Science.gov

Sample records for aldol reaction catalyzed

  1. Origins of Stereoselectivity of Chiral Vicinal Diamine-Catalyzed Aldol Reactions.

    PubMed

    Simon, Adam; Yeh, Alexander J; Lam, Yu-Hong; Houk, K N

    2016-12-16

    The sources of asymmetric induction in aldol reactions catalyzed by cinchona alkaloid-derived amines, and chiral vicinal diamines in general, have been determined by density functional theory calculations. Four vicinal diamine-catalyzed aldol reactions were examined. The cyclic transition states of these reactions involve nine-membered hydrogen-bonded rings in distinct conformations. Using nomenclature from eight-membered cycloalkanes, the heavy atoms of the low-energy transition states are in crown (chair-chair) and chair-boat conformations. The factors that control which of these are favored have been identified.

  2. Enantioselective aldol reaction between isatins and cyclohexanone catalyzed by amino acid sulphonamides.

    PubMed

    Wang, Jun; Liu, Qi; Hao, Qing; Sun, Yanhua; Luo, Yiming; Yang, Hua

    2015-04-01

    Sulphonamides derived from primary α-amino acid were successfully applied to catalyze the aldol reaction between isatin and cyclohexanone under neat conditions. More interestingly, molecular sieves, as privileged additives, were found to play a vital role in achieving high enantioselectivity. Consequently, high yields (up to 99%) along with good enantioselectivities (up to 92% ee) and diastereoselectivities (up to 95:5 dr) were obtained. In addition, this reaction was also conveniently scaled up, demonstrating the applicability of this protocol.

  3. One-pot lipase-catalyzed aldol reaction combination of in situ formed acetaldehyde.

    PubMed

    Wang, Na; Zhang, Wei; Zhou, Long-Hua; Deng, Qing-Feng; Xie, Zong-Bo; Yu, Xiao-Qi

    2013-12-01

    A facile tandem route to α,β-unsaturated aldehydes was developed by combining the two catalytic activities of the same enzyme in a one-pot strategy for the aldol reaction and in situ generation of acetaldehyde. Lipase from Mucor miehei was found to have conventional and promiscuous catalytic activities for the hydrolysis of vinyl acetate and aldol condensation with in situ formed acetaldehyde. The first reaction continuously provided material for the second reaction, which effectively reduced the volatilization loss, oxidation, and polymerization of acetaldehyde, as well as avoided a negative effect on the enzyme of excessive amounts of acetaldehyde. After optimizing the process, several substrates participated in the reaction and provided the target products in moderate to high yields using this single lipase-catalyzed one-pot biotransformation.

  4. Asymmetric synthesis of dihydropyranones from ynones by sequential copper(I)-catalyzed direct aldol and silver(I)-catalyzed oxy-Michael reactions.

    PubMed

    Shi, Shi-Liang; Kanai, Motomu; Shibasaki, Masakatsu

    2012-04-16

    Ynones as diene surrogates: the asymmetric synthesis of enantiomerically enriched substituted dihydropyranones is described. The products are obtained in two steps by a copper(I)-catalyzed direct aldol reaction of ynones followed by a silver-catalyzed oxy-Michael reaction. This easy method is compatible with both aromatic and aliphatic substrates, and provides excellent chemoselectivity under mild reaction conditions.

  5. Brønsted acid catalyzed asymmetric aldol reaction: a complementary approach to enamine catalysis.

    PubMed

    Pousse, Guillaume; Le Cavelier, Fabien; Humphreys, Luke; Rouden, Jacques; Blanchet, Jérôme

    2010-08-20

    A syn-enantioselective aldol reaction has been developed using Brønsted acid catalysis based on H(8)-BINOL-derived phosphoric acids. This method affords an efficient synthesis of various beta-hydroxy ketones, some of which could not be synthesized using enamine organocatalysis.

  6. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  7. Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitriles with aldehydes: chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles.

    PubMed

    Zhang, Song-Lin; Deng, Zhu-Qin

    2016-07-26

    A copper-catalyzed transfer aldol type reaction of β-hydroxy ketones or nitriles with aldehydes is reported, which enables chemo- and stereoselective access to (E)-α,β-unsaturated ketones and (E)-acrylonitriles. A key step of the in situ copper(i)-promoted retro-aldol reaction of β-hydroxy ketones or nitriles is proposed to generate a reactive Cu(i) enolate or cyanomethyl intermediate, which undergoes ensuing aldol condensation with aldehydes to deliver the products. This reaction uses 1.2 mol% Cu(IPr)Cl (IPr denotes 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) as the catalyst in the presence of 6.0 mol% NaOtBu cocatalyst at room temperature or 70 °C. A range of aryl and heteroaryl aldehydes as well as acrylaldehydes are compatible with many useful functional groups being tolerated. Under the mild and weakly basic conditions, competitive Cannizzaro-type reaction of benzaldehydes and side reactions of base-sensitive functional groups can be effectively suppressed, which show synthetic advantages of this reaction compared to classic aldol reactions. The synthetic potential of this reaction is further demonstrated by the one-step synthesis of biologically active quinolines and 1,8-naphthyridine in excellent yields (up to 91%). Finally, a full catalytic cycle for this reaction has been constructed using DFT computational studies in the context of a retro-aldol/aldol two-stage mechanism. A rather flat reaction energy profile is found indicating that both stages are kinetically facile, which is consistent with the mild reaction conditions.

  8. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    PubMed

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-03-23

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic Cα-H of propanal to produce the CH3CH((-))CH2O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C2n intermediates to form C2n-1 3-pentanone as the major product with very small yields of C2n products. This is likely due to the absence of Brønsted acid sites, present on

  9. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions.

    PubMed

    Cichowicz, Nathan R; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-11-18

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive β,β'-enones and substituted β,β'-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ(5)-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones.

  10. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    PubMed Central

    Cichowicz, Nathan R.; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-01-01

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ββ′-enones and substituted ββ′-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ5-unsaturation are key controling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  11. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate.

  12. Mukaiyama Aldol Reactions in Aqueous Media

    PubMed Central

    Kitanosono, Taku; Kobayashi, Shū

    2013-01-01

    Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemistry but are found to produce singular phenomena. These findings led to the discovery of a series of water-compatible Lewis acids such as lanthanide triflates in 1991. Our understanding on these beneficial effects in the presence of water will be deepened through the brilliant examples collected in this review. 1 Introduction 2 Rate Enhancement by Water in the Mukaiyama Aldol Reaction 3 Lewis Acid Catalysis in Aqueous or Organic Solvents 3.1 Water-Compatible Lewis Acids 4 Lewis-Base Catalysis in Aqueous or Organic Solvents 5 The Mukaiyama Aldol Reactions in 100% Water 6 Asymmetric Catalysts in Aqueous Media and Water 7 Conclusions and Perspective PMID:24971045

  13. Enantioselective aldol reactions with masked fluoroacetates

    NASA Astrophysics Data System (ADS)

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.

  14. Tandem Catalysis of an Aldol-'Click' Reaction System within a Molecular Hydrogel.

    PubMed

    Araújo, Marco; Muñoz Capdevila, Iván; Díaz-Oltra, Santiago; Escuder, Beatriu

    2016-06-08

    A heterogeneous supramolecular catalytic system for multicomponent aldol-'click' reactions is reported. The copper(I) metallohydrogel functionalized with a phenyltriazole fragment was able to catalyze the multicomponent reaction between phenylacetylene, p-nitrobenzaldehyde, and an azide containing a ketone moiety, obtaining the corresponding aldol products in good yields. A possible mechanistic pathway responsible for this unexpected catalytic behavior has been proposed.

  15. Enantioselective desymmetrization of prochiral cyclohexanone derivatives via the organocatalytic direct Aldol reaction.

    PubMed

    Jiang, Jun; He, Long; Luo, Shi-Wei; Cun, Lin-Feng; Gong, Liu-Zhu

    2007-02-21

    Asymmetric desymmetrization of 4-substituted cyclohexanones using proline amide-catalyzed direct aldol reaction afforded beta-hydroxyketones with three stereogenic centers in high enantioselectivities of up to >99% ee.

  16. Functionalized multi-walled carbon nanotubes in an aldol reaction

    NASA Astrophysics Data System (ADS)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  17. Bis(oxazoline) Lewis acid catalyzed aldol reactions of pyridine N-oxide aldehydes--synthesis of optically active 2-(1-hydroxyalkyl)pyridine derivatives: development, scope, and total synthesis of an indolizine alkaloid.

    PubMed

    Landa, Aitor; Minkkilä, Anna; Blay, Gonzalo; Jørgensen, Karl Anker

    2006-04-24

    A new, short, and simplified procedure for the synthesis of optically active pyridine derivatives from pro-chiral pyridine-N-oxides is presented. The catalytic and asymmetric Mukaiyama aldol reaction between ketene silyl acetals and 1-oxypyridine-2-carbaldehyde derivatives catalyzed by chiral copper(II)-bis(oxazoline) complexes gave optically active 2-(hydroxyalkyl)- and 2-(anti-1,2-dihydroxyalkyl)pyridine derivatives in good yields and diastereoselectivities, and in excellent enantioselectivities-up to 99 % enantiomeric excess. As a synthetic application of the developed method, a full account for the asymmetric total synthesis of a nonnatural indolizine alkaloid is provided.

  18. A Multistep Organocatalysis Experiment for the Undergraduate Organic Laboratory: An Enantioselective Aldol Reaction Catalyzed by Methyl Prolinamide

    ERIC Educational Resources Information Center

    Wade, Edmir O.; Walsh, Kenneth E.

    2011-01-01

    In recent years, there has been an explosion of research concerning the area of organocatalysis. A multistep capstone laboratory project that combines traditional reactions frequently found in organic laboratory curriculums with this new field of research is described. In this experiment, the students synthesize a prolinamide-based organocatalyst…

  19. Hammett correlation of nornicotine analogues in the aqueous aldol reaction: implications for green organocatalysis.

    PubMed

    Rogers, Claude J; Dickerson, Tobin J; Brogan, Andrew P; Janda, Kim D

    2005-04-29

    [reaction: see text] A series of meta- and para-substituted 2-arylpyrrolidines were synthesized and examined for their ability to catalyze an aqueous aldol reaction under buffered conditions. Kinetic analysis of arylpyrrolidine-catalyzed reactions displayed a linear Hammett correlation with rho = 1.14 (R(2) = 0.996), indicating that the reaction is accelerated by electron-withdrawing aryl rings. These results show promise for the development of a synthetically viable aqueous organo-catalyst.

  20. Stereoselectivities of Histidine-Catalyzed Asymmetric Aldol Additions and Contrasts with Proline Catalysis: A Quantum Mechanical Analysis

    PubMed Central

    Lam, Yu-hong; Houk, K. N.; Scheffler, Ulf; Mahrwald, Rainer

    2012-01-01

    Quantum mechanical calculations reveal the origin of diastereo- and enantioselectivities of aldol reactions between aldehydes catalyzed by histidine, and differences between related reactions catalyzed by proline. A stereochemical model that explains both the sense and the high levels of the experimentally observed stereoselectivity is proposed. The computations suggest that both the imidazolium and the carboxylic acid functionalities of histidine are viable hydrogen-bond donors that can stabilize the cyclic aldolization transition state. The stereoselectivity is proposed to arise from minimization of gauche interactions around the forming C–C bond. PMID:22458689

  1. Chiral picolylamines for Michael and aldol reactions: probing substrate boundaries.

    PubMed

    Nugent, Thomas C; Bibi, Ahtaram; Sadiq, Abdul; Shoaib, Mohammad; Umar, M Naveed; Tehrani, Foad N

    2012-12-14

    Here we report on inroads concerning increased substrate breadth via the picolylamine organocatalyst template, a vicinal chiral diamine based on a pyridine-primary amine motif. The addition of cyclohexanone to β-nitrostyrene has many catalyst solutions, but cyclopentanone and isobutyraldehyde additions continue to be challenging. PicAm-3 (10 mol%) readily allows the Michael addition of cyclopentanone or isobutyraldehyde (5.0 equiv.) to β-nitrostyrene derivatives. By contrast, PicAm-1 (7.0 mol%) is optimal for catalyzing the aldol reaction of cyclohexanone or cycloheptanone (3.3 equiv.) with aromatic aldehydes. Eighteen products are reported and for each reaction type new products are reported (4b-d, 9c). Very good yields and stereoselectivities are generally noted. The reactions, which require an acid additive, proceed via a transient chiral enamine and a mechanistic case is put forth for a bifunctional catalysis model.

  2. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    EPA Science Inventory


    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  3. Chitosan aerogel: a recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water.

    PubMed

    Ricci, Alfredo; Bernardi, Luca; Gioia, Claudio; Vierucci, Simone; Robitzer, Mike; Quignard, Françoise

    2010-09-14

    Aerogel microspheres of chitosan, an abundant biopolymer obtained from marine crustaceans, have been successfully applied to catalyze the asymmetric aldol reaction in water, providing the products in high yields and with good stereoselectivity (up to 93% ee) and recyclability (up to 4 runs). Yields were favourably affected by additives such as DNP and stearic acid.

  4. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  5. Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions

    PubMed Central

    Delaney, Joshua P.; Henderson, Luke C.

    2011-01-01

    Saturated aqueous solutions of various common salts were examined for their effect on aqueous aldol reactions catalysted by a highly active C2-symmetric diprolinamide organocatalyst developed in our laboratory. With respect to the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, deionised water was always a superior medium to salt solutions though some correlation to increasing anion size and depression in enantiomeric excess could be observed. Additionally, the complete inhibition of catalyst activity observed when employing tap water could be alleviated by the inclusion of ethylenediaminetetraacetate (EDTA) into the aqueous media prior to reaction initiation. Extension of these reaction conditions demonstrated that these ionic effects vary on a case-to-case basis depending on the ketone/aldehyde combination. PMID:22272120

  6. Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G; Pruski, Marek; Slowing, Igor I

    2013-01-11

    The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes.

  7. Catalytic asymmetric aldol addition reactions of 3-fluoro-indolinone derived enolates.

    PubMed

    Zhang, Lijun; Zhang, Wenzhong; Mei, Haibo; Han, Jianlin; Soloshonok, Vadim A; Pan, Yi

    2017-01-04

    Reported herein is a Cu(i)/bisoxazoline ligand-catalyzed aldol reaction of unprotected tertiary enolates generated in situ from 3-(1,1-dihydroxy-2,2,2-trifluoroethyl)-substituted derivatives of 3-fluoro-2-oxindoles. A range of α-fluoro-β-aryl/hetaryl/alkyl-β-hydroxy-indolin-2-ones containing C-F quaternary stereogenic centers of high pharmaceutical importance were furnished in good yields and satisfactory diastereo- and enantioselectivities. The reactions were conducted under operationally convenient conditions and displayed wide substrate/functional group generality including unprotected N-H on the tertiary enolates, and aromatic, hetero-aromatic and aliphatic aldehydes.

  8. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hangson, Susan Kloek

    2013-08-13

    Method of producing C.sub.8-C.sub.15 hydrocarbons comprising providing a ketone starting material; providing an aldol starting material comprising hydroxymethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.2, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  9. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hanson, Susan Kloek

    2013-07-30

    Method of producing C.sub.8-C.sub.15 hydrocarbons. comprising providing a ketone starting material; providing an aldol starting material comprising chloromethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.3, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  10. Synthesis of polyhydroxylated decalins via two consecutive one-pot reactions: 1,4-addition/aldol reaction followed by RCM/syn-dihydroxylation.

    PubMed

    Malik, Michał; Jarosz, Sławomir

    2016-01-01

    Synthesis of novel polyhydroxylated derivatives of decalin is described. The presented methodology consists in a one-pot copper-catalyzed 1,4-addition of vinylmagnesium bromide to sugar-derived cyclohexenone, followed by an aldol reaction with a derivative of but-3-enal. The obtained diene is then subjected to an assisted tandem catalytic sequence: ring-closing metathesis with the subsequent reuse of the Ru-catalyst in the syn-dihydroxylation. The stereochemical outcome of these reactions is discussed.

  11. Simultaneous Upgrading of Furanics and Phenolics through Hydroxyalkylation/Aldol Condensation Reactions.

    PubMed

    Bui, Tuong V; Sooknoi, Tawan; Resasco, Daniel E

    2017-04-10

    The simultaneous conversion of cyclopentanone and m-cresol has been investigated on a series of solid-acid catalysts. Both compounds are representative of biomass-derived streams. Cyclopentanone can be readily obtained from sugar-derived furfurals through Piancatelli rearrangement under reducing conditions. Cresol represents a family of phenolic compounds, typically obtained from the depolymerization of lignin. In the first biomass conversion strategy proposed here, furfural is converted in high yields and selectivity to cyclopentanone (CPO) over metal catalysts such as Pd-Fe/SiO2 at 600 psi (∼4.14 MPa) H2 and 150 °C. Subsequently, CPO and cresol are further converted through acid-catalyzed hydroxyalkylation. This C-C coupling reaction may be used to generate products in the molecular weight range that is appropriate for transportation fuels. As molecules beyond this range may be undesirable for fuel production, a catalyst with a suitable porous structure may be advantageous for controlling the product distribution in the desirable range. If Amberlyst resins were used as a catalyst, C12 -C24 products were obtained whereas when zeolites with smaller pore sizes were used, they selectively produced C10 products. Alternatively, CPO can undergo the acid-catalyzed self-aldol condensation to form C10 bicyclic adducts. As an illustration of the potential for practical implementation of this strategy for biofuel production, the long-chain oxygenates obtained from hydroxyalkylation/aldol condensation were successfully upgraded through hydrodeoxygenation to a mixture of linear alkanes and saturated cyclic hydrocarbons, which in practice would be direct drop-in components for transportation fuels. Aqueous acidic environments, which are typically encountered during the liquid-phase upgrading of bio-oils, would inhibit the efficiency of base-catalyzed processes. Therefore, the proposed acid-catalyzed upgrading strategy is advantageous for biomass conversion in terms of

  12. Aldol reactions in multicomponent reaction based domino pathways: a multipurpose enabling tool in heterocyclic chemistry.

    PubMed

    Xu, Zhigang; De Moliner, Fabio; Cappelli, Alexandra P; Hulme, Christopher

    2013-06-07

    The aldol reaction has been evaluated in combination with the Ugi multicomponent reaction to assemble richly decorated mono- and polycyclic systems via expeditious cascade pathways. A small collection of pyrrolinones was generated thereof, and the scarcely accessible pyridoquinoxalinedione scaffold was also prepared by designing an additional nucleophilic substitution step in this domino sequence requiring minimal operational effort.

  13. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  14. TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...

  15. Picolylamine as an organocatalyst template for highly diastereo- and enantioselective aqueous aldol reactions.

    PubMed

    Nugent, Thomas C; Umar, M Naveed; Bibi, Ahtaram

    2010-09-21

    A pyridine based 1,2-diamine containing only one stereogenic center has been identified for fast aldol reactions (16-48 h). Using 2-5 mol% of (R)- or (S)-PicAm-2, cyclohexanone (3.3 equiv) readily undergoes aldol reactions with o-, m-, and p-substituted aromatic aldehyde partners (limiting reagent), including the poor electrophile 4-methylbenzaldehyde (95-99% ee). Furthermore, functionalized cyclic ketone substrates have been converted into four aldol products 9-12 using the lowest catalyst loading (5.0 mol%) to date with the highest yield and enantioselectivity.

  16. Chiral bis(oxazoline) copper(II) complexes: versatile catalysts for enantioselective cycloaddition, Aldol, Michael, and carbonyl ene reactions.

    PubMed

    Johnson, J S; Evans, D A

    2000-06-01

    A bis(oxazoline) (box) copper(II) complex and its hydrated counterpart (1 and 2) function as enantioselective Lewis acid catalysts for carbocyclic and hetero Diels-Alder, aldol, Michael, ene, and amination reactions with substrates capable of chelation through six- and five-membered rings. X-ray crystallography of the chiral complexes reveals a propensity for the formation of distorted square planar or square pyramidal geometries. The sense of asymmetric induction is identical for all the processes catalyzed by [Cu((S,S)-t-Bu-box)](X)(2) complexes 1 and 2 (X = OTf and SbF) resulting from the intervention of a distorted square planar catalyst-substrate binary complex. These catalyzed processes exhibit excellent temperature-selectivity profiles. Reactions catalyzed by [Cu(S,S-Ph-pybox)](SbF(6))(2) and their derived chelation complexes are also discussed.

  17. Copper-catalyzed cascade reactions of α,β-unsaturated esters with keto esters

    PubMed Central

    Wang, Chongnian; Li, Zengchang

    2015-01-01

    Summary A copper-catalyzed cascade reaction of α,β-unsaturated esters with keto esters is reported. It features a copper-catalyzed reductive aldolization followed by a lactonization. This method provides a facile approach to prepare γ-carboxymethyl-γ-lactones and δ-carboxymethyl-δ-lactones under mild reaction conditions. PMID:25815072

  18. Domino Michael-Michael and Aldol-Aldol Reactions: Diastereoselective Synthesis of Functionalized Cyclohexanone Derivatives Containing Quaternary Carbon Center.

    PubMed

    Ghorai, Manas K; Halder, Sandipan; Das, Subhomoy

    2015-10-02

    A simple strategy for the synthesis of highly functionalized cyclohexanone derivatives containing an all-carbon quaternary center from α-(aryl/alkyl)methylidene-β-keto esters or β-diketones via a K-enolate mediated domino Michael-Michael reaction sequence with moderate to good yield and excellent diastereoselectivity (de > 99%) is described. Interestingly, Li-base mediated reaction of α-arylmethylidene-β-diketones affords functionalized 3,5-dihydroxy cyclohexane derivatives as the kinetically controlled products via a domino aldol-aldol reaction sequence with excellent diastereoselectivity. Li-enolates of the β-keto esters or β-diketones undergo facile domino Michael-Michael reaction with nitro-olefins to afford the corresponding nitrocyclohexane derivatives in good yields and excellent diastereoselectivity (de > 99%). The formation of the products and the observed stereoselectivity were explained by plausible mechanisms and supported by extensive computational study. An asymmetric version of the protocol was explored with (L)-menthol derived nonracemic substrates, and the corresponding nonracemic cyclohexanone derivatives containing an all-carbon quaternary center were obtained with excellent stereoselectivity (de, ee > 99%).

  19. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    PubMed

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology.

  20. l-Isoleucine in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: A Reusable Reaction Kit for the Asymmetric Cross-Aldol Carboligation.

    PubMed

    Fanjul-Mosteirín, Noé; Concellón, Carmen; Del Amo, Vicente

    2016-09-02

    l-Isoleucine is able to catalyze the cross-aldol reaction between cyclohexanone and aromatic aldehydes in a deep eutectic solvent consisting in choline chloride and ethylene glycol, rendering products with high diatereo- and enantioselectivity. This protocol is straightforward and green: the organocatalyst and the reaction medium can be recycled up to five times, allowing the preparation of different substrates with a single load of solvent and catalyst.

  1. A Tandem Michael-Aldol Reaction Sequence: An Undergraduate Research Organic Experiment.

    ERIC Educational Resources Information Center

    Coutlangus, Marilyn L.; And Others

    1989-01-01

    Presents a short reaction sequence that allows the student to determine by spectroscopic methods the constitution and stereochemistry of the reaction products. Reports the interpretations needed to illustrate the usefulness of the spectroscopic method. Notes the products of the Michael-Aldol reaction have not been reported in the literature. (MVL)

  2. Synthesis of polyhydroxylated decalins via two consecutive one-pot reactions: 1,4-addition/aldol reaction followed by RCM/syn-dihydroxylation

    PubMed Central

    2016-01-01

    Synthesis of novel polyhydroxylated derivatives of decalin is described. The presented methodology consists in a one-pot copper-catalyzed 1,4-addition of vinylmagnesium bromide to sugar-derived cyclohexenone, followed by an aldol reaction with a derivative of but-3-enal. The obtained diene is then subjected to an assisted tandem catalytic sequence: ring-closing metathesis with the subsequent reuse of the Ru-catalyst in the syn-dihydroxylation. The stereochemical outcome of these reactions is discussed. PMID:28144329

  3. Rhodium-catalysed hydroacylation or reductive aldol reactions: a ligand dependent switch of reactivity.

    PubMed

    Osborne, James D; Willis, Michael C

    2008-10-28

    The pathway for the combination of enones and beta-S-substituted aldehydes using Rh-catalysis can be switched between a hydroacylation reaction or a reductive aldol reaction by simple choice of the phosphine ligand; this catalyst controlled switch allows access to new ketone hydroacylation products; useful 1,4-diketone intermediates for the synthesis of N-, S- and O-heterocycles.

  4. Aldol Reactions in MCR-Based Domino Pathways: a Multipurpose Enabling Tool in Heterocyclic Chemistry

    PubMed Central

    Xu, Zhigang; De Moliner, Fabio; Cappelli, Alexandra P.

    2013-01-01

    The aldol reaction has been evaluated in combination with the Ugi multicomponent reaction to assemble richly decorated mono- and polycyclic systems via expeditious cascade pathways. A small collection of pyrrolinones was generated thereof, and the scarcely accessible pyridoquinoxalinedione scaffold was also prepared by designing an additional nucleophilic substitution step in this domino sequence requiring minimal operational effort. PMID:23718233

  5. Mathematical model for aldol addition catalyzed by two D-fructose-6-phosphate aldolases variants overexpressed in E. coli.

    PubMed

    Sudar, Martina; Findrik, Zvjezdana; Vasić-Rački, Durđa; Clapés, Pere; Lozano, Carles

    2013-09-10

    Two D-fructose-6-phosphate aldolase variants namely, single variant FSA A129S and double variant FSA A129S/A165G, were used as catalysts in the aldol addition of dihydroxyacetone (DHA) to N-Cbz-3-aminopropanal. Mathematical model for reaction catalyzed by both enzymes, consisting of kinetic and mass balance equations, was developed. Kinetic parameters were estimated from the experimental data gathered by using the initial reaction rate method. The model was validated in the batch and continuously operated ultrafiltration membrane reactor (UFMR). The same type of kinetic model could be applied for both enzymes. The operational stability of the aldolases was assessed by measuring enzyme activity during the experiments. FSA A129S/A165G had better operational stability in the batch reactor (half-life time 26.7 h) in comparison to FSA A129S (half-life time 5.78 h). Both variants were unstable in the continuously operated UFMR in which half-life times were 1.99 and 3.64 h for FSA A129S and FSA A129S/A165G, respectively.

  6. Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by L-rhamnulose-1-phosphate and L-fuculose-1-phosphate aldolases in aqueous borate buffer.

    PubMed

    Garrabou, Xavier; Calveras, Jordi; Joglar, Jesús; Parella, Teodor; Bujons, Jordi; Clapés, Pere

    2011-12-21

    Aldol addition reactions of dihydroxyacetone (DHA) to N-Cbz-amino aldehydes catalyzed by L-rhamnulose-1-phosphate aldolase (RhuA) in the presence of borate buffer are reported. High yields of aldol adduct (e.g. 70-90%) were achieved with excellent (>98 : 2 syn/anti) stereoselectivity for most S or R configured acceptors, which compares favorably to the reactions performed with DHAP. The stereochemical outcome was different and depended on the N-Cbz-amino aldehyde enantiomer: the S acceptors gave the syn (3R,4S) aldol adduct whereas the R ones gave the anti (3R,4R) diastereomer. Moreover, the tactical use of Cbz protecting group allows simple and efficient elimination of borate and excess of DHA by reverse phase column chromatography or even by simple extraction. This, in addition to the use of unphosphorylated donor nucleophile, makes a useful and expedient methodology for the synthesis of structurally diverse iminocyclitols. The performance of aldol additions of dihydroxyacetone phosphate (DHAP) to N-Cbz-amino aldehydes using RhuA and L-fuculose-1-phosphate aldolase (FucA) catalyst in borate buffer was also evaluated. For FucA catalysts, including FucA F131A, the initial velocity of the aldol addition reactions using DHAP were between 2 and 10 times faster and the yields between 1.5 and 4 times higher than those in triethanolamine buffer. In this case, the retroaldol velocities measured for some aldol adducts were lower than those without borate buffer indicating some trapping effect that could explain the improvement of yields.

  7. Aldol reactions of the trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) from Pseudomonas fluorescens N3.

    PubMed

    Sello, Guido; Di Gennaro, Patrizia

    2013-08-01

    In this paper, a recombinant trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) of Pseudomonas fluorescens N3 was used as a new catalyst for aldol condensation reactions. The reaction of some aldehydes with a different electronic activation catalyzed by tHBP-HA is presented and discussed together with some hints on the product structure. The enzyme is strictly pyruvate-dependent but uses different aldehydes as acceptors. The structure of the products is highly dependent on the electronic characteristics of the aldehyde. The results are interesting for both their synthetic importance and the mechanism of the formation of the products. Not only the products obtained and the recognition power are reported, but also some characteristics of its mechanism are analyzed. The results clearly show that the enzyme is efficiently prepared, purified, and stored, that it recognizes many different substrates, and that the products depend on the substrate electronic nature.

  8. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gómez-Palomino, Alejandro; Solà, Ricard; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or α- and β-hydroxy ketones.

  9. Transition state models for probing stereoinduction in Evans chiral auxiliary-based asymmetric aldol reactions.

    PubMed

    Shinisha, C B; Sunoj, Raghavan B

    2010-09-08

    The use of chiral auxiliaries is one of the most fundamental protocols employed in asymmetric synthesis. In the present study, stereoselectivity-determining factors in a chiral auxiliary-based asymmetric aldol reaction promoted by TiCl(4) are investigated by using density functional theory methods. The aldol reaction between chiral titanium enolate [derived from Evans propionyl oxazolidinone (1a) and its variants oxazolidinethione (1b) and thiazolidinethione (1c)] and benzaldehyde is examined by using transition-state modeling. Different stereochemical possibilities for the addition of titanium enolates to aldehyde are compared. On the basis of the coordination of the carbonyl/thiocarbonyl group of the chiral auxiliary with titanium, both pathways involving nonchelated and chelated transition states (TSs) are considered. The computed relative energies of the stereoselectivity-determining C-C bond formation TSs in the nonchelated pathway, for both 1a and 1c, indicate a preference toward Evans syn aldol product. The presence of a ring carbonyl or thiocarbonyl group in the chiral auxiliary renders the formation of neutral TiCl(3)-enolate, which otherwise is energetically less favored as compared to the anionic TiCl(4)-enolate. Hence, under suitable conditions, the reaction between titanium enolate and aldehyde is expected to be viable through chelated TSs leading to the selective formation of non-Evans syn aldol product. Experimentally known high stereoselectivity toward Evans syn aldol product is effectively rationalized by using the larger energy differences between the corresponding diastereomeric TSs. In both chelated and nonchelated pathways, the attack by the less hindered face of the enolate on aldehyde through a chair-like TS with an equatorial disposition of the aldehydic substituent is identified as the preferred mode. The steric hindrance offered by the isopropyl group and the possible chelation are identified as the key reasons behind the interesting

  10. Accurate Reaction Enthalpies and Sources of Error in DFT Thermochemistry for Aldol, Mannich, and α-Aminoxylation Reactions

    NASA Astrophysics Data System (ADS)

    Wheeler, Steven E.; Moran, Antonio; Pieniazek, Susan N.; Houk, K. N.

    2009-08-01

    Enthalpies for bond-forming reactions that are subject to organocatalysis have been predicted using the high-accuracy CBS-QB3 model chemistry and six DFT functionals. Reaction enthalpies were decomposed into contributions from changes in bonding and other intramolecular effects via the hierarchy of homodesmotic reactions. The order of the reaction exothermicities (aldol < Mannich ≈ α-aminoxylation) arises primarily from changes in formal bond types mediated by contributions from secondary intramolecular interactions. In each of these reaction types, methyl substitution at the β- and γ-positions stabilizes the products relative to the unsubstituted case. The performance of six DFT functionals (B3LYP, B3PW91, B1B95, MPW1PW91, PBE1PBE, and M06-2X), MP2, and SCS-MP2 has been assessed for the prediction of these reaction enthalpies. Even though the PBE1PBE and M06-2X functionals perform well for the aldol and Mannich reactions, errors roughly double when these functionals are applied to the α-aminoxylation reactions. B3PW91 and B1B95, which offer modest accuracy for the aldol and Mannich reactions, yield reliable predictions for the two α-aminoxylation reactions. The excellent performance of the M06-2X and PBE1PBE functionals for aldol and Mannich reactions stems from the cancellation of sizable errors arising from inadequate descriptions of the underlying bond transformations and intramolecular interactions. SCS-MP2/cc-pVTZ performs most consistently across these three classes of reactions, although the reaction exothermicities are systematically underestimated by 1-3 kcal mol-1. Conventional MP2, when paired with the cc-pVTZ basis set, performs somewhat better than SCS-MP2 for some of these reactions, particularly the α-aminoxylations. Finally, the merits of benchmarking DFT functionals for the set of simple chemically meaningful transformations underlying all bond-forming reactions are discussed.

  11. Sc(III)-doped zeolites as new heterogeneous catalysts: mukaiyama aldol reaction.

    PubMed

    Olmos, Andrea; Alix, Aurélien; Sommer, Jean; Pale, Patrick

    2009-10-26

    Sc(III)-doped solids based on zeolite materials have been investigated for the first time as catalysts in organic synthesis. Sc(III)-USY zeolite proved to be a novel and very efficient heterogeneous catalyst for the Mukaiyama aldol reaction. This easy-to-prepare catalyst exhibited wide scope and compatibility with functional groups and is very simple to use, easy to remove (by simple filtration), and is recyclable (up to three times without loss of activity).

  12. Gallium(III)- and calcium(II)-catalyzed Meyer-Schuster rearrangements followed by intramolecular aldol condensation or endo-Michael addition.

    PubMed

    Presset, M; Michelet, B; Guillot, R; Bour, C; Bezzenine-Lafollée, S; Gandon, V

    2015-03-28

    The first gallium- and calcium-catalyzed Meyer-Schuster rearrangements are described. Under substrate control, the incipient conjugated ketones can be trapped intramolecularly by β-keto esters or amides to yield cyclic products after aldol condensation or endo-Michael addition. An interesting additive effect that promotes the latter tandem process with calcium has been found.

  13. Lewis base catalyzed, enantioselective aldol addition of methyl trichlorosilyl ketene acetal to ketones.

    PubMed

    Denmark, Scott E; Fan, Yu; Eastgate, Martin D

    2005-06-24

    The catalytic enantioselective addition of an acetate enolate equivalent to ketones is described. Methyl trichlorosilyl ketene acetal reacts with a wide range of ketones in the presence of pyridine N-oxide to afford the aldol addition products in excellent yields. Chiral 2,2'-pyridyl bis-N-oxides bearing various substituents at the 3,3'- and 6,6'-positions also provide excellent yields of the aldol products with variable enantioselectivities ranging from 94/6 er for aromatic ketones to nearly racemic for aliphatic ketones. An X-ray crystal structure of the complex between a catalyst and silicon tetrachloride (((P)-(R,R)-19.SiCl(4))) has been obtained. Extensive computational analysis provides a stereochemical rationale for the observed trends in enantioselectivities.

  14. Isotope Probing of the UDP‐Apiose/UDP‐Xylose Synthase Reaction: Evidence of a Mechanism via a Coupled Oxidation and Aldol Cleavage

    PubMed Central

    Eixelsberger, Thomas; Horvat, Doroteja; Gutmann, Alexander; Weber, Hansjörg

    2017-01-01

    Abstract The C‐branched sugar d‐apiose (Api) is essential for plant cell‐wall development. An enzyme‐catalyzed decarboxylation/pyranoside ring‐contraction reaction leads from UDP‐α‐d‐glucuronic acid (UDP‐GlcA) to the Api precursor UDP‐α‐d‐apiose (UDP‐Api). We examined the mechanism of UDP‐Api/UDP‐α‐d‐xylose synthase (UAXS) with site‐selectively 2H‐labeled and deoxygenated substrates. The analogue UDP‐2‐deoxy‐GlcA, which prevents C‐2/C‐3 aldol cleavage as the plausible initiating step of pyranoside‐to‐furanoside conversion, did not give the corresponding Api product. Kinetic isotope effects (KIEs) support an UAXS mechanism in which substrate oxidation by enzyme‐NAD+ and retro‐aldol sugar ring‐opening occur coupled in a single rate‐limiting step leading to decarboxylation. Rearrangement and ring‐contracting aldol addition in an open‐chain intermediate then give the UDP‐Api aldehyde, which is intercepted via reduction by enzyme‐NADH. PMID:28102965

  15. Bicyclic proline analogues as organocatalysts for stereoselective aldol reactions: an in silico DFT study.

    PubMed

    Shinisha, C B; Sunoj, Raghavan B

    2007-04-21

    Density functional theory has been employed in investigating the efficiency of a series of bicyclic analogues of proline as stereoselective organocatalysts for the aldol reaction. Three classes of conformationally restricted proline analogues, as part of either a [2.2.1] or [2.1.1] bicyclic framework, have been studied. Transition states for the stereoselective C-C bond formation between enamines derived from [2.2.1] and [2.1.1] bicyclic amino acids and p-nitrobenzaldehyde, leading to enantiomeric products, have been identified. Analysis of the transition state geometries revealed that the structural rigidity of catalysts, improved transition state organization as well as other weak interactions influence the relative stabilities of diastereomeric transition states and help contribute to the overall stereoselectivity in the aldol reaction. These bicyclic catalysts are predicted to be substantially more effective in improving the enantiomeric excess than the widely used organocatalyst proline. Enantiomeric excesses in the range 82-95% are predicted for these bicyclic catalysts when a sterically unbiased substrate such as p-nitrobenzaldehyde is employed for the asymmetric aldol reaction. More interestingly, introduction of substituents, as simple as a methyl group, at the ortho position of the aryl aldehyde bring about an increase in the enantiomeric excess to values greater than 98%. The reasons behind the vital energy separation between diastereomeric transition states has been rationalized with the help of a number of weak interactions such as intramolecular hydrogen bonding and Coulombic interactions operating on the transition states. These predictions could have wider implications for the rational design of improved organocatalysts for stereoselective carbon-carbon bond-forming reactions.

  16. Noninnocent role of N-methyl pyrrolidinone in thiazolidinethione-promoted asymmetric aldol reactions.

    PubMed

    Sreenithya, A; Sunoj, Raghavan B

    2012-11-16

    The origin of stereoselectivity in the reaction between α-azido titanium enolate derived from chiral auxiliary N-acyl thiazolidinethione and benzaldehyde is established using the DFT(B3LYP) method. A nonchelated transition state with N-methyl-2-pyrrolidinone (NMP) bound to a TiCl(3) enolate is found to be energetically the most preferred model responsible for the formation of an Evans syn aldol product. The TS model devoid of NMP, although of higher energy, is found to be successful in predicting the right stereochemical outcome.

  17. One-Pot Domino Aldol Reaction of Indium Enolates Affording 6-Deoxy-α-D,L-altropyranose Derivatives: Synthesis, Mechanism, and Computational Results.

    PubMed

    Cinar, M Emin; Schmittel, Michael

    2015-08-21

    The domino-aldol-aldol-hemiacetal-reaction cascade of indium and other group 13 metal enolates furnished 6-deoxy-α-D,L-altropyranose derivatives in up to 99% yield under thermodynamic control. At lower temperature and thus under kinetic control, the reaction proceeded in a much less diastereoselective manner. The changeover from kinetic to thermodynamic control operating in this multistep domino-aldol-aldol-hemiacetal protocol was used for probing the efficiency of DFT computations. Calculations at the B3LYP/6-31G(d)/LANL2DZ level provided a mechanistic picture in full agreement with the experimental outcome.

  18. Direct access to 6/5/7/5- and 6/7/5/5-fused tetracyclic triterpenoids via divergent transannular aldol reaction of lanosterol-derived diketone.

    PubMed

    Ignatenko, Vasily A; Han, Yong; Tochtrop, Gregory P

    2013-12-06

    In an effort to access biologically relevant chemical space, a complex natural product derived nonsymmetrical diketone was prepared as a substrate for divergent transannular aldol reactions. The use of common aldol conditions resulted in predominant syn-addition via pathway a, while the use of alumina provided access to the anti-adduct. Screening of a range of Lewis acids of varying strength unexpectedly resulted in the formation of aldol products with 6/7/5/5-fused molecular skeleton via pathway b.

  19. Strong counteranion effects on the catalytic activity of cationic silicon Lewis acids in Mukaiyama aldol and Diels-Alder reactions.

    PubMed

    Hara, Kenji; Akiyama, Ryuto; Sawamura, Masaya

    2005-12-08

    [chemical reaction: see text]. A toluene-coordinated silyl borate, [Et3Si(toluene)]B(C6F5)4, demonstrated catalytic activities significantly higher than those of Me3SiOTf and Me3SiNTf2 in Mukaiyama aldol and Diels-Alder reactions.

  20. Organocatalytic Asymmetric Synthesis of Functionalized 1,3,5-Triarylpyrrolidin-2-ones via an Aza-Michael/Aldol Domino Reaction

    PubMed Central

    Joie, Céline; Deckers, Kristina; Enders, Dieter

    2014-01-01

    The organocatalytic asymmetric synthesis of functionalized 1,3,5-triarylpyrrolidin-2-ones bearing three contiguous stereocenters through an aza-Michael/aldol domino reaction of α-ketoamides with α,β-unsaturated aldehydes is described. The domino products were further derivatized by aldehyde olefination under one-pot conditions. The reaction proceeds with excellent diastereoselectivities (>20:1) and good to excellent enantioselectivities (60–96% ee). PMID:25278634

  1. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  2. Improving the Catalytic Performance of (S)-Proline as Organocatalyst in Asymmetric Aldol Reactions in the Presence of Solvate Ionic Liquids: Involvement of a Supramolecular Aggregate.

    PubMed

    Obregón-Zúñiga, Arturo; Milán, Mario; Juaristi, Eusebio

    2017-03-03

    For the first time, a highly efficient and stereoselective asymmetric aldol reaction employing (S)-proline in the presence of solvate ionic liquids is reported. The reaction seems to proceed via a supramolecular aggregate of (S)-proline, the solvate ionic liquid, and water, affording high yields and excellent stereoselectivities with low catalyst loadings.

  3. An Aldol Reaction-Based Iridium(III) Chemosensor for the Visualization of Proline in Living Cells

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Biao; Liu, Li-Juan; Dong, Zhen-Zhen; Yang, Guan-Jun; Leung, Chung-Hang; Ma, Dik-Lung

    2016-11-01

    A long-lived aldol reaction-based iridium(III) chemosensor [Ir(ppy)2(5-CHOphen)]PF6 (1, where ppy = 2-phenylpyridine and 5-CHOphen = 1,10-phenanthroline-5-carbaldehyde) for proline detection has been synthesized. The iridium(III) complex 1, incorporating an aldehyde group in N^N donor ligand, can take part in aldol reaction with acetone mediated by proline. The transformation of the sp2-hybridized carbonyl group into a sp3-hybridized alcohol group influences the metal-to-ligand charge-transfer (MLCT) state of the iridium(III) complex, resulting in a change in luminescence in response to proline. The interaction of the iridium(III) complex 1 with proline was investigated by 1H NMR, HRMS and emission titration experiments. Upon the addition of proline to a solution of iridium(III) complex 1, a maximum 8-fold luminescence enhancement was observed. The luminescence signal of iridium(III) complex 1 could be recognized in strongly fluorescent media using time-resolved emission spectroscopy (TRES). The detection of proline in living cells was also demonstrated.

  4. Equilibrium between a vinylogous ylide and a phosphonium dienolate zwitterion: vinylogous Wittig olefination versus vinylogous aldol-type reaction

    PubMed Central

    Khong, San N.; Tran, Yang S.; Kwon, Ohyun

    2010-01-01

    This paper describes the equilibrium established between a phosphonium dienolate zwitterion and a vinylogous phosphorus ylide, and their reactions with aldehydes. The reactions between ethyl 2-methyl-2,3-butadienoate and various aldehydes occur through either a phosphonium dienolate or a vinylogous ylide intermediate, depending on the presence/absence of a Lewis acid and the nature of the phosphine. We observed a rare vinylogous Wittig olefination from the reaction between ethyl 2-methyl-2,3-butadienoate and an electron-deficient aromatic aldehyde in the presence of a stoichiometric amount of an electron-deficient triarylphosphine and a catalytic amount of a Lewis acid (e.g., BF3·Et2O). On the other hand, the use of triphenylphosphine, in the absence of a Lewis acid, facilitated vinylogous aldol addition, accompanied by a rare 1,2-aryl phosphorus-to-carbon migration. PMID:21359169

  5. Advances in lipase-catalyzed esterification reactions.

    PubMed

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  6. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    SciTech Connect

    Yu Xiaofang; Yu Xiaobo; Wu Shujie; Liu Bo; Liu Heng; Guan Jingqi; Kan Qiubin

    2011-02-15

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N{sub 2} adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization. -- Graphical abstract: Proximal-C-A-SBA-15 with a proximal acid-base distance and maximum-C-A-SBA-15 with a maximum acid-base distance were synthesized by immobilizing lysine onto carboxyl-SBA-15. Display Omitted Research highlights: {yields} Proximal-C-A-SBA-15 with a proximal acid-base distance. {yields} Maximum-C-A-SBA-15 with a maximum acid-base distance. {yields} Compared to maximum-C-A-SBA-15, proximal-C-A-SBA-15 was more active toward aldol condensation reaction between acetone and various aldehydes.

  7. Organocatalyzed aldol reaction between pyridine-2-carbaldehydes and α-ketoacids: a straightforward route towards indolizidines and isotetronic acids.

    PubMed

    Liautard, Virginie; Jardel, Damien; Davies, Clotilde; Berlande, Muriel; Buffeteau, Thierry; Cavagnat, Dominique; Robert, Frédéric; Vincent, Jean-Marc; Landais, Yannick

    2013-10-18

    Enantioselective aldol reactions between substituted pyridine carbaldehydes and α-ketoacids were shown to provide isotetronic acids or their corresponding pyridinium salts, depending on the nature of the substituents on the pyridine ring. The pyridinium salts were generated through nucleophilic attack of the pyridine nitrogen atom onto the reactive keto functional group. Moderate-to-good yields of both compounds were typically obtained and high levels of enantioselectivity were observed by using benzimidazole pyrrolidine I as a catalyst. Hydrogenation of the resulting pyridinium salts led to new indolizidines with high ee values and diastereocontrol. X-ray diffraction studies allowed the determination of the relative configuration of the products. Finally, DFT calculations were performed to rationalize the divergent pathway as a function of the pyridine substituents.

  8. A Rh(ii)-catalyzed three-component reaction of 3-diazooxindoles with N,N-disubstituted anilines and glyoxylates for the synthesis of 3-aryl-3-substituted oxindoles.

    PubMed

    Jia, Shi-Kun; Song, Long-Long; Lei, Yu-Bing; Gopi Krishna Reddy, A; Xing, Dong; Hu, Wen-Hao

    2016-11-02

    A simple and effective method for the synthesis of 3-aryl-3-substituted oxindole derivatives via a [Rh]-catalyzed three-component reaction of 3-diazooxindoles with N,N-disubstituted anilines and glyoxylates is developed. This transformation is proposed to proceed through an intermolecular aldol-type trapping of zwitterionic intermediates.

  9. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

    NASA Astrophysics Data System (ADS)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

  10. An Asymmetric Organocatalytic Quadruple Domino Reaction Employing a Vinylogous Friedel-Crafts/Michael/Michael/Aldol Condensation Sequence.

    PubMed

    Philipps, Arne R; Fritze, Lars; Erdmann, Nico; Enders, Dieter

    2015-04-02

    An organocatalytic quadruple cascade initiated by a Friedel-Crafts-type reaction is described. The (S)-diphenylprolinol trimethylsilyl ether catalyzed reaction yields highly functionalized cyclohexenecarbaldehydes bearing a 1,1-bis[4-(dialkylamino)phenyl]ethene moiety and three contiguous stereogenic centers. The reaction tolerates various functional groups and all products are obtained with very good diastereoselectivity and with virtually complete enantiomeric excess.

  11. Surface catalyzed mercury transformation reactions

    NASA Astrophysics Data System (ADS)

    Varanasi, Patanjali

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with five different oxidation catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 mug

  12. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H2 O2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H2 O2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H2 O2 -free conditions).

  13. Metal Catalyzed Oligomerization Reactions of Organosiloxanes.

    DTIC Science & Technology

    1982-10-28

    metallacycle from a mixture of stereo- isomers of the starting disiloxane is observed. The catalytic activity of these complexes for the oligomeriza... catalysts were adsorbed on oxide supports. Although the goal of synthesizing stereoregular silicones has not yet been achieved, the results warrant further...implicated as intermediates in several transi- tion metal-catalyzed reactions, e.g. olefin metathesis . 1 3 Metallacycles are also probable

  14. The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway

    ERIC Educational Resources Information Center

    Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H.

    2007-01-01

    The reaction of a ketone and an aldehyde in aqueous Na[subscript 2]CO[subscript 2] is described. This experiment is performed in the absence of strong bases or organic solvents and offers the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated…

  15. Amine-catalyzed direct aldol reactions of hydroxy- and dihydroxyacetone: biomimetic synthesis of carbohydrates.

    PubMed

    Popik, Oskar; Pasternak-Suder, Monika; Leśniak, Katarzyna; Jawiczuk, Magdalena; Górecki, Marcin; Frelek, Jadwiga; Mlynarski, Jacek

    2014-06-20

    This article presents comprehensive studies on the application of primary, secondary, and tertiary amines as efficient organocatalysts for the de novo synthesis of ketoses and deoxyketoses. Mimicking the actions of aldolase enzymes, the synthesis of selected carbohydrates was accomplished in aqueous media by using proline- and serine-based organocatalysts. The presented methodology also provides direct access to unnatural L-carbohydrates from the (S)-glyceraldehyde precursor. Determination of the absolute configuration of all obtained sugars was feasible using a methodology consisting of concerted ECD and VCD spectroscopy.

  16. Thermodynamic limitations on microbially catalyzed reaction rates

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Amend, Jan P.; Van Cappellen, Philippe

    2012-08-01

    Quantification of global biogeochemical cycles requires knowledge of the rates at which microorganisms catalyze chemical reactions. In order for models that describe these processes to capture global patterns of change, the underlying formulations in them must account for biogeochemical transformations over seasonal and millennial time scales in environments characterized by different energy levels. Building on existing models, a new thermodynamic limiting function is introduced. With only one adjustable parameter, this function that can be used to model microbial metabolism throughout the range of conditions in which organisms are known to be active. The formulation is based on a comparison of the amount of energy available from any redox reaction to the energy required to maintain a membrane potential, a proxy for the minimum amount of energy required by an active microorganism. This function does not require species- or metabolism-specific parameters, and can be used to model metabolisms that capture any amount of energy. The utility of this new thermodynamic rate limiting term is illustrated by applying it to three low-energy processes: fermentation, methanogenesis and sulfate reduction. The model predicts that the rate of fermentation will be reduced by half once the Gibbs energy of the catalyzed reaction reaches -12 kJ (mol e-)-1, and then slowing exponentially until the energy yield approaches zero. Similarly, the new model predicts that the low energy yield of methanogenesis, -4 to -0.5 kJ (mol e-)-1, for a partial pressure of H2 between 11 and 0.6 Pa decreases the reaction rate by 95-99%. Finally, the new function's utility is illustrated through its ability to accurately model sulfate concentration data in an anoxic marine sediment.

  17. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-07

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions.

  18. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  19. Enzyme-catalyzed, gas-phase reactions.

    PubMed

    Barzana, E; Klibanov, A M; Karel, M

    1987-06-01

    Dehydrated preparations of alcohol oxidase adsorbed on DEAE-cellulose vigorously catalyze a gas-phase oxidation of ethanol vapors with molecular oxygen. The gas-phase reaction is strongly dependent on the water activity of the system. The enzymatic activity is severely inhibited by the product hydrogen peroxide. This inhibition can be alleviated, however, by an addition of catalase or peroxidase to the dry preparation. Such dehydrated, bienzymic catalysts afford a complete and selective conversion of the substrate to acetaldehyde. Dry alcohol oxidase is much more thermostable than in aqueous solution. The results of this work suggest that dehydrated enzymes have potential applications in the analysis of gaseous compounds and in the development of novel gas-solid bioreactors.

  20. Selective Fluorescence Detection of Cysteine over Homocysteine and Glutathione Based on a Cysteine-Triggered Dual Michael Addition/Retro-aza-aldol Cascade Reaction.

    PubMed

    Liu, Yawei; Lv, Xin; Hou, Min; Shi, Yawei; Guo, Wei

    2015-11-17

    In this work, a cysteine (Cys)-triggered dual Michael addition/retro-aza-aldol cascade reaction has been exploited and utilized to construct a fluorescent probe for Cys for the first time. The resulting fluorescent probe 8-alkynylBodipy 1 contains an activated alkynyl unit as Michael receptor and a Bodipy dye as fluorescence reporter and can highly selectively detect Cys over homocysteine (Hcy)/glutathione (GSH) as well as other amino acids with a significant fluorescence off-on response (∼4500-fold) and an ultralow detection limit (0.38 nM). The high selectivity of 1 for Cys could be attributed to a kinetically favored five-membered cyclic intermediate produced by the dual Michael addition of Cys with the activated alkynyl unit of 1. The big fluorescence off-on response is due to the subsequent retro-aza-aldol reaction of the five-membered cyclic intermediate that results in the release of a highly fluorescent 8-methylBodipy dye 2. The probe has been successfully used to detect and image Cys in serum and cells, respectively.

  1. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  2. Stau-catalyzed big-bang nucleosynthesis reactions

    NASA Astrophysics Data System (ADS)

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X-) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X- particle has a lifetime of τX>~103 s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X- acts as a catalyst. Some of these X- catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  3. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    PubMed

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  4. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  5. Ligand Intermediates in Metal-Catalyzed Reactions

    SciTech Connect

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  6. Diamine Ligands in Copper-Catalyzed Reactions

    PubMed Central

    Surry, David S.

    2012-01-01

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands has been important in these advances and in this review we discuss these systems, including the choice of reaction conditions and applications in the synthesis of pharmaceuticals, natural products and designed materials. PMID:22384310

  7. Method for predicting enzyme-catalyzed reactions

    DOEpatents

    Hlavacek, William S.; Unkefer, Clifford J.; Mu, Fangping; Unkefer, Pat J.

    2013-03-19

    The reactivity of given metabolites is assessed using selected empirical atomic properties in the potential reaction center. Metabolic reactions are represented as biotransformation rules. These rules are generalized from the patterns in reactions. These patterns are not unique to reactants but are widely distributed among metabolites. Using a metabolite database, potential substructures are identified in the metabolites for a given biotransformation. These substructures are divided into reactants or non-reactants, depending on whether they participate in the biotransformation or not. Each potential substructure is then modeled using descriptors of the topological and electronic properties of atoms in the potential reaction center; molecular properties can also be used. A Support Vector Machine (SVM) or classifier is trained to classify a potential reactant as a true or false reactant using these properties.

  8. Thermodynamics of Enzyme-Catalyzed Reactions: Part 4. Lyases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1995-09-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the lyase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 106 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  9. Thermodynamics of Enzyme-Catalyzed Reactions: Part 2. Transferases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-07-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  10. Thermodynamics of Enzyme-Catalyzed Reactions. Part 3. Hydrolases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the hydrolase class of enzymes have been compiled. For each reaction the following information is given: The reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 145 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  11. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine

    PubMed Central

    Yao, Yuan; Liu, Junjun; Zheng, Fang; Zhan, Chang-Guo

    2017-01-01

    A recently designed and discovered cocaine hydrolase (CocH), engineered from human butyrylcholinesterase (BChE), has been proven promising as a novel enzyme therapy for treatment of cocaine overdose and addiction because it is highly efficient in catalyzing hydrolysis of naturally occurring (−)-cocaine. It has been known that the CocH also has a high catalytic efficiency against (+)-cocaine, a synthetic enantiomer of cocaine. Reaction pathway and the corresponding free energy profile for the CocH-catalyzed hydrolysis of (+)-cocaine have been determined, in the present study, by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Acordingt to the QM/MM-FE results, the catalytic hydrolysis process is initiated by the nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester via hydroxyl oxygen of S198 side chain, and the second reaction step (i.e. dissociation of benzoyl ester) is rate-determining. This finding for CocH-catalyzed hydrolysis of (+)-cocaine is remarkably different from that for the (+)-cocaine hydrolysis catalyzed by bacterial cocaine esterase in which the first reaction step of the deacylation is associated with the highest free energy barrier (~17.9 kcal/mol). The overall free energy barrier (~16.0 kcal/mol) calculated for the acylation stage of CocH-catalyzed hydrolysis of (+)-cocaine is in good agreement with the experimental free energy barrier of ~14.5 kcal/mol derivated from the experimental kinetic data.

  12. Palladium-Catalyzed, Enantioselective Heine Reaction

    PubMed Central

    2016-01-01

    Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)–diphosphine complex is employed. The highly enantioenriched oxazoline products are valuable organic synthons and potential ligands for transition-metal catalysis. PMID:27398262

  13. Palladium-Catalyzed, Enantioselective Heine Reaction.

    PubMed

    Punk, Molly; Merkley, Charlotte; Kennedy, Katlyn; Morgan, Jeremy B

    2016-07-01

    Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)-diphosphine complex is employed. The highly enantioenriched oxazoline products are valuable organic synthons and potential ligands for transition-metal catalysis.

  14. Cascade reactions catalyzed by metal organic frameworks.

    PubMed

    Dhakshinamoorthy, Amarajothi; Garcia, Hermenegildo

    2014-09-01

    Cascade or tandem reactions where two or more individual reactions are carried out in one pot constitute a clear example of process intensification, targeting the maximization of spatial and temporal productivity with mobilization of minimum resources. In the case of catalytic reactions, cascade processes require bi-/multifunctional catalysts that contain different classes of active sites. Herein, we show that the features and properties of metal-organic frameworks (MOFs) make these solids very appropriate materials for the development of catalysts for cascade reactions. Due to composition and structure, MOFs can incorporate different types of sites at the metal nodes, organic linkers, or at the empty internal pores, allowing the flexible design and synthesis of multifunctional catalysts. After some introductory sections on the relevance of cascade reactions from the point of view of competitiveness, sustainability, and environmental friendliness, the main part of the text provides a comprehensive review of the literature reporting the use of MOFs as heterogeneous catalysts for cascade reactions including those that combine in different ways acid/base, oxidation/reduction, and metal-organic centers. The final section summarizes the current state of the art, indicating that the development of a first commercial synthesis of a high-added-value fine chemical will be a crucial milestone in this area.

  15. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  16. Refined transition-state models for proline-catalyzed asymmetric Michael reactions under basic and base-free conditions.

    PubMed

    Sharma, Akhilesh K; Sunoj, Raghavan B

    2012-12-07

    The stereocontrolling transition state (TS) models for C-C bond formation relying on hydrogen bonding have generally been successful in proline-catalyzed aldol, Mannich, α-amination, and α-aminoxylation reactions. However, the suitability of the hydrogen-bonding model in protic and aprotic conditions as well as under basic and base-free conditions has not been well established for Michael reactions. Through a comprehensive density functional theory investigation, we herein analyze different TS models for the stereocontrolling C-C bond formation, both in the presence and absence of a base in an aprotic solvent (THF). A refined stereocontrolling TS for the Michael reaction between cyclohexanone and nitrostyrene is proposed. The new TS devoid of hydrogen bonding between the nitro group of nitrostyrene and carboxylic acid of proline, under base-free conditions, is found to be more preferred over the conventional hydrogen-bonding model besides being able to reproduce the experimentally observed stereochemical outcome. A DBU-bound TS is identified as more suitable for rationalizing the origin of asymmetric induction under basic reaction conditions. In both cases, the most preferred approach of nitrostyrene is identified as occurring from the face anti to the carboxylic acid of proline-enamine. The predicted enantio- and diastereoselectivities are in very good agreement with the experimental observations.

  17. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  18. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  19. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions.

  20. Catalyzed reactions at illuminated semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Wrighton, M. S.

    1984-06-01

    It is pointed out that thermodynamically unfavorable chemical redox reactions can be effected by using optical energy as the driving force. To date, the best man-contrived systems for the direct conversion of optical energy to high energy redox products are semiconductor-based photoelectrochemical devices. The present investigation is concerned with the possibility that the minority carrier redox process at a semiconductor electrode may be too slow to compete with the recombination of photogenerated carriers. Attention is given to the photoelectrochemical generation of hydrogen, the photoelectrochemical reduction of carbon dioxide, the photo-oxidation of halides to halogens, and photo-oxidation of water. It is concluded that redox reactions of possible significance in solar fuel generation require rate acceleration to achieve high solar energy conversion efficiency.

  1. Silver and gold-catalyzed multicomponent reactions

    PubMed Central

    Abbiati, Giorgio

    2014-01-01

    Summary Silver and gold salts and complexes mainly act as soft and carbophilic Lewis acids even if their use as σ-activators has been rarely reported. Recently, transformations involving Au(I)/Au(III)-redox catalytic systems have been reported in the literature. In this review we highlight all these aspects of silver and gold-mediated processes and their application in multicomponent reactions. PMID:24605168

  2. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  3. Secondary kinase reactions catalyzed by yeast pyruvate kinase.

    PubMed

    Leblond, D J; Robinson, J L

    1976-06-07

    1. Yeast pyruvate kinase (EC 2.7.1.40) catalyzes, in addition to the primary, physiologically important reaction, three secondary kinase reactions, the ATP-dependent phosphorylations of fluoride (fluorokinase), hydroxylamine (hydroxylamine kinase) and glycolate (glycolate kinase). 2. These reactions are accelerated by fructose-1,6-bisphosphate, the allosteric activator of the primary reaction. Wth Mg2+ as the required divalent cation, none of these reactions are observed in the absence of fructose-biphosphate. With Mn2+, fructose-bisphosphate is required for the glycolate kinase reaction, but merely stimulates the other reactions. 3. The effect of other divalent cations and pH on three secondary kinase reactions was also examined. 4. Results are compared with those obtained from muscle pyruvate kinase and the implications of the results for the mechanism of the yeast enzyme are discussed.

  4. (Ligand intermediates in metal-catalyzed reactions)

    SciTech Connect

    Not Available

    1992-01-01

    This report consists of sections on sigma bond complexes of alkenes, a new carbon-hydrogen bond activation reaction of alkene complexes, carbon-hydrogen bond migrations in alkylidene complexes, carbon- hydrogen bond migrations in alkyne complexes, synthesis, structure and reactivity of C{sub x} complexes, synthesis and reactivity of alcohol and ether complexes, new catalysts for the epimerization of secondary alcohols; carbon-hydrogen bond activation in alkoxide complexes, pi/sigma equilibria in metal/O=CXX' complexes, and other hydrocarbon ligands; miscellaneous.(WET)

  5. Stau-catalyzed big-bang nucleosynthesis reactions

    SciTech Connect

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X{sup -}) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X{sup -} particle has a lifetime of tau{sub X} > or approx. 10{sup 3} s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X{sup -} acts as a catalyst. Some of these X{sup -} catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  6. rac-9-ethyl-12a-hydroxytetradecahydrotriphenylene-1,5(2H,4bH)-dione: stabilization of a new isomer of a functionalized perhydrotriphenylene through a tandem Michael addition-aldol reaction.

    PubMed

    García, Luis Arturo; Bernès, Sylvain; Anaya de Parrodi, Cecilia

    2008-06-01

    The title compound, C20H30O3, is a new functionalized perhydrotriphenylene derivative formed via a tandem Michael addition-aldol reaction. The structural study reveals that the system of fused rings approximates a C2 point symmetry, with trans-cis-cis ring junctions, while highly symmetric all-trans perhydrotriphenylene, previously characterized, approximates a D3 symmetry. The perhydrotriphenylene nucleus of the title compound corresponds to the third stable stereoisomer isolated for this polycyclic system. Considering that the C(s) isomer was obtained recently through a similar tandem reaction, a general strategy is proposed which may help to obtain other stable stereoisomers of perhydrotriphenylene.

  7. A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2006-01-01

    A number of laboratory exercises for the organic chemistry curriculum that emphasize enantioselective synthesis of the aldol condensation which involves the proline-catalyzed condensation between acetone and isobutyraldehyde are explored. The experiment illustrates some of the trade-offs involved in green chemistry like the use of acetone in large…

  8. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  9. Cobalt-Catalyzed Reductive Multicomponent Synthesis of β-Hydroxy- and β-Aminocarbonyl Compounds under Mild Conditions.

    PubMed

    Paul, Jérôme; Presset, Marc; Cantagrel, Frédéric; Le Gall, Erwan; Léonel, Eric

    2017-01-05

    The cobalt-catalyzed multicomponent reaction between sp(2) -hybridized organic halides, Michael acceptors, and unsaturated electrophiles has been developed. The reaction proceeds through a formal conjugate addition/aldol or aza-aldol (Mannich) tandem reaction initiated by the in situ metalation of the organic halide by cobalt catalysis. The essentially new reaction conditions that have been developed are very mild and atom-economic. Under these conditions, a broad range of β-hydroxy- and β-aminocarbonyl compounds are obtained in good to high yields.

  10. Thermodynamics of Enzyme-Catalyzed Reactions: Part 1. Oxidoreductases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.; Bell, Donna; Fazio, Kari; Anderson, Ellen

    1993-03-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by oxidoreductases have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it. The thermodynamic conventions pertinent to the tabulation of equilibrium data are discussed. A distinction is made between those thermodynamic quantities which pertain to the overall biochemical reaction and those which pertain to a reference reaction that involves specific species. The data from 205 references have been examined and evaluated. Chemical Abstract Service Registry Numbers have been assigned to the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participated.

  11. Chemical and genomic evolution of enzyme-catalyzed reaction networks.

    PubMed

    Kanehisa, Minoru

    2013-09-02

    There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic genome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our recent analysis shows that this and other genomic units correspond to chemical units reflecting chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we identified chemical units, called reaction modules, as the conserved sequences of chemical structure transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic units and chemical units. While the core of the metabolic network may have evolved with mechanisms involving individual enzymes and reactions, its extension may have been driven by modular units of enzymes and reactions.

  12. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN WATER AND PROTIC SOLVENT. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Lipase-catalyzed aza-Michael reaction on acrylate derivatives.

    PubMed

    Steunenberg, Peter; Sijm, Maarten; Zuilhof, Han; Sanders, Johan P M; Scott, Elinor L; Franssen, Maurice C R

    2013-04-19

    A methodology has been developed for an efficient and selective lipase-catalyzed aza-Michael reaction of various amines (primary and secondary) with a series of acrylates and alkylacrylates. Reaction parameters were tuned, and under the optimal conditions it was found that Pseudomonas stutzeri lipase and Chromobacterium viscosum lipase showed the highest selectivity for the aza-Michael addition to substituted alkyl acrylates. For the first time also, some CLEAs were examined that showed a comparable or higher selectivity and yield than the free enzymes and other formulations.

  14. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions.

    PubMed

    Marques, Simone M; Esteves da Silva, Joaquim C G

    2009-01-01

    Luciferase is a general term for enzymes catalyzing visible light emission by living organisms (bioluminescence). The studies carried out with Photinus pyralis (firefly) luciferase allowed the discovery of the reaction leading to light production. It can be regarded as a two-step process: the first corresponds to the reaction of luciferase's substrate, luciferin (LH(2)), with ATP-Mg(2+) generating inorganic pyrophosphate and an intermediate luciferyl-adenylate (LH(2)-AMP); the second is the oxidation and decarboxylation of LH(2)-AMP to oxyluciferin, the light emitter, producing CO(2), AMP, and photons of yellow-green light (550- 570 nm). In a dark reaction LH(2)-AMP is oxidized to dehydroluciferyl-adenylate (L-AMP). Luciferase also shows acyl-coenzyme A synthetase activity, which leads to the formation of dehydroluciferyl-coenzyme A (L-CoA), luciferyl-coenzyme A (LH(2)-CoA), and fatty acyl-CoAs. Moreover luciferase catalyzes the synthesis of dinucleoside polyphosphates from nucleosides with at least a 3'-phosphate chain plus an intact terminal pyrophosphate moiety. The LH(2) stereospecificity is a particular feature of the bioluminescent reaction where each isomer, D-LH(2) or L-LH(2), has a specific function. Practical applications of the luciferase system, either in its native form or with engineered proteins, encloses the analytical assay of metabolites like ATP and molecular biology studies with luc as a reporter gene, including the most recent and increasing field of bioimaging.

  15. Rh(II)-catalyzed Reactions of Diazoesters with Organozinc Reagents

    PubMed Central

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M.

    2015-01-01

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethylacetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed. PMID:26241081

  16. Rh(II)-Catalyzed Reactions of Diazoesters with Organozinc Reagents.

    PubMed

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M

    2015-08-21

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethyl acetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed.

  17. Activity of formylphosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Jahansouz, H.; Kofron, J.L.; Smithers, G.W.; Himes, R.H.; Reed, G.H.

    1986-05-01

    Formylphosphate (FP), a putative enzyme-bound intermediate in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase, was synthesized from formylfluoride and Pi. Measurement of hydrolysis rates by /sup 31/P NMR showed that FP is very unstable with a half-life of 48 min at 20/sup 0/C and pH 7. At pH 7 hydrolysis occurs with O-P bond cleavage as shown by /sup 18/O incorporation from /sup 18/O-H/sub 2/O into Pi. The substrate activity of FP was tested in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase isolated from Clostridium cylindrosporum. MgATP + H/sub 4/folate + HCOO/sup -/ in equilibrium MgADP + Pi +N/sup 10/-formylH/sub 4/folate FP supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formylH/sub 4/folate is produced from H/sub 4/-folate and FP but only if ADP is present, and ATP is produced from FP and ADP but only if H/sub 4/folate is present. The requirements for H/sub 4/folate in the synthesis of ATP from ADP and FP and for ADP in the synthesis of N/sup 10/-formylH/sub 4/folate from FP and H/sub 4/folate, are consistent with past kinetic and isotope exchange studies which showed that the reaction proceeds by a sequential mechanism and that all three substrates must be present for any reaction to occur.

  18. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  19. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry.

    PubMed

    Tiwari, Vinod K; Mishra, Bhuwan B; Mishra, Kunj B; Mishra, Nidhi; Singh, Anoop S; Chen, Xi

    2016-03-09

    Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.

  20. Copper-Catalyzed Click Reaction on/in Live Cells.

    PubMed

    Li, Siheng; Wang, Lin; Yu, Fei; Zhu, Zhiling; Shobaki, Dema; Chen, Haoqing; Wang, Mu; Wang, Jun; Qin, Guoting; Erasquin, Uriel J; Ren, Li; Wang, Yingjun; Cai, Chengzhi

    2017-03-01

    We demonstrated that copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction could be performed inside live mammalian cells without using a chelating azide. Under optimized conditions, the reaction was performed in human ovary cancer cell line OVCAR5 in which newly synthesized proteins were metabolically modified with homopropargylglycine (HPG). This model system allowed us to estimate the efficiency of the reaction on the cell membranes and in the cytosol using mass spectrometry. We found that the reaction was greatly promoted by a tris(triazolylmethyl)amine Cu(I) ligand tethering a cell-penetrating peptide. Uptake of the ligand, copper, and a biotin-tagged azide in the cells was determined to be 69 ± 2, 163 ± 3 and 1.3 ± 0.1 µM, respectively. After 10 minutes of reaction, the product yields on the membrane and cytosolic proteins were higher than 18% and 0.8%, respectively, while 75% cells remained viable. By reducing the biothiols in the system by scraping or treatment with N-ethylmalemide, the reaction yield on the cytosolic proteins was greatly improved to ~9% and ~14%, respectively, while the yield on the membrane proteins remained unchanged. The results indicate that out of many possibilities, deactivation of the current copper catalysts by biothiols is the major reason for the low yield of CuAAC reaction in the cytosol. Overall, we have improved the efficiency for CuAAC reaction on live cells by 3-fold. Despite the low yielding inside live cells, the products that strongly bind to the intracellular targets can be detected by mass spectrometry. Hence, the in situ CuAAC reaction can be potentially used for screening of cell-specific enzyme inhibitors or biomarkers containing 1,4-substituted 1,2,3-triazoles.

  1. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    SciTech Connect

    Zhu, Z.; Espenson, H.

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  2. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  3. Palladium(II)-Catalyzed Enantioselective Reactions Using COP Catalysts.

    PubMed

    Cannon, Jeffrey S; Overman, Larry E

    2016-10-18

    Allylic amides, amines, and esters are key synthetic building blocks. Their enantioselective syntheses under mild conditions is a continuing pursuit of organic synthesis methods development. One opportunity for the synthesis of these building blocks is by functionalization of prochiral double bonds using palladium(II) catalysis. In these reactions, nucleopalladation mediated by a chiral palladium(II) catalyst generates a new heteroatom-substituted chiral center. However, reactions where nucleopalladation occurs with antarafacial stereoselectivity are difficult to render enantioselective because of the challenge of transferring chiral ligand information across the square-planar palladium complex to the incoming nucleophile. In this Account, we describe the development and use of enantiopure palladium(II) catalysts of the COP (chiral cobalt oxazoline palladacyclic) family for the synthesis of enantioenriched products from starting materials derived from prochiral allylic alcohols. We begin with initial studies aimed at rendering catalyzed [3,3]-sigmatropic rearrangements of allylic imidates enantioselective, which ultimately led to the identification of the significant utility of the COP family of Pd(II) catalysts. The first use of an enantioselective COP catalyst was reported by Richards' and our laboratories in 2003 for the enantioselective rearrangement of allylic N-arylimidates. Shortly thereafter, we discovered that the chloride-bridged COP dimer, [COP-Cl]2, was an excellent enantioselective catalyst for the rearrangement of (E)-allylic trichloroacetimidates to enantioenriched allylic trichloroacetamides, this conversion being the most widely used of the allylic imidate rearrangements. We then turn to discuss SN2' reactions catalyzed by the acetate-bridged COP dimer, [COP-OAc]2, which proceed by a unique mechanism to provide branched allylic esters and allylic phenyl ethers in high enantioselectivity. Furthermore, because of the unique nucleopalladation

  4. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  5. A thermodynamic investigation of reactions catalyzed by tryptophan synthase.

    PubMed

    Kishore, N; Tewari, Y B; Akers, D L; Goldberg, R N; Miles, E W

    1998-07-27

    Microcalorimetry and high-performance liquid chromatography have been used to conduct a thermodynamic investigation of the following reactions catalyzed by the tryptophan synthase alpha 2 beta 2 complex (EC 4.2.1.20) and its subunits: indole(aq) + L-serine(aq) = L-tryptophan(aq) + H2O(1); L-serine(aq) = pyruvate(aq) + ammonia(aq); indole(aq) + D-glyceraldehyde 3-phosphate(aq) = 1-(indol-3-yl)glycerol 3-phosphate(aq); L-serine(aq) + 1-(indol-3-yl)glycerol 3-phosphate(aq) = L-tryptophan(aq) + D-glyceraldehyde 3-phosphate(aq) + H2O(1). The calorimetric measurements led to standard molar enthalpy changes for all four of these reactions. Direct measurements yielded an apparent equilibrium constant for the third reaction; equilibrium constants for the remaining three reactions were obtained by using thermochemical cycle calculations. The results of the calorimetric and equilibrium measurements were analyzed in terms of a chemical equilibrium model that accounted for the multiplicity of the ionic states of the reactants and products. Thermodynamic quantities for chemical reference reactions involving specific ionic forms have been obtained. These quantities permit the calculation of the position of equilibrium of the above four reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and standard transformed Gibbs free energy changes delta r G'(m) degree under approximately physiological conditions are given. Le Châtelier's principle provides an explanation as to why, in the metabolic pathway leading to the synthesis of L-tryptophan, the third reaction proceeds in the direction of formation of indole and D-glyceraldehyde 3-phosphate even though the apparent equilibrium constant greatly favors the formation of 1-(indol-3-yl)glycerol 3-phosphate.

  6. TBAF-catalyzed deacylation of cellulose esters: reaction scope and influence of reaction parameters.

    PubMed

    Zheng, Xueyan; Gandour, Richard D; Edgar, Kevin J

    2013-10-15

    In order to expand its utility and understand how to carry it out most efficiently, the scope of the highly regioselective, tetrabutylammonium fluoride (TBAF) catalyzed deacylation of cellulose acetates has been investigated, including the influence of key process parameters: solvent, temperature, and water content. Reactions in DMSO, THF, MEK and acetone afforded similar extents of deacylation and regioselectivity. Reaction with TBAF in DMSO at 50 °C for 18 h was the most efficient process providing regioselective deacylation at O-2/3. All results were consistent with our previous mechanistic proposals. Furthermore, we demonstrate that TBAF-catalyzed deacylation is also effective and regioselective with cellulose acetate, butyrate, and hexanoate triesters, and even with a cellulose ester devoid of alpha protons, cellulose tribenzoate. These reactions displayed regioselectivity for deacylation at O-2/3 similar to that observed earlier with cellulose acetate (DS 2.4).

  7. The pivotal role of chelation as a stereochemical control element in non-Evans anti aldol product formation.

    PubMed

    Shinisha, C B; Sunoj, Raghavan B

    2010-06-18

    The origin of stereoselective formation of Evans syn and non-Evans anti aldol products in the reaction between titanium enolate derived from N-succinyloxazolidinone and benzaldehyde is established by using transition-state modeling. The chelated transition-state model is found to hold the key to otherwise less likely non-Evans anti aldol product, whereas the nonchelated model offers a convincing rationalization toward Evans syn aldol product. The computed results are in agreement with the reported experimental observations.

  8. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  9. Organic reactions catalyzed by methylrhenium trioxide: Reactions of ethyl diazoacetate and organic azides

    SciTech Connect

    Zhu, Z.; Espenson, J.H. |

    1996-10-16

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes several classes of reactions of ethyl diazoacetate, EDA. It is the first high valent oxo complex for carbene transfer. Under mild conditions and in the absence of other substrates, EDA was converted to a 9:1 mixture of diethyl maleate and diethyl fumarate. In the presence of alcohols, {alpha}-alkoxy ethyl acetates were obtained in good yield. The yields dropped for the larger and more branched alcohols, the balance of material being diethyl maleate and fumarate. An electron-donating group in the para position of phenols favors the formation of {alpha}-phenoxy ethyl acetates. The use of EDA to form {alpha}-thio ethyl acetates and N-substituted glycine ethyl esters, on the other hand, is hardly affected by the size or structure of the parent thiol or amine, with all of these reactions proceeding in high yield. MTO-catalyzed cycloaddition reactions occur between EDA and aromatic imines, olefins, and carbonyl compounds. Three-membered ring products are formed: aziridines, cyclopropanes, and epoxides, respectively. The reactions favor the formation of trans products, and provide a convenient route for the preparation of aziridines. Intermediate carbenoid and nitrenoid species have been proposed. In the presence of an oxygen source such as an epoxide, ethyl diazoacetate and azibenzil are converted to an oxalic acid monoethyl ester and to benzil; at the same time the epoxide was converted to an olefin. 75 refs., 1 fig., 7 tabs.

  10. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    DTIC Science & Technology

    2015-07-01

    TECHNICAL REPORT 2082 July 2015 Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium ...describes experiments to generate hydrogen gas using the cobalt chloride catalyzed sodium borohydride-water reaction. Space and Naval Warfare Systems...to inflate LTAs. Of the metal hydrides, we chose to explore the sodium borohydride chemistry. We chose this chemistry because of its energy density

  11. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path

    NASA Astrophysics Data System (ADS)

    Masterson, Jean E.; Schwartz, Steven D.

    2014-10-01

    Enzymes are the most efficient chemical catalysts known, but the exact nature of chemical barrier crossing in enzymes is not fully understood. Application of transition state theory to enzymatic reactions indicates that the rates of all possible reaction paths, weighted by their relative probabilities, must be considered in order to achieve an accurate calculation of the overall rate. Previous studies in our group have shown a single mechanism for enzymatic barrier passage in human heart lactate dehydrogenase (LDH). To ensure that this result was not due to our methodology insufficiently sampling reactive phase space, we implement high-perturbation transition path sampling in both microcanonical and canonical regimes for the reaction catalyzed by human heart LDH. We find that, although multiple, distinct paths through reactive phase space are possible for this enzymatic reaction, one specific reaction path is dominant. Since the frequency of these paths in a canonical ensemble is inversely proportional to the free energy barriers separating them from other regions of phase space, we conclude that the rarer reaction paths are likely to have a negligible contribution. Furthermore, the non-dominate reaction paths correspond to altered reactive conformations and only occur after multiple steps of high perturbation, suggesting that these paths may be the result of non-biologically significant changes to the structure of the enzymatic active site.

  12. Selective epimerization of rapamycin via a retroaldol/aldol mechanism mediated by titanium tetraisopropoxide.

    PubMed

    Yang, W; Digits, C A; Hatada, M; Narula, S; Rozamus, L W; Huestis, C M; Wong, J; Dalgarno, D; Holt, D A

    1999-12-16

    We describe the efficient and selective epimerization of the immunosuppressant rapamycin to 28-epirapamycin under mild conditions. The mechanism of epimerization involves an equilibrium of the four C28/C29 diastereomers through a two-step retroaldol/aldol (macrocycle ring-opening/ring-closing) sequence. This retroaldol/aldol equilibration is not restricted to rapamycin but is also applicable to acyclic beta-hydroxyketones. A potentially useful extension of the method--the use of beta-hydroxyketones as enolate synthons for effecting inter- or intramolecular aldol reactions under neutral conditions--is demonstrated.

  13. Fujiwara-Moritani Reaction of Weinreb Amides using a Ruthenium-Catalyzed C-H Functionalization Reaction.

    PubMed

    Das, Riki; Kapur, Manmohan

    2015-07-01

    The ruthenium-catalyzed Fujiwara-Moritani reaction (oxidative-Heck reaction) of Weinreb amides is reported herein. The reaction affords exclusively ortho-C-H olefination products, has excellent substrate scope and tolerates halogen functionalities, which increase the synthetic utility of the method. A variety of activated olefins as well as styrenes can be employed as coupling partners.

  14. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.

  15. Cascade dearomatization of N-substituted tryptophols via Lewis acid-catalyzed Michael reactions.

    PubMed

    Liu, Chuan; Zhang, Wei; Dai, Li-Xin; You, Shu-Li

    2012-09-21

    Lewis acid-catalyzed cascade dearomatization of N-substituted tryptophols via Michael addition reaction was developed. The generality of the method has been demonstrated by the synthesis of versatile furoindoline derivatives with a quaternary carbon center in good yields.

  16. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  17. Enantioselective synthesis of SSR 241586 by using an organo-catalyzed Henry reaction.

    PubMed

    Cochi, Anne; Métro, Thomas-Xavier; Pardo, Domingo Gomez; Cossy, Janine

    2010-08-20

    An organo-catalyzed Henry reaction, applied to an alpha-keto ester, has allowed the enantioselective synthesis of SSR 241586, a 2,2-disubstituted morpholine active in the treatment of schizophrenia and irritable bowel syndrome (IBS).

  18. Iron-catalyzed cross-coupling reactions of alkyl Grignards with aryl sulfamates and tosylates.

    PubMed

    Agrawal, Toolika; Cook, Silas P

    2013-01-04

    The iron-catalyzed cross-coupling of aryl sulfamates and tosylates has been achieved with primary and secondary alkyl Grignards. This study of iron-catalyzed cross-coupling reactions also examines the isomerization and β-hydride elimination problems that are associated with the use of isopropyl nucleophiles. While a variety of iron sources were competent in the reaction, the use of FeF(3)•3H(2)O was critical to minimize nucleophile isomerization.

  19. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity.

  20. Gold(III)-catalyzed three-component coupling reaction (TCC) selective toward furans.

    PubMed

    Li, Jian; Liu, Li; Ding, Dong; Sun, Jiangtao; Ji, Yangxuan; Dong, Jialing

    2013-06-07

    An efficient three-component coupling reaction toward a variety of furan derivatives has been developed. This cascade transformation proceeds via the gold-catalyzed coupling reaction of phenylglyoxal derivatives, secondary amines, and terminal alkynes, under the reaction conditions, that undergoes cyclization into the furan core.

  1. Copper-Catalyzed SN2'-Selective Allylic Substitution Reaction of gem-Diborylalkanes.

    PubMed

    Zhang, Zhen-Qi; Zhang, Ben; Lu, Xi; Liu, Jing-Hui; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-03-04

    A Cu/(NHC)-catalyzed SN2'-selective substitution reaction of allylic electrophiles with gem-diborylalkanes is reported. Different substituted gem-diborylalkanes and allylic electrophiles can be employed in this reaction, and various synthetic valuable functional groups can be tolerated. The asymmetric version of this reaction was initially researched with chiral N-heterocyclic carbene (NHC) ligands.

  2. Ultrasonic irradiation accelerated cyclopalladated ferrocenylimines catalyzed Suzuki reaction in neat water.

    PubMed

    Zhang, Jinli; Yang, Fan; Ren, Gerui; Mak, Thomas C W; Song, Maoping; Wu, Yangjie

    2008-02-01

    Both conventional heating and ultrasound effect on the cyclopalladated ferrocenylimines catalyzed Suzuki reaction of phenylboronic acid with a range of arylhalides in neat water was investigated. Heterogenous reaction of electron-withdrawing arylchlorides with phenylboronic acid could also result in good yields by using Cat. 2. It was found that the ultrasonic irradiation could dramatically accelerate the Suzuki reaction to achieve comparable results.

  3. Highly diastereoselective and regioselective copper-catalyzed nitrosoformate dearomatization reaction under aerobic-oxidation conditions.

    PubMed

    Yang, Weibo; Huang, Long; Yu, Yang; Pflästerer, Daniel; Rominger, Frank; Hashmi, A Stephen K

    2014-04-01

    An unprecedented copper-catalyzed acylnitroso dearomatization reaction, which expands the traditional acylnitroso ene reaction and acylnitroso Diels-Alder reaction to a new type of transformation, has been developed under aerobic oxidation. Intermolecular and intra-/intermolecular reaction modes demonstrate an entirely different N- or O-acylnitroso selectivity. Hence, we can utilize this reaction as a highly diastereoselective access to a series of new pyrroloindoline derivatives, which are important structural motifs for natural-product synthesis.

  4. Iron-catalyzed cycloaddition reaction of diynes and cyanamides at room temperature.

    PubMed

    Wang, Chunxiang; Wang, Dongping; Xu, Fen; Pan, Bin; Wan, Boshun

    2013-04-05

    An iron-catalyzed [2 + 2 + 2] cycloaddition reaction of diynes and cyanamides at room temperature is reported. Highly substituted 2-aminopyridines were obtained in good to excellent yields with high regioselectivity. Insights toward the reaction process were investigated through in situ IR spectra and control experiments. In this iron-catalyzed cycloaddition reaction, the active iron species was generated only in the presence of both alkynes and nitriles. The lower reaction temperature, broad substrates scope, and inversed regioselectivity make it a complementary method to the previously developed iron catalytic system.

  5. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles.

    PubMed

    Wang, Yi; Yu, Zhi-Xiang

    2015-08-18

    Practical syntheses of natural products and their analogues with eight-membered carbocyclic skeletons are important for medicinal and biological investigations. However, methods and strategies to construct the eight-membered carbocycles are limited. Therefore, developing new methods to synthesize the eight-membered carbocycles is highly desired. In this Account, we describe our development of three rhodium-catalyzed cycloadditions for the construction of the eight-membered carbocycles, which have great potential in addressing the challenges in the synthesis of medium-sized ring systems. The first reaction described in this Account is our computationally designed rhodium-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes (ene-VCPs) and CO for the diastereoselective construction of bi- and tricyclic cyclooctenones. The design of this reaction is based on the hypothesis that the C(sp(3))-C(sp(3)) reductive elimination of the eight-membered rhodacycle intermediate generated from the rhodium-catalyzed cyclopropane cleavage and alkene insertion, giving Wender's [5 + 2] cycloadduct, is not easy. Under CO atmosphere, CO insertion may occur rapidly, converting the eight-membered rhodacycle into a nine-membered rhodacycle, which then undergoes an easy C(sp(2))-C(sp(3)) reductive elimination process and furnishes the [5 + 2 + 1] product. This hypothesis was supported by our preliminary DFT studies and also served as inspiration for the development of two [7 + 1] cycloadditions: the [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes (BDCPs) and CO for the construction of cyclooctadienones, and the benzo/[7 + 1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to synthesize the benzocyclooctenones. The efficiency of these rhodium-catalyzed cycloadditions can be revealed by the application in natural product synthesis. Two eight-membered ring-containing natural products, (±)-asterisca-3(15),6-diene and (+)-asteriscanolide, have been

  6. Transition-metal-catalyzed group transfer reactions for selective C-H bond functionalization of artemisinin.

    PubMed

    Liu, Yungen; Xiao, Wenbo; Wong, Man-Kin; Che, Chi-Ming

    2007-10-11

    Three types of novel artemisinin derivatives have been synthesized through transition-metal-catalyzed intramolecular carbenoid and nitrenoid C-H bond insertion reactions. With rhodium complexes as catalysts, lactone 11 was synthesized via carbene insertion reaction at the C16 position in 90% yield; oxazolidinone 13 was synthesized via nitrene insertion reaction at the C10 position in 87% yield based on 77% conversion; and sulfamidate 14 was synthesized via nitrene insertion reaction at the C8 position in 87% yield.

  7. Fluorometric assay protocol for protease-catalyzed transesterification reactions in organic solvents.

    PubMed

    Han, Min Su; Jung, Sang Oh; Kim, Mahn-Joo; Kim, Dong H

    2004-04-16

    A flourometric assay protocol for a subtilisin-catalyzed transesterification reaction in n-hexane has been developed. The method makes use of a Michael acceptor that forms a fluorescent adduct with thiophenol, one of the products generated in the transesterification reaction. The method may be employed for screening a biocatalyst useful for transesterification reactions in organic solvents and for optimizing the transesterification reaction conditions.

  8. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  9. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications.

    PubMed

    Johansson, Johan R; Beke-Somfai, Tamás; Said Stålsmeden, Anna; Kann, Nina

    2016-12-14

    The ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) affords 1,5-disubstituted 1,2,3-triazoles in one step and complements the more established copper-catalyzed reaction providing the 1,4-isomer. The RuAAC reaction has quickly found its way into the organic chemistry toolbox and found applications in many different areas, such as medicinal chemistry, polymer synthesis, organocatalysis, supramolecular chemistry, and the construction of electronic devices. This Review discusses the mechanism, scope, and applications of the RuAAC reaction, covering the literature from the last 10 years.

  10. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  11. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    PubMed Central

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-01-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway. PMID:26922910

  12. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    NASA Astrophysics Data System (ADS)

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-02-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

  13. Peptide-catalyzed 1,4-addition reactions of aldehydes to nitroolefins.

    PubMed

    Kastl, Robert; Arakawa, Yukihiro; Duschmalé, Jörg; Wiesner, Markus; Wennemers, Helma

    2013-01-01

    Conjugate addition reactions of aldehydes to nitroolefins provide synthetically useful gamma-nitroaldehydes. Here we summarize our research on peptide-catalyzed conjugate addition reactions of aldehydes to differently substituted nitroolefins. We show that peptides of the general type Pro-Pro-Xaa (Xaa = acidic amino acid) are not only highly active, robust and stereoselective catalysts but have also remarkable chemoselectivities.

  14. The rhodium catalyzed three-component reaction of diazoacetates, titanium(IV) alkoxides and aldehydes.

    PubMed

    Lu, Chong-Dao; Liu, Hui; Chen, Zhi-Yong; Hu, Wen-Hao; Mi, Ai-Qiao

    2005-05-28

    The rhodium(II)-catalyzed three-component reaction of diazoacetates, titanium alkoxides and aldehydes is shown to give alpha-alkoxyl-beta-hydroxyl acid derivatives; the novel C-C bond formation reaction is proposed to occur through oxonium ylides derived from diazo compounds and titanium alkoxides, and followed by intermolecular trapping by aldehydes.

  15. Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-01-01

    The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.

  16. Stereoselective synthesis of 2,5-disubstituted morpholines using a palladium-catalyzed hydroamination reaction.

    PubMed

    McGhee, Alicia; Cochran, Brian M; Stenmark, Torrey A; Michael, Forrest E

    2013-08-04

    A palladium-catalyzed hydroamination reaction is the key step in a stereoselective synthesis of 2,5-disubstituted and 2,3,5-trisubsituted morpholines from carbamate-protected aziridines. Aziridines are selectively attacked at the more substituted position by unsaturated alcohol nucleophiles using Lewis acid catalysts. Palladium-catalyzed hydroamination of the resulting aminoalkenes gives morpholines as a single diastereomer in excellent yield.

  17. Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins

    PubMed Central

    Matsubara, Ryosuke; Gutierrez, Alicia C.; Jamison, Timothy F.

    2011-01-01

    Nickel-catalyzed intermolecular benzylation and heterobenzylation of unactivated alkenes to provide functionalized allylbenzene derivatives is described. A wide range of both the benzyl chloride and alkene coupling partners are tolerated. In contrast to analogous palladium-catalyzed variants of this process, all reactions described herein employ electronically unbiased aliphatic olefins (including ethylene), proceed at room temperature and provide 1,1-disubstituted olefins over the more commonly observed 1,2-disubstituted olefins with very high selectivity. PMID:22066899

  18. Fronts and pulses in an enzymatic reaction catalyzed by glucose oxidase

    PubMed Central

    Míguez, David G.; Vanag, Vladimir K.; Epstein, Irving R.

    2007-01-01

    Waves and patterns in living systems are often driven by biochemical reactions with enzymes as catalysts and regulators. We present a reaction–diffusion system catalyzed by the enzyme glucose oxidase that exhibits traveling wave patterns in a spatially extended medium. Fronts and pulses propagate as a result of the coupling between the enzyme-catalyzed autocatalytic production and diffusion of hydrogen ions. A mathematical model qualitatively explains the experimental observations. PMID:17420460

  19. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles.

  20. Changes in the standard transformed thermodynamic properties of enzyme-catalyzed reactions with ionic strength.

    PubMed

    Alberty, Robert A

    2007-04-12

    The ionic strength has significant effects on the thermodynamic properties of ionic species and on the transformed thermodynamic properties of biochemical reactants at specified pH values. These effects are discussed for species, reactants, and enzyme-catalyzed reactions. This has led to three new thermodynamic properties: (z(j)(2) - NH(j)), (z(2) - N(H))(i), and Delta(r)(z((2)-N(H)), which are referred to as ionic strength coefficients. The first of these is a property of a species, the second is a property of a reactant, and the third is the property of an enzyme-catalyzed reaction. The effects of ionic strength on standard thermodynamic properties of species, standard transformed thermodynamic properties of reactants, and standard transformed thermodynamic properties of enzyme-catalyzed reactions are proportional to these new thermodynamic properties.

  1. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  2. Temperature effects on enzyme-catalyzed reactions within a cell: Monte Carlo simulations for coupled reaction and diffusion

    NASA Astrophysics Data System (ADS)

    Nangia, Shivangi; Anderson, James B.

    2013-01-01

    We report Monte Carlo simulations of temperature effects on single-step enzymatic reactions with varied rate constants and diffusion coefficients. For typical systems, where the intrinsic reaction rate is more sensitive to temperature than diffusion, the overall reaction is rate-limited at low temperatures and diffusion-limited at high temperatures. The effective activation energy shifts to a much lower value as temperature is increased. Our results show that the temperature dependence of enzyme-catalyzed reactions within a cell may be only loosely related to a potential energy barrier height. The effective activation energy may be strongly affected by coupling of reaction and diffusion.

  3. Illustrating the Utility of X-Ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence

    ERIC Educational Resources Information Center

    Hoang, Giang T.; Kubo, Tomohiro; Young, Victor G., Jr.; Kautzky, Jacob A.; Wissinger, Jane E.

    2015-01-01

    Two introductory organic chemistry laboratory experiments are described based on the Diels-Alder reaction of 2,3,4,5-tetraphenylcyclopentadienone, which is synthesized prior to or in a one-pot reaction, with styrene. Students are presented with three possible products, the "endo" and "exo" diastereomers and the decarbonylated…

  4. Copper(I)-Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5-Hetero-Functionalized Triazoles.

    PubMed

    Wang, Weiguo; Peng, Xianglong; Wei, Fang; Tung, Chen-Ho; Xu, Zhenghu

    2016-01-11

    The 5-heterofunctionalized triazoles are important scaffolds in bioactive compounds, but current click reactions (CuAAC) cannot produce these core structures. A copper(I)-catalyzed interrupted click reaction to access diverse 5-functionalized triazoles is reported. Various 5-amino-, thio-, and selenotriazoles were readily assembled in one step in high yields. The reaction proceeds under mild conditions with complete regioselectivity. It also features a broad substrate scope and good functional group compatibility.

  5. Chromium-Catalyzed Asymmetric Dearomatization Addition Reactions of Halomethyl Heteroarenes.

    PubMed

    Tian, Qingshan; Bai, Jing; Chen, Bin; Zhang, Guozhu

    2016-04-15

    The first asymmetric dearomatization addition reaction of halomethyl arenes including benzofuran and benzothiophene was enabled by chromium catalysis. A variety of aldehydes served as suitable electrophiles under mild reaction conditions. Molecular complexities are quickly increased in a highly diastereo- and enantioselective manner.

  6. Selective Michael-aldol reaction by use of sterically hindered aluminum aryloxides as Lewis acids: an easy approach to cyclobutane amino acids.

    PubMed

    Avenoza, Alberto; Busto, Jesús H; Canal, Noelia; Peregrina, Jesús M; Pérez-Fernández, Marta

    2005-08-04

    A formal [2 + 2] cycloaddition of 2-amidoacrylates with monosubstituted donor olefins, including its asymmetric version, is described. The stereoselectivity of this reaction can be modulated by the use of sterically hindered aluminum aryloxides or methylaluminoxane as Lewis acids. The reaction was applied to the synthesis of both stereoisomers of 2-benzyloxycyclobutane-alpha-amino acid, which are protected serine analogues c(4)Ser(OBn).

  7. Does metabolite channeling accelerate enzyme-catalyzed cascade reactions?

    PubMed Central

    Poshyvailo, Liubov; von Lieres, Eric

    2017-01-01

    Metabolite or substrate channeling is a direct transfer of metabolites from one enzyme to the next enzyme in a cascade. Among many potential advantages of substrate channeling, acceleration of the total reaction rate is considered as one of the most important and self-evident. However, using a simple model, supported by stochastic simulations, we show that it is not always the case; particularly at long times (i.e. in steady state) and high substrate concentrations, a channeled reaction cannot be faster, and can even be slower, than the original non-channeled cascade reaction. In addition we show that increasing the degree of channeling may lead to an increase of the metabolite pool size. We substantiate that the main advantage of channeling likely lies in protecting metabolites from degradation or competing side reactions. PMID:28234973

  8. Thermodynamics of Enzyme-Catalyzed Reactions: Part 6--1999 Update

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.

    1999-07-01

    This review serves to update previously published evaluations of equilibrium constants and enthalpy changes for enzyme-catalyzed reactions. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 96 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is also a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  9. Thermodynamics of Enzyme-Catalyzed Reactions: Part 5. Isomerases and Ligases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1995-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the isomerase and ligase classes of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 176 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  10. Thermodynamics of Enzyme-Catalyzed Reactions: Part 7-2007 Update

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.; Bhat, Talapady N.

    2007-12-01

    This review serves to update previously published evaluations of equilibrium constants and enthalpy changes for enzyme-catalyzed reactions. For each reaction, the following information is given: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used], the data and their evaluation, and, sometimes, commentary on the data and on any corrections which have been applied to the data or any calculations for which the data have been used. The review contains data from 119 references which have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is also a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  11. Asymmetric induction in the zirconium catalyzed ethylmagnesiation reaction

    SciTech Connect

    Bell, J.L.; Whitby, R.J.; Jones, R.V.H.

    1995-12-31

    In 1985 Dzhemilev reported the zirconium catalysed ethylmagnesiation of terminal alkenes. A chiral centre is formed during the reaction which occurs under mild conditions. The authors have applied this reaction to a number of substrates and a mechanism has been elucidated. In order to induce asymmetry into the reaction, several chiral literature catalysts were synthesised including Ethylenebis(tetrahydroindenyl)zirconium dichloride and two more hindered complexes reported by Erker. All of these catalysts displayed low activity and poor asymmetric induction with terminal alkenes. The synthesis and properties of two novel catalysts will be described. Results show high activity furnishing carbomagnesiated products in excellent yields with as little as 2 mol% catalyst. The enantiomeric excesses induced by the complexes are as high as 79% with terminal alkenes but are >95% with cyclic ethers. The catalyst has proved recoverable. Ethylmagnesiation of an amine followed by an acidic workup furnishes the chiral complex in a quantitative return.

  12. Michael, Michael-aldol and Michael-Michael reactions of enolate equivalents of butane-2,3-diacetal protected glycolic acid derivatives.

    PubMed

    Ley, Steven V; Dixon, Darren J; Guy, Richard T; Rodríguez, Félix; Sheppard, Tom D

    2005-11-21

    Consecutive coupling reactions of butane-2,3-diacetal protected glycolic acid derivatives with Michael acceptors and aldehydes are reported. An enantiopure sample of this building block was used to kinetically resolve a chiral Michael acceptor present as a racemic mixture of enantiomers.

  13. An Investigation of Model Catalyzed Hydrocarbon Formation Reactions

    SciTech Connect

    Tysoe, W. T.

    2001-05-02

    Work was focused on two areas aimed at understanding the chemistry of realistic catalytic systems: (1) The synthesis and characterization of model supported olefin metathesis catalysts. (2) Understanding the role of the carbonaceous layer present on Pd(111) single crystal model catalysts during reaction.

  14. Energy Diagrams for Enzyme-Catalyzed Reactions: Concepts and Misconcepts

    ERIC Educational Resources Information Center

    Aledo, J. Carlos; Lobo, Carolina; del Valle, Alicia Esteban

    2003-01-01

    Despite the utility that energy diagrams have as a teaching and learning tool, a survey of their use, in seven popular Biochemistry textbooks, reveals that there is certain confusion around this topic. In our opinion, this confusion arises from the reluctance of authors to consider and indicate the conditions under which the reaction being…

  15. Dirhodium carboxylates catalyzed enantioselective coupling reactions of α-diazophosphonates, anilines, and electron-deficient aldehydes.

    PubMed

    Zhou, Cong-Ying; Wang, Jing-Cui; Wei, Jinhu; Xu, Zhen-Jiang; Guo, Zhen; Low, Kam-Hung; Che, Chi-Ming

    2012-11-05

    Chiral dirhodium carboxylate complexes ([Rh(2)(S-PTAD)(4)] or [Rh(2)(S-PTTL)(4)]) efficiently catalyze asymmetric three-component coupling reactions of α-diazophosphonates, anilines, and electron-deficient aldehydes to give α-amino-β-hydroxyphosphonates. The high level of enantiocontrol provides evidence for the intermediacy of metal-bound ammonium ylide in the product-forming step.

  16. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts.

    PubMed

    Bai, Zhushuang; Ji, Ling; Ge, Zemei; Wang, Xin; Li, Runtao

    2015-05-21

    The first bifunctional thiourea catalyzed asymmetric Michael addition reactions of nitroalkanes to 2-furanones are described. The highly functionalized γ-lactones with two or three consecutive stereogenic carbons were obtained in high yields (up to 99%), high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to >99% ee).

  17. Efficient palladium-catalyzed coupling reactions of aryl bromides and chlorides with phenols.

    PubMed

    Hu, Tongjie; Schulz, Thomas; Torborg, Christian; Chen, Xiaorong; Wang, Jun; Beller, Matthias; Huang, Jun

    2009-12-21

    A convenient and general palladium-catalyzed coupling reaction of aryl bromides and chlorides with phenols was developed. Various functional groups such as nitriles, aldehydes, ketones and esters are well tolerated and the corresponding products are obtained in good to excellent yield.

  18. The effect of Mg/2+/ and Ca/2+/ on urea-catalyzed phosphorylation reactions

    NASA Technical Reports Server (NTRS)

    Handschuk, G. J.; Lohrmann, R.; Orgel, L. E.

    1973-01-01

    The effect of Mg(2+) and Ca(2+) on phosphorylation reactions catalyzed by urea is investigated, showing that Mg(2+) improves markedly the yield of products containing pyrophosphate bonds. Yields of up to 25% of uridine diphosphate can be obtained with struvite at temperatures as low as 65 C.

  19. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOEpatents

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  20. Chiral holmium complex-catalyzed Diels-Alder reaction of silyloxyvinylindoles: stereoselective synthesis of hydrocarbazoles.

    PubMed

    Harada, Shinji; Morikawa, Takahiro; Nishida, Atsushi

    2013-10-18

    The catalytic and asymmetric cycloaddition between 3-[1-(silyloxy)vinyl]indoles and electron-deficient olefins gave substituted hydrocarbazoles in up to 99% yield and 94% ee. This reaction was catalyzed by a novel chiral holmium(III) complex. Alkylation of the cycloadduct gave a tricyclic compound with four continuous chiral centers, one of which was a quaternary carbon.

  1. Water-catalyzed gas-phase reaction of formic acid with hydroxyl radical: A computational investigation

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Maeda, Satoshi; Ohno, Koichi

    2009-02-01

    The reaction of formic acid with hydroxyl radical, which is considered to be relevant to atmospheric chemistry, has been extensively studied. A water-catalyzed process of this reaction is computationally studied here for the first time. The scaled hypersphere search method was used for global exploration of pre-reaction complexes. Calculations were performed at high level of theory, such as CCSD(T)/cc-pVTZ//B3LYP/6-311+G(2df, 2p) and CCSD(T)/cc-pVTZ//MP2/aug-cc-pVDZ. It is found that the water-catalyzed process of this reaction is more kinetically favorable than its non-catalytic process. Such catalytic process may also be of interest for atmospheric chemistry, like the non-catalytic one.

  2. Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wachter-Jurcsak, Nanette; Reddin, Kendra

    2001-09-01

    We have found a beautiful example of anisochrony of diastereotopic acyclic methylene hydrogens in a symmetric diketone, synthesized by techniques traditionally performed in an introductory organic laboratory course. Synthesis of the diketone is high-yielding and easy to carry out, and the products can be directly isolated with a good degree of purity with no need of further manipulation. The reaction can be accomplished in a single laboratory session.

  3. Enantioselective direct Mannich reactions of cyclic β-ketoesters catalyzed by chiral phosphine via a novel dual-reagent catalysis.

    PubMed

    Lou, Yan-Peng; Zheng, Chang-Wu; Pan, Ren-Ming; Jin, Qiao-Wen; Zhao, Gang; Li, Zhong

    2015-02-06

    A combination of an amino acid derived chiral phosphine catalyst and methyl acrylate efficiently catalyzed the direct Mannich reaction of cyclic β-ketoesters and N-Boc-aldimines. The dual-reagent catalysis was presumed to function through the formation of a zwitterion, which catalyzed the reaction with excellent stereocontrol via a hydrogen-bonding assisted chiral ion-pair pathway.

  4. Unexpected ring-opening reactions of aziridines with aldehydes catalyzed by nucleophilic carbenes under aerobic conditions.

    PubMed

    Liu, Yan-Kai; Li, Rui; Yue, Lei; Li, Bang-Jing; Chen, Ying-Chun; Wu, Yong; Ding, Li-Sheng

    2006-04-13

    [reaction: see text] The chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene was investigated under aerobic conditions. Unexpected carboxylates of 1,2-amino alcohols from the corresponding aldehydes, rather than the acyl anion ring-opened beta-amino ketones, were exclusively obtained. A plausible mechanism for this unprecedented carbene-mediated reaction was also proposed.

  5. Enantioselective Nitroaldol Reaction of α-Ketoesters Catalyzed by Cinchona Alkaloids

    PubMed Central

    Li, Hongming; Wang, Baomin; Deng, Li

    2011-01-01

    The development of highly enantioselective and general catalytic nitroaldol (Henry) reactions with ketones is a challenging yet desirable task in organic synthesis. In this communication, we report an asymmetric nitroaldol reaction with α-ketoesters catalyzed by a new C6′-OH cinchona alkaloid catalyst. This is the first highly efficient organocatalytic asymmetric Henry reaction with ketones. This reaction is operationally simple and affords high enantioselectivity as well as good to excellent yield for a broad range of α-ketoesters. PMID:16417358

  6. First principle kinetic studies of zeolite-catalyzed methylation reactions.

    PubMed

    Van Speybroeck, Veronique; Van der Mynsbrugge, Jeroen; Vandichel, Matthias; Hemelsoet, Karen; Lesthaeghe, David; Ghysels, An; Marin, Guy B; Waroquier, Michel

    2011-02-02

    Methylations of ethene, propene, and butene by methanol over the acidic microporous H-ZSM-5 catalyst are studied by means of state of the art computational techniques, to derive Arrhenius plots and rate constants from first principles that can directly be compared with the experimental data. For these key elementary reactions in the methanol to hydrocarbons (MTH) process, direct kinetic data became available only recently [J. Catal.2005, 224, 115-123; J. Catal.2005, 234, 385-400]. At 350 °C, apparent activation energies of 103, 69, and 45 kJ/mol and rate constants of 2.6 × 10(-4), 4.5 × 10(-3), and 1.3 × 10(-2) mol/(g h mbar) for ethene, propene, and butene were derived, giving following relative ratios for methylation k(ethene)/k(propene)/k(butene) = 1:17:50. In this work, rate constants including pre-exponential factors are calculated which give very good agreement with the experimental data: apparent activation energies of 94, 62, and 37 kJ/mol for ethene, propene, and butene are found, and relative ratios of methylation k(ethene)/k(propene)/k(butene) = 1:23:763. The entropies of gas phase alkenes are underestimated in the harmonic oscillator approximation due to the occurrence of internal rotations. These low vibrational modes were substituted by manually constructed partition functions. Overall, the absolute reaction rates can be calculated with near chemical accuracy, and qualitative trends are very well reproduced. In addition, the proposed scheme is computationally very efficient and constitutes significant progress in kinetic modeling of reactions in heterogeneous catalysis.

  7. Enantioselective TADMAP-Catalyzed Carboxyl Migration Reactions for the Synthesis of Stereogenic Quaternary Carbon

    PubMed Central

    Shaw, Scott A.; Aleman, Pedro; Christy, Justin; Kampf, Jeff W.; Va, Porino

    2008-01-01

    The chiral, nucleophilic catalyst TADMAP (1) has been prepared from 3-lithio-4-dimethylamino-pyridine (5) and triphenylacetaldehyde (3), followed by acylation and resolution. TADMAP catalyzes the carboxyl migration of oxazolyl, furanyl, and benzofuranyl enol carbonates with good to excellent levels of enantioselection. The oxazole reactions are especially efficient, and are used to prepare chiral lactams (23) and lactones (30) containing a quaternary asymmetric carbon. TADMAP-catalyzed carboxyl migrations in the indole series are relatively slow and proceed with inconsistent enantioselectivity. Modeling studies (B3LYP/6-31G*) have been used in qualitative correlations of catalyst conformation, reactivity, and enantioselectivity. PMID:16417383

  8. Enhanced Diffusion of Enzymes that Catalyze Exothermic Reactions

    NASA Astrophysics Data System (ADS)

    Golestanian, Ramin

    2015-09-01

    Enzymes have been recently found to exhibit enhanced diffusion due to their catalytic activities. A recent experiment [C. Riedel et al., Nature (London) 517, 227 (2015)] has found evidence that suggests this phenomenon might be controlled by the degree of exothermicity of the catalytic reaction involved. Four mechanisms that can lead to this effect, namely, self-thermophoresis, boost in kinetic energy, stochastic swimming, and collective heating are critically discussed, and it is shown that only the last two can be strong enough to account for the observations. The resulting quantitative description is used to examine the biological significance of the effect.

  9. Module degradation catalyzed by metal-encapsulation reactions

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1983-01-01

    Four major properties are considered to be relevant in determining service life of a photovoltaic module: (1) Mechanical: creep resistance, modulus, tensile strength; (2) Optical: integrated transmission at 0.4 to 1.1 m wavelength; (3) Chemical: inertness with respect to metals and other components, retention of stabilizers, etc. and (4) Electrical; maintaining effective isolation of conductive components. These properties were measured after exposing polymer specimens to three types of accelerated stress: thermal, ultraviolet radiation and metal catalysts. These conditions give rise to a large number of complex interrelated free-radical reactions that result in the deterioration of polymeric materials.

  10. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  11. Pericyclic reactions catalyzed by chorismate-utilizing enzymes.

    PubMed

    Lamb, Audrey L

    2011-09-06

    One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure--function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reactions. Specifically, salicylate synthesis by the two-enzyme pathway in Pseudomonas aeruginosa is examined. The isochorismate-pyruvate lyase is discussed in the context of its homologues, the chorismate mutases, and the isochorismate synthase is compared to its homologues in the MST family (menaquinone, siderophore, or tryptophan biosynthesis) of enzymes. The tentative conclusion is that the activities observed cannot be reconciled by inspection of the active site participants alone. Instead, individual activities must arise from unique dynamic properties of each enzyme that are tuned to promote specific chemistries.

  12. Catalyzed hydrolytic cleavage reaction of carbon-carbon bond

    SciTech Connect

    Ioffe, I.I.; Rubinskaya, E.V.

    1986-12-01

    The authors split the carbon-carbon bond for a series of simple and complex organic compounds in neutral aqueous solutions on a heterogeneous metal-containing catalyst, palladium on carbon. The experimental results are given. In each case, the catalytic effect was controlled by a blank experiment, without a catalyst, where there was no decomposition of the substrate. The occurrence of the heterogeneous-catalytic cleavage reaction of the carbon-carbon bonds in the molecules is indicated not only by their extensive conversion, but also by the almost complete depletion of the content of organic carbon, confirmed by a similar decrease in the chemical consumption of oxygen coefficient in the system, which is possible only in the complete decomposition of the organic compounds to gaseous products or with the formation of inappreciable amounts of low-molecular-weight water-soluble compounds.

  13. Copper-catalyzed selective hydroamination reactions of alkynes

    PubMed Central

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  14. Pericyclic reactions catalyzed by chorismate-utilizing enzymes

    PubMed Central

    Lamb, Audrey L.

    2011-01-01

    One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure-function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reactions. Specifically, salicylate synthesis by the two-enzyme pathway in Pseudomonas aeruginosa is examined. The isochorismate-pyruvate lyase is discussed in the context of its homologues, the chorismate mutases, and the isochorismate synthase is compared to its homologues in the MST-family (menaquinone, siderophore or tryptophan biosynthesis) of enzymes. The tentative conclusion is that the activities observed cannot be reconciled by inspection of the active site participants alone. Instead, individual activities must arise from unique dynamic properties of each enzyme that are tuned to promote specific chemistries. PMID:21823653

  15. Comparative Studies of Cathodically-Promoted and Base-Catalyzed Michael Addition Reactions of Levoglucosenone.

    PubMed

    Samet, Alexander V.; Niyazymbetov, Murat E.; Semenov, Victor V.; Laikhter, Andrei L.; Evans, Dennis H.

    1996-12-13

    Regioselective Michael addition of nitro and heterocyclic compounds to levoglucosenone, 1, is effectively catalyzed by amines and also by cathodic electrolysis. In comparison to the base-catalyzed reaction, it was found that under electrochemical conditions the reaction proceeds under milder conditions and with higher yields. Cathodically-initiated Michael addition of thiols to levoglucosenone using small currents produces the previously unknown threo addition product in several instances. The normal erythro isomer, identified as the kinetic product, tends to be formed when large currents are used. In contrast, slow, low current electrolyses promote equilibration of the two forms so that erythro can be converted to threo by the retro reaction and readdition. Addition of 2-naphthalenethiol to (R)-(+)-apoverbenone is also reported.

  16. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    SciTech Connect

    Estabrook, Ronald W. . E-mail: Ronald.estabrook@utsouthwestern.edu

    2005-12-09

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11{beta}-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O{sup 18} studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17{alpha}-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17{alpha}-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11{beta}-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction.

  17. Nickel-Catalyzed Reactions Directed toward the Formation of Heterocycles.

    PubMed

    Kurahashi, Takuya; Matsubara, Seijiro

    2015-06-16

    Heterocycles have garnered significant attention because they are important functional building blocks in various useful molecules, such as pharmaceuticals, agricultural chemicals, pesticides, and materials. Several studies have been conducted regarding the preparation of heterocyclic skeletons with an emphasis on selectivity and efficiency. Three strategies are typically employed to construct cyclic molecules, namely, cyclization, cycloaddition, and ring-size alterations. Although each method has certain advantages, cycloaddition may be superior from the viewpoint of divergence. Specifically, cycloadditions enable the construction of rings from several pieces. However, the construction of heterocycles via cycloadditions is more challenging than the construction of carbocycles. For heterocycle construction, simple pericyclic reactions rarely work smoothly because of the large HOMO-LUMO gap unless well-designed combinations, such as electron-rich dienes and aldehydes, are utilized. Thus, a different approach should be employed to prepare heterocycles via cycloadditions. To this end, the use of metallacycles containing heteroatoms is expected to serve as a promising solution. In this study, we focused on the preparation of heteroatom-containing nickelacycles. Because nickel possesses a relatively high redox potential and an affinity for heteroatoms, several methods were developed to synthesize heteronickelacycles from various starting materials. The prepared nickelacycles were demonstrated to be reasonable intermediates in cycloaddition reactions, which were used to prepare various heterocycles. In this Account, we introduce the following four methods to prepare heterocycles via heteronickelacycles. (1) Direct oxidative insertion of Ni(0) to α,β-unsaturated enone derivatives: treatment of 3-ethoxycarbonyl-4-phenyl-3-buten-2-one with Ni(0) afforded an oxa-nickelacycle, which reacted with alkynes to give pyrans. (2) Substitution of a part of a cyclic compound with

  18. Hypersensitive radical probe studies of chloroperoxidase-catalyzed hydroxylation reactions.

    PubMed

    Toy, P H; Newcomb, M; Hager, L P

    1998-07-01

    The oxidation of hypersensitive radical probes by chloroperoxidase from Caldariomyces fumago (CPO) was studied in an attempt to "time" a putative radical intermediate. Oxidation of (trans-2-phenylcyclopropyl)methane, previously studied by Zaks and Dodds [Zaks, A., and Dodds, D. R. (1995) J. Am. Chem. Soc. 115, 10419-10424] was reinvestigated. Unrearranged oxidation products were found as previously reported, and control experiments demonstrated that the cyclic alcohol from oxidation at the cyclopropylcarbinyl position, while subject to further oxidation, survives CPO oxidation as detectable species. However, in contrast to the report by Zaks and Dodds, the rearranged alcohol product expected from ring opening of a cyclopropylcarbinyl radical intermediate was shown to be unstable toward the enzyme oxidation reaction. Because of this instability, two new hypersensitive radical probes, (trans-2-phenylcyclopropyl)ethane and 2-(trans-2-phenylcyclopropyl)propane, and their potential cyclic and acyclic products from oxidation at the cyclopropylcarbinyl position were synthesized and tested. Oxidation of both of these probes at the cyclopropylcarbinyl position by CPO gave unrearranged alcohol products only, but control experiments again demonstrated that the rearranged alcohol products were unstable toward CPO oxidation conditions. From the combination of the probe and control studies, the lifetime of a putative radical intermediate must be less than 3 ps. Whereas the results are consistent with an insertion mechanism for production of alcohol product, they do not exclude a very short-lived intermediate.

  19. Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based cross-coupling reactions.

    PubMed

    Denmark, Scott E; Baird, John D

    2006-06-23

    This paper chronicles the conceptual development, proof of principle experiments, and recent advances in the palladium-catalyzed cross-coupling reactions of the conjugate bases of organosilanols. The discovery that led to the design and refinement of this process represents a classical illustration of how mechanistic studies can provide a fertile ground for the invention of new reactions. On the basis of a working hypothesis (which ultimately proved to be incorrect) and the desire to effect silicon-based cross-coupling without the agency of fluoride activation, a mild and practical palladium-catalyzed cross-coupling of alkenyl-, aryl-, and heteroaryl silanolates has been developed. The mechanistic underpinnings, methodological extensions, and the successful applications of this technology to the synthesis of complex molecules are described.

  20. A transition path sampling study of the reaction catalyzed by the enzyme chorismate mutase.

    PubMed

    Crehuet, Ramon; Field, Martin J

    2007-05-24

    The study of the chemical steps in enzyme-catalyzed reactions represents a challenge for molecular simulation techniques. One concern is how to calculate paths for the reaction. Common techniques include the definition of a reaction coordinate in terms of a small set of (normally) geometrical variables or the determination of minimum energy paths on the potential energy surface of the reacting system. Both have disadvantages, the former because it presupposes knowledge of which variables are likely to be important for reaction and the latter because it provides a static picture and dynamical effects are ignored. In this paper, we employ the transition path sampling method developed by Chandler and co-workers, which overcomes some of these limitations. The reaction that we have chosen is the chorismate-mutase-catalyzed conversion of chorismate into prephenate, which has become something of a test case for simulation studies of enzyme mechanisms. We generated an ensemble of approximately 1000 independent transition paths for the reaction in the enzyme and another approximately 500 for the corresponding reaction in solution. A large variety of analyses of these paths was performed, but we have concentrated on characterizing the transition state ensemble, particularly the flexibility of its structures with respect to other ligands of the enzyme and the time evolution of various geometrical and energetic properties as the reaction proceeds. We have also devised an approximate technique for locating transition state structures along the paths.

  1. Enantioselective Multicomponent Condensation Reactions of Phenols, Aldehydes, and Boronates Catalyzed by Chiral Biphenols.

    PubMed

    Barbato, Keith S; Luan, Yi; Ramella, Daniele; Panek, James S; Schaus, Scott E

    2015-12-04

    Chiral diols and biphenols catalyze the multicomponent condensation reaction of phenols, aldehydes, and alkenyl or aryl boronates. The condensation products are formed in good yields and enantioselectivities. The reaction proceeds via an initial Friedel-Crafts alkylation of the aldehyde and phenol to yield an ortho-quinone methide that undergoes an enantioselective boronate addition. A cyclization pathway was discovered while exploring the scope of the reaction that provides access to chiral 2,4-diaryl chroman products, the core of which is a structural motif found in natural products.

  2. Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene with alcohols

    PubMed Central

    Tait, Katrina; Alrifai, Oday; Boutin, Rebecca; Haner, Jamie

    2016-01-01

    Summary Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene derivatives using alcohol nucleophiles were investigated. The optimal conditions were found to be 10 mol % PdCl2(CH3CN)2 in methanol, offering yields up to 92%. The reaction was successful using primary, secondary and tertiary alcohol nucleophiles and was compatible with a variety of substituents on cyclopropanated oxabenzonorbornadiene. With unsymmetrical C1-substituted cyclopropanated 7-oxabenzonorbornadienes, the regioselectivity of the reaction was excellent, forming only one regioisomer in all cases. PMID:27829926

  3. Combination of Microwave Reactions with Fluorous Separations in the Palladium-Catalyzed Synthesis of Aryl Sulfides

    PubMed Central

    Zhang, Wei; Lu, Yimin; Chen, Christine Hiu-Tung

    2007-01-01

    Coupling of microwave reactions with fluorous separations can dramatically increase the efficiency of high-speed synthesis. Described in this paper is a fluorous synthesis of aryl sulfides by palladium-catalyzed cross-coupling of aryl perfluoroalkylsulfonates (C8F17O2SOAr) with thiols (RSH) under microwave irradiation. Fluorous solid-phase extractions (F-SPE) are employed for the purification of reaction mixtures. No fluorous solvents are involved in reaction and separation processes. The fluorous synthesis is further extended to the multi-step synthesis of substituted hydantoin and amide scaffolds. PMID:14870851

  4. Enantioselective Multicomponent Condensation Reactions of Phenols, Aldehydes, and Boronates Catalyzed by Chiral Biphenols

    PubMed Central

    Barbato, Keith S.; Luan, Yi; Ramella, Daniele; Panek, James S.; Schaus, Scott E.

    2015-01-01

    Chiral diols and biphenols catalyze the multicomponent condensation reaction of phenols, aldehydes, and alkenyl or aryl boronates. The condensation products are formed in good yields and enantioselectivities. The reaction proceeds via an initial Friedel Crafts alkylation of the aldehyde and phenol to yield an ortho-quinone methide that undergoes an enantioselective boronate addition. A cyclization pathway was discovered while exploring the scope of the reaction that provides access to chiral 2,4-diaryl chroman products, the core of which is a structural motif found in natural products. PMID:26576776

  5. Study of the mechanism of muon-catalyzed t + t fusion reaction

    SciTech Connect

    Bogdanova, L. N.; Demin, D. L.; Filchenkov, V. V.

    2015-01-15

    The mechanism for the muon catalyzed fusion reaction t + t → {sup 4}He + 2n + 11.33 MeV is investigated. The model of the cascade reaction with {sup 5}He as an intermediate state is considered, both the ground and the first exited states being taken into account. The neutron energy spectrum measured in the recent experiment is compared with the Monte-Carlo-simulated one. Varying reaction parameters, we obtain optimum values for the relative weights of the {sup 5}He ground and excited states and for the excitation energy and width of the excited state.

  6. A four-component reaction involving in situ generated organometallic reagents: straightforward access to β-amino esters.

    PubMed

    Le Gall, Erwan; Léonel, Eric

    2013-04-22

    Four in one: A straightforward synthesis of β(2,3)-amino esters is described through a new zinc-mediated, cobalt-catalyzed four-component reaction between organic bromides, alkyl acrylates, amines, and aldehydes (see scheme). Synthesis involves a Mannich-related conjugate addition/aza-aldol domino sequence, allowing the formation of three single bonds in one step. A reaction mechanism, emphasizing the crucial role of zinc salts, is described.

  7. Glutathiolactaldehyde as a probe of the overall stereochemical course of glyoxalase-I catalyzed reactions

    SciTech Connect

    Brush, E.J.; Kozarich, J.W.

    1986-05-01

    The overall stereochemical course of the reactions catalyzed by glyoxalase-I (GX-I) has remained elusive as the substrates are equilibrium mixtures of rapidly interconverting diastereomeric thiohemiacetals. However, with the discovery of inverse substrate processing by Kozarich and coworkers, it is possible to design GX-I substrate analogs that are intrinsically more stable than the thiohemiacetals. Hence, Chari and Kozarich reported that glutathiohydroxyacetone (GHA, GSCH/sub 2/COCH/sub 2/OH) undergoes GX-I catalyzed exchange of the pro-S hydroxymethyl proton with solvent deuterium. Their data suggest that GX-I processes a single diastereomeric thiohemiacetal, and are consistent with a cis-enediol intermediate. To test this hypothesis and to follow the overall stereochemistry on a single substrate, they have prepared glutathiolactaldehyde (GLA, GSCH/sub 2/CHOHCHO) as a potential inverse substrate. Human erythrocyte GX-I catalyzes the isomerization of GLA to GHA as evidenced by UV and NMR spectra of the product. Solvent deuterium is incorporated into the hydroxymethyl position, and NMR data suggest that incorporation is stereospecific. Furthermore, 50% of the expected amount of GHA is produced indicating that only one diastereomer of GLA is processed by GX-I. Identification of the absolute stereochemistry of the substrate diastereomer will lead to a clarification of the overall stereochemical and mechanistic course of GX-I catalyzed reactions.

  8. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  9. Gold-Catalyzed Cycloisomerization of 1,5-Allenynes via Dual Activation of an Ene Reaction

    PubMed Central

    Cheong, Paul Ha-Yeon; Morganelli, Philip; Luzung, Michael R.; Houk, K. N.; Toste, F. Dean

    2010-01-01

    A tris-triphenylphosphinegold oxonium tetrafluoroborate, [(Ph3PAu)3O]BF4, catalyzes the rearrangement of 1,5-allenynes to produce cross-conjugated trienes. Experimental and computational evidence shows that the ene reaction proceeds through a unique nucleophilic addition of an allene double bond to a cationic phosphinegold(I) complexed phosphinegold(I) acetylide, followed by a 1,5-hydrogen shift. PMID:18327944

  10. Lewis acid catalyzed cascade reaction to carbazoles and naphthalenes via dehydrative [3 + 3]-annulation.

    PubMed

    Wang, Shaoyin; Chai, Zhuo; Wei, Yun; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu

    2014-07-03

    A novel Lewis acid catalyzed dehydrative [3 + 3]-annulation of readily available benzylic alcohols and propargylic alcohols was developed to give polysubstituted carbazoles and naphthalenes in moderate to good yields with water as the only byproduct. The reaction was presumed to proceed via a cascade process involving Friedel-Crafts-type allenylation, 1,5-hydride shift, 6π-eletrocyclization, and Wagner-Meerwein rearrangement.

  11. Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones.

    PubMed

    Zhang, Zhenhua; Sun, Wangsheng; Zhu, Gongming; Yang, Junxian; Zhang, Ming; Hong, Liang; Wang, Rui

    2016-01-25

    The first chiral phosphoric acid catalyzed highly diastereo- and enantioselective 1,3-dipolar cycloaddition reaction of azlactones and methyleneindolinones was disclosed. By using a BINOL-derived chiral phosphoric acid as the catalyst, azlactones were activated as chiral anti N-protonated 1,3-dipoles to react with methyleneindolinones to yield biologically important 3,3'-pyrrolidonyl spirooxindole scaffolds in high yields, with good-to-excellent diastereo- and enantioselectivity.

  12. Chiral Calcium Phosphate Catalyzed Asymmetric Alkenylation Reaction of Arylglyoxals with 3-Vinylindoles.

    PubMed

    Li, Xiao-Yun; Yuan, Wen-Qiang; Tang, Sheng; Huang, Yi-Wei; Xue, Jia-Hui; Fu, Li Na; Guo, Qi-Xiang

    2017-03-03

    A highly efficient alkenylation reaction of arylglyoxals with 3-vinylindoles catalyzed by chiral calcium phosphate is described. Structurally diverse allylic alcohols bearing indole and carbonyl units are prepared in excellent yields, good diastereoselectivities, and high to excellent enantioselectivities. These products are good building blocks for the synthesis of polysubstituted chiral tetrahydrocarbozol-2-ones. The mechanism study indicates that the most likely role of the catalyst is to activate the hydrate of arylglyoxal and control the stereoselectivity via desymmetric coordination.

  13. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments.

  14. Iridium-Catalyzed Intramolecular Asymmetric Allylic Dearomatization Reaction of Pyridines, Pyrazines, Quinolines, and Isoquinolines.

    PubMed

    Yang, Ze-Peng; Wu, Qing-Feng; Shao, Wen; You, Shu-Li

    2015-12-23

    The first Ir-catalyzed intramolecular asymmetric allylic dearomatization reaction of pyridines, pyrazines, quinolines, and isoquinolines has been developed. Enabled by in situ formed chiral Ir-catalyst, the dearomatized products were isolated in high levels of yield (up to 99% yield) and enantioselectivity (up to 99% ee). It is worth noting that the Me-THQphos ligand is much more efficient than other tested ligands for the dearomatization of pyrazines and certain quinolines. Mechanistic studies of the dearomatization reaction were carried out, and the results suggest the feasibility of an alternative process which features the formation of a quinolinium as the key intermediate. The mechanistic findings render this reaction a yet unknown type in the chemistry of Reissert-type reactions. In addition, the utility of this method was showcased by a large-scale reaction and formal synthesis of (+)-gephyrotoxin.

  15. Asymmetric Petasis Borono-Mannich Allylation Reactions Catalyzed by Chiral Biphenols.

    PubMed

    Jiang, Yao; Schaus, Scott E

    2017-02-01

    Chiral biphenols catalyze the asymmetric Petasis borono-Mannich allylation of aldehydes and amines through the use of a bench-stable allyldioxaborolane. The reaction proceeds via a two-step, one-pot process and requires 2-8 mole % of 3,3'-Ph2 -BINOL as the optimal catalyst. Under microwave heating the reaction affords chiral homoallylic amines in excellent yields (up to 99 %) and high enantioselectivies (er up to 99:1). The catalytic reaction is a true multicomponent condensation reaction whereas both the aldehyde and the amine can possess a wide range of structural and electronic properties. Use of crotyldioxaborolane in the reaction results in stereodivergent products with anti- and syn-diastereomers both in good diastereoselectivities and enantioselectivities from the corresponding E- and Z-borolane stereoisomers.

  16. A 11-Steps Total Synthesis of Magellanine through a Gold(I)-Catalyzed Dehydro Diels-Alder Reaction.

    PubMed

    McGee, Philippe; Bétournay, Geneviève; Barabé, Francis; Barriault, Louis

    2017-01-12

    We have developed an innovative strategy for the formation of angular carbocycles via a gold(I)-catalyzed dehydro Diels-Alder reaction. This transformation provides rapid access to a variety of complex angular cores in excellent diastereoselectivities and high yields. The usefulness of this Au(I) -catalyzed cycloaddition was further demonstrated by accomplishing a 11-steps total synthesis of (±)-magellanine.

  17. Computational analysis of the stereochemical outcome in the imidazolidinone-catalyzed enantioselective (4 + 3)-cycloaddition reaction.

    PubMed

    Krenske, Elizabeth H; Houk, K N; Harmata, Michael

    2015-01-16

    Computations show why the catalytic, asymmetric (4 + 3)-cycloaddition reaction developed in the Harmata laboratories proceeds with facial selectivity opposite to that for models proposed for related catalyzed Diels-Alder reactions. Computations with M06-2X/6-311+G(d,p)//B3LYP/6-31G(d) show that iminium ions derived from MacMillan's chiral 2-tert-butyl-5-benzylimidazolidinone and siloxypentadienals undergo (4 + 3)-cycloadditions with furans preferentially on the more crowded face. Conformational reorganization of the benzyl group, to avoid intramolecular interaction with the silyl group, is responsible for differentiating the activation barriers of top- and bottom-face attack.

  18. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide.

    PubMed

    Grünenfelder, Claudio E; Kisunzu, Jessica K; Wennemers, Helma

    2016-07-18

    The tripeptide H-dPro-Pro-Asn-NH2 is presented as a catalyst for asymmetric conjugate addition reactions of aldehydes to maleimide. The peptidic catalyst promotes the reaction between various aldehydes and unprotected maleimide with high stereoselectivities and yields. The obtained products were readily derivatized to the corresponding pyrrolidines, lactams, lactones, and peptide-like compounds. (1) H NMR spectroscopic, crystallographic, and computational investigations provided insight into the conformational properties of H-dPro-Pro-Asn-NH2 and revealed the importance of hydrogen bonding between the peptide and maleimide for catalyzing the stereoselective C-C bond formation.

  19. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  20. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.

  1. Stereoselective Synthesis of Saturated Heterocycles via Pd-Catalyzed Alkene Carboetherification and Carboamination Reactions

    PubMed Central

    Wolfe, John P.

    2009-01-01

    The development of Pd-catalyzed carboetherification and carboamination reactions between aryl/alkenyl halides and alkenes bearing pendant heteroatoms is described. These transformations effect the stereoselective construction of useful heterocycles such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines, and piperazines. The scope, limitations, and applications of these reactions are presented, and current stereochemical models are described. The mechanism of product formation, which involves an unusual intramolecular syn-insertion of an alkene into a Pd-Heteroatom bond is also discussed in detail. PMID:19183704

  2. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions.

    PubMed

    Zhu, Shou-Fei; Zhou, Qi-Lin

    2012-08-21

    Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral

  3. Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase.

    PubMed

    Liu, Junjun; Hamza, Adel; Zhan, Chang-Guo

    2009-08-26

    The fundamental reaction mechanism of cocaine esterase (CocE)-catalyzed hydrolysis of (-)-cocaine and the corresponding free energy profile have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations. On the basis of the QM/MM-FE results, the entire hydrolysis reaction consists of four reaction steps, including the nucleophilic attack on the carbonyl carbon of (-)-cocaine benzoyl ester by the hydroxyl group of Ser117, dissociation of (-)-cocaine benzoyl ester, nucleophilic attack on the carbonyl carbon of (-)-cocaine benzoyl ester by water, and finally dissociation between the (-)-cocaine benzoyl group and Ser117 of CocE. The third reaction step involving the nucleophilic attack of a water molecule was found to be rate-determining, which is remarkably different from (-)-cocaine hydrolysis catalyzed by wild-type butyrylcholinesterase (BChE; where the formation of the prereactive BChE-(-)-cocaine complex is rate-determining) or its mutants containing Tyr332Gly or Tyr332Ala mutation (where the first chemical reaction step is rate-determining). Besides, the role of Asp259 in the catalytic triad of CocE does not follow the general concept of the "charge-relay system" for all serine esterases. The free energy barrier calculated for the rate-determining step of CocE-catalyzed hydrolysis of (-)-cocaine is 17.9 kcal/mol, which is in good agreement with the experimentally derived activation free energy of 16.2 kcal/mol. In the present study, where many sodium ions are present, the effects of counterions are found to be significant in determining the free energy barrier. The finding of the significant effects of counterions on the free energy barrier may also be valuable in guiding future mechanistic studies on other charged enzymes.

  4. Ruthenium-catalyzed decarbonylative addition reaction of anhydrides with alkynes: a facile synthesis of isocoumarins and α-pyrones.

    PubMed

    Prakash, Rashmi; Shekarrao, Kommuri; Gogoi, Sanjib; Boruah, Romesh C

    2015-06-21

    A novel ruthenium catalyzed straightforward and efficient synthesis of isocoumarin and α-pyrone derivatives has been accomplished by the decarbonylative addition reaction of anhydrides with alkynes under thermal conditions.

  5. Copper-catalyzed extended Pummerer reactions of ketene dithioacetal monoxides with alkynyl sulfides and ynamides with an accompanying oxygen rearrangement.

    PubMed

    Murakami, Kei; Imoto, Junichi; Matsubara, Hiroshi; Yoshida, Suguru; Yorimitsu, Hideki; Oshima, Koichiro

    2013-04-26

    The first examples of metal-catalyzed extended Pummerer reactions through the activation of sulfoxides are described. The copper-catalyzed reactions of ketene dithioacetal monoxides with alkynyl sulfides and ynamides provided a wide variety of γ,γ-disulfanyl-β,γ-unsaturated carbonyl compounds with an accompanying oxygen rearrangement. The products can be easily converted into 1,4-dicarbonyl compounds and substituted heteroaromatics. DFT calculations and mechanistic experiments revealed a new interesting stepwise addition/oxygen rearrangement mechanism.

  6. Substrate activity of synthetic formyl phosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Smithers, G.W.; Jahansouz, H.; Kofron, J.L.; Himes, R.H.; Reed, G.H.

    1987-06-30

    Formyl phosphate, a putative enzyme-bound intermediate in the reaction catalyzed by formyltetrahydrofolate synthetase (EC 6.3.4.3), was synthesized from formyl fluoride and inorganic phosphate, and the product was characterized by /sup 31/P, /sup 1/H, and /sup 13/C nuclear magnetic resonance (NMR). Measurement of hydrolysis rates by /sup 31/P NMR indicates that formyl phosphate is particularly labile, with a half-life of 48 min in a buffered neutral solution at 20 /sup 0/C. At pH 7, hydrolysis occurs with P-O bond cleavage, as demonstrated by /sup 18/O incorporation from H/sub 2//sup 18/O into P/sub i/, while at pH 1 and pH 13 hydrolysis occurs with C-O bond cleavage. The substrate activity of formyl phosphate was tested in the reaction catalyzed by formyltetrahydrofolate synthetase isolated from Clostridium cylindrosporum. Formyl phosphate supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formyltetrahydrofolate is produced from tetrahydrofolate and formyl phosphate in a reaction mixture that contains enzyme, Mg(II), and ADP, and ATP is produced from formyl phosphate and ADP with enzyme, Mg(II), and tetrahydrofolate present. The requirements for ADP and for tetrahydrofolate as cofactors in these reactions are consistent with previous steady-state kinetic and isotope exchange studies, which demonstrated that all substrate subsites must be occupied prior to catalysis. The k/sub cat/ values for both the forward and reverse directions, with formyl phosphate as the substrate, are much lower than those for the normal forward and reverse reactions. Kinetic analysis of the formyl phosphate supported reactions indicates that the low steady-state rates observed for the synthetic intermediate are most likely due to the sequential nature of the normal reaction.

  7. The mechanism of the NHC catalyzed aza-Morita-Baylis-Hillman reaction: insights into a new substrate-catalyzed bimolecular pathway.

    PubMed

    Verma, Pritha; Verma, Pragya; Sunoj, Raghavan B

    2014-04-14

    The first mechanistic study on the NHC-catalyzed aza-MBH reaction between cyclopentenone and N-mesylbenzaldimine using density functional theory reveals that a bimolecular mechanism, involving two molecules of benzaldimine in the proton transfer, is energetically more preferred over the conventional direct proton transfer.

  8. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials.

    PubMed

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-Ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  9. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Hoo Kim, Eun; Wei, Alexander; Negishi, Ei-ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  10. Helical-Peptide-Catalyzed Enantioselective Michael Addition Reactions and Their Mechanistic Insights.

    PubMed

    Ueda, Atsushi; Umeno, Tomohiro; Doi, Mitsunobu; Akagawa, Kengo; Kudo, Kazuaki; Tanaka, Masakazu

    2016-08-05

    Helical peptide foldamer catalyzed Michael addition reactions of nitroalkane or dialkyl malonate to α,β-unsaturated ketones are reported along with the mechanistic considerations of the enantio-induction. A wide variety of α,β-unsaturated ketones, including β-aryl, β-alkyl enones, and cyclic enones, were found to be catalyzed by the helical peptide to give Michael adducts with high enantioselectivities (up to 99%). On the basis of X-ray crystallographic analysis and depsipeptide study, the amide protons, N(2)-H and N(3)-H, at the N terminus in the α-helical peptide catalyst were crucial for activating Michael donors, while the N-terminal primary amine activated Michael acceptors through the formation of iminium ion intermediates.

  11. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    PubMed Central

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-ichi

    2014-01-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C–C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials. PMID:27877696

  12. Expanding the scope of Lewis acid catalysis in water: remarkable ligand acceleration of aqueous ytterbium triflate catalyzed Michael addition reactions.

    PubMed

    Ding, Rui; Katebzadeh, Kambiz; Roman, Lisa; Bergquist, Karl-Erik; Lindström, Ulf M

    2006-01-06

    [reaction: see text] Significant rate acceleration of metal-catalyzed Michael addition reactions in water was observed upon addition of small, dibasic ligands. Ytterbium triflate and TMEDA was the most effective combination leading to a nearly 20-fold faster reaction than in the absence of ligand.

  13. Silver-Catalyzed Formal Inverse Electron-Demand Diels-Alder Reaction of 1,2-Diazines and Siloxy Alkynes

    PubMed Central

    Türkmen, Yunus E.; Montavon, Timothy J.; Kozmin, Sergey A.; Rawal, Viresh H.

    2012-01-01

    A highly effective silver-catalyzed formal inverse electron-demand Diels-Alder reaction of 1,2-diazines and siloxy alkynes has been developed. The reactions provide ready access to a wide range of siloxy naphthalenes and anthracenes, which are formed in good to high yields, under mild reaction conditions, using low catalyst loadings. PMID:22607029

  14. Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction.

    PubMed

    Lin, Zhi-Rong; Zhao, Ling; Dong, Yuan-Hua

    2015-12-01

    In order to find out the truth of influence of solution chemistry on the oxidation efficiency of a goethite-catalyzed Fenton-like reaction, the amount of hydroxyl radicals (OH) was quantified by using coumarin as its trapping agent to produce the only fluorescent derivative 7-hydroxycoumarin (7-HC), because OH was the reactive species responsible for the oxidation activity of Fenton reactions. The concentration of OH achieved maximum at solution pH of 3 and decreased with an increase of solution pH value. However, considerable amount of OH can also generate at near neutral pH (i.e. pH 6 and 7). The concentration of OH was increased both with increasing of goethite and H2O2 dosages, but H2O2 could compete with coumarin to scavenge OH to reduce the formation of 7-HC when the concentration of H2O2 was too high. Anions inhibited OH generation followed an order of H2PO4(-)>SO4(2-)>Cl(-)>NO3(-)>ClO4(-). Higher concentrations of Cl(-) and SO4(2-) resulted in greater inhibition of OH generation. Results of this study demonstrated that the influence of solution chemistry on the oxidation efficiency of the goethite-catalyzed Fenton-like reaction was greatly attributed to the effect of solution chemistry on the amount of OH formed in the process of reaction.

  15. Asymmetric 1,3-Dipolar Cycloaddition Reactions Catalyzed by Heterocycle-Based Metal Complexes

    NASA Astrophysics Data System (ADS)

    Suga, Hiroyuki

    Highly enantioselective 1,3-dipolar cycloaddition reactions of several 1,3-dipoles, such as nitrones, nitrile oxides, nitrile imines, diazoalkanes, azomethine imines and carbonyl ylides, catalyzed by heterocyclic supramolecular type of metal complexes consisting of chiral heterocyclic compounds and metal salts were described in terms of their ability of asymmetric induction and enantioface differentiation. The scope and limitations of each cycloaddition reactions were also briefly described. Of the chiral hererocycle-based ligands, chiral bisoxazoline, 2,6-bis(oxazolinyl)pyridine, and related oxazoline ligands are shown to be quite effective in obtaining high levels of asymmtric induction. The combination of the bisoxazoline ligand derived from (1S,2R)-cis-1-amino-2-indanol and metal salts was especially efficient for asymmetric cycloaddition reactions of a number of 1,3-dipoles, such as nitrones, nitrile oxide, nitrile imines, diazoacetates and azomethine imines. The metals utilized for the heterocycle-based complexes show a crucial role for degree of asymmetric induction depending upon the 1,3-dipole used. High levels of enantioselectivity were achieved in 1,3-dipolar cycloaddition reactions of unstable carbonyl ylides with benzyloxyacetaldehyde derivatives, α-keto esters, 3-(2-alkenoyl)-2-oxazolidinones, and even vinyl ethers, which were catalyzed by Pybox-lanthanoid metal complexes.

  16. Contribution of flavin covalent linkage with histidine 99 to the reaction catalyzed by choline oxidase.

    PubMed

    Quaye, Osbourne; Cowins, Sharonda; Gadda, Giovanni

    2009-06-19

    The FAD-dependent choline oxidase has a flavin cofactor covalently attached to the protein via histidine 99 through an 8alpha-N(3)-histidyl linkage. The enzyme catalyzes the four-electron oxidation of choline to glycine betaine, forming betaine aldehyde as an enzyme-bound intermediate. The variant form of choline oxidase in which the histidine residue has been replaced with asparagine was used to investigate the contribution of the 8alpha-N(3)-histidyl linkage of FAD to the protein toward the reaction catalyzed by the enzyme. Decreases of 10-fold and 30-fold in the k(cat)/K(m) and k(cat) values were observed as compared with wild-type choline oxidase at pH 10 and 25 degrees C, with no significant effect on k(cat)/K(O) using choline as substrate. Both the k(cat)/K(m) and k(cat) values increased with increasing pH to limiting values at high pH consistent with the participation of an unprotonated group in the reductive half-reaction and the overall turnover of the enzyme. The pH independence of both (D)(k(cat)/K(m)) and (D)k(cat), with average values of 9.2 +/- 3.3 and 7.4 +/- 0.5, respectively, is consistent with absence of external forward and reverse commitments to catalysis, and the chemical step of CH bond cleavage being rate-limiting for both the reductive half-reaction and the overall enzyme turnover. The temperature dependence of the (D)k(red) values suggests disruption of the preorganization in the asparagine variant enzyme. Altogether, the data presented in this study are consistent with the FAD-histidyl covalent linkage being important for the optimal positioning of the hydride ion donor and acceptor in the tunneling reaction catalyzed by choline oxidase.

  17. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    magnesium ProPhenol complex was used to facilitate enantioselective diazoacetate aldol reactions with aryl, α,β-unsaturated, and aliphatic aldehydes. The utility of bimetallic ProPhenol catalysts was extended to asymmetric additions with a wide range of substrate combinations. Effective pronucleophiles include oxazolones, 2-furanone, nitroalkanes, pyrroles, 3-hydroxyoxindoles, alkynes, meso-1,3-diols, and dialkyl phosphine oxides. These substrates were found to be effective with a number of electrophiles, including aldehydes, imines, nitroalkenes, acyl silanes, vinyl benzoates, and α,β-unsaturated carbonyls. A truly diverse range of enantioenriched compounds have been prepared using the ProPhenol ligand, and the commercial availability of both ligand enantiomers makes it ideally suited for the synthesis of complex molecules. To date, enantioselective ProPhenol-catalyzed reactions have been used in the synthesis of more than 20 natural products. PMID:25650587

  18. Chemiluminescent Reactions Catalyzed by Nanoparticles of Gold, Silver, and Gold/Silver Alloys

    NASA Astrophysics Data System (ADS)

    Abideen, Saqib Ul

    Chemiluminescence (CL) reactions are catalyzed by metals nanoparticles, which display unique catalytic properties due to an increased surface area. The present study describes the catalytic effects of nanoparticles (NP) of silver, gold, and alloys of Au/Ag nanoparticles on the chemiluminescent reaction taking place between luminol and potassium ferricyanide. It was found that silver nanoparticles and alloy nanoparticles enhance the CL process when their sizes remained in the range of 30 nm to 50 nm. The data show that the intensity and rate of chemiluminescence were influenced by the mole fraction of gold and silver in the alloy. Data to this chemiluminescence reaction are modeled by a double exponential curve, which indicates that two competing processes are occurring.

  19. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid.

    PubMed

    Su, Chia-Hung

    2013-02-01

    The catalytic performance and recoverability of several homogeneous acid catalysts (hydrochloric, sulfuric, and nitric acids) for the esterification of enzyme-hydrolyzed free fatty acid (FFA) and methanol were studied. Although all tested catalysts drove the reaction to a high yield, hydrochloric acid was the only catalyst that could be considerably recovered and reused. The kinetics of the esterification reaction catalyzed by hydrochloric acid was investigated under varying catalyst loading (0.1-1M), reaction temperature (303-343K), and methanol/FFA molar ratio (1:1-20:1). In addition, a pseudo-homogeneous kinetic model incorporating the above factors was developed. A good agreement (r(2)=0.98) between the experimental and calculated data was obtained, thus proving the reliability of the model. Furthermore, the reusability of hydrochloric acid in FFA esterification can be predicted by the developed model. The recoverable hydrochloric acid achieved high yields of FFA esterification within five times of reuse.

  20. New Stetter reactions catalyzed by thiamine diphosphate dependent MenD from E. coli.

    PubMed

    Beigi, Maryam; Waltzer, Simon; Zarei, Mostafa; Müller, Michael

    2014-12-10

    The intermolecular asymmetric Stetter reaction is a rarely found biocatalysts transformation. MenD, the second enzyme of the menaquinone biosynthetic pathway, catalyzes as a physiological reaction a Stetter-like addition of α-ketoglutarate to isochorismate. The substrate range of MenD for similar 1,4-additions is highly restricted. All other thiamine diphosphate dependent enzymes known to act as stetterases are members of the PigD enzyme subfamily, which accept aliphatic and aromatic α,β-unsaturated ketones and thioesters as Michael acceptor substrates. Here, we describe the unexpected activity of MenD with short-chain α,β-unsaturated acids and derivatives as substrates in Stetter reactions. MenD possesses a characteristic substrate range with respect to Michael acceptor substrates which is distinctly different from the classical stetterases. This provides biocatalytic access to new types of products which are not related to the products currently accessible by thiamine diphosphate dependent enzyme catalysis.

  1. Deuterium isotope effect on the induction period of the cerium catalyzed Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Rossi, Federico; Simoncini, Eugenio; Marchettini, Nadia; Tiezzi, Enzo

    2009-02-01

    In this work we present results about the deuterium isotopic effect on the global kinetics of a cerium catalyzed Belousov-Zhabotinsky reaction. A nonlinear dependence of the induction period upon the percentage of deuterated reactants was found in batch conditions. In order to understand this result, we investigated two reaction pathways responsible for the length of the induction period, namely: (a) the reaction between the enolic form of the malonic acid with molecular bromine and (b) the oxidation of malonic acid by the Ce(IV) ion. In both cases we obtained a linear dependence of the kinetic constants on the percentage of deuterated reactants. Nevertheless, by inserting the experimental values in the MBM (Marburg-Budapest-Missoula) model, we were able to qualitatively simulate the observed trend of the induction period.

  2. Organic carbonates as alternative solvents for palladium-catalyzed substitution reactions.

    PubMed

    Schäffner, Benjamin; Holz, Jens; Verevkin, Sergey P; Börner, Armin

    2008-01-01

    Organic carbonates, such as propylene carbonate, butylene carbonate, and diethyl carbonate, were tested in the Pd-catalyzed asymmetric allylic substitution reactions of rac-1,3-diphenyl-3-acetoxy-prop-1-ene with dimethyl malonate or benzylamine as nucleophiles. Bidentate diphosphanes were used as chiral ligands. The application of monodentate phosphanes capable of self-assembling with the metal was likewise tested. In the substitution reaction with dimethyl malonate, enantioselectivities up to 98% were achieved. In the amination reaction, the chiral product was obtained with up to 83% ee. The results confirm that these "green solvents" can be advantageously used for this catalytic transformation as an alternative to those solvents usually employed which run some risk of being harmful to the environment.

  3. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    SciTech Connect

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  4. Mild copper-catalyzed vinylation reactions of azoles and phenols with vinyl bromides.

    PubMed

    Taillefer, Marc; Ouali, Armelle; Renard, Brice; Spindler, Jean-Francis

    2006-07-05

    An efficient and straightforward copper-catalyzed method allowing vinylation of N- or O-nucleophiles with di- or trisubstituted vinyl bromides is reported. The procedure is applicable to a broad range of substrates since N-vinylation of mono-, di-, and triazoles as well as O-vinylation of phenol derivatives can be performed with catalytic amounts of copper iodide and inexpensive nitrogen ligands 3 or 8. In the case of more hindered vinyl bromides, the use of the original bidentate chelator 8 was shown to be more efficient to promote the coupling reactions than our key tetradentate ligand 3. The corresponding N-(1-alkenyl)azoles and alkenyl aryl ethers are obtained in high yields and selectivities under very mild temperature conditions (35-110 degrees C for N-vinylation reactions and 50-80 degrees C for O-vinylation reactions). Moreover, to our knowledge, this method is the first example of a copper-catalyzed vinylation of various azoles. Finally, this protocol, practical on a laboratory scale and easily adaptable to an industrial scale, is very competitive compared to the existing methods that allow the synthesis of such compounds.

  5. Effectiveness of immobilized lipase Thermomyces lanuginosa in catalyzing interesterification of palm olein in batch reaction.

    PubMed

    Saw, Mei Huey; Siew, Wai Lin

    2014-01-01

    Lipase Thermomyces lanuginosa has shown potential in modifying oils and fats through interesterification. Analyzing the physicochemical properties of the modified oils is important to determine the effectiveness of lipase in catalyzing interesterification. In this study, the effectiveness of the immobilized lipase (Lipozyme(®) TL IM) in catalyzing interesterification of palm olein in pilot-scale batch reactor was determined. The evaluation was done by analyzing the changes of triacylglycerol (TAGs) composition, sn-2 position fatty acids composition and the physical properties of the palm olein after the interesterifications. The pilot-scale batch reaction was conducted for 8 hours with 5 %w/w enzyme dosage based on the results of TAGs composition of the laboratory-scale interesterified products. The pilot-scale results showed that Lipozyme(®) TL IM act as an effective enzyme in converting TAGs, in which 4.5% of trisaturated TAGs (PPP and PPS) were produced in the batch reaction. The formation of these new TAGs had also altered the thermal and physical properties of the palm olein. These interesterified products showed a broad peak and shoulder at high temperature, ranging from 10°C to 40°C, indicating the formation of some new TAGs with high melting points. However, the enzyme did not perform perfectly as a 1,3-specific enzyme in the reaction as a significant reduction of oleic acid and an increment of palmitic acid at the sn-2 position was observed.

  6. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    PubMed

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  7. N-heterocyclic carbene catalyzed asymmetric intermolecular Stetter reaction: origin of enantioselectivity and role of counterions.

    PubMed

    Kuniyil, Rositha; Sunoj, Raghavan B

    2013-10-04

    The mechanism and the role of KOtBu in an enantioselective NHC-catalyzed Stetter reaction between p-chlorobenzaldehyde and N-acylamido acrylate is established using DFT(M06-2X) methods. The Gibbs free energies are found to be significantly lower for transition states with explicit bound KOtBu as compared to the conventional pathways without the counterions. An intermolecular proton transfer from HOtBu to the prochiral carbon is identified as the stereocontrolling step. The computed enantioselectivities are in excellent agreement with the experimental results.

  8. Highly selective room-temperature copper-catalyzed C-N coupling reactions.

    PubMed

    Shafir, Alexandr; Buchwald, Stephen L

    2006-07-12

    Through the use of cyclic beta-diketones as supporting ligands, the copper-catalyzed coupling of aryl iodides with aliphatic amines occurs at room temperature in as little as 1 h. These high reaction rates allow for the coupling of a wide range of aryl and heteroaryl iodides at room temperature. This method is highly tolerant of a number of reactive functional groups, including -Br and aromatic -NH2 as well as phenolic and aliphatic -OH. The high selectivity of the CuI-beta-diketone catalyst for aliphatic amines represents a useful complement to the palladium-based methods.

  9. Isotope Effects and Mechanism of the Asymmetric BOROX Brønsted Acid Catalyzed Aziridination Reaction

    PubMed Central

    Vetticatt, Mathew J.; Desai, Aman A.; Wulff, William D.

    2013-01-01

    The mechanism of the chiral VANOL-BOROX Brønsted acid catalyzed aziridination reaction of imines and ethyldiazoacetate has been studied using a combination of experimental kinetic isotope effects and theoretical calculations. A stepwise mechanism where reversible formation of a diazonium ion intermediate precedes rate-limiting ring-closure to form the cis-aziridine is implicated. A revised model for the origin of enantio- and diastereoselectivity is proposed based on relative energies of the ring closing transition structures. PMID:23687986

  10. Pathways of electrophilic aromatic substitution reactions catalyzed by group 13 trihalides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Volkov, Alexey N.; Timoshkin, Alexey Y.; Suvorov, Andrew V.

    An ab initio study of the two possible pathways of ectrophilic aromatic substitution reaction catalyzed by monomeric and dimeric forms of group 13 metal halides has been performed. Optimized geometries of π, σ-complexes and corresponding transition states have been obtained at second-order Møller-Plesset/ LANL2DZ(d)+ level of theory. It is found that operation of the dimeric pathway is more favorable both thermodynamically and kinetically. Thus, it is expected that catalytical activity of the metal halide will be greatly increased if the stoichiometric ratio 2:1 is employed. Obtained results are in qualitative agreement with available experimental data.

  11. Mechanism of maltal hydration catalyzed by. beta. -amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase

    SciTech Connect

    Kitahata, Sumio ); Chiba, S. ); Brewer, C.F.; Hehre, E.J. )

    1991-07-09

    Crystalline (monomeric) soybean and (tetrameric) sweet potato {beta}-amylase were shown to catalyze the cis hydration of maltal ({alpha}-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form {beta}-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D{sub 2}O by soybean {beta}-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (V{sub H}/V{sub D}=6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-(2(a)-{sup 2}H)maltose as product. These results indicate (for each {beta}-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that {beta}-amylase protonates maltal from a direction opposite that assumed for protonating strach, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures is dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  12. Mechanistic insights on platinum- and palladium-pincer catalyzed coupling and cyclopropanation reactions between olefins.

    PubMed

    Rajeev, Ramanan; Sunoj, Raghavan B

    2012-07-21

    The mechanism of M(II)-PNP-pincer catalyzed reaction between (i) ethene, (ii) trans-butene with 2-methylbut-2-ene, 2,3-dimethylbut-2-ene and tert-butylbutene is examined by using density functional theory methods (where M = Pt or Pd). All key intermediates and transition states involved in the reaction are precisely located on the respective potential energy surfaces using the popular DFT functionals such as mPW1K, M06-2X, and B3LYP in conjunction with the 6-31+G** basis set. The reaction between these olefins can lead to a linear coupling product or a substituted cyclopropane. The energetic comparison between coupling as well as cyclopropanation pathways involving four pairs of olefins for both platinum (1-4) and palladium (5-8) catalyzed reactions is performed. The key events in the lower energy pathway in the mechanistic course involves (i) a C-C bond formation between the metal bound olefin (ethene or trans-butene) and a free olefin, and (ii) two successive [1,2] hydrogen migrations in the ensuing carbocationic intermediates (1c-4c, and 1d-4d), toward the formation of the coupling product. The computed barriers for these steps in the reaction of metal bound ethene to free tert-butylbutene (or other butenes) are found to be much lower than the corresponding steps when trans-butene is bound to the metal pincer. The Gibbs free energy differences between the transition states leading to the coupling product (TS(d-e)) and that responsible for cyclopropanated product (TS(d-g)) are found to be diminishingly closer in the case of the platinum pincer as compared to that in the palladium system. The computed energetics indicate that the coupled product prefers to remain as a metal olefin complex, consistent with the earlier experimental reports.

  13. Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

    NASA Astrophysics Data System (ADS)

    Corcione, C. Esposito; Acocella, Maria Rosaria; Giuri, Antonella; Maffezzoli, Alfonso; Guerra, Gaetano

    2015-12-01

    A significant effort was directed to the synthesis of graphene stacks/epoxy nanocomposites and to the analysis of the effect of a graphene precursor on cure reaction of a model epoxy matrix. A comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO were conducted. The main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxy resins. The higher Tg values previously observed for low curing temperatures, for epoxy resins with graphite-based nanofillers, were easily rationalized by a catalytic activity of graphitic layers on the reaction between the epoxy and amine groups of the resin, which leads to higher crosslinking density in milder conditions. A kinetic analysis of the cure mechanism of the epoxy resin associated to the catalytical activity of the graphite based filler was performed by isothermal DSC measurements. The DSC results showed that the addition of graphite based filler greatly increased the enthalpy of epoxy reaction and the reaction rate, confirming the presence of a catalytic activity of graphitic layers on the crosslinking reaction between the epoxy resin components (epoxide oligomer and di-amine). A kinetic modelling analysis, arising from an auto-catalyzed reaction mechanism, was finally applied to isothermal DSC data, in order to predict the cure mechanism of the epoxy resin in presence of the graphite based nanofiller.

  14. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers with Isotopically-Labeled Grignard Reagents

    PubMed Central

    2015-01-01

    In this manuscript we highlight the potential of stereospecific nickel-catalyzed cross-coupling reactions for applications in the pharmaceutical industry. Using an inexpensive and sustainable nickel catalyst, we report a gram-scale Kumada cross-coupling reaction. Reactions are highly stereospecific and proceed with inversion at the benzylic position. We also expand the scope of our reaction to incorporate isotopically labeled substituents. PMID:27458328

  15. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts.

    PubMed

    Han, Fu-She

    2013-06-21

    In the transition-metal-catalyzed cross-coupling reactions, the use of the first row transition metals as catalysts is much more appealing than the precious metals owing to the apparent advantages such as cheapness and earth abundance. Within the last two decades, particularly the last five years, explosive interests have been focused on the nickel-catalyzed Suzuki-Miyaura reactions. This has greatly advanced the chemistry of transition-metal-catalyzed cross-coupling reactions. Most notably, a broad range of aryl electrophiles such as phenols, aryl ethers, esters, carbonates, carbamates, sulfamates, phosphates, phosphoramides, phosphonium salts, and fluorides, as well as various alkyl electrophiles, which are conventionally challenging, by applying palladium catalysts can now be coupled efficiently with boron reagents in the presence of nickel catalysts. In this review, we would like to summarize the progress in this reaction.

  16. Non-Precious Metals Catalyze Formal [4 + 2] Cycloaddition Reactions of 1,2-Diazines and Siloxyalkynes under Ambient Conditions

    PubMed Central

    2015-01-01

    Copper(I) and nickel(0) complexes catalyze the formal [4 + 2] cycloaddition reactions of 1,2-diazines and siloxyalkynes, a reaction hitherto best catalyzed by silver salts. These catalysts based on earth abundant metals are not only competent, but the copper catalyst, in particular, promotes cycloadditions of pyrido[2,3-d]pyridazine and pyrido[3,4-d]pyridazine, enabling a new synthesis of quinoline and isoquinoline derivatives, as well as the formal [2 + 2] cycloaddition reaction of cyclohexenone with a siloxyalkyne. PMID:24911346

  17. Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Liu, Cunfu; Yu, Tingting; Li, Xiaoqian

    2013-02-01

    Mineral-catalyzed Fenton-like oxidation of chlorinated ethylenes is an attractive technique for in situ soil and groundwater remediation. Stable carbon isotope enrichment factors associated with magnetite-catalyzed Fenton-like oxidation of trichloroethylene (TCE) have been determined, to study the possibility of applying stable carbon isotope analysis as a technique to assess the efficacy of remediation implemented by Fenton-like oxidation. The carbon enrichment factors (ɛ values) ranged from - 2.7‰ to - 3.6‰ with a mean value of - 3.3 ± 0.3‰, and only small differences were observed for different initial reactive conditions. The ɛ values were robust and reproducible, and were relatively insensitive to a number of environmental factors such as ratios of reactants and PCE co-contamination, which can reduce the uncertainty associated with application of isotope enrichment factors for quantification of in situ remediation by Fenton-like reaction. ɛ values for Fenton-like oxidation of TCE were intermediate in those previously reported for aerobic biological processes (ɛ = - 1.1 to - 20.7‰). Thus, field-derived ɛ values that are more negative than those for Fenton-like oxidation, may indicate the occurrence of aerobic biodegradation at contaminated sites undergoing in situ remediation with Fenton-like reaction. However, stable carbon isotope analysis is unable to determine whether there is the occurrence of biodegradation processes if field-derived ɛ values are less negative than those for Fenton-like oxidation.

  18. Nitrous Oxide-dependent Iron-catalyzed Coupling Reactions of Grignard Reagents.

    PubMed

    Döhlert, Peter; Weidauer, Maik; Enthaler, Stephan

    2015-01-01

    The formation of carbon-carbon bonds is one of the fundamental transformations in chemistry. In this regard the application of palladium-based catalysts has been extensively investigated during recent years, but nowadays research focuses on iron catalysis, due to sustainability, costs and toxicity issues; hence numerous examples for iron-catalyzed cross-coupling reactions have been established, based on the coupling of electrophiles (R(1)-X, X = halide) with nucleophiles (R(2)-MgX). Only a small number of protocols deals with the iron-catalyzed oxidative coupling of nucleophiles (R(1)-MgX + R(2)-MgX) with the aid of oxidants (1,2-dihaloethanes). However, some issues arise with these oxidants; hence more recently the potential of the industrial waste product nitrous oxide (N(2)O) was investigated, because the unproblematic side product N(2) is formed. Based on that, we demonstrate the catalytic potential of easily accessible iron complexes in the oxidative coupling of Grignard reagents. Importantly, nitrous oxide was essential to obtain yields up to >99% at mild conditions (e.g. 1 atm, ambient temperature) and low catalyst loadings (0.1 mol%) Excellent catalyst performance is realized with turnover numbers of up to 1000 and turnover frequencies of up to 12000 h(-1). Moreover, a good functional group tolerance is observed (e.g. amide, ester, nitrile, alkene, alkyne). Afterwards the reaction of different Grignard reagents revealed interesting results with respect to the selectivity of cross-coupling product formation.

  19. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis.

  20. A two-dimensional energy surface of the phosphoryl transfer reaction catalyzed by phosphoserine phosphatase

    NASA Astrophysics Data System (ADS)

    Re, Suyong; Jung, Jaewoon; Ten-no, Seiichiro; Sugita, Yuji

    2009-10-01

    The phosphoryl transfer reaction from phospho- L-serine (pSer), catalyzed by phosphoserine phosphatase, is investigated using the hybrid quantum mechanics/molecular mechanics calculations. The two-dimensional energy surface along the phosphoryl and proton transfer distances reveals early protonation of the leaving group oxygen of pSer, prior to the transition state (TS), which triggers subsequent phosphoryl transfer reaction. Calculated electronic properties of the phosphoryl group at the active site suggest significant metaphosphate-like character of TS, which is consistent with kinetic experiments on related phosphatases. The features are not obtained with a one-dimensional search along the phosphoryl transfer coordinate, due to inadequate description of proton movement.

  1. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  2. Car--Parrinello Molecular Dynamics Study of Base-Catalyzed Hydrolysis Reactions

    NASA Astrophysics Data System (ADS)

    Alnemrat, Sufian; Vasiliev, Igor; Wang, Haobin

    2011-03-01

    We apply the first principles metadynamics simulation technique implemented in the Car-Parrinello molecular dynamics package to study the base-catalyzed hydrolysis of N-methylacetamide in aqueous solution. Our calculations are carried out in the framework of density functional theory combined with the hybrid BLYP exchange-correlation functional The free energy surfaces and hydrolysis reaction pathways for N-methylacetamide are examined in the presence of a hydroxide ion, and 4, 32, and 64 water molecules. We find that at least 32 water molecules must be explicitly included in metadynamics simulations to accurately describe the mechanism of the hydrolysis reaction of N-Methylacetamide. Our theoretical estimate for the dissociation energy of N-Methylacetamide is in good agreement with the results of previous experimental and theoretical studies. Supported by LANL-NMSU MOU.

  3. Gold-Catalyzed Reactions via Cyclopropyl Gold Carbene-like Intermediates.

    PubMed

    Dorel, Ruth; Echavarren, Antonio M

    2015-08-07

    Cycloisomerizations of 1,n-enynes catalyzed by gold(I) proceed via electrophilic species with a highly distorted cyclopropyl gold(I) carbene-like structure, which can react with different nucleophiles to form a wide variety of products by attack at the cyclopropane or the carbene carbons. Particularly important are reactions in which the gold(I) carbene reacts with alkenes to form cyclopropanes either intra- or intermolecularly. In the absence of nucleophiles, 1,n-enynes lead to a variety of cycloisomerized products including those resulting from skeletal rearrangements. Reactions proceeding through cyclopropyl gold(I) carbene-like intermediates are ideally suited for the bioinspired synthesis of terpenoid natural products by the selective activation of the alkyne in highly functionalized enynes or polyenynes.

  4. Progress of Chiral Schiff Bases with C1 Symmetry in Metal-Catalyzed Asymmetric Reactions.

    PubMed

    Hayashi, Masahiko

    2016-12-01

    In this Personal Account, various chiral Schiff base-metal-catalyzed enantioselective organic reactions are reported; the Schiff bases used were O,N,O- as well as N,N,P-tridentate ligands and N,N-bidentate ligands having C1 symmetry. In particular, the enantioselective addition of trimethylsilyl cyanide, dialkylzinc, and organozinc halides to aldehydes, enantioselective 1,4-addition of dialkylzinc to cyclic and acyclic enones, and asymmetric allylic oxidation are reported. Typically, ketimine-type Schiff base-metal complexes exhibited higher reactivity and enantioselectivity compared with the corresponding aldimine-type Schiff base-metal complexes. Notably, remarkable ligand acceleration was observed for all reactions. The obtained products can be used as key intermediates for optically active natural products and pharmaceuticals.

  5. The Onset Of Fluctuations In The Ferroin-Catalyzed Belousov-Zhabotinski Reaction

    NASA Astrophysics Data System (ADS)

    Hastings, Harold M.; Sobel, Sabrina G.; Fenton, Flavio H.; Chaterpaul, Stephen; Frank, Claudia; Pekor, Jordan; Russell, Elizabeth

    2003-08-01

    We report on an experimental study of the onset of target waves in the ferroin-catalyzed Belousov-Zhabotinski (BZ) reaction. In the cardiac electrical system, another excitable medium, spontaneous activity can initiate ventricular tachycardia by interacting with normal or other spontaneous electrical activity to generate spiral waves. In normal hearts, these spiral waves generally break down to cause ventricular fibrillation (VF), leading to sudden cardiac death. Our results for the BZ reaction: (1) centers of target waves are spatially correlated, with the correlation likely due to mixing effects and long range modes arising in the "clocking phase", (2) activitations begin after concentrations track an equilibrium through a Hopf bifurcation into an unstable "supercritical" state, (3) allowing very small fluctuations can generate targets.

  6. Dynamics of the onset of target waves in the ferroin-catalyzed Belousov-Zhabotinski reaction

    NASA Astrophysics Data System (ADS)

    Hastings, Harold M.; Sobel, Sabrina G.; Chaterpaul, Stephen; Frank, Claudia; Pekor, Jordan; Russell, Elizabeth; Fenton, Flavio

    2002-03-01

    We report on an experimental study of the onset of target waves in the excitable ferroin-catalyzed Belousov-Zhabotinski (BZ) reaction. In the cardiac electrical system, another excitable medium, the onset of spontaneous activity can initiate ventricular tachycardia by interacting with normal or other spontaneous electrical activity to generate spiral waves. In normal hearts, these spiral waves then generally break down to cause ventricular fibrillation (VF), and thus sudden cardiac death. Our results for the BZ reaction: (1) the onset of activity is a complex, multi-scale process, (2) centers of target waves are spatially correlated, (3) there are several spatial scales in the mm range, larger than the critical radius and the diffusion scale, and (4) simulations suggest how a chemical amplifier, suggested previously as a mechanism for microscopic fluctuations to generate chemical chaos [N Ganapathisubramanian and RM Noyes, J. Phys. Chem 76, 1770 (1982)], might play a similar role in the onset of activity.

  7. Gold-Catalyzed Reactions via Cyclopropyl Gold Carbene-like Intermediates

    PubMed Central

    2015-01-01

    Cycloisomerizations of 1,n-enynes catalyzed by gold(I) proceed via electrophilic species with a highly distorted cyclopropyl gold(I) carbene-like structure, which can react with different nucleophiles to form a wide variety of products by attack at the cyclopropane or the carbene carbons. Particularly important are reactions in which the gold(I) carbene reacts with alkenes to form cyclopropanes either intra- or intermolecularly. In the absence of nucleophiles, 1,n-enynes lead to a variety of cycloisomerized products including those resulting from skeletal rearrangements. Reactions proceeding through cyclopropyl gold(I) carbene-like intermediates are ideally suited for the bioinspired synthesis of terpenoid natural products by the selective activation of the alkyne in highly functionalized enynes or polyenynes. PMID:26061916

  8. Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions

    SciTech Connect

    Zhai, Y.; Pierre, D; Si, R; Deng, W; Ferrin, P; Nilekar, A; Peng, G; Herron, J; Bell, D; et. al.

    2010-01-01

    We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H{sub 2}O + CO {yields} H{sub 2} + CO{sub 2}) used for producing H{sub 2}. The alkali ion-associated surface OH groups are activated by CO at low temperatures ({approx}100 C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O{sub x}(OH){sub y} species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

  9. PtI2-catalyzed tandem 3,3-rearrangement/Nazarov reaction of arylpropargylic esters: synthesis of indanone derivatives.

    PubMed

    Zheng, Huaiji; Xie, Xingang; Yang, Juan; Zhao, Changgui; Jing, Peng; Fang, Bowen; She, Xuegong

    2011-10-26

    An efficient PtI(2)-catalyzed tandem reaction of arylpropargylic esters, involving 3,3-rearrangement and Nazarov reaction, has been developed to produce 3-substituted and 3,3-disubstituted indanone derivatives. This approach provided a pathway to the synthesis of indanone skeletons in natural products.

  10. Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction.

    PubMed

    Muntzeck, Maren; Wilhelm, René

    2016-06-01

    A three-component oxidative dehydrogenation tandem reaction via the coupling and hydroarylation of benzaldehyde, aniline and phenylacetylene to a quinoline derivate was catalyzed by an iron-containing ionic liquid. The reaction was air mediated and could be performed under neat conditions. The iron(III) of the ionic liquid was the oxidizing species.

  11. Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction

    PubMed Central

    Muntzeck, Maren; Wilhelm, René

    2016-01-01

    A three-component oxidative dehydrogenation tandem reaction via the coupling and hydroarylation of benzaldehyde, aniline and phenylacetylene to a quinoline derivate was catalyzed by an iron-containing ionic liquid. The reaction was air mediated and could be performed under neat conditions. The iron(III) of the ionic liquid was the oxidizing species. PMID:27258264

  12. In(III)-catalyzed tandem reaction of chromone-derived Morita-Baylis-Hillman alcohols with amines.

    PubMed

    Wu, Chen; Liu, Yuliang; Zeng, Hao; Liu, Li; Wang, Dong; Chen, Yongjun

    2011-01-07

    The reaction of chromone-derived cyclic Morita-Baylis-Hillman alcohols with amines catalyzed by In(OTf)(3) in a one pot process was developed for the convenient and efficient synthesis of 2-substituted-3-aminomethylenechromans. The tandem allylic amination/chromen ring-opening/Michael cyclization reactions were involved in this protocol.

  13. The First Example of Nickel-Catalyzed Silyl-Heck Reactions: Direct Activation of Silyl Triflates Without Iodide Additives

    PubMed Central

    McAtee, Jesse R.; Martin, Sara E. S.; Cinderella, Andrew P.; Reid, William B.; Johnson, Keywan A.

    2014-01-01

    For the first time, nickel-catalyzed silyl-Heck reactions are reported. Using simple phosphine-supported nickel catalysts, direct activation of silyl triflates has been achieved. These results contrast earlier palladium-catalyzed systems, which require iodide additives to activate silyl-triflates. These nickel-based catalysts exhibit good functional group tolerance in the preparation of vinyl silanes, and unlike earlier systems, allows for the incorporation of trialkylsilanes larger than Me3Si. PMID:24914247

  14. Palladium-Catalyzed Cross-Coupling Reactions of Organosilanols and their Salts

    PubMed Central

    Denmark, Scott E.; Regens, Christopher S.

    2009-01-01

    Conspectus In the panoply of modern synthetic methods for forming carbon-carbon and carbon-heteroatom bonds, the transition metal-catalyzed cross coupling of organometallic nucleophiles with organic electrophiles enjoys a preeminent status. The preparative utility of these reactions is, in large measure, a consequence of the wide variety of organometallic donors that have been conscripted into service. The most common of these reagents are organic derivatives of tin, boron, and zinc, which each possess unique advantages and shortcomings. Because of their low cost, low toxicity, and high chemical stability, organosilanes have emerged as viable alternatives to the conventional reagents in recent years. However, unlike the tin- and zinc-based reactions that require no activation or the boron-based reactions that require only heating with mild bases, silicon-based cross-coupling reactions often require heating in the presence of a fluoride source; this has significantly hampered the widespread acceptance of organosilanes. To address the “fluoride problem”, we have introduced a new paradigm for palladium-catalyzed, silicon-based cross-coupling reactions that employs organosilanols, a previously underutilized class of silicon reagents. The use of organosilanols either in the presence of Brønsted bases or as their silanolate salts represents a simple and mild alternative to the classic fluoride-based activation method. Organosilanols are easily available by many well-established methods for introducing carbon-silicon bonds onto alkenes, alkynes and arenes, and heteroarenes. Moreover, we have developed four different protocols for the generation of alkali metal salts of, vinyl-, alkenyl-, alkynyl-, aryl-, and heteroarylsilanolates: (1) reversible deprotonation with weak Brønsted bases, (2) irreversible deprotonation with strong Brønsted bases, (3) isolation of the salts from irreversible deprotonation, and (4) silanolate exchange with disiloxanes. We have

  15. Differential quantum tunneling contributions in nitroalkane oxidase catalyzed and the uncatalyzed proton transfer reaction

    PubMed Central

    Major, Dan T.; Heroux, Annie; Orville, Allen M.; Valley, Michael P.; Fitzpatrick, Paul F.; Gao, Jiali

    2009-01-01

    The proton transfer reaction between the substrate nitroethane and Asp-402 catalyzed by nitroalkane oxidase and the uncatalyzed process in water have been investigated using a path-integral free-energy perturbation method. Although the dominating effect in rate acceleration by the enzyme is the lowering of the quasiclassical free energy barrier, nuclear quantum effects also contribute to catalysis in nitroalkane oxidase. In particular, the overall nuclear quantum effects have greater contributions to lowering the classical barrier in the enzyme, and there is a larger difference in quantum effects between proton and deuteron transfer for the enzymatic reaction than that in water. Both experiment and computation show that primary KIEs are enhanced in the enzyme, and the computed Swain-Schaad exponent for the enzymatic reaction is exacerbated relative to that in the absence of the enzyme. In addition, the computed tunneling transmission coefficient is approximately three times greater for the enzyme reaction than the uncatalyzed reaction, and the origin of the difference may be attributed to a narrowing effect in the effective potentials for tunneling in the enzyme than that in aqueous solution. PMID:19926855

  16. Kinetic analysis of the transglycosidation reaction catalyzed by rabbit spleen pyridine nucleotide glycohydrolase.

    PubMed

    Imai, T

    1989-11-01

    Properties of the transglycosidation reaction catalyzed by rabbit spleen pyridine nucleotide glycohydrolase were characterized using a modified cyanide addition method by which initial velocities of the transglycosidation (vT) and hydrolysis (vH) of pyridine nucleotides could be monitored simultaneously. (1) The vT was routinely determined with NMN and nicotinic acid used as substrates and was observed to be maximal at pH 6. Arrhenius plots of vT and vH indicated that the activation energies for transglycosidation and hydrolysis were 8.7 and 10.7 kcal/mol, respectively. (2) The enzyme showed a broad spectrum of substrate specificity with respect to both pyridine nucleotides and bases. Of the compounds tested, NMN and nicotinic acid were shown to be the best substrates when compared on the basis of Vmax/Km values. Kinetic constants for the enzyme-catalyzed transglycosidation reaction were as follows; Km(NMN) = 0.53 mM, Km(nicotinic acid), as acid form = 15 mM, apparent Vmax = 7.8 mumol/min/mg protein, in the presence of 0.2 M nicotinic acid. (3) The ratio of vT/vH was shown to be dependent on both pH and nicotinic acid concentration. However, transglycosidation versus hydrolysis partition at a fixed pH was constant regardless of the nicotinic acid concentration employed and approximated to be 1.2 x 10(4) at the maximal pH. (4) Nicotinamide, one of the most potent inhibitors for the enzyme-catalyzed hydrolysis, was shown to function as an antagonist for the transglycosidation reaction with NMN and nicotinic acid used as substrates. The inhibition mechanism with nicotinamide was purely noncompetitive with respect to nicotinic acid; on the other hand, the double reciprocal plot of the transglycosidation velocity against NMN concentration at a fixed concentration of nicotinamide was concave downwards. (5) The equilibrium constant of the reaction, NMN + 3-acetylpyridine----3-acetylpyridine mononucleotide + nicotinamide, was 0.61, whereas the conversion of NMN with

  17. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions.

    PubMed

    Matsui, Toshitaka; Unno, Masaki; Ikeda-Saito, Masao

    2010-02-16

    Heme oxygenase (HO) is an enzyme that catalyzes the regiospecific conversion of heme to biliverdin IXalpha, CO, and free iron. In mammals, HO has a variety of physiological functions, including heme catabolism, iron homeostasis, antioxidant defense, cellular signaling, and O(2) sensing. The enzyme is also found in plants (producing light-harvesting pigments) and in some pathogenic bacteria, where it acquires iron from the host heme. The HO-catalyzed heme conversion proceeds through three successive oxygenations, a process that has attracted considerable attention because of its reaction mechanism and physiological importance. The HO reaction is unique in that all three O(2) activations are affected by the substrate itself. The first step is the regiospecific self-hydroxylation of the porphyrin alpha-meso carbon atom. The resulting alpha-meso-hydroxyheme reacts in the second step with another O(2) to yield verdoheme and CO. The third O(2) activation, by verdoheme, cleaves its porphyrin macrocycle to release biliverdin and free ferrous iron. In this Account, we provide an overview of our current understanding of the structural and biochemical properties of the complex self-oxidation reactions in HO catalysis. The first meso-hydroxylation is of particular interest because of its distinct contrast with O(2) activation by cytochrome P450. Although most heme enzymes oxidize exogenous substrates by high-valent oxo intermediates, HO was proposed to utilize the Fe-OOH intermediate for the self-hydroxylation. We have succeeded in preparing and characterizing the Fe-OOH species of HO at low temperature, and an analysis of its reaction, together with mutational and crystallographic studies, reveals that protonation of Fe-OOH by a distal water molecule is critical in promoting the unique self-hydroxylation. The second oxygenation is a rapid, spontaneous auto-oxidation of the reactive alpha-meso-hydroxyheme; its mechanism remains elusive, but the HO enzyme has been shown not to

  18. Highly efficient C-C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework.

    PubMed

    Hara, Takayoshi; Kanai, Satoko; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2006-09-15

    A calcium vanadate apatite (VAp), in which PO4(3-) of hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is completely substituted by VO4(3-) in the apatite framework, was synthesized. Physicochemical analysis of the VAp reveals the presence of isolated VO4 tetrahedron units with a pentavalent oxidation state. The VAp acts as a high-performance heterogeneous base catalyst for various carbon-carbon bond-forming reactions such as Michael and aldol reactions in aqueous media and the H-D exchange reactions using deuterium oxide. For example, a 200-mmol-scale Michael reaction under triphasic conditions proceeded rapidly, with an extremely high turnover number of up to 260 400 and an excellent turnover frequency of 48 s(-1). No vanadium leaching was detected during the above reactions, and the catalyst was readily recycled with no loss of activity.

  19. Effect of osmolytes on protein dynamics in the lactate dehydrogenase-catalyzed reaction.

    PubMed

    Zhadin, Nickolay; Callender, Robert

    2011-03-15

    Laser-induced temperature jump relaxation spectroscopy was used to probe the effect of osmolytes on the microscopic rate constants of the lactate dehydrogenase-catalyzed reaction. NADH fluorescence and absorption relaxation kinetics were measured for the lactate dehydrogenase (LDH) reaction system in the presence of varying amounts of trimethylamine N-oxide (TMAO), a protein-stabilizing osmolyte, or urea, a protein-destabilizing osmolyte. Trimethylamine N-oxide (TMAO) at a concentration of 1 M strongly increases the rate of hydride transfer, nearly nullifies its activation energy, and also slightly increases the enthalpy of hydride transfer. In 1 M urea, the hydride transfer enthalpy is almost nullified, but the activation energy of the step is not affected significantly. TMAO increases the preference of the closed conformation of the active site loop in the LDH·NAD(+)·lactate complex; urea decreases it. The loop opening rate in the LDH·NADH·pyruvate complex changes its temperature dependence to inverse Arrhenius with TMAO. In this complex, urea accelerates the loop motion, without changing the loop opening enthalpy. A strong, non-Arrhenius decrease in the pyruvate binding rate in the presence of TMAO offers a decrease in the fraction of the open loop, pyruvate binding competent form at higher temperatures. The pyruvate off rate is not affected by urea but decreases with TMAO. Thus, the osmolytes strongly affect the rates and thermodynamics of specific events along the LDH-catalyzed reaction: binding of substrates, loop closure, and the chemical event. Qualitatively, these results can be understood as an osmolyte-induced change in the energy landscape of the protein complexes, shifting the conformational nature of functional substates within the protein ensemble.

  20. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA.

  1. Biocatalytic carbon capture via reversible reaction cycle catalyzed by isocitrate dehydrogenase.

    PubMed

    Xia, Shunxiang; Frigo-Vaz, Benjamin; Zhao, Xueyan; Kim, Jungbae; Wang, Ping

    2014-09-12

    The practice of carbon capture and storage (CCS) requires efficient capture and separation of carbon dioxide from its gaseous mixtures such as flue gas, followed by releasing it as a pure gas which can be subsequently compressed and injected into underground storage sites. This has been mostly achieved via reversible thermochemical reactions which are generally energy-intensive. The current work examines a biocatalytic approach for carbon capture using an NADP(H)-dependent isocitrate dehydrogenase (ICDH) which catalyzes reversibly carboxylation and decarboxylation reactions. Different from chemical carbon capture processes that rely on thermal energy to realize purification of carbon dioxide, the biocatalytic strategy utilizes pH to leverage the reaction equilibrium, thereby realizing energy-efficient carbon capture under ambient conditions. Results showed that over 25 mol of carbon dioxide could be captured and purified from its gas mixture for each gram of ICDH applied for each carboxylation/decarboxylation reaction cycle by varying pH between 6 and 9. This work demonstrates the promising potentials of pH-sensitive biocatalysis as a green-chemistry route for carbon capture.

  2. Application of Grote-Hynes theory to the reaction catalyzed by thymidylate synthase.

    PubMed

    Kanaan, Natalia; Roca, Maite; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2010-10-28

    A theoretical study of dynamic effects on the rate-limiting step of the thymidylate synthase catalyzed reaction has been carried out by means of Grote-Hynes theory, successfully predicting the values of the recrossing effects for a chemical reaction that involves the transfer of a classical light particle. The transmission coefficients, obtained at 278, 293, 303, and 313 K, are almost invariant and in all cases far from unity, revealing a significant coupling of the environment motions and the reaction coordinate. Nevertheless, their energetic contribution to the activation free energy represents less than 0.50 kcal/mol for each of the four tested temperatures. Calculation of the transmission coefficient for the isotopically labeled hydride transfer has rendered almost the same values, in agreement with the experimentally observed temperature-independent KIEs. Fourier transform of the time-dependent friction kernel at these four temperatures has allowed obtaining the transition-state friction spectra, which present very small dependence with temperature. Their analysis has led to the identification of some key vibrational modes governing the coupling between the reaction coordinate and the protein environment, thus identifying the relevant motions in the active site and obtaining a full picture of the role of each amino acid.

  3. Fenton-Like Reaction Catalyzed by the Rare Earth Inner Transition Metal Cerium

    PubMed Central

    HECKERT, ERIC G.; SEAL, SUDIPTA; SELF, WILLIAM T.

    2011-01-01

    Cerium (Ce) is a rare earth metal that is not known to have any biological role. Cerium oxide materials of several sizes and shapes have been developed in recent years as a scaffold for catalysts. Indeed even cerium oxide nanoparticles themselves have displayed catalytic activities and antioxidant properties in tissue culture and animal models. Because of ceria's ability to cycle between the +3 and +4 states at oxygen vacancy sites, we investigated whether cerium metal would catalyze a Fenton-like reaction with hydrogen peroxide. Indeed, cerium chloride did exhibit radical production in the presence of hydrogen peroxide, as assessed by relaxation of supercoiled plasmid DNA. Radical production in this reaction was also followed by production of radical cation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Radical scavengers and spin traps were capable of competing with ABTS for radicals produced in this cerium dependent Fenton-like reaction. Electron paramagnetic resonance experiments reveal both hydroxyl radical and superoxide anion in a reaction containing cerium and hydrogen peroxide. Based on these results we propose that cerium is capable of redox-cycling with peroxide to generate damaging oxygen radicals. PMID:18678042

  4. Reaction rate modeling in cryoconcentrated solutions: alkaline phosphatase catalyzed DNPP hydrolysis.

    PubMed

    Champion, D; Blond, G; Le Meste, M; Simatos, D

    2000-10-01

    The hydrolysis of disodium p-nitrophenyl phosphate catalyzed by alkaline phosphatase was chosen as a model to study the kinetics of changes in frozen food products. The initial reaction rate was determined in concentrated sucrose solutions down to -24 degrees C, and the enzymatic characteristics K(M) and V(max) were calculated. The experimental data were compared to the kinetics predicted by assuming that the reaction was viscosity dependent. Indeed, an analysis of the enzymatic reaction demonstrated that both the diffusion of the substrate and the flexibility of the enzyme segments were controlled by the high viscosity of the media. When the temperature was too low for the viscosity to be measured simply, the Williams-Landel-Ferry equation was used to predict the viscosity, taking, as reference temperature, the glass transition temperature (T(g)) corresponding to the concentration of the freeze-concentrated phase at the test temperature. Predicted values of the reaction rate were very close to the experimental ones in the studied temperature range.

  5. Biocatalytic Synthesis of Allylic and Allenyl Sulfides through a Myoglobin-Catalyzed Doyle-Kirmse Reaction.

    PubMed

    Tyagi, Vikas; Sreenilayam, Gopeekrishnan; Bajaj, Priyanka; Tinoco, Antonio; Fasan, Rudi

    2016-10-17

    The first example of a biocatalytic [2,3]-sigmatropic rearrangement reaction involving allylic sulfides and diazo reagents (Doyle-Kirmse reaction) is reported. Engineered variants of sperm whale myoglobin catalyze this synthetically valuable C-C bond-forming transformation with high efficiency and product conversions across a variety of sulfide substrates (e.g., aryl-, benzyl-, and alkyl-substituted allylic sulfides) and α-diazo esters. Moreover, the scope of this myoglobin-mediated transformation could be extended to the conversion of propargylic sulfides to give substituted allenes. Active-site mutations proved effective in enhancing the catalytic efficiency of the hemoprotein in these reactions as well as modulating the enantioselectivity, resulting in the identification of the myoglobin variant Mb(L29S,H64V,V68F), which is capable of mediating asymmetric Doyle-Kirmse reactions with an enantiomeric excess up to 71 %. This work extends the toolbox of currently available biocatalytic strategies for the asymmetric formation of carbon-carbon bonds.

  6. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium.

    PubMed

    Heckert, Eric G; Seal, Sudipta; Self, William T

    2008-07-01

    Cerium (Ce) is a rare earth metal that is not known to have any biological role. Cerium oxide materials of several sizes and shapes have been developed in recent years as a scaffold for catalysts. Indeed even cerium oxide nanoparticles themselves have displayed catalytic activities and antioxidant properties in tissue culture and animal models. Because of ceria's ability to cycle between the +3 and +4 states at oxygen vacancy sites, we investigated whether cerium metal would catalyze a Fenton-like reaction with hydrogen peroxide. Indeed, cerium chloride did exhibit radical production in the presence of hydrogen peroxide, as assessed by relaxation of supercoiled plasmid DNA. Radical production in this reaction was also followed by production of radical cation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Radical scavengers and spin traps were capable of competing with ABTS for radicals produced in this cerium dependent Fenton-like reaction. Electron paramagnetic resonance experiments reveal both hydroxyl radical and superoxide anion in a reaction containing cerium and hydrogen peroxide. Based on these results we propose that cerium is capable of redox-cycling with peroxide to generate damaging oxygen radicals.

  7. Cinchona Alkaloid Catalyzed Sulfa-Michael Addition Reactions Leading to Enantiopure β-Functionalized Cysteines.

    PubMed

    Breman, Arjen C; Telderman, Suze E M; van Santen, Roy P M; Scott, Jamie I; van Maarseveen, Jan H; Ingemann, Steen; Hiemstra, Henk

    2015-11-06

    Sulfa-Michael additions to α,β-unsaturated N-acylated oxazolidin-2-ones and related α,β-unsaturated α-amino acid derivatives have been enantioselectively catalyzed by Cinchona alkaloids functionalized with a hydrogen bond donating group at the C6' position. The series of Cinchona alkaloids includes known C6' (thio)urea and sulfonamide derivatives and several novel species with a benzimidazole, squaramide or a benzamide group at the C6' position. The sulfonamides were especially suited as bifunctional organocatalysts as they gave the products in very good diastereoselectivity and high enantioselectivity. In particular, the C6' sulfonamides catalyzed the reaction with the α,β-unsaturated α-amino acid derivatives to afford the products in a diastereomeric ratio as good as 93:7, with the major isomer being formed in an ee of up to 99%. The products of the organocatalytic sulfa-Michael addition to α,β-unsaturated α-amino acid derivatives were subsequently converted in high yields to enantiopure β-functionalized cysteines suitable for native chemical ligation.

  8. Evidence for coupled motion and hydrogen tunneling of the reaction catalyzed by glutamate mutase.

    PubMed

    Cheng, Mou-Chi; Marsh, E Neil G

    2007-01-23

    Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze unusual isomerizations that proceed through organic radical intermediates generated by homolytic fission of the coenzyme's unique cobalt-carbon bond. These enzymes are part of a larger family of enzymes that catalyze radical chemistry in which a key step is the abstraction of a hydrogen atom from an otherwise inert substrate. To gain insight into the mechanism of hydrogen transfer, we previously used pre-steady-state, rapid-quench techniques to measure the alpha-secondary tritium kinetic and equilibrium isotope effects associated with the formation of 5'-deoxyadenosine when glutamate mutase was reacted with [5'-(3)H]adenosylcobalamin and L-glutamate. We showed that both the kinetic and equilibrium isotope effects are large and inverse, 0.76 and 0.72, respectively. We have now repeated these measurements using glutamate deuterated in the position of hydrogen abstraction. The effect of introducing a primary deuterium kinetic isotope effect on the hydrogen transfer step is to reduce the magnitude of the secondary kinetic isotope effect to a value close to unity, 1.05 +/- 0.08, whereas the equilibrium isotope effect is unchanged. The significant reduction in the secondary kinetic isotope effect is consistent with motions of the 5'-hydrogen atoms being coupled in the transition state to the motion of the hydrogen undergoing transfer, in a reaction that involves a large degree of quantum tunneling.

  9. Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate

    PubMed Central

    Fructos, Manuel R; Urbano, Juan

    2015-01-01

    Summary Kinetic experiments based on the measurement of nitrogen evolution in the reaction of ethyl diazoacetate (N2CHCO2Et, EDA) and styrene or methanol catalyzed by the [IPrAu]+ core (IPr = 1,3-bis(diisopropylphenyl)imidazole-2-ylidene) have provided evidence that the transfer of the carbene group CHCO2Et to the substrate (styrene or methanol) takes place in the coordination sphere of Au(I) by means of an inner-sphere mechanism, in contrast to the generally accepted proposal of outer-sphere mechanisms for Au(I)-catalyzed reactions. PMID:26664649

  10. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction".

    PubMed

    Jin, Liqun; Tolentino, Daniel R; Melaimi, Mohand; Bertrand, Guy

    2015-06-01

    The copper-catalyzed 1,3-dipolar cycloaddition of an azide to a terminal alkyne (CuAAC) is one of the most popular chemical transformations, with applications ranging from material to life sciences. However, despite many mechanistic studies, direct observation of key components of the catalytic cycle is still missing. Initially, mononuclear species were thought to be the active catalysts, but later on, dinuclear complexes came to the front. We report the isolation of both a previously postulated π,σ-bis(copper) acetylide and a hitherto never-mentioned bis(metallated) triazole complex. We also demonstrate that although mono- and bis-copper complexes promote the CuAAC reaction, the dinuclear species are involved in the kinetically favored pathway.

  11. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    SciTech Connect

    Andrews, Mark

    1997-01-08

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  12. Multiple mechanisms in Pd(II)-catalyzed S(N)2' reactions of allylic alcohols.

    PubMed

    Ghebreghiorgis, Thomas; Kirk, Brian H; Aponick, Aaron; Ess, Daniel H

    2013-08-02

    Density functional calculations and experiments were used to examine mechanisms of Pd(II) catalyzed intramolecular cyclization and dehydration in acyclic and bicyclic monoallylic diols, a formal S(N)2' reaction. In contrast to the previously proposed syn-oxypalladation mechanism for acyclic monoallylic diols, calculations and experiments strongly suggest that hydrogen bonding templates a hydroxyl group and Pd addition across the alkene and provides a low energy pathway via anti-addition (anti-oxypalladation) followed by intramolecular proton transfer and anti-elimination of water. This anti-addition, anti-elimination pathway also provides a simple rationale for the observed stereospecificity. For bicyclic monoallylic diol compounds, Pd(II) is capable of promoting either anti- or syn-addition. In addition, palladium chloride ligands can mediate proton transfer to promote dehydration when direct intramolecular proton transfer between diol groups is impossible.

  13. Analyzing site selectivity in Rh2(esp)2-catalyzed intermolecular C-H amination reactions.

    PubMed

    Bess, Elizabeth N; DeLuca, Ryan J; Tindall, Daniel J; Oderinde, Martins S; Roizen, Jennifer L; Du Bois, J; Sigman, Matthew S

    2014-04-16

    Predicting site selectivity in C-H bond oxidation reactions involving heteroatom transfer is challenged by the small energetic differences between disparate bond types and the subtle interplay of steric and electronic effects that influence reactivity. Herein, the factors governing selective Rh2(esp)2-catalyzed C-H amination of isoamylbenzene derivatives are investigated, where modification to both the nitrogen source, a sulfamate ester, and substrate are shown to impact isomeric product ratios. Linear regression mathematical modeling is used to define a relationship that equates both IR stretching parameters and Hammett σ(+) values to the differential free energy of benzylic versus tertiary C-H amination. This model has informed the development of a novel sulfamate ester, which affords the highest benzylic-to-tertiary site selectivity (9.5:1) observed for this system.

  14. Holliday junctions generate super-bright antibodies and antibody fragments in sortase-catalyzed reactions

    PubMed Central

    Li, Zeyang; Theile, Christopher S.; Chen, Guan-Yu; Bilate, Angelina M.; Duarte, Joao N.; Avalos, Ana M.; Fang, Tao; Barberena, Roberto; Sato, Shuji; Ploegh, Hidde L.

    2015-01-01

    Site-specific modification of proteins with fluorophores can render a protein fluorescent without compromising its function. To avoid self-quenching of multiple fluorophores installed in close proximity, we used Holliday junctions to label proteins site-specifically. Holliday junctions enable modification with multiple fluorophores at reasonably precise spacing. We designed a Holliday junction with three of its four arms modified with a fluorophore of choice and the remaining arm equipped with a dibenzocyclooctyne substituent to render it reactive with an azide-modified, fluorescent single domain antibody fragment or an intact immunoglobulin, produced in a sortase-catalyzed reaction. We conclude that fluorescent Holliday junctions improve fluorescence yields for both single domain and full-sized antibodies, without deleterious effects on antigen binding. PMID:26252716

  15. Photoinduced Vesicle Formation via the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction.

    PubMed

    Konetski, Danielle; Gong, Tao; Bowman, Christopher N

    2016-08-16

    Synthetic vesicles have a wide range of applications from drug and cosmetic delivery to artificial cell and membrane studies, making simple and controlled formation of vesicles a large focus of the field today. Here, we report the use of the photoinitiated copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using visible light to introduce spatiotemporal control into the formation of vesicles. Upon the establishment of the spatiotemporal control over vesicle formation, it became possible to adjust initiation conditions to modulate vesicle sizes resulting in the formation of controllably small or large vesicles based on light intensity or giant vesicles when the formation was initiated in flow-free conditions. Additionally, this photoinitiated method enables vesicle formation at a density 400-fold higher than initiation using sodium ascorbate as the catalyst. Together, these advances enable the formation of high-density, controlled size vesicles using low-energy wavelengths while producing enhanced control over the formation characteristics of the vesicle.

  16. Recent developments in the metal-catalyzed reactions of metallocarbenoids from propargylic esters.

    PubMed

    Marco-Contelles, José; Soriano, Elena

    2007-01-01

    The transition-metal-catalyzed intramolecular cycloisomerization of propargylic carboxylates provides functionalized bicyclo[n.1.0]enol esters in a very diastereoselective manner and, depending on the structure, with partial or complete transfer of chirality from enantiomerically pure precursors. The subsequent methanolysis gives bicyclo[n.1.0] ketones, hence resulting in a very efficient two-step protocol for the syntheses of alpha,beta-unsaturated cyclopropyl ketones, key intermediates for the preparation of natural products. The results from mechanistic computational studies suggest that they probably proceed through cyclopropyl metallocarbenoids, formed by endo-cyclopropanation, that undergo a 1,2-acyl migration. Finally, the potential of the intermolecular reaction and the related pentannulation of propargylic esters bearing pendant aromatic rings are also discussed.

  17. Isotope Effects as Probes for Enzyme Catalyzed Hydrogen-Transfer Reactions

    PubMed Central

    Roston, Daniel; Islam, Zahidul; Kohen, Amnon

    2015-01-01

    Kinetic Isotope effects (KIEs) have long served as a probe for the mechanisms of both enzymatic and solution reactions. Here, we discuss various models for the physical sources of KIEs, how experimentalists can use those models to interpret their data, and how the focus of traditional models has grown to a model that includes motion of the enzyme and quantum mechanical nuclear tunneling. We then present two case studies of enzymes, thymidylate synthase and alcohol dehydrogenase, and discuss how KIEs have shed light on the C-H bond cleavages those enzymes catalyze. We will show how the combination of both experimental and computational studieshas changed our notion of how these enzymes exert their catalytic powers. PMID:23673528

  18. Heterometallic Metal-Organic Frameworks That Catalyze Two Different Reactions Sequentially.

    PubMed

    Saha, Debraj; Hazra, Dipak K; Maity, Tanmoy; Koner, Subratanath

    2016-06-20

    A series of copper- and alkaline-earth-metal-based multidimensional metal-organic frameworks, {[CuMg(pdc)2(H2O)4]·2H2O}n (1), [CuCa(pdc)2]n (2), [CuSr(pdc)2(H2O)3]n (3), and {[CuBa(pdc)2(H2O)5]·H2O}n (4), where H2Pdc = pyridine-2,5-dicarboxylic acid, were hydrothermally synthesized and characterized. Two different metals act as the active center to catalyze two kinds of reactions, viz., olefin to its epoxide followed by epoxide ring opening to afford the corresponding vicinal diol in a sequential manner.

  19. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    SciTech Connect

    Pechurskaya, Tatiana A. . E-mail: usanov@iboch.bas-net.by

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.

  20. On the Need for Spin Polarization in Heterogeneously Catalyzed Reactions on Nonmagnetic Metallic Surfaces.

    PubMed

    Fajín, José L C; D S Cordeiro, M Natália; Gomes, José R B; Illas, Francesc

    2012-05-08

    A series of reactions including water, oxygen, hydrogen and nitric oxide dissociation and carbon monoxide or nitric oxide oxidations catalyzed by metallic surfaces have been investigated by means of periodic density functional calculations with the main aim of establishing the importance of spin polarization when the substrate is nonmagnetic. Numerical differences in the calculated total energies and bond lengths of the breaking/forming bonds corresponding to spin restricted or spin unrestricted formalisms are usually smaller than the inherent error of density functional theory based methods. Nevertheless, it is important to insist on the fact that the spin polarized solution exists and is lower in energy than the one corresponding to the spin restricted formalism, as one would expect, and from a practical point of view, results obtained without taking spin polarization into account lead to the same description of the potential energy surface.

  1. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.

    PubMed

    Somorjai, Gabor A; Bratlie, Kaitlin M; Montano, Max O; Park, Jeong Y

    2006-10-12

    The mechanism that controls bond breaking at transition metal surfaces has been studied with sum frequency generation (SFG), scanning tunneling microscopy (STM), and catalytic nanodiodes operating under the high-pressure conditions. The combination of these techniques permits us to understand the role of surface defects, surface diffusion, and hot electrons in dynamics of surface catalyzed reactions. Sum frequency generation vibrational spectroscopy and kinetic measurements were performed under 1.5 Torr of cyclohexene hydrogenation/dehydrogenation in the presence and absence of H(2) and over the temperature range 300-500 K on the Pt(100) and Pt(111) surfaces. The structure specificity of the Pt(100) and Pt(111) surfaces is exhibited by the surface species present during reaction. On Pt(100), pi-allyl c-C6H9, cyclohexyl (C6H11), and 1,4-cyclohexadiene are identified adsorbates, while on the Pt(111) surface, pi-allyl c-C6H9, 1,4-cyclohexadiene, and 1,3-cyclohexadiene are present. A scanning tunneling microscope that can be operated at high pressures and temperatures was used to study the Pt(111) surface during the catalytic hydrogenation/dehydrogenation of cyclohexene and its poisoning with CO. It was found that catalytically active surfaces were always disordered, while ordered surface were always catalytically deactivated. Only in the case of the CO poisoning at 350 K was a surface with a mobile adsorbed monolayer not catalytically active. From these results, a CO-dominated mobile overlayer that prevents reactant adsorption was proposed. By using the catalytic nanodiode, we detected the continuous flow of hot electron currents that is induced by the exothermic catalytic reaction. During the platinum-catalyzed oxidation of carbon monoxide, we monitored the flow of hot electrons over several hours using a metal-semiconductor Schottky diode composed of Pt and TiO2. The thickness of the Pt film used as the catalyst was 5 nm, less than the electron mean free path

  2. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    PubMed

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  3. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  4. Novel palladium complex-catalyzed reaction of magnesium amides with allylic electrophiles

    SciTech Connect

    Dzhemilev, U.M.; Ibragimov, A.G.; Minsker, D.L.; Muslukhov, R.R.

    1987-08-20

    In order to develop an efficient method for the synthesis of higher order unsaturated tertiary amines, and also to explore a new method for the formation of C-N bonds, they have investigated the transition metal complex-catalyzed reaction of magnesium amides with electrophiles; the electrophiles selected for study included allyl ethers and esters, as well as sulfones, sulfides and quaternized allylamines. The effects of the nature and structure of the catalyst components, as well as of the reaction conditions, on product yield were examined in the case of the reaction of diethyl (bromomagnesium)amine with diallyl ether, and revealed that the highest yield of diethylallyl-amine (I) was achieved using Pd(acac)/sub 2/ (3-5 mole %) and Ph/sub 3/P (1:2) as catalyst in THF solution at 50/sup 0/C for 5 h. Other transition metal (Ni, Fe, Zr, Ti, Cu) compounds were also examined as catalysts, but the yield of (I) did not exceed 15% with these compounds. Bimetallic catalysts based on Zr (Cp/sub 2/ZrCl, Py/sub 2/ZrCl/sub 6/, (RO)/sub 4/Zr) and Ni (Ni(acac)/sub 2/ and NiCl/sub 2/) were successful in forming (I) from diethyl (bromomagnesium)amine and diallyl ether in 60% yield.

  5. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center_dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  6. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  7. Analysis of the HindIII-catalyzed reaction by time-resolved crystallography

    SciTech Connect

    Kawamura, Takashi; Kobayashi, Tomoki; Watanabe, Nobuhisa

    2015-02-01

    A time-resolved study using the freeze-trap method elucidates the mechanism of the DNA-cleaving reaction of HindIII. In order to investigate the mechanism of the reaction catalyzed by HindIII, structures of HindIII–DNA complexes with varying durations of soaking time in cryoprotectant buffer containing manganese ions were determined by the freeze-trap method. In the crystal structures of the complexes obtained after soaking for a longer duration, two manganese ions, indicated by relatively higher electron density, are clearly observed at the two metal ion-binding sites in the active site of HindIII. The increase in the electron density of the two metal-ion peaks followed distinct pathways with increasing soaking times, suggesting variation in the binding rate constant for the two metal sites. DNA cleavage is observed when the second manganese ion appears, suggesting that HindIII uses the two-metal-ion mechanism, or alternatively that its reactivity is enhanced by the binding of the second metal ion. In addition, conformational change in a loop near the active site accompanies the catalytic reaction.

  8. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    PubMed

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation.

  9. Relative reactivity of alkenyl alcohols in the palladium-catalyzed redox-relay Heck reaction.

    PubMed

    Hilton, Margaret J; Cheng, Bin; Buckley, Benjamin R; Xu, Liping; Wiest, Olaf; Sigman, Matthew S

    2015-09-16

    The relative rates of alkenyl alcohols in the Pd-catalyzed redox-relay Heck reaction were measured in order to examine the effect of their steric and electronic properties on the rate-determining step. Competition experiments between an allylic alkenyl alcohol and two substrates with differing chain lengths revealed that the allylic alcohol reacts 3-4 times faster in either case. Competition between di- and trisubstituted alkenyl alcohols provided an interesting scenario, in which the disubstituted alkene was consumed first followed by reaction of the trisubstituted alkene. Consistent with this observation, the transition structures for the migratory insertion of the aryl group into the di- and trisubstituted alkenes were calculated with a lower barrier for the former. An internal competition between a substrate containing two alcohols with differing chain lengths demonstrated the catalyst's preference for migrating towards the closest alcohol. Additionally, it was observed that increasing the electron density in the arene boronic acid promotes a faster reaction, which correlates with Hammett σp values to give a ρ of -0.87.

  10. An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: general formulation.

    PubMed

    Mitchell, David Alexander; Carrière, Frédéric; Krieger, Nadia

    2008-04-01

    We present a general formulation of a model that can be used to analyze reaction profiles in systems in which a single enzyme catalyzes several sequential reactions with the same molecular backbone. The analysis of these so-called "repeated-attack systems" allows estimation of the specificities that the enzyme has for the various intermediate substrates that appear in the reaction mixture, relative to the specificity that it has for the initial substrate. Our analytical method has the important advantage that it is not affected by competitive or uncompetitive inhibition, nor by denaturation of the enzyme during the reaction. We carry out case studies in three different systems, the lipase-catalyzed alcoholysis of triacylglycerols, the phytase-catalyzed removal of phosphate groups from phytic acid and the beta-amylase-catalyzed removal of maltose units from maltoheptaose. Our model fits well to all reaction profiles in which the phenomenon of processivity does not occur. It can therefore be used as a general tool for characterizing the relative specificities of "repeated-attack enzymes".

  11. Iron- and indium-catalyzed reactions toward nitrogen- and oxygen-containing saturated heterocycles.

    PubMed

    Cornil, Johan; Gonnard, Laurine; Bensoussan, Charlélie; Serra-Muns, Anna; Gnamm, Christian; Commandeur, Claude; Commandeur, Malgorzata; Reymond, Sébastien; Guérinot, Amandine; Cossy, Janine

    2015-03-17

    A myriad of natural and/or biologically active products include nitrogen- and oxygen-containing saturated heterocycles, which are thus considered as attractive scaffolds in the drug discovery process. As a consequence, a wide range of reactions has been developed for the construction of these frameworks, much effort being specially devoted to the formation of substituted tetrahydropyrans and piperidines. Among the existing methods to form these heterocycles, the metal-catalyzed heterocyclization of amino- or hydroxy-allylic alcohol derivatives has emerged as a powerful and stereoselective strategy that is particularly interesting in terms of both atom-economy and ecocompatibility. For a long time, palladium catalysts have widely dominated this area either in Tsuji-Trost reactions [Pd(0)] or in an electrophilic activation process [Pd(II)]. More recently, gold-catalyzed formation of saturated N- and O-heterocycles has received growing attention because it generally exhibits high efficiency and diastereoselectivity. Despite their demonstrated utility, Pd- and Au-complexes suffer from high costs, toxicity, and limited natural abundance, which can be barriers to their widespread use in industrial processes. Thus, the replacement of precious metals with less expensive and more environmentally benign catalysts has become a challenging issue for organic chemists. In 2010, our group took advantage of the ability of the low-toxicity and inexpensive FeCl3 in activating allylic or benzylic alcohols to develop iron-catalyzed N- and O-heterocylizations. We first focused on N-heterocycles, and a variety of 2,6-disubstituted piperidines as well as pyrrolidines were synthesized in a highly diastereoselective fashion in favor of the cis-compounds. The reaction was further extended to the construction of substituted tetrahydropyrans. Besides triggering the formation of heterocycles, the iron salts were shown to induce a thermodynamic epimerization, which is the key to reach the high

  12. Progress toward the syntheses of (+)-GB 13, (+)-himgaline, and himandridine. new insights into intramolecular imine/enamine aldol cyclizations.

    PubMed

    Evans, David A; Adams, Drew J; Kwan, Eugene E

    2012-05-16

    A full account of our total synthesis of the galbulimima alkaloids GB 13 and himgaline is provided. Using a strategy adapted from the proposed biosynthesis of the GB alkaloid family, a linear precursor underwent successive intramolecular Diels-Alder, Michael, and imine aldol cyclizations to form the polycyclic alkaloid core. We now show that modification of this strategy can also deliver an advanced intermediate en route to the related alkaloid himandridine. The success of the key imine aldol cyclization is acutely sensitive to substrate structure and solvent, including a case in which cyclization was spontaneous in protic solvents. A detailed computational investigation of the course of the reaction closely correlates with, and suggests a rationale for, the observed patterns of imine aldol reactivity.

  13. Synthesis of the cores of hypocrellin and shiraiachrome: diastereoselective 1,8-diketone aldol cyclization.

    PubMed

    O'Brien, Erin M; Li, Jingxian; Carroll, Patrick J; Kozlowski, Marisa C

    2010-01-01

    Intramolecular 1,8-diketone aldol reactions were studied as a tool for the construction of the seven-membered rings of hypocrellin and shiraiachrome. Conditions were identified to obtain the relative stereochemistries present in the two natural products with excellent diastereoselectivity. In addition, a nine-membered ring congener, which has yet to be observed in nature, formed with high selectivity when a hindered amine was used in conjunction with silazide bases.

  14. Palladium-catalyzed cross-coupling reactions of arylsiloxanes with aryl halides: application to solid-supported organic synthesis.

    PubMed

    Traficante, Carla I; Delpiccolo, Carina M L; Mata, Ernesto G

    2014-05-12

    The solid-phase version of the Pd-catalyzed Hiyama reaction between a variety of aryltriethoxysilanes and immobilized aryl halides was developed. Smooth cross-coupling was achieved to afford the corresponding biaryl products in moderate to excellent yields. The described protocol would be particularly useful for the construction of 4'-substituted 1,1'-biphenyl derivatives.

  15. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    EPA Science Inventory

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  16. A General and Highly Selective Cobalt-Catalyzed Hydrogenation of N-Heteroarenes under Mild Reaction Conditions.

    PubMed

    Adam, Rosa; Cabrero-Antonino, Jose R; Spannenberg, Anke; Junge, Kathrin; Jackstell, Ralf; Beller, Matthias

    2017-02-14

    Herein, a general and efficient method for the homogeneous cobalt-catalyzed hydrogenation of N-heterocycles, under mild reaction conditions, is reported. Key to success is the use of the tetradentate ligand tris(2-(diphenylphosphino)phenyl)phosphine). This non-noble metal catalyst system allows the selective hydrogenation of heteroarenes in the presence of a broad range of other sensitive reducible groups.

  17. Mechanistic Studies Lead to Dramatically Improved Reaction Conditions for the Cu-Catalyzed Asymmetric Hydroamination of Olefins

    PubMed Central

    2015-01-01

    Enantioselective copper(I) hydride (CuH)-catalyzed hydroamination has undergone significant development over the past several years. To gain a general understanding of the factors governing these reactions, kinetic and spectroscopic studies were performed on the CuH-catalyzed hydroamination of styrene. Reaction profile analysis, rate order assessment, and Hammett studies indicate that the turnover-limiting step is regeneration of the CuH catalyst by reaction with a silane, with a phosphine-ligated copper(I) benzoate as the catalyst resting state. Spectroscopic, electrospray ionization mass spectrometry, and nonlinear effect studies are consistent with a monomeric active catalyst. With this insight, targeted reagent optimization led to the development of an optimized protocol with an operationally simple setup (ligated copper(II) precatalyst, open to air) and short reaction times (<30 min). This improved protocol is amenable to a diverse range of alkene and alkyne substrate classes. PMID:26522837

  18. Of the ortho effect in palladium/norbornene-catalyzed reactions: a theoretical investigation.

    PubMed

    Maestri, Giovanni; Motti, Elena; Della Ca', Nicola; Malacria, Max; Derat, Etienne; Catellani, Marta

    2011-06-08

    Mechanistic questions concerning palladium and norbornene catalyzed aryl-aryl coupling reactions are treated in this paper: how aryl halides react with the intermediate palladacycles, formed by interaction of the two catalysts with an aryl halide, and what is the rational explanation of the "ortho effect" (caused by an ortho substituent in the starting aryl halide), which leads to aryl-aryl coupling with a second molecule of aryl halide rather than to aryl-norbornyl coupling. Two possible pathways have been proposed, one involving aryl halide oxidative addition to the palladacycle, the other passing through a palladium(II) transmetalation, also involving the palladacycle, as previously proposed by Cardenas and Echavarren. Our DFT calculations using M06 show that, in palladium-catalyzed reaction of aryl halides, not containing ortho substituents, and norbornene, the intermediate palladacycle formed has a good probability to undergo transmetalation, energetically favored over the oxidative addition leading to Pd(IV). The unselective sp(2)-sp(2) and sp(2)-sp(3) coupling, experimentally observed in this case, can be explained in the framework of the transmetalation pathway since the energetic difference between aryl attack onto the aryl or norbornyl carbon of the palladacycle intermediate is quite small. On the other hand, according to the experimentally observed "ortho effect", selective aryl-aryl coupling only occurs in the reactions of ortho-substituted metallacycles. The present work offers the first possible rationalization of this finding. These in situ formed palladacycles containing an ortho substituent could more easily undergo oxidative addition of an aryl halide rather than reductive elimination from the transmetalation intermediate as a result of a steric clash in the transition state of the latter. The now energetically accessible Pd(IV) intermediate, featuring a Y-distorted trigonal bipyramidal structure, can account for the reported selective aryl

  19. Mechanism of the Orotidine 5′-Monophosphate Decarboxylase-Catalyzed Reaction: Evidence for Substrate Destabilization

    SciTech Connect

    Chan, K.; Wood, M; Fedorov, A; Fedorov, E; Imker, H; Amyes, T; Richard, J; Almo, S; Gerlt, J

    2009-01-01

    The reaction catalyzed by orotidine 5'-monophosphate decarboxylase (OMPDC) involves a stabilized anionic intermediate, although the structural basis for the rate acceleration (kcat/knon, 7.1 x 1016) and proficiency (kcat/KM)/knon, 4.8 x 1022 M-1 is uncertain. That the OMPDCs from Methanothermobacter thermautotrophicus (MtOMPDC) and Saccharomyces cerevisiae (ScOMPDC) catalyze the exchange of H6 of the UMP product with solvent deuterium allows an estimate of a lower limit on the rate acceleration associated with stabilization of the intermediate and its flanking transition states (=1010). The origin of the 'missing' contribution, =107 (1017 total - =1010), is of interest. Based on structures of liganded complexes, unfavorable electrostatic interactions between the substrate carboxylate group and a proximal Asp (Asp 70 in MtOMPDC and Asp 91 in ScOMPDC) have been proposed to contribute to the catalytic efficiency. We investigated that hypothesis by structural and functional characterization of the D70N and D70G mutants of MtOMPDC and the D91N mutant of ScOMPDC. The substitutions for Asp 70 in MtOMPDC significantly decrease the value of kcat for decarboxylation of FOMP (a more reactive substrate analogue) but have little effect on the value of kex for exchange of H6 of FUMP with solvent deuterium; the structures of wild-type MtOMPDC and its mutants are superimposable when complexed with 6-azaUMP. In contrast, the D91N mutant of ScOMPDC does not catalyze exchange of H6 of FUMP; the structures of wild-type ScOMPDC and its D91N mutant are not superimposable when complexed with 6-azaUMP, with differences in both the conformation of the active site loop and the orientation of the ligand vis vis the active site residues. We propose that the differential effects of substitutions for Asp 70 of MtOMPDC on decarboxylation and exchange provide additional evidence for a carbanionic intermediate as well as the involvement of Asp 70 in substrate destabilization.

  20. Iodine-catalyzed disproportionation of aryl-substituted ethers under solvent-free reaction conditions.

    PubMed

    Jereb, Marjan; Vražič, Dejan

    2013-03-28

    Iodine was demonstrated to be an efficient catalyst for disproportionation of aryl-substituted ethers under solvent-free reaction conditions. Variously substituted 1,1,1',1'-tetraaryldimethyl ethers were transformed into the corresponding diarylketone and diarylmethane derivatives. I2-catalyzed transformation of 4-methoxyphenyl substituted ethers yielded mono- and dialkylated Friedel-Crafts products as well. Treatment of trityl alkyl and trityl benzyl ethers with a catalytic amount of iodine produced triphenylmethane and the corresponding aldehydes and ketones. The electron-donating substituents facilitated the reaction, while the electron-withdrawing groups retarded it; the difference in reactivity is not very high. Such an observation may be in favour of hydride transfer, predominantly from the less electron rich side of the ether with more stable carbocation formation. With the isotopic studies it was established that a substantial portion of the C-H bond scission took place in the rate-determining step, while the carbonyl oxygen atom originated from the starting ether, and not from the air. The transformation took place under air and under argon, and HI was not a functioning catalyst.

  1. Palladium-Catalyzed α-Arylation of Zinc Enolates of Esters: Reaction Conditions and Substrate Scope

    PubMed Central

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F.

    2013-01-01

    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching lithium enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2. PMID:23931445

  2. Tritium secondary kinetic isotope effect on phenylalanine ammonia-lyase-catalyzed reaction.

    PubMed

    Lewandowicz, A; Jemielity, J; Kańska, M; Zoń, J; Paneth, P

    1999-10-15

    The mechanism by which phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) catalyzes the reversible elimination of ammonia from phenylalanine yielding (E)-cinnamic acid has gained much attention in the recent years. Dehydroalanine is essential for the catalysis. It was assumed that this prostetic group acts as the electrophile, leading to a covalently bonded enzyme-intermediate complex with quarternary nitrogen of phenylalanine. Recently, an alternative mechanism has been suggested in which the enzyme-intermediate complex is formed in a Friedel-Crafts reaction between dehydroalanine and orthocarbon of the aromatic ring. Using semiempirical calculations we have shown that these two alternative mechanisms can be distinguished on the basis of the hydrogen secondary kinetic isotope effect when tritium label is placed in the orthopositions. Our calculations indicated also that the kinetic isotope effect measured using ring-labeled d(5)-phenylalanine could not be used to differentiate these alternative mechanisms. Measured secondary tritium kinetic isotope effect shows strong dependence on the reaction progress, starting at the inverse value of k(H)/k(T) = 0.85 for 5% conversion and reaching the normal value of about 1.15 as the conversion increases to 20%. This dependence has been interpreted in terms of a complex mechanism with initial formation of the Friedel-Crafts type intermediate.

  3. Kinetic resolution of racemic 1-phenyl 1-propanol by lipase catalyzed enantioselective esterification reaction.

    PubMed

    Karadeniz, Fatma; Bayraktar, Emine; Mehmetoglu, Ulkü

    2010-10-01

    In this study, resolution of (R,S)-1-phenyl 1-propanol by lipase-catalyzed enantioselective esterification was achieved. To investigate the effect of lipase type on enantiomeric excess, three different lipases were used. Novozym 435 exhibited the highest enantioselectivity for resolution of (R,S)-1-phenyl 1-propanol. The effects of carbon length of fatty acids from C12 to C16, which were used as acyl donor, organic solvents with Log P values from 0.5 to 4.5, acyl donor/alcohol molar ratio (1:1, 3:2, 2:1, 3:1), amount of added molecular sieves (0-133.2 kg/m(3)), and temperature (10-60° C) on the enantioselectivity were investigated. The best reaction conditions were comprised of using toluene (Log P= 2.5) as solvent, lauric acid (12C) as acyl donor, 133.2 kg/m(3) molecular sieves at 50° C and acyl donor/alcohol molar ratio as 1:1. Under these conditions, the enantiomeric excess of S enantiomer ee (S) was obtained as 95% for a reaction time of 2.5 hours.

  4. Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study

    NASA Astrophysics Data System (ADS)

    Wu, Weibing; Liu, Wei; Mu, Wei; Deng, Yulin

    2016-06-01

    A novel design of liquid catalyzed fuel cell (LCFC), which uses polyoxometalates (POMs) as the photocatalyst and charge carrier has been reported previously. In this paper, the adaptability of biomass fuels (e.g., glycerol and glucose) to the LCFC and corresponding cell performance were studied in detail here. An interesting finding that greatly differs from conventional fuel cell is that high molecular weight fuels rather than small molecule fuels (e.g., methanol and ethylene glycol) are favored by the novel LCFC with respect to the power densities. The power output of LCFC strongly depends on the number and structure of hydroxyl groups in the biomass fuels. The evidence of UV-Vis and 1H NMR spectra shows that the preassociation between POM and alcohol fuels, which determines the photoelectrochemical reaction pathway of POM, is enhanced as the number of hydroxyl increases. Experimental results also demonstrate that more hydroxyl groups in the molecules lead to faster photoelectrochemical reaction between POM and fuels, higher reduction degree of POM, and further higher power output of LCFC. Our study reveals that biomass-based polyhydroxyl compounds such as starch, hemicellulose and cellulose are potential high-performance fuels for LCFC.

  5. Probing Nonadiabaticity in the Proton-Coupled Electron Transfer Reaction Catalyzed by Soybean Lipoxygenase

    PubMed Central

    2014-01-01

    Proton-coupled electron transfer (PCET) plays a vital role in many biological and chemical processes. PCET rate constant expressions are available for various well-defined regimes, and determining which expression is appropriate for a given system is essential for reliable modeling. Quantitative diagnostics have been devised to characterize the vibronic nonadiabaticity between the electron–proton quantum subsystem and the classical nuclei, as well as the electron–proton nonadiabaticity between the electrons and proton(s) within the quantum subsystem. Herein these diagnostics are applied to a model of the active site of the enzyme soybean lipoxygenase, which catalyzes a PCET reaction that exhibits unusually high deuterium kinetic isotope effects at room temperature. Both semiclassical and electronic charge density diagnostics illustrate vibronic and electron–proton nonadiabaticity for this PCET reaction, supporting the use of the Golden rule nonadiabatic rate constant expression with a specific form of the vibronic coupling. This type of characterization will be useful for theoretical modeling of a broad range of PCET processes. PMID:25258676

  6. REACTION MECHANISMS OF 15-HYDROPEROXYEICOSATETRAENOIC ACID CATALYZED BY HUMAN PROSTACYCLIN AND THROMBOXANE SYNTHASES

    PubMed Central

    Yeh, Hui-Chun; Tsai, Ah-Lim; Wang, Lee-Ho

    2007-01-01

    Prostacyclin synthase (PGIS) and thromboxane synthase (TXAS) are atypical cytochrome P450s. They do not require NADPH or dioxygen for isomerization of prostaglandin H2 (PGH2) to produce prostacyclin (PGI2) and thromboxane A2 (TXA2). PGI2 and TXA2 have opposing actions on platelet aggregation and blood vessel tone. In this report, we use a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), to explore the active site characteristics of PGIS and TXAS. The two enzymes transformed 15-HPETE not only into 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid (13-OH-14,15-EET), like many microsomal P450s, but also to 15-ketoeicosatetraenoic acid (15-KETE) and 15-hydroxyeicosatetraenoic acid (15-HETE). 13-OH-14,15-EET and 15-KETE result from homolytic cleavage of the O–O bond, whereas 15-HETE results from heterolytic cleavage, a common peroxidase pathway. About 80% of 15-HPETE was homolytically cleaved by PGIS and 60% was homolytically cleaved by TXAS. The Vmax of homolytic cleavage is 3.5-fold faster than heterolytic cleavage for PGIS-catalyzed reactions (1100 min−1 vs. 320 min−1) and 1.4-fold faster for TXAS (170 min−1 vs. 120 min−1). Similar KM values for homolytic and heterolytic cleavages were found for PGIS (∼60 μM 15-HPETE) and TXAS (∼80 μM 15-HPETE), making PGIS a more efficient catalyst for the 15-HPETE reaction. PMID:17459323

  7. Activation of Two Sequential H-transfers in the Thymidylate Synthase Catalyzed Reaction

    PubMed Central

    Islam, Zahidul; Strutzenberg, Timothy S.; Ghosh, Ananda K.; Kohen, Amnon

    2015-01-01

    Thymidylate synthase (TSase) catalyzes the de novo biosynthesis of thymidylate, a precursor for DNA, and is thus an important target for chemotherapeutics and antibiotics. Two sequential C-H bond cleavages catalyzed by TSase are of particular interest: a reversible proton abstraction from the 2′-deoxy-uridylate substrate, followed by an irreversible hydride transfer forming the thymidylate product. QM/MM calculations of the former predicted a mechanism where the abstraction of the proton leads to formation of a novel nucleotide-folate intermediate that is not covalently bound to the enzyme (Wang, Z.; Ferrer, S.; Moliner, V.; Kohen, A. Biochemistry 2013, 52, 2348–2358). Existence of such intermediate would hold promise as a target for a new class of drugs. Calculations of the subsequent hydride transfer predicted a concerted H-transfer and elimination of the enzymatic cysteine (Kanaan, N.; Ferrer, S.; Marti, S.; Garcia-Viloca, M.; Kohen, A.; Moliner, V. J. Am. Chem. Soc. 2011, 133, 6692–6702). A key to both C-H activations is a highly conserved arginine (R166) that stabilizes the transition state of both H-transfers. Here we test these predictions by studying the R166 to lysine mutant of E. coli TSase (R166K) using intrinsic kinetic isotope effects (KIEs) and their temperature dependence to assess effects of the mutation on both chemical steps. The findings confirmed the predictions made by the QM/MM calculations, implicate R166 as an integral component of both reaction coordinates, and thus provide critical support to the nucleotide-folate intermediate as a new target for rational drug design. PMID:26576323

  8. Scope and Mechanisms of Frustrated Lewis Pair Catalyzed Hydrogenation Reactions of Electron-Deficient C=C Double Bonds.

    PubMed

    Morozova, Varvara; Mayer, Peter; Berionni, Guillaume

    2015-11-23

    Several phosphonium and ammonium triarylborohydrides, which are intermediates in hydrogenation reactions catalyzed by frustrated Lewis pairs, were synthesized in high yield under mild conditions from triaryl boranes, ammonium or phosphonium halides, and triethylsilane. The kinetics and mechanisms of the reactions of these hydridoborate salts with benzhydrylium ions, iminium ions, quinone methides, and Michael acceptors were investigated, and their nucleophilicity was determined and compared with that of other hydride donors.

  9. An approach to the synthesis of dimeric resveratrol natural products via a palladium-catalyzed domino reaction

    PubMed Central

    Jeffrey, Jenna L.; Sarpong, Richmond

    2009-01-01

    A route for the rapid assembly of the carbon framework of several resveratrol natural products is presented. A palladium-catalyzed domino reaction of bromostilbene derivative 6 and tolane 7, involving two sequential Heck coupling reactions, provides access to the benzofulvene-based core of various resveratrol-derived natural products. The carbon skeleton of pallidol and its congeners is achieved by a Lewis acid-induced Nazarov-type oxidative cyclization of 9. PMID:20161322

  10. Pd(Quinox)-Catalyzed Allylic Relay Suzuki Reactions of Secondary Homostyrenyl Tosylates via Alkene-Assisted Oxidative Addition.

    PubMed

    Stokes, Benjamin J; Bischoff, Amanda J; Sigman, Matthew S

    2014-06-01

    Pd-catalyzed allylic relay Suzuki cross-coupling reactions of secondary alkyl tosylates, featuring a sterically-hindered oxidative addition and precise control of β-hydride elimination, are reported. The identification of a linear free energy relationship between the relative rates of substrate consumption and the electronic nature of the substrate alkene suggests that the oxidative addition requires direct alkene involvement. A study of the effect of chain length on the reaction outcome supports a chelation-controlled oxidative addition.

  11. A novel synthesis of 2-aryl-2H-indazoles via a palladium-catalyzed intramolecular amination reaction.

    PubMed

    Song, J J; Yee, N K

    2000-02-24

    [reaction: see text] A variety of 2-aryl-2H-indazoles were synthesized by the palladium-catalyzed intramolecular amination of the corresponding N-aryl-N(o-bromobenzyl)hydrazines. Of several sets of reaction conditions surveyed, the combination of Pd(OAc)2/dppf/tBuONa gave the best results. This method applies to a wide scope of substrates containing electron-donating and electron-withdrawing substituents.

  12. Trypsin-catalyzed multicomponent reaction: A novel and efficient one-pot synthesis of thiazole-2-imine derivatives.

    PubMed

    Zhou, Junbin; Huang, Xingtian; Zhang, Zhuan; Song, Ping; Li, Yiqun

    2017-01-10

    The first Trypsin from porcine pancreas catalyzed a novel one-pot three-component reaction of α-bromoketone, primary alkylamines, and phenylisothiocyanate for the synthesis of thiazole-imine derivatives with high yields (up to 98%) in a short time under mild conditions. The results revealed that Trypsin exhibited excellent catalytic activity and great tolerance for broad substrates. This Trypsin-catalyzed three component convergent method provides a novel strategy for the synthesis of thiazole-2-imine derivatives and expands the promiscuous functions of enzymes in organic synthesis.

  13. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    PubMed

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-08

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.

  14. Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease.

    PubMed

    Krzemińska, Agnieszka; Moliner, Vicent; Świderek, Katarzyna

    2016-12-21

    HIV-1 Protease (HIV-1 PR) is one of the three enzymes essential for the replication process of HIV-1 virus, which explains why it has been the main target for design of drugs against acquired immunodeficiency syndrome (AIDS). This work is focused on exploring the proteolysis reaction catalyzed by HIV-1 PR, with special attention to the dynamic and electrostatic effects governing its catalytic power. Free energy surfaces for all possible mechanisms have been computed in terms of potentials of mean force (PMFs) within hybrid QM/MM potentials, with the QM subset of atoms described at semiempirical (AM1) and DFT (M06-2X) level. The results suggest that the most favorable reaction mechanism involves formation of a gem-diol intermediate, whose decomposition into the product complex would correspond to the rate-limiting step. The agreement between the activation free energy of this step with experimental data, as well as kinetic isotope effects (KIEs), supports this prediction. The role of the protein dynamic was studied by protein isotope labeling in the framework of the Variational Transition State Theory. The predicted enzyme KIEs, also very close to the values measured experimentally, reveal a measurable but small dynamic effect. Our calculations show how the contribution of dynamic effects to the effective activation free energy appears to be below 1 kcal·mol(-1). On the contrary, the electric field created by the protein in the active site of the enzyme emerges as being critical for the electronic reorganization required during the reaction. These electrostatic properties of the active site could be used as a mold for future drug design.

  15. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    SciTech Connect

    Malik, Radhika; Viola, Ronald E.

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  16. Enantioselective Lewis acid-catalyzed Mukaiyama-Michael reactions of acyclic enones. Catalysis by allo-threonine-derived oxazaborolidinones.

    PubMed

    Wang, Xiaowei; Adachi, Shinya; Iwai, Hiroyoshi; Takatsuki, Hiroshi; Fujita, Katsuhiro; Kubo, Mikako; Oku, Akira; Harada, Toshiro

    2003-12-26

    allo-Threonine-derived O-aroyl-B-phenyl-N-tosyl-1,3,2-oxazaborolidin-5-ones 1g,n catalyze the asymmetric Mukaiyama-Michael reaction of acyclic enones with a trimethylsilyl ketene S,O-acetal in high enantioselectivity. A range of alkenyl methyl ketones is successfully employed as Michael acceptors affording ee values of 85-90% by using 10 mol % of the catalyst. The use of 2,6-diisopropylphenol and tert-butyl methyl ether as additives is found to be essential to achieve high enantioselectivity in these reactions. The effects of the additives are discussed in terms of the retardation of an Si(+)-catalyzed racemic pathway, which seriously deteriorates the enantioselectivity of asymmetric Mukaiyama-Michael reactions. A working model for asymmetric induction is proposed based on correlation between catalyst structures and enantioselectivities.

  17. Impact of copper-catalyzed cross-coupling reactions in natural product synthesis: the emergence of new retrosynthetic paradigms.

    PubMed

    Evano, Gwilherm; Theunissen, Cédric; Pradal, Alexandre

    2013-12-01

    Copper-catalyzed Ullmann-Goldberg-type cross-coupling reactions have undergone nothing short of a renaissance over the last decade and an impressive number of procedures are now available for the formation of C-N, C-O and C-S bonds with remarkable efficiencies and surgical precision. These reactions have been recently integrated into natural product synthesis, which clearly resulted in the emergence of new retrosynthetic paradigms and bond disconnections. The impact of copper-catalyzed cross-coupling reactions in natural product synthesis will be overviewed in this article with an emphasis on the evolution of strategies due to copper catalysis, mostly by comparison with alternative tactics and their relative efficiencies.

  18. Pd(II)-Catalyzed C–H Activation/C–C Cross-Coupling Reactions: Versatility and Practicality

    PubMed Central

    Chen, Xiao; Engle, Keary M.; Wang, Dong-Hui; Yu, Jin-Quan

    2009-01-01

    In the past decade, palladium-catalyzed C–H activation/C–C bond forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming C–C bonds from C–H bonds: Pd(II)/Pd(0), Pd(II)/Pd(IV), Pd(0)/Pd(II)/Pd(IV) and Pd(0)/Pd(II) catalysis. More detailed discussion is then directed towards the recent development of Pd(II)-catalyzed coupling of C–H bonds with organometallic reagents through a Pd(II)/Pd(0) catalytic cycle. Despite much progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge. PMID:19557755

  19. Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates.

    PubMed

    Erratico, Claudio A; Deo, Anand K; Bandiera, Stelvio M

    2015-01-01

    Hepatic microsomal cytochrome P450 (CYP) enzymes have broad and overlapping substrate specificity and catalyze a variety of monooxygenase reactions, including aliphatic and aromatic hydroxylations, N-hydroxylations, oxygenations of heteroatoms (N, S, P and I), alkene and arene epoxidations, dehalogenations, dehydrogenations and N-, O- and S-dealkylations. Individual CYP enzymes typically catalyze the oxidative metabolism of a common substrate in a regioselective and stereoselective manner. In addition, different CYP enzymes often utilize different monooxygenase reactions when oxidizing a common substrate. This review examines various oxidative reactions catalyzed by a CYP enzyme acting on a single substrate. In the first example, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a halogenated aromatic environmental contaminant, was oxidatively biotransformed by human CYP2B6. Nine different metabolites of BDE-47 were produced by CYP2B6 via monooxygenase reactions that included aromatic hydroxylation, with and without an NIH-shift, dealkylation and debromination. In the second example, lithocholic acid (3α-hydroxy-5β-cholan-24-oic acid), an endogenous bile acid, served as a substrate for human CYP3A4 and yielded five different metabolites via aliphatic hydroxylation and dehydrogenation reactions.

  20. Reaction mechanism for cocaine esterase-catalyzed hydrolyses of (+)- and (-)-cocaine: unexpected common rate-determining step.

    PubMed

    Liu, Junjun; Zhao, Xinyun; Yang, Wenchao; Zhan, Chang-Guo

    2011-05-05

    First-principles quantum mechanical/molecular mechanical free energy calculations have been performed to examine the catalytic mechanism for cocaine esterase (CocE)-catalyzed hydrolysis of (+)-cocaine in comparison with CocE-catalyzed hydrolysis of (-)-cocaine. It has been shown that the acylation of (+)-cocaine consists of nucleophilic attack of the hydroxyl group of Ser117 on the carbonyl carbon of (+)-cocaine benzoyl ester and the dissociation of (+)-cocaine benzoyl ester. The first reaction step of deacylation of (+)-cocaine, which is identical to that of (-)-cocaine, is rate-determining, indicating that CocE-catalyzed hydrolyses of (+)- and (-)-cocaine have a common rate-determining step. The computational results predict that the catalytic rate constant of CocE against (+)-cocaine should be the same as that of CocE against (-)-cocaine, in contrast with the remarkable difference between human butyrylcholinesterase-catalyzed hydrolyses of (+)- and (-)-cocaine. The prediction has been confirmed by experimental kinetic analysis on CocE-catalyzed hydrolysis of (+)-cocaine in comparison with CocE-catalyzed hydrolysis of (-)-cocaine. The determined common rate-determining step indicates that rational design of a high-activity mutant of CocE should be focused on the first reaction step of the deacylation. Furthermore, the obtained mechanistic insights into the detailed differences in the acylation between the (+)- and (-)-cocaine hydrolyses provide indirect clues for rational design of amino acid mutations that could more favorably stabilize the rate-determining transition state in the deacylation and, thus, improve the catalytic activity of CocE. This study provides a valuable mechanistic base for rational design of an improved esterase for therapeutic treatment of cocaine abuse.

  1. Mechanism of an Organoboron-Catalyzed Domino Reaction: Kinetic and Computational Studies of Borinic Acid-Catalyzed Regioselective Chloroacylation of 2,3-Epoxy Alcohols.

    PubMed

    Garrett, Graham E; Tanveer, Kashif; Taylor, Mark S

    2017-01-20

    A mechanistic study of the borinic acid-catalyzed chloroacylation of 2,3-epoxy alcohols is presented. In this unusual mode of catalysis, the borinic acid activates the substrate toward sequential reactions with a nucleophile (epoxide ring-opening by chloride) and an electrophile (O-acylation of the resulting alkoxide). Reaction progress kinetic analysis of data obtained through in situ FTIR spectroscopy is consistent with a mechanism involving turnover-limiting acylation of a chlorohydrin-derived borinic ester. This proposal is further supported by investigations of the effects of aroyl chloride substitution on reaction rate. The kinetics experiments also shed light on the effects of chloride concentration on reaction rate and indicate that the catalyst is subject to inhibition by the product of the chloroacylation reaction. Computational modeling is employed to gain insight into the effects of the organoboron catalyst on the regioselectivities of the epoxide ring-opening and acylation steps. The density functional theory calculations provide a plausible pathway for selective chlorinolysis at C-3 and benzoylation at O-1, as is observed experimentally.

  2. Synthesis of Active Hexafluoroisopropyl Benzoates through a Hydrogen-Bond-Enabled Palladium(II)-Catalyzed C-H Alkoxycarbonylation Reaction.

    PubMed

    Wang, Yang; Gevorgyan, Vladimir

    2017-03-13

    A Pd(II) -catalyzed ortho C-H alkoxycarbonylation reaction of aryl silanes toward active hexafluoroisopropyl (HFIP) benzoate esters has been developed. This efficient reaction features high selectivity and good functional-group tolerance. Notably, given the general nature of the silyl-tethered directing group, this method delivers products bearing two independently modifiable sites. NMR studies reveal the presence of hydrogen bonding between HFIP and a pyrimidine nitrogen atom of the directing group, and it is thought to be crucial for the success of this alkoxycarbonylation reaction.

  3. N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C-H insertion and aziridination reactions.

    PubMed

    Lebel, Hélène; Huard, Kim; Lectard, Sylvain

    2005-10-19

    The rhodium-catalyzed decomposition of N-tosyloxycarbamates to generate metal nitrenes which undergo intramolecular C-H insertion or aziridination reaction is described. Aliphatic N-tosyloxycarbamates produce oxazolidinones with high yields and stereospecificity through insertion in benzylic, tertiary, and secondary C-H bonds. Intramolecular aziridination occurs with allylic N-tosyloxycarbamates to produce aziridines as single diastereomers. The reaction proceeds at room temperature using a rhodium catalyst and an excess of potassium carbonate and does not require the use of strong oxidant, such as hypervalent iodine reagents. A rhodium nitrene species is presumably involved, as both reactions are stereospecific.

  4. Nickel and cobalt-catalyzed coupling of alkyl halides with alkenes via heck reactions and radical conjugate addition.

    PubMed

    Qian, Qun; Zang, Zhenhua; Chen, Yang; Tong, Weiqi; Gong, Hegui

    2013-05-01

    Cross-coupling of alkyl halides with alkenes leading to Heck-type and addition products is summarized. The development of Heck reaction with aliphatic halides although has made significant progress in the past decade and particularly recently, it was much less explored in comparison with the aryl halides. The use of Ni- and Co-catalyzed protocols allowed efficient Heck coupling of activated and unactivated alkenes with 1°, 2° and 3° alkyl halides. In addition, radical conjugate addition to activated alkenes has become a well-established method that has led to efficient construction of many natural products. The utilization of Ni- and Co-catalyzed strategies would avoid toxic tin reagents, and therefore worth exploring. The recent development of Ni- and Co-catalyzed addition of alkyl halides to alkenes displays much improved reactivity and functional group tolerance. In this mini-review, we also attempt to overview the mechanisms that are proposed in the reactions, aiming at providing insight into the nickel and cobalt-catalyzed coupling of alkyl halides with alkenes.

  5. [Development of highly stereoselective reactions utilizing heteroatoms--asymmetric synthesis of alpha-substituted serines].

    PubMed

    Sano, S

    2000-01-01

    This article reviews the efficient methods for diastereoselective and enantioselective syntheses of alpha-substituted serines. A newly designed bislactim ether, ethyl (5S)- or (5R)-3,6-diethoxy-2,5-dihydro-5-isopropyl-2-pyrazinecarboxylate, was treated with base or Lewis acid-tertiary amine to generate an enolate or enaminate (imine anion, metalloenamine). Alkylation or aldol-type reaction with the resultant enolate or enaminate proceeded in a highly diastereoselective manner to give the corresponding alkylated or aldol products, respectively. Reduction of these products with diisobutylaluminum hydride (DIBAL) followed by hydrolysis with hydrochloric acid afforded the desirable alpha-substituted serines. The enantioselective aldol-type reaction of an achiral bislactim ether, ethyl 3,6-diethoxy-2,5-dihydro-2-pyrazinecarboxylate, was also investigated by employing Sn(OSO2CF3)2-triethylamine in the presence of an external chiral ligand, (--)-sparteine. Not only a stoichiometric amount, but also a catalytic amount of (--)-sparteine promoted the highly enantioselective aldol-type reactions. Interestingly, the stereoselective outcome of the Sn(II)-mediated reaction differed from that of the Mg(II)-mediated one in the aldol-type reaction of the bislactim ethers with aliphatic aldehydes. On the other hand, chemoenzymatic synthesis of enantiomerically pure alpha-substituted serines must also be a convenient and useful procedure. Porcine liver esterase (PLE) or rabbit liver esterase (RLE) catalyzed hydrolysis of the pro-S ester group of diethyl alpha-alkyl-alpha-(benzyloxycarbonylamino)malonates to afford (R)-ethyl alpha-alkyl-alpha-(benzyloxycarbonylamino)malonates each in excellent enantiomeric excess. Enantiodivergent reductions of these acid esters readily proceeded to furnish both the corresponding enantiomeric alpha-substituted serines. Finally, the application of these methodologies mentioned above to a total synthesis of ISP-I (a potent immunosuppressive principle in

  6. Assessment of theoretical procedures for calculating barrier heights for a diverse set of water-catalyzed proton-transfer reactions.

    PubMed

    Karton, Amir; O'Reilly, Robert J; Radom, Leo

    2012-04-26

    Accurate electronic barrier heights are obtained for a set of nine proton-transfer tautomerization reactions, which are either (i) uncatalyzed, (ii) catalyzed by one water molecule, or (iii) catalyzed by two water molecules. The barrier heights for reactions (i) and (ii) are obtained by means of the high-level ab initio W2.2 thermochemical protocol, while those for reaction (iii) are obtained using the W1 protocol. These three sets of benchmark barrier heights allow an assessment of the performance of more approximate theoretical procedures for the calculation of barrier heights of uncatalyzed and water-catalyzed reactions. We evaluate initially the performance of the composite G4 procedure and variants thereof (e.g., G4(MP2) and G4(MP2)-6X), as well as that of standard ab initio procedures (e.g., MP2, SCS-MP2, and MP4). We find that the performance of the G4(MP2)-type thermochemical procedures deteriorates with the number of water molecules involved in the catalysis. This behavior is linked to deficiencies in the MP2-based basis-set-correction term in the G4(MP2)-type procedures. This is remedied in the MP4-based G4 procedure, which shows good performance for both the uncatalyzed and the water-catalyzed reactions, with mean absolute deviations (MADs) from the benchmark values lying below the threshold of "chemical accuracy" (arbitrarily defined as 1 kcal mol(-1) ≈ 4.2 kJ mol(-1)). We also examine the performance of a large number of density functional theory (DFT) and double-hybrid DFT (DHDFT) procedures. We find that, with few exceptions (most notably PW6-B95 and B97-2), the performance of the DFT procedures that give good results for the uncatalyzed reactions deteriorates with the number of water molecules involved in the catalysis. The DHDFT procedures, on the other hand, show excellent performance for both the uncatalyzed and catalyzed reactions. Specifically, almost all of them afford MADs below the "chemical accuracy" threshold, with ROB2-PLYP and B2K

  7. Intensification of heterogeneously catalyzed Suzuki-Miyaura cross-coupling reaction using ultrasound: Understanding effect of operating parameters.

    PubMed

    Sancheti, Sonam V; Gogate, Parag R

    2017-01-27

    Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction is a significant reaction for obtaining industrially important products. The current research work deals with intensification of reaction of 4-bromoanisole and phenylboronic acid catalyzed with 5wt% Pd/C (5% by weight Pd supported on C available as commercial catalyst) using ultrasound and more importantly, without use of any additional phase transfer catalyst. Heterogeneous catalyst has been selected in the present work so as to harness the benefits of easy separation and the possible limitations of heterogeneous operation are minimized by introducing ultrasonic irradiations. The effect of operating parameters such as ultrasound power, temperature, catalyst loading and molar ratio on the progress of reaction has been investigated. It has been observed that an optimum power, temperature and catalyst loading exist for maximum benefits whereas higher molar ratio was found to be favourable for the progress of the reaction. Also, the use of ultrasound reduced the reaction time from 70min required in conventional approach to only 35min under conditions of frequency of 22kHz, power dissipation of 40W and catalyst loading as 1.5mol% (refers to total quantum of catalyst used in the work) in ethanol-water system under ambient conditions. The work also demonstrated successful results at ten times higher volume as compared to the normally used volumes in the case of simple ultrasonic horn. Overall, the work has successfully demonstrated process intensification benefits obtained due to the use of ultrasound for heterogeneously catalyzed Suzuki-Miyaura cross-coupling reaction.

  8. Rhodium-catalyzed [(3+2)+1] carbocyclization reactions of alkynylidenecyclopropanes with carbon monoxide: regiospecific construction of polysubstituted phenols.

    PubMed

    Evans, P Andrew; Burnie, Andrew J; Negru, Daniela E

    2014-09-05

    The development of the rhodium-catalyzed [(3+2)+1] carbocyclization reaction of alkynylidenecyclopropanes with carbon monoxide to construct polysubstituted phenols is described. This work offers a convenient method for the selective formation of tetra- and pentasubstituted phenols, which provide important intermediates for target directed synthesis. Finally, the ability to regiospecifically functionalize the phenols using conventional methods further illustrates the utility of this process.

  9. Lewis acid catalyzed cascade reaction of 3-(2-benzenesulfonamide)propargylic alcohols to spiro[indene-benzosultam]s.

    PubMed

    Sun, Lang; Zhu, Yuanxun; Wang, Jing; Lu, Ping; Wang, Yanguang

    2015-01-16

    A highly efficient and convenient construction of the spiro[indene-benzosultam] skeleton from propargylic alcohols has been developed. The reaction proceeded in a Lewis acid catalyzed cascade process, including the trapping of allene carbocation with sulfonamide, electrophilic cyclization, and intramolecular Friedel-Crafts alkylation. In the presence of NIS or NBS, iodo/bromo-substituted spiro[indene-benzosultam]s could be prepared in excellent yields.

  10. Fluorination Enables a Ligand-Controlled Regiodivergent Palladium-Catalyzed Decarboxylative Allylation Reaction to Access α,α-Difluoroketones

    PubMed Central

    Yang, Ming–Hsiu; Orsi, Douglas L.

    2015-01-01

    α,α-Difluoroketones possess unique physicochemical properties that are useful for developing therapeutics and probes for chemical biology. In order to access the α-allyl-α,α-difluoroketone substructure, complementary Pd-catalyzed decarboxylative allylation reactions were developed to provide linear and branched α-allyl-α,α-difluoroketones. For these orthogonal processes, the regioselectivity was uniquely controlled by fluorination of the substrate and the structure of ligand. PMID:25581845

  11. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC).

    PubMed

    Mandoli, Alessandro

    2016-09-05

    The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC) have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.

  12. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    PubMed

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method.

  13. Ni(II) Tol-BINAP-catalyzed enantioselective Michael reactions of beta-ketoesters and unsaturated N-acylthiazolidinethiones.

    PubMed

    Evans, David A; Thomson, Regan J; Franco, Francisco

    2005-08-10

    The enantioselective addition of beta-ketoesters to unsaturated N-acylthiazolidinethiones catalyzed by Ni(II) Tol-BINAP Lewis acid complexes is reported. Notable features of this reaction are its operation simplicity, the obviated need for the addition of an external base, and the ease with which the adducts are converted into a range of potentially useful derivatives. In particular, the dihydropyrone adducts are versatile scaffolds for further stereoselective elaboration.

  14. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  15. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems.

    PubMed

    Zhang, Wei; Lai, Wenzhen; Cao, Rui

    2017-02-22

    Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.

  16. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    PubMed

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction.

  17. Palladium-catalyzed carbonylation reaction of aryl bromides with 2-hydroxyacetophenones to form flavones.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2012-10-01

    Flavone of the month: a general and efficient method for the palladium-catalyzed carbonylative synthesis of flavones has been developed. Starting from aryl bromides and 2-hydroxyacetophenones, the corresponding flavones have been isolated in good yields.

  18. Synthesis of steroid-ferrocene conjugates of steroidal 17-carboxamides via a palladium-catalyzed aminocarbonylation--copper-catalyzed azide-alkyne cycloaddition reaction sequence.

    PubMed

    Szánti-Pintér, Eszter; Balogh, János; Csók, Zsolt; Kollár, László; Gömöry, Agnes; Skoda-Földes, Rita

    2011-11-01

    Steroids with the 17-iodo-16-ene functionality were converted to ferrocene labeled steroidal 17-carboxamides via a two step reaction sequence. The first step involved the palladium-catalyzed aminocarbonylation of the alkenyl iodides with prop-2-yn-1-amine as the nucleophile in the presence of the Pd(OAc)(2)/PPh(3) catalyst system. In the second step, the product N-(prop-2-ynyl)-carboxamides underwent a facile azide-alkyne cycloaddition with ferrocenyl azides in the presence of CuSO(4)/sodium ascorbate to produce the steroid-ferrocene conjugates. The new compounds were obtained in good yield and were characterized by (1)H and (13)C NMR, IR, MS and elemental analysis.

  19. Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.

    PubMed

    Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M

    2013-09-23

    Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle.

  20. Rh-Catalyzed reductive Mannich-type reaction and its application towards the synthesis of (±)-ezetimibe

    PubMed Central

    Isoda, Motoyuki; Sato, Kazuyuki; Kunugi, Yurika; Tokonishi, Satsuki; Tarui, Atsushi; Minami, Hideki

    2016-01-01

    Summary An effective synthesis for syn-β-lactams was achieved using a Rh-catalyzed reductive Mannich-type reaction. A rhodium–hydride complex (Rh–H) derived from diethylzinc (Et2Zn) and a Rh catalyst was used for the 1,4-reduction of an α,β-unsaturated ester to give a Reformatsky-type reagent, which in turn, reacted with an imine to give the syn-β-lactam. Additionally, the reaction was applied to the synthesis of (±)-ezetimibe, a potent β-lactamic cholesterol absorption inhibitor. PMID:27559413

  1. Non-Catalyzed Click Reactions of ADIBO Derivatives with 5-Methyluridine Azides and Conformational Study of the Resulting Triazoles

    PubMed Central

    Smyslova, Petra; Popa, Igor; Lyčka, Antonín; Tejral, Gracian; Hlavac, Jan

    2015-01-01

    Copper-free click reactions between a dibenzoazocine derivative and azides derived from 5-methyluridine were investigated. The non-catalyzed reaction yielded both regioisomers in an approximately equivalent ratio. The NMR spectra of each regioisomer revealed conformational isomery. The ratio of isomers was dependent on the type of regioisomer and the type of solvent. The synthesis of various analogs, a detailed NMR study and computational modeling provided evidence that the isomery was dependent on the interaction of the azocine and pyrimidine parts. PMID:26673606

  2. Mild Cu(I)-catalyzed cascade reaction of cyclic diaryliodoniums, sodium azide, and alkynes: efficient synthesis of triazolophenanthridines.

    PubMed

    Liu, Zhenquan; Zhu, Daqian; Luo, Bingling; Zhang, Naiyuan; Liu, Qi; Hu, Yumin; Pi, Rongbiao; Huang, Peng; Wen, Shijun

    2014-11-07

    Linear iodoniums are widely used as arylating reagents. However, cyclic diaryl idodoniums are ignored despite their potential to initiate dual arylations, atom and step economically. In our current work, a three-component cascade reaction of cyclic diaryliodoniums, sodium azide, and alkynes has been successfully achieved under mild conditions, catalyzed by cheap copper species. The regioselectivity associated with unsymmetrical iodoniums was enhanced by installing two methyls ortho and para to the I(III) center. The reaction enables a rapid access to a variety of complex molecules, triazolophenanthridine derivatives.

  3. Solvent- and ligand-induced switch of selectivity in gold(I)-catalyzed tandem reactions of 3-propargylindoles

    PubMed Central

    Álvarez, Estela; Miguel, Delia; García-García, Patricia; Fernández-Rodríguez, Manuel A; Rodríguez, Félix

    2011-01-01

    Summary The selectivity of our previously described gold-catalyzed tandem reaction, 1,2-indole migration followed by aura-iso-Nazarov cyclization, of 3-propargylindoles bearing (hetero)aromatic substituents at both the propargylic and terminal positions, was reversed by the proper choice of the catalyst and the reaction conditions. Thus, 3-(inden-2-yl)indoles, derived from an aura-Nazarov cyclization (instead of an aura-iso-Nazarov cyclization), were obtained in moderate to good yields from a variety of 3-propargylindoles. PMID:21804873

  4. Bidentate Lewis Acid Catalyzed Domino Diels-Alder Reaction of Phthalazine for the Synthesis of Bridged Oligocyclic Tetrahydronaphthalenes.

    PubMed

    Schweighauser, Luca; Bodoky, Ina; Kessler, Simon N; Häussinger, Daniel; Donsbach, Carsten; Wegner, Hermann A

    2016-03-18

    A domino process consisting of an inverse and a normal electron-demand Diels-Alder reaction is presented for the formation of bridged tri- and tetracyclic 1,2,3,4-tetrahydronaphthalenes catalyzed by a bidentate Lewis acid. The products were synthesized in a one-pot reaction from commercially available starting materials and contain up to six stereogenic centers. The tetrahydronaphthalenes were isolated as single diastereomers and are derivatives of phenylethylamine, which is well-known as a scaffold of amphetamine or dopamine.

  5. Synthesis of Symmetric Bis(N-alkylaniline)triarylmethanes via Friedel-Crafts-Catalyzed Reaction between Secondary Anilines and Aldehydes.

    PubMed

    Gomes, Rafael F A; Coelho, Jaime A S; Frade, Raquel F M; Trindade, Alexandre F; Afonso, Carlos A M

    2015-10-16

    The first general protocol for the preparation of symmetric triarylmethanes bearing secondary anilines by ytterbium-catalyzed Friedel-Crafts reaction of hetero(aryl) aldehydes and secondary anilines is reported. Mechanistic studies indicated that the iminium ion intermediate is the electrophilic partner. The reaction is greatly accelerated by high pressure (9 kbar) and showed a broad substrate scope on the hetero(aryl) aldehyde. The new triarylmethanes exhibited activity against HT-29 cancer cell lines, with the best result scoring an IC50 of 1.74 μM.

  6. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-07

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  7. Stereopentads derived from a sequence of Mukaiyama aldolization and free radical reduction on alpha-methyl-beta-alkoxy aldehydes: a general strategy for efficient polypropionate synthesis.

    PubMed

    Brazeau, Jean-François; Mochirian, Philippe; Prévost, Michel; Guindon, Yvan

    2009-01-02

    In a stereodivergent manner, all 16 diastereomeric stereopentads 7-22 were synthesized starting with alpha-methyl-beta-alkoxy aldehydes 25 and 27. We designed an approach based on a sequence of a Mukaiyama aldolization with enoxysilane 24 followed by a hydrogen transfer reaction. Recent advancements concerning these reactions are described, and novel key intermediates are characterized in the aldol step. The synthesis of C(1)-C(11) fragment 60 of zincophorin, which contains a synthetically challenging stereopentad unit, is described attesting the usefulness of our strategy.

  8. Efficient access to substituted silafluorenes by nickel-catalyzed reactions of biphenylenes with Et₂SiH₂.

    PubMed

    Breunig, Jens Michael; Gupta, Puneet; Das, Animesh; Tussupbayev, Samat; Diefenbach, Martin; Bolte, Michael; Wagner, Matthias; Holthausen, Max C; Lerner, Hans-Wolfram

    2014-11-01

    The reaction of biphenylene (1) with Et2SiH2 in the presence of [Ni(PPhMe2)4] results in the formation of a mixture of 2-diethylhydrosilylbiphenyl [2(Et2HSi)] and 9,9,-diethyl-9-silafluorene (3). Silafluorene 3 was isolated in 37.5% and 2(Et2HSi) in 36.9% yield. The underlying reaction mechanism was elucidated by DFT calculations. 4-Methyl-9,9-diethyl-9-silafluorene (7) was obtained selectively from the [Ni(PPhMe2)4]-catalyzed reaction of Et2SiH2 and 1-methylbiphenylene. By contrast, no selectivity could be found in the Ni-catalyzed reaction between Et2SiH2 and the biphenylene derivative that bears tBu substituents in the 2- and 7-positions. Therefore, two pairs of isomers of tBu-substituted silafluorenes and of the related diethylhydrosilylbiphenyls were formed in this reaction. However, a subsequent dehydrogenation of the diethylhydrosilylbiphenyls with Wilkinson's catalyst yielded a mixture of 2,7-di-tert-butyl-9,9-diethyl-9-silafluorene (8) and 3,6-di-tert-butyl-9,9-diethyl-9-silafluorene (9). Silafluorenes 8 and 9 were separated by column chromatography.

  9. Controlling thermo-reversibility of gelatin gels through a peroxidase-catalyzed reaction under mild conditions for mammalian cells.

    PubMed

    Sakai, Shinji; Moriyama, Kousuke; Kawakami, Koei

    2011-01-01

    A variety of cross-linking methods is used for obtaining gelatin gels having a tolerance to thermo-reversible gel-sol transition at physiological temperature. In this paper, we investigated the applicability of horseradish peroxidase-catalyzed cross-linking of tyrosine residues originally contained in native gelatin molecules for preparing such gelatin gels. The gelatin gels obtained through exposure to the enzymatic reaction showed a higher resistance to thermo-reversibility at 37°C than gels obtained through a thermally-induced gelation alone. In addition, the resistance property to thermo-reversible gel-sol transition was tunable by controlling enzymatic reaction conditions: higher peroxidase concentration and thermally-induced pre-gelation accomplished by cooling the gelatin solution prior to the enzymatic reaction produced gels with higher resistance to thermo-reversibility. Fibroblast cells enclosed in the gelatin gels obtained through the enzymatic reaction with thermally-induced pre-gelation showed 93% viability. These results demonstrate the feasibility of peroxidase-catalyzed reaction for obtaining gelatin gels having a tolerance to thermo-reversible gel-to-sol transition at physiological temperature toward applications in biomedical and biopharmaceutical fields.

  10. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  11. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    PubMed

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management.

  12. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.

    PubMed

    Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin

    2013-08-07

    We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.

  13. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives.

    PubMed

    Cindro, Nikola; Antol, Ivana; Mlinarić-Majerski, Kata; Halasz, Ivan; Wan, Peter; Basarić, Nikola

    2015-12-18

    Three m-substituted phenol derivatives, each with a labile benzylic alcohol group and bearing either protoadamantyl 4, homoadamantyl 5, or a cyclohexyl group 6, were synthesized and their thermal acid-catalyzed and photochemical solvolytic reactivity studied, using preparative irradiations, fluorescence measurements, nanosecond laser flash photolysis, and quantum chemical calculations. The choice of m-hydroxy-substitution was driven by the potential for these phenolic systems to generate m-quinone methides on photolysis, which could ultimately drive the excited-state pathway, as opposed to forming simple benzylic carbocations in the corresponding thermal route. Indeed, thermal acid-catalyzed reactions gave the corresponding cations, which undergo rearrangement and elimination from 4, only elimination from 5, and substitution and elimination from 6. On the other hand, upon photoexcitation of 4-6 to S1 in a polar protic solvent, proton dissociation from the phenol, coupled with elimination of the benzylic OH (as hydroxide ion) gave zwitterions (formal m-quinone methides). The zwitterions exhibit reactivity different from the corresponding cations due to a difference in charge distribution, as shown by DFT calculations. Thus, protoadamantyl zwitterion has a less nonclassical character than the corresponding cation, so it does not undergo 1,2-shift of the carbon atom, as observed in the acid-catalyzed reaction.

  14. A novel O-phospho-L-serine sulfhydrylation reaction catalyzed by O-acetylserine sulfhydrylase from Aeropyrum pernix K1.

    PubMed

    Mino, Koshiki; Ishikawa, Kazuhiko

    2003-09-11

    O-Acetylserine sulfhydrylase (OASS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the synthesis of L-cysteine from O-acetyl-L-serine and sulfide. O-Acetyl-L-serine is labile at high temperatures at which hyperthermophilic archaea live. Herein, a study of the substrate specificity of OASS from Aeropyrum pernix K1 with respect to O-acetyl-L-serine in L-cysteine synthesis is described. L-Azaserine, 3-chloro-L-alanine, and O-phospho-L-serine reacted with A. pernix OASS in a PLP-dependent manner. Sulfhydrylation reactions using these substrates reached a maximum in the pH range between 7.3 and 8.1. L-Azaserine and O-phospho-L-serine were found to be heat-stable substrates. The presence of FeCl3 or NiCl2 strongly inhibited the O-acetyl-L-serine sulfhydrylation reaction, whereas the O-phospho-L-serine sulfhydrylation reaction was only slightly inhibited. Kinetic analyses revealed that the O-phospho-L-serine sulfhydrylation reaction as well as the O-acetyl-L-serine sulfhydrylation reaction for A. pernix OASS followed a ping-pong bi-bi mechanism. In the case of the O-phospho-L-serine sulfhydrylation reaction at 85 degrees C, the K(m) values for O-phospho-L-serine and sulfide, and the rate constant were 250 mM, 12.5 mM, and 14000 s(-1), respectively. The reactivity of O-phospho-L-serine in the L-cysteine synthetic reaction provides a key for understanding the biosynthesis of L-cysteine by hyperthermophilic archaea. This is the first report of an enzyme that catalyzes the O-phospho-L-serine sulfhydrylation reaction.

  15. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions.

    PubMed

    Xie, Jian-Hua; Zhou, Qi-Lin

    2008-05-01

    The preparation of chiral compounds in enantiomerically pure form is a challenging goal in modern organic synthesis. The use of chiral metal complex catalysis is a powerful, economically feasible tool for the preparation of optically active organic compounds on both laboratory and industrial scales. In particular, the metals coordinated by one or more chiral phosphorus ligands exhibit amazing enantioselectivity and reactivity. Many chiral phosphorus ligands have been synthesized and used in transition-metal-catalyzed asymmetric reactions in past decades. However, a large number of reactions still lack effective chiral ligands, and the enantioselectivities in many reactions are substrate-dependent. The development of effective chiral phosphorus ligands, especially ligands having novel chiral backbones, is still an important task in the area of asymmetric catalysis. Molecules containing a spirocyclic framework are ubiquitous in nature. The synthesis of molecules with this spiro structure can be traced back to 100 years ago. However, the use of this spirocyclic framework to construct chiral phosphorus ligands is a recent event. This Account outlines the design and synthesis of a new family of chiral spiro phosphorus ligands including spiro diphosphines and spiro monodentate phosphorus ligands with 1,1'-spirobiindane and 9,9'-spirobifluorene backbone and their applications in transition-metal-catalyzed asymmetric hydrogenation and carbon-carbon bond formation reactions. The chiral spiro diphosphine lgands SDP with a 1,1'-spirobiindane backbone and SFDP with a 9,9'-spirobifluorene backbone, and the spiro monophosphorus ligands including phosphoramidites, phosphites, phosphonites, and phospholane with a 1,1'-spirobiindane backbone were synthesized in good yields from enantiomerically pure 1,1'-spirobiindane-7,7'-diol and 9,9'-spirobifluoren-1,1'-diol. The ruthenium complexes of chiral spiro diphosphine ligands proved to be very effective catalysts for asymmetric

  16. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction.

    PubMed

    Adlercreutz, Dietlind; Budde, Heike; Wehtje, Ernst

    2002-05-20

    The incorporation of caproic acid in the sn-1 position of phosphatidylcholine (PC) catalyzed by lipase from Rhizopus oryzae was investigated in a water activity-controlled organic medium. The reaction was carried out either as esterification or transesterification. A comparison between these two reaction modes was made with regard to product yield, product purity, reaction time, and byproduct formation as a consequence of acyl migration. The yield in the esterification and transesterification reaction was the same under identical conditions. The highest yield (78%) was obtained at a water activity (a(w)) of 0.11 and a caproic acid concentration of 0.8 M. The reaction time was shorter in the esterification reaction than in the transesterification reaction. The difference in reaction time was especially pronounced at low water activities and high fatty acid concentrations. The loss in yield due to acyl migration and consequent enzymatic side reactions was around 16% under a wide range of conditions. The incorporation of a fatty acid in the sn-1 position of PC proved to be thermodynamically much more favorable than the incorporation of a fatty acid in the sn-2 position.

  17. Novel syn intramolecular pathway in base-catalyzed 1,2-elimination reactions of beta-acetoxy esters.

    PubMed

    Mohrig, Jerry R; Carlson, Hans K; Coughlin, Jane M; Hofmeister, Gretchen E; McMartin, Lea A; Rowley, Elizabeth G; Trimmer, Elizabeth E; Wild, Andrew J; Schultz, Steve C

    2007-02-02

    As part of a comprehensive investigation of electronic effects on the stereochemistry of base-catalyzed 1,2-elimination reactions, we observed a new syn intramolecular pathway in the elimination of acetic acid from beta-acetoxy esters and thioesters. 1H and 2H NMR investigation of reactions using stereospecifically labeled tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanoate (1) and its (2R*,3S*) diastereomer (2) shows that 23 +/- 2% syn elimination occurs. The elimination reactions were catalyzed with KOH or (CH3)4NOH in ethanol/water under rigorously non-ion-pairing conditions. By contrast, the more sterically hindered beta-trimethylacetoxy ester produces only 6 +/- 1% syn elimination. These data strongly support an intramolecular (Ei) syn path for elimination of acetic acid, most likely through the oxyanion produced by nucleophilic attack at the carbonyl carbon of the beta-acetoxy group. The analogous thioesters, S-tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanethioate (3) and its (2R*,3S*) diastereomer (4), showed 18 +/- 2% syn elimination, whereas the beta-trimethylacetoxy substrate gave 5 +/- 1% syn elimination. The more acidic thioester substrates do not produce an increased amount of syn stereoselectivity even though their elimination reactions are at the E1cb interface.

  18. Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A.

    PubMed

    Fujiwara, Kazuko; Maita, Nobuo; Hosaka, Harumi; Okamura-Ikeda, Kazuko; Nakagawa, Atsushi; Taniguchi, Hisaaki

    2010-03-26

    Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645-33651). Here, we report two new LplA structures, LplA.lipoyl-5'-AMP and LplA.octyl-5'-AMP.apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5'-AMP reaction intermediate and rotation of the C-terminal domain by about 180 degrees . These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys(133) residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.

  19. Enantioselective synthesis of coumarin derivatives by PYBOX-DIPH-Zn(II) complex catalyzed Michael reaction.

    PubMed

    Ray, Sumit K; Singh, Pradeep K; Molleti, Nagaraju; Singh, Vinod K

    2012-10-05

    A potential pharmacologically active chiral 3-substituted 4-hydroxy-2-oxo-2H-chromene skeleton has been synthesized by enantioselective Michael addition catalyzed by PYBOX-DIPH-Zn(OTf)(2) complex. The methodology has successfully been employed in the synthesis of (R)-Warfarin and another related compounds.

  20. Fe-Catalyzed Oxidation Reactions of Olefins, Alkanes, and Alcohols: Involvement of Oxo- and Peroxo Complexes

    NASA Astrophysics Data System (ADS)

    Schröder, Kristin; Junge, Kathrin; Bitterlich, Bianca; Beller, Matthias

    In this review, recent developments of iron-catalyzed oxidations of olefins (epoxidation), alkanes, arenes, and alcohols are summarized. Special focus is given on the ligand systems and the catalytic performance of the iron complexes. In addition, the mechanistic involvement of high-valent iron-oxo species is discussed.

  1. Biosynthesis of isoprenoids in Escherichia coli: stereochemistry of the reaction catalyzed by farnesyl diphosphate synthase.

    PubMed

    Leyes, A E; Baker, J A; Poulter, C D

    1999-10-07

    [formula: see text] Farnesyl diphosphate (FPP) synthase from Escherichia coli catalyzes the condensation of isopentenyl diphosphate (IPP) and geranyl diphosphate (GPP) with selective removal of the pro-R hydrogen at C2 of IPP, the same stereochemistry observed for the pig liver, yeast, and avian enzymes.

  2. Beta-D-xylosidase from Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-beta-D-xylopyranoside (4NPX), 4-nitrophenyl-alpha-L-arabi...

  3. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    SciTech Connect

    Schlautman, Mark A.

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  4. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase.

    PubMed

    Esaki, N; Nakayama, T; Sawada, S; Tanaka, H; Soda, K

    1985-07-16

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the following straight-chain L-amino acids which are not susceptible to elimination: norleucine, norvaline, alpha-aminobutyrate, and alanine. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. One beta-hydrogen of S-methyl-L-cysteine was exchanged faster than the other, although both the beta-hydrogens were exchanged completely with deuterium ultimately. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically. None of the following amino acids were susceptible to the enzymatic hydrogen exchange: D isomers of the above amino acids, branched chain L-amino acids, acidic L-amino acids, and basic L-amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products

    PubMed Central

    Yan, Ni; Liu, Fei; Xue, Qiang; Brusseau, Mark L.; Liu, Yali; Wang, Junjie

    2015-01-01

    A binary catalytic system, siderite-catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82−), was investigated for the remediation of trichloroethene (TCE) contamination. Batch experiments were conducted to investigate reaction mechanisms, oxidant decomposition rates, and degradation products. By using high performance liquid chromatography (HPLC) coupled with electron paramagnetic resonance (EPR), we identified four radicals (hydroxyl (HO·), sulfate (SO4−·), hydroperoxyl (HO2·), and superoxide (O2−·)) in the siderite-catalyzed H2O2-S2O82− system. In the absence of S2O82− (i.e., siderite-catalyzed H2O2), a majority of H2O2 was decomposed in the first hour of the experiment, resulting in the waste of HO·. The addition of S2O82− moderated the H2O2 decomposition rate, producing a more sustainable release of hydroxyl radicals that improved the treatment efficiency. Furthermore, the heat released by H2O2 decomposition accelerated the activation of S2O82−, and the resultant SO4−· was the primary oxidative agent during the first two hours of the reaction. Dichloroacetic acid was firstly detected by ion chromatography (IC). The results of this study indicate a new insight to the reaction mechanism for the catalytic binary H2O2-S2O82− oxidant system, and the delineation of radicals and the discovery of the chlorinated byproduct provide useful information for efficient treatment of chlorinated-solvent contamination in groundwater. PMID:26236152

  6. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products.

    PubMed

    Yan, Ni; Liu, Fei; Xue, Qiang; Brusseau, Mark L; Liu, Yali; Wang, Junjie

    2015-08-15

    A binary catalytic system, siderite-catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O8(2-)), was investigated for the remediation of trichloroethene (TCE) contamination. Batch experiments were conducted to investigate reaction mechanisms, oxidant decomposition rates, and degradation products. By using high performance liquid chromatography (HPLC) coupled with electron paramagnetic resonance (EPR), we identified four radicals (hydroxyl (HO·), sulfate (SO4(-)·), hydroperoxyl (HO2·), and superoxide (O2(-)·)) in the siderite-catalyzed H2O2-S2O8(2-) system. In the absence of S2O8(2-) (i.e., siderite-catalyzed H2O2), a majority of H2O2 was decomposed in the first hour of the experiment, resulting in the waste of HO·. The addition of S2O8(2-) moderated the H2O2 decomposition rate, producing a more sustainable release of hydroxyl radicals that improved the treatment efficiency. Furthermore, the heat released by H2O2 decomposition accelerated the activation of S2O8(2-), and the resultant SO4(-)· was the primary oxidative agent during the first two hours of the reaction. Dichloroacetic acid was firstly detected by ion chromatography (IC). The results of this study indicate a new insight to the reaction mechanism for the catalytic binary H2O2-S2O8(2-) oxidant system, and the delineation of radicals and the discovery of the chlorinated byproduct provide useful information for efficient treatment of chlorinated-solvent contamination in groundwater.

  7. Studies of the Mechanism and Origins of Enantioselectivity for the Chiral Phosphoric Acid-Catalyzed Stereoselective Spiroketalization Reactions.

    PubMed

    Khomutnyk, Yaroslav Ya; Argüelles, Alonso J; Winschel, Grace A; Sun, Zhankui; Zimmerman, Paul M; Nagorny, Pavel

    2016-01-13

    Mechanistic and computational studies were conducted to elucidate the mechanism and the origins of enantiocontrol for asymmetric chiral phosphoric acid-catalyzed spiroketalization reactions. These studies were designed to differentiate between the S(N)1-like, S(N)2-like, and covalent phosphate intermediate-based mechanisms. The chiral phosphoric acid-catalyzed spiroketalization of deuterium-labeled cyclic enol ethers revealed a highly diastereoselective syn-selective protonation/nucleophile addition, thus ruling out long-lived oxocarbenium intermediates. Hammett analysis of the reaction kinetics revealed positive charge accumulation in the transition state (ρ = -2.9). A new computational reaction exploration method along with dynamics simulations supported an asynchronous concerted mechanism with a relatively short-lived polar transition state (average lifetime = 519 ± 240 fs), which is consistent with the observed inverse secondary kinetic isotope effect of 0.85. On the basis of these studies, a transition state model explaining the observed stereochemical outcome has been proposed. This model predicts the enantioselective formation of the observed enantiomer of the product with 92% ee, which matches the experimentally observed value.

  8. Lanthanum(III)-Catalyzed Three-Component Reaction of Coumarin-3-carboxylates for the Synthesis of Indolylmalonamides and Analysis of Their Photophysical Properties.

    PubMed

    Jennings, Julia J; Bhatt, Chinmay P; Franz, Annaliese K

    2016-08-05

    New methodology has been developed for the Lewis acid catalyzed synthesis of malonamides. First, the scandium(III)-catalyzed addition of diverse nucleophiles (e.g., indoles, N,N-dimethyl-m-anisidine, 2-ethylpyrrole, and 2-methylallylsilane) to coumarin-3-carboxylates has been developed to afford chromanone-3-carboxylates in high yields as a single diastereomer. Upon investigating a subsequent lanthanum(III)-catalyzed amidation reaction, a new multicomponent reaction was designed by bringing together coumarin-3-carboxylates with indoles and amines to afford indolylmalonamides, which were identified to exhibit fluorescent properties. The photophysical properties for selected compounds have been analyzed, including quantum yield, molar absorptivity, and Stokes shift. Synthetic studies of several reaction byproducts involved in the network of reaction equilibria for the three-component reaction provide mechanistic insight for the development of this methodology.

  9. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect

    Klobukowski, Erik

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  10. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy.

    PubMed

    Gu, Jing-Ying; Cai, Zhen-Feng; Wang, Dong; Wan, Li-Jun

    2016-09-27

    We report herein an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of iron-phthalocyanine (FePc)-catalyzed oxygen reduction reaction (ORR). A highly ordered FePc adlayer is revealed on a Au(111) electrode. The center ions in the FePc adlayer show uniform high contrast in an oxygen-saturated electrolyte, which is attributed to the formation of an FePc-O2 complex. In situ STM results reveal the sharp contrast change upon shifting the electrode potential to trigger the ORR. Theoretical simulation has supplied further evidence for the contrast difference of the adsorbed FePc species.

  11. Chemical syntheses of inhibitory substrates of the RNA-RNA ligation reaction catalyzed by the hairpin ribozyme.

    PubMed

    Massey, Archna P; Sigurdsson, Snorri Th

    2004-01-01

    The chemical syntheses of RNA oligomers containing modifications on the 5'-carbon of the 5'-terminal nucleoside for crystallographic and mechanistic studies of the hairpin ribozyme are reported. Phosphoramidites 4 and 8 were prepared and used in solid phase syntheses of RNA oligomers containing the sequence 5'-N'UCCUCUCC, where N' indicates either 5'-chloro-5'-deoxyguanosine or 5'-amino-5'-deoxyguanosine, respectively. A ribozyme ligation assay with the 5'-chloro- and 5'-amino-modified RNA oligomers demonstrated their inhibition of the hairpin-catalyzed RNA-RNA ligation reaction.

  12. Mechanism and Stereoselectivity in an Asymmetric N-Heterocyclic Carbene-Catalyzed Carbon-Carbon Bond Activation Reaction.

    PubMed

    Pareek, Monika; Sunoj, Raghavan B

    2016-11-18

    The mechanism and origin of stereoinduction in a chiral N-heterocyclic carbene (NHC) catalyzed C-C bond activation of cyclobutenone has been established using B3LYP-D3 density functional theory computations. The activation of cyclobutenone as an NHC-bound vinyl enolate and subsequent reaction with the electrophilic sulfonyl imine leads to the lactam product. The most preferred stereocontrolling transition state exhibits a number of noncovalent interactions rendering additional stabilization. The computed enantio- and diastereoselectivities are in good agreement with the previous experimental observations.

  13. Exhaustive study of the noise-induced phase transition in a stochastic model of self-catalyzed reactions

    NASA Astrophysics Data System (ADS)

    Pham, T. M.; Virchenko, Yu. P.

    2016-08-01

    We completely investigate the stationary distribution density in the space of relative concentrations for the three-parameter stochastic Horsthemke-Lefever model of a binary self-catalyzed cyclic chemical reaction with perturbations produced by thermal fluctuations of reagents taken into account. This model is a stationary diffusion random process generated by a stochastic equation with the Stratonovich differential, whose marginal distribution density admits a bifurcation restructuring from the unimodal to the bimodal phase with increasing noise intensity, which is interpreted physically as a dynamical phase transition induced by fluctuations in the system.

  14. The reaction mechanism for dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Li, Ze-Sheng

    2012-01-01

    The fundamental reaction mechanism for the dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica has been studied by density functional theory calculations. The results indicate that the dehydration process undergoes a two-step cis-elimination mechanism, which is different from the previously proposed one. The catalytic roles of both the highly conserved residue His143 and the Schiff base formed between the substrate and Lys170 have also been elucidated. The structural and mechanistic insight presented here may direct the design of type I dehydroquinate dehydratase enzyme inhibitors as non-toxic antimicrobials, anti-fungals, and herbicides.

  15. Bifurcations and asymptotic behavior of positive steady-states of an enzyme-catalyzed reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ko, Wonlyul

    2016-12-01

    The current paper presents a better understanding of a diffusive enzyme-catalyzed system arising from glycolysis, describing a biochemical reaction in which a substrate is converted into a product with positive feedback and into a branched sink. Through theoretical analysis of the given partial differential system, the existence and nonexistence of nonconstant positive steady states are studied. Moreover, the global bifurcation structure and asymptotic behavior of the solutions are revealed. Our mathematical approach is based on bifurcation theory, index theory, and various elliptic estimates.

  16. Non-Innocent Behavior of Substrate Backbone Esters in Metal-Catalyzed Carbocyclizations and Friedel-Crafts Reactions of Enynes and Arenynes.

    PubMed

    Michelet, Bastien; Thiery, Guillaume; Bour, Christophe; Gandon, Vincent

    2015-11-06

    On the basis of DFT computations and experimental results, we show that the presence of the ester group in the backbone of organic substrates can influence the mechanism of metal-catalyzed carbocyclization reactions. The non-innocent role of the ester functionality in lowering the activation barrier of the key step of the gallium- and indium-catalyzed cycloisomerization of 1,6-enynes is revealed. In the case of the gallium-catalyzed hydroarylation of arenynes, the esters in the tether can deprotonate the Wheland intermediate, thus avoiding more energetically demanding [1,3]- or [1,2]/[1,2]-H shifts. As for the gallium-catalyzed Friedel-Crafts alkylation, an unusual concerted SEAr mechanism involving the esters has been calculated. Lastly, computations evidence that the ester group of methyl propiolates enables a divergent mechanism in the platinum-catalyzed intramolecular hydroarylation.

  17. An enigmatic peptide ligation reaction: protease-catalyzed oligomerization of a native protein segment in neat aqueous solution.

    PubMed

    Kumaran, S; Datta, D; Roy, R P

    2000-04-01

    We report an enigmatic peptide ligation reaction catalyzed by Glu-specific Staphylococcus aureus V8 protease that occurs in neat aqueous solution around neutral pH utilizing a totally unprotected peptide substrate containing free alpha-carboxyl and alpha-amino groups. V8 protease catalyzed a chain of ligation steps between pH 6 and 8 at 4 degrees C, producing a gamut of covalent oligomers (dimer through octamer or higher) of a native protein segment TAAAKFE (S39) derived from ribonuclease A (RNAse A). Size-exclusion chromatography suggested the absence of strong interaction between the reacting peptides. The circular dichroism spectra of monomer through pentamer showed length-dependent enhancement of secondary structure in the oligomers, suggesting that protease-catalyzed ligation of a monomer to an oligomer resulted in a product that was more structured than its precursor. The relative conformational stability of the oligomers was reflected in their ability to resist proteolysis, indicating that the oligomerization reaction was facilitated as a consequence of the "conformational trapping" of the product. The ligation reaction proceeded in two phases-slow formation and accumulation of the dimer followed by a fast phase of oligomerization, implying that the conformational trap encountered in the oligomerization reaction was a two-step process. The Gly substitution at any position of the TAAAKFE sequence was deleterious, suggesting that the first step of the conformational trap, namely the dimerization reaction, that proceeded very slowly even with the parent peptide, was quite sensitive to amino acid sequence. In contrast, the oligomerization reaction of an Ala analog, AAAAKFE, occurred in much the same way as S39, albeit with faster rate, suggesting that Ala substitution stabilized the overall conformational trapping process. The results suggest the viability of the product-directed "conformational trap" as a mechanism to achieve peptide ligation of totally

  18. Acid-, base-, and lewis-acid-catalyzed heterolysis of methoxide from an alpha-hydroxy-beta-methoxy radical: models for reactions catalyzed by coenzyme B12-dependent diol dehydratase.

    PubMed

    Xu, Libin; Newcomb, Martin

    2005-11-11

    [Reaction: see text].A model for glycol radicals was employed in laser flash photolysis kinetic studies of catalysis of the fragmentation of a methoxy group adjacent to an alpha-hydroxy radical center. Photolysis of a phenylselenylmethylcyclopropane precursor gave a cyclopropylcarbinyl radical that rapidly ring opened to the target alpha-hydroxy-beta-methoxy radical (3). Heterolysis of the methoxy group in 3 gave an enolyl radical (4a) or an enol ether radical cation (4b), depending upon pH. Radicals 4 contain a 2,2-diphenylcyclopropane reporter group, and they rapidly opened to give UV-observable diphenylalkyl radicals as the final products. No heterolysis was observed for radical 3 under neutral conditions. In basic aqueous acetonitrile solutions, specific base catalysis of the heterolysis was observed; the pK(a) of radical 3 was determined to be 12.5 from kinetic titration plots, and the ketyl radical formed by deprotonation of 3 eliminated methoxide with a rate constant of 5 x 10(7) s(-1). In the presence of carboxylic acids in acetonitrile solutions, radical 3 eliminated methanol in a general acid-catalyzed reaction, and rate constants for protonation of the methoxy group in 3 by several acids were measured. Radical 3 also reacted by fragmentation of methoxide in Lewis-acid-catalyzed heterolysis reactions; ZnBr2, Sc(OTf)3, and BF3 were found to be efficient catalysts. Catalytic rate constants for the heterolysis reactions were in the range of 3 x 10(4) to 2 x 10(6) s(-1). The Lewis-acid-catalyzed heterolysis reactions are fast enough for kinetic competence in coenzyme B12 dependent enzyme-catalyzed reactions of glycols, and Lewis-acid-catalyzed cleavages of beta-ethers in radicals might be applied in synthetic reactions.

  19. ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction.

    PubMed

    Sakato, Miho; Zhou, Yayan; Hingorani, Manju M

    2012-02-17

    The multi-subunit replication factor C (RFC) complex loads circular proliferating cell nuclear antigen (PCNA) clamps onto DNA where they serve as mobile tethers for polymerases and coordinate the functions of many other DNA metabolic proteins. The clamp loading reaction is complex, involving multiple components (RFC, PCNA, DNA, and ATP) and events (minimally: PCNA opening/closing, DNA binding/release, and ATP binding/hydrolysis) that yield a topologically linked clamp·DNA product in less than a second. Here, we report pre-steady-state measurements of several steps in the reaction catalyzed by Saccharomyces cerevisiae RFC and present a comprehensive kinetic model based on global analysis of the data. Highlights of the reaction mechanism are that ATP binding to RFC initiates slow activation of the clamp loader, enabling it to open PCNA (at ~2 s(-1)) and bind primer-template DNA (ptDNA). Rapid binding of ptDNA leads to formation of the RFC·ATP·PCNA(open)·ptDNA complex, which catalyzes a burst of ATP hydrolysis. Another slow step in the reaction follows ATP hydrolysis and is associated with PCNA closure around ptDNA (8 s(-1)). Dissociation of PCNA·ptDNA from RFC leads to catalytic turnover. We propose that these early and late rate-determining events are intramolecular conformational changes in RFC and PCNA that control clamp opening and closure, and that ATP binding and hydrolysis switch RFC between conformations with high and low affinities, respectively, for open PCNA and ptDNA, and thus bookend the clamp loading reaction.

  20. Tailored Cyclic and Linear Polycarbosilazanes by Barium-Catalyzed N-H/H-Si Dehydrocoupling Reactions.

    PubMed

    Bellini, Clément; Orione, Clément; Carpentier, Jean-François; Sarazin, Yann

    2016-03-07

    Ba[CH(SiMe3 )2 ]2 (THF)3 catalyzes the fast and controlled dehydrogenative polymerization of Ph2 SiH2 and p-xylylenediamine to afford polycarbosilazanes. The structure (cyclic versus linear; end-groups) and molecular weight of the macromolecules can be tuned by adjusting the Ph2 SiH2 /diamine feed ratio. A detailed analysis of the resulting materials (mol. wt up to ca. 10 000 g mol(-1) ) is provided.

  1. A further investigation and reappraisal of the thio effect in the cleavage reaction catalyzed by a hammerhead ribozyme

    PubMed Central

    Yoshinari, Koichi; Taira, Kazunari

    2000-01-01

    We synthesized three types of 11mer substrate, namely the natural substrate S11O and the thiosubstituted substrates S11SpS and S11RpS, in which the respective pro-Sp and pro-Rp oxygen atoms were replaced by sulfur, and subjected them to detailed kinetic analysis in the cleavage reaction catalyzed by a hammerhead ribozyme. In agreement with previous findings, in the presence of Mg2+ or Ca2+ ions the rate of ribozyme-catalyzed cleavage of S11SpS was as high as that of S11O, whereas the corresponding rate for S11RpS was nearly four orders of magnitude lower than that for either S11O or S11SpS. However, the rate of the ribozyme-catalyzed reaction with each of the three substrates was enhanced by Cd2+ ions. Such results have generally been taken as evidence that supports the direct interaction of the sulfur atom at the Rp position of the cleavage site with the added Cd2+ ion. However, our present analysis demonstrates that (i) the added Cd2+ ion binds at the P9 site; (ii) the bound Cd2+ ion at the P9 site replaces two Mg2+ or two Ca2+ ions, an observation that suggests a different mode of interaction with the added Cd2+ ion; and, most importantly and in contrast to the conclusion reached by other investigators, (iii) the Cd2+ ion does not interact with the sulfur atom at the Rp position of the scissile phosphate either in the ground state or in the transition state. PMID:10734192

  2. Reversal of stereoselectivity in the Cu-catalyzed conjugate addition reaction of dialkylzinc to cyclic enone in the presence of a chiral azolium compound.

    PubMed

    Shibata, Naoatsu; Okamoto, Masaki; Yamamoto, Yuko; Sakaguchi, Satoshi

    2010-08-20

    Reversal of enantioselectivity in a Cu-catalyzed asymmetric conjugate addition reaction of dialkylzinc to cyclic enone with use of the same chiral ligand was successfully achieved. The reaction of 2-cyclohexen-1-one (30) with Et(2)Zn catalyzed by Cu(OTf)(2) in the presence of an azolium salt derived from a chiral beta-amino alcohol gave (S)-3-ethylcyclohexanone (31) in good enantioselectivity. Among a series of chiral azolium compounds examined, the benzimidazolium salt (10) having both a tert-butyl group at the stereogenic center and a benzyl substituent at the azolium ring was found to be the best choice of ligand in the Cu(OTf)(2)-catalyzed reaction. Good enantioselectivity was observed when the reaction was conducted by employing a benzimidazolium derivative rather than an imidazolium derivative. The influence of the substituent at the azolium ring on the stereoselectivity of the reaction was also examined. In addition, from the results of the reaction catalyzed by Cu(OTf)(2) combined with an azolium compound derived from (S)-leucine methyl ester, it was found that the hydroxy side chain in the chiral ligand is probably crucial for the enantiocontrol of the conjugate addition reaction. On the other hand, it was discovered from a screening test of copper species that the reversal of enantioselectivity was realized by allowing 30 to react with Et(2)Zn in the presence of Cu(acac)(2) combined with the same ligand precursor to afford (R)-31 as a major product. The influence of the stereodirecting group at the chiral ligand on the stereoselectivity in the Cu(acac)(2)-catalyzed reaction differed completely from that observed in the Cu(OTf)(2)-catalyzed reaction. Reaction with a cyclic enone consisting of a seven-membered ring such as 2-cyclohepten-1-one (40) resulted in increasing the enantioselectivity of the reaction. Thus, treatment of 40 with Et(2)Zn catalyzed by Cu(OTf)(2) combined with a benzimidazolium salt produced the corresponding (S)-conjugate adduct in a

  3. Stereoselective synthesis of 3-methyleneisoindolin-1-ones via base-catalyzed intermolecular reactions of electron-deficient alkynes with N-hydroxyphthalimides.

    PubMed

    Chen, Xin; Ge, Fei-Fei; Lu, Tao; Zhou, Qing-Fa

    2015-03-20

    Highly stereoselective intermolecular reactions of electron-deficient alkynes with N-hydroxyphthalimides for efficient construction of N-unprotected 3-methyleneisoindolin-1-ones have been developed through base catalytic strategies. The reaction of alkynoates with N-hydroxyphthalimides catalyzed by Bu3P in DMF at 150 °C gave the corresponding 3-methyleneisoindolin-1-ones with a (Z)-configuration, while the reaction of alkynoates with N-hydroxyphthalimides catalyzed by K2CO3 in DMF at 60 °C gave the corresponding 3-methyleneisoindolin-1-ones with an (E)-configuration, and (Z)-3-methyleneisoindolin-1-ones were obtained when alkyne ketones reacted with N-hydroxyphthalimide.

  4. Acid-catalyzed Reactions in Model Secondary Organic Aerosol (SOA): Insights using Desorption-electrospray Ionization (DESI) Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fiddler, M. N.; Cooks, R. G.; Shepson, P.

    2008-12-01

    Atmospheric aerosols are presently little understood in terms of their sources, formation, and effect on climate forcing, despite their significant impacts on climate change and respiratory health. Secondary organic aerosols (SOA), which were thought to arise entirely from simple gas-particle partitioning, have recently been found to contain oligomeric species which result from the condensed-phase reactions of volatile organic compounds (VOCs). The non-methane VOC with the greatest emission flux, isoprene, is known to produce aerosols through chemistry involving its oxidation products. We selected one of its major oxidation product, methacrolein, to assess its role in oligomeric SOA formation in response to the acidic conditions found in cloud water. Since it has been found that acidified aerosol produces oligomeric species with greater molecular weight and yield, acid-catalyzed oligomerization is likely a significant process in the formation of SOA. Aqueous solutions of methacrolein were acidified with sulfuric acid, and studied using linear ion trap mass spectrometry (LIT-MS) with a home-built desorption-electrospray ionization (DESI) source. An extremely heterogeneous mixture of products was produced in this system, resulting from hydrolysis, acid- catalyzed oxidation, reduction, and organosulfate formation. Evidence for disproportionation and heterocycle formation are proposed as reaction mechanisms hitherto unrecognized in the production of SOA. The proposed structure and formation mechanism for several species, based upon their MS/MS spectra, will also be presented.

  5. Cumene hydroperoxide-supported demethylation reactions catalyzed by cytochrome P450 2B4 lacking the NH2-terminal sequence.

    PubMed

    Zhang, Y; Pernecky, S J

    1999-04-29

    Catalytic activities of cytochrome P450 2B4 lacking NH2-terminal amino acids 2-27 (wt Delta2B4) and that of truncated 2B4 containing a Pro to Ser mutation at position 221 were examined in a system supported by cumene hydroperoxide. Demethylation activities of either truncated 2B4 with N-methylaniline, N,N-dimethylaniline, and d-benzphetamine were lower than those of liver microsomal 2B4, whereas the rate of 1-phenylethanol oxidation to acetophenone catalyzed by liver microsomal and truncated 2B4 enzymes was nearly the same. The Km and Vmax values for cumene hydroperoxide in the demethylation of N-methylaniline by wt Delta2B4 were 20% and 28%, respectively, of those obtained for 2B4. The reaction with wt Delta2B4 displayed a lesser dependence on phospholipid than did that with 2B4, and a complex relationship between activity and substrate concentration. The results suggest that the NH2-terminal region contributes to interaction of oxidant, substrate, and phospholipid in cumene hydroperoxide-supported reactions catalyzed by cytochrome P450 2B4.

  6. Antioxidant activity of minimally processed red chicory (Cichorium intybus L.) evaluated in xanthine oxidase-, myeloperoxidase-, and diaphorase-catalyzed reactions.

    PubMed

    Lavelli, Vera

    2008-08-27

    Minimally processed red chicory products (Cichorium intybus L. var. silvestre) were studied for their polyphenol content and antioxidant activity evaluated by using the synthetic 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical and three model reactions catalyzed by relevant enzymatic sources of reactive oxygen species, namely, xanthine oxidase, myeloperoxidase, and diaphorase. Products were analyzed at the time of production and after storage at 4 degrees C within either a gas permeable film or a gas barrier film. The antioxidant activity and contents of hydroxycinnamic acids and flavonoids decreased by less than 20% during storage of the minimally processed red chicory products. Total phenolics were significantly correlated with the antioxidant activity evaluated with both the synthetic radical and the enzyme-catalyzed reactions. On a molar basis, red chicory phenolics were as efficient as the reference compound Trolox in scavenging the synthetic radical. However, red chicory phenolics had a much higher inhibitory activity than Trolox in the model enzymatic systems.

  7. A novel DNA deletion-ligation reaction catalyzed in vitro by a developmentally controlled activity from Tetrahymena cells.

    PubMed

    Robinson, E K; Cohen, P D; Blackburn, E H

    1989-09-08

    Developmentally controlled genomic deletion-ligations occur during ciliate macronuclear differentiation. We have identified a novel activity in Tetrahymena cell-free extracts that efficiently catalyzes a specific set of intramolecular DNA deletion-ligation reactions. When synthetic DNA oligonucleotide substrates were used, all the deletion-ligation products resembled those formed in vivo in that they resulted from deletions between pairs of short direct repeats. The reaction is ATP-dependent, salt-sensitive, and strongly influenced by the oligonucleotide substrate sequence. The deletion-ligation activity has an apparent size of 200-500 kd, no nuclease-sensitive component, and is highly enriched in cells developing new macronuclei. The temperature inactivation profile of the activity parallels the temperature lethality profile specific for Tetrahymena cells developing new macronuclei. We suggest that this deletion-ligation activity carries out the genomic deletions in developing macronuclei in vivo.

  8. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated.

  9. Functional Group Tolerant Nickel-Catalyzed Cross-Coupling Reaction for Enantioselective Construction of 30 Methyl-Bearing Stereocenters

    PubMed Central

    Wisniewska, Hanna M.; Swift, Elizabeth C.; Jarvo, Elizabeth R.

    2013-01-01

    The first Negishi nickel-catalyzed stereospecific cross-coupling reaction of secondary benzylic esters is reported. A series of traceless directing groups are evaluated for ability to promote cross-coupling with dimethylzinc. Esters with a chelating thioether derived from commercially-available 2-(methylthio)acetic acid are most effective. The products are formed in high yield and with excellent stereospecificity. A variety of functional groups are tolerated in the reaction including alkenes, alkynes, esters, amines, imides, and O-, S-, and N-heterocycles. The utility of this transformation is highlighted in the enantioselective synthesis of a retinoic acid receptor (RAR) agonist and a fatty acid amide hydrolase (FAAH) inhibitor. PMID:23751004

  10. Synthesis of complex pyridine bases in the reaction of. cap alpha. ,omega-nitrileacetylenes with acetylene, catalyzed by cobalt complexes

    SciTech Connect

    Dzhemilev, U.M.; Selimov, F.A.; Khafizov, V.R.

    1987-01-20

    It has been shown that ..cap alpha..,omega-nitrileacetylenes under the action of homogeneous cobalt-containing catalysts undergo transformations into pyridine derivatives. In order to expand the scope of this method for synthesis of complex pyridine bases, for investigation of the reactivity of nitrileacetylenes of various structure in the reaction of cooligomerization with acetylene, as well as for the introduction to these reactions of new types of ..cap alpha..,omega-nitrileacetylenes, containing in their molecules an oxygen atom, they studied the homo- and codimerization of ..cap alpha..,omega-nitrileacetylenes with acetylene under the action of a Co(2-ethyl hexanoate)/sub 2/-AIR/sub 3/ catalyst in a toluene solution. Cyclodimerization of acetylene with ..cap alpha..,omega-nitrileacetylenes, catalyzed by a Co(2-ethyl hexanoate)/sub 2/-AlEt/sub 3/ system gives new types of mono- and bicyclic pyridines.

  11. Origin of chemoselectivity in N-heterocyclic carbene catalyzed cross-benzoin reactions: DFT and experimental insights.

    PubMed

    Langdon, Steven M; Legault, Claude Y; Gravel, Michel

    2015-04-03

    An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.

  12. Phosphine-catalyzed [3+2] cycloaddition reactions of azomethine imines with electron-deficient alkenes: a facile access to dinitrogen-fused heterocycles.

    PubMed

    Li, Zhen; Yu, Hao; Liu, Honglei; Zhang, Lei; Jiang, Hui; Wang, Bo; Guo, Hongchao

    2014-02-03

    An efficient method for the phosphine-catalyzed [3+2] cycloaddition reaction of azomethine imines with diphenylsulfonyl alkenes to give dinitrogen-fused bi- or tricyclic heterocyclic compounds in high yields has been described. Moreover, two phenylsulfonyl groups installed on the heterocyclic products could be conveniently removed or transformed to other functional groups, making the reaction more useful.

  13. Palladium-catalyzed/norbornene-mediated ortho-amination/N-tosylhydrazone insertion reaction: an approach to the synthesis of ortho-aminated vinylarenes.

    PubMed

    Zhou, Ping-Xin; Ye, Yu-Ying; Ma, Jun-Wei; Zheng, Lan; Tang, Qian; Qiu, Yi-Feng; Song, Bo; Qiu, Zi-Hang; Xu, Peng-Fei; Liang, Yong-Min

    2014-07-18

    ortho-Aminated vinylarene derivatives were obtained via a reaction of aryl iodides, N-benzoyloxyamines, and N-tosylhydrazones. This approach involves a palladium-catalyzed, norbornene-mediated ortho-amination/N-tosylhydrazone insertion reaction. In this transformation, one C-N bond and one C-C bond are formed and an amine group is introduced at the ortho position successfully.

  14. An "Aufbau" Approach to Understanding How the King-Altman Method of Deriving Rate Equations for Enzyme-Catalyzed Reactions Works

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2009-01-01

    The King-Altman method of deriving rate equations for enzymatic reactions is applied to the derivation of the Michaelis-Menten equation, along with an explanation for how (or why) the King-Altman method works in this case. The slightly more complicated cases of competitive inhibition and a two-substrate enzyme-catalyzed reaction are then treated…

  15. Kinetic studies on enzyme-catalyzed reactions: oxidation of glucose, decomposition of hydrogen peroxide and their combination.

    PubMed

    Tao, Zhimin; Raffel, Ryan A; Souid, Abdul-Kader; Goodisman, Jerry

    2009-04-08

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 +/- 0.7) x 10(4) M(-1) s(-1) at 37 degrees C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37 degrees C and well above unity at 25 degrees C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s(-1) and 0.090 s(-1) respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain.

  16. Cationic Pd(II)-catalyzed C-H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies.

    PubMed

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin; Lipshutz, Bruce H

    2016-01-01

    Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C-H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C-H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C-H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C-H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  17. Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    PubMed Central

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin

    2016-01-01

    Summary Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C–H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied. PMID:27340491

  18. Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd–Au Nanoshells

    PubMed Central

    Heck, Kimberly N.; Janesko, Benjamin G.; Scuseria, Gustavo E.

    2016-01-01

    Insight into the nature of transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions is obtainable from a number of surface spectroscopic techniques. Carrying out these investigations under actual reaction conditions is preferred but remains challenging, especially for catalytic reactions that occur in water. Here, we report the direct spectroscopic study of the catalytic hydrodechlorination of 1,1-dichloroethene in H2O using surface-enhanced Raman spectroscopy (SERS). With Pd islands grown on Au nanoshell films, this reaction can be followed in situ using SERS, exploiting the high enhancements and large active area of Au nanoshell SERS substrates, the transparency of Raman spectroscopy to aqueous solvents, and the catalytic activity enhancement of Pd by the underlying Au metal. The formation and subsequent transformation of several adsorbate species was observed. These results provide the first direct evidence of the room-temperature catalytic hydrodechlorination of a chlorinated solvent, a potentially important pathway for groundwater cleanup, as a sequence of dechlorination and hydrogenation steps. More broadly, the results highlight the exciting prospects of studying catalytic processes in water in situ, like those involved in biomass conversion and proton-exchange membrane fuel cells. PMID:19554693

  19. Catalyzed asymmetric aryl transfer reactions to aldehydes with boronic acids as aryl source.

    PubMed

    Bolm, Carsten; Rudolph, Jens

    2002-12-18

    Chiral diaryl methanols are important intermediates for the synthesis of biologically active compounds. Here, we describe a flexible method for their catalyzed asymmetric synthesis from readily available starting materials. Noteworthy is the fact that with a single catalyst both enantiomers of the product are accessible simply by choosing the appropriate combination of aryl boronic acid or aldehyde as aryl donor and acceptor, respectively. The catalysis with a planar-chiral ferrocene is easy to perform and yields a broad range of products with excellent enantioselectivities (up to 98% ee).

  20. New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry.

    PubMed

    Zhang, Xinhao; Chung, Lung Wa; Wu, Yun-Dong

    2016-06-21

    With new advances in theoretical methods and increased computational power, applications of computational chemistry are becoming practical and routine in many fields of chemistry. In organic chemistry, computational chemistry plays an indispensable role in elucidating reaction mechanisms and the origins of various selectivities, such as chemo-, regio-, and stereoselectivities. Consequently, mechanistic understanding improves synthesis and assists in the rational design of new catalysts. In this Account, we present some of our recent works to illustrate how computational chemistry provides new mechanistic insights for improvement of the selectivities of several organic reactions. These examples include not only explanations for the existing experimental observations, but also predictions which were subsequently verified experimentally. This Account consists of three sections discuss three different kinds of selectivities. The first section discusses the regio- and stereoselectivities of hydrosilylations of alkynes, mainly catalyzed by [Cp*Ru(MeCN)3](+) or [CpRu(MeCN)3](+). Calculations suggest a new mechanism that involves a key ruthenacyclopropene intermediate. This mechanism not only explains the unusual Markovnikov regio-selectivity and anti-addition stereoselectivity observed by Trost and co-workers, but also motivated further experimental investigations. New intriguing experimental observations and further theoretical studies led to an extension of the reaction mechanism. The second section includes three cases of meta-selective C-H activation of aryl compounds. In the case of Cu-catalyzed selective meta-C-H activation of aniline, a new mechanism that involves a Cu(III)-Ar-mediated Heck-like transition state, in which the Ar group acts as an electrophile, was proposed. This mechanism predicted a higher reactivity for more electron-deficient Ar groups, which was supported by experiments. For two template-mediated, meta-selective C-H bond activations catalyzed by

  1. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.

    PubMed

    Yu, Jie; Shi, Feng; Gong, Liu-Zhu

    2011-11-15

    Optically pure nitrogenous compounds, and especially nitrogen-containing heterocycles, have drawn intense research attention because of their frequent isolation as natural products. These compounds have wide-ranging biological and pharmaceutical activities, offering potential as new drug candidates. Among the various synthetic approaches to nitrogenous heterocycles, the use of asymmetric multicomponent reactions (MCRs) catalyzed by chiral phosphoric acids has recently emerged as a particularly robust tool. This method combines the prominent merits of MCRs with organocatalysis, thus affording enantio-enriched nitrogenous heterocyclic compounds with excellent enantioselectivity, atom economy, bond-forming efficiency, structural diversity, and complexity. In this Account, we discuss a variety of asymmetric MCRs catalyzed by chiral phosphoric acids that lead to the production of structurally diverse nitrogenous heterocycles. In MCRs, three or more reagents are combined simultaneously to produce a single product containing structural contributions from all the components. These one-pot processes are especially useful in the construction of heterocyclic cores: they can provide a high degree of both complexity and diversity for a targeted set of scaffolds while minimizing the number of synthetic operations. Unfortunately, enantioselective MCRs have thus far been relatively underdeveloped. Particularly lacking are reactions that proceed through imine intermediates, which are formed from the condensation of carbonyls and amines. The concomitant generation of water in the condensation reaction can deactivate some Lewis acid catalysts, resulting in premature termination of the reaction. Thus, chiral catalysts typically must be compatible with water for MCRs to generate nitrogenous compounds. Recently, organocatalytic MCRs have proven valuable in this respect. Brønsted acids, an important class of organocatalysts, are highly compatible with water and thereby offer great

  2. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration.

    PubMed

    DeAngelis, Andrew; Panish, Robert; Fox, Joseph M

    2016-01-19

    Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C-H insertions, heteroatom-hydrogen insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. This Account discusses the historical context and prior limitations of Rh-catalyzed reactions involving α-alkyl-α-diazocarbonyl compounds. Early studies demonstrated that ligand and temperature effects could influence chemoselectivity over β-hydride migration. However, effects were modest and conflicting conclusions had been drawn about the influence of sterically demanding ligands on β-hydride migration. More recent advances have led to a more detailed understanding of the reaction conditions that can promote intermolecular reactivity in preference to β-hydride migration. In particular, the use of bulky carboxylate ligands and low reaction temperatures have been key to enabling intermolecular cyclopropenation, cyclopropanation, carbonyl ylide formation/dipolar cycloaddition, indole C-H functionalization, and intramolecular bicyclobutanation with high chemoselectivity over β-hydride migration. Cyclic α-diazocarbonyl compounds have been shown to be particularly resilient toward β-hydride migration and are the first class of compounds that can engage in intermolecular reactivity in the presence of tertiary β-hydrogens. DFT calculations were used to propose that for cyclic α-diazocarbonyl compounds, ring constraints relieve steric interaction for intermolecular reactions and thereby accelerate the rate of intermolecular reactivity relative to intramolecular

  3. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.

    PubMed

    Akizuki, Makoto; Fujii, Tatsuya; Hayashi, Rumiko; Oshima, Yoshito

    2014-01-01

    Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g., density, ion product and dielectric constants) can affect the reaction rates and mechanisms of various reactions, understanding the effects that water can have is important in controlling reactions. For homogeneous reactions, the effects of water on oxidation, hydrolysis, aldol condensation, Beckman rearrangement and biomass refining were introduced including recent experimental results up to 100 MPa using special pressure-resistance equipment. For heterogeneous reactions, the effects of ion product on acid/base-catalyzed reactions, such as hydrothermal conversion of biomass-related compounds, organic synthesis in the context of bio-refinery, and hydration of olefins were described and how the reaction paths are controlled by the concentration of water and hydrogen ions was summarized.

  4. Sequential Norrish type II photoelimination and intramolecular aldol cyclization of α-diketones: synthesis of polyhydroxylated cyclopentitols by ring contraction of hexopyranose carbohydrate derivatives.

    PubMed

    Alvarez-Dorta, Dimitri; León, Elisa I; Kennedy, Alan R; Martín, Angeles; Pérez-Martín, Inés; Riesco-Fagundo, Concepción; Suárez, Ernesto

    2013-07-29

    The excitation of the innermost carbonyl of nono-2,3-diulose derivatives by irradiation with visible-light initiates a sequential Norrish type II photoelimination and aldol cyclization process that finally gives polyfunctionalized cyclopentitols. The rearrangement has been confirmed by the isolation of stable acyclic photoenol intermediates that can be independently cyclized by a thermal 5-(enolexo)-exo-trig uncatalyzed aldol reaction with high diastereoselectivity. In this last step, the large deuterium kinetic isotope effect found for the 1,5-hydrogen atom transfer seems to indicate that the aldol reaction runs through a concerted pericyclic mechanism. Owing to the ready availability of pyranose sugars of various configurations, this protocol has been used to study the influence of pyranose ring-substituents on the diastereoselectivity of the aldol cyclization reaction. In contrast with other pyranose ring contraction methodologies no transition-metal reagents are needed and the sequential rearrangement occurs simply by using visible light and moderate heating (0 to 60 °C).

  5. An Altered Transition State for the Reaction of an RNA Model Catalyzed by a Dinuclear Zinc(II) Catalyst

    PubMed Central

    Humphry, Tim; Iyer, Subashree; Iranzo, Olga; Morrow, Janet R.; Richard, John P.; Paneth, Piotr

    2009-01-01

    The cyclization of 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) catalyzed by the dinuclear zinc complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (1) proceeds by a transition state that is different from that of the uncatalyzed reaction. Kinetic isotope effects (KIEs) measured in the nucleophilic atom and in the leaving group show that the uncatalyzed cyclization has a transition state (TS) with little phosphorus-oxygen bond fission to the leaving group (18klg = 1.0064 ± 0.0009 and 15k = 1.0002 ± 0.0002), and that nucleophilic bond formation occurs in the rate-determining step (18knuc = 1.0326 ± 0.0008). In the catalyzed reaction, larger leaving group isotope effects (18klg = 1.0113 ± 0.0005 and 15k = 1.0015 ± 0.0005) and a smaller nucleophile isotope effect (18knuc = 1.0116 ± 0.0010) indicate a later TS with greater leaving group bond fission, and greater nucleophilic bond formation. These observed nucleophile KIEs are the combined effect of the equilibrium effect on deprotonation of the 2’-hydroxyl nucleophile and the KIE on the nucleophilic step. An EIE of 1.0245 for deprotonation of the hydroxyl group of HPpNP was obtained computationally. The different KIEs for the two reactions indicate that the effective catalysis by 1 is accompanied by selection for an altered transition state, presumably arising from the preferential stabilization by the catalyst of charge away from the nucleophile and toward the leaving group. These results demonstrate the potential for a catalyst using biologically relevant metal ions to select for an altered transition state for phosphoryl transfer. PMID:19053445

  6. tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G−1 addition

    PubMed Central

    Jackman, Jane E.; Phizicky, Eric M.

    2006-01-01

    Yeast tRNAHis guanylyltransferase, Thg1, is an essential protein that adds a single guanine to the 5′ end (G−1) of tRNAHis. This G−1 residue is required for aminoacylation of tRNAHis by histidyl-tRNA synthetase, both in vitro and in vivo. The guanine nucleotide addition reaction catalyzed by Thg1 extends the polynucleotide chain in the reverse (3′-5′) direction of other known polymerases, albeit by one nucleotide. Here, we show that alteration of the 3′ end of the Thg1 substrate tRNAHis unleashes an unexpected reverse polymerase activity of wild-type Thg1, resulting in the 3′-5′ addition of multiple nucleotides to the tRNA, with efficiency comparable to the G−1 addition reaction. The addition of G−1 forms a mismatched G·A base pair at the 5′ end of tRNAHis, and, with monophosphorylated tRNA substrates, it is absolutely specific for tRNAHis. By contrast, reverse polymerization forms multiple G·C or C·G base pairs, and, with preactivated tRNA species, it can initiate at positions other than −1 and is not specific for tRNAHis. Thus, wild-type Thg1 catalyzes a templated polymerization reaction acting in the reverse direction of that of canonical DNA and RNA polymerases. Surprisingly, Thg1 can also readily use dNTPs for nucleotide addition. These results suggest that 3′-5′ polymerization represents either an uncharacterized role for Thg1 in RNA or DNA repair or metabolism, or it may be a remnant of an earlier catalytic strategy used in nature. PMID:16731615

  7. Altered transition state for the reaction of an RNA model catalyzed by a dinuclear zinc(II) catalyst.

    PubMed

    Humphry, Tim; Iyer, Subashree; Iranzo, Olga; Morrow, Janet R; Richard, John P; Paneth, Piotr; Hengge, Alvan C

    2008-12-31

    The cyclization of 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP) catalyzed by the dinuclear zinc complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (1) proceeds by a transition state that is different from that of the uncatalyzed reaction. Kinetic isotope effects (KIEs) measured in the nucleophilic atom and in the leaving group show that the uncatalyzed cyclization has a transition state (TS) with little phosphorus-oxygen bond fission to the leaving group ((18)k(lg) = 1.0064 +/- 0.0009 and (15)k = 1.0002 +/- 0.0002) and that nucleophilic bond formation occurs in the rate-determining step ((18)k(nuc) = 1.0326 +/- 0.0008). In the catalyzed reaction, larger leaving group isotope effects ((18)k(lg) = 1.0113 +/- 0.0005 and (15)k = 1.0015 +/- 0.0005) and a smaller nucleophile isotope effect ((18)k(nuc) = 1.0116 +/- 0.0010) indicate a later TS with greater leaving group bond fission and greater nucleophilic bond formation. These observed nucleophile KIEs are the combined effect of the equilibrium effect on deprotonation of the 2'-hydroxyl nucleophile and the KIE on the nucleophilic step. An EIE of 1.0245 for deprotonation of the hydroxyl group of HPpNP was obtained computationally. The different KIEs for the two reactions indicate that the effective catalysis by 1 is accompanied by selection for an altered transition state, presumably arising from the preferential stabilization by the catalyst of charge away from the nucleophile and toward the leaving group. These results demonstrate the potential for a catalyst using biologically relevant metal ions to select for an altered transition state for phosphoryl transfer.

  8. From formamide to purine: a self-catalyzed reaction pathway provides a feasible mechanism for the entire process.

    PubMed

    Wang, Jing; Gu, Jiande; Nguyen, Minh Tho; Springsteen, Greg; Leszczynski, Jerzy

    2013-08-15

    A formamide self-catalyzed mechanistic pathway that transforms formamide to purine through a five-membered ring intermediate has been explored by density functional theory calculations. The highlight of the mechanistic route detailed here is that the proposed pathway represents the simplest and lowest energy reaction pathway. All necessary reactants, including catalysts, are generated from a single initial compound, formamide. The most catalytically effective form of formamide is found to be the imidic acid isomer. The catalytic effect of formamide has been found to be much more significant than that of water. The self-catalytic mechanism revealed here provides a pathway with the lowest energy barriers among all reaction routes previously published. Several important reaction steps are involved in this mechanistic route: formylation-dehydration, Leuckart reduction, five- and six-member ring-closing, and deamination. Overall, a five-membered ring-closing is the rate-determining step in the present catalytic route, which is consistent with our previous mechanistic investigations. The activation energy of this rate-controlling step (ca. 27 kcal/mol) is significantly lower than the rate-determining step (ca. 34 kcal/mol) in the pathway from 4-aminoimidazole-5-carboxamidine described by Schleyer's group (Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17272-17277) and in the pyrimidine pathway (ca. 44 kcal/mol) reported by Sponer et al. (J. Phys. Chem. A 2012, 116, 720-726). The self-catalyzed mechanistic pathway reported herein is less energetically demanding than previously proposed routes.

  9. Mechanism of the reaction catalyzed by mandelate racemase. 1. Chemical and kinetic evidence for a two-base mechanism

    SciTech Connect

    Powers, V.M.; Koo, C.W.; Kenyon, G.L. ); Gerlt, J.A.; Kozarich, J.W. )

    1991-09-24

    The fate of the {alpha}-hydrogen of mandelate in the reaction catalyzed by mandelate racemase has been investigated by a mass spectroscopic method. The method entails the incubation of (R)- or (S)-({alpha}-{sup 1}H) mandelate in buffered D{sub 2}O to a low extent of turnover (about 5-8%), esterification of the resulting mixture of mandelates with diazomethane, derivatization of the methyl esters with a chiral derivatizing agent, and quantitation of the isotope content of the {alpha}-hydrogen of both substrate and product by gas chromatography/mass spectrometric analysis. No significant substrate-derived {alpha}-protium was found in the product for racemization in either direction. In addition, in the (R) to (S) direction almost no exchange of the {alpha}-hydrogen in the remaining (R) substrate pool occurred, but in the (S) to (R) direction 3.5-5.1% exchange of the {alpha}-hydrogen in the remaining substrate (after 5.1-7.2% net turnover) was found. Qualitatively similar results were obtained in the (S) to (R) direction in H{sub 2}O when (S)-({alpha}-{sup 2}H)mandelate was used as substrate. In other experiments, an overshoot in the progress curve was observed when the racemization of either enantiomer of ({alpha}-{sup 1}H) mandelate in D{sub 2}O was monitored by following the change in ellipticity of the reaction mixture; the magnitude of the overshoot was greater in the (R) to (S) than in the (S) to (R) direction. All of the available data indicate that the reaction catalyzed by mandelate racemase proceeds by a two-base mechanism, in contrast to earlier proposals.

  10. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast

    SciTech Connect

    Raetz, C.R.H.; Carman, G.M.; Dowhan, W.; Jiang, R.T.; Waszkuc, W.; Loffredo, W.; Tsai, M.D.

    1987-06-30

    The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. R/sub P/ and S/sub P/ isomers of 1,2-dipalmitoyl-sn-glycero-3-(/sup 17/O, /sup 18/O)phosphoethanolamine ((/sup 17/O, /sup 18/O)DPPE) were synthesized and converted to (R/sub P/)- and (S/sub P/)-1,2-dipalmitoyl-sn-glycero-3-(/sup 16/O, /sup 17/O, /sup 18/O)DPPA), respectively, by incubating with phospholipase D. Condensation of (/sup 16/O, /sup 17/O, /sup 18/O)DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, (/sup 17/O, /sup 18/O)cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ((/sup 17/O,/sup 18/O)CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of (/sup 17/O, /sup 18/O)CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of (/sup 17/O, /sup 18/O) CDP-DPG with a mixture of L-serine, PS synthase and PS decarboxylase gave (/sup 17/O, /sup 18/O)DPPE. The configuration and isotopic enrichments of the starting (/sup 17/O, /sup 18/O)DPPE and the product were analyzed by /sup 31/P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments.

  11. The conversion of methane to methanol: a reaction catalyzed by I+ or I2(+)?

    PubMed

    Davico, Gustavo E

    2005-04-21

    The gas-phase reactions of I+ and I2(+) with methane were studied to determine which species is involved in the oxidation of methane to methyl sulfate, an intermediate in the production of methanol. We found that while I+ reacts readily with methane, I2(+) does not react in our experimental reaction conditions. Reaction products and rate constants are measured and reported. In addition, ab initio calculations were carried out to further understand the reaction mechanism. A revised mechanism of catalysis is proposed which is in excellent agreement with available experimental data and our theoretical computations.

  12. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces.

    PubMed

    Maeda, Satoshi; Harabuchi, Yu; Takagi, Makito; Taketsugu, Tetsuya; Morokuma, Keiji

    2016-10-01

    In this account, a technical overview of the artificial force induced reaction (AFIR) method is presented. The AFIR method is one of the automated reaction-path search methods developed by the authors, and has been applied extensively to a variety of chemical reactions, such as organocatalysis, organometallic catalysis, and photoreactions. There are two modes in the AFIR method, i.e., a multicomponent mode and a single-component mode. The former has been applied to bimolecular and multicomponent reactions and the latter to unimolecular isomerization and dissociation reactions. Five numerical examples are presented for an Aldol reaction, a Claisen rearrangement, a Co-catalyzed hydroformylation, a fullerene structure search, and a nonradiative decay path search in an electronically excited naphthalene molecule. Finally, possible applications of the AFIR method are discussed.

  13. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  14. Total synthesis of the anti-inflammatory and pro-resolving lipid mediator MaR1n-3 DPA utilizing an sp(3) -sp(3) Negishi cross-coupling reaction.

    PubMed

    Tungen, Jørn Eivind; Aursnes, Marius; Dalli, Jesmond; Arnardottir, Hildur; Serhan, Charles Nicholas; Hansen, Trond Vidar

    2014-11-03

    The first total synthesis of the lipid mediator MaR1n-3 DPA (5) has been achieved in 12 % overall yield over 11 steps. The stereoselective preparation of 5 was based on a Pd-catalyzed sp(3) -sp(3) Negishi cross-coupling reaction and a stereocontrolled Evans-Nagao acetate aldol reaction. LC-MS/MS results with synthetic material matched the biologically produced 5. This novel lipid mediator displayed potent pro-resolving properties stimulating macrophage efferocytosis of apoptotic neutrophils.

  15. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  16. Mechanism of Brønsted acid-catalyzed glucose dehydration.

    PubMed

    Yang, Liu; Tsilomelekis, George; Caratzoulas, Stavros; Vlachos, Dionisios G

    2015-04-24

    We present the first DFT-based microkinetic model for the Brønsted acid-catalyzed conversion of glucose to 5-hydroxylmethylfurfural (HMF), levulinic acid (LA), and formic acid (FA) and perform kinetic and isotopic tracing NMR spectroscopy mainly at low conversions. We reveal that glucose dehydrates through a cyclic path. Our modeling results are in excellent agreement with kinetic data and indicate that the rate-limiting step is the first dehydration of protonated glucose and that the majority of glucose is consumed through the HMF intermediate. We introduce a combination of 1) automatic mechanism generation with isotopic tracing experiments and 2) elementary reaction flux analysis of important paths with NMR spectroscopy and kinetic experiments to assess mechanisms. We find that the excess formic acid, which appears at high temperatures and glucose conversions, originates from retro-aldol chemistry that involves the C6 carbon atom of glucose.

  17. Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas

    NASA Astrophysics Data System (ADS)

    Allen, Luke Daniel

    Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.

  18. Efficiency of Recombination Reactions Catalyzed by Class 1 Integron Integrase IntI1

    PubMed Central

    Collis, Christina M.; Recchia, Gavin D.; Kim, Mi-Jurng; Stokes, H. W.; Hall, Ruth M.

    2001-01-01

    The class 1 integron integrase, IntI1, recognizes two distinct types of recombination sites, attI sites, found in integrons, and members of the 59-be family, found in gene cassettes. The efficiencies of the integrative version of the three possible reactions, i.e., between two 59-be, between attI1 and a 59-be, or between two attI1 sites, were compared. Recombination events involving two attI1 sites were significantly less efficient than the reactions in which a 59-be participated, and the attI1 × 59-be reaction was generally preferred over the 59-be × 59-be reaction. Recombination of attI1 with secondary sites was less efficient than the 59-be × secondary site reaction. PMID:11274113

  19. Generalized kinetic model of catalyzed hydroliquefaction of coal incorporating tetralin dehydrogenation reaction

    SciTech Connect

    Ghosh, A.K.; Prasad, G.N.; Sridhar, T.

    1987-09-01

    A three-component kinetic model previously reported for uncatalyzed liquefaction has been used to simulate hydroliquefaction of Victorian brown coal with three different types of catalysts: iron-tin; iron; and haematite. The presence of catalyst is found to enhance hydrogenation of coal as well as the equilibrium hydrogenation-dehydrogenation reactions involving donor solvent. The thermal dissolution and autohydrogenation reaction rates are independent of catalyst used. Iron-tin-based catalyst has been found to be most effective for the hydrogenation reaction step. The simulation shows that the reactions producing hydrogen from tetralin are much slower than the coal-hydrogen reactions; hence, efforts aimed at efficient abstraction of hydrogen from the hydrogen donors may be beneficial.

  20. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    NASA Astrophysics Data System (ADS)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  1. The Construction of All-Carbon Quaternary Stereocenters by Use of Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis

    PubMed Central

    Hong, Allen Y.

    2014-01-01

    All-carbon quaternary stereocenters have posed significant challenges in the synthesis of complex natural products. These important structural motifs have inspired the development of broadly applicable palladium-catalyzed asymmetric allylic alkylation reactions of unstabilized non-biased enolates for the synthesis of enantioenriched α-quaternary products. This microreview outlines key considerations in the application of palladium-catalyzed asymmetric allylic alkylation reactions and presents recent total syntheses of complex natural products that have employed these powerful transformations for the direct, catalytic, enantioselective construction of all-carbon quaternary stereocenters. PMID:24944521

  2. Regioselective Iron-Catalyzed [2 + 2 + 2] Cycloaddition Reaction Forming 4,6-Disubstituted 2-Aminopyridines from Terminal Alkynes and Cyanamides.

    PubMed

    Spahn, Nathan A; Nguyen, Minh H; Renner, Jonas; Lane, Timothy K; Louie, Janis

    2017-01-06

    Iron complexes bound by redox-active pyridine dialdimine (PDAI) ligands catalyze the cycloaddition of two terminal alkynes and one cyanamide. The reaction is both chemo- and regioselective, as only 4,6-disubstituted 2-aminopyridine products are formed in moderate to high yields. Isolation of an iron azametallacycle (4) suggests that catalyst deactivation occurs with a large excess of cyanamide over longer reaction times. Fe-catalyzed cycloaddition allowed for a straightforward synthesis of a variety of aminopyridines, including known estrogen receptor ligands.

  3. Large Density-Functional and Basis-Set Effects for the DMSO Reductase Catalyzed Oxo-Transfer Reaction.

    PubMed

    Li, Ji-Lai; Mata, Ricardo A; Ryde, Ulf

    2013-03-12

    The oxygen-atom transfer reaction catalyzed by the mononuclear molybdenum enzyme dimethyl sulfoxide reductase (DMSOR) has attracted considerable attention through both experimental and theoretical studies. We show here that this reaction is more sensitive to details of quantum mechanical calculations than what has previously been appreciated. Basis sets of at least triple-ζ quality are needed to obtain qualitatively correct results. Dispersion has an appreciable effect on the reaction, in particular the binding of the substrate or the dissociation of the product (up to 34 kJ/mol). Polar and nonpolar solvation effects are also significant, especially if the enzyme can avoid cavitation effects by using a preformed active-site cavity. Relativistic effects are considerable (up to 22 kJ/mol), but they are reasonably well treated by a relativistic effective core potential. Various density-functional methods give widely different results for the activation and reaction energy (differences of over 100 kJ/mol), mainly reflecting the amount of exact exchange in the functional, owing to the oxidation of Mo from +IV to +VI. By calibration toward local CCSD(T0) calculations, we show that none of eight tested functionals (TPSS, BP86, BLYP, B97-D, TPSSH, B3LYP, PBE0, and BHLYP) give accurate energies for all states in the reaction. Instead, B3LYP gives the best activation barrier, whereas pure functionals give more accurate energies for the other states. Our best results indicate that the enzyme follows a two-step associative reaction mechanism with an overall activation enthalpy of 63 kJ/mol, which is in excellent agreement with the experimental results.

  4. Mechanism, reactivity, and regioselectivity in rhodium-catalyzed asymmetric ring-opening reactions of oxabicyclic alkenes: a DFT Investigation

    PubMed Central

    Qi, Zheng-Hang; Zhang, Yi; Gao, Yun; Zhang, Ye; Wang, Xing-Wang; Wang, Yong

    2017-01-01

    The origin of the enantio- and regioselectivity of ring-opening reaction of oxabicyclic alkenes catalyzed by rhodium/Josiphos has been examined using M06-2X density functional theory(DFT). DFT calculations predict a 98% ee for the enantioselectivity and only the 1,2-trans product as one regio- and diastereomer, in excellent agreement with experimental results. The solvent tetrahydrofuran(THF) plays a key role in assisting nucleophilic attack. Orbital composition analysis of the LUMO and the NPA atomic charge calculations were conducted to probe the origins of the regioselectivity. The orbital composition analysis reveals two potential electrophilic sites of the Rh–π-allyl intermediate M3 and the NPA atomic charges demonstrate that Cα carries more positive charges than Cγ, which suggests that Cα is the electrophilic site. PMID:28074930

  5. Chiral Brønsted Acid-Catalyzed Enantioselective α-Amidoalkylation Reactions: A Joint Experimental and Predictive Study.

    PubMed

    Aranzamendi, Eider; Arrasate, Sonia; Sotomayor, Nuria; González-Díaz, Humberto; Lete, Esther

    2016-12-01

    Enamides with a free NH group have been evaluated as nucleophiles in chiral Brønsted acid-catalyzed enantioselective α-amidoalkylation reactions of bicyclic hydroxylactams for the generation of quaternary stereocenters. A quantitative structure-reactivity relationship (QSRR) method has been developed to find a useful tool to rationalize the enantioselectivity in this and related processes and to orient the catalyst choice. This correlative perturbation theory (PT)-QSRR approach has been used to predict the effect of the structure of the substrate, nucleophile, and catalyst, as well as the experimental conditions, on the enantioselectivity. In this way, trends to improve the experimental results could be found without engaging in a long-term empirical investigation.

  6. The Enantioselective Construction of Tetracyclic Diterpene Skeletons with Friedel-Crafts Alkylation and Palladium-catalyzed Cycloalkenylation Reactions

    PubMed Central

    Burke, Sarah J.; Mehta, Sharan K.; Appenteng, Roselyn

    2015-01-01

    Due to the profound extent to which natural products inspire medicinal chemists in drug discovery, there is demand for innovative syntheses of these often complex materials. This article describes the synthesis of tricarbocyclic natural product architectures through an extension of the enantioselective Birch-Cope sequence with intramolecular Friedel-Crafts alkylation reactions. Additionally, palladium-catalyzed enol silane cycloalkenylation of the tricarbocyclic structures afforded the challenging bicyclo[3.2.1]octane C/D ring system found in the gibberellins and the ent-kauranes, two natural products with diverse medicinal value. In the case of the ent-kaurane derivative, an unprecedented alkene rearrangement converted four alkene isomers to one final product. PMID:25598198

  7. Ortho-Functionalized Aryltetrazines by Direct Palladium-Catalyzed C-H Halogenation: Application to Fast Electrophilic Fluorination Reactions.

    PubMed

    Testa, Christelle; Gigot, Élodie; Genc, Semra; Decréau, Richard; Roger, Julien; Hierso, Jean-Cyrille

    2016-04-25

    A general catalyzed direct C-H functionalization of s-tetrazines is reported. Under mild reaction conditions, N-directed ortho-C-H activation of tetrazines allows the introduction of various functional groups, thus forming carbon-heteroatom bonds: C-X (X=I, Br, Cl) and C-O. Based on this methodology, we developed electrophilic mono- and poly-ortho-fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s-aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho-functionalized aryltetrazines which are difficult to obtain by classical Pinner-like syntheses.

  8. Synthesis of a double helicene by a palladium-catalyzed cross-coupling reaction: structure and physical properties.

    PubMed

    Kashihara, Hitoshi; Asada, Toshio; Kamikawa, Ken

    2015-04-20

    For this study, twisted π-extended helicene 1 and double helicene 2 with a helicene framework were synthesized through palladium-catalyzed C-H arylation or Suzuki-Miyaura coupling reaction. X-ray crystallography revealed grossly twisted structures that were soluble in various conventional organic solvents. Optical properties based on UV/Vis and fluorescence spectra were measured. Electrochemical properties were also studied by measurements of cyclic voltammetry in 1 and 2, which revealed their HOMO and the LUMO energies. Theoretical calculation supports their HOMO and LUMO energies and molecular orbitals. Furthermore, a racemization process of 2 predicted that the activation free energy at 300 K would be 31.8 kcal mol(-1) by DFT calculation, which indicated the static helicity at 300 K.

  9. The origin of enantioselectivity for intramolecular Friedel-Crafts reaction catalyzed by supramolecular Cu/DNA catalyst complex

    NASA Astrophysics Data System (ADS)

    Petrova, Galina P.; Ke, Zhuofeng; Park, Soyoung; Sugiyama, Hiroshi; Morokuma, Keiji

    2014-04-01

    The present theoretical investigation aims at understanding the origin of enantioselectivity of intramolecular Friedel-Crafts reaction, catalyzed by supramolecular Cu/DNA catalyst. 28 Conformations of the supramolecular L-Cu(II)-R/d(CAAAAATTTTTG)2 complex were thoroughly modeled to estimate their stability and structural features depending on the metal complex conformation and its intercalation position. The preferred formation of S-product can be rationalized by the higher binding energy of pro-S conformations to DNA. Pro-S conformations are structurally closer to the expected C3-C2‧ bond formation TS and usually not deeply buried into DNA, which would facilitate TS formation by decreasing the energy for conformational changes.

  10. The enantioselective construction of tetracyclic diterpene skeletons with Friedel-Crafts alkylation and palladium-catalyzed cycloalkenylation reactions.

    PubMed

    Burke, Sarah J; Malachowski, William P; Mehta, Sharan K; Appenteng, Roselyn

    2015-03-07

    Due to the profound extent to which natural products inspire medicinal chemists in drug discovery, there is demand for innovative syntheses of these often complex materials. This article describes the synthesis of tricarbocyclic natural product architectures through an extension of the enantioselective Birch-Cope sequence with intramolecular Friedel-Crafts alkylation reactions. Additionally, palladium-catalyzed enol silane cycloalkenylation of the tricarbocyclic structures afforded the challenging bicyclo[3.2.1]octane C/D ring system found in the gibberellins and the ent-kauranes, two natural products with diverse medicinal value. In the case of the ent-kaurane derivative, an unprecedented alkene rearrangement converted four alkene isomers to one final product.

  11. Chiral Brønsted Acid‐Catalyzed Enantioselective α‐Amidoalkylation Reactions: A Joint Experimental and Predictive Study

    PubMed Central

    Aranzamendi, Eider; Arrasate, Sonia; Sotomayor, Nuria

    2016-01-01

    Abstract Enamides with a free NH group have been evaluated as nucleophiles in chiral Brønsted acid‐catalyzed enantioselective α‐amidoalkylation reactions of bicyclic hydroxylactams for the generation of quaternary stereocenters. A quantitative structure–reactivity relationship (QSRR) method has been developed to find a useful tool to rationalize the enantioselectivity in this and related processes and to orient the catalyst choice. This correlative perturbation theory (PT)‐QSRR approach has been used to predict the effect of the structure of the substrate, nucleophile, and catalyst, as well as the experimental conditions, on the enantioselectivity. In this way, trends to improve the experimental results could be found without engaging in a long‐term empirical investigation. PMID:28032023

  12. [Molybdenum-catalyzed heteroatom removal reactions: The effect of promoters on reaction]. [Annual report, December 1, 1992--November 1, 1993

    SciTech Connect

    Friend, C.M.

    1993-12-01

    A general method was developed for determine mechanisms for surface reactions, and desulfurization and deoxygenation processes were modeled on clean and S-covered Mo(110). Efforts were aimed at accurately describing the bonding and structure of adsorbed reactants. Thiol desulfurization on Co-covered Mo(110) was studied. Kinetics and selectivity for thiol hydrogenolysis depend on structure and composition of interface.

  13. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  14. Metal-catalyzed double migratory cascade reactions of propargylic esters and phosphates.

    PubMed

    Kazem Shiroodi, Roohollah; Gevorgyan, Vladimir

    2013-06-21

    Propargylic esters and phosphates are easily accessible substrates, which exhibit rich and tunable reactivities in the presence of transition metal catalysts. π-Acidic metals, mostly gold and platinum salts, activate these substrates for an initial 1,2- or 1,3-acyloxy and phosphatyloxy migration process to form reactive intermediates. These intermediates are able to undergo further cascade reactions leading to a variety of diverse structures. This tutorial review systematically introduces the double migratory reactions of propargylic esters and phosphates as a novel synthetic method, in which further cascade reaction of the reactive intermediate is accompanied by a second migration of a different group, thus offering a rapid route to a wide range of functionalized products. The serendipitous observations, as well as designed approaches involving the double migratory cascade reactions, will be discussed with emphasis placed on the mechanistic aspects and the synthetic utilities of the obtained products.

  15. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    EPA Science Inventory

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  16. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Manta, Bianca; Olsson, Philip; Brinck, Tore

    2012-06-07

    We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.

  17. Knoevenagel reaction in water catalyzed by amine supported on silica gel.

    PubMed

    Isobe, Kohei; Hoshi, Takashi; Suzuki, Toshio; Hagiwara, Hisahiro

    2005-01-01

    An environmentally benign and sustainable Knoevenagel reaction of aldehyde with ethyl cyanoacetate has been achieved at ambient temperature in water employing 3-aminopropylated silica gel (NAP) as a catalyst. Wide applicability of the reaction is illustrated by the results that not only arylaldehydes of both electronic characters but also aliphatic aldehydes afforded the products. The reaction condition was so mild that aldehydes having acid- or base-sensitive substituents provided substituted alpha-cyano-alpha, beta-unsaturated esters. The catalyst has been efficiently recycled more than five times without any pre-treatment. Catalyst loading was successfully reduced to 0.0029 mmol% (TON = up to 9,226). This protocol was also applicable to the Knoevenagel reaction of malononitrile in good yields in water.

  18. A facile phenol-driven intramolecular diastereoselective thermal/base-catalyzed dipolar [2+2] annulation reactions: an easy access to complex bioactive natural and unnatural benzopyran congeners.

    PubMed

    Mondal, Mukulesh; Puranik, Vedavati G; Argade, Narshinha P

    2007-03-16

    The complex bioactive natural and unnatural benzopyran congeners have been synthesized using one-/two-step approaches in very good yields from the reactions of two different dihydroxyphthalides, natural resorcyclic acid derivative, and trihydroxybenzophenone with citral and/or farnesal, via the phenol-driven intramolecular diastereoselective thermal/base-catalyzed dipolar [2+2] cycloaddition reactions and three different thermal intramolecular cyclization reactions. The effects of the nature and the position of phenolic groups in the starting materials on the course of these cycloaddition reactions have also been described. Depending upon the absence or presence of intramolecular hydrogen bonding of the phenolic group with the carbonyl moiety in the starting materials, these phenol-driven intramolecular thermal/base-catalyzed dipolar [2+2] cycloaddition reactions either furnished the kinetically controlled products or directly formed the thermodynamically controlled rearranged products, respectively.

  19. The roles of counterion and water in a stereoselective cysteine-catalyzed Rauhut-Currier reaction: a challenge for computational chemistry.

    PubMed

    Osuna, Sílvia; Dermenci, Alpay; Miller, Scott J; Houk, K N

    2013-10-11

    The stereoselective Rauhut-Currier (RC) reaction catalyzed by a cysteine derivative has been explored computationally with density functional theory (M06-2X). Both methanethiol and a chiral cysteine derivative were studied as nucleophiles. The complete reaction pathway involves rate-determining elimination of the thiol catalyst from the Michael addition product. The stereoselective Rauhut-Currier reaction, catalyzed by a cysteine derivative as a nucleophile, has also been studied in detail. This reaction was experimentally found to be extremely sensitive to the reaction conditions, such as the number of water equivalents and the effect of potassium counterion. The E1cB process for catalyst elimination has been explored computationally for the eight possible stereoisomers. The effect of explicit water solvation and the presence of counterion (either K(+) or Na(+) ) has been studied for the lowest energy enantiomer pair (1S, 2R, 3S)/(1R, 2S, 3R).

  20. Asymmetric Morita-Baylis-Hillman reaction catalyzed by isophoronediamine-derived bis(thio)urea organocatalysts.

    PubMed

    Berkessel, Albrecht; Roland, Katrin; Neudörfl, Jörg M

    2006-09-14

    New and improved bis(thio)urea catalysts were synthesized from isophoronediamine (IPDA) and tested in the Morita-Baylis-Hillman reaction. The best results were achieved in the reaction of 2-cyclohexen-1-one with cyclohexanecarbaldehyde, using the catalyst depicted above, in combination with a novel base (N,N,N',N'-tetramethylisophoronediamine, TMIPDA) in toluene. The desired Morita-Baylis-Hillman product was obtained in 75% yield and 96% ee.

  1. Tracking the Fate of Surface Plasmon Resonance-Generated Hot Electrons by In Situ SERS Surveying of Catalyzed Reaction.

    PubMed

    Liu, Rui; He, Zuoliang; Sun, Jiefang; Liu, Jingfu; Jiang, Guibin

    2016-12-01

    Plasmonic catalysis is an emerging process that utilizes surface plasmon resonance (SPR) process to harnesses solar energy for the promotion of catalyzed reactions. In most cases, SPR generated hot electrons (HEs) play an indispensable role in this solar-chemical energy shift process. Therefore, understanding the effectiveness of the HEs in promoting chemical reactions, and identifying the key factors that contribute to this utilization efficiency is of profound importance. Herein, the authors outline an in situ surface enhanced Raman spectroscopy protocol to track the fate of HEs. This is based on the unheeded HEs-acceleration nature of the p-nitirothiophenol hydrogenation reaction. By this way, the authors discover that unlike Au@Pd nanostructures which experience a 20-fold increase in rate constant, HEs primary leak to surrounding H(+) /O species through Ag pinholes in Ag@Pd. This work sheds light on why Ag is seldom employed as a plasmonic cocatalyst, and provides a new viewpoint to design plasmonic nanocatalysts with efficient light utilization.

  2. DFT Methods to Study the Reaction Mechanism of Iridium-Catalyzed Hydrogenation of Olefins: Which Functional Should be Chosen?

    PubMed

    Sun, Yihua; Chen, Hui

    2016-01-04

    To enable the selection of more accurate computational methods for the future theoretical exploration of the reaction mechanism of Ir-catalyzed olefin hydrogenation, we compared high-level ab initio coupled cluster and DFT calculations with a simplified model of Pfaltz's Ir/P,N-type catalyst for all four previously proposed Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. Through the systematic assessment of the DFT performances, the DFT empirical dispersion correction (DFT-D3) is found to be indispensable for improving the accuracy of relative energies between the Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. After including the DFT-D3 correction, the three best performing density functionals (DFs) are B2-PLYP, BP86, and TPSSh. In these recommended DFs, the computationally more expensive double-hybrid functional B2-PLYP-D3 has a balanced and outstanding performance for calculations of the reaction barriers, reaction energies, and energy gaps between different mechanisms, whereas the less costly BP86-D3 and TPSSh-D3 methods have outstanding, but relatively less uniform performances.

  3. Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions.

    PubMed

    Van der Mynsbrugge, Jeroen; De Ridder, Jeroen; Hemelsoet, Karen; Waroquier, Michel; Van Speybroeck, Veronique

    2013-08-26

    The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.

  4. Structurally Divergent Lithium Catalyzed Friedel-Crafts Reactions on Oxetan-3-ols: Synthesis of 3,3-Diaryloxetanes and 2,3-Dihydrobenzofurans.

    PubMed

    Croft, Rosemary A; Mousseau, James J; Choi, Chulho; Bull, James A

    2016-11-02

    The first examples of 3,3-diaryloxetanes are prepared in a lithium-catalyzed and substrate dependent divergent Friedel-Crafts reaction. para-Selective Friedel-Crafts reactions of phenols using oxetan-3-ols afford 3,3-diaryloxetanes by displacement of the hydroxy group. These constitute new isosteres for benzophenones and diarylmethanes. Conversely, ortho-selective Friedel-Crafts reactions of phenols afford 3-aryl-3-hydroxymethyl-dihydrobenzofurans by tandem alkylation-ring-opening reactions; the outcome of the reaction diverging to structurally distinct products dependent on the substrate regioselectivity. Further reactivity of the oxetane products is demonstrated, suitable for incorporation into drug discovery efforts.

  5. Enantio- and diastereoselective Michael addition reactions of unmodified aldehydes and ketones with nitroolefins catalyzed by a pyrrolidine sulfonamide.

    PubMed

    Wang, Jian; Li, Hao; Lou, Bihshow; Zu, Liansuo; Guo, Hua; Wang, Wei

    2006-05-24

    Chiral (S)-pyrrolidine trifluoromethanesulfonamide has been shown to serve as an effective catalyst for direct Michael addition reactions of aldehydes and ketones with nitroolefins. A wide range of aldehydes and ketones as Michael donors and nitroolefins as acceptors participate in the process, which proceeds with high levels of enantioselectivity (up to 99 % ee) and diastereoselectivity (up to 50:1 d.r.). The methodology has been employed successfully in an efficient synthesis of the potent H(3) agonist Sch 50917. In addition, a practical three-step procedure for the preparation of (S)-pyrrolidine trifluoromethanesulfonamide has been developed. The high levels of stereochemical control attending Michael addition reactions catalyzed by this pyrrolidine sulfonamide, have been investigated by using ab initio and density functional methods. Transition state structures for the rate-limiting C--C bond-forming step, corresponding to re- and si-face addition to the reactive conformation of the key enamine intermediates have been calculated. Analysis of these structures indicates that hydrogen bonding plays an important role in catalysis and that the energy barrier for si-face attack in reactions of aldehydes to form 2R,3S products is lower than that for the re-face attack leading to 2S,3R products. In contrast, the energy barrier for re-face addition is lower than that for si-face addition in reactions of ketones. The computational results, which are in good agreement with the experimental observations, are discussed in the context of the stereochemical course of these Michael addition reactions.

  6. Reaction of carbon and water as catalyzed by nickel and iron surfaces

    SciTech Connect

    Kelemen, S.R.

    1986-01-01

    The individual steps of the reaction of carbon and water to produce CO and H/sub 2/ were quantified on nickel and iron surfaces using temperature-programmed reaction spectroscopy (TPRS), Auger electron spectroscopy (AES), Ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). Surface graphite and carbide, two metastable surface carbon forms, were prepared by dehydrogenation of C/sub 2/H/sub 2/ and served as reactant carbon. UPS of the graphite monolayer in contact with the metal yielded a valence electronic structure that could be interpreted in terms of the bulk band structure of graphite. The CO formation step is rate limiting in the uncatalyzed H/sub 2/O gasification reaction of graphite. The nickel surface in contact with graphitic carbon lowers the barrier for the CO formation step. The catalytic action occurs directly without isolated prior breaking of carbon-carbon bonds. The estimated activation energy for the direct reaction was 44 kcal/mole. The fully carbided surfaces of Ni and Fe were active for H/sub 2/O dissociation with an estimated activation energy between 5.0 and 10.0 kcal/mole. A different catalytic reaction cycle involving carbon-carbon bond breaking followed by oxidation of the carbide is energetically more demanding. The activation energy for direct carbon-carbon bond breaking was estimated between 65-70 kcal/mole on both nickel and iron. Following this demanding step, the reaction between carbidic carbon and oxygen proceeded on nickel and iron with estimated activation energies of 31 and 39 kcal/mole, respectively. This indirect carbide reaction cycle changed the energetics of the steam gasification of carbon.

  7. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid.

  8. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    PubMed Central

    Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

    2014-01-01

    Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH = 2.5; [PA]0 = 0.2 g L−1; [H2O2]0 = 5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes. PMID:24526885

  9. Degradation of anthraquinone dye reactive blue 4 in pyrite ash catalyzed Fenton reaction.

    PubMed

    Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

    2014-01-01

    Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L(-1); [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L(-1). The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  10. Digestion completeness of microwave-assisted and conventional trypsin-catalyzed reactions.

    PubMed

    Reddy, P Muralidhar; Hsu, Wan-Yu; Hu, Jun-Fu; Ho, Yen-Peng

    2010-03-01

    Microwave-assisted proteolytic digestion often yields misscleaved peptides, attributed to incomplete hydrolysis reactions between enzymes and substrates. The number of missed cleavages is an important parameter in proteome database searching. This study investigates how various factors affect digestion processes. Optimum conditions for microwave-assisted digestion (50 mM Tris buffer, 30 min at 60 degrees C, and enzyme to protein molar ratio of 1:5) were determined. The digestion products obtained from eight standard proteins were characterized based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Experimental results indicate that the digestion temperature, reaction time, enzyme to substrate ratio, and digestion buffer affect the number of misscleaved peptides and incomplete digestion percentages. Although all protein molecules in a sample could be digested into peptides within a few minutes under microwave irradiation, longer reaction times or methods to maximize the enzyme activity should be considered if digestion completeness is a major concern.

  11. Transition-metal-free coupling reaction of vinylcyclopropanes with aldehydes catalyzed by tin hydride.

    PubMed

    Ieki, Ryosuke; Kani, Yuria; Tsunoi, Shinji; Shibata, Ikuya

    2015-04-13

    Donor-acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition-metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2 SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2 SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition-metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor-acceptor cyclopropanes.

  12. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  13. Highly enantioselective asymmetric Henry reaction catalyzed by novel chiral phase transfer catalysts derived from cinchona alkaloids.

    PubMed

    Vijaya, Ponmuthu Kottala; Murugesan, Sepperumal; Siva, Ayyanar

    2016-10-25

    A new type of di-site chiral phase transfer catalyst has been designed and synthesized from cinchona alkaloids as a chiral precursor. The prepared catalysts are applied in the asymmetric Henry reaction to a wide range of aldehydes using mild concentrations of a base and solvent and under room-temperature conditions. Under the optimized reaction conditions, the highest chemical yields up to 99% along with an excellent enantiomeric excess (ee) up to 99% were obtained using the prepared cinchona alkaloid based chiral phase transfer catalysts.

  14. Hydrogen-Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium**

    PubMed Central

    Shen, Di; Poole, Darren L; Shotton, Camilla C; Kornahrens, Anne F; Healy, Mark P; Donohoe, Timothy J

    2015-01-01

    Reported herein is the use of catalytic [{Ir(cod)Cl}2] to facilitate hydrogen-borrowing reactions of ketone enolates with methanol at 65 °C. An oxygen atmosphere accelerates the process, and when combined with the use of a bulky monodentate phosphine ligand, interrupts the catalytic cycle by preventing enone reduction. Subsequent addition of pro-nucleophiles to the reaction mixture allowed a one-pot methylenation/conjugate addition protocol to be developed, which greatly expands the range of products that can be made by this methodology. PMID:25491653

  15. Nickel-catalyzed substitution reactions of propargyl halides with organotitanium reagents.

    PubMed

    Li, Qing-Han; Liao, Jung-Wei; Huang, Yi-Ling; Chiang, Ruei-Tang; Gau, Han-Mou

    2014-10-14

    A simple and mild catalytic coupling reaction of propargyl halides with organotitanium reagents is reported. The reaction of propargyl bromide with organo-titanium reagents mediated by NiCl2 (2 mol%) and PCy3 (4 mol%) in CH2Cl2 afforded coupling product allenes in good to excellent yields (up to 95%) at room temperature. However, NiCl2(PPh3)2 was the best catalyst for substituted propargyl halides to yield allenes or alkynes preferentially. On the basis of the experimental results, a possible catalytic cycle has been proposed.

  16. Thiourea-catalyzed Diels-Alder reaction of a naphthoquinone monoketal dienophile.

    PubMed

    Kramer, Carsten S; Bräse, Stefan

    2013-01-01

    A variety of organocatalysts were screened for the catalysis of the naphthoquinone monoketal Diels-Alder reaction. In this study we found that Schreiner's thiourea catalyst 10 and Jacobson's thiourea catalyst 12 facilitate the cycloaddition of the sterically hindered naphthoquinone monoketal dienophile 3 with diene 4. The use of thiourea catalysis allowed for the first time the highly selective synthesis of the exo-product 2a in up to 63% yield. In this reaction a new quaternary center was built. The so formed cycloaddition product 2a represents the ABC tricycle of beticolin 0 (1) and is also a valuable model substrate for the total synthesis of related natural products.

  17. How Accurate Can a Local Coupled Cluster Approach Be in Computing the Activation Energies of Late-Transition-Metal-Catalyzed Reactions with Au, Pt, and Ir?

    PubMed

    Kang, Runhua; Lai, Wenzhen; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2012-09-11

    To improve the accuracy of local coupled cluster (LCC) methods in computing activation energies, we propose herein a new computational scheme. Its applications to various types of late-transition-metal-catalyzed reactions involving Au, Pt, and Ir indicate that the new corrective approach for LCC methods can downsize the mean unsigned deviation and maximum deviation, from the CCSD(T)/CBS reference, to about 0.3 and 0.9 kcal/mol. Using this method, we also calibrated the performance of popular density functionals, with respect to the same test set of reactions. It is concluded that the best functional is the general-purpose double hybrid functional B2GP-PLYP. Other well-performing functionals include the "kinetic" functionals M06-2X and BMK, which have a large percentage of HF exchange, and general-purpose functionals like PBE0 and wB97X. Comparatively, general-purpose functionals like PBE0 and TPSSh perform much better than the tested "kinetic" functionals for Pt-/Ir-catalyzed reactions, while the opposite is true for Au-catalyzed reactions. In contrast, wB97X performs more uniformly in these two classes of reactions. These findings hint that even within the scope of late transition metals, different types of reactions may require different types of optimal DFT methods. Empirical dispersion correction of DFT was found to have a small or no effect on the studied reactions barriers.

  18. Bis-diimidazolylidine complexes of nickel: investigations into nickel catalyzed coupling reactions.

    PubMed

    Paulose, Tressia A P; Wu, Shih-Chang; Olson, Jeremy A; Chau, Tony; Theaker, Nikki; Hassler, Matt; Quail, J Wilson; Foley, Stephen R

    2012-01-07

    Air and moisture stable homoleptic bis(diimidazolylidine)nickel(II) complexes, ([(diNHC)(2)Ni](2+)) 3a,b and their corresponding silver(I) 4a,b and palladium(II) 5a,b complexes were synthesized and characterized by NMR and single crystal X-ray analysis. The catalytic potential of complex 3a was assessed in Mizoroki-Heck and Suzuki-Miyaura coupling reactions. In the Suzuki-Miyaura coupling reaction, nickel precatalyst 3a was active for the coupling of aryl chlorides as well as aryl fluorides. The analogously synthesized Pd(II) complexes resulted in formation of (diNHC)PdCl(2) species which were not active for the coupling of aryl fluorides. For the Mizoroki-Heck reaction, it was found that aryl iodides could be activated in the absence of nickel or palladium precatalysts when using Na(2)CO(3) or NEt(3) as base while aryl iodides and aryl bromides could be activated in the Suzuki-Miyaura reaction sans precatalyst when K(3)PO(4) was used as base.

  19. Chiral ammonium betaine-catalyzed asymmetric Mannich-type reaction of oxindoles

    PubMed Central

    Torii, Masahiro; Kato, Kohsuke; Uraguchi, Daisuke

    2016-01-01

    Summary A highly diastereo- and enantioselective Mannich-type reaction of 3-aryloxindoles with N-Boc aldimines was achieved under the catalysis of axially chiral ammonium betaines. This catalytic method provides a new tool for the construction of consecutive quaternary and tertiary stereogenic carbon centers on biologically intriguing molecular frameworks with high fidelity. PMID:27829916

  20. Reformulation of the Michaelis-Menten Equation: How Enzyme-Catalyzed Reactions Depend on Gibbs Energy

    ERIC Educational Resources Information Center

    Bozlee, Brian J.

    2007-01-01

    The impact of raising Gibbs energy of the enzyme-substrate complex (G[subscript 3]) and the reformulation of the Michaelis-Menten equation are discussed. The maximum velocity of the reaction (v[subscript m]) and characteristic constant for the enzyme (K[subscript M]) will increase with increase in Gibbs energy, indicating that the rate of reaction…

  1. The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics

    ERIC Educational Resources Information Center

    Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel

    2010-01-01

    When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…

  2. Acylsilanes in Iridium-Catalyzed Directed Amidation Reactions and Formation of Heterocycles via Siloxycarbenes.

    PubMed

    Becker, Peter; Pirwerdjan, Ramona; Bolm, Carsten

    2015-12-14

    Exposing ortho-amido aroylsilanes to visible light or heat leads to cyclization reactions that provide N-heterocyclic compounds via siloxycarbenes as key intermediates. The previously unreported starting materials have been prepared by directed amidations of aromatic acylsilanes in the presence of an iridium catalyst followed by N-alkylation.

  3. Ligand intermediates in metal catalyzed reactions. Technical report: third budget year

    SciTech Connect

    Gladysz, J.A.

    1988-04-01

    A progress report is presented in which a new method for the activation of metal-bound methyl groups and the oxidative disproportionation of coordinated ethylene and methane are discussed. Also considered in the report is the divergent kinetic and thermodynamic acidity in organotransition metal hydride complexes and the synthesis, structure, and reactions of chiral rhenium vinylidene complexes.

  4. (Salen)Mn(III) Catalyzed Asymmetric Epoxidation Reactions by Hydrogen Peroxide in Water: A Green Protocol

    PubMed Central

    Ballistreri, Francesco Paolo; Gangemi, Chiara M. A.; Pappalardo, Andrea; Tomaselli, Gaetano A.; Toscano, Rosa Maria; Trusso Sfrazzetto, Giuseppe

    2016-01-01

    Enantioselective epoxidation reactions of some chosen reactive alkenes by a chiral Mn(III) salen catalyst were performed in H2O employing H2O2 as oxidant and diethyltetradecylamine N-oxide (AOE-14) as surfactant. This procedure represents an environmentally benign protocol which leads to e.e. values ranging from good to excellent (up to 95%). PMID:27420047

  5. Enantioselective and diastereoselective Mukaiyama-Michael reactions catalyzed by bis(oxazoline) copper(II) complexes.

    PubMed

    Evans, D A; Scheidt, K A; Johnston, J N; Willis, M C

    2001-05-16

    The scope of highly enantioselective and diastereoselective Michael additions of enolsilanes to unsaturated imide derivatives has been developed with use of [Cu((S,S)-t-Bu-box)](SbF6)2 (1a) as a Lewis acid catalyst. The products of these additions are useful synthons that contain termini capable of differentiation under mild conditions. Michael acceptor pi-facial selectivity is consistent with two-point binding of the imide substrate and can be viewed as an extension of substrate enantioselection in the corresponding Diels-Alder reactions. A model analogous to the one employed to describe the hetero Diels-Alder reaction is proposed to account for the observed relation between enolsilane geometry and product absolute diastereocontrol. Insights into modes of catalyst inactivation are given, including spectroscopic evidence for inhibition of the catalyst by a dihydropyran intermediate that evolves during the course of the reaction. A procedure is disclosed in which an alcohol additive is used to hydrolyze the inhibiting dihydropyran and afford the desilylated Michael adduct in significantly shortened reaction time.

  6. A coumarin-specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley.

    PubMed

    Karamat, Fazeelat; Olry, Alexandre; Munakata, Ryosuke; Koeduka, Takao; Sugiyama, Akifumi; Paris, Cedric; Hehn, Alain; Bourgaud, Frédéric; Yazaki, Kazufumi

    2014-02-01

    Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.

  7. Synthesis of Octyl-β-Glucoside Catalyzed by Almond β-Glucosidase in Unconventional Reaction Media

    PubMed Central

    2016-01-01

    Summary The reaction system for octyl-β-glucoside synthesis catalysed by the almond-β-glucosidase has been characterised. The monophasic octanol saturated with different amounts of water served as a reaction medium. Both the glucose and the activated substrate p-nitrophenyl-β-glucoside were examined as glycon donors. The reverse hydrolysis and the transglycosylation were both used as reaction models for this enzymatically catalysed alkyl-β-glucoside synthesis. The rate of synthesis of octyl-β-glucoside (vS), the rate of hydrolysis, i.e. the glucose formation (vH) and the predicted yield (Y) were determined. The effect of water activity on the synthetic and hydrolytic activity of the enzyme was investigated. Both the rate of synthesis and the rate of hydrolysis increased with the increase of the water activity in the reaction system, showing their maximum values at the water activity close to the saturation level. Thus, the maximum ratio of vS/vH=0.165 was achieved at the water activity of 0.94. The predicted yields were 0.5, 0.75 and 14.19% and were lower than the actually achieved yields of 19.45, 38 and 36.40% at the water activities of 0.75, 0.84 and 0.94, respectively. The yield of octyl-β-glucoside in the reverse hydrolysis was only 15.2%, i.e. 3.25 times lower than the yield obtained in the transglycosylation reaction with the water activity of 0.94. The solubility of glucose in pure octanol was only 1.5 mmol/L at the saturation level of 12 mmol/L in the presence of 10 mmol/L of p-nitrophenyl-β-glucoside, and it increased to 15.5 mmol/L in the presence of octyl-β-glucoside. PMID:27904411

  8. "N"-Heterocyclic Carbene-Catalyzed Reaction of Chalcone and Cinnamaldehyde to Give 1,3,4-Triphenylcyclopentene Using Organocatalysis to Form a Homoenolate Equivalent

    ERIC Educational Resources Information Center

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a modern organocatalytic reaction using IMes·HCl and NaOH to catalyze the formation of 1,3,4-triphenylcyclopentene from cinnamaldehyde and chalcone in water. Deprotonation of IMes·HCl with NaOH forms the "N"-heterocyclic carbene IMes that reacts with cinnamaldehyde to form a homoenolate equivalent…

  9. Ir-catalyzed preparation of SF5-substituted potassium aryl trifluoroborates via C-H borylation and their application in the Suzuki-Miyaura reaction.

    PubMed

    Joliton, Adrien; Carreira, Erick M

    2013-10-18

    The preparation of new pentafluorosulfanyl-substituted potassium aryltrifluoroborates via Ir-catalyzed C-H borylation is reported. The utility of these novel building blocks was demonstrated in the Suzuki-Miyaura cross-coupling reaction, giving access to 3,5-disubstituted pentafluorosulfanylbenzenes.

  10. PtCl2-catalyzed tandem enyne cyclization/1,2 ester migration reaction controlled by substituent effects of all-carbon 1,6-enynyl esters.

    PubMed

    Huo, Xing; Zhao, Changgui; Zhao, Gaoyuan; Tang, Shouchu; Li, Huilin; Xie, Xingang; She, Xuegong

    2013-05-01

    On the move: A novel PtCl2-catalyzed tandem 1,6-enyne cyclization/1,2-acyloxy migration reaction was developed, which was shown to be controlled by substitution effects. Using this method, a series of substituted enol esters containing the cyclopentenyl motif were prepared in moderate to high yields.

  11. Silver(I)-Catalyzed Enantioselective [3+2]-Cycloaddition Reaction of α-Silylimines: A Facile Route to Quaternary-Carbon-Rich Scaffolds.

    PubMed

    Kesava-Reddy, Naredla; Golz, Christopher; Strohmann, Carsten; Kumar, Kamal

    2016-12-19

    A silver-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction of α-silylimines with pyrone-based trisubstituted olefins was developed affording bi- and tricyclic α-quaternary-carbon-rich pyrano-pyrrolidines in excellent yields. The tricyclic benzopyrone adducts thus obtained were efficiently transformed into highly complex tetracyclic scaffolds supporting four consecutive stereogenic centers with three quaternary carbons.

  12. One-pot synthesis of 1,4-disubstituted pyrazoles from arylglycines via copper-catalyzed sydnone-alkyne cycloaddition reaction.

    PubMed

    Specklin, Simon; Decuypere, Elodie; Plougastel, Lucie; Aliani, Soifia; Taran, Frédéric

    2014-08-15

    A robust method for constructing 1,4-pyrazoles from arylglycines was developed using the copper-catalyzed sydnone-alkyne cycloaddition reaction. The procedure offers a straightforward and general route to the pyrazole heterocycle through a three-step one-pot procedure.

  13. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl Grignard reagents and identification of selective anti-breast-cancer agents.

    PubMed

    Yonova, Ivelina M; Johnson, A George; Osborne, Charlotte A; Moore, Curtis E; Morrissette, Naomi S; Jarvo, Elizabeth R

    2014-02-24

    Alkyl Grignard reagents that contain β-hydrogen atoms were used in a stereospecific nickel-catalyzed cross-coupling reaction to form C(sp(3))-C(sp(3)) bonds. Aryl Grignard reagents were also utilized to synthesize 1,1-diarylalkanes. Several compounds synthesized by this method exhibited selective inhibition of proliferation of MCF-7 breast cancer cells.

  14. Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions.

    PubMed

    Huang, Qingguo; Weber, Walter J

    2004-01-01

    The influence of dissolved soil organic matter (DSOM) derived from three geosorbents of different chemical composition and diagenetic history on the horseradish peroxidase (HRP) catalyzed oxidative coupling reactions of phenol was investigated. Phenol conversion and precipitate-product formation were measured, respectively, by HPLC and radiolabeled species analysis. Fourier transform infrared (FTIR) spectroscopy and capillary electrophoresis (CE) were used to characterize the products of enzymatic coupling, and the acute toxicities of the soluble products were determined by Microtox assay. Phenol conversion and precipitate formation were both significantly influenced by cross-coupling of phenol with dissolved organic matter, particularly in the cases of the more reactive and soluble DSOMs derived from two diagenetically "young" humic-type geosorbents. FTIR and CE characterizations indicate that enzymatic cross-coupling in these two cases leads to incorporation of phenol in DSOM macromolecules, yielding nontoxic soluble products. Conversely, cross-coupling appears to proceed in parallel with self-coupling in the presence of the relatively inert and more hydrophobic DSOM derived from a diagenetically "old" kerogen-type shale material. The products formed in this system have lower solubility and precipitate more readily, although their soluble forms tend to be more toxic than those formed by dominant cross-coupling reactions in the humic-type DSOM solutions. Several of the findings reported may be critically important with respect to feasibility evaluations and the engineering design of associated remediation schemes.

  15. Remarkably high asymmetric amplification in the chiral lanthanide complex-catalyzed hetero-Diels-Alder reaction: first example of the nonlinear effect in ML3 system

    PubMed

    Furuno; Hanamoto; Sugimoto; Inanaga

    2000-01-01

    [reaction: see text] A remarkably high asymmetric amplification was realized in the Yb[(R)-BNP]3-catalyzed hetero-Diels-Alder reaction as the first example in the metal/chiral ligand 1:3 system. The mechanism may be explained by the autogenetic formation of the enantiopure complex as the most active catalyst. The enantiomer-discriminative formation of homochiral ML3 complexes is quite general within the lanthanide metal ions with similar ionic radii to that of the ytterbium ion.

  16. Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent.

    PubMed

    Deschrevel, Brigitte; Vincent, Jean-Claude; Ripoll, Camille; Thellier, Michel

    2003-01-20

    The main strategy developed to shift the equilibrium state of a hydrolase-catalyzed hydrolysis/synthesis reaction consists in reducing water activity by addition of organic solvents in the reaction medium. We have used several mixtures of water and 1,4-butanediol, ranging from pure water to pure 1,4-butanediol, to study the hydrolysis/synthesis reaction of the N-Cbz-L-tryptophanyl-glycineamide dipeptide, catalyzed by alpha-chymotrypsin. In the presence of 1,4-butanediol, alpha-chymotrypsin also catalyzed the esterification reaction between this diol and N-Cbz-L-tryptophan; this ester hydrolysis/synthesis reaction has thus also been examined. The dipeptide and ester equilibrium concentrations increase when the water content of the reaction medium is decreased. Using our experimental data, we have determined the equilibrium constants of the hydrolysis/synthesis equilibria involving the nonionized forms of the protected amino acids, the estimated values of which are Ksp = 8 10(5) for the dipeptide and Kse = 78 for the ester respectively. They are true thermodynamic equilibrium constants, each related to a single, well-defined reaction equilibrium and with water activity being taken into account. If an organic solvent is added to the reaction medium these equilibria can be shifted towards synthesis by decreasing the water activity but also by modifying the ionization/neutralization equilibrium constant of the ionizable groups. These two effects depend both on the water content and on the nature of the organic solvent used, and, in particular, on its dielectric constant. Because of the importance of this parameter in our study, we discuss using it as an indicator to select an appropriate organic solvent to perform an enzyme-catalyzed synthesis.

  17. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    PubMed

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal

    2016-12-02

    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.

  18. Bisoxazoline-Lewis acid-catalyzed direct-electron demand oxo-hetero-Diels-Alder reactions of N-oxy-pyridine aldehyde and ketone derivatives.

    PubMed

    Landa, Aitor; Richter, Bo; Johansen, Rasmus Lyng; Minkkilä, Anna; Jørgensen, Karl Anker

    2007-01-05

    A general catalytic oxo-hetero-Diels-Alder reaction for pro-chiral aldehyde and ketone N-oxy-pyridines is presented. The catalytic and asymmetric oxo-hetero-Diels-Alder reaction of electron-rich dienes with N-oxy-pyridine-2-carbaldehyde and ketone derivatives, catalyzed by chiral copper(II)-bisoxazoline complexes, gives optically active six-membered oxygen heterocycles in moderate to good yields and with excellent enantioselectivities.

  19. Enantioselective N-Heterocyclic Carbene-Catalyzed β-Hydroxylation of Enals Using Nitroarenes: An Atom Transfer Reaction That Proceeds via Single Electron Transfer

    PubMed Central

    2015-01-01

    A novel oxidative N-heterocyclic carbene-catalyzed reaction pathway has been discovered. Alkyl and aryl enals undergo β-hydroxylation via oxygen atom transfer from electron-deficient nitrobenzenes, followed by trapping of the resultant acyl azolium by the solvent. The proposed mechanism involves a single electron transfer event to initiate the reaction followed by radical recombination. This represents a profound mechanistic departure from the established two-electron disconnects in NHC catalysis. PMID:25302860

  20. Mg(II) -Catalyzed Desymmetrization Reaction of meso-Aziridines with Hydroxylamines: Synthesis of Novel Chiral 1,2-Diamine Skeletons.

    PubMed

    Li, Dan; Yang, Dongxu; Wang, Linqing; Liu, Xihong; Jiang, Xianxing; Wang, Rui

    2016-11-21

    A Mg(II) -catalyzed desymmetrization reaction of meso-aziridines with hydroxylamines has been disclosed for the first time. A series of novel chiral 1,2-diamine skeletons were obtained in good yields and enantioselectivities. The reaction employed magnesium catalysis generated in situ from a simple oxazoline-OH chiral ligand. Obviously, the diverse structures of the obtained chiral 1,2-diamine compounds could allow them to be potential chiral ligands in future catalytic asymmetric synthesis studies.