. In plants, ALDHs are involved in abiotic stress tolerance, male sterility restoration, embryo development and seed viability and maturation. However, there is still no structural property-dependent functional characterization of ALDH protein superfamily in plants. In this paper, we identify members of the rice ALDH gene superfamily and use the evolutionary nesting events of retrotransposons and protein-modeling–based structural reconstitution to report the genetic and molecular and structural features of each member of the rice ALDH superfamily in abiotic/biotic stress responses and developmental processes. Our results indicate that rice-ALDHs are the most expanded plant ALDHs ever characterized. This work represents the first report of specific structural features mediating functionality of the whole families of ALDHs in an organism ever characterized. PMID:20634950

  2. Aldh2 knockout mice were more sensitive to DNA damage in leukocytes due to ethyl tertiary butyl ether exposure.

    PubMed

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2011-01-01

    To clarify the genotoxicity of ethyl tertiary butyl ether (ETBE), a gasoline additive, male and female C57BL/6 mice of Aldh2+/+ and Aldh2-/- genotypes, aged 8 wk, were exposed to 0, 500, 1,750, or 5,000 ppm ETBE for 6 h/day, 5 d per week for 13 wk. DNA damage in leukocytes was measured by the alkaline comet assay and expressed quantitatively as Tail Intensity (TI). For male mice, TI was significantly higher in all three groups exposed to ETBE than in those without exposure within Aldh2-/- mice, whereas within Aldh2+/+ mice, TI increased only in those exposed to 5,000 ppm of ETBE as compared with mice without exposure. For female mice, a significant increase in TI values was observed in the group exposed to 5,000 ppm of ETBE as compared with those without exposure within Aldh2-/- mice; TI in Aldh2-/- mice exposed to 1,750 and 5,000 ppm was significantly higher than in Aldh2+/+ mice without exposure. TI did not significantly increase in any of the groups exposed to ETBE within female Aldh2+/+ mice. Based on the results we suggest that Aldh2-/- mice are more sensitive to DNA damage caused by ETBE than Aldh2+/+ mice and that males seem more susceptible to this effect than females. PMID:21372431

  3. Enzymatic Inhibitory Activity and Trypanocidal Effects of Extracts and Compounds from Siphoneugena densiflora O. Berg and Vitex polygama Cham

    PubMed Central

    Gallo, Margareth B. C.; Marques, Anna Sylvia F.; Vieira, Paulo C.; da Silva, Maria Fátima das G. F.; Fernandes, João B.; Silva, Márcio; Guido, Rafael V.; Oliva, Glaucius; Thiemann, Otávio H.; Albuquerque, Sérgio; Fairlamb, Alan H.

    2012-01-01

    Hexanic, methanolic, and hydroalcoholic extracts, and 34 isolated compounds from Vitex polygama Cham. (Lamiaceae, formely Verbenaceae) and Siphoneugena densiflora O. Berg (Myrtaceae) were screened for their trypanocidal effects on bloodstream forms of Trypanosoma cruzi and T. brucei, as well as for their enzymatic inhibitory activities on glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) and trypanothione reductase (TR) enzymes from T. cruzi and adeninephosphoribosyl transferase (APRT) enzyme from Leishmania tarentolae. In general, polar extracts displayed strong effects and some of the tested compounds have shown good results in comparison to positive controls of the bioassays. PMID:18669023

  4. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies

    PubMed Central

    Andjelković, Ana; Oliveira, Marcos T.; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K.; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T.

    2015-01-01

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression. PMID:26672986

  5. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation

    PubMed Central

    Magnusson, Maria K; Brynjólfsson, Siggeir F; Dige, Anders; Uronen-Hansson, Heli; Börjesson, Lars G.; Bengtsson, Jonas L.; Gudjonsson, Sigurdur; Öhman, Lena; Agnholt, Jørgen; Sjövall, Henrik; Agace, William W; Wick, Mary Jo

    2015-01-01

    Disruption of the homeostatic balance of intestinal dendritic cells (DCs) and macrophages (MQs) may contribute to inflammatory bowel disease. We characterized DC and MQ populations, including their ability to produce retinoic acid, in clinical material encompassing Crohn’s ileitis, Crohn’s colitis and ulcerative colitis (UC) as well as mesenteric lymph nodes (MLNs) draining these sites. Increased CD14+DRint MQs characterized inflamed intestinal mucosa while total CD141+ or CD1c+ DCs numbers were unchanged. However, CD103+ DCs, including CD141+CD103+ and CD1c+CD103+ DCs, were reduced in inflamed intestine. In MLNs, two CD14− DC populations were identified: CD11cintHLADRhi and CD11chiHLADRint cells. A marked increase of CD11chiHLADRint DC, particularly DRintCD1c+ DCs, characterized MLNs draining inflamed intestine. The fraction of DC and MQ populations expressing aldehyde dehydrogenase (ALDH) activity, reflecting retinoic acid synthesis, in UC colon, both in active disease and remission, were reduced compared to controls and inflamed Crohn’s colon. In contrast, no difference in the frequency of ALDH+ cells among blood precursors was detected between UC patients in remission and non-inflamed controls. This suggests that ALDH activity in myeloid cells in the colon of UC patients, regardless of whether the disease is active or in remission, is influenced by the intestinal environment. PMID:26080709

  6. ALDH18A1-related cutis laxa syndrome with cyclic vomiting.

    PubMed

    Nozaki, Fumihito; Kusunoki, Takashi; Okamoto, Nobuhiko; Yamamoto, Yuto; Miya, Fuyuki; Tsunoda, Tatsuhiko; Kosaki, Kenjiro; Kumada, Tomohiro; Shibata, Minoru; Fujii, Tatsuya

    2016-08-01

    Cutis laxa (CL) syndromes are connective tissue disorders characterized by redundant, sagging, inelastic and wrinkled skin, with organ involvement. Here, we describe a patient with ALDH18A1-related CL who developed cyclic vomiting. The patient was a 12-year-old boy who presented with poor postnatal growth, hypotonia, short stature, joint hyperlaxity, microcephaly, strabismus, bilateral cataracts, facial dysmorphism and severe mental retardation. Bone radiographs showed osteopenia and osteoporosis, and magnetic resonance angiography showed marked kinking and tortuosity of the brain vessels. These findings were clinically compatible with ALDH18A1-related CL. Molecular analysis revealed a de novo heterozygous mutation (p.R138Q) in ALDH18A1. No mutations were found in PYCR1 gene. The patient developed cyclic vomiting with decreased blood levels of ornithine, citrulline, arginine and proline without hyperammonemia and other hypoaminoacidemias were also found. ALDH18A1 encodes Δ(1)-pyrroline-5-carboxylate synthase, which is related to the biosynthesis of ornithine, citrulline, arginine, and proline. Cyclic vomiting has never been reported in other ALDH18A1-related CL patients. This is the first case report of ALDH18A1-related CL with cyclic vomiting associated with amino acid abnormalities. PMID:26829900

  7. Transcriptional Co-activator LEDGF Interacts with Cdc7-Activator of S-phase Kinase (ASK) and Stimulates Its Enzymatic Activity*

    PubMed Central

    Hughes, Siobhan; Jenkins, Victoria; Dar, Mohd Jamal; Engelman, Alan; Cherepanov, Peter

    2010-01-01

    Lens epithelium-derived growth factor (LEDGF) is an important co-factor of human immunodeficiency virus DNA integration; however, its cellular functions are poorly characterized. We now report identification of the Cdc7-activator of S-phase kinase (ASK) heterodimer as a novel interactor of LEDGF. Both kinase subunits co-immunoprecipitated with endogenous LEDGF from human cell extracts. Truncation analyses identified the integrase-binding domain of LEDGF as essential and minimally sufficient for the interaction with Cdc7-ASK. Reciprocally, the interaction required autophosphorylation of the kinase and the presence of 50 C-terminal residues of ASK. The kinase phosphorylated LEDGF in vitro, with Ser-206 being the major target, and LEDGF phosphorylated at this residue could be detected during S phase of the cell cycle. LEDGF potently stimulated the enzymatic activity of Cdc7-ASK, increasing phosphorylation of MCM2 in vitro by more than 10-fold. This enzymatic stimulation as well as phosphorylation of LEDGF depended on the protein-protein interaction. Intriguingly, removing the C-terminal region of ASK, involved in the interaction with LEDGF, resulted in a hyperactive kinase. Our results indicate that the interaction with LEDGF relieves autoinhibition of Cdc7-ASK kinase, imposed by the C terminus of ASK. PMID:19864417

  8. Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice

    PubMed Central

    Kang, Hee; Lee, Mi-Gi; Lee, Jae-Kang; Choi, Yong-Hyun; Choi, Yong-Seok

    2016-01-01

    Wheat bran is a rich source of dietary fiber, of which arabinoxylan is the most abundant non-starch polysaccharide. Arabinoxylan has been known to exert in vivo immunological activities. Based on prior findings, we pretreated wheat bran with enzymatic hydrolysis to increase the release of soluble arabinoxylan and investigated whether oral administration of wheat bran altered macrophage activity in a mouse model. After four weeks of treatment, we isolated peritoneal macrophages for phagocytic receptor analysis and lipopolysaccharide (LPS)-induced inflammatory changes. In the second experiment, mice given wheat bran were intraperitoneally stimulated with LPS and serum levels of pro- and anti-inflammatory cytokines were determined. The expression of SRA and CD36, and phagocytic activity increased (p < 0.05, respectively). Ex vivo stimulation of macrophages by LPS resulted in reduced surface expression of CD40 (p < 0.05) and decreased production of nitric oxide (p < 0.005), tumor necrosis factor (TNF)-α (p < 0.005), interleukin (IL)-6 (p < 0.01), and IL-12 (p < 0.05). Mice treated with wheat bran showed decreased levels of serum TNF-α and IL-6 (p < 0.05, respectively) and an increased level of serum anti-inflammatory IL-10 (p < 0.05) in response to intraperitoneal LPS. Enzymatically-processed wheat bran boosts macrophage phagocytic capacity possibly through up-regulation of scavenger receptors and confers anti-inflammatory effects, indicating its potential as an immuno-enhancing functional food. PMID:27043618

  9. Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid.

    PubMed

    Szczepaniak, Krzysztof; Worch, Remigiusz; Grzyb, Joanna

    2013-05-15

    Ferredoxin:NADP(+) oxidoreductase (FNR) is a plant and cyanobacterial photosynthetic enzyme, also found in non-photosynthetic tissues, where it is involved in redox reactions of biosynthetic pathways. In vivo it transfers electrons to nicotinamide adenine dinucleotide phosphate (NADP(+)), forming its reduced version, NADPH, while in vitro it can also use NADPH to reduce several substrates, such as ferricyanide, various quinones and nitriles. As an oxidoreductase catalyzing reaction of a broad range of substrates, FNR may be used in biotechnological processes. Quantum dots are semiconductor nanocrystals of a few to several nanometers diameter, having very useful luminescent properties. We present the spectroscopic and functional characteristics of a covalent conjugation of FNR and CdSe/ZnS quantum dots. Two types of quantum dots, of different diameter and emission maximum (550 and 650 nm), were used for comparison. Steady-state fluorescence and gel electrophoresis confirmed efficient conjugation, while fluorescence correlation spectroscopy (FCS) allowed for determination of the conjugates' radii. The nanohybrids sustained enzymatic activity; however, changes in maximal reaction rates and Michaelis constant were found. Detailed analysis of the kinetic parameters showed that the changes in the enzyme activity depend on the substrate used for activity measurement but also on the size of the quantum dots. The presented nanohybrids, as the first example using plant and photosynthetic enzyme as a protein partner, may became a tool to study photosynthesis as well as other biosynthetic and biotechnological processes, involving enzymatically catalyzed electron transfer. PMID:23611948

  10. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    PubMed Central

    2012-01-01

    Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran) and their growth ability was checked in potato dextrose agar (PDA) media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase) was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w). Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities. PMID:23369665

  11. Contrasting effects of untreated textile wastewater onto the soil available nitrogen-phosphorus and enzymatic activities in aridisol.

    PubMed

    Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Yasmeen, Tahira; Buttler, Alexandre; Garcıa-Gil, Juan Carlos; Roohi, Mahnaz; Rasool, Akhtar

    2016-02-01

    Water shortage and soil qualitative degradation are significant environmental problems in arid and semi-arid regions of the world. The increasing demand for water in agriculture and industry has resulted in the emergence of wastewater use as an alternative in these areas. Textile wastewater is produced in surplus amounts which poses threat to the environment as well as associated flora and fauna. A 60-day incubation study was performed to assess the effects of untreated textile wastewater at 0, 25, 50, 75, and 100% dilution levels on the physico-chemical and some microbial and enzymatic properties of an aridisol soil. The addition of textile wastewater provoked a significant change in soil pH and electrical conductivity and soil dehydrogenase and urease activities compared to the distilled-water treated control soil. Moreover, compared to the control treatment, soil phosphomonoesterase activity was significantly increased from 25 to 75% application rates, but decreased at 100% textile wastewater application rate. Total and available soil N contents increased significantly in response to application of textile wastewater. Despite significant increases in the soil total P contents after the addition of textile wastewater, soil available P content decreased with increasing concentration of wastewater. Changes in soil nutrient contents and related enzymatic activities suggested a dynamic match between substrate availability and soil N and P contents. Aridisols have high fixation and low P availability, application of textile wastewater to such soils should be considered only after careful assessment. PMID:26787271

  12. Enzymatic degradation of aromatic hydrocarbon intermediates using a recombinant dioxygenase immobilized onto surfactant-activated carbon nanotube.

    PubMed

    Suma, Yanasinee; Lim, Heejun; Kwean, Oh Sung; Cho, Suyeon; Yang, Junwon; Kim, Yohan; Kang, Christina S; Kim, Han S

    2016-06-01

    This study examined the enzymatic decomposition of aromatic hydrocarbon intermediates (catechol, 4-chlorocatechol, and 3-methylcatechol) using a dioxygenase immobilized onto single-walled carbon nanotube (SWCNT). The surfaces of SWCNTs were activated with surfactants. The dioxygenase was obtained by recombinant technique: the corresponding gene was cloned from Arthrobacter chlorophenolicus A6, and the enzyme was overexpressed and purified subsequently. The enzyme immobilization yield was 62%, and the high level of enzyme activity was preserved (60-79%) after enzyme immobilization. Kinetic analyses showed that the substrate utilization rates and the catalytic efficiencies of the immobilized enzyme for all substrates (target aromatic hydrocarbon intermediates) tested were similar to those of the free enzyme, indicating that the loss of enzyme activity was minimal during enzyme immobilization. The immobilized enzyme was more stable than the free enzyme against abrupt changes in pH, temperature, and ionic strength. Moreover, it retained high enzyme activity even after repetitive use. PMID:26810145

  13. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  14. A Light-Activated Microheater for the Remote Control of Enzymatic Catalysis.

    PubMed

    Cao, Yuanyuan; Wang, Zhen; Liao, Shenglong; Wang, Jian; Wang, Yapei

    2016-01-18

    The remote control of enzymatic catalysis is of significant importance in disease treatment and industrial applications. Herein, we designed a microheater composed of a porous polylactic acid (PLA) matrix and polydopamine (PDA) with notable photothermal conversion capability. Starch hydrolysis, catalyzed by using α-amylase, was accelerated in the presence of the microheater under illumination with near-infrared light or natural sunlight at room temperature. Additionally, the methodology was extended to the preparation of microwave-absorbing materials with the deposition of polyaniline on porous PLA matrix. The porous morphology improves the energy-conversion efficiency. PMID:26603499

  15. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying

    2015-10-15

    The feasibility of combined process of composite enzymatic treatment and chemical flocculation with inorganic salt coagulants was investigated in this study. The evolution of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was deteriorated due to release of a large amount of biopolymers after enzymatic treatment. The change in EPS followed the pseudo-first-order kinetic equation well under enzymatic treatment. The feeding modes of enzymes had a significant influence on sludge lysis efficiency under compound enzymes treatment. Alpha amylase + protease was more effective in solubilization than other two addition modes (protease + α-amylase or simultaneous addition). The sludge floc re-formed and macromolecule biopolymers were effectively removed through coagulation process. At the same time, both of filtration rate and cake solid content of sludge treated with enzymes were improved with increasing dosage of coagulants, and ferric iron (FeCl3) had better performance in sludge dewaterability enhancement than polyaluminium chloride (PACl). In addition, sludge filtration property was slightly deteriorated, while the cake moisture reduction was favored at the optimal dosage of inorganic coagulants. PMID:26196306

  16. Amifostine Induces Antioxidant Enzymatic Activities in Normal Tissues and a Transplantable Tumor That Can Affect Radiation Response

    SciTech Connect

    Grdina, David J. Murley, Jeffrey S.; Kataoka, Yasushi; Baker, Kenneth L.; Kunnavakkam, Rangesh; Coleman, Mitchell C.; Spitz, Douglas R.

    2009-03-01

    Purpose: To determine whether amifostine can induce elevated manganese superoxide dismutase (SOD2) in murine tissues and a transplantable SA-NH tumor, resulting in a delayed tumor cell radioprotective effect. Methods and Materials: SA-NH tumor-bearing C3H mice were treated with a single 400 mg/kg or three daily 50 mg/kg doses of amifostine administered intraperitoneally. At selected time intervals after the last injection, the heart, liver, lung, pancreas, small intestine, spleen, and SA-NH tumor were removed and analyzed for SOD2, catalase, and glutathione peroxidase (GPx) enzymatic activity. The effect of elevated SOD2 enzymatic activity on the radiation response of SA-NH cells was determined. Results: SOD2 activity was significantly elevated in selected tissues and a tumor 24 h after amifostine treatment. Catalase and GPx activities remained unchanged except for significant elevations in the spleen. GPx was also elevated in the pancreas. SA-NH tumor cells exhibited a twofold elevation in SOD2 activity and a 27% elevation in radiation resistance. Amifostine administered in three daily fractions of 50 mg/kg each also resulted in significant elevations of these antioxidant enzymes. Conclusions: Amifostine can induce a delayed radioprotective effect that correlates with elevated levels of SOD2 activity in SA-NH tumor. If limited to normal tissues, this delayed radioprotective effect offers an additional potential for overall radiation protection. However, amifostine-induced elevation of SOD2 activity in tumors could have an unanticipated deleterious effect on tumor responses to fractionated radiation therapy, given that the radioprotector is administered daily just before each 2-Gy fractionated dose.

  17. Aerobic and anaerobic enzymatic activity of orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) from the Juan Fernandez seamounts area.

    PubMed

    Saavedra, L M; Quiñones, R A; Gonzalez-Saldía, R R; Niklitschek, E J

    2016-06-01

    The aerobic and anaerobic enzymatic activity of two important commercial bathypelagic species living in the Juan Fernández seamounts was analyzed: alfonsino (Beryx splendens) and orange roughy (Hoplostethus atlanticus). These seamounts are influenced by the presence of an oxygen minimum zone (OMZ) located between 160 and 250 m depth. Both species have vertical segregation; alfonsino is able to stay in the OMZ, while orange roughy remains at greater depths. In this study, we compare the aerobic and anaerobic capacity of these species, measuring the activity of key metabolic enzymes in different body tissues (muscle, heart, brain and liver). Alfonsino has higher anaerobic potential in its white muscle due to greater lactate dehydrogenase (LDH) activity (190.2 μmol NADH min(-1) g ww(-1)), which is related to its smaller body size, but it is also a feature shared with species that migrate through OMZs. This potential and the higher muscle citrate synthase and electron transport system activities indicate that alfonsino has greater swimming activity level than orange roughy. This species has also a high MDH/LDH ratio in its heart, brain and liver, revealing a potential capacity to conduct aerobic metabolism in these organs under prolonged periods of environmental low oxygen conditions, preventing lactic acid accumulation. With these metabolic characteristics, alfonsino may have increased swimming activity to migrate and also could stay for a period of time in the OMZ. The observed differences between alfonsino and orange roughy with respect to their aerobic and anaerobic enzymatic activity are consistent with their characteristic vertical distributions and feeding behaviors. PMID:26687132

  18. Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils

    PubMed Central

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2013-01-01

    The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of overexpression of salinity tolerant pea DNA helicase 45 (PDH45) gene on microbes and enzymatic activities in the rhizosphere soil of transgenic rice IR64 in presence and absence of salt stress in two different rhizospheric soils (New Delhi and Odisha, India). The diversity of the microbial community and soil enzymes viz., dehydrogenase, alkaline phosphatase, urease and nitrate reductase was assessed. The results revealed that there was no significant effect of transgene expression on rhizosphere soil of the rice plants. The isolated bacteria were phenotyped both in absence and presence of salt and no significant changes were found in their phenotypic characters as well as in their population. Overall, the overexpression of PDH45 in rice did not cause detectable changes in the microbial population, soil enzymatic activities and functional diversity of the rhizosphere soil microbial community. PMID:23733066

  19. Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation.

    PubMed

    Zhang, Guosong; Mao, Jianqiang; Liang, Fenfei; Chen, Jiawei; Zhao, Cheng; Yin, Shaowu; Wang, Li; Tang, Zhonglin; Chen, Shuqiao

    2016-05-01

    Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by fish with aquatic respiration. In order to evaluate the effects of hypoxia and reoxygenation on oxidative stress in fish, the mRNA and protein expression of SODs (Cu/Zn-SOD and Mn-SOD) as well as indices (CP, LPO and MDA) and enzymatic activities (SOD, CAT, GPx, GR and GST) were analyzed in liver and brain tissues of Pelteobagrus vachelli. Predominant expression of PvSOD2 was detected in heart, brain, and liver. In contrast, PvSOD1 was highly expressed in liver. Based on the expression patterns of above parameters, we inferred that brain tissue of P. vachelli under 0.7 mg/L degree of acute hypoxia condition could experience hypometabolic states or no suffering stress, but brain tissue has effective mechanisms to minimize or prevent oxidative stress during the transition from hypoxia to reoxygenation. Our results also demonstrated an increased expression of SODs and enzymatic activities for oxidative stress in liver under hypoxic conditions, which supports the hypothesis that anticipatory preparation takes place in order to deal with the encountered oxidative stress during the recovery from hypoxia as proposed by M. Hermes-Lima. Therefore, this study will provide a clue to better understand the action mode of antioxidant genes and enzymes under oxidative stress in fish. PMID:26945243

  20. Detection of endopeptidase activity and analysis of cleavage specificity using a radiometric solid-phase enzymatic assay

    SciTech Connect

    Jean, F.; Basak, A.; Chretien, M.; Lazure, C. , Quebec )

    1991-05-01

    A radiometric procedure to detect the presence of proteolytic enzymes and analyze their substrate specificity is described. The enzymatic activity is first measured by the release into solution of a radiolabeled reporter group from an immobilized peptidyl substrate. Two peptidyl substrates encompassing multiple cleavage sites, a derivative of Leu-enkephalin and a peptide related to the bait region of human {alpha} 2-macroglobulin, are prepared and linked via a spacer molecule to an insoluble support. The labeled peptides released are then separated by high-performance liquid chromatography. The position of the released peptides upon chromatography allows direct identification of the sites of cleavage. The assay, using a radioactive iodinated tyrosine residue as reporter group, is extremely sensitive (less than 0.02 pg/ml of trypsin), reproducible, and easy to perform while yielding unambiguous identification of the sites of cleavage. This assay can be used to detect the presence of enzymatic activities and/or of enzyme inhibitors. Furthermore, it can be easily adapted to detect from a variety of sources all four classes of enzymes known by using appropriate peptidyl substrate sequences, buffer, pH, and incubation conditions.

  1. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    PubMed Central

    Matsunaga, Satoko; Masaoka, Takashi; Sawasaki, Tatsuya; Morishita, Ryo; Iwatani, Yasumasa; Tatsumi, Masashi; Endo, Yaeta; Yamamoto, Naoki; Sugiura, Wataru; Ryo, Akihide

    2015-01-01

    Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR). The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) in the presence or absence of clinically used protease inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1. PMID:26583013

  2. Chromophoric dissolved organic matter and microbial enzymatic activity. A biophysical approach to understand the marine carbon cycle.

    PubMed

    Gonnelli, Margherita; Vestri, Stefano; Santinelli, Chiara

    2013-12-01

    This study reports the first information on extracellular enzymatic activity (EEA) combined with a study of DOM dynamics at the Arno River mouth. DOM dynamics was investigated from both a quantitative (dissolved organic carbon, DOC) and a qualitative (absorption and fluorescence of chromophoric DOM, CDOM) perspective. The data here reported highlight that the Arno River was an important source of both DOC and CDOM for this coastal area. CDOM optical properties suggested that terrestrial DOM did not undergo simple dilution at the river mouth but, other physical-chemical and biological processes were probably at work to change its molecular characteristics. This observation was further supported by the "potential" enzymatic activity of β-glucosidase (BG) and leucine aminopeptidase (LAP). Their Vmax values were markedly higher in the river water than in the seawater and their ratio suggested that most of the DOM used by microbes in the Arno River was polysaccharide-like, while in the seawater it was mainly protein-like. PMID:23850176

  3. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    SciTech Connect

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  4. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake.

    PubMed

    Li, Xu; Deng, Junlin; Shen, Shian; Li, Tian; Yuan, Ming; Yang, Ruiwu; Ding, Chunbang

    2015-09-01

    Seed cake protein (SCP) from Camellia oleifera was hydrolyzed by five commercial proteases (Flavorzyme, Trypsin, Neutrase, Papain, Alcalase). Amino acid composition, molecular weight distribution, antioxidant activity and functional property of the seed cake protein hydrolysates (SCPH) were investigated. Enzymatic hydrolysis improved protein solubility significantly but impaired the foaming and emulsifying property. Hydrolysate generated by alcalase had the highest hydrolysis degree (DH) and antioxidant activity, and displayed excellent protein solubility over wide range of pH, while hydrolysate prepared by flavorzyme showed better copper chelating capacity and emulsifying stability with low molecular weight distribution. Trypsin-treated SCPH showed better foaming property than original protein. The results indicated that enzyme type greatly influenced the molecular weight, functional property and antioxidant activity of SCPH. It was also found that electing appropriate protease and controlling the DH could be enhanced or reduced functional property according to actual applications. PMID:26344981

  5. ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma

    PubMed Central

    Tanaka, Kaori; Tomita, Hiroyuki; Hisamatsu, Kenji; Nakashima, Takayuki; Hatano, Yuichiro; Sasaki, Yoshiyuki; Osada, Shinji; Tanaka, Takuji; Miyazaki, Tatsuhiko; Yoshida, Kazuhiro; Hara, Akira

    2015-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1) is considered to be a cancer stem cell marker in several human malignancies. However, the role of ALDH1A1 in hepatocellular carcinoma (HCC) has not been well elucidated. In this study, we investigated the relationship between ALDH1A1 and clinicopathological findings and examined whether ALDH1A1 deserves to be a cancer stem cell marker in HCC. Sixty HCC samples obtained from surgical resection were collected for immunohistochemical (IHC) staining. Of these 60 samples, 47 samples of HCC tumorous and non-tumorous tissues were evaluated with qRT-PCR. There was no significant difference in the ALDH1A1-mRNA level between tumorous and non-tumorous tissues. Tumorous ALDH1A1-mRNA level had no relationship with the clinicopathological features. Immunoreactivity of ALDH1A1 was classified into two groups based on the percentage of ALDH1A1-overexpressing cells. The ALDH1A1-high group was significantly associated with low serum levels of α-fetoprotein, small tumor diameter, very little lymphovascular invasion, more differentiated pathology and good stage. The ALDH1A1-high group showed more favorable prognosis for recurrence-free survival. In double-staining IHC, ALDH1A1 was not co-expressed with BMI1, EpCAM, CD13, CD24, CD90 and CD133, which reported as cancer stem cell markers in HCC. In conclusion, ALDH1A1-overexpressing cells could appear to be differentiated cells rather than cancer stem cells in HCC. PMID:26160842

  6. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.

    PubMed

    Ohmae, Eiji; Miyashita, Yurina; Tate, Shin-Ichi; Gekko, Kunihiko; Kitazawa, Soichiro; Kitahara, Ryo; Kuwajima, Kunihiro

    2013-12-01

    To investigate the contribution of solvent environments to the enzymatic function of Escherichia coli dihydrofolate reductase (DHFR), the salt-, pH-, and pressure-dependence of the enzymatic function of the wild-type protein were compared with those of the active-site mutant D27E in relation to their structure and stability. The salt concentration-dependence of enzymatic activity indicated that inorganic cations bound to and inhibited the activity of wild-type DHFR at neutral pH. The BaCl2 concentration-dependence of the (1)H-(15)N HSQC spectra of the wild-type DHFR-folate binary complex showed that the cation-binding site was located adjacent to the Met20 loop. The insensitivity of the D27E mutant to univalent cations, the decreased optimal pH for its enzymatic activity, and the increased Km and Kd values for its substrate dihydrofolate suggested that the substrate-binding cleft of the mutant was slightly opened to expose the active-site side chain to the solvent. The marginally increased fluorescence intensity and decreased volume change due to unfolding of the mutant also supported this structural change or the modified cavity and hydration. Surprisingly, the enzymatic activity of the mutant increased with pressurization up to 250MPa together with negative activation volumes of -4.0 or -4.8mL/mol, depending on the solvent system, while that of the wild-type was decreased and had positive activation volumes of 6.1 or 7.7mL/mol. These results clearly indicate that the insertion of a single methylene at the active site could substantially change the enzymatic reaction mechanism of DHFR, and solvent environments play important roles in the function of this enzyme. PMID:24140567

  7. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindío, Colombia)].

    PubMed

    Chaparro, Deisy Fernanda; Rosas, Diana Carolina; Varela, Amanda

    2009-12-31

    White rot fungi (Ascomycota and Basidiomycota) were collected on fallen trunks with different decay stages, in a subandean forest (La Montaña del Ocaso nature reserve), and it was evaluated their ligninolitic activity. They were cultured on malt extract agar. Then it was performed semiquantitative tests for laccase and cellobiose dehydrogenase (CDH) activity using ABTS and DCPIP as enzymatic inducers. Based on the results of these tests, the fungi with higher activities from trunks with different decay stages were selected: Cookeina sulcipes (for stage 1), a fungus from the family Corticiaceae (for stage 2), Xylaria polymorpha (for stage 3) and Earliella sp. (for stage 4). A fermentation was performed at 28 degrees C, during 11 days, in a rotatory shaker at 150 rpm. Biomass, glucose, proteins and enzyme activities measurements were performed daily. The fungi that were in the trunks with decay states from 1 to 3, showed higher laccase activity as the state of decay increased. A higher DCH activity was also associated with a higher. Also, there was a positive relationship between both enzymes' activities. Erliella was the fungus which presented the highest biomass production (1140,19 g/l), laccase activity (157 UL(-1)) and CDH activity (43,50 UL(-1)). This work is the first report of laccase and CDH activity for Cookeina sulcipes and Earliella sp. Moreover, it gives basis for the use of these native fungi in biotechnological applications and the acknowledgment of their function in the wood decay process in native forest. PMID:19796977

  8. Enzymatic and microbiological inhibitory activity in eggshell membranes as influenced by layer strains and age and storage variables.

    PubMed

    Ahlborn, G; Sheldon, B W

    2005-12-01

    Eggshell membranes (ESM) have been shown to exhibit antibacterial activity. The purpose of this study was to evaluate the enzymatic and biological [decimal reduction times (D-values)] activities of ESM as a function of bird breed, age, and ESM stabilization treatments. Younger White Leghorn (WL) hens produced ESM with 28% higher lysozyme activity than Rhode Island Red (RIR) layers. In contrast, older WL layers produced ESM with 17% less lysozyme activity than ESM from RIR layers. Similarly, beta-N-acetylglucosaminidase (beta-NAGase) ESM activities differed by hen age within breeds with younger hens yielding 14 to 16% more enzyme activity. D54 degrees C-values of Salmonella Typhimurium cells preexposed to WL ESM did not differ as a function of bird age (33, 50, and 81 wk). The ESM Lysozyme and beta-NAGase activities varied somewhat over a 6-mo storage study after treatment with 1 of 5 stabilization methods [i.e., storage at 4 degrees C, -20 degrees C, or ambient air storage after freeze drying, air drying (23 degrees C), or forced-air drying (50 degrees C)]. Both air and forced-air drying yielded significant reductions in beta-NAGase and lysozyme ESM activity (ca 12 to 30%) after the initial 24 h and then remained fairly stable during the extended storage. Freeze-dried samples retained the most enzymatic activity (95%) throughout the 6-mo trial, whereas refrigerated ESM lost 20 and 18% of the beta-NAGase and lysozyme activities, respectively. Frozen ESM lost 22% of the beta-NAGase activity, whereas lysozyme was nearly unaffected after 6 mo. The ESM biological activities against S. Typhimurium were not adversely impacted by layer breed or age. No significant loss in biological activity of ESM was detected 24 h after processing or after 6 mo of storage for refrigerated, frozen, and freeze-dried membranes, whereas significant reductions were observed for air- and heat-dried ESM. These findings demonstrate that ESM enzyme and biological activities are relatively

  9. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men.

    PubMed

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-05-01

    Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35-69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (P trend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (P trend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (P trend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  10. Activity and electrophoretic profiles of liver aldehyde dehydrogenases from mice of inbred strains with different alcohol preference.

    PubMed

    Yamazaki, H; Nishiguchi, K; Miyamoto, R; Ogita, Z I; Nakanishi, S

    1983-01-01

    1. The activity of low Km-aldehyde dehydrogenase (ALDH) in the liver mitochondrial fraction (MT-fraction) from male C57BL/6J strain mice (alcohol preferring) was significantly higher than that from DBA/2 mice (alcohol avoiding). The F1 hybrids (C57BL/6J X DBA/2) did not exhibit the intermediate activity to these two strains. 2. Strain differences in liver mitochondrial ALDH isozymes were observed by isoelectric focusing. C57BL/6J strain had two isozymes at pH 7.1 while DBA/2 had no band at this pH. F1 hybrid mice had similar two bands with lower density to those of C57BL/6J at pH 7.1. There was no difference in zymograms of the soluble fraction between C57BL/6J and DBA/2 strains. 3. The present results suggest that the difference in alcohol preference of mice may depend on some restricted ALDH isozymes with different pl or electric mobility rather than the enzymatic activity in the liver MT-fraction. PMID:6822317

  11. Thiobarbituric acid reactive substances, Fe3+ reduction and enzymatic activities in cultures of Ganoderma australe growing on Drimys winteri wood.

    PubMed

    Elissetche, Juan-Pedro; Ferraz, André; Freer, Juanita; Mendonça, Régis; Rodríguez, Jaime

    2006-07-01

    Ganoderma australe is a basidiomycete responsible for a natural process of selective and extensive lignin degradation. Fatty acids, thiobarbituric acid reactive substances (TBARS), Fe3+-reduction and enzymatic activities were monitored in cultures of G. australe growing on Drimys winteri wood chips. Linoleic acid was de novo synthesized, and steadily increased during 12 weeks of cultivation. Part of the unsaturated fatty acids underwent peroxidation as TBARS accumulated with biodegradation time. TBARS accumulation was proportional to the wood weight and component losses. Manganese-dependent peroxidase and lignin peroxidase were not detected in the culture extracts, whereas laccase-induced oxidation of syringaldazine peaked after 2 weeks (104+/-9 micromol oxidized min(-1) kg(-1) of dry wood), subsequently decreasing. On the other hand, nonenzymatic Fe3+-reducing activity increased as a function of cultivation time and could be involved in the initiation of lipid peroxidation. PMID:16790026

  12. New Tricks for Old Proteins: Single Mutations in a Nonenzymatic Protein Give Rise to Various Enzymatic Activities.

    PubMed

    Moroz, Yurii S; Dunston, Tiffany T; Makhlynets, Olga V; Moroz, Olesia V; Wu, Yibing; Yoon, Jennifer H; Olsen, Alissa B; McLaughlin, Jaclyn M; Mack, Korrie L; Gosavi, Pallavi M; van Nuland, Nico A J; Korendovych, Ivan V

    2015-12-01

    Design of a new catalytic function in proteins, apart from its inherent practical value, is important for fundamental understanding of enzymatic activity. Using a computationally inexpensive, minimalistic approach that focuses on introducing a single highly reactive residue into proteins to achieve catalysis we converted a 74-residue-long C-terminal domain of calmodulin into an efficient esterase. The catalytic efficiency of the resulting stereoselective, allosterically regulated catalyst, nicknamed AlleyCatE, is higher than that of any previously reported de novo designed esterases. The simplicity of our design protocol should complement and expand the capabilities of current state-of-art approaches to protein design. These results show that even a small nonenzymatic protein can efficiently attain catalytic activities in various reactions (Kemp elimination, ester hydrolysis, retroaldol reaction) as a result of a single mutation. In other words, proteins can be just one mutation away from becoming entry points for subsequent evolution. PMID:26555770

  13. Enzymatic Methylation and Structure-Activity-Relationship Studies on Polycarcin V, a Gilvocarcin-Type Antitumor Agent

    PubMed Central

    Chen, Jhong-Min; Shepherd, Micah D.; Horn, Jamie; Leggas, Markos; Rohr, Jürgen

    2014-01-01

    Polycarcin V, a polyketide natural product of Streptomyces polyformus, was chosen to study structure-activity-relationships of the gilvocarcin group of antitumor antibiotics, because of a similar chemical structure and comparable bioactivity with gilvocarcin V, the principle compound of this group, and the feasibility of enzymatic modifications of its sugar moiety by auxiliary O-methyltransferases. Such enzymes were used to modify the interaction of the drug with histone H3, the biological target that interacts with the sugar moiety. Cytotoxicity assays revealed that a free 2’-OH group of the sugar moiety is essential to maintain the bioactivity of polycarcin V, apparently an important H-bond donor for the interaction with histone H3, while converting 3'-OH into an OCH3 group improved the bioactivity. Bis-methylated polycarcin derivatives revealed weaker activity than the parent compound, indicating that at least two H-bond donors in the sugar are necessary for optimal binding. PMID:25366963

  14. Monoclonal antibodies raised against 167-180 aa sequence of human carbonic anhydrase XII inhibit its enzymatic activity.

    PubMed

    Dekaminaviciute, Dovile; Kairys, Visvaldas; Zilnyte, Milda; Petrikaite, Vilma; Jogaite, Vaida; Matuliene, Jurgita; Gudleviciene, Zivile; Vullo, Daniela; Supuran, Claudiu T; Zvirbliene, Aurelija

    2014-12-01

    Abstract Human carbonic anhydrase XII (CA XII) is a single-pass transmembrane protein with an extracellular catalytic domain. This enzyme is being recognized as a potential biomarker for different tumours. The current study was aimed to generate monoclonal antibodies (MAbs) neutralizing the enzymatic activity of CA XII. Bioinformatics analysis of CA XII structure revealed surface-exposed sequences located in a proximity of its catalytic centre. Two MAbs against the selected antigenic peptide spanning 167-180 aa sequence of CA XII were generated. The MAbs were reactive with recombinant catalytic domain of CA XII expressed either in E. coli or mammalian cells. Inhibitory activity of the MAbs was demonstrated by a stopped flow CO2 hydration assay. The study provides new data on the surface-exposed linear CA XII epitope that may serve as a target for inhibitory antibodies with a potential immunotherapeutic application. PMID:24400872

  15. A two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion

    PubMed Central

    Kostylev, Maxim; Wilson, David

    2014-01-01

    Lignocellulosic biomass is a potential source of renewable, low-carbon-footprint liquid fuels. Biomass recalcitrance and enzyme cost are key challenges associated with the large-scale production of cellulosic fuel. Kinetic modeling of enzymatic cellulose digestion has been complicated by the heterogeneous nature of the substrate and by the fact that a true steady state cannot be attained. We present a two-parameter kinetic model based on the Michaelis-Menten scheme (Michaelis L and Menten ML. (1913) Biochem Z 49:333–369), but with a time-dependent activity coefficient analogous to fractal-like kinetics formulated by Kopelman (Kopelman R. (1988) Science 241:1620–1626). We provide a mathematical derivation and experimental support to show that one of the parameters is a total activity coefficient and the other is an intrinsic constant that reflects the ability of the cellulases to overcome substrate recalcitrance. The model is applicable to individual cellulases and their mixtures at low-to-medium enzyme loads. Using biomass degrading enzymes from a cellulolytic bacterium Thermobifida fusca we show that the model can be used for mechanistic studies of enzymatic cellulose digestion. We also demonstrate that it applies to the crude supernatant of the widely studied cellulolytic fungus Trichoderma reesei and can thus be used to compare cellulases from different organisms. The two parameters may serve a similar role to Vmax, KM, and kcat in classical kinetics. A similar approach may be applicable to other enzymes with heterogeneous substrates and where a steady state is not achievable. PMID:23837567

  16. Lactogenic Activity of an Enzymatic Hydrolysate from Octopus vulgaris and Carica papaya in SD Rats.

    PubMed

    Cai, Bingna; Chen, Hua; Sun, Han; Sun, Huili; Wan, Peng; Chen, Deke; Pan, Jianyu

    2015-11-01

    The traditional Chinese medicine theory believes that octopus papaya soup can stimulate milk production in lactating women. The objective of this study was to determine whether dietary supplementation with an enzymatic hydrolysate of Octopus vulgaris and Carica papaya (EHOC) could increase milk production and nutritional indexes in Sprague Dawley (SD) rats. Female SD rats (n = 24) were fed a control diet (n = 8), EHOC-supplemented diet, or a positive control diet (Shengruzhi) from day 10 of pregnancy to day 10 of lactation. Maternal serum, mammary gland (day 10 of lactation), milk, and pup weight (daily) were collected for analysis. Results showed that the EHOC diet obviously elevated daily milk yield and pup weight compared to the control group (P < .05). The EHOC diet was found to increase the concentration of prolactin (PRL), progesterone (P), estradiol (E2), and growth hormone (GH) significantly in the circulation and mammary gland. Mammary glands of EHOC-treated dams showed clear lobuloalveolar development and proliferation of myoepithelial cells, but no striking variations were observed among the groups. Furthermore, the nutrition content and immune globulin concentration in the milk of EHOC-supplemented dams were higher than those of the control group, especially the cholesterol, glucose, and IgG were higher by 44.98% (P < .001), 42.76% (P < .01), and 42.23% (P < .01), respectively. In conclusion, this article demonstrates that EHOC administration has beneficial effects on milk production in the dams and on performance of the dam and pup. These results indicate that EHOC could be explored as a potentially lactogenic nutriment for lactating women. PMID:26270883

  17. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats

    PubMed Central

    NISHIYAMA, Yoshihiro; NAKAYAMA, Shouta M.M.; WATANABE, Kensuke P.; KAWAI, Yusuke K.; OHNO, Marumi; IKENAKA, Yoshinori; ISHIZUKA, Mayumi

    2016-01-01

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies. PMID:26806536

  18. Impacts of common variants in ALDH2 on coronary artery disease patients.

    PubMed

    Zhao, Jinzhao; You, Ling; Wang, Dao Wen; Cui, Wei

    2016-07-01

    Genome-wide association studies (GWAS) have identified Aldehyde dehydrogenase 2 (ALDH2) as a susceptibility locus for coronary artery disease (CAD) previously. However, the impacts of common variants in this gene on CAD and its outcomes have not been extensively studied. This study explored the association between the Tagging SNPs in ALDH2 and CAD as well as its main outcomes. Six common variants in ALDH2 were selected as tagging SNPs and two cohorts containing 7296 individuals were genotyped to investigate the impacts of ALDH2 on CAD and its main outcomes. The results show that the variant rs671 in ALDH2 is associated with an increased risk of CAD in southern Chinese (OR=1.26, 95%CI: 1.07-1.48, p=0.004), while not in northern Chinese (OR=1.00, 95%CI: 0.86-1.50, p=0.94). Meanwhile, we find that rs671 genotypes may not influence the outcomes of CAD (HR=1.11, 95%CI: 0.892-1.38, p=0.346). Additionally, we also tested the effect of rs671 genotype on CAD severity, while no significant association was found between them. In the subgroup analysis, the results revealed that rs671 were significantly associated with CAD (OR=1.24, 95%CI: 1.11-1.38, p<0.001) in non-alcoholic subjects. Overall, our findings indicate that the associations between rs671 in ALDH2 and CAD are regional disparity, and rs671 genotypes may not influence the main outcomes of CAD. PMID:26995653

  19. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  20. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system. PMID:25982984

  1. Regulation of MnSOD Enzymatic Activity by Sirt3 Connects the Mitochondrial Acetylome Signaling Networks to Aging and Carcinogenesis

    PubMed Central

    Tao, Randa; Vassilopoulos, Athanassios; Parisiadou, Loukia; Yan, Yufan

    2014-01-01

    Abstract Significance: It is a well-established scientific observation that mammalian cells contain fidelity or watchdog proteins that maintain the correct function of cellular organelles. Recent Advances: Over the past several years, the Sirtuin deacetylase family protein Sirt3 has emerged as a mitochondrial fidelity protein that directs energy generation and regulates reactive oxygen species (ROS) scavenging proteins. Loss of function or genetic mutation of these fidelity proteins has been shown to create a cellular environment that is permissive for the development of cellular damage associated with processes such as aging and carcinogenesis. Critical Issues: Mitochondria are the primary organelles that direct oxidative metabolism for the production of ATP; however, this is also a significant source of ROS. Thus, it is reasonable to propose that mitochondria should contain proteins that would signal downstream target molecules and/or ROS scavenger enzymes to maintain mitochondrial and cellular homeostatic poise. It is also reasonable to hypothesize that the mitochondria contain fidelity proteins similar to those found in the nucleus and cytoplasm. We discuss a new role of Sirt3 in the direction of the primary superoxide scavenger protein, manganese superoxide dismutase (MnSOD), and how the acetylation or deacetylation of several specific lysines appears to direct MnSOD enzymatic dismutase activity. Future Directions: Aberrant downstream regulation of MnSOD by Sirt3 may be a potential source of cellular damage that accumulates with aging to create a tumor-permissive phenotype. Future studies can explore the role of MnSOD in age-related illness using this new mechanism of enzymatic regulation. Antioxid. Redox Signal. 20, 1646–1654 PMID:23886445

  2. An ethoxylated alkyl phosphate (anionic surfactant) for the promotion of activities of proteases and its potential use in the enzymatic processing of wool.

    PubMed

    Zhang, Qinghua; Smith, Edward; Shen, Jinsong; Bishop, David

    2006-05-01

    Pretreatments of wool fabrics with cationic, anionic or non-ionic surfactants were investigated to reduce surface tension and improve the wettability of the fibres in order to promote protease activity on the fibres in subsequent processes. Results showed that an ethoxylated alkyl phosphate (specific anionic surfactant) as well as the widely used non-ionic surfactant was compatible with proteases in the enzymatic treatment of wool. There is therefore a potential for using specific anionic surfactants to achieve efficient enzymatic scouring processes. PMID:16791726

  3. Longitudinal changes in PON1 enzymatic activities in Mexican-American mothers and children with different genotypes and haplotypes

    SciTech Connect

    Huen, Karen; Harley, Kim; Bradman, Asa; Eskenazi, Brenda; Holland, Nina

    2010-04-15

    The paraoxonase 1 (PON1) enzyme prevents low-density lipoprotein oxidation and also detoxifies the oxon derivatives of certain neurotoxic organophosphate (OP) pesticides. PON1 activity in infants is low compared to adults, rendering them with lower metabolic and antioxidant capacities. We made a longitudinal comparison of the role of genetic variability on control of PON1 phenotypes in Mexican-American mothers and their children at the time of delivery (n = 388 and 338, respectively) and again 7 years later (n = 280 and 281, respectively) using generalized estimating equations models. At age 7, children's mean PON1 activities were still lower than those of mothers. This difference was larger in children with genotypes associated with low PON1 activities (PON1{sub -108TT}, PON1{sub 192QQ}, and PON1{sub -909CC}). In mothers, PON1 activities were elevated at delivery and during pregnancy compared to 7 years later when they were not pregnant (p < 0.001). In non-pregnant mothers, PON1 polymorphisms and haplotypes accounted for almost 2-fold more variation of arylesterase (AREase) and chlorpyrifos-oxonase (CPOase) activity than in mothers at delivery. In both mothers and children, the five PON1 polymorphisms (192, 55, -108, -909, -162) explained a noticeably larger proportion of variance of paraoxonase activity (62-78%) than AREase activity (12.3-26.6%). Genetic control of PON1 enzymatic activity varies in children compared to adults and is also affected by pregnancy status. In addition to known PON1 polymorphisms, unidentified environmental, genetic, or epigenetic factors may also influence variability of PON1 expression and therefore susceptibility to OPs and oxidative stress.

  4. Multi-compound polarization by DNP allows simultaneous assessment of multiple enzymatic activities in vivo

    NASA Astrophysics Data System (ADS)

    Wilson, David M.; Keshari, Kayvan R.; Larson, Peder E. Z.; Chen, Albert P.; Hu, Simon; Van Criekinge, Mark; Bok, Robert; Nelson, Sarah J.; Macdonald, Jeffrey M.; Vigneron, Daniel B.; Kurhanewicz, John

    2010-07-01

    Methods for the simultaneous polarization of multiple 13C-enriched metabolites were developed to probe several enzymatic pathways and other physiologic properties in vivo, using a single intravenous bolus. A new method for polarization of 13C sodium bicarbonate suitable for use in patients was developed, and the co-polarization of 13C sodium bicarbonate and [1- 13C] pyruvate in the same sample was achieved, resulting in high solution-state polarizations (15.7% and 17.6%, respectively) and long spin-lattice relaxation times ( T1) (46.7 s and 47.7 s respectively at 3 T). Consistent with chemical shift anisotropy dominating the T1 relaxation of carbonyls, T1 values for 13C bicarbonate and [1- 13C] pyruvate were even longer at 3 T (49.7 s and 67.3 s, respectively). Co-polarized 13C bicarbonate and [1- 13C] pyruvate were injected into normal mice and a murine prostate tumor model at 3 T. Rapid equilibration of injected hyperpolarized 13C sodium bicarbonate with 13C CO 2 allowed calculation of pH on a voxel by voxel basis, and simultaneous assessment of pyruvate metabolism with cellular uptake and conversion of [1- 13C] pyruvate to its metabolic products. Initial studies in a Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model demonstrated higher levels of hyperpolarized lactate and lower pH within tumor, relative to surrounding benign tissues and to the abdominal viscera of normal controls. There was no significant difference observed in the tumor lactate/pyruvate ratio obtained after the injection of co-polarized 13C bicarbonate and [1- 13C] pyruvate or polarized [1- 13C] pyruvate alone. The technique was extended to polarize four 13C labelled substrates potentially providing information on pH, metabolism, necrosis and perfusion, namely [1- 13C]pyruvic acid, 13C sodium bicarbonate, [1,4- 13C]fumaric acid, and 13C urea with high levels of solution polarization (17.5%, 10.3%, 15.6% and 11.6%, respectively) and spin-lattice relaxation values similar to those

  5. Conformational Changes in a Hyperthermostable Glycoside Hydrolase: Enzymatic Activity Is a Consequence of the Loop Dynamics and Protonation Balance

    PubMed Central

    de Oliveira, Leandro C.; da Silva, Viviam M.; Colussi, Francieli; Cabral, Aline D.; de Oliveira Neto, Mario; Squina, Fabio M.; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  6. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    PubMed

    de Oliveira, Leandro C; da Silva, Viviam M; Colussi, Francieli; Cabral, Aline D; de Oliveira Neto, Mario; Squina, Fabio M; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  7. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity.

    PubMed

    Ocsoy, Ismail; Dogru, Esra; Usta, Seyda

    2015-01-01

    Although various supports including nanomaterials have been widely utilized as platforms for enzymes immobilization in order to enhance their catalytic activities, most of immobilized enzymes exhibited reduced activities compared to free enzymes. In this study, for the first time, we used iron ions (Fe(2+)) and horseradish peroxidase (HRP) enzyme together to synthesize flowerlike hybrid nanostructures with greatly enhanced activity and stability and reported an explanation of the enhancements in both catalytic activity and stability. We demonstrated that Fe(2+)-HRP hybrid nanoflower (HNF) showed catalytic activity of ∼ 512% and ∼ 710%, respectively when stored at +4 °C and room temperature (RT = 20 °C) compared to free HRP. In addition, the HNF stored at +4 °C lost only 2.9% of its original activity within 30 days while the HNF stored at RT lost approximately 10% of its original activity. However, under the same conditions, free HRP enzymes stored at +4 °C and RT lost 68% and 91% of their activities, respectively. We claim that the drastic increases in activities of HNF are associated with to high local HRP concentration in nanoscale dimension, appropriate HRP conformation, less mass transfer limitations, and role of Fe(2+) ion as an activator for HRP. Further biosensors studies based on enhanced activity and stability of HNF are currently underway. PMID:26047912

  8. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity.

    PubMed Central

    Graves, M C; Lim, J J; Heimer, E P; Kramer, R A

    1988-01-01

    In order to define the protease domain of human immunodeficiency virus 1, various regions of the pol open reading frame were cloned and expressed in Escherichia coli. Antiserum directed against the conserved retroviral protease active site was used to identify pol precursor and processed species containing the presumed protease domain. The smallest product that accumulates is about 11 kDa as measured by NaDodSO4/PAGE. This size agrees with that predicted from the presence in this region of two Phe-Pro sequences, which is one of the cleavage sites recognized by HIV protease. DNA encoding only the predicted 11-kDa protein was cloned, bypassing the need for autoprocessing, and the protein was expressed to a high level in E. coli. This form is active as demonstrated by its ability to specifically cleave protease-deficient pol protein in vivo in E. coli. Extracts of E. coli containing the 11-kDa protease also process human immunodeficiency virus gag substrates in vitro. These results demonstrate that the 11-kDa protease is sufficient for enzymatic activity and are consistent with a major role for this form in virus maturation. Images PMID:3282230

  9. Synthetic substrates specific to activated plasmin can monitor the enzymatic functional status in situ in breast cancer cells.

    PubMed

    Gohda, Keigo; Fujimori, Ko; Teno, Naoki; Wanaka, Keiko; Tsuda, Yuko

    2014-01-01

    We here strove to overcome the limitations of expression analyses such as PCR and IHC, based on molecular recognition between target and probe molecules, by designing synthetic substrates specific to the target molecules to directly estimate the enzymatic functionality in situ. The specific substrate contains a probing unit, which is an organic fragment for specific enzyme binding, and a reactive unit, which is a natural peptide subject to catalysis. In this study, the activation of plasminogen to plasmin was examined in MDA-MB231 breast cancer cells using the plasmin-specific synthetic substrates designed from their inhibitors. The localization and function of the activated plasmin were successfully visualized by fluorophore combined with the specific substrate concurrently. This would be the first time for activated plasmin at work in situ by direct observation. Our concept to directly monitor the functionality of target enzymes can be used straightforwardly for other proteases such as cathepsins or caspases. Also, this substrate concept as a 'tailor-made substrate' would be utilized as a novel functional molecular probe in vivo with appropriate detectable probes. PMID:24112688

  10. Murine and Human Myogenic Cells Identified by Elevated Aldehyde Dehydrogenase Activity: Implications for Muscle Regeneration and Repair

    PubMed Central

    Vella, Joseph B.; Thompson, Seth D.; Bucsek, Mark J.; Song, Minjung; Huard, Johnny

    2011-01-01

    Background Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity. Methodology/Principal Findings Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhi subpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlo counterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhi murine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlo myoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhi hMDCs demonstrated superior muscle regenerative capacity compared to ALDHlo hMDCs. Conclusions The methodology of isolating myogenic cells on the basis of elevated ALDH activity

  11. Plasmon-Enhanced Enzymatic Reactions 2:Optimization of Enzyme Activity by Surface Modification of Silver Island Films with Biotin-Poly (Ethylene-glycol)-Amine.

    PubMed

    Abel, Biebele; Aslan, Kadir

    2012-01-01

    Surface modification of silver island films (SIFs) was carried out with Biotin-Poly (Ethylene-glycol)-Amine (BEA), which acts as a cross-linker between the silver surface and horse radish peroxidase (HRP) enzyme for optimum plasmon-enhanced enzymatic activity. SIFs-deposited blank glass slides and SIFs-deposited 3-Aminopropyltriethoxysilane(APTES)-coated glass slides were used as our plasmonic surfaces.In this regard, three different extent of loading of SIFs were also prepared (low, medium and high) on APTES-coated glass slides. Streptavidin-linked HRP enzyme was attached to SIFs-deposited blank glass slides and SIFs-deposited APTES-coated glass slides through the well-known biotin-streptavidin interactions. The characterization of these surfaces was done using optical absorption spectroscopy. The loading of SIFs on glass slides was observed to have significant effect on the efficiency of plasmon-enhanced enzymatic activity, where an enhancement of 200% in the enzymatic activity was observed when compared to our previously used strategies for enzyme immobilization in our preceding work[1]. In addition, SIFs-deposited on APTES-coated glass slides were found to be re-usable for plasmon-enhanced enzymatic reactions unlike SIFs deposited on to blank glass slides. PMID:22485194

  12. Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity.

    PubMed

    Mayolo-Deloisa, Karla; González-González, Mirna; Simental-Martínez, Jesús; Rito-Palomares, Marco

    2015-03-01

    Laccase is a multicopper oxidase that catalyzes the oxidation of phenolic compounds. Laccase can be used in bioremediation, beverage (wine, fruit juice, and beer) processing, ascorbic acid determination, sugar beet pectin gelation baking, and as a biosensor. Recently, the antiproliferative activity of laccase toward tumor cells has been reported. Because of the potential applications of this enzyme, the efforts for enhancing and stabilizing its activity have increased. Thus, the PEGylation of laccase can be an alternative. PEGylation is the covalent attachment of one or more molecules of methoxy poly(ethylene glycol) (mPEG) to a protein. Normally, during the PEGylation reaction, the activity is reduced but the stability increases; thus, it is important to minimize the loss of activity. In this work, the effects of molar ratio (1:4, 1:8, and 1:12), concentration of laccase (6 and 12 mg/ml), reaction time (4 and 17 h), molecular weight, and type of mPEG (20, 30, 40 kDa and 40 kDa-branched) were analyzed. The activity was measured using three substrates: ABTS, 2,6-dimethoxyphenol, and syringaldazine. The best conditions for laccase PEGylation were 12 mg/ml of laccase, molar ratio 1:4, and 4 h reaction time. Under these conditions, the enzyme was able to maintain nearly 100% of its enzymatic activity with ABTS. The PEGylation of laccase has not been extensively explored, so it is important to analyze the effects of this bioconjugation in route to produce a robust modified enzyme. PMID:25652594

  13. Seasonal Dynamics of Enzymatic Activities and Functional Diversity in Soils under Different Organic Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial activity and diversity fluctuate seasonally under annual organic amendment for improving soil quality. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community...

  14. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds.

    PubMed

    Durak, Agata; Baraniak, Barbara; Jakubczyk, Anna; Świeca, Michał

    2013-12-01

    This study investigated the antioxidant and antihypertensive activities of peptides obtained from protein fractions of Adzuki bean seeds. Peptides were obtained by the use of hydrolytic enzymes in vitro under gastrointestinal conditions. A determination was made of the activity of the peptide inhibitors of the angiotensin I converting enzyme (ACE), and the antiradical and ion chelating activity of peptides from different protein fractions. The highest peptide levels after the absorption process (<7 kDa) were noted in the albumin fraction (50.69 μg/ml). Furthermore, it was found that peptides from the prolamin fraction were characterised by the highest antiradical activity and ACE inhibitory activity (IC50=0.17 mg/ml). Peptides obtained from the globulin fraction showed the highest ability to chelate iron ions, and peptides from the glutelin fraction were characterised as being the most effective in the chelation of copper ions. PMID:23870945

  15. Effect of prolonged and intermittent hypoxia on some cerebral enzymatic activities related to energy transduction.

    PubMed

    Dagani, F; Marzatico, F; Curti, D; Zanada, F; Benzi, G

    1984-12-01

    The adaptation to repeated, alternate normobaric hypoxic and normoxic exposures (12 h/day, for 5 days) and to pharmacological treatment was evaluated by studying the specific activities of some enzymes related to cerebral energy metabolism. Measurements were carried out on (a) the homogenate in toto, (b) the purified mitochondrial fraction, and (c) the crude synaptosomal fraction in different areas of rat brain--cerebral cortex, hippocampus, corpus striatum, hypothalamus, cerebellum, and medulla oblongata. The adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by significant modifications of some enzyme activities in synaptosomes (decrease of cytochrome oxidase activity in the hippocampus, corpus striatum, and cerebellum; decrease of malate dehydrogenase activity in the cerebellum) and in the purified mitochondrial fraction (increase of succinate dehydrogenase activity in the corpus striatum). Daily treatment with three doses of naftidrofuryl (10, 15, and 22.5 mg/kg i.m.) modified some enzyme activities affected or unaffected by intermittent hypoxia and, particularly, decreased acetylcholinesterase activity. PMID:6501447

  16. Enzymatic activation of cellulose acetate membrane for reducing of protein fouling.

    PubMed

    Koseoglu-Imer, Derya Y; Dizge, Nadir; Koyuncu, Ismail

    2012-04-01

    In this study, the surface of cellulose acetate (CA) ultrafiltration membrane was activated with serine protease (Savinase) enzyme to reduce protein fouling. Enzyme molecules were covalently immobilized with glutaraldehyde (cross-linking agent) onto the surface of CA membranes. The membrane activation was verified using filtration experiments and morphological analysis. Scanning electron microscopy (SEM) images and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy of the activated membrane when compared with raw membrane were confirmed that the enzyme was immobilized onto the membrane surface. The immobilization efficiencies changed from 13.2 to 41.2% according to the enzyme ratios from 2.5 to 10.0 mg/mL. However, the permeability values decreased from 232±6 to 121±4 L/m(2) h bar with increasing enzyme concentration from 2.5 to 10.0 mg/mL. In fouling experiments, bovine serum albumin (BSA) was used as the protein model solution and activated sludge was used as the model biological sludge. Enzyme-activated membranes exhibited good filtration performances and protein rejection efficiencies were compared with raw CA membrane. Also the relative flux reduction (RFR) ratios of membranes were calculated as 97% and 88% for raw CA and enzyme-activated membranes (5 mg/mL savinase), respectively. The membrane activated with Savinase enzyme could be proposed as a surface treatment method before filtration to mitigate protein fouling. PMID:22218336

  17. The Effect of Cadmium on COX-1 and COX-2 Gene, Protein Expression, and Enzymatic Activity in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Piotrowska, Katarzyna; Korbecki, Jan; Kurzawski, Mateusz; Chlubek, Dariusz

    2015-06-01

    The aim of this study was to examine the effects of cadmium in concentrations relevant to those detected in human serum on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression at mRNA, protein, and enzyme activity levels in THP-1 macrophages. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl2. The mRNA expression and protein levels of COXs were analyzed with RT-PCR and Western blotting, respectively. Prostaglandin E2 (PGE2) and stable metabolite of thromboxane B2 (TXB2) concentrations in culture media were determined using ELISA method. Our study demonstrates that cadmium at the highest tested concentrations modulates COX-1 and COX-2 at mRNA level in THP-1 macrophages; however, the lower tested cadmium concentrations appear to inhibit COX-1 protein expression. PGE2 and TXB2 production is not altered by all tested Cd concentrations; however, the significant stimulation of PGE2 and TXB2 production is observed when macrophages are exposed to both cadmium and COX-2 selective inhibitor, NS-398. The stimulatory effect of cadmium on COXs at mRNA level is not reflected at protein and enzymatic activity levels, suggesting the existence of some posttranscriptional, translational, and posttranslational events that result in silencing of those genes' expression. PMID:25645360

  18. Nanonets Derived from Turnip Mosaic Virus as Scaffolds for Increased Enzymatic Activity of Immobilized Candida antarctica Lipase B

    PubMed Central

    Cuenca, Sol; Mansilla, Carmen; Aguado, Marta; Yuste-Calvo, Carmen; Sánchez, Flora; Sánchez-Montero, Jose M.; Ponz, Fernando

    2016-01-01

    Elongated flexuous plant viral nanoparticles (VNPs) represent an interesting platform for developing different applications in nanobiotechnology. In the case of potyviruses, the virion external surface is made up of helically arrayed domains of the viral structural coat protein (CP), repeated over 2000 times, in which the N- and C-terminal domains of each CP are projected toward the exterior of the external virion surface. These characteristics provide a chemical environment rich in functional groups susceptible to chemical conjugations. We have conjugated Candida antarctica lipase B (CALB) onto amino groups of the external surface of the potyvirus turnip mosaic virus (TuMV) using glutaraldehyde as a conjugating agent. Using this approach, TuMV virions were transformed into scaffolds for CALB nanoimmobilization. Analysis of the resulting structures revealed the formation of TuMV nanonets onto which large CALB aggregates were deposited. The functional enzymatic characterization of the CALB-bearing TuMV nanonets showed that CALB continued to be active in the nanoimmobilized form, even gaining an increased relative specific activity, as compared to the non-immobilized form. These novel virus-based nanostructures may provide a useful new approach to enzyme nanoimmobilization susceptible to be industrially exploited. PMID:27148295

  19. Cell-free extracellular enzymatic activity is linked to seasonal temperature changes: a case study in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Legrand, Catherine; Pinhassi, Jarone

    2016-05-01

    Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and < 40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.

  20. Label-free electrochemical detection of botulinum neurotoxin type E based on its enzymatic activity using interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Hyun, Sang Hwa; Park, Dae Keun; Kang, Aeyeon; Kim, Soohyun; Kim, Daehee; Shin, Yu Mi; Song, Ji-Joon; Yun, Wan Soo

    2016-02-01

    We report a simple label-free electrochemical method of detecting low concentrations of botulinum neurotoxin type E light chain (BoNT/E LC) based on its peptide cleavage activity. Dual-mode cyclic voltammetry was employed to observe changes in the redox signal of ferri-/ferro-cyanide on interdigitated microelectrodes, whose surfaces were covered by peptides designed from synaptosomal-associated protein 25 to be cleaved by BoNT/E LC. With the introduction of BoNT/E LC, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide molecules. In addition to the increased redox signal intensity, its time-dependence can be considered as a strong evidence of BoNT/E sensing, since the time-dependent increase can only result from the enzymatic activity of BoNT/E LC. Using this method, BoNT/E LC, at concentrations as low as 5 pg/ml, was readily measurable with only an hour of incubation.

  1. Nanonets Derived from Turnip Mosaic Virus as Scaffolds for Increased Enzymatic Activity of Immobilized Candida antarctica Lipase B.

    PubMed

    Cuenca, Sol; Mansilla, Carmen; Aguado, Marta; Yuste-Calvo, Carmen; Sánchez, Flora; Sánchez-Montero, Jose M; Ponz, Fernando

    2016-01-01

    Elongated flexuous plant viral nanoparticles (VNPs) represent an interesting platform for developing different applications in nanobiotechnology. In the case of potyviruses, the virion external surface is made up of helically arrayed domains of the viral structural coat protein (CP), repeated over 2000 times, in which the N- and C-terminal domains of each CP are projected toward the exterior of the external virion surface. These characteristics provide a chemical environment rich in functional groups susceptible to chemical conjugations. We have conjugated Candida antarctica lipase B (CALB) onto amino groups of the external surface of the potyvirus turnip mosaic virus (TuMV) using glutaraldehyde as a conjugating agent. Using this approach, TuMV virions were transformed into scaffolds for CALB nanoimmobilization. Analysis of the resulting structures revealed the formation of TuMV nanonets onto which large CALB aggregates were deposited. The functional enzymatic characterization of the CALB-bearing TuMV nanonets showed that CALB continued to be active in the nanoimmobilized form, even gaining an increased relative specific activity, as compared to the non-immobilized form. These novel virus-based nanostructures may provide a useful new approach to enzyme nanoimmobilization susceptible to be industrially exploited. PMID:27148295

  2. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine.

    PubMed

    Callejón, S; Sendra, R; Ferrer, S; Pardo, I

    2014-01-01

    The main objectives of this study were the search for enzymatic activities responsible for biogenic amine (BA) degradation in lactic acid bacteria (LAB) strains isolated from wine, their identification, and the evaluation of their applicability for reducing BAs in wine. Fifty-three percent of the 76 LAB cell extracts showed activity against a mixture of histamine, tyramine, and putrescine when analyzed in-gel. The quantification of the degrading ability for each individual amine was tested in a synthetic medium and wine. Most of the bacteria analyzed were able to degrade the three amines in both conditions. The highest percentages of degradation in wine were those of putrescine: up to 41% diminution in 1 week. Enzymes responsible for amine degradation were isolated and purified from Lactobacillus plantarum J16 and Pediococcus acidilactici CECT 5930 strains and were identified as multicopper oxidases. This is the first report of an efficient BA reduction in wine by LAB. Furthermore, the identity of the enzymes involved has been revealed. PMID:23515835

  3. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    PubMed

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  4. Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication.

    PubMed

    Veiga, Inês B; Jarosinski, Keith W; Kaufer, Benedikt B; Osterrieder, Nikolaus

    2013-03-15

    Marek's disease virus (MDV) encodes an ubiquitin-specific protease (USP) within its UL36 gene. USP is highly conserved among herpesviruses and was shown to be important for MDV replication and pathogenesis in MDV's natural host, the chicken. To further investigate the role of MDV USP, several recombinant (r) MDVs were generated and their in vitro phenotypes were evaluated using plaque size and growth kinetics assays. We discovered that the N-terminus of pUL36 is essential for MDV replication and could not be complemented by ectopic expression of MDV USP. In addition, we demonstrated that the region located between the conserved glutamine (Q85) and leucine (L106) residues comprising the active site cysteine (C98) is also essential for MDV replication. Based on the analyses of the rMDVs generated here, we concluded that MDV USP likely contributes to the structure and/or stability of pUL36 and affects replication and oncogenesis of MDV beyond its enzymatic activity. PMID:23399034

  5. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid

    PubMed Central

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  6. Methods, microfluidic devices, and systems for detection of an active enzymatic agent

    SciTech Connect

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-10-28

    Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

  7. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-10-01

    Current generation by mediated enzyme electron transfer at electrode surfaces can be harnessed to provide biosensors and redox reactions in enzymatic fuel cells. A glucose/oxygen enzymatic fuel cell can provide power for portable and implantable electronic devices. High volume production of enzymatic fuel cell prototypes will likely require printing of electrode and catalytic materials. Here we report on preparation and performance of, completely enzymatic, printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks, enzyme and mediator. A comparison of cell performance using a range of mediators for either glucose oxidase (GOx) or aldose dehydrogenase (ALDH) oxidation of glucose at the anode and ABTS and a fungal laccase, for reduction of oxygen at the cathode, is reported. Highest power output, although of limited stability, is observed for ALDH anodes mediated by an osmium complex, providing a maximum power density of 3.5 μW cm(-2) at 0.34 V, when coupled to a laccase/ABTS cathode. The stability of cell voltage in a biobattery format, above a threshold of 200 mV under a moderate 75 kΩ load, is used to benchmark printed fuel cell performance. Highest stability is obtained for printed fuel cells using ALDH, providing cell voltages over the threshold for up to 74 h, compared to only 2 h for cells with anodes using GOx. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells. PMID:22200380

  8. Rescue of Enzymatic Function for Disease-associated RPE65 Proteins Containing Various Missense Mutations in Non-active Sites*

    PubMed Central

    Li, Songhua; Izumi, Tadahide; Hu, Jane; Jin, Heather H.; Siddiqui, Ahmed-Abdul A.; Jacobson, Samuel G.; Bok, Dean; Jin, Minghao

    2014-01-01

    Over 70 different missense mutations, including a dominant mutation, in RPE65 retinoid isomerase are associated with distinct forms of retinal degeneration; however, the disease mechanisms for most of these mutations have not been studied. Although some mutations have been shown to abolish enzyme activity, the molecular mechanisms leading to the loss of enzymatic function and retinal degeneration remain poorly understood. Here we show that the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13), a newly identified negative regulator of RPE65, plays a critical role in regulating pathogenicity of three mutations (L22P, T101I, and L408P) by mediating rapid degradation of mutated RPE65s via a ubiquitination- and proteasome-dependent non-lysosomal pathway. These mutant RPE65s were misfolded and formed aggregates or high molecular complexes via disulfide bonds. Interaction of PSMD13 with mutant RPE65s promoted degradation of misfolded but not properly folded mutant RPE65s. Many mutations, including L22P, T101I, and L408P, were mapped on non-active sites. Although their activities were very low, these mutant RPE65s were catalytically active and could be significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. Sodium 4-phenylbutyrate and glycerol displayed a significant synergistic effect on the low temperature rescue of the mutant RPE65s by promoting proper folding, reducing aggregation, and increasing membrane association. Our results suggest that a low temperature eye mask and sodium 4-phenylbutyrate, a United States Food and Drug Administration-approved oral medicine, may provide a promising “protein repair therapy” that can enhance the efficacy of gene therapy by reducing the cytotoxic effect of misfolded mutant RPE65s. PMID:24849605

  9. Enzymatic activities and prokaryotic abundance in relation to organic matter along a West-East Mediterranean transect (TRANSMED cruise).

    PubMed

    Zaccone, R; Boldrin, A; Caruso, G; La Ferla, R; Maimone, G; Santinelli, C; Turchetto, M

    2012-07-01

    The distribution of extracellular enzymatic activities (EEA) [leucine aminopeptidase (LAP), ß-glucosidase (GLU), alkaline phosphatase (AP)], as well as that of prokaryotic abundance (PA) and biomass (PB), dissolved organic carbon (DOC), particulate organic carbon and particulate total nitrogen (POC, PTN), was determined in the epi-, meso-, and bathypelagic waters of the Mediterranean Sea along a West-East transect and at one Atlantic station located outside the Strait of Gibraltar. This study represents a synoptical evaluation of the microbial metabolism during early summer. Decreasing trends with depth were observed for most of the parameters (PA, PB, AP, DOC, POC, PTN). Significant differences between the western and eastern basins of the Mediterranean Sea were found, displaying higher rates of LAP and GLU and lower C/N ratios more in the eastern than in the western areas. Conversely, in the epipelagic layer, PA and PB were found to be higher in the western than in the eastern basins. PB was significantly related to DOC concentration (all data, n = 145, r = 0.53, P < 0.01), while significant correlations of EEA with POC and PTN were found in the epipelagic layer, indicating an active response of microbial metabolism to organic substrates. Specific enzyme activities normalized to cell abundance pointed out high values of LAP and GLU in the bathypelagic layer, especially in the eastern basin, while cell-specific AP was high in the epi- and bathypelagic zone of the eastern basin indicating a rapid regeneration of inorganic P for both prokaryotes and phytoplankton needs. Low activity and abundance characterized the Atlantic station, while opposite trends of these parameters were observed along the Mediterranean transect, showing the uncoupling between abundance and activity data. In the east Mediterranean Sea, decomposition processes increased probably in response to mesoscale structures which lead to organic matter downwelling. PMID:22349935

  10. Development of APE1 enzymatic DNA repair assays: low APE1 activity is associated with increase lung cancer risk.

    PubMed

    Sevilya, Ziv; Leitner-Dagan, Yael; Pinchev, Mila; Kremer, Ran; Elinger, Dalia; Lejbkowicz, Flavio; Rennert, Hedy S; Freedman, Laurence S; Rennert, Gad; Paz-Elizur, Tamar; Livneh, Zvi

    2015-09-01

    The key role of DNA repair in removing DNA damage and minimizing mutations makes it an attractive target for cancer risk assessment and prevention. Here we describe the development of a robust assay for apurinic/apyrimidinic (AP) endonuclease 1 (APE1; APEX1), an essential enzyme involved in the repair of oxidative DNA damage. APE1 DNA repair enzymatic activity was measured in peripheral blood mononuclear cell protein extracts using a radioactivity-based assay, and its association with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean APE1 enzyme activity in case patients was 691 [95% confidence interval (CI) = 655-727] units/ng protein, significantly lower than in control subjects (mean = 793, 95% CI = 751-834 units/ng protein, P = 0.0006). The adjusted odds ratio for lung cancer associated with 1 SD (211 units) decrease in APE1 activity was 2.0 (95% CI = 1.3-3.1; P = 0.002). Comparison of radioactivity- and fluorescence-based assays showed that the two are equivalent, indicating no interference by the fluorescent tag. The APE1Asp148Glu SNP was associated neither with APE1 enzyme activity nor with lung cancer risk. Taken together, our results indicate that low APE1 activity is associated with lung cancer risk, consistent with the hypothesis that 'bad DNA repair', rather than 'bad luck', is involved in cancer etiology. Such assays may be useful, along with additional DNA repair biomarkers, for risk assessment of lung cancer and perhaps other cancers, and for selecting individuals to undergo early detection techniques such as low-dose CT. PMID:26045303

  11. Meta-Analyses of ALDH2 and ADH1B with Alcohol Dependence in Asians

    ERIC Educational Resources Information Center

    Luczak, Susan E.; Glatt, Stephen J.; Wall, Tamara J.

    2006-01-01

    Meta-analyses were conducted to determine the magnitude of relationships between polymorphisms in 2 genes, ALDH2 and ADH1B, with alcohol dependence in Asians. For each gene, possession of 1 variant [asterisk]2 allele was protective against alcohol dependence, and possession of a 2nd [asterisk]2 allele did not offer significant additional…

  12. Fatal acute alcohol intoxication in an ALDH2 heterozygote: a case report.

    PubMed

    Yamamoto, H; Tanegashima, A; Hosoe, H; Fukunaga, T

    2000-08-14

    On an evening in November, a 25-year-old man was found dead in his bedroom. There were many empty snap-out sheets for flunitrazepam tablets in the trash at his bedside. He had been beaten by a gang of young people earlier in the morning of the same day. At the medico-legal autopsy, although there were many bruises and/or abrasions on the whole body, only slight subdural hemorrhage was observed, and none of them was thought to be the cause of death. Flunitrazepam and its metabolites were not detected in his body fluid by gas chromatography-mass spectrometry (GC-MS). Marked lung edema and a severe congestion of organs were observed. His blood alcohol concentration from the femoral vein was 2.00 mg/ml. Fatal cases of acute alcohol intoxication usually have shown higher alcohol concentration (2.25-6.23 mg/ml). Although the genotype of aldehyde dehydrogenase 2 (ALDH2) has not previously been mentioned as a contributing factor in determining the cause of death, in this case the genotype of ALDH2 was ALDH2*1/2 and thus is important. Those who possess the ALDH2*2 gene show high concentrations of acetaldehyde (AcH) at even comparatively lower alcohol levels. Consequently, the cause of death was considered to be acute alcohol intoxication including AcH poisoning. PMID:10940605

  13. Influence of intermittent hypoxia and pyrimidinic nucleosides on cerebral enzymatic activities related to energy transduction.

    PubMed

    Dagani, F; Marzatico, F; Curti, D; Taglietti, M; Zanada, F; Benzi, G

    1984-08-01

    The effect of intermittent normobaric hypoxia and of biological pyrimidines (uridine and cytidine) on the specific activities of some enzymes related to cerebral energy metabolism were studied. Measurement were carried out on the following: homogenate in toto; purified mitochondrial fraction; crude synaptosomal fraction, in different areas of rat brain: cerebral cortex, hippocampus, corpus striatum, hypothalamus, cerebellum, and medulla oblongata. Intermittent normobaric hypoxia (12 hours daily for 5 days) caused modifications of the enzyme activities in the homogenate in toto (decrease of hexokinase in cerebellum; increase of pyruvate kinase in medulla oblongata), in the purified mitochondrial fraction (increase of succinate dehydrogenase in the corpus striatum) and in the crude synaptosomal fraction (decrease of cytochrome oxidase activity in cerebral cortex, hippocampus, and cerebellum; decrease of malate dehydrogenase in hippocampus and cerebellum; decrease of lactate dehydrogenase in cerebellum). Daily treatment with cytidine or uridine altered some enzyme activities either affected or unaffected by intermittent hypoxia. PMID:6493441

  14. Integrin-mediated adhesion as self-sustained waves of enzymatic activation

    NASA Astrophysics Data System (ADS)

    Block, M. R.; Destaing, O.; Petropoulos, C.; Planus, E.; Albigès-Rizo, C.; Fourcade, B.

    2015-10-01

    Integrin receptors mediate interaction between the cellular actin-cytoskeleton and extracellular matrix. Based on their activation properties, we propose a reaction-diffusion model where the kinetics of the two-state receptors is modulated by their lipidic environment. This environment serves as an activator variable, while a second variable plays the role of a scaffold protein and controls the self-sustained activation of the receptors. Due to receptor diffusion which couples dynamically the activator and the inhibitor, our model connects major classes of reaction diffusion systems for excitable media. Spot and rosette solutions, characterized by receptor clustering into localized static or dynamic structures, are organized into a phase diagram. It is shown that diffusion and kinetics of receptors determines the dynamics and the stability of these structures. We discuss this model as a precursor model for cell signaling in the context of podosomes forming actoadhesive metastructures, and we study how generic signaling defects influence their organization.

  15. A methodology for preparing nanostructured biomolecular interfaces with high enzymatic activity

    NASA Astrophysics Data System (ADS)

    Wong, Lu Shin; Karthikeyan, Chinnan V.; Eichelsdoerfer, Daniel J.; Micklefield, Jason; Mirkin, Chad A.

    2012-01-01

    The development of a novel method for functionalizing nanopatterned surfaces with catalytically active proteins is reported. This method involves using dip-pen nanolithography (DPN) and polymer pen lithography (PPL) to generate nanoscale patterns of coenzyme A, followed by a phosphopantetheinyl transferase-mediated coupling between coenzyme A and proteins fused to the ybbR-tag. By exploiting the ability to generate protein features over large areas afforded by DPN and PPL, it was now possible to measure protein activity directly on these surfaces. It was found that proteins immobilized on the nanoscale features not only display higher activity per area with decreasing feature size, but are also robust and can be used for repeated catalytic cycles. The immobilization method is applicable to a variety of proteins and gives rise to superior activity compared to proteins attached in random orientations on the surface.

  16. Integrin-mediated adhesion as self-sustained waves of enzymatic activation.

    PubMed

    Block, M R; Destaing, O; Petropoulos, C; Planus, E; Albigès-Rizo, C; Fourcade, B

    2015-10-01

    Integrin receptors mediate interaction between the cellular actin-cytoskeleton and extracellular matrix. Based on their activation properties, we propose a reaction-diffusion model where the kinetics of the two-state receptors is modulated by their lipidic environment. This environment serves as an activator variable, while a second variable plays the role of a scaffold protein and controls the self-sustained activation of the receptors. Due to receptor diffusion which couples dynamically the activator and the inhibitor, our model connects major classes of reaction diffusion systems for excitable media. Spot and rosette solutions, characterized by receptor clustering into localized static or dynamic structures, are organized into a phase diagram. It is shown that diffusion and kinetics of receptors determines the dynamics and the stability of these structures. We discuss this model as a precursor model for cell signaling in the context of podosomes forming actoadhesive metastructures, and we study how generic signaling defects influence their organization. PMID:26565269

  17. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs.

    PubMed

    Andresen, Thomas L; Davidsen, Jesper; Begtrup, Mikael; Mouritsen, Ole G; Jørgensen, Kent

    2004-03-25

    An enzymatically activated liposome-based drug-delivery concept involving masked antitumor ether lipids (AELs) has been investigated. This concept takes advantage of the cytotoxic properties of AEL drugs as well as the membrane permeability enhancing properties of these molecules, which can lead to enhanced drug diffusion into cells. Three prodrugs of AELs (proAELs) have been synthesized and four liposome systems, consisting of these proAELs, were investigated for enzymatic degradation by secretory phospholipase A(2) (sPLA(2)), resulting in the release of AELs. The three synthesized proAELs were (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphocholine (1-O-DPPC), (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol)(350) (1-O-DPPE-PEG(350)), and 1-O-DPPE-PEG(2000) of which 1-O-DPPC was the main liposome component. All three phospholipids were synthesized from the versatile starting material (R)-O-benzyl glycidol. A phosphorylation method, employing methyl dichlorophosphate, was developed and applied in the synthesis of two analogues of (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol). Differential scanning calorimetry has been used to investigate the phase behavior of the lipid bilayers. A release study, employing calcein encapsulated in non-hydrolyzable 1,2-bis-O-octadecyl-sn-glycero-3-phosphocholine (D-O-SPC) liposomes, showed that proAELs, activated by sPLA(2), perturb membranes because of the detergent-like properties of the released hydrolysis products. A hemolysis investigation was conducted on human red blood cells, and the results demonstrate that proAEL liposomes display a very low hemotoxicity, which has been a major obstacle for using AELs in cancer therapy. The results suggest a possible way of combining a drug-delivery and prodrug concept in a single liposome system. Our investigation of the permeability-enhancing properties of the AEL molecules imply that by encapsulating conventional

  18. Absorption of enzymatically active sup 125 I-labeled bovine milk xanthine oxidase fed to rabbits

    SciTech Connect

    Rzucidlo, S.J. ); Zikakis, J.P. )

    1990-05-01

    Rabbits fed a regular laboratory diet supplemented with a high-fat milk containing xanthine oxidase (XO) were studied to determine the presence of active XO in the blood. A pilot feeding study, where rabbits consumed a high-fat diet containing xanthine oxidase, showed a correlation between dairy food consumption and XO activity in the blood. Antibody to dietary XO was also found. In a second study, rabbits were fed ad libitum the high-fat milk and blood serum samples were tested weekly for XO activity. No elevation in serum XO activity was found. A third study showed that serum XO activity was increased when rabbits were force fed the high-fat milk. The final study consisted of force feeding {sup 125}I-labeled XO to one rabbit to ascertain whether the observed increase in serum XO was due to dietary or endogenous XO. Isoelectric focusing of sera collected from the test rabbit strongly suggested that at least a portion of the serum XO contained the radioactive label. This is the first direct evidence showing the uptake of dietary active XO from the gut.

  19. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models

    PubMed Central

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q.

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  20. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models.

    PubMed

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  1. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes.

    PubMed

    Boschin, Giovanna; Scigliuolo, Graziana Maria; Resta, Donatella; Arnoldi, Anna

    2014-02-15

    The objective of this investigation was to compare the angiotensin converting enzyme (ACE)-inhibitory activity of the hydrolysates obtained by pepsin digestion of proteins of some legumes, such as chickpea, common bean, lentil, lupin, pea, and soybean, by using the same experimental procedure. The ACE-inhibitory activity was measured by using the tripeptide hippuryl-histidyl-leucine (HHL), as model peptide, and HPLC-DAD, as analytical method. The peptide mixtures of all legumes were active, with soybean and lupin the most efficient, with IC50 values of 224 and 226 μg/ml, respectively. Considering the promising results obtained with lupin, and aiming to identify the protein(s) that release(s) the peptides responsible for the activity, the peptides obtained from the pepsin digestion of some industrial lupin protein isolates and purified protein fractions were tested. The most active mixture, showing an IC50 value of 138 μg/ml, was obtained hydrolysing a mixture of lupin α+β conglutin. PMID:24128446

  2. Optimization of enzymatic hydrolysis of shrimp waste for recovery of antioxidant activity rich protein isolate.

    PubMed

    Sowmya, R; Ravikumar, T M; Vivek, R; Rathinaraj, K; Sachindra, N M

    2014-11-01

    Shrimp waste is an important source of astaxanthin, which occur as a complex with proteins, and protein isolates as well as carotenoids are known to possess antioxidant activity. Investigations were carried out to optimize hydrolysis of shrimp waste using a bacterial protease to obtain antioxidant activity rich protein isolate. The effect of three process variables namely enzyme concentration to waste, incubation temperature and time on carotenoid recovery, protein content, trichloro acetic acid (TCA) soluble peptide content and DiPhenyl Picryl Hydrazylchloride (DPPH) scavenging activity was evaluated using a fractionally factorial design. A high correlation coefficient (>0.90) between the observed and the predicted values indicated the appropriateness of the design employed. Maximum carotenoid recovery was obtained by hydrolysing the shrimp waste with 0.3 % enzyme for 4 h. DPPH radical scavenging activity of carotenoprotein isolate was markedly affected by enzyme concentration, temperature and time of hydrolysis. The study indicated that in order to obtain the carotenoprotein from shrimp waste with higher carotenoid content hydrolysing with an enzyme concentration of 0.2-0.4 %, at lower temperature of 25-30° upto 4 h is ideal. However, in order to obtain the protein isolate with increased antioxidant activity hydrolysing at higher temperature of 50 °C, with higher enzyme concentration of 0.5 % for shorter duration is more ideal. PMID:26396312

  3. Role of trypsin-like cleavage at arginine 192 in the enzymatic and cytotonic activities of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Grant, C C; Messer, R J; Cieplak, W

    1994-01-01

    Previous studies of cholera toxin and Escherichia coli heat-labile enterotoxin have suggested that proteolytic cleavage plays an important role in the expression of ADP-ribosyltransferase activity and toxicity. Specifically, several studies have implicated a trypsin-like cleavage at arginine 192, which lies within an exposed region subtended by a disulfide bond in the intact A subunit, in toxicity. To investigate the role of this modification in the enzymatic and cytotonic properties of heat-labile enterotoxin, the response of purified, recombinant A subunit to tryptic activation and the effect of substituting arginine 192 with glycine on the activities of the holotoxin were examined. The recombinant A subunit of heat-labile enterotoxin exhibited significant levels of ADP-ribosyltransferase activity that were only nominally increased (approximately twofold) by prior limited trypsinolysis. The enzymatic activity also did not appear to be affected by auto-ADP-ribosylation that occurs during the high-level synthesis of the recombinant A subunit in E. coli. A mutant form of the holotoxin containing the arginine 192-to-glycine substitution exhibited levels of cytotonic activity for CHO cells that were similar to that of the untreated, wild-type holotoxin but exhibited a marked delay in the ability to increase intracellular levels of cyclic AMP in Caco-2 cells. The results indicate that trypsin-like cleavage of the A subunit of E. coli heat-labile enterotoxin at arginine 192 is not requisite to the expression of enzymatic activity by the A subunit and further reveal that this modification, although it enhances the biological and enzymatic activities of the toxin, is not absolutely required for the enterotoxin to elicit cytotonic effects. Images PMID:7927684

  4. Albinism-Causing Mutations in Recombinant Human Tyrosinase Alter Intrinsic Enzymatic Activity

    PubMed Central

    Dolinska, Monika B.; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T.; Brooks, Brian P.; Sergeev, Yuri V.

    2014-01-01

    Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1. PMID:24392141

  5. Enzymatic activity induced by interactions with a nanofabricated hydrophobic Si surface

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2013-07-01

    The binding of peptides of 2-10 glycine residues (2-10Gly) to papain on nanofabricated hydrophobic Si surfaces was investigated by molecular dynamics and docking simulations. 5Gly, 7Gly, 9Gly, and 10Gly were distributed on sites near the active center of papain on the Si surface, while 6-10Gly were distributed on sites near the active center of free papain. The Si surface changed the substrate specificity of papain, and modification of this surface should allow full control of substrate specificity. Molecular surgery of proteins in cells may be realized using papain on specially designed surfaces.

  6. Enzymatic Activity of α-L-Fucosidase and L-Fucokinase Across Vertebrate Animal Species‡

    PubMed Central

    Honas, Bradley J.; Glassman, Urlene M.; Wiese, Thomas J.

    2012-01-01

    The oligosaccharide portion of glycoproteins is known to modulate protein structure, function, and turnover. Our laboratory is interested in the metabolism of L-fucose, a normal constituent of eukaryotic glycoproteins. L-Fucose is unique in that it is the only levorotatory sugar utilized in mammalian systems. There is considerable interest in understanding the controls which determine the level of L-fucose attached to proteins, in order to generate stable and active glycoforms of protein for the treatment of disease. As part of a program to determine the controls on protein L-fucosylation, we have systematically determined the tissue distribution of the enzymes L-fucokinase and α-L-fucosidase in species across the vertebrate animal kingdom. In general, the level of α-L-fucosidase is higher than L-fucokinase level. The tissue with highest enzyme activity cannot be generalized, regardless of which enzyme is of interest. Furthermore, there is not a correlation between synthetic and catabolic enzyme activity within a tissue. L-Fucokinase can be detected in all tissues examined. Interestingly, we have also detected β-D-fucosidase activity, present in extraordinary levels in the liver and small intestine of snake. Whether this is due to a specific enzyme or whether it represents a broad specificity of the α-L-fucosidase is currently being investigated. PMID:19394435

  7. Arid soil microbial enzymatic activity profile as affected by geographical location and soil degradation status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil health is critical for any successful remediation effort. Arid lands, with their minimal carbon and water contents, low nutritional status and restricted, seasonal microbial activity pose specific challenges to soil health restoration and by extension, restoration of ecosystem repr...

  8. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  9. Quantitation of CYP24A1 Enzymatic Activity With a Simple Two-Hybrid System

    PubMed Central

    Mugg, Amy; Legeza, Balazs; Tee, Meng Kian; Damm, Izabella; Long, Roger K.

    2015-01-01

    Context: Mutations of the CYP24A1 gene encoding the 24-hydroxylase (24OHase) that inactivates metabolites of vitamin D can cause hypercalcemia in infants and adults; in vitro assays of 24OHase activity have been difficult. Objective: We sought an alternative assay to characterize a CYP24A1 mutation in a young adult with bilateral nephrolithiasis and hypercalcemia associated with ingestion of excess vitamin D supplements and robust dairy intake for 5 years. Methods: CYP24A1 exons were sequenced from leukocyte DNA. Wild-type and mutant CYP24A1 cDNAs were expressed in JEG-3 cells, and 24OHase activity was assayed by a two-hybrid system. Results: The CYP24A1 missense mutation L409S was found on only one allele; no other mutation was found in exons or in at least 30 bp of each intron/exon junction. Based on assays of endogenous 24OHase activity and of activity from a transiently transfected CYP24A1 cDNA expression vector, JEG-3 cells were chosen over HepG2, Y1, MA10, and NCI-H295A cells for two-hybrid assays of 24OHase activity. The apparent Michaelis constant, Km(app), was 9.0 ± 2.0 nm for CYP24A1 and 8.6 ± 2.2 nm for its mutant; the apparent maximum velocity, Vmax(app), was 0.71 ± 0.055 d−1 for the wild type and 0.22 ± 0.026 d−1 for the mutant. As assessed by Vmax/Km, the L409S mutant has 32% of wild-type activity (P = .0012). Conclusions: The two-hybrid system in JEG-3 cells provides a simple, sensitive, quantitative assay of 24OHase activity. Heterozygous mutation of CYP24A1 may cause hypercalcemia in the setting of excessive vitamin D intake, but it is also possible that the patient had another, unidentified CYP24A1 mutation on the other allele. PMID:25375986

  10. The human hGSTA5 gene encodes an enzymatically active protein

    PubMed Central

    Singh, Sharda P.; Zimniak, Ludwika; Zimniak, Piotr

    2009-01-01

    Background Of the five human Alpha-class glutathione transferases, expression of hGSTA5 has not been experimentally documented, even though in silico the hGSTA5 sequence can be assembled into a mRNA and translated. The present work was undertaken to determine whether hGSTA5 is functional. Methods Human K562 cells were transfected with the hGSTA5 gene driven by the CMV promoter, and hGSTA5 cDNA was recovered from mature mRNA by reverse transcription. The cDNA was used in bacterial and eukaryotic protein expression systems. The resulting protein, after purification by glutathione affinity chromatography where appropriate, was tested for glutathione transferase activity. Results Human K562 cells transfected with the hGSTA5 gene under control of a CMV promoter produced a fully spliced mRNA which, after reverse transcription and expression in E. coli, yielded a protein that catalyzed the conjugation of the lipid peroxidation product 4-hydroxynonenal to glutathione. Similarly, transfection of human HEK-293 cells with the hGSTA5 gene driven by the CMV promoter led to an elevated 4-hydroxynonenal-conjugating activity in the cell lysate. In addition, translation of hGSTA5 cDNA in a cell-free eukaryotic system gave rise to a protein with 4-hydroxynonenal-conjugating activity. Conclusions hGSTA5 can be processed to a mature mRNA which is translation-competent, producing a catalytically active enzyme. General Significance Because a functional gene would not be maintained in the absence of selective pressure, we conclude that the native hGSTA5 promoter is active but has a spatially or temporally restricted expression pattern, and/or is expressed only under specific (patho)physiological conditions. PMID:19664689

  11. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.

    PubMed

    Cerqueira, Nuno M F S A; Gonzalez, Pablo J; Fernandes, Pedro A; Moura, José J G; Ramos, Maria João

    2015-11-17

    It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both

  12. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties.

    PubMed

    Hedemann, M S; Eskildsen, M; Laerke, H N; Pedersen, C; Lindberg, J E; Laurinen, P; Knudsen, K E Bach

    2006-06-01

    The main objective of this study was to determine the effect of fiber source and concentration on morphological characteristics, mucin staining pattern, and mucosal enzyme activities in the gastrointestinal tract of pigs. The experiment included 50 pigs from 10 litters weaned at 4 wk of age (BW 8.6 +/- 1.4 kg) and divided into 5 treatment groups. Diets containing fiber of various physico-chemical properties and concentrations were formulated to contain 73, 104, or 145 g of dietary fiber/kg of DM. The diets were based on raw wheat and barley flours. Pectin and barley hulls, representing soluble and insoluble fiber sources, respectively, were used to increase the fiber concentration. The pigs were fed the experimental diets for 9 d, and then the pigs were euthanized and the entire gastrointestinal tract was removed. Tissue samples were taken from the mid and distal small intestine and from the mid colon. Inclusion of pectin in the diets significantly decreased (P < 0.001) ADFI and ADG compared with pigs fed no pectin. The villi and the crypts were shorter in pigs fed pectin-containing diets, but the villous height/crypt depth ratio was unaltered. Pectin significantly decreased the area of mucins in the crypts of the small intestine, indicating that the pigs fed the pectin-containing diet would probably be more susceptible to pathogenic bacteria, although this cannot be separated from the impact on ADFI. The lectin-binding pattern of the intestinal mucosa was unaffected by diet. The activity of lactase and maltase was increased in pigs fed diets with high fiber content, whereas sucrase activity was increased in pigs fed the pectin-containing diets. The activity of the peptidases, aminopeptidase N and dipeptidylpeptidase IV, was increased when feeding high fiber diets, whereas the activity of gamma-glutamyl transpeptidase remained unaffected by the experimental diets. In conclusion, the reduced feed intake observed with the pectin-containing diets could explain the

  13. High level expression and purification of the enzymatically active cytoplasmic region of human CD45 phosphatase from yeast.

    PubMed

    Pacitti, A; Stevis, P; Evans, M; Trowbridge, I; Higgins, T J

    1994-06-30

    The cytoplasmic region of human CD45 corresponding to residues 584-1281 was inserted downstream of the alcohol dehydrogenase promoter and transfected into a haploid strain of yeast. Expression of recombinant CD45 in yeast reached as high as 5% of the soluble protein. Following removal of cellular debris by centrifugation and an ammonium sulfate precipitation step, the enzyme was purified using phenyl-Sepharose chromatography, preparative gel filtration, Mono Q anion exchange chromatography and a final analytical gel filtration step. Enzymatically active material with a purity of > or = 98% was obtained with a yield approaching 50%. The final product gave a Km of 5.5 mM and a Vmax of 87.5 U/mg with p-nitrophenylphosphate and a Km and Vmax of 0.167 mM and 185 U/mg, respectively, with a phosphotyrosine peptide. The native enzyme purified from Jurkat cells showed comparable Kms with both substrates to the recombinant enzyme but displayed substantially lower Vmax values for both substrates. PMID:8031864

  14. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  15. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    PubMed

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. PMID:26310104

  16. Investigation of trypsin-CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity

    NASA Astrophysics Data System (ADS)

    Kaur, Gurvir; Tripathi, S. K.

    2015-01-01

    The paper presents the interactions between trypsin and water soluble cadmium selenide (CdSe) quantum dots investigated by spectrophotometric methods. CdSe quantum dots have strong ability to quench the intrinsic fluorescence of trypsin by a static quenching mechanism. The quenching has been studied at three different temperatures where the results revealed that electrostatic interactions exist between CdSe quantum dots and trypsin and are responsible to stabilize the complex. The Scatchard plot from quenching revealed 1 binding site for quantum dots by trypsin, the same has been confirmed by making isothermal titrations of quantum dots against trypsin. The distance between donor and acceptor for trypsin-CdSe quantum dot complexes is calculated to be 2.8 nm by energy transfer mechanisms. The intrinsic fluorescence of CdSe quantum dots has also been enhanced by the trypsin, and is linear for concentration of trypsin ranging 1-80 μl. All the observations evidence the formation of trypsin-CdSe quantum dot conjugates, where trypsin retains the enzymatic activity which in turn is temperature and pH dependent.

  17. Divergence in the Enzymatic Activities of a Tomato and Solanum pennellii Alcohol Acyltransferase Impacts Fruit Volatile Ester Composition.

    PubMed

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2014-10-29

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species S. pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrates preferences that explain variations observed in the volatiles. Together, the results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of synthesis and degradation of esters. PMID:25355057

  18. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition.

    PubMed

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2015-01-01

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species Solanum pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrate preferences that explain the variations observed in the volatiles. The results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of the synthesis and degradation of esters. PMID:25578279

  19. [Study of the Sporothrix schenkii (yeast forms) extract. Electrophoretic and immunoelectrophoretic analyses: characterization of enzymatic activities].

    PubMed

    Walbaum, S; Duriez, T; Dujardin, L; Biguet, J

    1978-07-28

    An extract from living yeast forms of S. schenckii was prepared. The yeasts originated from a shake culture in B.H.I. broth (Difco) incubated for 3 days at 35 degrees C in darkness; they were harvested, washed and disrupted with glass beads in a model MSK Braun mechanical cell homogenizer; a freezing-thawing was added to improve the extract. After electrophoretic separation in agarose gel, the extract's components were characterized by their enzymic activity; with this technique, 30 bands were revealed. These enzymic activities were also investigated on the antigenic fractions of the extract revealed by a rabbit hyperimmunserum: 16 among 22 immunoprecipitates are identified by their catalytic properties. Study of the earliest precipitating antibodies (appearing-order and enzymic caracterization) in rabbits just immunized completes this work. How to ameliorate the quality of the extract by culture and extraction conditions is also specified. PMID:692628

  20. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction.

    PubMed

    Zeymer, Cathleen; Werbeck, Nicolas D; Zimmermann, Sabine; Reinstein, Jochen; Hansen, D Flemming

    2016-09-12

    States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side-chains were quantified by NMR spin-relaxation methods. In addition to apo and ligand-bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side-chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions. PMID:27534930

  1. Enzymatic activity of soluble and membrane tethered peptide pro-hormone convertase 1.

    PubMed

    Bruzzaniti, Angela; Mains, Richard E

    2002-05-01

    Pro-hormone convertases PC1 and PC2 perform endoproteolytic cleavages of precursors in peptide-containing secretory granules. PC1 and PC2 are soluble, secreted with bioactive peptides. Evolutionarily related PCs have membrane tethers, not secreted. We tethered PC1 to the transmembrane-cytoplasmic domains (CD) of a granule enzyme (peptidylglycine-alpha-amidating monooxygenase; PAM) and Golgi-localized PC8. The tethered PC1 is far more stable to elevated temperature and denaturants than soluble PC1, and more active. Both tethers allow PC1 to visit the cell surface transiently, cleaving soluble molecules outside the cell. Both membrane-bound PC1 chimeras cleave membrane PAM into soluble active fragments when PAM is expressed on adjacent cells. PMID:12084516

  2. Enzymatic Activities and DNA Substrate Specificity of Mycobacterium tuberculosis DNA Helicase XPB

    PubMed Central

    Balasingham, Seetha V.; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L.; Laerdahl, Jon K.; Bohr, Vilhelm A.; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3′→5′ DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3′→5′ DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg2+/Mn2+. Consistent with the 3′→5′ polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3′ overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3′ DNA tail, it was not active on substrates containing a 3′ RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB. PMID:22615856

  3. Probing Mechanisms for Enzymatic Activity Enhancement of Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Chen, Baowei; Lei, Chenghong; Shin, Yongsoon; Liu, Jun

    2009-12-25

    We have previously reported that organophosphorus hydrolase (OPH) can be spontaneously entrapped in functionalized mesoporous silica (FMS) with HOOC - as the functional groups and the entrapped OPH in HOOC-FMS showed enhanced enzyme specific activity. This work is to study the mechanisms that why OPH entrapped in FMS displayed the enhanced activity in views of OPH-FMS interactions using spectroscopic methods. The circular dichroism (CD) spectra show that, comparing to the secondary structure of OPH free in solution, OPH in HOOC-FMS displayed increased a-helix/b-strand transition of OPH with increased OPH loading density. The fluorescence emission spectra of Trp residues were used to assess the tertiary structural changes of the enzyme. There was a 42% increase in fluorescence. This is in agreement with the fact that the fluorescence intensity of OPH was increased accompanying with the increased OPH activity when decreasing urea concentrations in solution. The steady-state anisotropy was increased after OPH entrapping in HOOC-FMS comparing to the free OPH in solution, indicating that protein mobility was reduced upon entrapment. The solvent accessibility of Trp residues of OPH was probed by using acrylamide as a collisional quencher. Trp residues of OPH-FMS had less solvent exposure comparing with free OPH in solution due to its electrostatical binding to HOOC-FMS thereby displaying the increased fluorescence intensity. These results suggest the interactions of OPH with HOOC-FMS resulted in the protein immobilization and a favorable conformational change for OPH in the crowded confinement space and accordingly the enhanced activity.

  4. Effect of laser phototherapy on enzymatic activity of salivary glands of hamsters treated with 5-Fluorouracil.

    PubMed

    Campos, Luana; Nicolau, José; Arana-Chavez, Victor E; Simões, Alyne

    2014-01-01

    The chemotherapeutic agent 5-Fluorouracil (5-FU) can induce salivary gland hypofunction (SGH); however, previous studies did not reach final conclusions on the influence of this drug on glandular tissue. Thus, the aim of this study was to investigate the effect of 5-FU on submandibular (SMs) and sublingual glands (SLs), as well as, the effect of laser phototherapy (LPT) on SGH induced by 5-FU. Eighty-five hamsters were divided into three groups: control (C), chemotherapy (CT) and laser (L), and the SGH was induced by two injections of 5-FU in groups CT and L. The irradiation was performed using a diode (λ780 nm/20 mW/5 J cm(-2)/0.2 J and 10 s per point/spot size of 0.04 cm(2)) and applied daily. On the euthanasia day, SMs and SLs were removed and biochemical analyses were carried out. The lactate dehydrogenase activity was increased in group CT when compared with group C for SLs and SMs (P < 0.05). In addition, the peroxidase and catalase activities were increased and superoxide dismutase was decreased by 5-FU (P < 0.05). However, LPT appears to be a protective mechanism against oxidative stress, tending to alter the activity of these antioxidant enzymes, suggesting LPT as a promising therapy to modulate the 5-FU harmful effect. PMID:24172058

  5. Effect of high pressures on the enzymatic activity of commercial milk protein coagulants

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Krystyna; Reps, Arnold; Jankowska, Agnieszka

    2014-04-01

    This study was aimed at determining the effect of high pressures in the range of 100-1000 MPa/15 min, applied in 100 MPa increments, on the coagulating and proteolytic activity of commercial coagulants produced with genetic engineering methods: Maxiren, Chymogen, Chymax and of a natural rennin preparation, Hala. The coagulating activity of Hala preparation differed compared with the other preparations, due to greater resistance to high pressures, especially in the range of 500-600 MPa. The preparations produced with genetic engineering methods lost their capability for milk protein coagulation by 500 MPa. Pressurization at 200 MPa contributed to their reduced capability for casein macroproteolysis. In contrast, an increase in Chymax, Chymogen, Maxiren and Hala preparations' hydrolytic capability for the macroproteolysis of isoelectric casein was observed upon pressure treatment at 100 and 400 MPa and for microproteolysis after pressure treatment at 200 MPa. Storage (48 h/5°C) of the pressurized preparations had an insignificant effect on their coagulating and proteolytic activities.

  6. Improvement of stability and enzymatic activity by site-directed mutagenesis of E. coli asparaginase II.

    PubMed

    Verma, Shikha; Mehta, Ranjit Kumar; Maiti, Prasanta; Röhm, Klaus-Heinrich; Sonawane, Avinash

    2014-07-01

    Bacterial asparaginases (EC 3.5.1.1) have attracted considerable attention because enzymes of this group are used in the therapy of certain forms of leukemia. Class II asparaginase from Escherichia coli (EcA), a homotetramer with a mass of 138 kDa, is especially effective in cancer therapy. However, the therapeutic potential of EcA is impaired by the limited stability of the enzyme in vivo and by the induction of antibodies in the patients. In an attempt to modify the properties of EcA, several variants with amino acid replacements at subunit interfaces were constructed and characterized. Chemical and thermal denaturation analysis monitored by activity, fluorescence, circular dichroism, and differential scanning calorimetry showed that certain variants with exchanges that weaken dimer-dimer interactions exhibited complex denaturation profiles with active dimeric and/or inactive monomeric intermediates appearing at low denaturant concentrations. By contrast, other EcA variants showed considerably enhanced activity and stability as compared to the wild-type enzyme. Thus, even small changes at a subunit interface may markedly affect EcA stability without impairing its catalytic properties. Variants of this type may have a potential for use in the asparaginase therapy of leukemia. PMID:24721562

  7. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification.

    PubMed

    Vanin, Adriana B; Orlando, Tainara; Piazza, Suelen P; Puton, Bruna M S; Cansian, Rogério L; Oliveira, Debora; Paroul, Natalia

    2014-10-01

    This work reports the maximization of eugenyl acetate production by esterification of essential oil of clove in a solvent-free system using Novozym 435 as catalyst. The antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced were determined. The conditions that maximized eugenyl acetate production were 60 °C, essential oil of clove to acetic anhydride ratio of 1:5, 150 rpm, and 10 wt% of enzyme, with a conversion of 99.87 %. A kinetic study was performed to assess the influence of substrates' molar ratio, enzyme concentration, and temperature on product yield. Results show that an excess of anhydride, enzyme concentration of 5.5 wt%, 50 °C, and essential oil of clove to acetic anhydride ratio of 1:5 afforded nearly a complete conversion after 2 h of reaction. Comparing the antibacterial activity of the essential oil of clove before and after esterification, we observed a decrease in the antimicrobial activity of eugenyl acetate, particularly with regard to minimum inhibitory concentration (MIC). Both eugenyl acetate and clove essential oil were most effective to the gram-negative than gram-positive bacteria group. The results showed a high antioxidant potential for essential oil before and particularly after the esterification reaction thus becoming an option for the formulation of new antioxidant products. PMID:25104002

  8. Effects of cerium oxide nanoparticles on soil enzymatic activities and wheat grass nutrients uptake

    NASA Astrophysics Data System (ADS)

    Li, Biting; Chen, Yirui; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    The US National Science Foundation estimated that the use of nanomaterials and nanotechnology would reach a global market value of 1 million this year. Concomitant with the wide applications of nanoparticles is an increasing risk of adverse effects to the environment and human health. As a common nanomaterial used as a fuel catalyst and polish material, cerium (IV) oxide nanoparticles (CeO2 NP) were tested for their potential impact on soil health and plant growth. Through exposure by air, water, and solid deposition, nanoparticles may accumulate in soils and impact agricultural systems. The objectives of this research were to determine whether CeO2 NPs affect the growth of wheat grass and selected soil enzyme activities chose as indicators of soil health. Wheat grass was grown in plant boxes containing CeO2 NPs mixed with agricultural soil at different concentrations. Two control groups were included: one consisting of soil with plants but no CeO2 NPs, and one containing only soil, i.e., no NP or wheat plants added. The plants were grown for 10 weeks and harvested every two weeks in a laboratory under sodium growth lights. At the end of the each growing period, two weeks, soils were assayed for phosphatase, β-glucosidase, and urease activities, and NPK values. Spectrophotometer analyses were used to assess enzyme activities, and NPK values were tested by Clemson Agricultural Center. Wheat yields were estimated by shoot and root lengths and weights.

  9. Initial characterization of a dually radiolabeled peptide for simultaneous monitoring of protein targets and enzymatic activity

    PubMed Central

    Mebrahtu, Efrem; Zheleznyak, Alexander; Hur, Minjun A.; Laforest, Richard; Lapi, Suzanne E.

    2016-01-01

    Objective The goal of this study was to develop dually radiolabeled peptides for simultaneous imaging of cancer cell localization by targeting the αvβ3 integrin and their pathophysiology by targeting the activity of the proteolytic enzyme MMP2, involved in the metastatic process. Methods A hybrid peptide c(RGDfE)K(DOTA)PLGVRY containing a RGD motif for binding to the αvβ3 integrin, a metal chelator (DOTA) for radiolabeling with [64Cu], and the MMP2 substrate cleavage sequence PLGVRY with terminal tyrosine for labeling with [123I] was synthesized, labeled with [64Cu] and [123I], and evaluated in vitro as a potential imaging agent. Results The peptide was synthesized and labeled with [64Cu] and [123I] with 300 and 40 μCi/μg (542 and 72.2 mCi/μmol) specific activities, respectively, and radiochemical purity of>98%.c(RGDfE)K(DOTA)PLGVRY demonstrated high affinity for αvβ3 integrins(Kd = 83.4 ± 13.2 nM) in both substrate competition and cell binding assays. c(RGDfE)K(DOTA)PLGVRY peptide, but not the scrambled version, c(RGDfE)K(DOTA)GRPLVY was specifically cleaved by MMP2. Conclusions These results demonstrate the feasibility of developing dually radiolabeled peptides for the simultaneous imaging of cancer cells and their pathophysiologic activity. PMID:23154178

  10. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities.

    PubMed

    Liu, Feng; Ying, Guang-Guo; Tao, Ran; Zhao, Jian-Liang; Yang, Ji-Feng; Zhao, Lan-Feng

    2009-05-01

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. PMID:19157661

  11. Screening for Genes Coding for Putative Antitumor Compounds, Antimicrobial and Enzymatic Activities from Haloalkalitolerant and Haloalkaliphilic Bacteria Strains of Algerian Sahara Soils

    PubMed Central

    Selama, Okba; Amos, Gregory C. A.; Djenane, Zahia; Borsetto, Chiara; Laidi, Rabah Forar; Porter, David; Nateche, Farida; Wellington, Elizabeth M. H.; Hacène, Hocine

    2014-01-01

    Extreme environments may often contain unusual bacterial groups whose physiology is distinct from those of normal environments. To satisfy the need for new bioactive pharmaceuticals compounds and enzymes, we report here the isolation of novel bacteria from an extreme environment. Thirteen selected haloalkalitolerant and haloalkaliphilic bacteria were isolated from Algerian Sahara Desert soils. These isolates were screened for the presence of genes coding for putative antitumor compounds using PCR based methods. Enzymatic, antibacterial, and antifungal activities were determined by using cultural dependant methods. Several of these isolates are typical of desert and alkaline saline soils, but, in addition, we report for the first time the presence of a potential new member of the genus Nocardia with particular activity against the yeast Saccharomyces cerevisiae. In addition to their haloalkali character, the presence of genes coding for putative antitumor compounds, combined with the antimicrobial activity against a broad range of indicator strains and their enzymatic potential, makes them suitable for biotechnology applications. PMID:24977147

  12. Relationships between microbial extracellular enzymatic activity and suspended and sinking particulate organic matter: seasonal transformations in the North Water

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Deming, J. W.

    Despite the importance of hydrolytic activities by bacterial extracellular enzymes (EE) in the temperate ocean, little is known about the role of extracellular enzymatic activity (EEA) in determining the fate of particulate organic matter (POM) in polar seas. To explore the issue further, we measured various chemical and bacterial parameters in the near-0°C waters of the North Water during the months of May and July of 1998. Seawater (SW) samples were collected by Niskin bottle at the depth of the chlorophyll fluorescence maximum (8-90 m), while samples of sinking particles and aggregates were collected in short-term (0.5-1.2 d), unpoisoned, floating sediment traps deployed at depths typically below the mixed layer (50-136 m). Samples were analyzed for POC, PON, and abundance of total and actively respiring bacteria. They were also incubated with fluorescently tagged substrate analogs to measure potential maximal rates of three classes of EE (leucine-aminopeptidase, chitobiase, and β-glucosidase) at -1°C. The percentage of actively respiring bacteria was always higher in sediment trap samples than in SW (medians of 38% and 24% versus 10% and 12% in May and July, respectively). Cell-specific rates of EEA were also higher in the trap samples and, for both sample types, similar to published rates from temperate waters. Rates of EEA when scaled to the abundance of actively respiring bacteria, however, did not differ between sample types, suggesting that the elevated EEA associated with sinking material is due to the greater abundance of metabolically active cells supported by such material and not due to enhanced enzyme expression in general, as suggested by previous studies. In this study, leucine-aminopeptidase activity was always much higher than the other classes of EEA, becoming even more dominant later in the season; it always correlated positively with the abundance of both total and actively respiring bacteria. Enzyme ratios indicating protease dominance

  13. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.

    PubMed

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe3O4-SiO2) possessed three dimensional core-shell structures with an average diameter of ~20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g(-1). The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The Km and the Vmax values (0.02 mM, 6.40 U·mg(-1) enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg(-1) enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. PMID:24656379

  14. Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea.

    PubMed Central

    Pappa, Aglaia; Estey, Tia; Manzer, Rizwan; Brown, Donald; Vasiliou, Vasilis

    2003-01-01

    ALDH3A1 (aldehyde dehydrogenase 3A1) is expressed at high concentrations in the mammalian cornea and it is believed that it protects this vital tissue and the rest of the eye against UV-light-induced damage. The precise biological function(s) and cellular distribution of ALDH3A1 in the corneal tissue remain to be elucidated. Among the hypotheses proposed for ALDH3A1 function in cornea is detoxification of aldehydes formed during UV-induced lipid peroxidation. To investigate in detail the biochemical properties and distribution of this protein in the human cornea, we expressed human ALDH3A1 in Sf9 insect cells using a baculovirus vector and raised monoclonal antibodies against ALDH3A1. Recombinant ALDH3A1 protein was purified to homogeneity with a single-step affinity chromatography method using 5'-AMP-Sepharose 4B. Human ALDH3A1 demonstrated high substrate specificity for medium-chain (6 carbons and more) saturated and unsaturated aldehydes, including 4-hydroxy-2-nonenal, which are generated by the peroxidation of cellular lipids. Short-chain aliphatic aldehydes, such as acetaldehyde, propionaldehyde and malondialdehyde, were found to be very poor substrates for human ALDH3A1. In addition, ALDH3A1 metabolized glyceraldehyde poorly and did not metabolize glucose 6-phosphate, 6-phosphoglucono-delta-lactone and 6-phosphogluconate at all, suggesting that this enzyme is not involved in either glycolysis or the pentose phosphate pathway. Immunohistochemistry in human corneas, using the monoclonal antibodies described herein, revealed ALDH3A1 expression in epithelial cells and stromal keratocytes, but not in endothelial cells. Overall, these cumulative findings support the metabolic function of ALDH3A1 as a part of a corneal cellular defence mechanism against oxidative damage caused by aldehydic products of lipid peroxidation. Both recombinant human ALDH3A1 and the highly specific monoclonal antibodies described in the present paper may prove to be useful in probing

  15. Protoporphyrins Enhance Oligomerization and Enzymatic Activity of HtrA1 Serine Protease

    PubMed Central

    Jo, Hakryul; Patterson, Victoria; Stoessel, Sean; Kuan, Chia-Yi; Hoh, Josephine

    2014-01-01

    High temperature requirement protein A1 (HtrA1), a secreted serine protease of the HtrA family, is associated with a multitude of human diseases. However, the exact functions of HtrA1 in these diseases remain poorly understood. We seek to unravel the mechanisms of HtrA1 by elucidating its interactions with chemical or biological modulators. To this end, we screened a small molecule library of 500 bioactive compounds to identify those that alter the formation of extracellular HtrA1 complexes in the cell culture medium. An initial characterization of two novel hits from this screen showed that protoporphyrin IX (PPP-IX), a precursor in the heme biosynthetic pathway, and its metalloporphyrin (MPP) derivatives fostered the oligomerization of HtrA1 by binding to the protease domain. As a result of the interaction with MPPs, the proteolytic activity of HtrA1 against Fibulin-5, a specific HtrA1 substrate in age-related macular degeneration (AMD), was increased. This physical interaction could be abolished by the missense mutations of HtrA1 found in patients with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Furthermore, knockdown of HtrA1 attenuated apoptosis induced by PPP-IX. These results suggest that PPP-IX, or its derivatives, and HtrA1 may function as co-factors whereby porphyrins enhance oligomerization and the protease activity of HtrA1, while active HtrA1 elevates the pro-apoptotic actions of porphyrin derivatives. Further analysis of this interplay may shed insights into the pathogenesis of diseases such as AMD, CARASIL and protoporphyria, as well as effective therapeutic development. PMID:25506911

  16. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus.

    PubMed

    Arbona, Vicent; Hossain, Zahed; López-Climent, María F; Pérez-Clemente, Rosa M; Gómez-Cadenas, Aurelio

    2008-04-01

    Soil flooding constitutes a seasonal factor that negatively affects plant performance and crop yields. In this work, the relationship between oxidative damage and flooding sensitivity was addressed in three citrus genotypes with different abilities to tolerate waterlogging. We examined leaf visible damage, oxidative damage in terms of malondialdehyde (MDA) concentration, leaf proline concentration, leaf and root ascorbate and glutathione contents and the antioxidant enzyme activities superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.8.1.7). No differences in the extent of oxidative damage relative to controls were found among genotypes. However, a different ability to delay the apparition of oxidative damage was associated to a higher tolerance to waterlogging. This ability was linked to an enhanced activated oxygen species' scavenging capacity in terms of an increased antioxidant enzyme activity and higher content in polar antioxidant compounds. Therefore, the existence of a direct relationship between stress sensitivity and the early accumulation of MDA is proposed. In addition, data indicate that the protective role of proline has to be considered minimal as its accumulation was inversely correlated with tolerance to the stress. The positive antioxidant response in Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) and Citrumelo CPB 4475 (Poncirus trifoliata L. Raf. x Citrus paradisi L. Macf.) might be responsible for a higher tolerance to flooding stress, whereas in Cleopatra mandarin (Citrus reshni Hort. Ex Tan.), the early accumulation of MDA seems to be associated to an impaired ability for H2O2 scavenging. PMID:18333999

  17. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst)

    PubMed Central

    Martins, Julia M.; DeMarco, Ricardo; Jameson, David M.; Castro, Aline M.; Bossolan, Nelma R. S.; Wallace, B. A.; Araujo, Ana P. U.

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  18. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes.

    PubMed

    Crofts, Naoko; Abe, Natsuko; Oitome, Naoko F; Matsushima, Ryo; Hayashi, Mari; Tetlow, Ian J; Emes, Michael J; Nakamura, Yasunori; Fujita, Naoko

    2015-08-01

    Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein-protein interactions in maize and wheat amyloplasts. This study investigated whether protein-protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200-400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs-BEs, and, among BE isozymes, BEIIa-Pho1, and pullulanase-type DBE-BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch. PMID:25979995

  19. Hemolytic activity and solubilizing capacity of raffinose and melezitose fatty acid monoesters prepared by enzymatic synthesis.

    PubMed

    Carvalho, Luis; Morales, Juan C; Pérez-Victoria, José M; Pérez-Victoria, Ignacio

    2015-05-01

    The hemolytic activity and solubilizing capacity of two families of non-reducing trisaccharide fatty acid monoesters have been studied to assess their usefulness as surfactants for pharmaceutical applications. The carbohydrate-based surfactants investigated included homologous series of raffinose and melezitose monoesters bearing C10 to C18 acyl chains prepared by lipase-catalyzed synthesis in organic media. The hemolytic activity was determined in vitro using a static method based on the addition of the surfactants to an erythrocyte suspension and subsequent spectrophotometric determination of the released hemoglobin. The effect of the carbohydrate head group, the acyl chain length and the regioisomeric purity was investigated. In all cases, the carbohydrate monoester surfactants decreased their hemolytic activity (with respect to their critical micelle concentration) when increasing the length of the acyl chain. A very similar behaviour was observed either the carbohydrate head-group (raffinose and melezitose) or regardless of the regioisomeric purity. Interestingly, decanoyl (C10) and lauroyl (C12) monoesters were just marginally hemolytic at their critical micelle concentrations while the longer palmitoyl (C16) and (C18) stearoyl monoesters become hemolytic at concentrations much higher than their respective cmc. The palmitoyl and stearoyl monoesters also displayed higher solubilization capacity than the shorter acyl chain monoesters in a solubilization assay of a hydrophobic dye as a model drug mimic. These results suggest that raffinose and melezitose monoesters with long-chain fatty acids (C16 to C18) are promising surfactants for pharmaceutical applications and could be an alternative to the use of current commercial nonionic polyoxyethylene-based surfactants in parenteral formulations. PMID:25753196

  20. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst).

    PubMed

    Lopes, Jose L S; Yoneda, Juliana S; Martins, Julia M; DeMarco, Ricardo; Jameson, David M; Castro, Aline M; Bossolan, Nelma R S; Wallace, B A; Araujo, Ana P U

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  1. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes

    PubMed Central

    Crofts, Naoko; Abe, Natsuko; Oitome, Naoko F.; Matsushima, Ryo; Hayashi, Mari; Tetlow, Ian J.; Emes, Michael J.; Nakamura, Yasunori; Fujita, Naoko

    2015-01-01

    Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein–protein interactions in maize and wheat amyloplasts. This study investigated whether protein–protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200–400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs–BEs, and, among BE isozymes, BEIIa–Pho1, and pullulanase-type DBE–BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch. PMID:25979995

  2. The enzymatic activity of lysyl oxidas-like-2 (LOXL2) is not required for LOXL2-induced inhibition of keratinocyte differentiation.

    PubMed

    Lugassy, Jennie; Zaffryar-Eilot, Shelly; Soueid, Sharon; Mordoviz, Amit; Smith, Victoria; Kessler, Ofra; Neufeld, Gera

    2012-01-27

    Lysyl oxidase-like-2 (LOXL2) induces tumor progression and fibrosis. It also inhibits the differentiation of keratinocytes promoting development of squamous cell carcinomas. Stimulation of HaCaT skin keratinocytes with exogenous LOXL2 or overexpression of LOXL2 in these cells inhibits their differentiation as manifested by inhibition of calcium or vitamin D-induced involucrin expression. The inhibition was abrogated by the LOXL2 function-blocking monoclonal antibody AB0023 as well as by an anti-LOXL2 polyclonal antibody. Surprisingly, a point-mutated form of LOXL2 (LOXL2(Y689F)) lacking enzymatic activity, as well as a LOXL2 deletion mutant lacking the entire catalytic domain, also inhibited calcium or vitamin D-induced up-regulation of involucrin expression, suggesting that the enzymatic activity of LOXL2 is not required for this activity. This conclusion was supported by experiments that showed that β-aminoproprionitrile, an irreversible competitive inhibitor of the enzymatic activity of all lysyl oxidases, is unable to abolish the LOXL2-induced inhibition of HaCaT cell differentiation. The activity of LOXL2(Y689F) required the presence of the fourth scavenger receptor-cysteine-rich (SRCR) domain of LOXL2, which is also the binding target of AB0023. Epitope-tagged LOXL2(Y689F) was internalized at 37 °C by HaCaT cells. The internalization was inhibited by AB0023 and by competition with unlabeled LOXL2, suggesting that these cells may express a LOXL2 receptor. Our results suggest that agents that inhibit the enzymatic activity of LOXL2 may not suffice to inhibit completely the effects of LOXL2 on complex processes that involve altered states of cellular differentiation. PMID:22157764

  3. Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide

    PubMed Central

    Keyster, Marshall; Klein, Ashwil; Ludidi, Ndiko

    2012-01-01

    Salinity stress causes ionic stress (mainly from high Na+ and Cl- levels) and osmotic stress (as a result of inhibition of water uptake by roots and amplified water loss from plant tissue), resulting in cell death and inhibition of growth and ultimately adversely reducing crop productivity. In this report, changes in root nitric oxide content, shoot and root biomass, root H2O2 content, root lipid peroxidation, root cell death, root caspase-like enzymatic activity, root antioxidant enzymatic activity and root ascorbate and glutathione contents/redox states were investigated in maize (Zea mays L. cv Silverking) after long-term (21 d) salt stress (150 mM NaCl) with or without exogenously applied nitric oxide generated from the nitric oxide donor 2,2′-(Hydroxynitrosohydrazano)bis-ethane. In addition to reduced shoot and root biomass, salt stress increased the nitric oxide and H2O2 contents in the maize roots and resulted in elevated lipid peroxidation, caspase-like activity and cell death in the roots. Altered antioxidant enzymatic activities, along with changes in ascorbate and glutathione contents/redox status were observed in the roots in response to salt stress. The detrimental effects of salt stress in the roots were reversed by exogenously applied nitric oxide. These results demonstrate that exogenously applied nitric oxide confers salt stress tolerance in maize by reducing salt stress-induced oxidative stress and caspase-like activity through a process that limits accumulation of reactive oxygen species via enhanced antioxidant enzymatic activity. PMID:22476534

  4. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique.

    PubMed

    Singh, Shachi

    2016-05-15

    Phytochemicals are health promoting compounds, synthesized by the plants to protect them against biotic or abiotic stress. The metabolic pathways leading to the synthesis of these phytochemicals are highly inducible; therefore methods could be developed to enhance their production by the exogenous application of chemical inducers/elicitors. In the present experiment, chitosan was used as an elicitor molecule to improve the phytochemical content of spinach plant. When applied at a concentration of 0.01 mg/ml as a foliar spray, chitosan was able to cause an increase in the enzymatic (peroxidase, catalase and phenylalanine ammonium lyase (PAL)) and non enzymatic (total phenolics, flavonoids and proteins) defensive metabolites, as well as, in the total antioxidant activity of the spinach leaves. A 1.7-fold increase in the total phenolics, a 2-fold increase in total flavonoid and a 1.6-fold increase in total protein were achieved with the treatment. A higher level of enzymatic activity was observed with a 4-fold increase in peroxidase and approximately 3-fold increases in catalase and phenylalanine ammonium lyase activity. Antioxidant activity showed a positive correlation between phenolic compounds and the enzymatic activity. Direct analysis in real time mass spectrometry (DART-MS) was applied to generate the metabolite profile of control and treated leaves. DART analysis revealed the activation of phenylpropanoid pathway by chitosan molecule, targeting the synthesis of diverse classes of flavonoids and their glycosides. Important metabolites of stress response were also visible in the DART spectra, including proline and free sugars. PMID:26775959

  5. Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin.

    PubMed

    Tang, Aixing; Wang, Bowen; Liu, Youyan; Li, Qingyun; Tong, Zhangfa; Wei, Yingjun

    2015-09-01

    Pseudomonas aeruginosa strain GF31, isolated from a contaminated soil, can effectively degrade β-cypermethrin (β-CP), as well as fenpropathrin, fenvalerate, and cyhalothrin. The highest level of degradation (81.2 %) was achieved with the addition of peptone. Surprisingly, the enzyme responsible for degradation was mainly localized to the extracellular areas of the bacteria, in contrast to the other known pyrethroid-degrading enzymes, which are intracellular. Although intact bacterial cells function at about 30 °C for biodegradation, similar to other degrading strains, the crude extracellular extract of strain GF31 remained biologically active at 60 °C. Moreover, the extract fraction showed good storage stability, maintaining >50 % of its initial activity following storage at 25 °C for at least 20 days. Significant differences in the characteristics of the crude GF31 extracellular extract compared with the known pyrethroid-degrading enzymes indicate the presence of a novel pyrethroid-degrading enzyme. Furthermore, the identification of 3-phenoxybenzoic acid and 2,2-dimethylcyclopropanecarboxylate from the degradation products suggests the possibility that β-CP degradation by both the strain and the crude extracellular fraction is achieved through a hydrolysis pathway. Further degradation of these two metabolites may lead to the development of an efficient method for the mineralization of these types of pollutants. PMID:25921758

  6. Yersinia pestis lacZ expresses a beta-galactosidase with low enzymatic activity.

    PubMed

    Bobrov, Alexander G; Perry, Robert D

    2006-02-01

    Although very little, if any, beta-galactosidase activity is detected in Yersinia pestis by a standard Miller assay, we found that Y. pestis KIM6+ cells formed blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). Searches of the Y. pestis genome databases revealed the presence of noncontiguous sequences highly homologous to Escherichia coli lacZ, lacY, and lacI. Yersinia pestis lacZ is predicted to encode a 1060 amino-acid protein with 62% identity and 72% similarity to beta-galactosidase from E. coli. A deletion in the Y. pestis lacZ gene caused the formation of white colonies on X-gal-containing plates and beta-galactosidase activity was at background levels in the KIM6+lacZ mutant, while the complemented strain expressed about 190 Miller units. The Y. pestis lacZ promoter was not regulated by isopropylthiogalactoside or glucose. Finally, uptake of lactose by Y. pestis may be impaired. PMID:16436060

  7. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions

    PubMed Central

    Schuster, Sabine; Roessler, Claudia; Meleshin, Marat; Zimmermann, Philipp; Simic, Zeljko; Kambach, Christian; Schiene-Fischer, Cordelia; Steegborn, Clemens; Hottiger, Michael O.; Schutkowski, Mike

    2016-01-01

    Sirtuins are NAD+ dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1–6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M−1s−1. These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM). PMID:26940860

  8. Surface energy modified chips for detection of conformational states and enzymatic activity in biomolecules.

    PubMed

    Asberg, Peter; Nilsson, K Peter R; Inganäs, Olle

    2006-02-28

    A novel patterning method for anchoring biomolecules and noncovalent assembled conjugated polyelectrolyte (CPE)/biomolecule complexes to a chip surface is presented. The surface energy of a hydrophilic substrate is modified using an elastomeric poly(dimethylsiloxane) (PDMS) stamp, containing a relief pattern. Modification takes place on the parts where the PDMS stamp is in conformal contact with the substrate and leaves low molecular weight PDMS residues on the surface resulting in a hydrophobic modification, and then biomolecules and CPE/biomolecule complexes are then adsorbed in a specific pattern. The method constitutes a discrimination system for different conformations in biomolecules using CPEs as reporters and the PDMS modified substrates as the discriminator. Detection of different conformations in two biomacromolecules, a synthetic peptide (JR2E) and a protein (calmodulin), reported by the CPE and resolved by fluorescence was demonstrated. Also, excellent enzyme activity in patterned CPE/horseradish peroxidase (HRP) enzyme was shown, demonstrating that this method can be used to pattern biomolecules with their activity retained. The method presented could be useful in various biochip applications, such as analyzing proteins and peptides in large-scale production, in making metabolic chips, and for making multi-microarrays. PMID:16489808

  9. An enzymatic activity isolated from Brassica oleracea specific for UV-irradiated DNA

    SciTech Connect

    Gallagher, P.E.; Lenhart, J.R.; Weiss, R.B. )

    1991-03-11

    As a consequence of a breakdown in the ozone layer, an increase in the amount of DNA damage caused by ultraviolet irradiation can be expected. Organisms have evolved mechanisms to repair numerous types of DNA damages. While these DNA repair systems have been well characterized in bacteria and to a lesser extent in mammalian cells, surprisingly little is known about repair of potentially harmful DNA lesions in plants. An enzyme that recognizes and incises UV irradiated DNA has been partially purified from the leaf tissue of Brassica oleracea. Glycosylase-produced base loss sites were detected by a nitrocellulose filter-binding assay using UV-irradiated PM2 viral DNA as the substrate. The optimal temperature for maximal enzyme activity is 47C with a pH optimum between 7.0 and 7.5. In addition, the endonuclease is active in both Tris and phosphate buffers, although it is stimulated by phosphate concentrations up to 25 mM. Currently, a number of synthetic polynucleotides as well as DNAs of defined sequence are being employed as substrates to determine the nature of the UV-induced lesion and the precise mechanism of action of the enzyme.

  10. Cathepsin S of Sciaenops ocellatus: Identification, transcriptional expression and enzymatic activity.

    PubMed

    Sun, Bo-Guang; Chi, Heng

    2016-01-01

    Cathepsin S is a member of cysteine cathepsins and belongs to the cathepsin L-like family. In mammals, it is known to participate in various physiological processes and host immune defense. In teleost fish, the function of cathepsin S is less investigated. In the present work, we characterized a cathepsin S homologue (SoCatS) from red drum (Sciaenops ocellatus), a commercially valuable fish in Chinese mariculture. Like all cathepsin S, SoCatS possesses a peptidase domain with four catalytically essential residues (Gln140, Cys146, His285, and Asn305) conserved in the cathepsin S of different organisms. SoCatS shares 60-90% overall sequence identities with known teleost cathepsin S. Phylogenetic profiling indicated that SoCatS is evolutionally close to the cathepsin S of other teleost fish, especially Miichthys miiuy, a member of Sciaenidae family like red drum. SoCatS expression was detected in various tissues and was enhanced by bacterial infection. Purified recombinant SoCatS exhibited apparent peptidase activity with maximum at 50°C and pH 7.5. This activity depended on the catalytic residue Cys146 and was severely reduced by the cathepsin inhibitor E-64. Our results suggest that SoCatS functions as a cysteine protease which is probably involved in the antibacterial immunity of red drum. PMID:26522244

  11. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    PubMed

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  12. Lignin binding to pancreatic lipase and its influence on enzymatic activity.

    PubMed

    Zhang, Juan; Xiao, Lin; Yang, Yucai; Wang, Zhaoxia; Li, Genxi

    2014-04-15

    In this paper, we find that the effect of lignin on pancreatic lipase (PL) is dependent on reaction medium and substrate used. Experimental results reveal that lignin can gradually bind to PL to form a PL-lignin complex, resulting in an increased activity of the enzyme. The binding process is spontaneous and the PL-lignin complex formation is an endothermic reaction induced by hydrophobic and electrostatic interaction. There is a non-radiation energy transfer from PL to lignin during the binding process, and the binding of lignin to PL conforms to a secondary exponential decay function. Moreover, the α-helix content of the enzyme will be changed and the rigidity of its side chain will be enhanced due to the formation of lignin-PL complex. This study has not only provided the activation effect of lignin on PL, but also given an insight into the interaction between lignin and the enzyme, which would benefit the application of lignin in the pharmacy and food industry, as well as other fields. PMID:24295682

  13. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    PubMed Central

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P.; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP+ yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  14. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions.

    PubMed

    Schuster, Sabine; Roessler, Claudia; Meleshin, Marat; Zimmermann, Philipp; Simic, Zeljko; Kambach, Christian; Schiene-Fischer, Cordelia; Steegborn, Clemens; Hottiger, Michael O; Schutkowski, Mike

    2016-01-01

    Sirtuins are NAD(+) dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1-6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M(-1)s(-1). These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM). PMID:26940860

  15. Reversible Post-Translational Carboxylation Modulates The Enzymatic Activity Of N-Acetyl-L-Ornithine Transcarbamylase†

    PubMed Central

    Li, Yongdong; Yu, Xiaolin; Ho, Jeremy; Fushman, David; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2010-01-01

    N-acetyl-L-ornithine transcarbamylase (AOTCase), rather than ornithine transcarbamylase (OTCase), is the essential carbamylase enzyme in the arginine biosynthesis of several plant and human pathogens. The specificity of this unique enzyme provides a potential target for controlling the spread of these pathogens. Recently, several crystal structures of AOTCase from Xanthomonas campestris (xc) have been determined. In these structures, an unexplained electron density at the tip of Lys302 side-chain was observed. Using 13C NMR spectroscopy, we show herein that Lys302 is post-translationally carboxylated. The structure of wild-type AOTCase complexed with the bisubstrate analogue, Nδ-(phosphonoacetyl)-Nα-acetyl-L-ornithine (PALAO), indicates that the carboxyl group on Lys302 forms a strong hydrogen bonding network with surrounding active site residues, Lys252, Ser253, His293, and Glu92 from the adjacent subunit either directly or via a water molecule. Furthermore, the carboxyl group is involved in binding N-acetyl-L-ornithine via a water molecule. Activity assays with the wild-type enzyme and several mutants demonstrate that the post translational modification of lysine 302 has an important role in catalysis. PMID:20695527

  16. Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58

    PubMed Central

    2015-01-01

    The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening, one protein (UniProt entry A9CG74; locus tag Atu4196) showed activity with both m-galactarate and d-galacturonate. Two families of galactarate dehydratases had been discovered previously in the ENS, GalrD/TalrD [Yew, W. S., et al. (2007) Biochemistry46, 9564–9577] and GalrD-II [Rakus, J. F., et al. (2009) Biochemistry48, 11546–11558]; these have different active site acid/base catalysis and have no activity with d-galacturonate. A9CG74 dehydrates m-galactarate to form 2-keto-3-deoxy-galactarate but does not dehydrate d-galacturonate as expected. Instead, when A9CG74 is incubated with d-galacturonate, 3-deoxy-d-xylo-hexarate or 3-deoxy-d-lyxo-hexarate is formed. In this reaction, instead of abstracting the C5 proton α to the carboxylate group, the expected reaction for a member of the ENS, the enzyme apparently abstracts the proton α to the aldehyde group to form 3-deoxy-d-threo-hexulosuronate that undergoes a 1,2-hydride shift similar to the benzylic acid rearrangement to form the observed product. A. tumefaciens C58 does not utilize m-galactarate as a carbon source under the conditions tested in this study, although it does utilize d-galacturonate, which is a likely precursor to m-galactarate. The gene encoding A9CG74 and several genome proximal genes were upregulated with d-galacturonate as the carbon source. One of these, a member of the dihydrodipicolinate synthase superfamily, catalyzes the dehydration and subsequent decarboxylation of 2-keto-3-deoxy-d-galactarate to α-ketoglutarate semialdehyde, thereby providing a pathway for the conversion of m-galactarate to α-ketoglutarate semialdehyde. PMID:24926996

  17. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Fuconate Dehydratase from Xanthomonas campestris

    SciTech Connect

    Yew,W.; Fedorov, A.; Fedorov, E.; Rakus, J.; Pierce, R.; Almo, S.; Gerlt, J.

    2006-01-01

    Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report the authors use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI: 21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of th third, fourth, and fifth-strands in the (/)7-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and sixth-strands (His 351 and Asp 324, respectively), and a Glue at the end of the eighth-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L

  18. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Rhamnonate Dehydratase

    SciTech Connect

    Rakus,J.; Fedorov, A.; Fedorov, E.; Glaner, M.; Hubbard, B.; Delli, J.; Babbitt, P.; Almo, S.; Gerlt, J.

    2008-01-01

    The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy-l-mannonate) has the 'best' kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg2+; the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy-l-rhamnonate (obtained by reduction of the product with NaBH4). Like other members of the enolase superfamily, RhamD contains an N-terminal a + {beta} capping domain and a C-terminal ({beta}/a)7{beta}-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining '20s loop' in the capping domain is extended in length and the '50s loop' is truncated. The ligands for the Mg2+ are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth {beta}-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth {beta}-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg2+-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to carbon-3

  19. Evolution of enzymatic activities in the enolase superfamily: galactarate dehydratase III from Agrobacterium tumefaciens C58.

    PubMed

    Groninger-Poe, Fiona P; Bouvier, Jason T; Vetting, Matthew W; Kalyanaraman, Chakrapani; Kumar, Ritesh; Almo, Steven C; Jacobson, Matthew P; Gerlt, John A

    2014-07-01

    The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening, one protein (UniProt entry A9CG74; locus tag Atu4196) showed activity with both m-galactarate and d-galacturonate. Two families of galactarate dehydratases had been discovered previously in the ENS, GalrD/TalrD [Yew, W. S., et al. (2007) Biochemistry 46, 9564-9577] and GalrD-II [Rakus, J. F., et al. (2009) Biochemistry 48, 11546-11558]; these have different active site acid/base catalysis and have no activity with d-galacturonate. A9CG74 dehydrates m-galactarate to form 2-keto-3-deoxy-galactarate but does not dehydrate d-galacturonate as expected. Instead, when A9CG74 is incubated with d-galacturonate, 3-deoxy-d-xylo-hexarate or 3-deoxy-d-lyxo-hexarate is formed. In this reaction, instead of abstracting the C5 proton α to the carboxylate group, the expected reaction for a member of the ENS, the enzyme apparently abstracts the proton α to the aldehyde group to form 3-deoxy-d-threo-hexulosuronate that undergoes a 1,2-hydride shift similar to the benzylic acid rearrangement to form the observed product. A. tumefaciens C58 does not utilize m-galactarate as a carbon source under the conditions tested in this study, although it does utilize d-galacturonate, which is a likely precursor to m-galactarate. The gene encoding A9CG74 and several genome proximal genes were upregulated with d-galacturonate as the carbon source. One of these, a member of the dihydrodipicolinate synthase superfamily, catalyzes the dehydration and subsequent decarboxylation of 2-keto-3-deoxy-d-galactarate to α-ketoglutarate semialdehyde, thereby providing a pathway for the conversion of m-galactarate to α-ketoglutarate semialdehyde. PMID:24926996

  20. Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation.

    PubMed

    Zhang, Han; Trout, William S; Liu, Shuang; Andrade, Gabriel A; Hudson, Devin A; Scinto, Samuel L; Dicker, Kevin T; Li, Yi; Lazouski, Nikifar; Rosenthal, Joel; Thorpe, Colin; Jia, Xinqiao; Fox, Joseph M

    2016-05-11

    Rapid bioorthogonal reactivity can be induced by controllable, catalytic stimuli using air as the oxidant. Methylene blue (4 μM) irradiated with red light (660 nm) catalyzes the rapid oxidation of a dihydrotetrazine to a tetrazine thereby turning on reactivity toward trans-cyclooctene dienophiles. Alternately, the aerial oxidation of dihydrotetrazines can be efficiently catalyzed by nanomolar levels of horseradish peroxidase under peroxide-free conditions. Selection of dihydrotetrazine/tetrazine pairs of sufficient kinetic stability in aerobic aqueous solutions is key to the success of these approaches. In this work, polymer fibers carrying latent dihydrotetrazines were catalytically activated and covalently modified by trans-cyclooctene conjugates of small molecules, peptides, and proteins. In addition to visualization with fluorophores, fibers conjugated to a cell adhesive peptide exhibited a dramatically increased ability to mediate contact guidance of cells. PMID:27078610

  1. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  2. The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus.

    PubMed

    Zhao, Huajie; Li, Shangshang; Zhang, Jianjun; Che, Gen; Zhou, Meng; Liu, Min; Zhang, Chen; Xu, Nuo; Lin, Lin; Liu, Yu; Jia, Le

    2016-10-20

    Two polysaccharides, EIPS and AIPS were obtained by the hydrolysis of IPS from Termitomyces albuminosus, and their pharmacological effects on blood lipid profiles metabolism and oxidative stress were investigated. The results demonstrated that EIPS was superior to IPS and AIPS on reducing hepatic lipid levels and preventing oxidative stress by improving serum enzyme activities (ALT, AST, and ALP), serum lipid levels (TC, TG, HDL-C, LDL-C and VLDL-C), hepatic lipid levels (TC and TG), and antioxidant status (SOD, GSH-Px, CAT, T-AOC, MDA, and LPO). These conclusions indicated that EIPS, AIPS and IPS might be suitable for functional foods and natural drugs on preventing the high-fat emulsion-induced hyperlipidemia. In addition, the monosaccharide compositions of IPS and its hydrolyzate were also processed. PMID:27474674

  3. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    PubMed Central

    2011-01-01

    Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316

  4. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Tartrate Dehydratase from Bradyrhizobium japonicum

    SciTech Connect

    Yew,W.; Fedorov, A.; Fedorov, E.; Wood, B.; Almo, S.; Gerlt, J.

    2006-01-01

    We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second {beta}-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth -strands, respectively, as well as ligands for an essential Mg{sup 2+}, Asp 213, Glu 239, and Glu 265 at the ends of the third, fourth, and fifth {beta}-strands, respectively. We screened a library of 46 acid sugars and discovered that only D-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (k{sub cat} = 7.3 s{sup -1}; k{sub cat}/K{sub M} = 8.5 x 10{sup 4} M{sup -1} s{sup -1}) are consistent with assignment of the D-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the {alpha}-proton to generate a Mg{sup 2+}-stabilized enediolate intermediate, and the vinylogous -elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by {sup 1}H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a 'simple' extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg{sup 2+}-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.

  5. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    PubMed

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health. PMID:27329475

  6. Toward an Automatic Determination of Enzymatic Reaction Mechanisms and Their Activation Free Energies.

    PubMed

    Zinovjev, Kirill; Ruiz-Pernía, J Javier; Tuñón, Iñaki

    2013-08-13

    We present a combination of the string method and a path collective variable for the exploration of the free energy surface associated to a chemical reaction in condensed environments. The on-the-fly string method is employed to find the minimum free energy paths on a multidimensional free energy surface defined in terms of interatomic distances, which is a convenient selection to study bond forming/breaking processes. Once the paths have been determined, a reaction coordinate is defined as a measure of the advance of the system along these paths. This reaction coordinate can be then used to trace the reaction Potential of Mean Force from which the activation free energy can be obtained. This combination of methodologies has been here applied to the study, by means of Quantum Mechanics/Molecular Mechanics simulations, of the reaction catalyzed by guanidinoacetate methyltransferase. This enzyme catalyzes the methylation of guanidinoacetate by S-adenosyl-l-methionine, a reaction that involves a methyl transfer and a proton transfer and for which different reaction mechanisms have been proposed. PMID:26584125

  7. Vialinin A and thelephantin G, potent inhibitors of tumor necrosis factor-α production, inhibit sentrin/SUMO-specific protease 1 enzymatic activity.

    PubMed

    Yoshioka, Yasukiyo; Namiki, Daisuke; Makiuchi, Mao; Sugaya, Kouichi; Onose, Jun-Ichi; Ashida, Hitoshi; Abe, Naoki

    2016-09-01

    Several p-terphenyl compounds have been isolated from the edible Chinese mushroom Thelephora vialis. Vialinin A, a p-terphenyl compound, strongly inhibits tumor necrosis factor-α production and release. Vialinin A inhibits the enzymatic activity of ubiquitin-specific peptidase 5, one of the target molecules in RBL-2H3 cells. Here we examined the inhibitory effect of p-terphenyl compounds, including vialinin A, against sentrin/SUMO-specific protease 1 (SENP1) enzymatic activity. The half maximal inhibitory concentration values of vialinin A and thelephantin G against full-length SENP1 were 1.64±0.23μM and 2.48±0.02μM, respectively. These findings suggest that p-terphenyl compounds are potent SENP1 inhibitors. PMID:27491710

  8. Extraction and quantitation of coumarin from cinnamon and its effect on enzymatic browning in fresh apple juice: a bioinformatics approach to illuminate its antibrowning activity.

    PubMed

    Thada, Rajarajeshwari; Chockalingam, Shivashri; Dhandapani, Ramesh Kumar; Panchamoorthy, Rajasekar

    2013-06-01

    Enzymatic browning by polyphenoloxidase (PPO) affects food quality and taste in fruits and vegetables. Thus, the study was designed to reduce browning in apple juice by coumarin. The ethanolic extract of cinnamon was prepared and its coumarin content was quantitated by HPLC, using authentic coumarin (AC) as standard. The effect of cinnamon extract (CE) and AC on enzymatic browning, its time dependent effects, and the specific activity of PPO and peroxidase (POD) were studied in apple juice. The docking of coumarin with PPO and POD was also performed to elucidate its antibrowning mechanism. The CE (73%) and AC (82%) showed better reduction in browning, maintained its antibrowning effect at all time points, and significantly (p < 0.05) reduced the specific activity of PPO and POD when compared with controls. Coumarin showed strong interaction with binding pockets of PPO and POD, suggesting its potential use as inhibitor to enzyme mediated browning in apple juice. PMID:23683299

  9. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity.

    PubMed

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J; Keinan, Alon; Levanon, Erez Y

    2016-05-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce-in multiple types of cancer-enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3-following its rapid expansion in primates-can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  10. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity

    PubMed Central

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J.; Keinan, Alon

    2016-01-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce—in multiple types of cancer—enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3—following its rapid expansion in primates—can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  11. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Mannonate Dhydratase from Novosphingobium aromaticivorans

    SciTech Connect

    Rakus,J.; Fedorov, A.; Fedorov, E.; Glasner, M.; Vick, J.; Babbitt, P.; Almo, S.; Gerlt, J.

    2007-01-01

    The d-mannonate dehydratase (ManD) function was assigned to a group of orthologous proteins in the mechanistically diverse enolase superfamily by screening a library of acid sugars. Structures of the wild type ManD from Novosphingobium aromaticivorans were determined at pH 7.5 in the presence of Mg2+ and also in the presence of Mg2+ and the 2-keto-3-keto-d-gluconate dehydration product; the structure of the catalytically active K271E mutant was determined at pH 5.5 in the presence of the d-mannonate substrate. As previously observed in the structures of other members of the enolase superfamily, ManD contains two domains, an N-terminal a+{beta} capping domain and a ({beta}/a)7{beta}-barrel domain. The barrel domain contains the ligands for the essential Mg2+, Asp 210, Glu 236, and Glu 262, at the ends of the third, fourth, and fifth {beta}-strands of the barrel domain, respectively. However, the barrel domain lacks both the Lys acid/base catalyst at the end of the second {beta}-strand and the His-Asp dyad acid/base catalyst at the ends of the seventh and sixth {beta}-strands, respectively, that are found in many members of the superfamily. Instead, a hydrogen-bonded dyad of Tyr 159 in a loop following the second {beta}-strand and Arg 147 at the end of the second {beta}-strand are positioned to initiate the reaction by abstraction of the 2-proton. Both Tyr 159 and His 212, at the end of the third {beta}-strand, are positioned to facilitate both syn-dehydration and ketonization of the resulting enol intermediate to yield the 2-keto-3-keto-d-gluconate product with the observed retention of configuration. The identities and locations of these acid/base catalysts as well as of cationic amino acid residues that stabilize the enolate anion intermediate define a new structural strategy for catalysis (subgroup) in the mechanistically diverse enolase superfamily. With these differences, we provide additional evidence that the ligands for the essential Mg2+ are the only

  12. Effects of low molecular weight sulfated galactan fragments from Botryocladia occidentalis on the pharmacological and enzymatic activity of sPLA2 from Crotalus durissus cascavella.

    PubMed

    Toyama, M H; Toyama, D O; Torres, V M; Pontes, G C; Farias, W R L; Melo, F R; Oliveira, S C B; Fagundes, F H R; Diz Filho, E B S; Cavada, B S

    2010-11-01

    Low molecular weight fragments of sulfated galactans (Boc-5 and Boc-10) from the red algae Botryocladia occidentalis significantly inhibited Crotalus durissus cascavella sPLA2 enzymatic activity. Equimolar ratios of sPLA2 to Boc-5 or Boc-10 resulted in allosteric inhibition of sPLA2. Under the conditions tested, we observed that both Boc-5 and Boc-10 strongly decreased edema, myonecrosis, and neurotoxicity induced by native sPLA2. PMID:21061146

  13. Accumulation of ALDH1-positive cells after neoadjuvant chemotherapy predicts treatment resistance and prognosticates poor outcome in ovarian cancer

    PubMed Central

    Debald, Manuel; Rostamzadeh, Babak; Thiesler, Thore; Schröder, Lars; Barchet, Winfried; Abramian, Alina; Kaiser, Christina; Kristiansen, Glen; Kuhn, Walther; Kübler, Kirsten

    2015-01-01

    Although ovarian cancer is a highly chemosensitive disease, it is only infrequently cured. One of the major reasons lies in the presence of drug-resistant cancer stem-like cells, sufficient to fuel recurrence. We phenotyped cancer stem-like cells by flow cytometry and immunohistochemistry in 55 matched samples before and after taxane/platinum-based neoadjuvant chemotherapy. All used markers of stemness (ALDH1, CD24, CD117, CD133) isolated low frequencies of malignant cells. ALDH1 was the most valuable marker for tracking stemness in vivo. The enrichment of ALDH1 expression after treatment was associated with a poor response to chemotherapy, with platinum resistance and independently prognosticated unfavorable outcome. Our results suggest that increased ALDH1 expression after treatment identifies patients with aggressive tumor phenotypes. PMID:25999351

  14. Accumulation of ALDH1-positive cells after neoadjuvant chemotherapy predicts treatment resistance and prognosticates poor outcome in ovarian cancer.

    PubMed

    Ayub, Tiyasha H; Keyver-Paik, Mignon-Denise; Debald, Manuel; Rostamzadeh, Babak; Thiesler, Thore; Schröder, Lars; Barchet, Winfried; Abramian, Alina; Kaiser, Christina; Kristiansen, Glen; Kuhn, Walther; Kübler, Kirsten

    2015-06-30

    Although ovarian cancer is a highly chemosensitive disease, it is only infrequently cured. One of the major reasons lies in the presence of drug-resistant cancer stem-like cells, sufficient to fuel recurrence. We phenotyped cancer stem-like cells by flow cytometry and immunohistochemistry in 55 matched samples before and after taxane/platinum-based neoadjuvant chemotherapy. All used markers of stemness (ALDH1, CD24, CD117, CD133) isolated low frequencies of malignant cells. ALDH1 was the most valuable marker for tracking stemness in vivo. The enrichment of ALDH1 expression after treatment was associated with a poor response to chemotherapy, with platinum resistance and independently prognosticated unfavorable outcome. Our results suggest that increased ALDH1 expression after treatment identifies patients with aggressive tumor phenotypes. PMID:25999351

  15. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater. PMID:26595097

  16. Studies on the effects of polyaspartate protease fertilizer enhancer in the absorptions of soil nutrition and the enzymatic activities of crops

    NASA Astrophysics Data System (ADS)

    Guoliang, Jiang; Dong, Yang; Yun, Liu; Guanghua, Zhang; Zhongjun, Li; Xinhua, Zhang

    2003-04-01

    The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.

  17. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries

    PubMed Central

    Bowles, Josephine; Feng, Chun-Wei; Miles, Kim; Ineson, Jessica; Spiller, Cassy; Koopman, Peter

    2016-01-01

    Substantial evidence exists that during fetal ovarian development in mammals, retinoic acid (RA) induces germ cells to express the pre-meiotic marker Stra8 and enter meiosis, and that these effects are prevented in the fetal testis by the RA-degrading P450 enzyme CYP26B1. Nonetheless, the role of RA has been disputed principally because germ cells in embryos lacking two major RA-synthesizing enzymes, ALDH1A2 and ALDH1A3, remain able to enter meiosis. Here we show that a third RA-synthesizing enzyme, ALDH1A1, is expressed in fetal ovaries, providing a likely source of RA in the absence of ALDH1A2 and ALDH1A3. In ovaries lacking ALDH1A1, the onset of germ cell meiosis is delayed. Our data resolve the conundrum posed by conflicting published data sets and reconfirm the model that meiosis is triggered by endogenous RA in the developing ovary. PMID:26892828

  18. Enzymatic hydrolysis of N-benzoyl-L-tyrosine p-nitroanilide by α-chymotrypsin in DMSO-water/AOT/n-heptane reverse micelles. A unique interfacial effect on the enzymatic activity.

    PubMed

    Moyano, Fernando; Setien, Evangelina; Silber, Juana J; Correa, N Mariano

    2013-07-01

    The reverse micelle (RM) media are very good as nanoreactors because they can create a unique microenvironment for carrying out a variety of chemical and biochemical reactions. The aim of the present work is to determine the influence of different water-dimethyl sulfoxide (DMSO) mixtures encapsulated in 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane RMs on the enzymatic hydrolysis of N-benzoyl-L-tyrosine p-nitroanilide (Bz-Try-pNA) by α-chymotrypsin (α-CT). The reaction was first studied in homogeneous media at different DMSO-water mixture compositions and in DMSO-water/AOT/n-heptane RMs. The hydrolysis rates of Bz-Try-pNA catalyzed by α-CT were determined by UV-vis spectroscopy. The reaction follows the Michaelis-Menten mechanism and the kinetic parameters: kcat, KM, and kcat/KM were evaluated under different conditions. In this homogeneous media, DMSO plays an important role in the solubilization process of the peptide which is almost insoluble in water, but it has a tremendous impact on the inactivation of α-CT. It is shown that the enzyme dissolved in a 20% molar ratio of the DMSO-water mixture does not present enzymatic activity. Dynamic light scattering has been used to assess the formation of DMSO-water/AOT/heptane RMs at different DMSO compositions. The results also show that there is preferential solvation of the AOT RM interface by water molecules. To test the use of these RMs as nanoreactors, the kinetic parameters for the enzymatic reaction in these systems have been evaluated. The parameters were determined at fixed W(S) {W(S) = ([water] + [DMSO])/[AOT] = 20} at different DMSO-water compositions. The results show that the Michaelis-Menten mechanism is valid for α-CT in all the RM systems studied and that the reaction takes place at the RM interface. Surprisingly, it was observed that the enzyme encapsulated by the RMs show catalytic effects with similar kcat/KM values at any DMSO composition investigated, which evidence that DMSO molecules are

  19. ADH and ALDH polymorphisms and alcohol dependence in Mexican and Native Americans

    PubMed Central

    Ehlers, Cindy L.; Liang, Tiebing; Gizer, Ian R.

    2012-01-01

    Background Ethanol is primarily metabolized in the liver by 2 rate-limiting reactions: conversion of ethanol to acetaldehyde by alcohol dehydrogenase (ADH) and subsequent conversion of acetaldehyde to acetate by aldehyde dehydrogenase (ALDH). ADH and ALDH exist in multiple isozymes that differ in their kinetic properties. Notably, polymorphisms within the genes that encode for these isozymes vary in their allele frequencies between ethnic groups, and thus, they have been considered as candidate genes that may differentially influence risk for the development of alcohol dependence across ethnic groups. Objectives and Methods Associations between alcohol dependence and polymorphisms in ADH1B, ADH1C, and ALDH2, were compared in a community sample of Native Americans living on reservations (n=791) and Mexican Americans (n=391) living within the same county. Results Two Mexican Americans and no Native Americans possessed one ALDH2*2 allele. Presence of at least one ADH1B*2 allele was found in 7% of the Native Americans and 13% of the Mexican Americans, but was only associated with protection against alcohol dependence in the Mexican Americans. Presence of at least one ADH1B*3 allele was found in 4% if the Native Americans and 2% of the Mexican Americans, but was associated with protection against alcohol dependence only in the Native Americans. No associations between alcohol dependence and polymorphisms in ADH1C were found. Conclusions and Scientific Significance Polymorphisms in ADH1B are protective against alcoholism in these two populations; however, these findings do not explain the high prevalence of alcoholism in these populations. PMID:22931071

  20. pCO2 and enzymatic activity in a river floodplain system of the Danube under different hydrological settings.

    NASA Astrophysics Data System (ADS)

    Sieczko, Anna; Demeter, Katalin; Mayr, Magdalena; Meisterl, Karin; Peduzzi, Peter

    2014-05-01

    Surface waters may serve as either sinks or sources of CO2. In contrast to rivers, which are typically sources of CO2 to the atmosphere, the role of fringing floodplains in CO2 flux is largely understudied. This study was conducted in a river-floodplain system near Vienna (Austria). The sampling focused on changing hydrological situations, particularly on two distinct flood events: a typical 1-year flood in 2012 and an extraordinary 100-year flood in 2013. One objective was to determine partial pressure of CO2 (pCO2) in floodplain lakes with different degree of connectivity to the main channel, and compare the impact of these two types of floods. Another aim was to decipher which fraction of the dissolved organic matter (DOM) pool contributed to pCO2 by linking pCO2 with optical properties of DOM and extracellular enzymatic activity (EEA) of microbes. The EEA is a valuable tool, especially for assessing the non-chromophoric but rapidly utilized DOM-fraction during floods. In 2012 and 2013, the floodplain lakes were dominated by supersaturated pCO2 conditions, which indicates that they served as CO2 sources. Surprisingly, there were no significant differences in pCO2 between the two types of flood. Our findings imply that the extent of the flood had minor impact on pCO2, but the general occurrence of a flood appears to be important. During the flood in 2013 significantly more dissolved organic carbon (DOC) (p<0.05) was introduced into the floodplain. The optical measurements pointed towards more refractory DOM, with higher molecular weight and humic content during the flood in 2013 compared to 2012. However there were no significant differences in EEA between the two floods. Few days after beginning of the floods in 2012 and 2013, an increase in activity of carbon-acquiring enzymes (EEA-C) was observed. We also found positive correlations of pCO2with EEA-C both in 2012 (r=0.86, p<0.01) and in 2013 (r=0.73, p<0.05). The above findings imply that some fraction of DOM

  1. Recombinant human diamine oxidase activity is not inhibited by ethanol, acetaldehyde, disulfiram, diethyldithiocarbamate or cyanamide.

    PubMed

    Bartko, Johann; Gludovacz, Elisabeth; Petroczi, Karin; Borth, Nicole; Jilma, Bernd; Boehm, Thomas

    2016-08-01

    Human diamine oxidase (hDAO, EC 1.4.3.22) is the key enzyme in the degradation of extracellular histamine. Consumption of alcohol is a known trigger of mast cell degranulation in patients with mast cell activation syndrome. Ethanol may also interfere with enzymatic histamine degradation, but reports on the effects on DAO activity are controversial. There are also conflicting reports whether disulfiram, an FDA-approved agent in the treatment of alcohol dependence, inhibits DAO. We therefore investigated the inhibitory potential of ethanol and disulfiram and their metabolites on recombinant human DAO (rhDAO) in three different assay systems. Relevant concentrations of ethanol, acetaldehyde, and acetate did not inhibit rhDAO activity in an in vitro assay system using horseradish peroxidase (HRP) -mediated luminol oxidation. The aldehyde dehydrogenase (ALDH; EC 1.2.1.3) inhibitors cyanamide and its dimer dicyanamide also had no effect on DAO activity. In one assay system, the irreversible ALDH inhibitor disulfiram and its main metabolite diethyldithiocarbamate seemed to inhibit DAO activity. However, the decreased product formation was not due to a direct block of DAO activity but resulted from inhibition of peroxidase employed in the coupled system. Our in vitro data do not support a direct blocking effect of ethanol, disulfiram, and their metabolites on DAO activity in vivo. PMID:27401969

  2. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms. PMID:25285490

  3. Comparative study of enzymatic activities of new KatG mutants from low- and high-level isoniazid-resistant clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Brossier, Florence; Boudinet, Marlène; Jarlier, Vincent; Petrella, Stéphanie; Sougakoff, Wladimir

    2016-09-01

    Resistance to isoniazid (INH-R) in Mycobacterium tuberculosis is mainly due to mutations at position 315 (S315T) of the catalase-peroxidase KatG. We identified 16 mutations (including 13 biochemically uncharacterized mutations) in KatG from INH-R clinical isolates of M. tuberculosis showing mutations other than S315T. The KatG enzymatic activities (catalase, peroxidase, free radical production and isonicotinoyl-NAD formation) of wild-type KatG and the 16 mutants were determined and correlated to their spatial location in a KatG model structure. Of all mutations studied, H270R, which conferred a high level of INH-R and results in the disruption of a coordination bond with the heme, caused complete loss of all enzymatic KatG activities. The mutants generally associated with a very high level of INH-R were all characterized by a drastic reduction in catalase activity and a marked decrease in INH activation activities. One mutant, A162E, displayed a behavior similar to S315T, i.e. a moderate decrease in catalase activity and a drastic decrease in the formation of the radical form of INH. Finally, the mutants associated with a low level of INH-R showed a moderate reduction in the four catalytic activities, likely stemming from an overall alteration of the folding and/or stability of the KatG protein. PMID:27553406

  4. Contrasted enzymatic cocktails reveal the importance of cellulases and hemicellulases activity ratios for the hydrolysis of cellulose in presence of xylans.

    PubMed

    Dondelinger, Eve; Aubry, Nathalie; Ben Chaabane, Fadhel; Cohen, Céline; Tayeb, Jean; Rémond, Caroline

    2016-03-01

    Various enzymatic cocktails were produced from two Trichoderma reesei strains, a cellulase hyperproducer strain and a strain with β-glucosidase activity overexpression. By using various carbon sources (lactose, glucose, xylose, hemicellulosic hydrolysate) for strains growth, contrasted enzymatic activities were obtained. The enzymatic cocktails presented various levels of efficiency for the hydrolysis of cellulose Avicel into glucose, in presence of xylans, or not. These latter were also hydrolyzed with different extents according to cocktails. The most efficient cocktails (TR1 and TR3) on Avicel were richer in filter paper activity (FPU) and presented a low ratio FPU/β-glucosidase activity. Cocktails TR2 and TR5 which were produced on the higher amount of hemicellulosic hydrolysate, possess both high xylanase and β-xylosidase activities, and were the most efficient for xylans hydrolysis. When hydrolysis of Avicel was conducted in presence of xylans, a decrease of glucose release occurred for all cocktails compared to hydrolysis of Avicel alone. Mixing TR1 and TR5 cocktails with two different ratios of proteins (1/1 and 1/4) resulted in a gain of efficiency for glucose release during hydrolysis of Avicel in presence of xylans compared to TR5 alone. Our results demonstrate the importance of combining hemicellulase and cellulase activities to improve the yields of glucose release from Avicel in presence of xylans. In this context, strategies involving enzymes production with carbon sources comprising mixed C5 and C6 sugars or combining different cocktails produced on C5 or on C6 sugars are of interest for processes developed in the context of lignocellulosic biorefinery. PMID:27001439

  5. Screening of mammary carcinoma for hormone dependency in vitro. Enzymatic activity in short-term organotypic cultures of breast biopsies from 62 patients.

    PubMed

    Montessori, G A; Algard, F T; Van Netten, J P; Donald, J C

    1977-04-01

    Enzymatic activity in short-term organotypic cultures of breast biopsies from 62 patients. Am J Clin Pathol 67: 393-396, 1977. Mammary carcinomas from 62 patients were assessed for pentose shunt dehydrogenase activity initially and after 24-72 hours in organotypic cultures with or without exogenous hormones. Hormones tested were (1) estradiol, (2) testosterone, and (3) prolactin. Thirty-seven (60%) were judged hormone-independent, in vitro; 14 (23%) were judged hormone-dependent, in vitro; 11 (17%) were classed as "indeterminant." Clinical results of endocrine management of 13 cases and an appraisal of the usefulness of the method are presented. PMID:192068

  6. ALDH1-High Ovarian Cancer Stem-Like Cells Can Be Isolated from Serous and Clear Cell Adenocarcinoma Cells, and ALDH1 High Expression Is Associated with Poor Prognosis

    PubMed Central

    Kuroda, Takafumi; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Yasuda, Kazuyo; Takahashi, Akari; Asanuma, Hiroko; Morita, Rena; Mariya, Tasuku; Asano, Takuya; Mizuuchi, Masahito; Saito, Tsuyoshi; Sato, Noriyuki

    2013-01-01

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis. PMID:23762304

  7. Nitric Oxide-Induced Calcium Release: Activation of Type 1 Ryanodine Receptor, a Calcium Release Channel, through Non-Enzymatic Post-Translational Modification by Nitric Oxide

    PubMed Central

    Kakizawa, Sho

    2013-01-01

    Nitric oxide (NO) is a typical gaseous messenger involved in a wide range of biological processes. In our classical knowledge, effects of NO are largely achieved by activation of soluble guanylyl cyclase to form cyclic guanosine-3′, 5′-monophosphate. However, emerging evidences have suggested another signaling mechanism mediated by NO: “S-nitrosylation” of target proteins. S-nitrosylation is a covalent addition of an NO group to a cysteine thiol/sulfhydryl (RSH), and categorized into non-enzymatic post-translational modification (PTM) of proteins, contrasted to enzymatic PTM of proteins, such as phosphorylation mediated by various protein kinases. Very recently, we found novel intracellular calcium (Ca2+) mobilizing mechanism, NO-induced Ca2+ release (NICR) in cerebellar Purkinje cells. NICR is mediated by type 1 ryanodine receptor (RyR1), a Ca2+ release channel expressed in endoplasmic-reticular membrane. Furthermore, NICR is indicated to be dependent on S-nitrosylation of RyR1, and involved in synaptic plasticity in the cerebellum. In this review, molecular mechanisms and functional significance of NICR, as well as non-enzymatic PTM of proteins by gaseous signals, are described. PMID:24130553

  8. Divergence in Enzymatic Activities in the Soybean GST Supergene Family Provides New Insight into the Evolutionary Dynamics of Whole-Genome Duplicates

    PubMed Central

    Liu, Hai-Jing; Tang, Zhen-Xin; Han, Xue-Min; Yang, Zhi-Ling; Zhang, Fu-Min; Yang, Hai-Ling; Liu, Yan-Jing; Zeng, Qing-Yin

    2015-01-01

    Whole-genome duplication (WGD), or polyploidy, is a major force in plant genome evolution. A duplicate of all genes is present in the genome immediately following a WGD event. However, the evolutionary mechanisms responsible for the loss of, or retention and subsequent functional divergence of polyploidy-derived duplicates remain largely unknown. In this study we reconstructed the evolutionary history of the glutathione S-transferase (GST) gene family from the soybean genome, and identified 72 GST duplicated gene pairs formed by a recent Glycine-specific WGD event occurring approximately 13 Ma. We found that 72% of duplicated GST gene pairs experienced gene losses or pseudogenization, whereas 28% of GST gene pairs have been retained in the soybean genome. The GST pseudogenes were under relaxed selective constraints, whereas functional GSTs were subject to strong purifying selection. Plant GST genes play important roles in stress tolerance and detoxification metabolism. By examining the gene expression responses to abiotic stresses and enzymatic properties of the ancestral and current proteins, we found that polyploidy-derived GST duplicates show the divergence in enzymatic activities. Through site-directed mutagenesis of ancestral proteins, this study revealed that nonsynonymous substitutions of key amino acid sites play an important role in the divergence of enzymatic functions of polyploidy-derived GST duplicates. These findings provide new insights into the evolutionary and functional dynamics of polyploidy-derived duplicate genes. PMID:26219583

  9. Enzymatic activities in different strains isolated from healthy and brittle leaf disease affected date palm leaves: study of amylase production conditions.

    PubMed

    Mouna, Jrad; Imen, Fendri; Choba Ines, Ben; Nourredine, Drira; Adel, Kadri; Néji, Gharsallah

    2015-02-01

    The present study aimed to investigate and compare the enzymatic production of endophytic bacteria isolated from healthy and brittle leaf disease affected date palm leaves (pectinase, cellulase, lipase, and amylase). The findings revealed that the enzymatic products from the bacterial isolates of healthy date palm leaves were primarily 33% amylolytic enzyme, 33 % cellulase, 25 % pectinase, and 25 % lipase. The isolates from brittle leaf disease date palm leaves, on the other hand, were noted to produce 16 % amylolytic enzyme, 20 % cellulose, 50 % pectinase, and 50 % lipase. The effects of temperature and pH on amylase, pectinase, and cellulose activities were investigated. The Bacillus subtilis JN934392 strain isolated from healthy date palm leaves produced higher levels of amylase activity at pH 7. A Box Behnken Design (BBD) was employed to optimize amylase extraction. Maximal activity was observed at pH and temperature ranges of pH 6-6.5 and 37-39 °C, respectively. Under those conditions, amylase activity was noted to be attained 9.37 U/ml. The results showed that the enzyme was able to maintain more than 50 % of its activity over a temperature range of 50-80 °C, with an optimum at 70 °C. This bacterial amylase showed high activity compared to other bacteria, which provides support for its promising candidacy for future industrial application. PMID:25432343

  10. Association between ALDH1L1 gene polymorphism and neural tube defects in the Chinese Han population.

    PubMed

    Wu, Lihua; Lu, Xiaolin; Guo, Jin; Zhang, Ting; Wang, Fang; Bao, Yihua

    2016-07-01

    We investigated single-nucleotide polymorphisms (SNPs) in the aldehyde dehydrogenase family1 L1 gene (ALDH1L1) and their association with neural tube defects (NTDs) in the Chinese population. A total of 271 NTDs cases and 192 healthy controls were used in this study. A total of 112 selected SNPs in the ALDH1L1 gene were analyzed using the next-generation sequencing method. Statistical analysis was carried out to investigate the correlation between SNPs and patient susceptibility to NTDs. Statistical analysis revealed a significant correlation between the SNP sites rs4646733, rs2305225, and rs2276731 in the ALDH1L1 gene and NTDs. The TT genotype and T allele of rs4646733 in ALDH1L1 were associated with a significantly increased incidence of NTDs [odds ratio (OR) = 2.16, 95 % confidence interval (CI) 1.199-3.896 for genotype; and OR = 1.46, 95 % CI 1.092-1.971 for allele]. The AA genotype and A allele of rs2305225 in ALDH1L1 were associated with a significantly increased incidence of NTDs (OR = 2.03, 95 % CI 1.202-3.646 for genotype, and OR = 1.44, 95 % CI 1.096-1.905 for allele). The CT genotype and C allele of rs2276731 in ALDH1L1 significantly were associated with an increased incidence of NTDs (OR = 1.67, 95 % CI 1.129-2.491 with genotype, and OR = 1.32, 95 % CI 0.956-1.816 with allele).The polymorphic loci rs4646733, rs2305225, and rs2276731 in the ALDH1L1 gene maybe potential risk factors for NTDs in the Chinese population. PMID:26993122

  11. Association between ALDH1+/CD133+ stem-like cells and tumor angiogenesis in invasive ductal breast carcinoma

    PubMed Central

    LV, XINQUAN; WANG, YINGZI; SONG, YIMIN; PANG, XIA; LI, HUIXIANG

    2016-01-01

    The growth and metastasis of tumors is dependent on angiogenesis; however, the association between tumor stem cells (TSCs) and tumor angiogenesis remains to be elucidated. The present study aimed to investigate the expression of the TSC markers aldehyde dehydrogenase 1 (ALDH1) and cluster of differentiation 133 (CD133) in invasive ductal breast carcinoma, and identify their correlation with tumor angiogenesis. Stem-like cells from the breast tissue of 120 patients, who were diagnosed with invasive ductal breast carcinoma at The First Affiliated Hospital of Zhengzhou University (Zhengzhou, Henan, China) between January 2009 and December 2010, were collected by surgical resection and analyzed using immunohistochemical double staining. The expression of the vascular markers CD34, CD105 and vascular endothelial growth factor (VEGF) were determined using single staining. Overall, 25.83% (31/120) of the specimens contained a large number of ALDH1+/CD133+ stem-like cells (ALDH1+/CD133+ tumor). ALDH1+/CD133+ expression is associated with microvessel density, VEGF-positive rate and estrogen receptor expression (P<0.05); however, ALDH1+/CD133+ expression was not associated with age, tumor diameter, lymph node metastasis, histological classification, progesterone receptor expression or human epidermal growth factor receptor 2 expression (P>0.05). The ALDH1+/CD133+ tumor phenotype and expression of VEGF were identified to be correlated in the present study (P=0.020). The present study revealed a close association between breast cancer TSC markers, including ALDH1 and CD133, and tumor angiogenesis. The results of the present study may provide a novel target and treatment strategy for future studies investigating tumor growth and metastasis. PMID:26998072

  12. An Indian family with Sjögren-Larsson syndrome caused by a novel ALDH3A2 mutation.

    PubMed

    Sakai, Kaori; Akiyama, Masashi; Yanagi, Teruki; Nampoothiri, Sheela; Mampilly, Tony; Sunitha, V; Shimizu, Hiroshi

    2010-09-01

    Sjögren-Larsson syndrome is an autosomal-recessive hereditary disorder characterized by congenital ichthyosis, mental retardation and spastic diplegia or tetraplegia. It is known that mutations in the fatty aldehyde dehydrogenase (FALDH) gene (ALDH3A2) underlie SLS. We report two Indian sisters showing typical clinical features of SLS. Direct sequencing of the entire coding region of ALDH3A2 revealed a novel homozygous mutation, c.142G>T (p.Asp48Tyr) in exon 1, in both patients. Their parents harbored the mutation heterozygously. Mutant-allele-specific amplification analysis using PCR products as a template verified the mutation in the patients. The aspartic acid residue at the mutation site is located in the C-terminal portion of the second a-helix strand, a2, of N-terminal four helices of FALDH and the FALDH amino-acid sequence alignment shows that this aspartic acid residue is conserved among several diverse species. Until now, a number of mutations in ALDH3A2 have been shown to be responsible for SLS in Europe, the Middle East, Africa, and North and South America. However, in Asian populations, ALDH3A2 mutations have been identified only in Japanese SLS patients. Here we report an ALDH3A2 mutation for the first time in SLS patients in the Asian country other than Japan. The present results suggest that ALDH3A2 is a gene responsible for SLS in Asian populations. We hope ALDH3A2 mutation search will be globally available including many Asian countries in the future. PMID:20883264

  13. Generation of recombinant, enzymatically active human thyroid peroxidase and its recognition by antibodies in the sera of patients with Hashimoto's thyroiditis.

    PubMed Central

    Kaufman, K D; Rapoport, B; Seto, P; Chazenbalk, G D; Magnusson, R P

    1989-01-01

    A full-length cDNA clone for human thyroid peroxidase (TPO) inserted into the mammalian cell expression vector pECE was stably transfected into Chinese hamster ovary (CHO) cells. Clones were assayed for human TPO mRNA, TPO protein, and TPO enzymatic activity. One subclone, expressing the highest TPO enzymatic activity, was used in further studies. FACS analysis of these cells preincubated in Hashimoto's serum revealed approximately 100-fold greater fluorescence compared with controls, indicating that recombinant TPO is expressed on the cell surface. Particulate antigen was extracted from these cells and studied by Western blot analysis using a panel of Hashimoto's sera of known antimicrosomal antibody (anti-MSA) titer. Under nonreducing conditions a broad, immunoreactive band of approximately 200 kD was observed, as well as a doublet of approximately 110 kD. All of the 36 Hashimoto's sera tested reacted with these bands, most in proportion to their anti-MSA titer. Six normal sera tested against this antigen(s) were nonreactive, as were the Hashimoto's sera tested against nontransfected CHO cells. Western blots under reducing conditions revealed a considerably diminished signal, with some of the sera of lower anti-MSA titer becoming negative, the loss of the 200-kD broad band, and the apparent conversion of the 110-kD doublet into a single band. Preincubation of cells in tunicamycin revealed no decrease in TPO immunoreactivity. In conclusion, we expressed enzymatically active human TPO in nonthyroidal eukaryotic cells. Our data prove that functionally active TPO is a major component of the thyroid microsomal antigen. Images PMID:2474568

  14. β-Escin inhibits NNK-induced lung adenocarcinoma and ALDH1A1 and RhoA/Rock expression in A/J mice and growth of H460 human lung cancer cells.

    PubMed

    Patlolla, Jagan M R; Qian, Li; Biddick, Laura; Zhang, Yuting; Desai, Dhimant; Amin, Shantu; Lightfoot, Stan; Rao, Chinthalapally V

    2013-10-01

    Lung cancer is the leading cause of cancer-related deaths. β-Escin, a triterpene saponin isolated from horse chestnut seeds, was tested for inhibition of lung adenoma and adenocarcinoma induced by the tobacco carcinogen 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female A/J mice; and its possible mode of action was evaluated using the H460 human lung cancer cell line. At 6 weeks of age, 35 mice were fed AIN-76A-modified diet, and one week later, lung tumors were induced with a single intraperitoneal (i.p.) injection of 10 μmol NNK/mouse. Three weeks after the NNK treatment, groups of mice were fed either control or experimental diets containing 500 ppm for 20 weeks (10 control, 5 β-escin) or 36 weeks (15 control, 5 β-escin) and evaluated for lung tumor via histopathologic methods. Administration of 500 ppm β-escin significantly suppressed lung tumor (adenoma + adenocarcinoma) formation by more than 40% (P < 0.0015) at 20 weeks and by 53.3% (P < 0.0001) at 37 weeks. β-Escin inhibited NNK-induced lung adenocarcinoma formation by 65% (P < 0.001) at 20 weeks and by 53% (P < 0.0001) at 37 weeks. Immunohistochemical analysis revealed that lung tumors from mice exposed to β-escin showed significantly reduced aldehyde dehydrogenase (ALDH)1A1 and phospho-Akt (p-Akt) expression when compared with those in mice fed control diet. Aldefluor assay for ALDH revealed that among H460 lung cancer cells treated with different concentrations of β-escin (0-40 μmol/L), the subpopulation of cells with elevated ALDH activity was inhibited significantly. Our findings suggest that β-escin inhibits tobacco carcinogen-induced lung tumor formation by modulating ALDH1A1-positive cells and RhoA/Rock signaling. PMID:23963803

  15. Hybridization specificity, enzymatic activity and biological (Ha-ras) activity of oligonucleotides containing 2,4-dideoxy-beta-D-erythro-hexopyranosyl nucleosides.

    PubMed Central

    Augustyns, K; Godard, G; Hendrix, C; Van Aerschot, A; Rozenski, J; Saison-Behmoaras, T; Herdewijn, P

    1993-01-01

    Antisense oligonucleotides with a 2,4-dideoxyhexopyranosyl nucleoside incorporated at the 3'-end and at a mutation site of the Ha-ras oncogene mRNA were synthesized. Melting temperature studies revealed that an A*-G mismatch is more stable than an A*-T mismatch with these hexopyranosyl nucleosides incorporated at the mutation site. The oligonucleotides are stable against enzymatic degradation. RNase H mediated cleavage studies revealed selective cleavage of mutated Ha-ras mRNA. The oligonucleotide containing two pyranose nucleosides at the penultimate position activates RNase H more strongly than natural oligonucleotides. No correlation, however, was found between DNA - DNA or RNA - DNA melting temperatures and RNase H mediated cleavage capacity. Although the A*-G mismatch gives more stable hybridization than the A*-T base pairing, only the oligonucleotides containing an A*-T base pair are recognized by RNase H. This modification is situated 3 base pairs upstream to the cleavage site. Finally, the double pyranose modified oligonucleotide was able to reduce the growth of T24 cells (bladder carcinoma) while the unmodified antisense oligonucleotide was not. Images PMID:7694231

  16. A sensitive radioisotopic method for the measurement of NAD(P)H: Its application to the assay of metabolites and enzymatic activities

    SciTech Connect

    Sener, A.; Malaisse, W.J. )

    1990-05-01

    A radioisotopic method for the assay of NADH or NADPH is presented, which is based on the conversion of 2-(U-{sup 14}C)ketoglutarate to {sup 14}C-labeled glutamate in the reaction catalyzed by glutamate dehydrogenase. The efficiency of the method is close to 75%, its precision (coefficient of variation) close to 5%, and its sensitivity close to 0.1 pmol/sample. This simple and rapid method can be applied to the measurement of several metabolites and enzymatic activities. In the present study, its application to the assay of sorbitol, 3-hydroxybutyrate, glutamate dehydrogenase, 3-hydroxybutyrate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase is documented.

  17. A Novel New Delhi Metallo-β-Lactamase Variant, NDM-14, Isolated in a Chinese Hospital Possesses Increased Enzymatic Activity against Carbapenems

    PubMed Central

    Zou, Dayang; Huang, Yong; Zhao, Xiangna; Liu, Wei; Dong, Derong; Li, Huan; Wang, Xuesong; Huang, Simo; Wei, Xiao; Yan, Xiabei; Yang, Zhan; Tong, Yigang

    2015-01-01

    A novel New Delhi metallo-β-lactamase (NDM) variant, NDM-14, was identified in clinical isolate Acinetobacter lwoffii JN49-1, which was recovered from an intensive care unit patient at a local hospital in China. NDM-14, which differs from other existing enzymes by an amino acid substitution at position 130 (Asp130Gly), possesses enzymatic activity toward carbapenems that is greater than that of NDM-1. Kinetic data indicate that NDM-14 has a higher affinity for imipenem and meropenem. PMID:25645836

  18. Low Km aldehyde dehydrogenase (ALDH2) polymorphism, alcohol-drinking behavior, and chromosome alterations in peripheral lymphocytes.

    PubMed Central

    Morimoto, K; Takeshita, T

    1996-01-01

    Excessive drinking of alcohol is now widely known to be one of the major lifestyle choices that ca effect health. Among the various effects of alcohol drinking, cytogenetic and other genotoxic effects are of major concern from the viewpoint of prevention of alcohol-related diseases. Alcohol is first metabolized to acetaldehyde, which directly causes various types of chromosomal DNA lesions and alcohol-related diseases, and is then further detoxified to the much less toxic metabolite acetate. About 50% of Oriental people are deficient in the aldehyde-dehydrogenase 2 isozyme (ALDH2) that can most efficiently detoxify acetaldehyde. We have performed a series of experiments to investigate how the genetic deficiency in ALDH2 affects the behavioral pattern for alcohol drinking and the sensitivity of peripheral lymphocytes to the induction of chromosome alterations by exposure to alcohol and alcohol-related chemicals. We found great effects of the ALDH2 genotypes on alcohol sensitivity and alcohol-drinking behavior. We also show that lymphocytes from habitual drinkers with the deficient ALDH2 enzyme had significantly higher frequencies of sister chromatid exchanges than those from ALDH2-proficient individuals. PMID:8781384

  19. Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+ lung cancer stem cells through IGF1R signaling.

    PubMed

    Kim, I G; Kim, S Y; Choi, S I; Lee, J H; Kim, K C; Cho, E W

    2014-07-24

    Fibulins (FBLNs), a family of extracellular matrix proteins, have recently been shown to act as tumor suppressors or activators in different cancers, and the underlying molecular mechanisms of their action in cancer remain unclear. We have previously shown that the expression of FBLN3 is suppressed by promoter hypermethylation and is associated with invasiveness in aggressive non-small cell lung cancer. In this study, we evaluated the roles and signaling mechanism of FBLN3 in lung cancer stem cells (CSCs). Forced expression of FBLN3 suppressed invasion and migration of lung adenocarcinoma cells and decreased the expression of epithelial-to-mesenchymal transition (EMT) activators, including N-cadherin and Snail. Stemness activities of lung adenocarcinoma cells were also suppressed by FBLN3 as indicated by a decrease in spheroid formation and the levels of stemness markers such as Sox2 and β-catenin. These effects of FBLN3 were mediated by the glycogen synthase kinase-3β, GSK3β/β-catenin pathway, and the upstream regulators of GSK3β, including phosphoinositide 3-kinase (PI3K)/AKT and insulin-like growth factor-1 receptor (IGF1R), were inactivated by FBLN3. Moreover, IGF1R was shown to be a direct target of FBLN3, which competitively inhibited insulin-like growth factor (IGF) action. To confirm the effect of FBLN3 on lung CSCs, aldehyde dehydrogenase-positive (ALDH+) A549 lung CSCs were sorted and treated with recombinant FBLN3 protein. FBLN3 clearly suppressed EMT, stemness activity and the over-activated IGF1R/PI3K/AKT/GSK3β pathway of the ALDH+ CSC subpopulation. In addition, injection of recombinant FBLN3 protein around subcutaneous xenografts established with ALDH+ CSCs in athymic nude mice significantly suppressed tumor growth and progression. Overall, our results show that FBLN3 suppresses both EMT and self-renewal of the lung CSCs by modulating the IGF1R/PI3K/AKT/GSK3β pathway and that FBLN3 would be useful as an alternative CSC therapy. PMID:24013232

  20. Oxygen isotope ratios of PO4: An inorganic indicator of enzymatic activity and P metabolism and a new biomarker in the search for life

    PubMed Central

    Blake, Ruth E.; Alt, Jeffrey C.; Martini, Anna M.

    2001-01-01

    The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (δ18Op) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO4–H2O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that δ18OP values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of δ18Op as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, δ18Op may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars. PMID:11226207

  1. Rationale and design for PACE: patients with intermittent claudication injected with ALDH bright cells.

    PubMed

    Perin, Emerson C; Murphy, Michael; Cooke, John P; Moyé, Lem; Henry, Timothy D; Bettencourt, Judy; Gahremanpour, Amir; Leeper, Nicholas; Anderson, R David; Hiatt, William R; Lima, Joao A; Venkatesh, Bharath; Sayre, Shelly L; Vojvodic, Rachel W; Taylor, Doris A; Ebert, Ray F; Hirsch, Alan T

    2014-11-01

    Peripheral artery disease (PAD) is recognized as a public health issue because of its prevalence, functional limitations, and increased risk of systemic ischemic events. Current treatments for claudication, the primary symptom in patients with PAD, have limitations. Cells identified using cytosolic enzyme aldehyde dehydrogenase (ALDH) may benefit patients with severe PAD but has not been studied in patients with claudication. PACE is a randomized, double-blind, placebo-controlled clinical trial conducted by the Cardiovascular Cell Therapy Research Network to assess the safety and efficacy of autologous bone marrow-derived ALDH(br) cells delivered by direct intramuscular injections in 80 patients with symptom-limiting intermittent claudication. Eligible patients will have a significant stenosis or occlusion of infrainguinal arteries and a resting ankle-brachial index less than 0.90 and will be randomized 1:1 to cell or placebo treatment with a 1-year follow-up. The primary end points are the change in peak walking time and leg collateral arterial anatomy, calf muscle blood flow, and tissue perfusion as determined by magnetic resonance imaging at 6 months compared with baseline. The latter 3 measurements are new physiologic lower extremity tissue perfusion and PAD imaging-based end points that may help to quantify the biologic and mechanistic effects of cell therapy. This trial will collect important mechanistic and clinical information on the safety and efficacy of ALDH(br) cells in patients with claudication and provide valuable insight into the utility of advanced magnetic resonance imaging end points. PMID:25440794

  2. Enzymatic Regulation of Self-Assembling Peptide A9K2 Nanostructures and Hydrogelation with Highly Selective Antibacterial Activities.

    PubMed

    Bai, Jingkun; Chen, Cuixia; Wang, Jingxin; Zhang, Yu; Cox, Henry; Zhang, Jing; Wang, Yuming; Penny, Jeffrey; Waigh, Thomas; Lu, Jian R; Xu, Hai

    2016-06-22

    Hydrogels offer great potential for many biomedical and technological applications. For clinical uses, hydrogels that act as scaffold materials for cell culture, regenerative medicine, and drug delivery are required to have bactericidal properties. The amphiphilic peptide A9K2 was designed to effectively inhibit bacterial growth via a mechanism of membrane permeabilization. The present study demonstrated that addition of fetal bovine serum (FBS) or plasma amine oxidase (PAO) induced a sol-gel transition in A9K2 aqueous solutions. The transformation of A9K2 molecules catalyzed by lysyl oxidase (LO) in FBS or PAO accounted for the hydrogelation. Importantly, the enzymatic A9K2 hydrogel displayed high antibacterial ability against both Gram-negative and Gram-positive bacterial strains while showing extremely low mammalian cell cytotoxicity, thus demonstrating good biocompatibility. Under established coculture conditions, the peptide hydrogel showed excellent selectivity by favoring the adherence and spreading of mammalian cells, while killing pathogenic bacteria, thus avoiding bacterial contamination. These advantages endow the enzymatic A9K2 hydrogel with great potential for biomedical applications. PMID:27243270

  3. First cases of pyridoxine-dependent epilepsy in Bulgaria: novel mutation in the ALDH7A1 gene.

    PubMed

    Tincheva, Savina; Todorov, Tihomir; Todorova, Albena; Georgieva, Ralica; Stamatov, Dimitar; Yordanova, Iglika; Kadiyska, Tanya; Georgieva, Bilyana; Bojidarova, Maria; Tacheva, Genoveva; Litvinenko, Ivan; Mitev, Vanyo

    2015-12-01

    Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder characterized by intractable seizures in neonates and infants. The seizures cannot be controlled with antiepileptic medications but respond both clinically and electrographically to large daily supplements of pyridoxine (vitamin B6). PDE is caused by mutations in the ALDH7A1 gene. Molecular genetic analysis of the ALDH7A1 gene was performed in seven patients, referred with clinical diagnosis of PDE. Mutations were detected in a dizygotic twin pair and a non-related boy with classical form of PDE. Direct sequencing of the ALDH7A1 gene revealed one novel (c.297delG, p.Trp99*) and two already reported (c.328C>T, p.Arg110*; c.584A>G, p.Asn195Ser) mutations. Here, we report the first genetically proven cases of PDE in Bulgaria. PMID:26232297

  4. Humanized-Single Domain Antibodies (VH/VHH) that Bound Specifically to Naja kaouthia Phospholipase A2 and Neutralized the Enzymatic Activity

    PubMed Central

    Chavanayarn, Charnwit; Thanongsaksrikul, Jeeraphong; Thueng-in, Kanyarat; Bangphoomi, Kunan; Sookrung, Nitat; Chaicumpa, Wanpen

    2012-01-01

    Naja kaouthia (monocled cobra) venom contains many isoforms of secreted phospholipase A2 (sPLA2). The PLA2 exerts several pharmacologic and toxic effects in the snake bitten subject, dependent or independent on the enzymatic activity. N. kaouthia venom appeared in two protein profiles, P3 and P5, after fractionating the venom by ion exchange column chromatography. In this study, phage clones displaying humanized-camel single domain antibodies (VH/VHH) that bound specifically to the P3 and P5 were selected from a humanized-camel VH/VHH phage display library. Two phagemid transfected E. coli clones (P3-1 and P3-3) produced humanized-VHH, while another clone (P3-7) produced humanized-VH. At the optimal venom:antibody ratio, the VH/VHH purified from the E. coli homogenates neutralized PLA2 enzyme activity comparable to the horse immune serum against the N. kaouthia holo-venom. Homology modeling and molecular docking revealed that the VH/VHH covered the areas around the PLA2 catalytic groove and inserted their Complementarity Determining Regions (CDRs) into the enzymatic cleft. It is envisaged that the VH/VHH would ameliorate/abrogate the principal toxicity of the venom PLA2 (membrane phospholipid catabolism leading to cellular and subcellular membrane damage which consequently causes hemolysis, hemorrhage, and dermo-/myo-necrosis), if they were used for passive immunotherapy of the cobra bitten victim. The speculation needs further investigations. PMID:22852068

  5. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period

    PubMed Central

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that—in disconnected floodplain backwaters with high terrestrial input—BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  6. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period.

    PubMed

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that-in disconnected floodplain backwaters with high terrestrial input-BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  7. The stay-green phenotype of TaNAM-RNAi wheat plants is associated with maintenance of chloroplast structure and high enzymatic antioxidant activity.

    PubMed

    Checovich, Mariana L; Galatro, Andrea; Moriconi, Jorge I; Simontacchi, Marcela; Dubcovsky, Jorge; Santa-María, Guillermo E

    2016-07-01

    TaNAM transcription factors play an important role in controlling senescence, which in turn, influences the delivery of nitrogen, iron and other elements to the grain of wheat (Triticum aestivum) plants, thus contributing to grain nutritional value. While lack or diminished expression of TaNAMs determines a stay-green phenotype, the precise effect of these factors on chloroplast structure has not been studied. In this work we focused on the events undergone by chloroplasts in two wheat lines having either control or diminished TaNAM expression due to RNA interference (RNAi). It was found that in RNAi plants maintenance of chlorophyll levels and maximal photochemical efficiency of photosystem II were associated with lack of chloroplast dismantling. Flow cytometer studies and electron microscope analysis showed that RNAi plants conserved organelle ultrastructure and complexity. It was also found that senescence in control plants was accompanied by a low leaf enzymatic antioxidant activity. Lack of chloroplast dismantling in RNAi plants was associated with maintenance of protein and iron concentration in the flag leaf, the opposite being observed in control plants. These data provide a structural basis for the observation that down regulation of TaNAMs confers a functional stay-green phenotype and indicate that the low export of iron and nitrogen from the flag leaf of these plants is concomitant, within the developmental window studied, with lack of chloroplast degradation and high enzymatic antioxidant activity. PMID:27061370

  8. Evaluation of Biological and Enzymatic Activity of Soil in a Tropical Dry Forest: Desierto de la Tatacoa (Colombia) with Potential in Mars Terraforming and Other Similar Planets

    NASA Astrophysics Data System (ADS)

    Moreno Moreno, A. N.

    2009-12-01

    Desierto de la Tatacoa has been determined to be a tropical dry forest bioma, which is located at 3° 13" N 75° 13" W. It has a hot thermal floor with 440 msnm of altitude; it has a daily average of 28° C, and a maximum of 40° C, Its annual rainfall total can be upwards of 1250 mm. Its solar sheen has a daily average of 5.8 hours and its relative humidity is between 60% and 65%. Therefore, the life forms presents are very scant, and in certain places, almost void. It was realized a completely random sampling of soil from its surface down to 6 inches deep, of zones without vegetation and with soils highly loaded by oxides of iron in order to determine the number of microorganisms per gram and its subsequent identification. It was measured the soil basal respiration. Besides, it was determined enzymatic activity (catalase, dehydrogenase, phosphatase and urease). Starting with the obtained results, it is developes an alternative towards the study of soil genesis in Mars in particular, and recommendations for same process in other planets. Although the information found in the experiments already realized in Martian soil they demonstrate that doesnt exist any enzymatic activity, the knowledge of the same topic in the soil is proposed as an alternative to problems like carbonic fixing of the dense Martian atmosphere of CO2, the degradation of inorganic compounds amongst other in order to prepare the substratum for later colonization by some life form.

  9. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  10. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  11. Androgen regulation of aldehyde dehydrogenase 1A3 (ALDH1A3) in androgen responsive human prostate cancer cell LNCaP.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous gene array data from our laboratory identified the retinoic acid (RA) biosynthesis enzyme aldehyde dehydrogenase 1A3 (ALDH1A3) as a putative androgen-responsive gene in prostate cancer epithelial cells (LNCaP). In the present study we attempted to identify if any of the three ALDH1A/RA synt...

  12. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro

    PubMed Central

    Li, Yan; Burclaff, Joseph; Anderson, James T.

    2016-01-01

    RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities. PMID:26820724

  13. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro.

    PubMed

    Li, Yan; Burclaff, Joseph; Anderson, James T

    2016-01-01

    RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities. PMID:26820724

  14. Mitigation of Radiation-Induced Dermatitis by Activation of Aldehyde Dehydrogenase 2 Using Topical Alda-1 in Mice1

    PubMed Central

    Ning, Shoucheng; Budas, Grant R.; Churchill, Eric N.; Chen, Che-Hong; Knox, Susan J.; Mochly-Rosen, Daria

    2012-01-01

    Ning, S., Budas, G. R., Churchill, E. N., Chen, C., Knox, S. J. and Mochly-Rosen, D. Mitigation of Radiation-Induced Dermatitis by Activation of Aldehyde Dehydrogenase 2 Using Topical Alda-1 in Mice. Radiation-induced dermatitis is a debilitating clinical problem in cancer patients undergoing cancer radiation therapy. It is also a possible outcome of exposure to high levels of radiation due to accident or hostile activity. We report that activation of aldehyde dehydrogenase 2 (ALDH2) enzymatic activity using the allosteric agonist, Alda-1, significantly reduced 4-hydroxynonenal adducts accumulation, delayed the onset of radiation dermatitis and substantially reduced symptoms in a clinically-relevant model of radiation-induced dermatitis. Importantly, Alda-1 did not radioprotect tumors in mice. Rather, it increased the sensitivity of the tumors to radiation therapy. This is the first report of reactive aldehydes playing a role in the intrinsic radiosensitivity of normal and tumor tissues. Our findings suggest that ALDH2 represents a novel target for the treatment of radiation dermatitis without reducing the benefit of radiotherapy. PMID:22404739

  15. Similar potential ATP-P production and enzymatic activities in the microplankton community off Concepción (Chile) under oxic and suboxic conditions

    NASA Astrophysics Data System (ADS)

    González, Rodrigo R.; Gutiérrez, Marcelo H.; Quiñones, Renato A.

    2007-11-01

    The effects of the oxygen minimum zone on the metabolism of the heterotrophic microplankton community (0.22-100 μm) in the Humboldt Current System, as well as the factors controlling its biomass production, remain unknown. Here we compare the effect of four sources of dissolved organic carbon (glucose, oxaloacetate, glycine, leucine) on microbial biomass production (such as ATP-P) and the potential enzymatic activities involved in catabolic pathways under oxic and suboxic conditions. Our results show significant differences ( p < 0.05) in the ATP-P production when induced by the different substrates that are used as dissolved organic carbon herein. The induction of ATP-P production is enhanced from glucose < oxaloacetate < glycine < leucine. Nevertheless, for individual substrates, no significant differences were found between incubation under oxic and suboxic conditions except in the case of leucine. For this amino acid, the induction of ATP-P synthesis was higher under suboxic than oxic conditions. The data sets of all the substrates used showed greater potential ATP-P production under suboxic than oxic conditions. The results of the potential enzymatic activities suggest that malate dehydrogenase has the highest signal of NADH oxidization activity in the microbial assemblage. Furthermore, for all experiments, the malate dehydrogenase activity data set had a significant relationship with ATP-P production. These findings suggest that the microbial community inhabiting the oxygen minimum zone has the same or greater potential growth than the community inhabiting more oxygenated strata of the water column and that malate dehydrogenase is the activity that best represents the metabolic potential of the community.

  16. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus.

    PubMed

    Sakiyama, Masayuki; Matsuo, Hirotaka; Nakaoka, Hirofumi; Yamamoto, Ken; Nakayama, Akiyoshi; Nakamura, Takahiro; Kawai, Sayo; Okada, Rieko; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-01-01

    Gout is a common disease resulting from hyperuricemia. Recently, a genome-wide association study identified an association between gout and a single nucleotide polymorphism (SNP) rs2188380, located on an intergenic region between MYL2 and CUX2 on chromosome 12. However, other genes around rs2188380 could possibly be gout susceptibility genes. Therefore, we performed a fine-mapping study of the MYL2-CUX2 region. From 8,595 SNPs in the MYL2-CUX2 region, 9 tag SNPs were selected, and genotyping of 1,048 male gout patients and 1,334 male controls was performed by TaqMan method. Eight SNPs showed significant associations with gout after Bonferroni correction. rs671 (Glu504Lys) of ALDH2 had the most significant association with gout (P = 1.7 × 10(-18), odds ratio = 0.53). After adjustment for rs671, the other 8 SNPs no longer showed a significant association with gout, while the significant association of rs671 remained. rs671 has been reportedly associated with alcohol drinking behavior, and it is well-known that alcohol drinking elevates serum uric acid levels. These data suggest that rs671, a common functional SNP of ALDH2, is a genuine gout-associated SNP in the MYL2-CUX2 locus and that "A" allele (Lys) of rs671 plays a protective role in the development of gout. PMID:27181629

  17. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus

    PubMed Central

    Sakiyama, Masayuki; Matsuo, Hirotaka; Nakaoka, Hirofumi; Yamamoto, Ken; Nakayama, Akiyoshi; Nakamura, Takahiro; Kawai, Sayo; Okada, Rieko; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-01-01

    Gout is a common disease resulting from hyperuricemia. Recently, a genome-wide association study identified an association between gout and a single nucleotide polymorphism (SNP) rs2188380, located on an intergenic region between MYL2 and CUX2 on chromosome 12. However, other genes around rs2188380 could possibly be gout susceptibility genes. Therefore, we performed a fine-mapping study of the MYL2-CUX2 region. From 8,595 SNPs in the MYL2-CUX2 region, 9 tag SNPs were selected, and genotyping of 1,048 male gout patients and 1,334 male controls was performed by TaqMan method. Eight SNPs showed significant associations with gout after Bonferroni correction. rs671 (Glu504Lys) of ALDH2 had the most significant association with gout (P = 1.7 × 10−18, odds ratio = 0.53). After adjustment for rs671, the other 8 SNPs no longer showed a significant association with gout, while the significant association of rs671 remained. rs671 has been reportedly associated with alcohol drinking behavior, and it is well-known that alcohol drinking elevates serum uric acid levels. These data suggest that rs671, a common functional SNP of ALDH2, is a genuine gout-associated SNP in the MYL2-CUX2 locus and that “A” allele (Lys) of rs671 plays a protective role in the development of gout. PMID:27181629

  18. Selection of Nanobodies that Block the Enzymatic and Cytotoxic Activities of the Binary Clostridium Difficile Toxin CDT

    PubMed Central

    Unger, Mandy; Eichhoff, Anna Marei; Schumacher, Lucas; Strysio, Moritz; Menzel, Stephan; Schwan, Carsten; Alzogaray, Vanina; Zylberman, Vanesa; Seman, Michel; Brandner, Johanna; Rohde, Holger; Zhu, Kai; Haag, Friedrich; Mittrücker, Hans-Willi; Goldbaum, Fernando; Aktories, Klaus; Koch-Nolte, Friedrich

    2015-01-01

    The spore-forming gut bacterium Clostridium difficile is the leading cause of antibiotic-associated diarrhea in hospitalized patients. The major virulence factors are two large glucosylating cytotoxins. Hypervirulent strains (e.g. ribotype 027) with higher morbidity and mortality additionally produce the binary CDT toxin (Clostridium difficile transferase) that ADP-ribosylates actin and induces microtubule-based cell protrusions. Nanobodies are robust single domain antibodies derived from camelid heavy chain antibodies. Here we report the generation of functional nanobodies against the enzymatic CDTa and the heptameric receptor binding subunit CDTb. The nanobodies were obtained from a variable-domain repertoire library isolated from llamas immunized with recombinant CDTa or CDTb. Five CDTa-specific nanobodies blocked CDTa-mediated ADP-ribosylation of actin. Three CDTa-specific and two CDTb-specific nanobodies neutralized the cytotoxicity of CDTa+b. These nanobodies hold promise as new tools for research, diagnosis and therapy of C. difficile associated disease. PMID:25597743

  19. Identification of a region in the S1 subunit of pertussis toxin that is required for enzymatic activity and that contributes to the formation of a neutralizing antigenic determinant.

    PubMed Central

    Cieplak, W; Burnette, W N; Mar, V L; Kaljot, K T; Morris, C F; Chen, K K; Sato, H; Keith, J M

    1988-01-01

    The S1 subunit of pertussis toxin possesses two regions (homology boxes), each spanning 8 residues, that are nearly identical in sequence to similarly located regions in the enzymatically active A fragments of two other ADP-ribosylating toxins: cholera toxin and Escherichia coli heat-labile toxin. This observation suggests a functional role for one or both of these regions in enzymatic activity. We have examined the role of one of these regions, located near the amino terminus of the S1 subunit, by using a high-level recombinant expression system and progressive truncation of the gene sequence encoding the amino terminus of the molecule. A series of six truncated, recombinant proteins were produced at high levels in E. coli and examined for their enzymatic and antigenic properties. The three molecules that lacked most or all of the homology box delimited by amino acid residues 8 and 15 lacked detectable enzymatic activity. All of the three molecules in which the box was retained exhibited detectable activity. Only those recombinant molecules that possessed the homology box reacted with a neutralizing and passively protective monoclonal anti-S1 antibody. These findings identify the region of homology located near the amino terminus of S1 as an apparent enzymatic subsite and a potentially important antigenic determinant. Images PMID:2455296

  20. Global histone deacetylase enzymatic activity is an independent prognostic marker associated with a shorter overall survival in chronic lymphocytic leukemia patients

    PubMed Central

    Van Damme, Michaël; Crompot, Emerence; Meuleman, Nathalie; Mineur, Philippe; Dessars, Barbara; El Housni, Hakim; Bron, Dominique; Lagneaux, Laurence; Stamatopoulos, Basile

    2014-01-01

    Histone deacetylases (HDAC) play a crucial role in transcriptional regulation and are often deregulated in many cancers. However, global HDAC enzymatic activity has never been investigated in Chronic Lymphocytic Leukemia (CLL). We measured HDAC activity in protein extracts from CD19+ B-cells purified from 114 CLL patients with a median follow-up of 91 months (range: 11–376). HDAC activity was equivalent in CLL and normal B-cells but higher in patients who died during the study than in living patients (152.1 vs. 65.04 pmol; P = 0.0060). Furthermore, HDAC activity correlated with treatment-free survival (TFS; P = 0.0156) and overall survival (OS; P < 0.0001): patients with low HDAC activity (n = 75) had a median TFS and OS of 101 and >376 months, respectively, whereas patients with high HDAC activity (n = 39) had a median TFS and OS of 47 and 137 months, respectively. Multivariate analyses indicated that HDAC activity is an independent predictor of OS (hazard ratio = 7.68; P = 0.0017). Finally, HDAC activity increased after B-cell receptor stimulation using IgM, suggesting a role for microenvironment stimuli (n = 10; P = 0.0371). In conclusion, high HDAC activity in CLL B-cells is associated with shorter TFS and OS and is an independent marker of OS, refining the use of other prognostic factors. This work provides a biological base for the use of HDAC inhibitors in CLL treatment. PMID:25437053

  1. ALDH1A1 Maintains Ovarian Cancer Stem Cell-Like Properties by Altered Regulation of Cell Cycle Checkpoint and DNA Repair Network Signaling

    PubMed Central

    Meng, Erhong; Mitra, Aparna; Tripathi, Kaushlendra; Finan, Michael A.; Scalici, Jennifer; McClellan, Steve; da Silva, Luciana Madeira; Reed, Eddie; Shevde, Lalita A.; Palle, Komaraiah; Rocconi, Rodney P.

    2014-01-01

    Objective Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. Methods Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. Results ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. Conclusion This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling. PMID:25216266

  2. Recombinant human proteinase 3, the Wegener's autoantigen, expressed in HMC-1 cells is enzymatically active and recognized by c-ANCA.

    PubMed

    Specks, U; Fass, D N; Fautsch, M P; Hummel, A M; Viss, M A

    1996-07-29

    We developed a stable expression system for conformationally intact recombinant human PR3 (rPR3) using the human mast cell line HMC-1. Like in U937 cells, the rPR3 is processed from a 34 kDa precursor to the 29 kDa mature form, primarily as the result of oligosaccharide trimming. The rPR3 binds [3H]DFP and hydrolyzes the substrate N-methoxysuccinyl-Ala-Ala-Pro-Val-pNA. The enzymatic activity is inhibited by greater than 95% by alpha 1-PI. The rPR3 and the enzymatically inactive mutant rPR3-S176A are both packaged in granules. Thus, proteolytic autoprocessing is not required for PR3's targeting to granules. This rPR3 is the first to be recognized by most c-ANCA from WG patients and all anti-PR3 ANCA that were detected by standard anti-PR3 specific ELISA. This expression system for rPR3 represents a versatile tool for the analysis of its intracellular processing, structure-function relationships and interaction with autoantibodies. PMID:8706874

  3. A Unified View of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gating: Combining the Allosterism of a Ligand-gated Channel with the Enzymatic Activity of an ATP-binding Cassette (ABC) Transporter*

    PubMed Central

    Kirk, Kevin L.; Wang, Wei

    2011-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ion channel in that its gating is coupled to an intrinsic enzymatic activity (ATP hydrolysis). This enzymatic activity derives from the evolutionary origin of CFTR as an ATP-binding cassette transporter. CFTR gating is distinct from that of a typical ligand-gated channel because its ligand (ATP) is usually consumed during the gating cycle. However, recent findings indicate that CFTR gating exhibits allosteric properties that are common to conventional ligand-gated channels (e.g. unliganded openings and constitutive mutations). Here, we provide a unified view of CFTR gating that combines the allosterism of a ligand-gated channel with its unique enzymatic activity. PMID:21296873

  4. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells

    PubMed Central

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-01-01

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells. PMID:26983598

  5. Knockout of the p-Coumarate Decarboxylase Gene from Lactobacillus plantarum Reveals the Existence of Two Other Inducible Enzymatic Activities Involved in Phenolic Acid Metabolism

    PubMed Central

    Barthelmebs, Lise; Divies, Charles; Cavin, Jean-François

    2000-01-01

    Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol · min−1 · mg−1 in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity. PMID:10919793

  6. Cytidylate cyclase activity in mouse tissues: the enzymatic conversion of cytidine 5'-triphosphate to cytidine 3',5'-cyclic monophosphate (cyclic CMP).

    PubMed

    Yamamoto, I; Takai, T; Mori, S

    1989-12-01

    Cytidylate cyclase activity, which enzymatically converts cytidine 5'-triphosphate (CTP) to cytidine 3',5'-cyclic monophosphate (cyclic CMP), has been demonstrated in mouse tissue homogenates by use of a highly sensitive enzyme immunoassay (EIA) specific for cyclic CMP. Cyclic CMP formation is dependent on the amount of homogenate and on the incubation time. Although the enzyme activity was detected at wide ranges of pH from 6.8 to 11.5, the maximal activity was observed at around pH 9.4. The optimal temperature was 37 degrees C. Cytidylate cyclase activity was almost completely lost if the homogenates were heated at 90 degrees C for 3 min prior to use. The enzyme reaction exhibited typical Michaelis-Menten kinetics with an apparent Km for CTP of approx. 0.31 mM. Cyclic CMP formation was greatly enhanced with 4 mM Mn2+, Mg2+, Co2+; Mn2+ was the most effective. Fe2+ and Ca2+ were without effect. Cu2+ and Zn2+ at a concentration of 0.1 to 0.5 mM were inhibitory to Mn2+-dependent activity. Moreover, the enzyme activity was inhibited by several nucleotides including ATP, ADP, 5'-AMP, and GTP. Cytidylate cyclase activity was found to be present in all homogenates from a variety of mouse tissues examined except heart, with the highest level found in brain, and the lowest in liver. PMID:2557087

  7. Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2.

    PubMed

    Permanasari, Etin-Diah; Yasukawa, Kiyoshi; Kanaya, Shigenori

    2015-06-01

    Thermotoga maritima RNase H1 and Bacillus stearothermophilus RNase H2 have an N-terminal substrate binding domain, termed hybrid binding domain (TmaHBD), and N-terminal domain (BstNTD), respectively. HIV-1 reverse transcriptase (RT) is a heterodimer consisting of a P66 subunit and a P51 subunit. The P66 subunit contains a C-terminal RNase H domain, which exhibits RNase H activity either in the presence of Mg(2+) or Mn(2+) ions. The isolated RNase H domain of HIV-1 RT (RNH(HIV)) is inactive, possibly due to the lack of a substrate binding ability, disorder of a loop containing His539, and increased flexibility. To examine whether the activity of RNH(HIV) is restored by the attachment of TmaHBD or BstNTD to its N-terminus, two chimeric proteins, TmaHBD-RNH(HIV) and BstNTD-RNH(HIV), were constructed and characterized. Both chimeric proteins bound to RNA/DNA hybrid more strongly than RNH(HIV) and exhibited enzymatic activity in the presence of Mn(2+) ions. They did not exhibit activity or exhibited very weak activity in the presence of Mg(2+) ions. These results indicate that TmaHBD and BstNTD function as an RNA/DNA hybrid binding tag, and greatly increase the substrate binding affinity and Mn(2+)-dependent activity of RNH(HIV) but do not restore the Mg(2+)-dependent activity of RNH(HIV). PMID:25673083

  8. A Δ38 Deletion Variant of Human Transketolase as a Model of Transketolase-Like Protein 1 Exhibits No Enzymatic Activity

    PubMed Central

    Schneider, Stefan; Lüdtke, Stefan; Schröder-Tittmann, Kathrin; Wechsler, Cindy; Meyer, Danilo; Tittmann, Kai

    2012-01-01

    Besides transketolase (TKT), a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1) has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a “pseudo-TKTL1” Δ38 deletion variant of human TKT (TKTΔ38) as a viable model of TKTL1. Although the isolated protein is properly folded under in vitro conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism. PMID:23118983

  9. MUC1-C Oncoprotein Activates ERK→C/EBPβ Signaling and Induction of Aldehyde Dehydrogenase 1A1 in Breast Cancer Cells*

    PubMed Central

    Alam, Maroof; Ahmad, Rehan; Rajabi, Hasan; Kharbanda, Akriti; Kufe, Donald

    2013-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is used as a marker of breast cancer stem cells; however, little is known about the regulation of ALDH1A1 expression. Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly overexpressed in most human breast cancers. In studies of breast cancer cells stably silenced for MUC1 or overexpressing the oncogenic MUC1-C subunit, we demonstrate that MUC1-C is sufficient for induction of MEK→ERK signaling and that treatment with a MUC1-C inhibitor suppresses ERK activation. In turn, MUC1-C induces ERK-mediated phosphorylation and activation of the CCAAT/enhancer-binding protein β (C/EBPβ) transcription factor. The results further show that MUC1-C and C/EBPβ form a complex on the ALDH1A1 gene promoter and activate ALDH1A1 gene transcription. MUC1-C-induced up-regulation of ALDH1A1 expression is associated with increases in ALDH activity and is detectable in stem-like cells when expanded as mammospheres. These findings demonstrate that MUC1-C (i) activates a previously unrecognized ERK→C/EBPβ→ALDH1A1 pathway, and (ii) promotes the induction of ALDH activity in breast cancer cells. PMID:24043631

  10. Enzymatic modification of schizophyllan.

    PubMed

    Leathers, Timothy D; Sutivisedsak, Nongnuch; Nunnally, Melinda S; Price, Neil P J; Stanley, April M

    2015-03-01

    An enzymatic method was developed for the progressive modification of the polysaccharide schizophyllan. Fungal strains Hypocrea nigricans NRRL 62555, Penicillium crustosum NRRL 62558, and Penicillium simplicissimum NRRL 62550 were previously identified as novel sources of β-endoglucanase with specificity towards schizophyllan. Concentrated enzyme preparations from these strains showed specific activities of 1.7-4.3 U β-glucanase/mg protein. Using dilutions of these enzymes in time course digestions, schizophyllan was progressively modified to reduced molecular weight species. Glucose and oligosaccharides were found only in the more complete digestions, and thus modified schizophyllan can be produced quantitatively, without loss, to small molecules. Permethylation analysis confirmed that modified schizophyllan retains the fundamental linkage structure of native schizophyllan. Modified schizophyllan species showed progressively reduced viscosity profiles, and all exhibited pseudoplasticity in response to shear thinning. PMID:25335747

  11. Aldehyde Dehydrogenase 2 (ALDH2) Polymorphism and the Risk of Alcoholic Liver Cirrhosis among East Asians: A Meta-Analysis

    PubMed Central

    He, Lei; Luo, Hesheng

    2016-01-01

    Purpose The aldehyde dehydrogenase 2 (ALDH2) gene has been implicated in the development of alcoholic liver cirrhosis (ALC) in East Asians. However, the results are inconsistent. In this study, a meta-analysis was performed to assess the associations between the ALDH2 polymorphism and the risk of ALC. Materials and Methods Relevant studies were retrieved by searching PubMed, Web of Science, CNKI, Wanfang and Veipu databases up to January 10, 2015. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using either the fixed- or random effects model. Results A total of twelve case-control studies included 1003 cases and 2011 controls were included. Overall, the ALDH2 polymorphism was associated with a decreased risk of ALC (*1/*2 vs. *1/*1: OR=0.78, 95% CI: 0.61–0.99). However, in stratification analysis by country, we failed to detect any association among Chinese, Korean or Japanese populations. Conclusion The pooled evidence suggests that ALDH2 polymorphism may be an important protective factor for ALC in East Asians. PMID:27189280

  12. The genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy due to mutations in ALDH7A1

    PubMed Central

    Scharer, Gunter; Brocker, Chad; Vasiliou, Vasilis; Creadon-Swindell, Geralyn; Gallagher, Renata C.; Spector, Elaine

    2011-01-01

    Pyridoxine-dependent epilepsy is a disorder associated with severe seizures that may be caused by deficient activity of α-aminoadipic semialdehyde dehydrogenase, encoded by the ALDH7A1 gene, with accumulation of α-aminoadipic semialdehyde and piperideine-6-carboxylic acid. The latter reacts with pyridoxal-phosphate, explaining the effective treatment with pyridoxine. We report the clinical phenotype of three patients, their mutations and those of 12 additional patients identified in our clinical molecular laboratory. There were six missense, one nonsense, and five splice-site mutations, and two small deletions. Mutations c.1217_1218delAT, I431F, IVS-1(+2)T>G, IVS-2(+1)G>A, and IVS-12(+1)G>A are novel. Some disease alleles were recurring: E399Q (eight times), G477R (six times), R82X (two times), and c.1217_1218delAT (two times). A systematic review of mutations from the literature indicates that missense mutations cluster around exons 14, 15, and 16. Nine mutations represent 61% of alleles. Molecular modeling of missense mutations allows classification into three groups: those that affect NAD+binding or catalysis, those that affect the substrate binding site, and those that affect multimerization. There are three clinical phenotypes: patients with complete seizure control with pyridoxine and normal developmental outcome (group 1) including our first patient; patients with complete seizure control with pyridoxine but with developmental delay (group 2), including our other two patients; and patients with persistent seizures despite pyridoxine treatment and with developmental delay (group 3). There is preliminary evidence for a genotype-phenotype correlation with patients from group 1 having mutations with residual activity. There is evidence from patients with similar genotypes for nongenetic factors contributing to the phenotypic spectrum. PMID:20814824

  13. Exogenous acetate ion reaches the type II copper centre in CueO through the water-excretion channel and potentially affects the enzymatic activity.

    PubMed

    Komori, Hirofumi; Kataoka, Kunishige; Tanaka, Sakiko; Matsuda, Nana; Higuchi, Yoshiki; Sakurai, Takeshi

    2016-07-01

    The acetate-bound form of the type II copper was found in the X-ray structure of the multicopper oxidase CueO crystallized in acetate buffer in addition to the conventional OH(-)-bound form as the major resting form. The acetate ion was retained bound to the type II copper even after prolonged exposure of a CueO crystal to X-ray radiation, which led to the stepwise reduction of the Cu centres. However, in this study, when CueO was crystallized in citrate buffer the OH(-)-bound form was present exclusively. This fact shows that an exogenous acetate ion reaches the type II Cu centre through the water channel constructed between domains 1 and 3 in the CueO molecule. It was also found that the enzymatic activity of CueO is enhanced in the presence of acetate ions in the solvent water. PMID:27380373

  14. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1.

    PubMed

    Wu, Bing; Yu, Lu; Wang, Yishi; Wang, Hongtao; Li, Chen; Yin, Yue; Yang, Jingrun; Wang, Zhifa; Zheng, Qiangsun; Ma, Heng

    2016-01-19

    Cardiac aging is characterized by accumulation of damaged proteins and decline of autophagic efficiency. Here, by forestalling SIRT1 carbonylated inactivation in aged heart, we determined the benefits of activation of aldehyde dehydrogenase 2 (ALDH2) on the autophagy. In this study, the ALDH2 KO mice progressively developed age-related heart dysfunction and showed reduction in the life span, which strongly suggests that ALDH2 ablation leads to cardiac aging. What's more, aged hearts displayed a significant decrease ALDH2 activity, resulting in accumulation of 4-HNE-protein adducts and protein carbonyls, impairment in the autophagy flux, and, consequently, deteriorated cardiac function after starvation. Sustained Alda-1 (selective ALDH2 activator) treatment increased cardiac ALDH2 activity and abrogated these effects. Using SIRT1 deficient heterozygous (Sirt1+/-) mice, we found that SIRT1 was necessary for ALDH2 activation-induced autophagy. We further demonstrated that ALDH2 activation attenuated SIRT1 carbonylation and improved SIRT1 activity, thereby increasing the deacetylation of nuclear LC3 and FoxO1. Sequentially, ALDH2 enhanced SIRT1 regulates LC3-Atg7 interaction and FoxO1 increased Rab7 expression, which were both necessary and sufficient for restoring autophagy flux. These results highlight that both accumulation of proteotoxic carbonyl stress linkage with autophagy decline contribute to heart senescence. ALDH2 activation is adequate to improve the autophagy flux by reducing the carbonyl modification on SIRT1, which in turn plays an important role in maintaining cardiac health during aging. PMID:26741505

  15. Humanized-single domain antibodies (VH/VHH) that bound specifically to Naja kaouthia phospholipase A2 and neutralized the enzymatic activity.

    PubMed

    Chavanayarn, Charnwit; Thanongsaksrikul, Jeeraphong; Thueng-In, Kanyarat; Bangphoomi, Kunan; Sookrung, Nitat; Chaicumpa, Wanpen

    2012-07-01

    Naja kaouthia (monocled cobra) venom contains many isoforms of secreted phospholipase A2 (sPLA(2)). The PLA(2) exerts several pharmacologic and toxic effects in the snake bitten subject, dependent or independent on the enzymatic activity. N. kaouthia venom appeared in two protein profiles, P3 and P5, after fractionating the venom by ion exchange column chromatography. In this study, phage clones displaying humanized-camel single domain antibodies (VH/V(H)H) that bound specifically to the P3 and P5 were selected from a humanized-camel VH/V(H)H phage display library. Two phagemid transfected E. coli clones (P3-1 and P3-3) produced humanized-V(H)H, while another clone (P3-7) produced humanized-VH. At the optimal venom:antibody ratio, the VH/V(H)H purified from the E. coli homogenates neutralized PLA(2) enzyme activity comparable to the horse immune serum against the N. kaouthia holo-venom. Homology modeling and molecular docking revealed that the VH/V(H)H covered the areas around the PLA(2) catalytic groove and inserted their Complementarity Determining Regions (CDRs) into the enzymatic cleft. It is envisaged that the VH/V(H)H would ameliorate/abrogate the principal toxicity of the venom PLA(2) (membrane phospholipid catabolism leading to cellular and subcellular membrane damage which consequently causes hemolysis, hemorrhage, and dermo-/myo-necrosis), if they were used for passive immunotherapy of the cobra bitten victim. The speculation needs further investigations. PMID:22852068

  16. Common ALDH2 genetic variants predict development of hypertension in the SAPPHIRe prospective cohort: Gene-environmental interaction with alcohol consumption

    PubMed Central

    2012-01-01

    Background Genetic variants near/within the ALDH2 gene encoding the mitochondrial aldehyde dehydrogenase 2 have been associated with blood pressure and hypertension in several case–control association studies in East Asian populations. Methods Three common tag single nucleotide polymorphisms (tagSNP) in the ALDH2 gene were genotyped in 1,134 subjects of Chinese origin from the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) family cohort. We examined whether the ALDH2 SNP genotypes predicted the development of hypertension in the prospective SAPPHIRe cohort. Results Over an average follow-up period of 5.7 years, carriers homozygous for the rs2238152 T allele in the ALDH2 gene were more likely to progress to hypertension than were non-carriers (hazard ratio [HR], 2.88, 95% confidence interval [CI], 1.06-7.84, P = 0.03), corresponding to a population attributable risk of ~7.1%. The risk associated with the rs2238152 T allele were strongest in heavy/moderate alcohol drinkers and was reduced in non-drinkers, indicating an interaction between ALDH2 genetic variants and alcohol intake on the risk of hypertension (P for interaction = 0.04). The risk allele was associated with significantly lower <