Science.gov

Sample records for aldose reductase inhibitors

  1. Potential use of aldose reductase inhibitors to prevent diabetic complications.

    PubMed

    Zenon, G J; Abobo, C V; Carter, B L; Ball, D W

    1990-06-01

    Reviewed are (1) the biochemical basis and pathophysiology of diabetic complications and (2) the structure-activity relationships, pharmacology, pharmacokinetics, clinical trials, and adverse effects of aldose reductase inhibitors (ARIs). ARIs are a new class of drugs potentially useful in preventing diabetic complications, the most widely studied of which have been cataracts and neuropathy. ARIs inhibit aldose reductase, the first, rate-limiting enzyme in the polyol metabolic pathway. In nonphysiological hyperglycemia the activity of hexokinase becomes saturated while that of aldose reductase is enhanced, resulting in intracellular accumulation of sorbitol. Because sorbitol does not readily penetrate the cell membrane it can persist within cells, which may lead to diabetic complications. ARIs are a class of structurally dissimilar compounds that include carboxylic acid derivatives, flavonoids, and spirohydantoins. The major pharmacologic action of an ARI involves competitive binding to aldose reductase and consequent blocking of sorbitol production. ARIs delay cataract formation in animals, but the role of aldose reductase in cataract formation in human diabetics has not been established. The adverse effects of ARIs include hypersensitivity reactions. Although the polyol pathway may not be solely responsible for diabetic complications, studies suggest that therapy with ARIs could be beneficial. Further research is needed to determine the long-term impact and adverse effects of ARIs in the treatment of diabetic complications.

  2. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.

    PubMed

    Cook, P N; Ward, W H; Petrash, J M; Mirrlees, D J; Sennitt, C M; Carey, F; Preston, J; Brittain, D R; Tuffin, D P; Howe, R

    1995-04-18

    Aldose reductase (aldehyde reductase 2) catalyses the conversion of glucose to sorbitol, and methylglyoxal to acetol. Treatment with aldose reductase inhibitors (ARIs) is a potential approach to decrease the development of diabetic complications. The sulphonylnitromethanes are a recently discovered class of aldose reductase inhibitors, first exemplified by ICI215918. We now describe enzyme kinetic characterization of a second sulphonylnitromethane, 3',5'-dimethyl-4'-nitromethylsulphonyl-2-(2-tolyl)acetanilide (ZD5522), which is at least 10-fold more potent against bovine lens aldose reductase in vitro and which also has a greater efficacy for reduction of rat nerve sorbitol levels in vivo (ED95 = 2.8 mg kg-1 for ZD5522 and 20 mg kg-1 for ICI 215918). ZD5522 follows pure noncompetitive kinetics against bovine lens aldose reductase when either glucose or methylglyoxal is varied (K(is) = K(ii) = 7.2 and 4.3 nM, respectively). This contrasts with ICI 215918 which is an uncompetitive inhibitor (K(ii) = 100 nM) of bovine lens aldose reductase when glucose is varied. Against human recombinant aldose reductase, ZD5522 displays mixed noncompetitive kinetics with respect to both substrates (K(is) = 41 nM, K(ii) = 8 nM with glucose and K(is) = 52 nM, K(ii) = 3.8 nM with methylglyoxal). This is the first report of the effects of a sulphonylnitromethane on either human aldose reductase or utilization of methylglyoxal. These results are discussed with reference to a Di Iso Ordered Bi Bi mechanism for aldose reductase, where the inhibitors compete with binding of both the aldehyde substrate and alcohol product. This model may explain why aldose reductase inhibitors follow noncompetitive or uncompetitive kinetics with respect to aldehyde substrates, and X-ray crystallography paradoxically locates an ARI within the substrate binding site. Aldehyde reductase (aldehyde reductase 1) is closely related to aldose reductase. Inhibition of bovine kidney aldehyde reductase by ZD5522

  3. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro.

    PubMed

    Haraguchi, Hiroyuki; Hayashi, Ryosuke; Ishizu, Takashi; Yagi, Akira

    2003-09-01

    Isoaffinetin (5,7,3',4',5'-pentahydroxyflavone-6-C-glucoside) was isolated from Manilkara indica as a potent inhibitor of lens aldose reductase by bioassay-directed fractionation. This C-glucosyl flavone showed specific inhibition against aldose reductases (rat lens, porcine lens and recombinant human) with no inhibition against aldehyde reductase and NADH oxidase. Kinetic analysis showed that isoaffinetin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. A structure-activity relationship study revealed that the increasing number of hydroxy groups in the B-ring contributes to the increase in aldose reductase inhibition by C-glucosyl flavones.

  4. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  5. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    SciTech Connect

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R. )

    1989-10-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change.

  6. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors.

    PubMed

    Wang, Qi-Qin; Cheng, Ning; Zheng, Xiao-Wei; Peng, Sheng-Ming; Zou, Xiao-Qing

    2013-07-15

    Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099±0.008) μM to (2.833±0.102) μM. O(7)-Nitrooxyethyl-O(3'),O(4')-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50=(0.099±0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure-activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications.

  7. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019

  8. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  9. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury

    PubMed Central

    Eid, Ali Hussein

    2017-01-01

    Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to high glucose (30 mM) or normal glucose (5 mM) media for 24 to 48 hours with or without the AR inhibitor epalrestat (1 μM) and assessed for changes in Akt and ERK1/2 signaling, AR expression (using western blotting), and alterations in mitochondrial membrane potential (using JC-1 staining), cell viability (using MTT assay), and cell cycle. Exposure of NRK-52E cells to high glucose media caused acute activation of Akt and ERK pathways and depolarization of mitochondrial membrane at 24 hours. Prolonged high glucose exposure (for 48 hours) induced AR expression and G1 cell cycle arrest and decreased cell viability (84% compared to control) in NRK-52E cells. Coincubation of cells with epalrestat prevented the signaling changes and renal cell injury induced by high glucose. Thus, AR inhibition represents a potential therapeutic strategy to prevent DN. PMID:28386557

  10. Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy.

    PubMed

    Ramirez, Mary Ann; Borja, Nancy L

    2008-05-01

    Diabetic neuropathy is one of the most common long-term complications in patients with diabetes mellitus, with a prevalence of 60-70% in the United States. Treatment options include antidepressants, anticonvulsants, tramadol, and capsaicin. These agents are modestly effective for symptomatic relief, but they do not affect the underlying pathology nor do they slow progression of the disease. Epalrestat is an aldose reductase inhibitor that is approved in Japan for the improvement of subjective neuropathy symptoms, abnormality of vibration sense, and abnormal changes in heart beat associated with diabetic peripheral neuropathy. Unlike the current treatment options for diabetic neuropathy, epalrestat may affect or delay progression of the underlying disease process. Data from experimental studies indicate that epalrestat reduces sorbitol accumulation in the sciatic nerve, erythrocytes, and ocular tissues in animals, and in erythrocytes in humans. Data from six clinical trials were evaluated, and it was determined that epalrestat 50 mg 3 times/day may improve motor and sensory nerve conduction velocity and subjective neuropathy symptoms as compared with baseline and placebo. Epalrestat is well tolerated, and the most frequently reported adverse effects include elevations in liver enzyme levels and gastrointestinal-related events such as nausea and vomiting. Epalrestat may serve as a new therapeutic option to prevent or slow the progression of diabetic neuropathy. Long-term, comparative studies in diverse patient populations are needed for clinical application.

  11. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution.

    PubMed

    Steuber, Holger; Heine, Andreas; Klebe, Gerhard

    2007-05-04

    To prevent diabetic complications derived from enhanced glucose flux via the polyol pathway the development of aldose reductase inhibitors (ARIs) has been established as a promising therapeutic concept. In order to identify novel lead compounds, a virtual screening (VS) was performed successfully suggesting carboxylate-type inhibitors of sub-micromolar to micromolar affinity. Here, we combine a structural characterization of the binding modes observed by X-ray crystallography with isothermal titration calorimetry (ITC) measurements providing insights into the driving forces of inhibitor binding, particularly of the first leads from VS. Characteristic features of this novel inhibitor type include a carboxylate head group connected via an alkyl spacer to a heteroaromatic moiety, which is linked to a further nitro-substituted aromatic portion. The crystal structures of two enzyme-inhibitor complexes have been determined at resolutions of 1.43 A and 1.55 A. Surprisingly, the carboxylic group of the most potent VS lead occupies the catalytic pocket differently compared to the interaction geometry observed in almost all other crystal structures with structurally related ligands and obtained under similar conditions, as an interstitial water molecule is picked up upon ligand binding. The nitro-aromatic moiety of both leads occupies the specificity pocket of the enzyme, however, adopting a different geometry compared to the docking prediction: unexpectedly, the nitro group binds to the bottom of the specificity pocket and provokes remarkable induced-fit adaptations. A peptide group located at the active site orients in such a way that H-bond formation to one nitro group oxygen atom is enabled, whereas a neighbouring tyrosine side-chain performs a slight rotation off from the binding cavity to accommodate the nitro group. Identically constituted ligands, lacking this nitro group, exhibit an affinity drop of one order of magnitude. In addition, thermodynamic data suggest a

  12. Chicken muscle aldose reductase: purification, properties and relationship to other chicken aldo/keto reductases.

    PubMed

    Murphy, D G; Davidson, W S

    1986-01-01

    An enzyme that catalyzes the NADPH-dependent reduction of a wide range of aromatic and hydroxy-aliphatic aldehydes was purified from chicken breast muscle. This enzyme shares many properties with mammalian aldose reductases including molecular weight, relative substrate specificity, Michaelis constants, an inhibitor specificity. Therefore, it seems appropriate to call this enzyme an aldose reductase (EC 1.1.1.21). Chicken muscle aldose reductase appears to be kinetically identical to an aldose reductase that has been purified from chicken kidney (Hara et al., Eur. J. Biochem. 133, 207-214) and to hen muscle L-glycol dehydrogenase (Bernado et al., Biochim. biophys. Acta 659, 189-198). The association of this aldose reductase with muscular dystrophy in the chick is discussed.

  13. Aldose reductase inhibitors for diabetic complications: Receptor induced atom-based 3D-QSAR analysis, synthesis and biological evaluation.

    PubMed

    Vyas, Bhawna; Singh, Manjinder; Kaur, Maninder; Bahia, Malkeet Singh; Jaggi, Amteshwar Singh; Silakari, Om; Singh, Baldev

    2015-06-01

    Herein, atom-based 3D-QSAR analysis was performed using receptor-guided alignment of 46 flavonoid inhibitors of aldose reductase (ALR2) enzyme. 3D-QSAR models were generated in PHASE programme, and the best model corresponding to PLS factor four (QSAR4), was selected based on different statistical parameters (i.e., Rtrain(2), 0.96; Qtest(2) 0.81; SD, 0.26). The contour plots of different structural properties generated from the selected model were utilized for the designing of five new congener molecules. These designed molecules were duly synthesized, and evaluated for their in vitro ALR2 inhibitory activity that resulted in the micromolar (IC50<22μM) activity of all molecules. Thus, the newly designed molecules having ALR inhibitory potential could be employed for the management of diabetic complications.

  14. Dissociation between biochemical and functional effects of the aldose reductase inhibitor, ponalrestat, on peripheral nerve in diabetic rats.

    PubMed Central

    Cameron, N. E.; Cotter, M. A.

    1992-01-01

    1. The aim of the study was to examine the effects in rats of two different doses of the aldose reductase inhibitor, ponalrestat, on functional measures of nerve conduction and sciatic nerve biochemistry. 2. After 1 month, streptozotocin-induced diabetes produced 22%, 23% and 15% deficits in conduction velocity of sciatic nerves supplying gastrocnemius and tibialis anterior muscles and saphenous sensory nerve respectively compared to controls. These deficits were maintained over 2 months diabetes. 3. Slower-conducting motor fibres supplying the interosseus muscles of the foot did not show a diabetic deficit compared to onset controls, however, there was a 13% reduction in conduction velocity after 2 months diabetes relative to age-matched controls, indicating a maturation deficit. 4. Resistance to hypoxic conduction failure was investigated for sciatic nerve trunks in vitro. There was an increase in the duration of hypoxia necessary for an 80% reduction in compound action potential amplitude with diabetes. This was progressive; after 1 month, hypoxia time was increased by 22% and after 2 months by 57%. 5. The effect of 1-month treatment with the aldose reductase inhibitor, ponalrestat, on the abnormalities caused by an initial month of untreated diabetes was examined. Two doses of ponalrestat were employed, 8 mg kg-1 day-1 (which is equivalent to, or greater than, the blockade employed in clinical trials), and 100 mg kg-1 day-1. 6. Sciatic nerve sorbitol content was increased 7 fold by diabetes. Both doses were effective in reducing this; 70% for 8 mg kg-1 day-1, and to within the control range for 100 mg kg-1 day-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467842

  15. Bioactivity Focus of α-Cyano-4-hydroxycinnamic acid (CHCA) Leads to Effective Multifunctional Aldose Reductase Inhibitors

    PubMed Central

    Zhang, Laitao; Li, Yi-Fang; Yuan, Sheng; Zhang, Shijie; Zheng, Huanhuan; Liu, Jie; Sun, Pinghua; Gu, Yijun; Kurihara, Hiroshi; He, Rong-Rong; Chen, Heru

    2016-01-01

    Bioactivity focus on α-cyano-4-hydroxycinnamic acid (CHCA) scaffold results in a small library of novel multifunctional aldose reductase (ALR2) inhibitors. All the entities displayed good to excellent inhibition with IC50 72–405 nM. (R,E)-N-(3-(2-acetamido-3-(benzyloxy)propanamido)propyl)-2-cyano-3-(4-hydroxy phenyl)acrylamide (5f) was confirmed as the most active inhibitor (IC50 72.7 ± 1.6 nM), and the best antioxidant. 5f bound to ALR2 with new mode without affecting the aldehyde reductase (ALR1) activity, implicating high selectivity to ALR2. 5f was demonstrated as both an effective ALR2 inhibitor (ARI) and antioxidant in a chick embryo model of hyperglycemia. It attenuated hyperglycemia-induced incidence of neural tube defects (NTD) and death rate, and significantly improved the body weight and morphology of the embryos. 5f restored the expression of paired box type 3 transcription factor (Pax3), and reduced the hyperglycemia-induced increase of ALR2 activity, sorbitol accumulation, and the generation of ROS and MDA to normal levels. All the evidences support that 5f may be a potential agent to treat diabetic complications. PMID:27109517

  16. Administration of ascorbic acid and an aldose reductase inhibitor (tolrestat) in diabetes: effect on urinary albumin excretion.

    PubMed

    McAuliffe, A V; Brooks, B A; Fisher, E J; Molyneaux, L M; Yue, D K

    1998-11-01

    The important role of ascorbic acid (AA) as an anti-oxidant is particularly relevant in diabetes mellitus where plasma concentrations of AA are reduced. This study was conducted to evaluate the effects of treatment with AA or an aldose reductase inhibitor, tolrestat, on AA metabolism and urinary albumin excretion in diabetes. Blood and urine samples were collected at 0, 3, 6, 9, and 12 months from 20 diabetic subjects who were randomized into two groups to receive either oral AA 500 mg twice daily or placebo. Systolic and diastolic blood pressures, HbA1c, plasma lipids, urinary albumin, and total glycosaminoglycan excretion were measured at all time points, and heparan sulphate (glycosaminoglycan) was measured at 0 and 12 months. The same parameters, as well as urinary AA excretion, were determined at 0 and 3 months for 16 diabetes subjects receiving 200 mg tolrestat/day. AA treatment increased plasma AA (ANOVA, F ratio = 12.1, p = 0.004) and reduced albumin excretion rate (AER) after 9 months (ANOVA, F ratio = 3.2, p = 0.03), but did not change the other parameters measured. Tolrestat lowered plasma AA (Wilcoxon's signed-rank test, p < 0.05), but did not change AER or the other parameters measured. The ability of AA treatment to decrease AER may be related to changes in extracellular matrix or improvement in oxidative defence mechanism. Unlike the rat model of diabetes, inhibition of aldose reductase did not normalize plasma AA or AER in humans. In fact, tolrestat reduced the plasma AA concentration, a phenomenon which may be due to increased utilization of AA. Dietary supplementation of AA in diabetic subjects may have long-term benefits in attenuating the progression of diabetic complications.

  17. Electrostatic Fields Near the Active Site of Human Aldose Reductase: 2. New Inhibitors and Complications due to Hydrogen Bonds†

    PubMed Central

    Xu, Lin; Cohen, Aina E.; Boxer, Steven G.

    2011-01-01

    Vibrational Stark effect spectroscopy was used to measure electrostatic fields in the hydrophobic region of the active site of human aldose reductase (hALR2). A new nitrile-containing inhibitor was designed and synthesized, and the x-ray structure of its complex, along with cofactor NADP+, with wild-type hALR2 was determined at 1.3 Å resolution. The nitrile is found to be in close proximity to T113, consistent with a hydrogen bond interaction. Two vibrational absorption peaks were observed at room temperature in the nitrile region when the inhibitor binds to wild-type hALR2, indicating that the nitrile probe experiences two different microenvironments, and these could be empirically separated into a hydrogen bonded and non-hydrogen bonded population by comparison with the mutant T113A, where a hydrogen bond to the nitrile is not present. Classical molecular dynamics simulations based on the structure predict a double-peaked distribution in protein electric fields projected along the nitrile probe. The interpretation of these two peaks as a hydrogen bond formation-dissociation process between the probe nitrile group and a nearby amino acid side chain is used to explain the observation of two IR bands, and the simulations were used to investigate the molecular details of this conformational change. Hydrogen bonding complicates the simplest analysis of vibrational frequency shifts as being due solely to electrostatic interactions through the vibrational Stark effect, and the consequences of this complication are discussed. PMID:21859105

  18. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    SciTech Connect

    Zeng, Ke-Wu; Li, Jun; Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei; Tu, Peng-Fei

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  19. Aldose reductase from Schistosoma japonicum: crystallization and structure-based inhibitor screening for discovering antischistosomal lead compounds

    PubMed Central

    2013-01-01

    Background Schistosomiasis is a neglected tropical disease with high morbidity and mortality in the world. Currently, the treatment of this disease depends almost exclusively on praziquantel (PZQ); however, the emergence of drug resistance to PZQ in schistosomes makes the development of novel drugs an urgent task. Aldose reductase (AR), an important component that may be involved in the schistosome antioxidant defense system, is predicted as a potential drug target. Methods The tertiary structure of Schistosoma japonicum AR (SjAR) was obtained through X-ray diffraction method and then its potential inhibitors were identified from the Maybridge HitFinder library by virtual screening based on this structural model. The effects of these identified compounds on cultured adult worms were evaluated by observing mobility, morphological changes and mortality. To verify that SjAR was indeed the target of these identified compounds, their effects on recombinant SjAR (rSjAR) enzymatic activity were assessed. The cytotoxicity analysis was performed with three types of human cell lines using a Cell Counting Kit-8. Results We firstly resolved the SjAR structure and identified 10 potential inhibitors based on this structural model. Further in vitro experiments showed that one of the compounds, renamed as AR9, exhibited significant inhibition in the activity of cultured worms as well as inhibition of enzymatic activity of rSjAR protein. Cytotoxicity analysis revealed that AR9 had relatively low toxicity towards host cells. Conclusions The work presented here bridges the gap between virtual screening and experimental validation, providing an effective and economical strategy for the development of new anti-parasitic drugs. Additionally, this study also found that AR9 may become a new potential lead compound for developing novel antischistosomal drugs against parasite AR. PMID:23734964

  20. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation.

    PubMed

    Papastavrou, Nikolaos; Chatzopoulou, Maria; Ballekova, Jana; Cappiello, Mario; Moschini, Roberta; Balestri, Francesco; Patsilinakos, Alexandros; Ragno, Rino; Stefek, Milan; Nicolaou, Ioannis

    2017-04-21

    Aldose reductase (ALR2) has been the target of therapeutic intervention for over 40 years; first, for its role in long-term diabetic complications and more recently as a key mediator in inflammation and cancer. However, efforts to prepare small-molecule aldose reductase inhibitors (ARIs) have mostly yielded carboxylic acids with rather poor pharmacokinetics. To address this limitation, the 1-hydroxypyrazole moiety has been previously established as a bioisostere of acetic acid in a group of aroyl-substituted pyrrolyl derivatives. In the present work, optimization of this new class of ARIs was achieved by the addition of a trifluoroacetyl group on the pyrrole ring. Eight novel compounds were synthesized and tested for their inhibitory activity towards ALR2 and selectivity against aldehyde reductase (ALR1). All compounds proved potent and selective inhibitors of ALR2 (IC50/ALR2 = 0.043-0.242 μΜ, Selectivity index = 190-858), whilst retaining a favorable physicochemical profile. The most active (4g) and selective (4d) compounds were further evaluated for their ability to inhibit sorbitol formation in rat lenses ex vivo and to exhibit substrate-specific inhibition.

  1. A defect in sodium-dependent amino acid uptake in diabetic rabbit peripheral nerve. Correction by an aldose reductase inhibitor or myo-inositol administration.

    PubMed Central

    Greene, D A; Lattimer, S A; Carroll, P B; Fernstrom, J D; Finegold, D N

    1990-01-01

    A myo-inositol-related defect in nerve sodium-potassium ATPase activity in experimental diabetes has been suggested as a possible pathogenetic factor in diabetic neuropathy. Because the sodium-potassium ATPase is essential for other sodium-cotransport systems, and because myo-inositol-derived phosphoinositide metabolites regulate multiple membrane transport processes, sodium gradient-dependent amino acid uptake was examined in vitro in endoneurial preparations derived from nondiabetic and 14-d alloxan diabetic rabbits. Untreated alloxan diabetes reduced endoneurial sodium-gradient dependent uptake of the nonmetabolized amino acid 2-aminoisobutyric acid by greater than 50%. Administration of an aldose reductase inhibitor prevented reductions in both nerve myo-inositol content and endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Myo-inositol supplementation that produced a transient pharmacological elevation in plasma myo-inositol concentration, but did not raise nerve myo-inositol content, reproduced the effect of the aldose reductase inhibitor on endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Phorbol myristate acetate, which acutely normalizes sodium-potassium ATPase activity in diabetic nerve, did not acutely correct 2-aminoisobutyric uptake when added in vitro. These data suggest that depletion of a small myo-inositol pool may be implicated in the pathogenesis of defects in amino acid uptake in diabetic nerve and that rapid correction of sodium-potassium ATPase activity with protein kinase C agonists in vitro does not acutely normalize sodium-dependent 2-aminoisobutyric acid uptake. PMID:2185278

  2. α-Glucosidase and aldose reductase inhibitory activities from the fruiting body of Phellinus merrillii.

    PubMed

    Huang, Guan-Jhong; Hsieh, Wen-Tsong; Chang, Heng-Yuan; Huang, Shyh-Shyun; Lin, Ying-Chih; Kuo, Yueh-Hsiung

    2011-05-25

    The inhibitory activity from the isolated component of the fruiting body Phellinus merrillii (PM) was evaluated against α-glucosidase and lens aldose reductase from Sprague-Dawley male rats and compared to the quercetin as an aldose reductase inhibitor and acarbose as an α-glucosidase inhibitor. The ethanol extracts of PM (EPM) showed the strong α-glucosidase and aldose reductase activities. α-Glucosidase and aldose reductase inhibitors were identified as hispidin (A), hispolon (B), and inotilone (C), which were isolated from EtOAc-soluble fractions of EPM. The above structures were elucidated by their spectra and comparison with the literatures. Among them, hispidin, hispolon, and inotilone exhibited potent against α-glucosidase inhibitor activity with IC(50) values of 297.06 ± 2.06, 12.38 ± 0.13, and 18.62 ± 0.23 μg/mL, respectively, and aldose reductase inhibitor activity with IC(50) values of 48.26 ± 2.48, 9.47 ± 0.52, and 15.37 ± 0.32 μg/mL, respectively. These findings demonstrated that PM may be a good source for lead compounds as alternatives for antidiabetic agents currently used. The importance of finding effective antidiabetic therapeutics led us to further investigate natural compounds.

  3. Structure-activity relationships and molecular modelling of new 5-arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents.

    PubMed

    Maccari, Rosanna; Vitale, Rosa Maria; Ottanà, Rosaria; Rocchiccioli, Marco; Marrazzo, Agostino; Cardile, Venera; Graziano, Adriana Carol Eleonora; Amodeo, Pietro; Mura, Umberto; Del Corso, Antonella

    2014-06-23

    A series of 5-(carbamoylmethoxy)benzylidene-2-oxo/thioxo-4-thiazolidinone derivatives (6-9) were synthesized as inhibitors of aldose reductase (AR), enzyme which plays a crucial role in the development of diabetes complications as well as in the inflammatory processes associated both to diabetes mellitus and to other pathologies. In vitro inhibitory activity indicated that compounds 6-9a-d were generally good AR inhibitors. Acetic acid derivatives 8a-d and 9a-d were shown to be the best enzyme inhibitors among the tested compounds endowed with significant inhibitory ability levels reaching submicromolar IC50 values. Moreover, some representative AR inhibitors (7a, 7c, 9a, 9c, 9d) were assayed in cultures of human keratinocytes in order to evaluate their capability to reduce NF-kB activation and iNOS expression. Compound 9c proved to be the best derivative endowed with both interesting AR inhibitory effectiveness and ability to reduce NF-kB activation and iNOS expression. Molecular docking and molecular dynamics simulations were undertaken to investigate the binding modes of selected compounds into the active site of AR in order to rationalize the inhibitory effectiveness of these derivatives.

  4. Three-dimensional quantitative structure-activity relationships and docking studies of some structurally diverse flavonoids and design of new aldose reductase inhibitors

    PubMed Central

    Chandra De, Utpal; Debnath, Tanusree; Sen, Debanjan; Debnath, Sudhan

    2015-01-01

    Aldose reductase (AR) plays an important role in the development of several long-term diabetic complications. Inhibition of AR activities is a strategy for controlling complications arising from chronic diabetes. Several AR inhibitors have been reported in the literature. Flavonoid type compounds are shown to have significant AR inhibition. The objective of this study was to perform a computational work to get an idea about structural insight of flavonoid type compounds for developing as well as for searching new flavonoid based AR inhibitors. The data-set comprising 68 flavones along with their pIC50 values ranging from 0.44 to 4.59 have been collected from literature. Structure of all the flavonoids were drawn in Chembiodraw Ultra 11.0, converted into corresponding three-dimensional structure, saved as mole file and then imported to maestro project table. Imported ligands were prepared using LigPrep option of maestro 9.6 version. Three-dimensional quantitative structure-activity relationships and docking studies were performed with appropriate options of maestro 9.6 version installed in HP Z820 workstation with CentOS 6.3 (Linux). A model with partial least squares factor 5, standard deviation 0.2482, R2 = 0.9502 and variance ratio of regression 122 has been found as the best statistical model. PMID:25709964

  5. Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis.

    PubMed

    Iwata, Y; Arisawa, M; Hamada, R; Kita, Y; Mizutani, M Y; Tomioka, N; Itai, A; Miyamoto, S

    2001-05-24

    Aldose reductase (AR) has been implicated in the etiology of diabetic complications. Due to the limited number of currently available drugs for the treatment of diabetic complications, we have carried out structure-based drug design and synthesis in an attempt to find new types of AR inhibitors. With the ADAM&EVE program, a three-dimensional database (ACD3D) was searched using the ligand binding site of the AR crystal structure. Out of 179 compounds selected through this search followed by visual inspection, 36 compounds were purchased and subjected to a biological assay. Ten compounds showed more than 40% inhibition of AR at a 15 microg/mL concentration. In a subsequent lead optimization, a series of analogues of the most active compound were synthesized based on the docking mode derived by ADAM&EVE. Many of these congeners exhibited higher activities compared to the mother compound. Indeed, the most potent, synthesized compound showed an approximately 20-fold increase in inhibitory activity (IC(50) = 0.21 vs 4.3 microM). Furthermore, a hydrophobic subsite was newly inferred, which would be useful for the design of inhibitors with improved affinity for AR.

  6. Part 1: synthesis of irreversible inhibitors of aldose reductase with subsequent development of a carbon-13 NMR protein probe. Part 2: synthesis of selenium analogs of dopamine as potential dopamine receptor agonists

    SciTech Connect

    Ares, J.J.

    1986-01-01

    Aldose reductase converts glucose into sorbitol using NADPH as a cofactor. Sorbitol accumulation in various tissues is believed to play a major role in the development of debilitating complications of diabetes; thus, much effort has been directed toward the preparation of aldose reductase inhibitors. Of the compounds prepared, the most active are the isothiocyanate and azide analogs of the reversible aldose reductase inhibitor alrestatin. The potency of the alrestatin isothiocyanate prompted the authors to examine the possibility that isothiocyanates enriched with carbon-13 could be used as carbon-13 NMR protein probes. Toward this end, a synthesis of carbon-13 enriched phenylisothiocyanate has been developed. This reagent has been successfully utilized to study peptides via carbon-13 NMR spectroscopy. Research in their laboratory over the years has focused on answering two fundamental questions regarding the interaction of dopamine with its receptor. First, can the concept of bioisosterism be applied to dopamine agonists. Secondly, what is the actual molecular species of dopamine which interacts with the dopamine receptor. In an effort to answer these questions, methyl selenide and dimethyl selenonium analogs of dopamine have been synthesized.

  7. Aldose Reductase-catalyzed Reduction of Aldehyde Phospholipids

    PubMed Central

    Srivastava, Sanjay; Spite, Matthew; Trent, John O.; West, Matthew B.; Ahmed, Yonis; Bhatnagar, Aruni

    2012-01-01

    SUMMARY Oxidation of unsaturated phospholipids results in the generation of aldehyde side chains that remain esterified to the phospholipid backbone. Such “core” aldehydes elicit immune responses and promote inflammation. However, the biochemical mechanisms by which phospholipid aldehydes are metabolized or detoxified are not well understood. In the studies reported here, we examined whether aldose reductase (AR), which reduces hydrophobic aldehydes, metabolizes phospholipid aldehydes. Incubation with AR led to the reduction of 5-oxovaleroyl, 7-oxo-5-heptenoyl, 5-hydroxy-6-oxo-caproyl, and 5-hydroxy-8-oxo-6-octenoyl phospholipids generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The enzyme also catalyzed the reduction of phospholipid aldehydes generated from the oxidation of 1-alkyl, and 1-alkenyl analogs of PAPC, and 1-palmitoyl-2-arachidonoyl phosphatidic acid or phosphoglycerol. Aldose reductase catalyzed the reduction of chemically synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (POVPC) with a Km of 10 μM. Addition of POVPC to the culture medium led to incorporation and reduction of the aldehyde in COS-7 and THP-1 cells. Reduction of POVPC in these cells was prevented by the AR inhibitors sorbinil and tolrestat and was increased in COS-7 cells overexpressing AR. Together, these observations suggest that AR may be a significant participant in the metabolism of several structurally diverse phospholipid aldehydes. This metabolism may be a critical regulator of the pro-inflammatory and immunogenic effects of oxidized phospholipids. PMID:15465833

  8. Effects of the New Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m on High Glucose Induced Prolongation of Cardiac QT Interval and Increase of Coronary Perfusion Pressure

    PubMed Central

    Di Filippo, C.; Ferraro, B.; Maisto, R.; Trotta, M. C.; Di Carluccio, N.; Sartini, S.; La Motta, C.; Ferraraccio, F.; Rossi, F.; D'Amico, M.

    2016-01-01

    This study investigated the effects of the new aldose reductase inhibitor benzofuroxane derivative 5(6)-(benzo[d]thiazol-2-ylmethoxy)benzofuroxane (BF-5m) on the prolongation of cardiac QT interval and increase of coronary perfusion pressure (CPP) in isolated, high glucose (33.3 mM D-glucose) perfused rat hearts. BF-5m was dissolved in the Krebs solution at a final concentration of 0.01 μM, 0.05 μM, and 0.1 μM. 33.3 mM D-glucose caused a prolongation of the QT interval and increase of CPP up to values of 190 ± 12 ms and 110 ± 8 mmHg with respect to the values of hearts perfused with standard Krebs solution (11.1 mM D-glucose). The QT prolongation was reduced by 10%, 32%, and 41%, respectively, for the concentration of BF-5m 0.01 μM, 0.05 μM, and 0.1 μM. Similarly, the CPP was reduced by 20% for BF-5m 0.05 μM and by 32% for BF-5m 0.1 μM. BF-5m also increased the expression levels of sirtuin 1, MnSOD, eNOS, and FOXO-1, into the heart. The beneficial actions of BF-5m were partly abolished by the pretreatment of the rats with the inhibitor of the sirtuin 1 activity EX527 (10 mg/kg/day/7 days i.p.) prior to perfusion of the hearts with high glucose + BF-5m (0.1 μM). Therefore, BF-5m supplies cardioprotection from the high glucose induced QT prolongation and increase of CPP. PMID:26839893

  9. Aldose reductase inhibitor counteracts the enhanced expression of matrix metalloproteinase-10 and improves corneal wound healing in galactose-fed rats

    PubMed Central

    Matsumoto, Takafumi; Tomomatsu, Takeshi; Matsumura, Takehiro; Takihara, Yuji; Inatani, Masaru

    2013-01-01

    Purpose We investigated the effect of an aldose reductase inhibitor (ARI) and the role of matrix metalloproteinase (MMP)-10 on recovery after corneal epithelium removal in a rat diabetic keratopathy model. Methods Three-week-old Sprague-Dawley rats were fed the following diets for 6 weeks: normal MF chow (MF), 50% galactose (Gal), and 50% Gal containing 0.01% ARI (Gal +ARI). The corneal epithelium was removed using n-heptanol, and the area of epithelial defects was photographed and measured every 24 h. Real-time reverse transcriptase PCR, western blotting, and immunohistochemistry were used to determine the expression profile of MMP-10 and integrin α3. Results Compared to the MF control group, the amount of galactitol in the Gal group increased approximately 200-fold, which was reduced to sevenfold by ARI treatment. The area of corneal erosion in the Gal group was significantly larger than in the MF group at 72 h and thereafter (p<0.01, unpaired t test). The expression level of MMP-10 was enhanced at both the protein and mRNA levels by exposure to a high concentration of Gal, while integrin α3 expression decreased at the protein level but remained unchanged at the mRNA level. Delayed epithelial wound healing and alterations in the expression levels of MMP-10 and integrin α3 were normalized by ARI. The corneal erosion closure rate was significantly decreased with topical recombinant MMP-10. Conclusions These studies confirm that the increased expression of MMP-10 induced by Gal feeding is counteracted by ARI treatment and suggest a role of MMP-10 in modulating corneal epithelial wound healing. PMID:24339723

  10. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  11. [Inhibition of aldose reductase by Chinese herbal medicine].

    PubMed

    Mao, X M; Zhang, J Q

    1993-10-01

    Seven Chinese herbal drugs were screened for experimental inhibition of lens aldose reductase activity, among which quercetin exhibited potent enzyme-inhibitory activities in vitro. Its IC50 value was 3.44 x 10(-7) mol/L. It may be helpful in the prophylaxis and treatment of diabetic complications.

  12. A meta-analysis of trials on aldose reductase inhibitors in diabetic peripheral neuropathy. The Italian Study Group. The St. Vincent Declaration.

    PubMed

    Nicolucci, A; Carinci, F; Cavaliere, D; Scorpiglione, N; Belfiglio, M; Labbrozzi, D; Mari, E; Benedetti, M M; Tognoni, G; Liberati, A

    1996-12-01

    Peripheral neuropathy is one of the most common and disabling long-term sequelae of diabetes mellitus. Aldose reductase inhibitors (ARIs) have been proposed and are increasingly used in many countries for the prevention and treatment of diabetic neuropathy. The aim of this study was to review existing evidence on the effectiveness of ARIs in the treatment of peripheral diabetic neuropathy, with particular reference to the type and clinical relevance of the end point used and to the consistency of results across studies. Thirteen randomized clinical trials (RTCs) comparing ARIs with placebo, published between 1981 and 1993 were included in the meta-analysis. Nerve conduction velocity (NCV) was the only end point reported in all trials. Treatment effect was thus evaluated in terms of NCV mean difference in four different nerves: median motor, median sensory, peroneal motor, and sural sensory. A statistically significant reduction in decline of median motor NCV was present in the treated group as compared to the control group (mean 0.91 ms-1; 95% CI 0.41-1.42 ms-1). For peroneal motor, median sensory, and sural sensory nerves results did not show any clear benefit for patients treated with ARIs. When the analysis was limited to trials with at least 1-year treatment duration, a significant effect was present for peroneal motor NCV (mean 1.24 ms-1; 95% CI 0.32-2.15 ms-1) and a benefit of borderline statistical significance was also present for median motor NCV (mean 0.69 ms-1; 95% CI-0.07-1.45 ms-1). A heterogeneous picture emerged when looking at the results of different studies and serious inconsistencies were also present in the direction of treatment effects among nerves in the same studies. Although the results of 1-year treatment on motor NCV seem encouraging, the uncertainty about the reliability of the end-point employed and the short treatment duration do not allow any clear conclusion about the efficacy of ARIs in the treatment of peripheral diabetic

  13. B-factor Analysis and Conformational Rearrangement of Aldose Reductase.

    PubMed

    Balendiran, Ganesaratnam K; Pandian, J Rajendran; Drake, Evin; Vinayak, Anubhav; Verma, Malkhey; Cascio, Duilio

    2014-01-01

    The NADPH-dependent reduction of glucose reaction that is catalyzed by Aldose Reductase (AR) follows a sequential ordered kinetic mechanism in which the co-factor NADPH binds to the enzyme prior to the aldehyde substrate. The kinetic/structural experiments have found a conformational change involving a hinge-like movement of a surface loop (residues 213-224) which is anticipated to take place upon the binding of the diphosphate moiety of NADPH. The reorientation of this loop, expected to permit the release of NADP(+), represents the rate-limiting step of the catalytic mechanism. This study reveals: 1) The Translation/Libration/Screw (TLS) analysis of absolute B-factors of apo AR crystal structures indicates that the 212-224 loop might move as a rigid group. 2) Residues that make the flexible loop slide in the AR binary and ternary complexes. 3) The normalized B-factors separate this segment into three different clusters with fewer residues.

  14. Phytochemical analysis with the antioxidant and aldose reductase inhibitory capacities of Tephrosia humilis aerial parts' extracts.

    PubMed

    Plioukas, Michael; Gabrieli, Chrysi; Lazari, Diamanto; Kokkalou, Eugene

    2016-06-01

    The aerial parts of Tephrosia humilis were tested about their antioxidant potential, their ability to inhibit the aldose/aldehyde reductase enzymes and their phenolic content. The plant material was exhaustively extracted with petroleum ether, dichloromethane and methanol, consecutively. The concentrated methanol extract was re-extracted, successively, with diethyl ether, ethyl acetate and n-butanol. All extracts showed significant antioxidant capacity, but the most effective was the ethyl acetate extract. As about the aldose reductase inhibition, all fractions, except the aqueous, were strong inhibitors of the enzyme, with the n-butanolic and ethyl acetate fractions to inhibit the enzyme above 75%. These findings provide support to the ethnopharmacological usage of the plant as antioxidant and validate its potential to act against the long-term diabetic complications. The phytochemical analysis showed the presence of 1,4-dihydroxy-3,4-(epoxyethano)-5-cyclohexene(1), cleroindicin E(2), lupeol(3), methyl p-coumarate(4), methyl 4-hydroxybenzoate(5), prunin(6), 5,7,2',5'-tetrahydroxyflavanone 7-rutinoside(7), protocatechuic acid(8), luteolin 7-glucoside(9), apigenin(10), naringin(11), rhoifolin(12) and luteolin 7-glucuronate(13).

  15. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy

    PubMed Central

    Satyanarayana, A.; Balakrishna, N.; Ayyagari, Radha; Padma, M.; Viswanath, K.; Petrash, J. Mark

    2008-01-01

    Purpose Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol, in erythrocytes. Methods We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined. Results T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects. Conclusions Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be included among other markers to establish a risk profile for development of DR. PMID:18385795

  16. Effects of galactose feeding on aldose reductase gene expression.

    PubMed Central

    Wu, R R; Lyons, P A; Wang, A; Sainsbury, A J; Chung, S; Palmer, T N

    1993-01-01

    Aldose reductase (AR) is implicated in the pathogenesis of the diabetic complications and osmotic cataract. AR has been identified as an osmoregulatory protein, at least in the renal medulla. An outstanding question relates to the response of AR gene expression to diet-induced galactosemia in extrarenal tissues. This paper shows that AR gene expression in different tissues is regulated by a complex multifactorial mechanism. Galactose feeding in the rat is associated with a complex and, on occasions, multiphasic pattern of changes in AR mRNA levels in kidney, testis, skeletal muscle, and brain. These changes are not in synchrony with the temporal sequence of changes in tissue galactitol, galactose, and myoinositol concentrations. Moreover, galactose feeding results in changes in tissue AR activities that are not related, temporally or quantitatively, to the alterations in tissue AR mRNA or galactitol levels. It is concluded that AR gene expression and tissue AR activities are regulated by mechanisms that are not purely dependent on nonspecific alterations in intracellular metabolite concentrations. This conclusion is supported by the finding that chronic xylose feeding, despite being associated with intracellular xylitol accumulation, does not result in alterations in AR mRNA levels, at least in the kidney. PMID:8325980

  17. Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies.

    PubMed

    Patil, Kapil K; Gacche, Rajesh N

    2017-05-01

    On the eve of increasing incidence of diabetes mellitus and related complications, the search for novel, safe and alternatives therapeutic approaches are evolving. In the present investigation, a panel of ten dietary flavonoids such as 4'-methoxyflavanone, formononetin, hesperetin, hesperidin, naringenin, naringin, rutin, diadzin, silibinin and silymarin was evaluated as possible inhibitors of sugar induced cataractogenesis using bovine lens organ culture studies. The effect of selected flavonoids was observed on glycation induced lens opacity, AGE fluorescence, carbonyl group formation (a biomarker of glycation), protein aggregation and aldose reductase (AR) inhibition. The results obtained clearly demonstrate the efficacy of rutin and silibinin as promising leads for inhibition of glycation reaction and amelioration of sugar induced cataractogenesis. The findings of the present study may be useful for designing and development of the novel lead molecules for the management of diabetic cataract.

  18. Effects of 15-month aldose reductase inhibition with fidarestat on the experimental diabetic neuropathy in rats.

    PubMed

    Kato, N; Mizuno, K; Makino, M; Suzuki, T; Yagihashi, S

    2000-10-01

    We examined the effects of long-term treatment with an aldose reductase inhibitor (ARI) fidarestat on functional, morphological and metabolic changes in the peripheral nerve of 15-month diabetic rats induced by streptozotocin (STZ). Slowed F-wave, motor nerve and sensory nerve conduction velocities were corrected dose-dependently in fidarestat-treated diabetic rats. Morphometric analysis of myelinated fibers demonstrated that frequencies of abnormal fibers such as paranodal demyelination and axonal degeneration were reduced to the extent of normal levels by fidarestat-treatment. Axonal atrophy, distorted axon circularity and reduction of myelin sheath thickness were also inhibited. These effects were associated with normalization of increased levels of sorbitol and fructose and decreased level of myo-inositol in the peripheral nerve by fidarestat. Thus, the results demonstrated that long-term treatment with fidarestat substantially inhibited the functional and structural progression of diabetic neuropathy with inhibition of increased polyol pathway flux in diabetic rats.

  19. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    PubMed Central

    Paek, Ji Hun; Shin, Kuk Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2013-01-01

    The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM). PMID:24308003

  20. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  1. Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose.

    PubMed

    Liu, Weihua; Liu, Peiqinq; Tao, Sha; Deng, Yanhui; Li, Xuejuan; Lan, Tian; Zhang, Xiaoyan; Guo, Fenfen; Huang, Wenge; Chen, Fengying; Huang, Heqing; Zhou, Shu-Feng

    2008-07-15

    Diabetic nephropathy (DN), one of the most serious microvascular complications of diabetes mellitus, is a major cause of end-stage renal disease. Berberine is one of the main constituents of Coptidis rhizoma and Cortex phellodendri. In the present study, we examined effects of berberine (BBR) on renal injury in streptozotocin-induced diabetic rats, and on the changes of aldose reductase (AR) and oxidative stress in cultured rat mesangial cells exposed to high glucose. Fasting blood glucose, blood urea nitrogen, creatinine, and urine protein over 24 h were detected by using the commercially available kits. Cell proliferation, collagen synthesis, aldose reductase (AR), superoxide anion, superoxide dismutase (SOD), and malondialdehyde (MDA) were detected, respectively, by different methods. In streptozotocin-induced diabetic rats, fasting blood glucose, blood urea nitrogen, creatinine, and urine protein over 24 h were significantly decreased in rats treated with 200 mg/kg berberine for 12 weeks compared with diabetic control rats (P < 0.05). This was accompanied by a reduced AR activity and gene expression at both mRNA and protein levels. In cultured rat mesangial cells exposed to high glucose, incubation of BBR significantly decreased cell proliferation, collagen synthesis and AR activity as well as its mRNA and protein levels compared with control cells (P < 0.05). In vitro, BBR also significantly increased SOD activity and decreased superoxide anion and MDA compared with control cells (P < 0.05). These results suggested that BBR could ameliorate renal dysfunction in DN rats, which may be ascribed to inhibition of AR in mesangium, reduction of oxidative stress, and amelioration of extracellular matrix synthesis and cell proliferation. Further studies are warranted to explore the role of AR in DN and the therapeutic implications by AR inhibitors such as BBR.

  2. Expression of constitutive cyclo-oxygenase (COX-1) in rats with streptozotocin-induced diabetes; effects of treatment with evening primrose oil or an aldose reductase inhibitor on COX-1 mRNA levels.

    PubMed

    Fang, C; Jiang, Z; Tomlinson, D R

    1997-02-01

    Altered prostanoid metabolism participates in the pathogenesis of diabetic complications. The rate-limiting enzyme in the control of prostanoid metabolism is constitutive cyclo-oxygenase (COX-1). This study examined the possibility that altered prostanoid metabolism derives from altered COX-1 expression in those tissues from diabetic rats, with characteristic changes in prostanoid production and related haemodynamics. This account also describes a procedure for estimation of minute amounts of COX-1 mRNA by reverse transcription and competitive polymerase chain reaction (RT-cPCR) amplification. In streptozotocin-diabetic rats (STZ-D, 55 mg/kg body weight), compared with age-matched controls, the level of COX-1 mRNA (in attomoles/micrograms tRNA +/- 1SD) was significantly decreased in sciatic nerve (0.50 +/- 0.26 versus 0.89 +/- 0.32 in controls; P < 0.05) and thoracic aorta (3.99 +/- 1.67 versus 8.80 +/- 2.37 in controls; P < 0.05). There were no differences in COX-1 mRNA in diabetic and control rat kidney and retina, though there was a trend towards increased expression with diabetes in the latter. Evening primrose oil (EPO) treatment increased COX-1 mRNA in nerve and retina to levels in diabetic rats that were higher than those of non-diabetic controls (1.21 +/- 0.28 for nerve and 0.065 +/- 0.017 for retina, where control retinae gave 0.031 +/- 0.020-see above for nerve). Treatment of diabetic rats with an aldose reductase inhibitor was without effect on COX-1 mRNA levels in the tissues examined. This study demonstrates that the changes in COX-1 mRNA levels in diabetic rats are organ specific and suggests that altered prostanoid metabolism can, in part, be explained by altered COX-1 expression. Apart from providing arachidonate as substrate for COX, EPO stimulates COX-1 expression in some tissues.

  3. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-05

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  4. Structural characterization and functional validation of aldose reductase from the resurrection plant Xerophyta viscosa.

    PubMed

    Singh, Preeti; Sarin, Neera Bhalla

    2014-11-01

    Aldose reductases are key enzymes in the detoxification of reactive aldehyde compounds like methylglyoxal (MG) and malondialdehyde. The present study describes for first time the preliminary biochemical and structural characterization of the aldose reductase (ALDRXV4) enzyme from the resurrection plant Xerophyta viscosa. The ALDRXV4 cDNA was expressed in E. coli using pET28a expression vector, and the protein was purified using affinity chromatography. The recombinant protein showed a molecular mass of ~36 kDa. The K M (1.2 mM) and k cat (14.5 s(-1)) of the protein determined using MG as substrate was found to be comparable with other reported homologs. Three-dimensional structure prediction based on homology modeling suggested several similarities with the other aldose reductases reported from plants. Circular dichroism spectroscopy results supported the bioinformatic prediction of alpha-beta helix nature of aldose reductase proteins. Subcellular localization studies revealed that the ALDRXV4-GFP fusion protein was localized both in the nucleus and the cytoplasm. The E. coli cells overexpressing ALDRXV4 exhibited improved growth and showed tolerance against diverse abiotic stresses induced by high salt (500 mM NaCl), osmoticum (10 % PEG 6000), heavy metal (20 mM CdCl2), and MG (5 mM). Based on these results, we propose that ALDRXV4 gene from X. viscosa could be a potential candidate for developing stress-tolerant crop plants.

  5. Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol.

    PubMed

    Galvez, Anita S; Ulloa, Juan Alberto; Chiong, Mario; Criollo, Alfredo; Eisner, Verónica; Barros, Luis Felipe; Lavandero, Sergio

    2003-10-03

    Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.

  6. Induction of aldose reductase gene expression in LEC rats during the development of the hereditary hepatitis and hepatoma.

    PubMed

    Takahashi, M; Hoshi, A; Fujii, J; Miyoshi, E; Kasahara, T; Suzuki, K; Aozasa, K; Taniguchi, N

    1996-04-01

    We examined age-related changes in the protein and the mRNA expression of aldose reductase in livers of Long-Evans with a cinnamon-like color (LEC) rats, which develop hereditary hepatitis and hepatoma with aging, using Long-Evans with an agouti color rats as controls. The levels of the protein and mRNA of aldose reductase increased after 20 weeks, at the stage of acute hepatitis, and were maintained at 60 weeks of age, while those of aldehyde reductase seemed to be constant at all ages. The expression of aldose reductase was marked in cancerous lesions in hepatoma-bearing LEC rat liver compared to uninvolved surrounding tissues. These results indicated that elevation of aldose reductase accompanied hepatocarcinogenesis and may be related to the acquisition of immortality of the cancer cells through detoxifying cytotoxic aldehyde compounds.

  7. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  8. Chemical Constituents of Smilax china L. Stems and Their Inhibitory Activities against Glycation, Aldose Reductase, α-Glucosidase, and Lipase.

    PubMed

    Lee, Hee Eun; Kim, Jin Ah; Whang, Wan Kyunn

    2017-03-11

    The search for natural inhibitors with anti-diabetes properties has gained increasing attention. Among four selected Smilacaceae family plants, Smilax china L. stems (SCS) showed significant in vitro anti-glycation and rat lens aldose reductase inhibitory activities. Bioactivity-guided isolation was performed with SCS and four solvent fractions were obtained, which in turn yielded 10 compounds, including one phenolic acid, three chlorogenic acids, four flavonoids, one stilbene, and one phenylpropanoid glycoside; their structures were elucidated using nuclear magnetic resonance and mass spectrometry. All solvent fractions, isolated compounds, and stem extracts from plants sourced from six different provinces of South Korea were next tested for their inhibitory effects against advanced glycation end products, as well as aldose reductase. α-Glucosidase, and lipase assays were also performed on the fractions and compounds. Since compounds 3, 4, 6, and 8 appeared to be the superior inhibitors among the tested compounds, a comparative study was performed via high-performance liquid chromatography with photodiode array detection using a self-developed analysis method to confirm the relationship between the quantity and bioactivity of the compounds in each extract. The findings of this study demonstrate the potent therapeutic efficacy of SCS and its potential use as a cost-effective natural alternative medicine against type 2 diabetes and its complications.

  9. The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions.

    PubMed

    Aguilera, J; Prieto, J A

    2001-07-01

    The enzyme aldose reductase plays an important role in the osmo-protection mechanism of diverse organisms. Here, we show that yeast aldose reductase is encoded by the GRE3 gene. Expression of GRE3 is carbon-source independent and up-regulated by different stress conditions, such as NaCl, H2O2, 39 degrees C and carbon starvation. Measurements of enzyme activity and intracellular sorbitol in wild-type cells also indicate that yeast aldose reductase is stress-regulated. Overexpression of GRE3 increases methylglyoxal tolerance in Saccharomyces cerevisiae. Furthermore, high expression of GRE3 complements the deficiency of the glyoxalase system of a glo1delta mutant strain. Consistent with this, in vitro and in vivo assays of yeast aldose reductase activity indicate that methylglyoxal is an endogenous substrate of aldose reductase. Furthermore, addition of NaCl or H2O2 to exponential-phase cells triggers an initial transient increase in the intracellular level of methylglyoxal, which is dependent on the Gre3p and Glo1p function. These observations indicate that the metabolism of methylglyoxal is stimulated under stress conditions; and they support a methylglyoxal degradative pathway, in which this compound is metabolised by the action of aldose reductase.

  10. Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase.

    PubMed

    Li, Hong Mei; Hwang, Seung Hwan; Kang, Beom Goo; Hong, Jae Seung; Lim, Soon Sung

    2014-08-27

    The goal of this study was to determine the rat lens aldose reductase-inhibitory effects of 95% ethanol extracts from the leaves of C. esculenta and, its organic solvent soluble fractions, including the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water (H2O) layers, using dl-glyceraldehyde as a substrate. Ten compounds, namely tryptophan (1), orientin (2), isoorientin (3), vitexin (4), isovitexin (5), luteolin-7-O-glucoside (6), luteolin-7-O-rutinoside (7), rosmarinic acid (8), 1-O-feruloyl-d-glucoside (9) and 1-O-caffeoyl-d-glucoside (10) were isolated from the EtOAc and BuOH fractions of C. esculenta. The structures of compounds 1-10 were elucidated by spectroscopic methods and comparison with previous reports. All the isolates were subjected to an in vitro bioassay to evaluate their inhibitory activity against rat lens aldose reductase. Among tested compounds, compounds 2 and 3 significantly inhibited rat lens aldose reductase, with IC50 values of 1.65 and 1.92 μM, respectively. Notably, the inhibitory activity of orientin was 3.9 times greater than that of the positive control, quercetin (4.12 μM). However, the isolated compounds showed only moderate ABTS+ [2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] activity. These results suggest that flavonoid derivatives from Colocasia esculenta (L.) Schott represent potential compounds for the prevention and/or treatment of diabetic complications.

  11. Esculetin, a Coumarin Derivative, Inhibits Aldose Reductase Activity in vitro and Cataractogenesis in Galactose-Fed Rats

    PubMed Central

    Kim, Chan-Sik; Kim, Junghyun; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2016-01-01

    Naturally occurring coumarin compounds have received substantial attention due to their pharmaceutical effects. Esculetin is a coumarin derivative and a polyphenol compound that is used in a variety of therapeutic and pharmacological strategies. However, its effect on aldose reductase activity remains poorly understood. In this study, the potential beneficial effects of esculetin on lenticular aldose reductase were investigated in galactose-fed (GAL) rats, an animal model of sugar cataracts. Cataracts were induced in Sprague-Dawley (SD) rats via a 50% galactose diet for 2 weeks, and groups of GAL rats were orally treated with esculetin (10 or 50 mg/kg body weight). In vehicle-treated GAL rats, lens opacification was observed, and swelling and membrane rupture of the lens fiber cells were increased. Additionally, aldose reductase was highly expressed in the lens epithelium and superficial cortical fibers during cataract development in the GAL rats. Esculetin reduced rat lens aldose reductase (RLAR) activity in vitro, and esculetin treatment significantly inhibited lens opacity, as well as morphological alterations, such as swelling, vacuolation and liquefaction of lens fibers, via the inhibition of aldose reductase in the GAL rats. These results indicate that esculetin is a useful treatment for galactose-induced cataracts. PMID:26902086

  12. Inhibition of aldose reductase and anti-cataract action of trans-anethole isolated from Foeniculum vulgare Mill. fruits.

    PubMed

    Dongare, Vandana; Kulkarni, Chaitanya; Kondawar, Manish; Magdum, Chandrakant; Haldavnekar, Vivek; Arvindekar, Akalpita

    2012-05-01

    Foeniculum vulgare fruits are routinely consumed for their carminative and mouth freshening effect. The plant was evaluated for aldose reductase inhibition and anti-diabetic action. Bioguided fractionation using silica gel column chromatography, HPLC, and GC-MS analysis revealed trans-anethole as the bioactive constituent possessing potent aldose reductase inhibitory action, with an IC50 value of 3.8μg/ml. Prolonged treatment with the pet ether fraction of the F. vulgare distillate demonstrated improvement in blood glucose, lipid profile, glycated haemoglobin and other parameters in streptozotocin-induced diabetic rats. Trans-anethole could effectively show anti-cataract activity through the increase in soluble lens protein, reduced glutathione, catalase and SOD activity on in vitro incubation of the eye lens with 55mM glucose. Trans-anethole demonstrated noncompetitive to mixed type of inhibition of lens aldose reductase using Lineweaver Burk plot.

  13. Aldose Reductase as a Drug Target for Treatment of Diabetic Nephropathy: Promises and Challenges.

    PubMed

    El Gamal, Heba; Munusamy, Shankar

    2016-11-28

    Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes mellitus and the leading cause of end stage renal disease. One of the key pathways activated in DN is the polyol pathway, in which glucose is converted to sorbitol (a relatively non-metabolizable sugar) by the enzyme aldose reductase (AR). Shunting of glucose into this pathway causes disruption to glucose metabolism and subsequently damages the tissues via increased oxidative stress, protein kinase c activation and production of advanced glycation end products (AGE) in the kidney. This review aims to provide a comprehensive overview of the AR enzyme structure, substrate specificity and topology in normal physiology; to elaborate on the deleterious effects of AR activation in DN; and to summarize the potential therapeutic benefits and major challenges associated with AR inhibition in patients with DN.

  14. Characterization of WY 14,643 and its Complex with Aldose Reductase

    PubMed Central

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; Rath, Nigam P.; Cascio, Duilio; Balendiran, Ganesaratnam K.

    2016-01-01

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR. PMID:27721416

  15. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae.

    PubMed

    Tahtah, Yousof; Kongstad, Kenneth T; Wubshet, Sileshi G; Nyberg, Nils T; Jønsson, Louise H; Jäger, Anna K; Qinglei, Sun; Staerk, Dan

    2015-08-21

    In this work, development of a new microplate-based high-resolution profiling assay using recombinant human aldose reductase is presented. Used together with high-resolution radical scavenging and high-resolution α-glucosidase assays, it provided the first report of a triple aldose reductase/α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main radical scavengers were ganhuangemin, viscidulin III, baicalin, oroxylin A 7-O-glucuronide, wogonoside, baicalein, wogonin, and skullcapflavone II.

  16. Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages.

    PubMed

    Singh, Mahavir; Kapoor, Aniruddh; McCracken, James; Hill, Bradford; Bhatnagar, Aruni

    2017-03-01

    Macrophages are critical drivers of the immune response during infection and inflammation. The pathogenesis of several inflammatory conditions, such as diabetes, cancer and sepsis has been linked with aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily. However, the role of AR in the early stages of innate immunity such as phagocytosis remains unclear. In this study, we examined the role of AR in regulating the growth and the phagocytic activity of bone marrow-derived mouse macrophages (BMMs) from AR-null and wild-type (WT) mice. We found that macrophages derived from AR-null mice were larger in size and had a slower growth rate than those derived from WT mice. The AR-null macrophages also displayed higher basal, and lipopolysaccharide (LPS) stimulated phagocytic activity than WT macrophages. Moreover, absence of AR led to a marked increase in cellular levels of both ATP and NADPH. These data suggest that metabolic pathways involving AR suppress macrophage energy production, and that inhibition of AR could induce a favorable metabolic state that promotes macrophage phagocytosis. Hence, modulation of macrophage metabolism by inhibition of AR might represent a novel strategy to modulate host defense responses and to modify metabolism to promote macrophage hypertrophy and phagocytosis under inflammatory conditions.

  17. Prevention of VEGF-induced growth and tube formation in human retinal endothelial cell by aldose reductase inhibition

    PubMed Central

    Yadav, Umesh CS; Srivastava, SK; Ramana, KV

    2012-01-01

    Objective Since diabetes-induced vascular endothelial growth factor (VEGF) is implicated in retinal angiogenesis, we aimed to examine the role of aldose reductase (AR) in VEGF–induced human retinal endothelial cell (HREC) growth and tube formation. Materials and Methods HREC were stimulated with VEGF and cell-growth was determined by MTT assay. AR inhibitor, fidarestat, to block the enzyme activity and AR siRNA to ablate AR gene expression in HREC were used to investigate the role of AR in neovascularization using cell-migration and tube formation assays. Various signaling intermediates and angiogenesis markers were assessed by Western blot analysis. Immuno-histochemical analysis of diabetic rat eyes was performed to examine VEGF expression in the retinal layer. Results Stimulation of primary HREC with VEGF caused increased cell growth and migration, and AR inhibition with fidarestat or ablation with siRNA significantly prevented it. VEGF-induced tube formation in HREC was also significantly prevented by fidarestat. Treatment of HREC with VEGF also increased the expression of VCAM, AR, and phosphorylation and activation of Akt and p38-MAP kinase, which were prevented by fidarestat. VEGF-induced expression of VEGFRII in HREC was also prevented by AR inhibition or ablation. Conclusions Our results indicate that inhibition of AR in HREC prevents tube formation by inhibiting the VEGF-induced activation of the Akt and p38-MAPK pathway and suggest a mediatory role of AR in ocular neovascularization generally implicated in retinopathy and AMD. PMID:22658411

  18. Thymol, a monoterpene, inhibits aldose reductase and high-glucose-induced cataract on isolated goat lens

    PubMed Central

    Kanchan, Divya M.; Kale, Smita S.; Somani, Gauresh S.; Kaikini, Aakruti A.; Sathaye, Sadhana

    2016-01-01

    Background: Overactivation of aldose reductase (AR) enzyme has been implicated in the development of various diabetic complications. In the present study, the inhibitory effect of thymol was investigated on AR enzyme and its anti-cataract activity was also examined on isolated goat lens. Materials and Methods: Various concentrations of thymol were incubated with AR enzyme prepared from isolated goat lens. Molecular docking studies were carried out using Schrodinger software to verify the binding of thymol with AR as well as to understand their binding pattern. Further, thymol was evaluated for its anti-cataract activity in high-glucose-induced cataract in isolated goat lens in vitro. Quercetin was maintained as standard (positive control) throughout the study. Results: Thymol showed potent inhibitory activity against goat lens AR enzyme with an IC50 value of 0.65 μg/ml. Docking studies revealed that thymol binds with AR in similar binding pattern as that of quercetin. The high–glucose-induced cataract in isolated goat lens was also improved by thymol treatment. Thymol was also able to significantly (P < 0.001) reduce the oxidative stress associated with cataract. Conclusion: The results suggest that thymol may be a potential therapeutic approach in the prevention of diabetic complications through its AR inhibitory and antioxidant activities. PMID:28216950

  19. Bioactive fraction of Saraca indica prevents diabetes induced cataractogenesis: An aldose reductase inhibitory activity

    PubMed Central

    Somani, Gauresh; Sathaye, Sadhana

    2015-01-01

    Background: The present study was designed to investigate the effect of Saraca indica (SI) flowers extract and different bioactive fraction on in vitro aldose reductase (AR) inhibitory activity, high glucose-induced cataract in goat lens and in vivo streptozotocin (STZ; 45 mg/kg, i.p) induced cataract in rats. Methods: Extract of flowers of SI tested for inhibition against rat lens AR. Furthermore, bioactive fraction was investigated against high glucose-induced opacification of the lens in vitro lens culture and STZ induced diabetic cataract in rats. Identification of the bioactive component was attempted through high-performance thin-layer chromatography, high-performance liquid chromatography and liquid chromatography-mass spectrometry analysis. Results: Ethyl acetate fraction of S. indica (EASI) produced maximum inhibition that may be due to high phenolic content. Goat lenses in media containing glucose developed a distinctly opaque ring in 72 h and treatment with EASI fraction lowered lens opacity in 72 h. Prolonged treatment with EASI to STZ-induced diabetic rats inhibited the AR activity and delayed cataract progression in a dose dependent manner. Conclusion: Ethyl acetate fraction of S. indica fraction has potential to inhibit rat lens AR enzyme and prevent cataractogenesis not only in goat lens model (in vitro), but also in STZ induced diabetic rats (in vivo). This study is suggestive of the anticataract activity of EASI fraction that could be attributed to the phytoconstituents present in the same. PMID:25709218

  20. Phytochemical Analysis of Agrimonia pilosa Ledeb, Its Antioxidant Activity and Aldose Reductase Inhibitory Potential

    PubMed Central

    Kim, Set Byeol; Hwang, Seung Hwan; Suh, Hong-Won; Lim, Soon Sung

    2017-01-01

    The aim of this study was to determine aldose reductase (AR) inhibitory activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of compounds from Agrimonia pilosa Ledeb (AP). We isolated agrimoniin (AM), four flavonoid glucosides and two flavonoid glucuronides from the n-butanol fraction of AP 50% methanol extract. In addition to isolated compounds, the AR-inhibitory activity and the DPPH free radical scavenging activity of catechin, 5-flavonoids, and 4-flavonoid glucosides (known components of AP) against rat lens AR (RLAR) and DPPH assay were measured. AM showed IC50 values of 1.6 and 13.0 μM against RLAR and DPPH scavenging activity, respectively. Additionally, AM, luteolin-7-O-glucuronide (LGN), quercitrin (QU), luteolin (LT) and afzelin (AZ) showed high inhibitory activity against AR and were first observed to decrease sorbitol accumulation in the rat lens under high-sorbitol conditions ex vivo with inhibitory values of 47.6%, 91.8%, 76.9%, 91.8% and 93.2%, respectively. Inhibition of recombinant human AR by AM, LGN and AZ exhibited a noncompetitive inhibition pattern. Based on our results, AP and its constituents may play partial roles in RLAR and oxidative radical inhibition. Our results suggest that AM, LGN, QU, LT and AZ may potentially be used as natural drugs for treating diabetic complications. PMID:28208627

  1. The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage.

    PubMed

    Kumar, Deepak; Singh, Preeti; Yusuf, Mohd Aslam; Upadhyaya, Chandrama Prakash; Roy, Suchandra Deb; Hohn, Thomas; Sarin, Neera Bhalla

    2013-06-01

    We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant's survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.

  2. Deletion of Aldose Reductase from Mice Inhibits Diabetes-Induced Retinal Capillary Degeneration and Superoxide Generation

    PubMed Central

    Tang, Jie; Du, Yunpeng; Petrash, J. Mark; Sheibani, Nader; Kern, Timothy S.

    2013-01-01

    Purpose Pharmacologic inhibition of aldose reductase (AR) previously has been studied with respect to diabetic retinopathy with mixed results. Since drugs can have off-target effects, we studied the effects of AR deletion on the development and molecular abnormalities that contribute to diabetic retinopathy. Since recent data suggests an important role for leukocytes in the development of the retinopathy, we determined also if AR in leukocytes contributes to leukocyte-mediated death of retinal endothelial cells in diabetes. Methods Wild-type (WT; C57BL/6J) and AR deficient (AR−/−) mice were made diabetic with streptozotocin. Mice were sacrificed at 2 and 10 months of diabetes to evaluate retinal vascular histopathology, to quantify retinal superoxide production and biochemical and physiological abnormalities in the retina, and to assess the number of retinal endothelial cells killed by blood leukocytes in a co-culture system. Results Diabetes in WT mice developed the expected degeneration of retinal capillaries, and increased generation of superoxide by the retina. Leukocytes from diabetic WT mice also killed more retinal endothelial cells than did leukocytes from nondiabetic animals (p<0.0001). Deletion of AR largely (P<0.05) inhibited the diabetes-induced degeneration of retinal capillaries, as well as the increase in superoxide production by retina. AR-deficiency significantly inhibited the diabetes-induced increase in expression of inducible nitric oxide synthase (iNOS) in retina, but had no significant effect on expression of intercellular adhesion molecule-1 (ICAM-1), phosphorylated p38 MAPK, or killing of retinal endothelial cells by leukocytes. Conclusions AR contributes to the degeneration of retinal capillaries in diabetic mice. Deletion of the enzyme inhibits the diabetes-induced increase in expression of iNOS and of superoxide production, but does not correct a variety of other pro-inflammatory abnormalities associated with the development of

  3. Melatonin Reduces Cataract Formation and Aldose Reductase Activity in Lenses of Streptozotocin-induced Diabetic Rat

    PubMed Central

    Khorsand, Marjan; Akmali, Masoumeh; Sharzad, Sahab; Beheshtitabar, Mojtaba

    2016-01-01

    Background: The relationship between the high activity of aldose reductase (AR) and diabetic cataract formation has been previously investigated. The purpose of the present study was to determine the preventing effect of melatonin on streptozotocin (STZ)-induced diabetic cataract in rats. Methods: 34 adult healthy male Sprague-Dawely rats were divided into four groups. Diabetic control and diabetic+melatonin received a single dose of STZ (50 mg/kg, intraperitoneally), whereas the normal control and normal+melatonin received vehicle. The melatonin groups were gavaged with melatonin (5 mg/kg) daily for a period of 8 weeks, whereas the rats in the normal control and diabetic control groups received only the vehicle. The rats’ eyes were examined every week and cataract formation scores (0-4) were determined by slit-lamp microscope. At the end of the eighth week, the rats were sacrificed and markers of the polyol pathway and antioxidative (Glutathione, GSH) in their lens were determined. The levels of blood glucose, HbA1c and plasma malondialdhyde (MDA), as a marker of lipid peroxidation, were also measured. Results: Melatonin prevented STZ-induced hyperglycemia by decreased blood glucose and HbA1c levels. Slit lamp examination indicated that melatonin delayed cataract progression in diabetic rats. The results revealed that melatonin feeding increased the GSH levels, decreased the activities of AR and sorbitol dehydrogenase (SDH) and sorbitol formation in catractous lenses as well as plasma MDA content. Conclusion: In summary, for the first time we demonstrated that melatonin delayed the formation and progression of cataract in diabetic rat lenses. PMID:27365552

  4. Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of Saussureosides A and B from Saussurea medusa.

    PubMed

    Xie, Haihui; Wang, Tao; Matsuda, Hisashi; Morikawa, Toshio; Yoshikawa, Masayuki; Tani, Tadato

    2005-11-01

    The 80% aqueous acetone extract from the whole plant of Saussurea medusa MAXIM. was found to inhibit rat lens aldose reductase (IC50=1.4 microg/ml). From this extract, flavonoids, lignans, and quinic acid derivatives were isolated together with two new ionone glycosides, saussureosides A and B. Their absolute stereostructures were elucidated on the basis of chemical and physicochemical evidence including the application of modified Mosher's method. In addition, some isolates were found to show an inhibitory effect on aldose reductase.

  5. Chemical constituents from the aerial parts of Aster koraiensis with protein glycation and aldose reductase inhibitory activities.

    PubMed

    Lee, Jun; Lee, Yun Mi; Lee, Byong Won; Kim, Joo-Hwan; Kim, Jin Sook

    2012-02-24

    Two new eudesmane-type sesquiterpene glucosides, 9β-O-(E-p-hydroxycinnamoyl)-1β,6β-dihydroxy-trans-eudesm-3-en-6-O-β-D-glucopyranoside (1) and 9α-O-(E-p-hydroxycinnamoyl)-1α,6α-11-trihydroxy-trans-eudesm-3-en-6-O-β-D-glucopyranoside (2), were isolated by the activity-guidedfractionation of an EtOAc-soluble fraction from the aerial parts of Aster koraiensis. A new dihydrobenzofuran glucoside, (2R,3S)-6-acetyl-2-[1-O-(β-D-glucopyranosyl)-2-propenyl]-5-hydroxy-3-methoxy-2,3-dihydrobenzofuran (3), was also isolated, in addition to 15 known compounds. The structures of 1-3 were determined by spectroscopic data interpretation. All of the isolates were evaluated for in vitro inhibitory activity against the formation of advanced glycation end-products and rat lens aldose reductase.

  6. The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells.

    PubMed

    Wu, Li-Ying; Ma, Zi-Min; Fan, Xue-Lai; Zhao, Tong; Liu, Zhao-Hui; Huang, Xin; Li, Ming-Ming; Xiong, Lei; Zhang, Kuan; Zhu, Ling-Ling; Fan, Ming

    2010-07-01

    It has been demonstrated that hypoxic preconditioning (HP) enhances the survival ability of the organism against the subsequent acute anoxia (AA). However, it is not yet clear whether necrosis induced by AA can be prevented by HP, and what are the underlying mechanisms. In this study, we examined the effect of HP (10% O(2), 48 h) on necrosis induced by AA (0% O(2), 24 h) in PC12 cells. We found that HP delayed the regulatory volume decrease and reduced cell swelling after 24 h of exposure to AA. Since aldose reductase (AR) is involved in cell volume regulation, we detected AR mRNA expression with reverse transcription-polymerase chain reaction (RT-PCR) techniques. The AR mRNA level was dramatically elevated by HP. Furthermore, an HP-induced decrease in cell injury was reversed by berberine chloride (BB), the inhibitor of AR. In addition, sorbitol synthesized from glucose catalyzed by AR is directly related to cell volume regulation. Subsequently, we tested sorbitol content in the cytoplasm. HP clearly elevated sorbitol content, while BB inhibited the elevation induced by HP. Further study showed that a strong inhibitor of sorbitol permease, quinidine, completely reversed the protection induced by HP after AA. These data provide evidence that HP prevents necrosis induced by AA and is mediated by AR and sorbitol pathway.

  7. 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds.

    PubMed

    Caballero, Julio

    2010-11-01

    Inhibitory activities of flavonoid derivatives against aldose reductase (AR) enzyme were modelled by using CoMFA, CoMSIA and GALAHAD methods. CoMFA and CoMSIA methods were used for deriving quantitative structure-activity relationship (QSAR) models. All QSAR models were trained with 55 compounds, after which they were evaluated for predictive ability with additional 14 compounds. The best CoMFA model included both steric and electrostatic fields, meanwhile, the best CoMSIA model included steric, hydrophobic and H-bond acceptor fields. These models had a good predictive quality according to both internal and external validation criteria. On the other hand, GALAHAD was used for deriving a 3D pharmacophore model. Twelve active compounds were used for deriving this model. The obtained model included hydrophobe, hydrogen bond acceptor and hydrogen bond donor features; it was able to identify the active AR inhibitors from the remaining compounds. These in silico tools might be useful in the rational design of new AR inhibitors.

  8. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  9. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase.

    PubMed

    Mok, So-Youn; Lee, Sanghyun

    2013-01-15

    To investigate the therapeutic potential of compounds from natural sources, Rhododendron mucronulatum for. albiflorum flowers (RMAF) and R. mucronulatum flowers (RMF) were tested for inhibition of aldose reductase (AR). The methanol extracts of RMAF and RMF exhibited AR inhibitory activities (IC(50) values 1.07 and 1.29 μg/mL, respectively). The stepwise polarity fractions of RMAF were tested for in vitro inhibition of AR from rat lenses. Of these, the ethyl acetate (EtOAc) fraction exhibited AR inhibitory activity (IC(50) 0.15 μg/mL). A chromatography of the active EtOAc fraction of RMAF led to the isolation of six flavonoids, which were identified by spectroscopic analysis as kaempferol (1), afzelin (2), quercetin (3), quercitrin (4), myricetin (5) and myricitrin (6). Compounds 1-6 exhibited high AR inhibitory activity, with IC(50) values of 0.79, 0.31, 0.48, 0.13, 11.92 and 2.67 μg/mL, respectively. HPLC/UV analysis revealed that the major flavonoids of RMAF and RMF are quercitrin (4) and myricitrin (6). Our results suggest that RMAF containing these six flavonoids could be a useful natural source in the development of a novel AR inhibitory agent against diabetic complications.

  10. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  11. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice.

    PubMed

    Zhang, Qian; Bian, Ganlan; Chen, Peng; Liu, Ling; Yu, Caiyong; Liu, Fangfang; Xue, Qian; Chung, Sookja K; Song, Bing; Ju, Gong; Wang, Jian

    2016-01-01

    Inflammatory reactions are the most critical pathological processes occurring after spinal cord injury (SCI). Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. However, the mechanism of microglia/macrophage polarization to M1/M2 at the injured spinal cord environment remains unknown. In this study, wild-type (WT) or aldose reductase (AR)-knockout (KO) mice were subjected to SCI by a spinal crush injury model. The expression pattern of AR, behavior tests for locomotor activity, and lesion size were assessed at between 4 h and 28 days after SCI. We found that the expression of AR is upregulated in microglia/macrophages after SCI in WT mice. In AR KO mice, SCI led to smaller injury lesion areas compared to WT. AR deficiency-induced microglia/macrophages induce the M2 rather than the M1 response and promote locomotion recovery after SCI in mice. In the in vitro experiments, microglia cell lines (N9 or BV2) were treated with the AR inhibitor (ARI) fidarestat. AR inhibition caused 4-hydroxynonenal (HNE) accumulation, which induced the phosphorylation of the cAMP response element-binding protein (CREB) to promote Arg1 expression. KG501, the specific inhibitor of phosphorylated CREB, could cancel the upregulation of Arg1 by ARI or HNE stimulation. Our results suggest that AR works as a switch which can regulate microglia by polarizing cells to either the M1 or the M2 phenotype under M1 stimulation based on its states of activity. We suggest that inhibiting AR may be a promising therapeutic method for SCI in the future.

  12. Deficiency of aldose reductase attenuates inner retinal neuronal changes in a mouse model of retinopathy of prematurity.

    PubMed

    Fu, Zhongjie; Nian, Shen; Li, Suk-Yee; Wong, David; Chung, Sookja K; Lo, Amy C Y

    2015-09-01

    Retinopathy of prematurity (ROP) is a leading cause of childhood blindness where vascular abnormality and retinal dysfunction are reported. We showed earlier that genetic deletion of aldose reductase (AR), the rate-limiting enzyme in the polyol pathway, reduced the neovascularization through attenuating oxidative stress induction in the mouse oxygen-induced retinopathy (OIR) modeling ROP. In this study, we further investigated the effects of AR deficiency on retinal neurons in the mouse OIR. Seven-day-old wild-type and AR-deficient mice were exposed to 75 % oxygen for 5 days and then returned to room air. Electroretinography was used to assess the neuronal function at postnatal day (P) 30. On P17 and P30, retinal cytoarchitecture was examined by morphometric analysis and immunohistochemistry for calbindin, protein kinase C alpha, calretinin, Tuj1, and glial fibrillary acidic protein. In OIR, attenuated amplitudes and delayed implicit time of a-wave, b-wave, and oscillatory potentials were observed in wild-type mice, but they were not significantly changed in AR-deficient mice. The morphological changes of horizontal, rod bipolar, and amacrine cells were shown in wild-type mice and these changes were partly preserved with AR deficiency. AR deficiency attenuated the Müller cell gliosis induced in OIR. Our observations demonstrated AR deficiency preserved retinal functions in OIR and AR deficiency could partly reduce the extent of retinal neuronal histopathology. These findings suggested a therapeutic potential of AR inhibition in ROP treatment with beneficial effects on the retinal neurons.

  13. Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell

    PubMed Central

    Patel, DK; Kumar, R; Kumar, M; Sairam, K; Hemalatha, S

    2012-01-01

    Objective To evaluate the aldose reductase inhibitory (ARI) activity of different fractions of Hybanthus enneaspermus for potential use in diabetic cataract. Methods Total phenol and flavonoid content of different fractions was determined. ARI activity of different fractions in rat lens was investigated in vitro. Results The results showed significant level of phenolic and flavonoid content in ethyl acetate fraction [total phenol (212.15±0.79 mg/g), total flavonoid (39.11±2.27 mg/g)] and aqueous fraction [total phenol (140.62±0.57 mg/g), total flavonoid (26.07±1.49 mg/g)] as compared with the chloroform fraction [total phenol (68.56±0.51 mg/g), total flavonoid (13.41±0.82 mg/g)] and petrolium ether fraction [total phenol (36.68±0.43 mg/g), total flavonoid (11.55±1.06 mg/g)]. There was a significant difference in the ARI activity of each fraction, and it was found to be the highest in ethyl acetate fraction [IC50 (49.26±1.76 µg/mL)] followed by aqueous extract [IC50 (70.83±2.82 µg/mL)] and it was least in the petroleum ether fraction [IC50 (118.89±0.71 µg/mL)]. Chloroform fraction showed moderate activity [IC50 (98.52±1.80 µg/mL)]. Conclusions Different fractions showed significanct amount of ARI activity, where in ethyl acetate fraction it was found to be maximum which may be due to its high phenolic and flavonoid content. The extract after further evaluation may be used in the treatment of diabetic cataract. PMID:23569883

  14. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase.

    PubMed

    Blakeley, Matthew P; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-02-12

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 A, 100K; 0.80 A, 15K; 1.75 A, 293K), neutron Laue data (2.2 A, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  15. Susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus is associated with a polymorphism at the 5' end of the aldose reductase gene

    PubMed Central

    Heesom, A.; Millward, A.; Demaine, A.

    1998-01-01

    OBJECTIVES—There is evidence that the polyol pathway is involved in the pathogenesis of diabetic neuropathy. Aldose reductase (ALR2) is the first and rate limiting enzyme of this pathway and recent studies have suggested that polymorphisms in and around the gene are associated with the development of diabetic microvascular disease. The aim was to examine the role of ALR2 in the susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus (IDDM).
METHODS—One hundred and fifty nine British white patients with IDDM and 102 normal healthy controls were studied using the polymerase chain reaction to test for a highly polymorphic microsatellite marker 2.1 kilobase (kb) upstream of the initiation site of the ALR2 gene.
RESULTS—Seven alleles were detected (Z-6, Z-4, Z-2, Z, Z+2, Z+4, and Z+6). There was a highly significant decrease in the frequency of the Z+2 allele in those patients with overt neuropathy compared with those with no neuropathy after 20 years duration of diabetes (14.1% v 38.2%, χ2 =17.3, p<0.00001). A similar difference was also found between the neuropathy group and those patients who have had diabetes for< five years with no overt neuropathy (14.1% v 30.2%, χ2=9.0, p<0.0025). The neuropathy group also had a significant decrease in the frequency of the Z/Z+2 genotype compared with those patients who have no neuropathy after 20 years duration of diabetes (14.0% v 44.7%, χ2=13.0, p<0.0005).
CONCLUSION—These results suggest that the aldose reductase gene is intimately involved in the pathogenesis of diabetic neuropathy.

 PMID:9489533

  16. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design.

    PubMed

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Porté, Sergio; de Lera, Ángel R; Martín, María J; Manzanaro, Sonia; de la Fuente, Jesús A; Terwesten, Felix; Betz, Michael; Klebe, Gerhard; Farrés, Jaume; Parés, Xavier; Podjarny, Alberto

    2014-03-01

    Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.

  17. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase

    PubMed Central

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  18. Inhibitory Activities of Stauntonia hexaphylla Leaf Constituents on Rat Lens Aldose Reductase and Formation of Advanced Glycation End Products and Antioxidant

    PubMed Central

    Hwang, Seung Hwan; Kwon, Shin Hwa; Kim, Set Byeol

    2017-01-01

    Stauntonia hexaphylla (Thunb.) Decne. (Lardizabalaceae) leaves (SHL) have been used traditionally as analgesics, sedatives, diuretics, and so on, in China. To date, no data have been reported on the inhibitory effect of SHL and its constituents on rat lens aldose reductase (RLAR) and advanced glycation end products (AGEs). Therefore, the inhibitory effect of compounds isolated from SHL extract on RLAR and AGEs was investigated to evaluate potential treatments of diabetic complications. The ethyl acetate (EtOAC) fraction of SHL extract showed strong inhibitory activity on RLAR and AGEs; therefore, EtOAc fraction (3.0 g) was subjected to Sephadex LH-20 column chromatography, for further fractionation, with 100% MeOH solvent system to investigate its effect on RLAR and AGEs. Phytochemical investigation of SHL led to the isolation of seven compounds. Among the isolated compounds, chlorogenic acid, calceolarioside B, luteolin-3′-O-β-D-glucopyranoside, quercetin-3-O-β-D-glucopyranoside, and luteolin-7-O-β-D-glucopyranoside exhibited significant inhibitory activity against RLAR with IC50 in the range of 7.34–23.99 μM. In addition, 3-(3,4-dihydroxyphenyl) propionic acid, neochlorogenic acid, and luteolin-3′-O-β-D-glucopyranoside exhibited the most potent inhibitory activity against formation of AGEs, with an IC50 value of 115.07–184.06 μM, compared to the positive control aminoguanidine (820.44 μM). Based on these findings, SHL dietary supplements could be considered for the prevention and/or treatment of diabetes complication. PMID:28326319

  19. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE).

    PubMed

    Baba, Shahid P; Hellmann, Jason; Srivastava, Sanjay; Bhatnagar, Aruni

    2011-05-30

    Diabetes results in enhanced chemical modification of proteins by advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) precursors. These modifications have been linked to the development of several secondary diabetic complications. Our previous studies showed that aldose reductase (AR; AKR1B3) catalyzes the reduction of ALEs and AGEs precursors; however, the in vivo significance of this metabolic pathway during diabetes and obesity has not been fully assessed. Therefore we examined the role of AR in regulating ALEs and AGEs formation in murine models of diet-induced obesity and streptozotocin-induced diabetes. In comparison with wild-type (WT) and AR-null mice fed normal chow, mice fed a high-fat (HF) diet (42% kcal fat) showed increased accumulation of AGEs and protein-acrolein adducts in the plasma. AGEs and acrolein adducts were also increased in the epididymal fat of WT and AR-null mice fed a HF diet. Deletion of AR increased the accumulation of 4-hydroxy-trans-2-nonenal (HNE) protein adduct in the plasma and increased the expression of the AGE receptor (RAGE) in HF fed mice. No change in AGEs formation was observed in the kidneys of HF-fed mice. In comparison, renal tissue from AR-null mice treated with streptozotocin showed greater AGE accumulation than streptozotocin-treated WT mice. These data indicated that AR regulated the accumulation of lipid peroxidation derived aldehydes and AGEs under conditions of severe, but not mild, hyperglycemia and that deletion of AR increased RAGE-induction via mechanisms that were independent of AGEs accumulation.

  20. Synthesis and biological evaluation of new piplartine analogues as potent aldose reductase inhibitors (ARIs)

    PubMed Central

    Ramasubba Rao, Vidadala; Muthenna, Puppala; Shankaraiah, Gundeti; Akileshwari, Chandrasekhar; Hari Babu, Kothapalli; Suresh, Ganji; Suresh Babu, Katragadda; Chandra Kumar, Rotte Sateesh; Rajendra Prasad, Kothakonda; Ashok Yadav, Potharaju; Petrash, J. Mark; Bhanuprakash Reddy, Geereddy; Madhusudana Rao, Janaswamy

    2013-01-01

    As a continuation of our efforts directed towards the development of anti-diabetic agents from natural sources, piplartine was isolated from Piper chaba, and was found to inhibit recombinant human ALR2 with an IC50 of 160 µM. To improve the efficacy, a series of analogues have been synthesized by modification of the styryl/aromatic and heterocyclic ring functionalities of this natural product lead. All the derivatives were tested for their ALR2 inhibitory activity, and results indicated that adducts 3c, 3e and 2j prepared by the Michael addition of piplartine with indole derivatives displayed potent ARI activity, while the other compounds displayed varying degrees of inhibition. The active compounds were also capable of preventing sorbitol accumulation in human red blood cells. PMID:23124161

  1. Treatment of hirsutism with 5 alpha-reductase inhibitors.

    PubMed

    Brooks, J R

    1986-05-01

    Much os the evidence gathered from studies of 5 alpha-reductase activity levels and androgen metabolism in the skin of hirsute women and the excretion of androgen metabolites by hirsute women indicates that 5 alpha-reduced androgens are probably of primary importance in hirsutism. Unfortunately, until very recently, the lack of a suitable 5 alpha-reductase inhibitor made it very difficult to adequately test the hypothesis that such an inhibitor might be useful in the treatment of hirsutism and certain other androgen-related diseases. No substance was available which had good, unambiguous activity in vivo as a 5 alpha-reductase inhibitor. A number of 4-azasteroids have now been found to possess excellent 5 alpha-reductase inhibitory activity both in vitro and in vivo. Among other properties, several of these compounds show little or no affinity for the androgen receptor of rat prostate cytosol, they attenuate the growth promoting effect of T, but not DHT, on the ventral prostate of castrated male rats, they cause a marked reduction in prostatic DHT concentration in acutely treated rats and dogs and they bring about a significant decline in prostate size in chronically treated rats and dogs. It is expected that, in the near future, one or more of these highly active 5 alpha-reductase inhibitors will be tested in the clinic as a treatment for hirsutism. The results of those studies will be awaited with a great deal of interest since they should considerably advance our understanding of this disease and possibly contribute to its control.

  2. A ribonucleotide reductase inhibitor with deoxyribonucleoside-reversible cytotoxicity.

    PubMed

    Crona, Mikael; Codó, Paula; Jonna, Venkateswara Rao; Hofer, Anders; Fernandes, Aristi P; Tholander, Fredrik

    2016-11-01

    Ribonucleotide Reductase (RNR) is the sole enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides. Even though RNR is a recognized target for antiproliferative molecules, and the main target of the approved drug hydroxyurea, few new leads targeted to this enzyme have been developed. We have evaluated a recently identified set of RNR inhibitors with respect to inhibition of the human enzyme and cellular toxicity. One compound, NSC73735, is particularly interesting; it is specific for leukemia cells and is the first identified compound that hinders oligomerization of the mammalian large RNR subunit. Similar to hydroxyurea, it caused a disruption of the cell cycle distribution of cultured HL-60 cells. In contrast to hydroxyurea, the disruption was reversible, indicating higher specificity. NSC73735 thus defines a potential lead candidate for RNR-targeted anticancer drugs, as well as a chemical probe with better selectivity for RNR inhibition than hydroxyurea.

  3. Footprinting of Inhibitor Interactions of In Silico Identified Inhibitors of Trypanothione Reductase of Leishmania Parasite

    PubMed Central

    Venkatesan, Santhosh K.; Dubey, Vikash Kumar

    2012-01-01

    Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) from Leishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors of Leishmania infantum TR. The mode of binding observed among the clusters also potentiates the probable in vitro inhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions. PMID:22550471

  4. Steroidal pyrazolines evaluated as aromatase and quinone reductase-2 inhibitors for chemoprevention of cancer.

    PubMed

    Abdalla, Mohamed M; Al-Omar, Mohamed A; Bhat, Mashooq A; Amr, Abdel-Galil E; Al-Mohizea, Abdullah M

    2012-05-01

    The aromatase and quinone reductase-2 inhibition of synthesized heterocyclic pyrazole derivatives fused with steroidal structure for chemoprevention of cancer is reported herein. All compounds were interestingly less toxic than the reference drug (Cyproterone(®)). The aromatase inhibitory activities of these compounds were much more potent than the lead compound resveratrol, which has an IC(50) of 80 μM. In addition, all the compounds displayed potent quinone reductase-2 inhibition. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). The aromatase and quinone reductase-2 inhibitors resulting from this study have potential value in the treatment and prevention of cancer.

  5. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors.

    PubMed

    Chauvin, Benoit; Drouot, Sylvain; Barrail-Tran, Aurélie; Taburet, Anne-Marie

    2013-10-01

    The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the

  6. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review

    PubMed Central

    Hirshburg, Jason M.; Kelsey, Petra A.; Therrien, Chelsea A.; Gavino, A. Carlo; Reichenberg, Jason S.

    2016-01-01

    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment. PMID:27672412

  7. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-05

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 μM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.

  8. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases.

    PubMed

    Tulloch, Lindsay B; Martini, Viviane P; Iulek, Jorge; Huggan, Judith K; Lee, Jeong Hwan; Gibson, Colin L; Smith, Terry K; Suckling, Colin J; Hunter, William N

    2010-01-14

    Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.

  9. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  10. [Dutasteride (Avodart): a novel 5-alpha reductase inhibitor for treatment of benign prostate hypertrophy].

    PubMed

    Vanden Bossche, M; Sternon, J

    2005-01-01

    Dutasteride (Avodart), a novel dual 5-alpha reductase inhibitor is effective for the treatment of benign prostate hypertrophy, of more than 30 cc because the reduction of the level of dihydrotestosterone. By reducing prostatic volume, dutasteride improves moderate to severe symptoms and flow rate. It allows a reduction of disease progression by reducing the rate of acute urinary retention and need for surgery.

  11. Cyclohexanol and methylcyclohexanols. A family of inhibitors of hepatic HMGCoA reductase in vivo.

    PubMed

    Miciak, A; White, D A; Middleton, B

    1986-10-15

    Oral dosing of rats with cyclohexanol and methylcyclohexanols resulted in the inhibition of hepatic HMGCoA reductase. Neither cyclohexane or cyclohexane diols exerted any effects. Inhibition was not due to alcohol dehydrogenase mediated changes in redox state since 3,3',5-trimethylcyclohexanol (TMC), a non substrate for alcohol dehydrogenase, was a potent inhibitor of HMGCoA reductase. Following a single dose of TMC there was no alteration in total hepatic HMGCoA reductase activity for more than 6 hr after which the enzyme activity was depressed in a dose-dependent manner. The normal diurnal rhythm of HMGCoA reductase was reduced in amplitude following TMC administration but the phase was unaltered and the t 1/2 for activity decay following the peak of activity was unaffected. Prior to the inhibitory effect of a TMC dose becoming apparent in total HMGCoA reductase activity we found that the expressed activity of the enzyme (after isolation in F- medium to suppress endogenous protein phosphatase) was depressed by 43%. The inhibitory effect of TMC on total HMGCoA reductase activity seen 8 hr or more after dosing was reflected by inhibition of sterol synthesis in liver measured in vivo after [3H]-H2O administration.

  12. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    PubMed Central

    Beierlein, Jennifer M.; Frey, Kathleen M.; Bolstad, David B.; Pelphrey, Phillip M.; Joska, Tammy M.; Smith, Adrienne E.; Priestley, Nigel D.; Wright, Dennis L.; Anderson, Amy C.

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 Å resolution. The structure reveals several features that can be exploited for further development of this lead series. PMID:19007108

  13. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    SciTech Connect

    Beierlein, J.; Frey, K; Bolstad, D; Pelphrey, P; Joska, T; Smith, A; Priestley, N; Wright, D; Anderson, A

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

  14. Design, synthesis, and biological activity of diaryl ether inhibitors of Toxoplasma gondii enoyl reductase.

    PubMed

    Cheng, Gang; Muench, Stephen P; Zhou, Ying; Afanador, Gustavo A; Mui, Ernest J; Fomovska, Alina; Lai, Bo Shiun; Prigge, Sean T; Woods, Stuart; Roberts, Craig W; Hickman, Mark R; Lee, Patty J; Leed, Susan E; Auschwitz, Jennifer M; Rice, David W; McLeod, Rima

    2013-04-01

    Triclosan is a potent inhibitor of Toxoplasma gondii enoyl reductase (TgENR), which is an essential enzyme for parasite survival. In view of triclosan's poor druggability, which limits its therapeutic use, a new set of B-ring modified analogs were designed to optimize its physico-chemical properties. These derivatives were synthesized and evaluated by in vitro assay and TgENR enzyme assay. Some analogs display improved solubility, permeability and a comparable MIC50 value to that of triclosan. Modeling of these inhibitors revealed the same overall binding mode with the enzyme as triclosan, but the B-ring modifications have additional interactions with the strongly conserved Asn130.

  15. Electrical myotonia of rabbit skeletal muscles by HMG-CoA reductase inhibitors.

    PubMed

    Sonoda, Y; Gotow, T; Kuriyama, M; Nakahara, K; Arimura, K; Osame, M

    1994-08-01

    HMG-CoA reductase (HCR) inhibitors are effective cholesterol-lowering agents in the treatment of hypercholesterolemia. Using intracellular microelectrodes, we studied the pathomechanism of myotonia experimentally induced in rabbits by HCR inhibitors, simvastatin, and pravastatin. The external intercostal muscle of rabbits showed some electrophysiologic characteristics of myotonia including repetitive firing after administration of simvastatin (50 mg/kg per day, for 4 weeks). The relative chloride conductance, though reduced in both, was more affected in simvastatin-administered muscles. In normal muscles perfused with a solution containing the inhibitors, both simvastatin and pravastatin produced membrane hyperexcitability with repetitive firing similar to that seen in simvastatin-administered rabbits. The minimum concentrations required to cause repetitive firing was 0.3 mg/L for simvastatin and 30 mg/L for pravastatin. These results indicate that HCR inhibitors induce some characteristics of myotonia by blocking the chloride channel in the muscle membrane.

  16. A rational approach to identify inhibitors of Mycobacterium tuberculosis enoyl acyl carrier protein reductase.

    PubMed

    Chhabria, Mahesh T; Parmar, Kailash B; Brahmkshatriya, Pathik S

    2013-01-01

    Mycobacterial enoyl acyl carrier protein (ACP) reductase is an attractive target for focused design of novel antitubercular agents. Structural information available on enoyl-ACP reductase in complex with different ligands was used to generate receptor-based pharmacophore model in Discovery Studio (DS). In parallel, pharmacophore models were also generated using ligand-based approach (HypoGen module in DS). Statistically significant models were generated (r(2) = 0.85) which were found to be predictive as indicated from internal and external cross-validations. The model was used as a query tool to search Zinc and Maybridge databases to identify lead compounds and predict their activity in silico. Database searching retrieved many potential lead compounds having better estimated IC50 values than the training set compounds. These compounds were then evaluated for their drug-likeliness and pharmacokinetic properties using DS. Few selected compounds were then docked into the crystal structure of enoyl-ACP reductase using Dock 6.5. Most compounds were found to have high score values, which was found to be consistent with the results from pharmacophore mapping. Additionally, molecular docking provided useful insights into the nature of binding of the identified hit molecules. In summary, we show a useful strategy employing ligand- and structure-based approaches (pharmacophore modeling coupled with molecular docking) to identify new enoyl- ACP reductase inhibitors for antimycobacterial chemotherapy.

  17. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    SciTech Connect

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  18. Selective non-steroidal inhibitors of 5 alpha-reductase type 1.

    PubMed

    Occhiato, Ernesto G; Guarna, Antonio; Danza, Giovanna; Serio, Mario

    2004-01-01

    The enzyme 5 alpha-reductase (5 alpha R) catalyses the reduction of testosterone (T) into the more potent androgen dihydrotestosterone (DHT). The abnormal production of DHT is associated to pathologies of the main target organs of this hormone: the prostate and the skin. Benign prostatic hyperplasia (BPH), prostate cancer, acne, androgenetic alopecia in men, and hirsutism in women appear related to the DHT production. Two isozymes of 5 alpha-reductase have been cloned, expressed and characterized (5 alpha R-1 and 5 alpha R-2). They share a poor homology, have different chromosomal localization, enzyme kinetic parameters, and tissue expression patterns. Since 5 alpha R-1 and 5 alpha R-2 are differently distributed in the androgen target organs, a different involvement of the two isozymes in the pathogenesis of prostate and skin disorders can be hypothesized. High interest has been paid to the synthesis of inhibitors of 5 alpha-reductase for the treatment of DHT related pathologies, and the selective inhibition of any single isozyme represents a great challenge for medical and pharmaceutical research in order to have more specific drugs. At present, no 5 alpha R-1 inhibitor is marketed for the treatment of 5 alpha R-1 related pathologies but pharmaceutical research is very active in this field. This paper will review the major classes of 5 alpha R inhibitors focusing in particular on non-steroidal inhibitors and on structural features that enhance the selectivity versus the type 1 isozyme. Biological tests to assess the inhibitory activity towards the two 5 alpha R isozymes will be also discussed.

  19. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase.

    PubMed

    Persch, Elke; Bryson, Steve; Todoroff, Nickolay K; Eberle, Christian; Thelemann, Jonas; Dirdjaja, Natalie; Kaiser, Marcel; Weber, Maria; Derbani, Hassan; Brun, Reto; Schneider, Gisbert; Pai, Emil F; Krauth-Siegel, R Luise; Diederich, François

    2014-08-01

    The causative agents of the parasitic disease human African trypanosomiasis belong to the family of trypanosomatids. These parasitic protozoa exhibit a unique thiol redox metabolism that is based on the flavoenzyme trypanothione reductase (TR). TR was identified as a potential drug target and features a large active site that allows a multitude of possible ligand orientations, which renders rational structure-based inhibitor design highly challenging. Herein we describe the synthesis, binding properties, and kinetic analysis of a new series of small-molecule inhibitors of TR. The conjunction of biological activities, mutation studies, and virtual ligand docking simulations led to the prediction of a binding mode that was confirmed by crystal structure analysis. The crystal structures revealed that the ligands bind to the hydrophobic wall of the so-called "mepacrine binding site". The binding conformation and potency of the inhibitors varied for TR from Trypanosoma brucei and T. cruzi.

  20. Role of 5α-reductase inhibitors in androgen-stimulated skin disorders.

    PubMed

    Azzouni, Faris; Zeitouni, Nathalie; Mohler, James

    2013-02-01

    5α-reductase (5α-R) isozymes are ubiquitously expressed in human tissues. This enzyme family is composed of 3 members that perform several important biologic functions. 5α-R isozymes play an important role in benign prostate hyperplasia, prostate cancer, and androgen-stimulated skin disorders, which include androgenic alopecia, acne, and hirsutism. Discovery of 5α-R type 2 deficiency in 1974 sparked interest in development of pharmaceutical agents to inhibit 5α-R isozymes, and 2 such inhibitors are currently available for clinical use: finasteride and dutasteride. 5α-R inhibitors are US Food and Drug Administration (FDA)-approved for the treatment of benign prostate hyperplasia. Only finasteride is FDA-approved for treatment of male androgenic alopecia. This article reviews the pathophysiology of androgen-stimulated skin disorders and the key clinical trials using 5α-R inhibitors in the treatment of androgen-stimulated skin disorders.

  1. Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase.

    PubMed

    Sanghani, Paresh C; Davis, Wilhelmina I; Fears, Sharry L; Green, Scheri-Lyn; Zhai, Lanmin; Tang, Yaoping; Martin, Emil; Bryan, Nathan S; Sanghani, Sonal P

    2009-09-04

    S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of S-nitrosothiols (SNOs) in vivo. Knock-out studies in mice have shown that GSNOR regulates the smooth muscle tone in airways and the function of beta-adrenergic receptors in lungs and heart. GSNOR has emerged as a target for the development of therapeutic approaches for treating lung and cardiovascular diseases. We report three compounds that exclude GSNOR substrate, S-nitrosoglutathione (GSNO) from its binding site in GSNOR and cause an accumulation of SNOs inside the cells. The new inhibitors selectively inhibit GSNOR among the alcohol dehydrogenases. Using the inhibitors, we demonstrate that GSNOR limits nitric oxide-mediated suppression of NF-kappaB and activation of soluble guanylyl cyclase. Our findings reveal GSNOR inhibitors to be novel tools for regulating nitric oxide bioactivity and assessing the role of SNOs in vivo.

  2. Effects of inhibitors of hydroxymethylglutaryl coenzyme A reductase on coenzyme Q and dolichol biosynthesis.

    PubMed

    Appelkvist, E L; Edlund, C; Löw, P; Schedin, S; Kalén, A; Dallner, G

    1993-01-01

    Inhibitors of hydroxymethylglutaryl coenzyme A reductase are used clinically to decrease blood levels of low-density lipoprotein cholesterol in hypercholesterolemic patients. However, little is known about the possible effects of these inhibitors on dolichol and cholesterol synthesis. Oral administration of mevinolin to rats was found here to decrease dolichol, dolichyl-P and coenzyme Q levels in the heart and skeletal muscle and to increase the hepatic dolichol level while decreasing the coenzyme Q content in this same organ. The amounts of dolichyl-P decreased in heart and muscle and increased in brain. Intraperitoneal administration also affected the levels of these lipids. The concentrations of blood lipids were not modified in the same manner as tissue lipids. Analysis of individual enzyme activities and of incorporation of [3H]acetate into various lipids of liver and brain slices demonstrated that both up- and down-regulation of different proteins occur in various tissues, resulting in modifications in lipid synthesis. Hypercholesterolemic patients were found to have high blood coenzyme Q levels, which are decreased upon pravastatin treatment, although they are still above control values. It appears that these HMG-coenzyme A reductase inhibitors do not selectively lower cholesterol levels, but that they also modify the dolichol and coenzyme Q content and synthesis both in the liver and various other tissues.

  3. Monotherapy with HMG-CoA reductase inhibitors and secondary prevention in coronary artery disease.

    PubMed

    Rackley, C E

    1996-09-01

    Although thrombolytic drugs, percutaneous transluminal coronary angioplasty, and coronary artery bypass grafting have provided major advances in the treatment of coronary artery disease, the use of lipid-lowering drugs for secondary prevention has significantly reduced cardiovascular events in the population with coronary artery disease. Secondary prevention trials using HMG-CoA reductase inhibitors include the Familial Atherosclerosis Treatment Study (FATS), the Monitored Atherosclerosis Regression Study (MARS), the Canadian Coronary Atherosclerosis Intervention Trial (CCAIT), the Asymptomatic Carotid Artery Progression Study (ACAPS), the Multi Anti-Atheroma Study (MAAS), the Scandinavian Simvastatin Survival Study (4S), the Pravastatin Limitation of Atherosclerosis in Coronary Arteries (PLAC I), the Regression Growth Evaluation Statin Study (REGRESS), the Pravastatin Multinational Study, and the Pravastatin, Lipids, and Atherosclerosis in Carotids (PLAC II). Mean changes from baseline of lipid fractions in these trials included: total cholesterol 18 to 35% reduction; low-density lipoprotein (LDL) cholesterol 26 to 46% reduction; high-density lipoprotein (HDL) cholesterol 5 to 15% increase; and triglyceride 7 to 22% reduction. Angiographic regression or lack of progression was statistically demonstrated in the FATS, MARS, CCAIT, MAAS, PLAC I, and REGRESS trials. Cardiovascular events decreased 25 to 92% in all trials, and there was a significant reduction in both cardiovascular and total mortality in the 4S. The greater reduction in cardiovascular events than in anatomic changes suggests that the HMG-CoA reductase inhibitors stabilized the surface of plaques. Monotherapy with HMG-CoA reductase inhibitors provides the clinical opportunity to modify the natural history of coronary artery disease.

  4. Investigation of the Plausibility of 5-Alpha-Reductase Inhibitor Syndrome

    PubMed Central

    Fertig, Raymond; Shapiro, Jerry; Bergfeld, Wilma; Tosti, Antonella

    2017-01-01

    Postfinasteride syndrome (PFS) is a term recently coined to characterize a constellation of reported undesirable side effects described in postmarketing reports and small uncontrolled studies that developed during or after stopping finasteride treatment, and persisted after drug discontinuation. Symptoms included decreased libido, erectile dysfunction, sexual anhedonia, decreased sperm count, gynecomastia, skin changes, cognitive impairment, fatigue, anxiety, depression, and suicidal ideation. The aim of this study is to review the existing medical literature for evidence-based research of permanent sexual dysfunction and mood changes during treatment with 5-alpha-reductase inhibitors including finasteride and dutasteride. PMID:28232919

  5. A structural account of substrate and inhibitor specificity differences between two Naphthol reductases

    SciTech Connect

    Liao, D.-I.; Thompson, J.E.; Fahnestock, S.; Valent, B.; Jordan, D.B.

    2010-03-08

    Two short chain dehydrogenase/reductases mediate naphthol reduction reactions in fungal melanin biosynthesis. An X-ray structure of 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) complexed with NADPH and pyroquilon was determined for examining substrate and inhibitor specificities that differ from those of 1,3,8-trihydroxynaphthalene reductase (3HNR). The 1.5 {angstrom} resolution structure allows for comparisons with the 1.7 {angstrom} resolution structure of 3HNR complexed with the same ligands. The sequences of the two proteins are 46% identical, and they have the same fold. The 30-fold lower affinity of the 4HNR-NADPH complex for pyroquilon (a commercial fungicide that targets 3HNR) in comparison to that of the 3HNR-NADPH complex can be explained by unfavorable interactions between the anionic carboxyl group of the C-terminal Ile282 of 4HNR and CH and CH{sub 2} groups of the inhibitor that are countered by favorable inhibitor interactions with 3HNR. 1,3,8-Trihydroxynaphthalene (3HN) and 1,3,6,8-tetrahydroxynaphthalene (4HN) were modeled onto the cyclic structure of pyroquilon in the 4HNR-NADPH-pyroquilon complex to examine the 300-fold preference of the enzyme for 4HN over 3HN. The models suggest that the C-terminal carboxyl group of Ile282 has a favorable hydrogen bonding interaction with the C6 hydroxyl group of 4HN and an unfavorable interaction with the C6 CH group of 3HN. Models of 3HN and 4HN in the 3HNR active site suggest a favorable interaction of the sulfur atom of the C-terminal Met283 with the C6 CH group of 3HN and an unfavorable one with the C6 hydroxyl group of 4HN, accounting for the 4-fold difference in substrate specificities. Thus, the C-terminal residues of the two naphthol reductase are determinants of inhibitor and substrate specificities.

  6. Design, synthesis, and biological activity of diaryl ether inhibitors of Toxoplasma gondii enoyl reductase

    PubMed Central

    Cheng, Gang; Muench, Stephen P.; Zhou, Ying; Afanador, Gustavo A.; Mui, Ernest J.; Fomovska, Alina; Lai, Bo Shiun; Prigge, Sean T.; Woods, Stuart; Roberts, Craig W.; Hickman, Mark R.; Lee, Patty J.; Leed, Susan E.; Auschwitz, Jennifer M.; Rice, David W.; McLeod, Rima

    2013-01-01

    Triclosan is a potent inhibitor of Toxoplasma gondii enoyl reductase (TgENR), which is an essential enzyme for parasite survival. In view of triclosan’s poor druggability, which limits its therapeutic use, a new set of B-ring modified analogs were designed to optimize its physico-chemical properties. These derivatives were synthesized and evaluated by in vitro assay and TgENR enzyme assay. Some analogs display improved solubility, permeability and a comparable MIC50 value to that of triclosan. Modeling of these inhibitors revealed the same overall binding mode with the enzyme as triclosan, but the Bring modifications have additional interactions with the strongly conserved Asn130. PMID:23453069

  7. In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Lindert, Steffen; Tallorin, Lorillee; Nguyen, Quynh G.; Burkart, Michael D.; McCammon, J. Andrew

    2015-01-01

    The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel inhibitors of enoyl-acyl carrier protein reductase ( PfENR) in the fatty acid biosynthesis pathway. A small-molecule database from ChemBridge was docked into three distinct PfENR crystal structures that provide multiple receptor conformations. Two different docking algorithms were used to generate a consensus score in order to rank possible small molecule hits. Our studies led to the identification of five low-micromolar pyrimidine dione inhibitors of PfENR.

  8. Structure-activity relationship of pyrrole based S-nitrosoglutathione reductase inhibitors: carboxamide modification.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Blonder, Joan P; Colagiovanni, Dorothy B; Stout, Adam M; Mutka, Sarah C; Richards, Jane P; Rosenthal, Gary J

    2012-03-15

    The enzyme S-nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, gastrointestinal, and cardiovascular systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently in clinical development for acute asthma. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogs of N6022 focusing on carboxamide modifications on the pendant N-phenyl moiety. We have identified potent and novel GSNOR inhibitors that demonstrate efficacy in an ovalbumin (OVA) induced asthma model in mice.

  9. Discovery of potent and novel S-nitrosoglutathione reductase inhibitors devoid of cytochrome P450 activities.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Blonder, Joan P; Colagiovanni, Dorothy B; Mutka, Sarah C; Stout, Adam M; Richards, Jane P; Rosenthal, Gary J

    2011-10-01

    The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious S-nitrosoglutathione reductase (GSNOR) inhibitor and is currently undergoing clinical development for the treatment of acute asthma. GSNOR is a member of the alcohol dehydrogenase family (ADH) and regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). Reduced levels of GSNO, as well as other nitrosothiols (SNOs), have been implicated in the pathogenesis of many diseases including those of the respiratory, cardiovascular, and gastrointestinal systems. Preservation of endogenous SNOs through GSNOR inhibition presents a novel therapeutic approach with broad applicability. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on removal of cytochrome P450 inhibition activities. We identified potent and novel GSNOR inhibitors having reduced CYP inhibition activities and demonstrated efficacy in a mouse ovalbumin (OVA) model of asthma.

  10. Identification of Thioredoxin Glutathione Reductase Inhibitors That Kill Cestode and Trematode Parasites

    PubMed Central

    Ross, Fabiana; Hernández, Paola; Porcal, Williams; López, Gloria V.; Cerecetto, Hugo; González, Mercedes; Basika, Tatiana; Carmona, Carlos; Fló, Martín; Maggioli, Gabriela; Bonilla, Mariana; Gladyshev, Vadim N.; Boiani, Mariana; Salinas, Gustavo

    2012-01-01

    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites. PMID:22536349

  11. Identification of thioredoxin glutathione reductase inhibitors that kill cestode and trematode parasites.

    PubMed

    Ross, Fabiana; Hernández, Paola; Porcal, Williams; López, Gloria V; Cerecetto, Hugo; González, Mercedes; Basika, Tatiana; Carmona, Carlos; Fló, Martín; Maggioli, Gabriela; Bonilla, Mariana; Gladyshev, Vadim N; Boiani, Mariana; Salinas, Gustavo

    2012-01-01

    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites.

  12. Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase.

    PubMed Central

    Ponasik, J A; Strickland, C; Faerman, C; Savvides, S; Karplus, P A; Ganem, B

    1995-01-01

    The enzyme trypanothione reductase (TR), together with its substrate, the glutathione-spermidine conjugate trypanothione, plays an essential role in protecting parasitic trypanosomatids against oxidative stress and is a target for drug design. Here we show that a naturally occurring spermine derivative, the antihypertensive agent kukoamine A [N1N12-bis(dihydrocaffeoyl)-spermine] inhibits TR as a mixed inhibitor (Ki = 1.8 microM, Kii = 13 microM). Kukoamine shows no significant inhibition of human glutathione reductase (Ki > 10 mM) and thus provides a novel selective drug lead. The corresponding N1N8-bis(dihydrocaffeoyl)spermidine derivative was synthesized and acted as a purely competitive inhibitor with Ki = 7.5 microM. A series of mono- and di-acylated spermines and spermidines were synthesized to gain an insight into the effect of polyamine chain length, the nature and position of the acyl substituent and the importance of conformational mobility. These compounds inhibited TR with Ki values ranging from 11 to 607 microM. PMID:7487870

  13. One statin, two statins, three statins, more: similarities and differences of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    PubMed

    Turkoski, Beatrice B

    2011-01-01

    Statin drugs (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are one of the most widely prescribed drugs today. They are considered first-line therapy to lower blood serum cholesterol levels in conjunction with therapeutic lifestyle changes for both primary and secondary prevention of cardiovascular events. In the following discussion, a brief explanation of the background of statins will explain why they are deemed so important today. The similarities and differences between the different statins will be addressed, including a look at dosage, side effects, and cautions for the seven 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors currently available.

  14. Targeting InhA, the FASII Enoyl-ACP Reductase: SAR Studies on Novel Inhibitor Scaffolds

    PubMed Central

    Pan, Pan; Tonge, Peter J.

    2015-01-01

    The bacterial type II fatty acid biosynthesis (FASII) pathway is an essential but unexploited target for drug discovery. In this review we summarize SAR studies on inhibitors of InhA, the enoyl-ACP reductase from the FASII pathway in M. tuberculosis. Inhibitor scaffolds that are described include the diaryl ethers, pyrrolidine carboxamides, piperazine indoleformamides, pyrazoles, arylamides, fatty acids, and imidazopiperidines, all of which form ternary complexes with InhA and the NAD cofactor, as well as isoniazid and the diazaborines which covalently modify the cofactor. Analysis of the structural data has enabled the development of a common binding mode for the ternary complex inhibitors, which includes a hydrogen bond network, a large hydrophobic pocket and a third ‘size-limited’ binding area comprised of both polar and non-polar groups. A critical factor in InhA inhibition involves ordering of the substrate binding loop, located close to the active site, and a direct link is proposed between loop ordering and slow onset enzyme inhibition. Slow onset inhibitors have long residence times on the enzyme target, a property that is of critical importance for in vivo activity. PMID:22283812

  15. Self-organizing molecular field analysis on pregnane derivatives as human steroidal 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-06-01

    Normal growth and development of human prostate is regulated by the androgens which balances cell proliferation and apoptosis. Testosterone (T) and dihydrotestosterone (DHT) are the two key androgens that stimulate most of the androgen action in prostate. Testosterone is converted to DHT by the membrane bound NADPH-dependent 5alpha-reductase enzyme. As a consequence of the important observation that progesterone and deoxycortisone inhibits the synthesis of DHT by competing with 4-en-3-one function of the testosterone for the 5alpha-reductase enzyme a number of pregnane derivatives were synthesized and have been reported as inhibitors of human 5alpha-reductase enzyme. Due to lack of information on the crystal structure of human 5alpha-reductase, ligand-based 3D-QSAR study has been performed on pregnane derivatives using self-organizing molecular field analysis (SOMFA) for rationalizing the molecular properties and human 5alpha-reductase inhibitory activities. The statistical results having good cross-validated r(cv)(2) (0.881), non-cross-validated r(2) (0.893) and F-test value (175.527), showed satisfied predictive ability r(pred)(2) (0.777). Analysis of SOMFA models through electrostatic and shape grids provide useful information for the design and optimization of steroidal structure as novel human 5alpha-reductase inhibitors.

  16. Novel lead generation through hypothetical pharmacophore three-dimensional database searching: discovery of isoflavonoids as nonsteroidal inhibitors of rat 5 alpha-reductase.

    PubMed

    Chen, G S; Chang, C S; Kan, W M; Chang, C L; Wang, K C; Chern, J W

    2001-11-08

    A hypothetical pharmacophore of 5 alpha-reductase inhibitors was generated and served as a template in virtual screening. When the pharmacophore was used, eight isoflavone derivatives were characterized as novel potential nonsteroidal inhibitors of rat 5 alpha-reductase. This investigation has demonstrated a practical approach toward the development of lead compounds through a hypothetic pharmacophore via three-dimensional database searching.

  17. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications.

    PubMed

    Nagai, Ryoji; Murray, David B; Metz, Thomas O; Baynes, John W

    2012-03-01

    This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.

  18. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  19. Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi☆

    PubMed Central

    Jones, Deuan C.; Ariza, Antonio; Chow, Wing-Huen A.; Oza, Sandra L.; Fairlamb, Alan H.

    2010-01-01

    As part of a drug discovery programme to discover new treatments for human African trypanosomiasis, recombinant trypanothione reductase from Trypanosoma brucei has been expressed, purified and characterized. The crystal structure was solved by molecular replacement to a resolution of 2.3 Å and found to be nearly identical to the T. cruzi enzyme (root mean square deviation 0.6 Å over 482 Cα atoms). Kinetically, the Km for trypanothione disulphide for the T. brucei enzyme was 4.4-fold lower than for T. cruzi measured by either direct (NADPH oxidation) or DTNB-coupled assay. The Km for NADPH for the T. brucei enzyme was found to be 0.77 μM using an NADPH-regenerating system coupled to reduction of DTNB. Both enzymes were assayed for inhibition at their respective S = Km values for trypanothione disulphide using a range of chemotypes, including CNS-active drugs such as clomipramine, trifluoperazine, thioridazine and citalopram. The relative IC50 values for the two enzymes were found to vary by no more than 3-fold. Thus trypanothione reductases from these species are highly similar in all aspects, indicating that they may be used interchangeably for structure-based inhibitor design and high-throughput screening. PMID:19747949

  20. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans.

    PubMed

    Zhang, Qiong; Nguyen, Thao; McMichael, Megan; Velu, Sadanandan E; Zou, Jing; Zhou, Xuedong; Wu, Hui

    2015-08-01

    Streptococcus mutans is a major aetiological agent of dental caries. Formation of biofilms is a key virulence factor of S. mutans. Drugs that inhibit S. mutans biofilms may have therapeutic potential. Dihydrofolate reductase (DHFR) plays a critical role in regulating the metabolism of folate. DHFR inhibitors are thus potent drugs and have been explored as anticancer and antimicrobial agents. In this study, a library of analogues based on a DHFR inhibitor, trimetrexate (TMQ), an FDA-approved drug, was screened and three new analogues that selectively inhibited S. mutans were identified. The most potent inhibitor had a 50% inhibitory concentration (IC50) of 454.0±10.2nM for the biofilm and 8.7±1.9nM for DHFR of S. mutans. In contrast, the IC50 of this compound for human DHFR was ca. 1000nM, a >100-fold decrease in its potency, demonstrating the high selectivity of the analogue. An analogue that exhibited the least potency for the S. mutans biofilm also had the lowest activity towards inhibiting S. mutans DHFR, further indicating that inhibition of biofilms is related to reduced DHFR activity. These data, along with docking of the most potent analogue to the modelled DHFR structure, suggested that the TMQ analogues indeed selectively inhibited S. mutans through targeting DHFR. These potent and selective small molecules are thus promising lead compounds to develop new effective therapeutics to prevent and treat dental caries.

  1. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans

    PubMed Central

    Zhang, Qiong; Nguyen, Thao; McMichael, Megan; Velu, Sandanandan; Zou, Jing; Zhou, Xuedong; Wu, Hui

    2015-01-01

    Streptococcus mutans is a major aetiological agent of dental caries. Formation of biofilms is a key virulence factor of S. mutans. Drugs that inhibit S. mutans biofilms may have therapeutic potential. Dihydrofolate reductase (DHFR) plays a critical role in regulating the metabolism of folate. DHFR inhibitors are thus potent drugs and have been explored as anticancer and antimicrobial agents. In this study, a library of analogues based on a DHFR inhibitor, trimetrexate (TMQ), an FDA-approved drug, was screened and three new analogues that selectively inhibited S. mutans were identified. The most potent inhibitor had a 50% inhibitory concentration (IC50) of 454.0 ± 10.2 nM for the biofilm and 8.7 ± 1.9 nM for DHFR of S. mutans. In contrast, the IC50 of this compound for human DHFR was ca. 1000 nM, a >100-fold decrease in its potency, demonstrating the high selectivity of the analogue. An analogue that exhibited the least potency for the S. mutans biofilm also had the lowest activity towards inhibiting S. mutans DHFR, further indicating that inhibition of biofilms is related to reduced DHFR activity. These data, along with docking of the potent analogue to the modelled DHFR structure, suggested that the TMQ analogues indeed selectively inhibited S. mutans through targeting DHFR. These potent and selective small molecules are thus promising lead compounds to develop new effective therapeutics to prevent and treat dental caries. PMID:26022931

  2. Genome Sequence of the Fungal Strain 14919 Producing 3-Hydroxy-3-Methylglutaryl–Coenzyme A Reductase Inhibitor FR901512

    PubMed Central

    Matsui, Makoto; Kumagai, Toshitaka; Arita, Masanori; Machida, Masayuki; Shibata, Takashi

    2017-01-01

    ABSTRACT Fungal strain 14919 was originally isolated from a soil sample collected at Mt. Kiyosumi, Chiba Prefecture, Japan. It produces FR901512, a potent and strong 3-hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase inhibitor. The genome sequence of fungal strain 14919 was determined and annotated to improve the productivity of FR901512. PMID:28385847

  3. Design and synthesis of 2-pyridones as novel inhibitors of the Bacillus anthracis enoyl-ACP reductase.

    PubMed

    Tipparaju, Suresh K; Joyasawal, Sipak; Forrester, Sara; Mulhearn, Debbie C; Pegan, Scott; Johnson, Michael E; Mesecar, Andrew D; Kozikowski, Alan P

    2008-06-15

    Enoyl-ACP reductase (ENR), the product of the FabI gene, from Bacillus anthracis (BaENR) is responsible for catalyzing the final step of bacterial fatty acid biosynthesis. A number of novel 2-pyridone derivatives were synthesized and shown to be potent inhibitors of BaENR.

  4. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents.

    PubMed

    Fritz, Gerhard; Henninger, Christian; Huelsenbeck, Johannes

    2011-01-01

    HMG-CoA reductase inhibitors (statins) are widely used in the therapy of hypercholesterolemia. Apart from their lipid-lowering activity, they have pleiotropic effects that are attributed to the inhibition of regulatory proteins, including Ras-homologous (Rho) GTPases. Here, we discuss the potential usefulness of statins to prevent normal tissue damage provoked by radiotherapy. Statins reduce the mRNA expression of pro-inflammatory and pro-fibrotic cytokines stimulated by ionizing radiation in vitro and alleviate IR-induced inflammation and fibrosis in vivo. The currently available data indicate that statins accelerate the rapid repair of DNA double-strand breaks and, moreover, mitigate the DNA damage response induced by IR. Furthermore, statins increase the mRNA expression of DNA repair factors in vivo. Thus, although the molecular mechanisms involved are still ambiguous, preclinical data concordantly show a promising radioprotective capacity of statins.

  5. Triazine-benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors.

    PubMed

    Singla, Prinka; Luxami, Vijay; Paul, Kamaldeep

    2015-04-15

    A new series of triazine-benzimidazole hybrids has been synthesized with different substitution of primary and secondary amines at one of the position of triazine in moderate to good yields. These compounds were evaluated for their inhibitory activities over 60 human tumor cell lines at one dose and five dose concentrations. Compounds 6b, 8 and 9 showed broad spectrum of antitumor activities with GI50 values of 9.79, 2.58 and 3.81μM, respectively. DNA binding studies also indicated strong interaction properties of these compounds. These synthesized compounds also showed inhibition of mammalian dihydrofolate reductase (DHFR). Compound 6b was depicted as the most active member of DHFR inhibitor with IC50 value of 1.05μM. Molecular modelling studies were used to identify the stabilized interactions of Compound 6b within the active site of enzyme for DHFR.

  6. Structure-activity relationship for enantiomers of potent inhibitors of B. anthracis dihydrofolate reductase

    PubMed Central

    Bourne, Christina R.; Wakeham, Nancy; Nammalwar, Baskar; Tseitin, Vladimir; Bourne, Philip C.; Barrow, Esther W.; Mylvaganam, Shankari; Ramnarayan, Kal; Bunce, Richard A.; Berlin, K. Darrell; Barrow, William W.

    2012-01-01

    Background Bacterial resistance to antibiotic therapies is increasing and new treatment options are badly needed. There is an overlap between these resistant bacteria and organisms classified as likely bioterror weapons. For example, Bacillus anthracis is innately resistant to the anti-folate trimethoprim due to sequence changes found in the dihydrofolate reductase enzyme. Development of new inhibitors provides an opportunity to enhance the current arsenal of anti-folate antibiotics while also expanding the coverage of the anti-folate class. Methods We have characterized inhibitors of Bacillus anthracis dihydrofolate reductase by measuring the Ki and MIC values and calculating the energetics of binding. This series contains a core diaminopyrimidine ring, a central dimethoxybenzyl ring, and a dihydrophthalazine moiety. We have altered the chemical groups extended from a chiral center on the dihydropyridazine ring of the phthalazine moiety. The interactions for the most potent compounds were visualized by X-ray structure determination. Results We find that the potency of individual enantiomers is divergent with clear preference for the S-enantiomer, while maintaining a high conservation of contacts within the binding site. The preference for enantiomers seems to be predicated largely by differential interactions with protein residues Leu29, Gln30 and Arg53. Conclusions These studies have clarified the activity of modifications and of individual enantiomers, and highlighted the role of the less-active R-enantiomer in effectively diluting the more active S-enantiomer in racemic solutions. This directly contributes to the development of new antimicrobials, combating trimethoprim resistance, and treatment options for potential bioterrorism agents. PMID:22999981

  7. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases.

    PubMed

    Weidert, E R; Schoenborn, S O; Cantu-Medellin, N; Choughule, K V; Jones, J P; Kelley, E E

    2014-02-15

    when choosing inhibition strategies as well as inhibitor concentrations when assigning relative NO2- reductase activity of AO and XOR.

  8. Design, Synthesis, and Biological Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors of Quinone Reductase 2†

    PubMed Central

    Reddy, P. V. Narasimha; Jensen, Katherine C.; Mesecar, Andrew D.; Fanwick, Phillip E.; Cushman, Mark

    2012-01-01

    A variety of ammosamide B analogues have been synthesized and evaluated as inhibitors of quinone reductase 2 (QR2). The potencies of the resulting series of QR2 inhibitors range from 4.1 to 25,200 nM. The data provide insight into the structural parameters necessary for QR2 inhibitory activity. The natural product ammosamide B proved to be a potent QR2 inhibitor, and the potencies of the analogues generally decreased as their structures became more distinct from that of ammosamide B. Methylation of the 8-amino group of ammosamide B was an exception, resulting in an increase in quinone reductase 2 inhibitory activity from IC50 of 61 nM to IC50 4.1 nM. PMID:22206487

  9. The receptor-dependent LQTA-QSAR: application to a set of trypanothione reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Barbosa, Euzébio G.; Pasqualoto, Kerly Fernanda M.; Ferreira, Márcia M. C.

    2012-09-01

    A new Receptor- Dependent LQTA- QSAR approach, RD- LQTA- QSAR, is proposed as a new 4D-QSAR method. It is an evolution of receptor independent LQTA-QSAR. This approach uses the free GROMACS package to carry out molecular dynamics simulations and generates a conformational ensemble profile for each compound. Such an ensemble is used to build molecular interaction field-based QSAR models, as in CoMFA. To show the potential of this methodology, a set of 38 phenothiazine derivatives that are specific competitive T. cruzi trypanothione reductase inhibitors, was chosen. Using a combination of molecular docking and molecular dynamics simulations, the binding mode of the phenotiazine derivatives was evaluated in a simulated induced fit approach. The ligands alignments were performed using both ligand and binding site atoms, enabling unbiased alignment. The models obtained were extensively validated by leave- N-out cross-validation and y-randomization techniques to test for their robustness and absence of chance correlation. The final model presented Q 2 LOO of 0.87 and R² of 0.92 and a suitable external prediction of Q_{ext}2 = 0.78. The adapted binding site obtained is useful to perform virtual screening and ligand structure-based design and the descriptors in the final model can aid in the design new inhibitors.

  10. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase.

    PubMed

    Arias, D G; Herrera, F E; Garay, A S; Rodrigues, D; Forastieri, P S; Luna, L E; Bürgi, M D L M; Prieto, C; Iglesias, A A; Cravero, R M; Guerrero, S A

    2017-01-05

    The rational design and synthesis of a series of 5-nitro-2-furoic acid analogues are presented. The trypanocidal activity against epimastigote forms of Trypanosoma cruzi and the toxic effects on human HeLa cells were tested. Between all synthetic compounds, three of thirteen had an IC50 value in the range of Nfx, but compound 13 exhibited an improved effect with an IC50 of 1.0 ± 0.1 μM and a selective index of 70 in its toxicity against HeLa cells. We analyzed the activity of compounds 8, 12 and 13 to interfere in the central redox metabolic pathway in trypanosomatids, which is dependent of reduced trypanothione as the major pivotal thiol. The three compounds behaved as better inhibitors of trypanothione reductase than Nfx (Ki values of 118 μM, 61 μM and 68 μM for 8, 12 and 13, respectively, compared with 245 μM for Nfx), all following an uncompetitive enzyme inhibition pattern. Docking analysis predicted a binding of inhibitors to the enzyme-substrate complex with binding energy calculated in-silico that supports such molecular interaction.

  11. LC-MS-MS Characterization of Forced Degradation Products of Fidarestat, a Novel Aldose Reductase Inhibitor: Development and Validation of a Stability-Indicating RP-HPLC Method.

    PubMed

    Talluri, M V N Kumar; Khatoon, Lubna; Kalariya, Pradipbhai D; Chavan, Balasaheb B; Ragampeta, Srinivas

    2015-10-01

    An accurate, precise, robust and selective stability-indicating liquid chromatographic (LC) method has been developed for the monitoring of fidarestat in the presence of its forced degradants. The drug was subjected to hydrolysis (acid, alkali and neutral degradation), oxidation, photolysis and thermal stress conditions. The drug degraded significantly under hydrolytic (basic, acidic and neutral) and oxidative stress conditions, whereas it was found to be stable in photolytic and thermal conditions. The chromatographic separation was achieved on a Grace C18, (250 mm × 4.6 mm × 5 μm) column using gradient mobile phase system consisting of 10 mM of ammonium acetate buffer at pH 4 and acetonitrile at a flow rate of 1 mL/min with UV detection at 283 nm. The developed method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS-MS) for characterization of all the degradation products. A total of five new degradation products were identified and characterized by LC-QTOF-MS-MS. The developed LC method was validated as per ICH guideline Q2 (R1). The proposed method was found to be successively applied for the quality control of fidarestat in bulk drug analysis.

  12. In vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase.

    PubMed

    Vickers, S; Duncan, C A; Vyas, K P; Kari, P H; Arison, B; Prakash, S R; Ramjit, H G; Pitzenberger, S M; Stokker, G; Duggan, D E

    1990-01-01

    Simvastatin (SV), an analog of lovastatin, is the lactone form of 1', 2', 6', 7', 8', 8a'-hexahydro-3,5-dihydroxy-2', 6'-dimethyl-8' (2", 2"-dimethyl-1"-oxobutoxy)-1'-naphthalene-heptanoic acid (SVA) which lowers plasma cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase. SV but not its corresponding hydroxy acid form SVA underwent microsomal metabolism. Major in vitro metabolites were 6'-OH-SV (I) and 3"-OH-SV (III) formed by allylic and aliphatic hydroxylation, respectively, and 6'-exomethylene-SV (IV) formed by dehydrogenation. In rats, dogs, and humans, biliary excretion is the major route of elimination. Biliary metabolites (as both hydroxy acids and lactones) also included 6'-CH2OH-SV (V) and 6'-COOH-SV (VI) in both of which the 6'-chiral center had been inverted. High levels of esterase in rodent plasma favored the formation of SVA from SV. The formation of 1', 2', 6', 7', 8', 8a'-hexahydro-2', 6'-dimethyl-8'-(2",2"-dimethyl-1-oxobutoxy)-1'-naphthalene-pentano ic acid (VII) only in rodents represented a species difference in the metabolism of SV. It is proposed that VII is formed by beta-oxidation pathways of fatty acid intermediary metabolism. Several metabolites resulting from microsomal oxidation (after subsequent conversion from lactones to hydroxy acids) are effective inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase and may contribute to the cholesterol lowering effect of SV. Qualitatively, the metabolism of SV closely resembles that of lovastatin.

  13. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors.

    PubMed

    Williams, David; Feely, John

    2002-01-01

    The HMG-CoA reductase inhibitors (statins) are effective in both the primary and secondary prevention of ischaemic heart disease. As a group, these drugs are well tolerated apart from two uncommon but potentially serious adverse effects: elevation of liver enzymes and skeletal muscle abnormalities, which range from benign myalgias to life-threatening rhabdomyolysis. Adverse effects with statins are frequently associated with drug interactions because of their long-term use in older patients who are likely to be exposed to polypharmacy. The recent withdrawal of cerivastatin as a result of deaths from rhabdomyolysis illustrates the clinical importance of such interactions. Drug interactions involving the statins may have either a pharmacodynamic or pharmacokinetic basis, or both. As these drugs are highly extracted by the liver, displacement interactions are of limited importance. The cytochrome P450 (CYP) enzyme system plays an important part in the metabolism of the statins, leading to clinically relevant interactions with other agents, particularly cyclosporin, erythromycin, itraconazole, ketoconazole and HIV protease inhibitors, that are also metabolised by this enzyme system. An additional complicating feature is that individual statins are metabolised to differing degrees, in some cases producing active metabolites. The CYP3A family metabolises lovastatin, simvastatin, atorvastatin and cerivastatin, whereas CYP2C9 metabolises fluvastatin. Cerivastatin is also metabolised by CYP2C8. Pravastatin is not significantly metabolised by the CYP system. In addition, the statins are substrates for P-glycoprotein, a drug transporter present in the small intestine that may influence their oral bioavailability. In clinical practice, the risk of a serious interaction causing myopathy is enhanced when statin metabolism is markedly inhibited. Thus, rhabdomyolysis has occurred following the coadministration of cyclosporin, a potent CYP3A4 and P-glycoprotein inhibitor, and

  14. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    PubMed Central

    Wang, Hui; Lu, Yang; Liu, Li; Kim, Sung Won; Hooker, Jacob M.; Fowler, Joanna S.; Tonge, Peter J.

    2014-01-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target, has been evaluated in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo. PMID:25217335

  15. Effects of HMG-CoA reductase inhibitors (statins) on progression of kidney disease.

    PubMed

    Fried, Linda F

    2008-09-01

    Chronic kidney disease, especially in the setting of proteinuria, is characterized by hyperlipidemia. In animal models, hyperlipidemia causes glomerular foam cells and glomerulosclerosis. Treatment with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) ameliorates kidney disease in these models. The data of the role of hyperlipidemia in progression of human kidney disease are less clear. Data from small studies in glomerular disease suggest that statins decrease proteinuria. Data mainly from cardiovascular studies suggest that statins decrease the loss of glomerular filtration. The benefit of statins may derive from their lipid lowering effects. More recently, data suggest that the benefit of statins is greater than lipid lowering alone. The pleiotropic effects of statins may derive from inhibition of other downstream targets (isoprenoids) of the mevalonic acid pathway that are separate from cholesterol synthesis. Statins inhibits isoprenylation of Ras and Rho GTPases. These effects may lead to decreased monocyte/macrophage infiltration in the glomerulus, decreased mesangial proliferation and decreased accumulation of extracellular matrix and fibrosis. In addition, inhibition of RhoA and Ras may decrease inflammation and increase eNOS activity. These effects could lead to improvement in the progression of kidney disease.

  16. Benefit–risk assessment of HMG-CoA reductase inhibitors (statins): a discrete choice experiment

    PubMed Central

    Sornlertlumvanich, Korn; Ngorsuraches, Surachat

    2016-01-01

    Objectives To conduct the benefit–risk assessment of 3-hydroxy-3-methyl-glutaryl (HMG) coenzyme A reductase inhibitors (statins) using a discrete choice experiment, based on 3 major stakeholders’ perspectives including patients, experts and policymakers in Thailand. Design A discrete choice experiment questionnaire survey in three stakeholders’ perspectives. Setting Public hospitals in Thailand. Participants A total of 353 policymakers, experts and patients. Outcomes Stakeholders’ preferences for assessment criteria (stroke reduction, myocardial infarction reduction, myalgia and hepatotoxicity). Statins’ ranking and maximum acceptable risk in all perspectives were also calculated. Results For any perspective, the most and least important criteria were the risk of hepatotoxicity and the benefit of myocardial infarction reduction, respectively. Patients and experts agreed on the order of importance for myalgia and stroke reduction, but policymakers had different order of importance in these criteria. Overall, results showed that the highest and lowest chances of being chosen were atorvastatin and rosuvastatin, respectively. Only patients’ ranking order was different from others. Maximum acceptable risk of hepatotoxicity was lower than that of myalgia, reflecting the greater concern of all perspectives to statin consequence on liver. Conclusions The results of benefit–risk assessment from every perspective were somewhat consistent. This study demonstrated the feasibility of applying a discrete choice experiment in the benefit–risk assessment of drugs and encouraged the engagement of multiple stakeholders in the decision-making process. PMID:26916689

  17. Disposition of fluvastatin, an inhibitor of HMG-COA reductase, in mouse, rat, dog, and monkey.

    PubMed

    Tse, F L; Smith, H T; Ballard, F H; Nicoletti, J

    1990-01-01

    The physiological disposition of fluvastatin, a potent inhibitor of hydroxymethylglutaryl-CoA reductase and thus cholesterol synthesis, has been studied in the mouse, rat, dog, and monkey using 14C- or 3H-labeled drug. Oral doses of fluvastatin were absorbed at a moderate to rapid rate. The extent of absorption was dose-independent and was essentially complete in all four species studied. However, the drug was subject to extensive presystemic hepatic extraction followed by direct excretion via the bile, thus minimizing the systemic burden and yielding high liver/peripheral tissue concentration gradients for fluvastatin and its metabolites. Only at high doses far exceeding the intended human daily dose of ca 0.6 mg kg-1 did fluvastatin bioavailability approach unity, apparently due to saturation of the first-pass effect. Dose-normalized blood levels of fluvastatin and total radioactivity were higher in the dog than in the other species, suggesting a smaller distribution volume in the former. Fluvastatin was partially metabolized before excretion, the extent of metabolism being smallest in the dog and greatest in the mouse. The half-life of intact fluvastatin ranged from 1-2h in the monkey to 4-7h in the dog. Regardless of the dose or dose route, the administered radioactivity was recovered predominantly in feces, with the renal route accounting for less than 8 per cent of the dose. No tissue retention of radioactivity was observed, and material balance was essentially achieved within 96h after dosing.

  18. Trypanocidal Activity of Quinoxaline 1,4 Di-N-oxide Derivatives as Trypanothione Reductase Inhibitors.

    PubMed

    Chacón-Vargas, Karla Fabiola; Nogueda-Torres, Benjamin; Sánchez-Torres, Luvia E; Suarez-Contreras, Erick; Villalobos-Rocha, Juan Carlos; Torres-Martinez, Yuridia; Lara-Ramirez, Edgar E; Fiorani, Giulia; Krauth-Siegel, R Luise; Bolognesi, Maria Laura; Monge, Antonio; Rivera, Gildardo

    2017-02-01

    Chagas disease or American trypanosomiasis is a worldwide public health problem. In this work, we evaluated 26 new propyl and isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives as potential trypanocidal agents. Additionally, molecular docking and enzymatic assays on trypanothione reductase (TR) were performed to provide a basis for their potential mechanism of action. Seven compounds showed better trypanocidal activity on epimastigotes than the reference drugs, and only four displayed activity on trypomastigotes; T-085 was the lead compound with an IC50 = 59.9 and 73.02 µM on NINOA and INC-5 strain, respectively. An in silico analysis proposed compound T-085 as a potential TR inhibitor with better affinity than the natural substrate. Enzymatic analysis revealed that T-085 inhibits parasite TR non-competitively. Compound T-085 carries a carbonyl, a CF3, and an isopropyl carboxylate group at 2-, 3- and 7-position, respectively. These results suggest the chemical structure of this compound as a good starting point for the design and synthesis of novel trypanocidal derivatives with higher TR inhibitory potency and lower toxicity.

  19. Synthesis and Identification of Pregnenolone Derivatives as Inhibitors of Isozymes of 5α-Reductase.

    PubMed

    Chávez-Riveros, Alejandra; Bratoeff, Eugene; Heuze, Yvonne; Soriano, Juan; Moreno, Isabel; Sánchez-Márquez, Araceli; Cabeza, Marisa

    2015-09-17

    Hyperplasia of the prostate gland and prostate cancer have been associated with high levels of serum 5α-dihydrotestosterone. This steroid is formed from testosterone by the activity of the enzyme 5α-reductase (5α-R) present in the prostate. Thus, inhibition of this enzyme could be a goal for therapies to treat these diseases. This study reports the synthesis and effects of five different 21-esters of pregnenolone derivatives as inhibitors of 5α-R types 1 and 2. The activity of these steroidal compounds was determined using in vivo and in vitro experiments. The results indicate that of the five steroids studied, the 21(p-fluoro)benzoyloxypregna-4,16-diene-3,6,20-trione derivative, whose structure has not yet been reported, has the best molecular conformation to inhibit the in vitro activity of both types of 5α-R. In addition, this steroid also displayed activity in vivo. Apparently, its pharmacological effect was increased by the presence of a keto group at C-6, because this group decreased the possibility that the steroid would be metabolized by hepatic enzymes. In addition, the double bond present at C-4 of this compound also enhanced its inhibitory activity on 5α-R, and the C-21 ester moiety increased its liphophilicity. Therefore, its solubility in the cell membrane and its pharmacological activity were both increased.

  20. Identification and Development of Novel Inhibitors of Toxoplasma gondii Enoyl Reductase

    PubMed Central

    Tipparaju, Suresh K.; Muench, Stephen P.; Mui, Ernest J.; Ruzheinikov, Sergey N.; Lu, Jeffrey Z.; Hutson, Samuel L.; Kirisits, Michael J.; Prigge, Sean T.; Roberts, Craig W.; Henriquez, Fiona L.; Kozikowski, Alan P.; Rice, David W.; McLeod, Rima L.

    2010-01-01

    Toxoplasmosis causes significant morbidity and mortality and yet available medicines are limited by toxicities and hypersensitivity. Since improved medicines are needed urgently, rational approaches were used to identify novel lead compounds effective against Toxoplasma gondii enoyl reductase (TgENR), a type II fatty acid synthase enzyme essential in parasites but not present in animals. Fifty-three compounds, including three classes that inhibit ENRs, were tested. Six compounds have anti-parasite MIC90s ≤6μM without toxicity to host cells, three compounds have IC90s <45nM against recombinant TgENR and two protect mice. To further understand the mode of inhibition, the co-crystal structure of one of the most promising candidate compounds in complex with TgENR has been determined to 2.7Å. The crystal structure reveals that the aliphatic side chain of compound 19 occupies, as predicted, space made available by replacement of a bulky hydrophobic residue in homologous bacterial ENRs by Ala in TgENR. This provides a paradigm, conceptual foundation, reagents, and lead compounds for future rational development and discovery of improved inhibitors of T. gondii. PMID:20698542

  1. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-05-01

    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  2. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    SciTech Connect

    Wang, Hui; Lu, Yang; Liu, Li; Kim, Sung Won; Hooker, Jacob M.; Fowler, Joanna S.; Tonge, Peter J.

    2014-09-06

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.

  3. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    DOE PAGES

    Wang, Hui; Lu, Yang; Liu, Li; ...

    2014-09-06

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthymore » and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.« less

  4. The efficacy of the ribonucleotide reductase inhibitor Didox in preclinical models of AML.

    PubMed

    Cook, Guerry J; Caudell, David L; Elford, Howard L; Pardee, Timothy S

    2014-01-01

    Acute Myeloid Leukemia (AML) is an aggressive malignancy which leads to marrow failure, and ultimately death. There is a desperate need for new therapeutics for these patients. Ribonucleotide reductase (RR) is the rate limiting enzyme in DNA synthesis. Didox (3,4-Dihydroxybenzohydroxamic acid) is a novel RR inhibitor noted to be more potent than hydroxyurea. In this report we detail the activity and toxicity of Didox in preclinical models of AML. RR was present in all AML cell lines and primary patient samples tested. Didox was active against all human and murine AML lines tested with IC50 values in the low micromolar range (mean IC50 37 µM [range 25.89-52.70 µM]). It was active against primary patient samples at concentrations that did not affect normal hematopoietic stem cells (HSCs). Didox exposure resulted in DNA damage and p53 induction culminating in apoptosis. In syngeneic, therapy-resistant AML models, single agent Didox treatment resulted in a significant reduction in leukemia burden and a survival benefit. Didox was well tolerated, as marrow from treated animals was morphologically indistinguishable from controls. Didox exposure at levels that impaired leukemia growth did not inhibit normal HSC engraftment. In summary, Didox was well tolerated and effective against preclinical models of AML.

  5. The Efficacy of the Ribonucleotide Reductase Inhibitor Didox in Preclinical Models of AML

    PubMed Central

    Cook, Guerry J.; Caudell, David L.; Elford, Howard L.; Pardee, Timothy S.

    2014-01-01

    Acute Myeloid Leukemia (AML) is an aggressive malignancy which leads to marrow failure, and ultimately death. There is a desperate need for new therapeutics for these patients. Ribonucleotide reductase (RR) is the rate limiting enzyme in DNA synthesis. Didox (3,4-Dihydroxybenzohydroxamic acid) is a novel RR inhibitor noted to be more potent than hydroxyurea. In this report we detail the activity and toxicity of Didox in preclinical models of AML. RR was present in all AML cell lines and primary patient samples tested. Didox was active against all human and murine AML lines tested with IC50 values in the low micromolar range (mean IC50 37 µM [range 25.89–52.70 µM]). It was active against primary patient samples at concentrations that did not affect normal hematopoietic stem cells (HSCs). Didox exposure resulted in DNA damage and p53 induction culminating in apoptosis. In syngeneic, therapy-resistant AML models, single agent Didox treatment resulted in a significant reduction in leukemia burden and a survival benefit. Didox was well tolerated, as marrow from treated animals was morphologically indistinguishable from controls. Didox exposure at levels that impaired leukemia growth did not inhibit normal HSC engraftment. In summary, Didox was well tolerated and effective against preclinical models of AML. PMID:25402485

  6. Synthesis and activity of 8-substituted benzo[c]quinolizin-3-ones as dual inhibitors of human 5alpha-reductases 1 and 2.

    PubMed

    Ferrali, Alessandro; Menchi, Gloria; Occhiato, Ernesto G; Danza, Giovanna; Mancina, Rosa; Serio, Mario; Guarna, Antonio

    2005-01-03

    Some potent dual inhibitors of 5alpha-reductases 1 and 2, based on the benzo[c]quinolizin-3-one structure and with IC(50) values ranging between 93 and 166nM for both isozymes, were found. The presence of the F atom on the ester moiety at the position 8 was crucial. This result can help in the design of other potent, dual inhibitors to be developed as drugs in the treatment of 5alpha-reductase related diseases.

  7. Tissue-selective acute effects of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase on cholesterol biosynthesis in lens.

    PubMed

    Mosley, S T; Kalinowski, S S; Schafer, B L; Tanaka, R D

    1989-09-01

    Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key enzyme that regulates cholesterol synthesis, lower serum cholesterol by increasing the activity of low density lipoprotein (LDL) receptors in the liver. In rat liver slices, the dose-response curves for inhibition of [14C]acetate incorporation into cholesterol were similar for the active acid forms of lovastatin, simvastatin, and pravastatin. The calculated IC50 values were approximately 20-50 nM for all three drugs. Interest in possible extrahepatic effects of reductase inhibitors is based on recent findings that some inhibitors of HMG-CoA reductase, lovastatin and simvastatin, can cause cataracts in dogs at high doses. To evaluate the effects of these drugs on cholesterol synthesis in the lens, we developed a facile, reproducible ex vivo assay using lenses from weanling rats explanted to tissue culture medium. [14C]Acetate incorporation into cholesterol was proportional to time and to the number of lenses in the incubation and was completely eliminated by high concentrations of inhibitors of HMG-CoA reductase. At the same time, incorporation into free fatty acids was not inhibited. In marked contrast to the liver, the dose-response curve for pravastatin in lens was shifted two orders of magnitude to the right of the curves for lovastatin acid and simvastatin acid. The calculated IC50 values were 4.5 +/- 0.7 nM, 5.2 +/- 1.5 nM, and 469 +/- 42 nM for lovastatin acid, simvastatin acid, and pravastatin, respectively. Thus, while equally active in the liver, pravastatin was 100-fold less inhibitory in the lens compared to lovastatin and simvastatin. Similar selectivity was observed with rabbit lens. Following oral dosing, ex vivo inhibition of [14C]acetate incorporation into cholesterol in rat liver was similar for lovastatin and pravastatin, but cholesterol synthesis in lens was inhibited by lovastatin by as much as 70%. This inhibition was dose-dependent and no inhibition in lens was

  8. Effects of HMG-CoA reductase inhibitors on skeletal muscles of rabbits.

    PubMed

    Fukami, M; Maeda, N; Fukushige, J; Kogure, Y; Shimada, Y; Ogawa, T; Tsujita, Y

    1993-01-01

    This study was undertaken to evaluate the potential of HMG-CoA reductase inhibitors, pravastatin sodium (hereafter abbreviated to pravastatin) and simvastatin, for induction of myopathy and influence on the ubiquinone content of skeletal and cardiac muscles and other tissues in the rabbit. Both drugs were administered orally to New Zealand White rabbits (n = 5) at the dose of 50 mg/kg per day for 14 days. Serum cholesterol levels in the pravastatin- and simvastatin-treated groups were reduced significantly by 47% an 58% on day 14 (P < 0.05), respectively, as compared with the control group, but the difference between the two treatment groups was not significant. In animals of the simvastatin-treated group, abnormal elevations of creatine kinase (CK) and lactate dehydrogenase (LDH) levels were observed, in association with severe lesions in skeletal muscles, but not cardiac muscle. The ubiquinone content in skeletal muscle in this treatment group was not affected, even in the muscles that had severe lesions, whereas that in liver and cardiac muscle was significantly reduced compared with the control group. The results suggest that there is no direct correlation between myopathy and the decrease of ubiquinone content in skeletal muscles. In contrast, the animals in the pravastatin-treated group did not show any changes in CK and LDH levels, ubiquinone content in liver and muscles, or in histopathological features of muscle fibers. The difference between the adverse effects seen with the two drugs could be attributed to physicochemical properties: simvastatin permeates the plasma membrane because of its hydrophobic nature, whereas pravastatin does not, because it is hydrophilic.

  9. The Novel Ribonucleotide Reductase Inhibitor COH29 Inhibits DNA Repair In Vitro

    PubMed Central

    Chen, Mei-Chuan; Zhou, Bingsen; Zhang, Keqiang; Yuan, Yate-Ching; Un, Frank; Hu, Shuya; Chou, Chih-Ming; Chen, Chun-Han; Wu, Jun; Wang, Yan; Liu, Xiyong; Smith, D. Lynne; Li, Hongzhi; Liu, Zheng; Warden, Charles D.; Su, Leila; Malkas, Linda H.; Chung, Young Min; Hu, Mickey C.-T.

    2015-01-01

    COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1–defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5– and DR–green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent. PMID:25814515

  10. Effect of tecarfarin, a novel vitamin K epoxide reductase inhibitor, on coagulation in beagle dogs

    PubMed Central

    Choppin, A; Irwin, I; Lach, L; McDonald, MG; Rettie, AE; Shao, L; Becker, C; Palme, MP; Paliard, X; Bowersox, S; Dennis, DM; Druzgala, P

    2009-01-01

    Background and purpose: Tecarfarin (ATI-5923) is a novel vitamin K epoxide reductase inhibitor that is metabolized by esterase (mainly human carboxylesterase 2) to a single major metabolite, ATI-5900, in rats, dogs and humans. Tecarfarin is not significantly metabolized by CYP450 enzymes. The objective of this study was to test and compare the efficacy of tecarfarin with that of warfarin, when administered either intravenously or once a day orally, to produce stable anticoagulation in beagle dogs. Experimental approach: Effects on coagulation were assessed by measuring the activity levels of Factor VII and Factor X and thromboplastin-induced coagulation times, reported as prothrombin time (PT). Key results: Continuous intravenous infusions and oral administration of tecarfarin and warfarin caused a dose-dependent decrease in activity of Factor VII and Factor X, and associated increase in PT. Intravenous fresh frozen canine plasma or subcutaneous vitamin K1 treatment reversed the anticoagulant effects of orally administered tecarfarin. Consistent with the inhibitory effects of amiodarone on CYP2C9, co-administration of amiodarone significantly increased the anticoagulation effect of warfarin and plasma warfarin concentrations. In contrast, amiodarone had no effect on the anticoagulation induced by tecarfarin or tecarfarin plasma concentrations in this model. Conclusions and implications: Overall, the data presented herein indicate that tecarfarin, via a vitamin K-dependent mechanism, causes changes in key parameters of haemostasis in beagle dogs that are consistent with effective anticoagulation. Compared to warfarin it has a decreased potential to interact metabolically with drugs that inhibit CYP450 enzymes and, therefore, may offer an improved safety profile for patients. PMID:19845677

  11. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry.

    PubMed

    Feng, Ye; Kunos, Charles A; Xu, Yan

    2015-09-01

    Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial.

  12. Ebsulfur Is a Benzisothiazolone Cytocidal Inhibitor Targeting the Trypanothione Reductase of Trypanosoma brucei *

    PubMed Central

    Lu, Jun; Vodnala, Suman K.; Gustavsson, Anna-Lena; Gustafsson, Tomas N.; Sjöberg, Birger; Johansson, Henrik A.; Kumar, Sangit; Tjernberg, Agneta; Engman, Lars; Rottenberg, Martin E.; Holmgren, Arne

    2013-01-01

    Trypanosoma brucei is the causing agent of African trypanosomiasis. These parasites possess a unique thiol redox system required for DNA synthesis and defense against oxidative stress. It includes trypanothione and trypanothione reductase (TryR) instead of the thioredoxin and glutaredoxin systems of mammalian hosts. Here, we show that the benzisothiazolone compound ebsulfur (EbS), a sulfur analogue of ebselen, is a potent inhibitor of T. brucei growth with a favorable selectivity index over mammalian cells. EbS inhibited the TryR activity and decreased non-protein thiol levels in cultured parasites. The inhibition of TryR by EbS was irreversible and NADPH-dependent. EbS formed a complex with TryR and caused oxidation and inactivation of the enzyme. EbS was more toxic for T. brucei than for Trypanosoma cruzi, probably due to lower levels of TryR and trypanothione in T. brucei. Furthermore, inhibition of TryR produced high intracellular reactive oxygen species. Hydrogen peroxide, known to be constitutively high in T. brucei, enhanced the EbS inhibition of TryR. The elevation of reactive oxygen species production in parasites caused by EbS induced a programmed cell death. Soluble EbS analogues were synthesized and cured T. brucei brucei infection in mice when used together with nifurtimox. Altogether, EbS and EbS analogues disrupt the trypanothione system, hampering the defense against oxidative stress. Thus, EbS is a promising lead for development of drugs against African trypanosomiasis. PMID:23900839

  13. Hepatic and nonhepatic sterol synthesis and tissue distribution following administration of a liver selective HMG-CoA reductase inhibitor, CI-981: comparison with selected HMG-CoA reductase inhibitors.

    PubMed

    Bocan, T M; Ferguson, E; McNally, W; Uhlendorf, P D; Bak Mueller, S; Dehart, P; Sliskovic, D R; Roth, B D; Krause, B R; Newton, R S

    1992-01-24

    Since cholesterol biosynthesis is an integral part of cellular metabolism, several HMG-CoA reductase inhibitors were systematically analyzed in in vitro, ex vivo and in vivo sterol synthesis assays using [14C]acetate incorporation into digitonin precipitable sterols as a marker of cholesterol synthesis. Tissue distribution of radiolabeled CI-981 and lovastatin was also performed. In vitro, CI-981 and PD134967-15 were equipotent in liver, spleen, testis and adrenal, lovastatin was more potent in extrahepatic tissues than liver and BMY21950, pravastatin and PD135023-15 were more potent in liver than peripheral tissues. In ex vivo assays, all inhibitors except lovastatin preferentially inhibited liver sterol synthesis; however, pravastatin and BMY22089 were strikingly less potent in the liver. CI-981 inhibited sterol synthesis in vivo in the liver, spleen and adrenal while not affecting the testis, kidney, muscle and brain. Lovastatin inhibited sterol synthesis to a greater extent than CI-981 in the spleen, adrenal and kidney while pravastatin and BMY22089 primarily affected liver and kidney. The tissue distribution of radiolabeled CI-981 and lovastatin support the changes observed in tissue sterol synthesis. Thus, we conclude that a spectrum of liver selective HMG-CoA reductase inhibitors exist and that categorizing agents as liver selective is highly dependent upon method of analysis.

  14. Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of losartan and its main metabolite EXP-3174 in rats: possible role of CYP3A4 and P-gp inhibition by HMG-CoA reductase inhibitors.

    PubMed

    Yang, Si-Hyung; Choi, Jun-Shik; Choi, Dong-Hyun

    2011-01-01

    The present study was designed to investigate the effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (atorvastatin, pravastatin, simvastatin) on the pharmacokinetics of losartan and its active metabolite EXP-3174 in rats. Pharmacokinetic parameters of losartan and EXP-3174 in rats were determined after oral and intravenous administration of losartan (9 mg/kg) without and with HMG-CoA reductase inhibitors (1 mg/kg). The effect of HMG-CoA reductase inhibitors on P-gp and cytochrome (CYP) 3A4 activity were also evaluated. Atorvastatin, pravastatin and simvastatin inhibited CYP3A4 activities with IC₅₀ values of 48.0, 14.1 and 3.10 μmol/l, respectively. Simvastatin (1-10 μmol/l) enhanced the cellular uptake of rhodamine-123 in a concentration-dependent manner. The area under the plasma concentration-time curve (AUC₀₋∞) and the peak plasma concentration of losartan were significantly (p < 0.05) increased by 59.6 and 45.8%, respectively, by simvastatin compared to those of control. The total body clearance (CL/F) of losartan after oral administration with simvastatin was significantly decreased (by 34.8%) compared to that of controls. Consequently, the absolute bioavailability (F) of losartan after oral administration with simvastatin was significantly increased by 59.4% compared to that of control. The metabolite-parent AUC ratio was significantly decreased by 25.7%, suggesting that metabolism of losartan was inhibited by simvastatin. In conclusion, the enhanced bioavailability of losartan might be mainly due to inhibition of P-gp in the small intestine and CYP3A subfamily-mediated metabolism of losartan in the small intestine and/or liver and to reduction of the CL/F of losartan by simvastatin.

  15. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics.

    PubMed

    Neuvonen, Pertti J

    2010-03-01

    HMG-CoA reductase inhibitors (statins) can cause skeletal muscle toxicity; the risk of toxicity is elevated by drug interactions and pharmacogenetic factors that increase the concentration of statins in the plasma. Statins are substrates for several membrane transporters that may mediate drug interactions. Inhibitors of the organic anion transporting polypeptide 1B1 can decrease the hepatic uptake of many statins, as well as the therapeutic index of these agents. Potent inhibitors of cytochrome P450 (CYP)3A4 can significantly increase the plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin, which is metabolized by CYP2C9, is less prone to pharmacokinetic interactions, while pravastatin, rosuvastatin and pitavastatin are not susceptible to any CYP inhibition. An understanding of the mechanisms of statin interactions will help to minimize drug interactions and to develop statins that are less prone to adverse interactions.

  16. Discovery of s-nitrosoglutathione reductase inhibitors: potential agents for the treatment of asthma and other inflammatory diseases.

    PubMed

    Sun, Xicheng; Wasley, Jan W F; Qiu, Jian; Blonder, Joan P; Stout, Adam M; Green, Louis S; Strong, Sarah A; Colagiovanni, Dorothy B; Richards, Jane P; Mutka, Sarah C; Chun, Lawrence; Rosenthal, Gary J

    2011-05-12

    S-Nitrosoglutathione reductase (GSNOR) regulates S-nitrosothiols (SNOs) and nitric oxide (NO) in vivo through catabolism of S-nitrosoglutathione (GSNO). GSNOR and the anti-inflammatory and smooth muscle relaxant activities of SNOs, GSNO, and NO play significant roles in pulmonary, cardiovascular, and gastrointestinal function. In GSNOR knockout mice, basal airway tone is reduced and the response to challenge with bronchoconstrictors or airway allergens is attenuated. Consequently, GSNOR has emerged as an attractive therapeutic target for several clinically important human diseases. As such, small molecule inhibitors of GSNOR were developed. These GSNOR inhibitors were potent, selective, and efficacious in animal models of inflammatory disease characterized by reduced levels of GSNO and bioavailable NO. N6022, a potent and reversible GSNOR inhibitor, reduced bronchoconstriction and pulmonary inflammation in a mouse model of asthma and demonstrated an acceptable safety profile. N6022 is currently in clinical development as a potential agent for the treatment of acute asthma.

  17. Selective inhibition of cholesterol synthesis in liver versus extrahepatic tissues by HMG-CoA reductase inhibitors.

    PubMed

    Parker, R A; Clark, R W; Sit, S Y; Lanier, T L; Grosso, R A; Wright, J J

    1990-07-01

    Hepatic specificity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase may be achieved by efficient first-pass liver extraction resulting in low circulating drug levels, as with lovastatin, or by lower cellular uptake in peripheral tissues, seen with pravastatin. BMY-21950 and its lactone form BMY-22089, new synthetic inhibitors of HMG-CoA reductase, were compared with the major reference agent lovastatin and with the synthetic inhibitor fluindostatin in several in vitro and in vivo models of potency and tissue selectivity. The kinetic mechanism and the potency of BMY-21950 as a competitive inhibitor of isolated HMG-CoA reductase were comparable to the reference agents. The inhibitory potency (cholesterol synthesis assayed by 3H2O or [14C]acetate incorporation) of BMY-21950 in rat hepatocytes (IC50 = 21 nM) and dog liver slices (IC50 = 23 nM) equalled or exceeded the potencies of the reference agents. Hepatic cholesterol synthesis in vivo in rats was effectively inhibited by BMY-21950 and its lactone form BMY-22089 (ED50 = 0.1 mg/kg p.o.), but oral doses (20 mg/kg) that suppressed liver synthesis by 83-95% inhibited sterol synthesis by only 17-24% in the ileum. In contrast, equivalent doses of lovastatin markedly inhibited cholesterol synthesis in both organs. In tissue slices from rat ileum, cell dispersions from testes, adrenal, and spleen, and in bovine ocular lens epithelial cells, BMY-21950 inhibited sterol synthesis weakly in vitro with IC50 values 76- and 188-times higher than in hepatocytes; similar effects were seen for BMY-22089. However, the IC50 ratios (tissue/hepatocyte) for lovastatin and fluindostatin were near unity in these models. Thus, BMY-21950 and BMY-22089 are the first potent synthetic HMG-CoA reductase inhibitors that possess a very high degree of liver selectivity based upon differential inhibition sensitivities in tissues. This cellular uptake-based property of hepatic specificity of BMY-21950 and BMY-22089, also

  18. Effects of HMG-CoA reductase inhibitors on growth and differentiation of cultured rat skeletal muscle cells.

    PubMed

    Veerkamp, J H; Smit, J W; Benders, A A; Oosterhof, A

    1996-04-12

    HMG-CoA reductase inhibitors have been associated with skeletal muscle myopathy, ranging from asymptomatic elevations of serum creatine kinase (CK) activity to rhabdomyolysis. In this study, we assessed the effects of addition of different concentrations of simvastatin and pravastatin on growth and differentiation of cultured primary rat skeletal muscle cells. Protein concentrations, CK activity and percentage CK-MM, which is a parameter for maturation, were determined. Effects were generally stronger if inhibitors were added to both growth and differentiation medium rather than only to differentiation medium. Addition of 25 microM pravastatin caused only a decrease of CK activity. Addition of 1-5 microM simvastatin resulted in a decrease of protein concentration, CK activity and percentage CK-MM, whereas 25 microM simvastatin resulted in cell death. Addition of mevalonic acid or cholesterol could not prevent the effects of 1 microM simvastatin. In addition, 1 microM simvastatin did not influence the cholesterol and phospholipid content of the cells. Superfusion of cultured cells with simvastatin concentrations of 10 microM and higher caused a transient increase of the cytoplasmic calcium concentration followed by an apparent second rise and cell puncture. The results indicate that HMG-CoA reductase inhibitors may affect skeletal muscle cell regeneration in vivo by a direct toxic effect on growth and differentiation.

  19. Developmental toxicity of the HMG-CoA reductase inhibitor (PPD10558) in rats and rabbits.

    PubMed

    Faqi, Ali S; Prohaska, David; Lopez, Rocio; McIntyre, Gail

    2012-02-01

    PPD10558 is an orally active, lipid-lowering 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) being developed as a treatment for hypercholesterolemia in patients who have not been able to tolerate statins because of statin-associated myalgia. We have studied the potential developmental toxicity effects of PPD10558 in pregnant rats and rabbits given daily oral doses during the period of organogenesis. Rats were dosed with 0, 20, 80, or 320 mg/kg/day from Gestation Day (GD) 6 to 17 and rabbits received dose levels of 0, 12.5, 25, or 50 mg/kg/day from GD 6 to 18. Additional groups in both studies served as toxicokinetic animals and received the PPD10558 in the same manner as the main study groups at the same dose levels. Blood samples were collected from toxicokinetic animals at designated time points on GD 6 and 17 in rats and GD 6 and 18 in rabbits. Fetal exposure in rats was assessed on GD 20. Maternal and developmental parameters were evaluated in rats and rabbits on GD 20 and GD 29, respectively. No maternal and developmental toxicity was observed at any of the dose levels used in the rat study. Evidence of fetal exposure was determined in fetal plasma with mean fetal concentrations of PPD10558 and the metabolite (PPD11901) found to be between 1 and 6% of the mean maternal concentrations. In rabbits, marked maternal toxicity including mortality (eight deaths; 1 dose at 25 and 7 at 50 mg/kg/day), abortions (2 at 25 mg/kg/day and 6 at 50 mg/kg/day) and reduction in gestation body weight, gestation body weight changes and decreased food consumption were observed. In addition, fetal body weights of the combined sexes were significantly reduced at 50 mg/kg/day in comparison with the controls. Mean peak exposure (Cmax) and total exposure (AUC(0-24)) of PPD11901 in both rats and rabbits were higher than that of PPD10558 on GD 6 and GD 17 at each of the three dose levels.. Based on the results of these studies, the no observed adverse effect

  20. The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson's disease.

    PubMed

    Frau, Roberto; Savoia, Paola; Fanni, Silvia; Fiorentini, Chiara; Fidalgo, Camino; Tronci, Elisabetta; Stancampiano, Roberto; Meloni, Mario; Cannas, Antonino; Marrosu, Francesco; Bortolato, Marco; Devoto, Paola; Missale, Cristina; Carta, Manolo

    2017-05-01

    Levodopa-induced dyskinesia (LID) is a disabling motor complication occurring in Parkinson's disease patients (PD) after long-term l-DOPA treatment. Although its etiology remains unclear, there is accumulating evidence that LID relies on an excessive dopamine receptor transmission, particularly at the downstream signaling of D1 receptors. We previously reported that the pharmacological blockade of 5-alpha reductase (5AR), the rate limiting enzyme in neurosteroids synthesis, rescued a number of behavioral aberrations induced by D1 receptor-selective and non-selective agonists, without inducing extrapyramidal symptoms. Thus, the present study was designed to verify whether the 5AR inhibitor finasteride (FIN) may counteract the dyskinesias induced by dopaminergic agonists in 6-hydroxydopamine (6-OHDA)-lesioned rats. First, we assessed the acute and chronic effect of different doses of FIN (30-60mg/kg) on LID, in male 6-OHDA-lesioned dyskinetic rats. Thereafter, to fully characterize the therapeutic potential of FIN on LID and its impact on l-DOPA efficacy, we assessed abnormal involuntary movements and forelimb use in hemiparkinsonian male rats chronically injected with FIN (30-60mg/kg/24days) either prior to- or concomitant with l-DOPA administration. In addition, to investigate whether the impact of FIN on LID may be ascribed to a modulation of the D1- or D2/D3-receptor function, dyskinesias were assessed in l-DOPA-primed 6-OHDA-lesioned rats that received FIN in combination with selective direct dopaminergic agonists. Finally, we set to investigate whether FIN may produce similar effect in female hemiparkinsonian rats, as seen in males. The results indicated that FIN administrations significantly dampened LID in all tested treatment regimens, without interfering with the ability of l-DOPA to ameliorate forelimb use in the stepping test. The antidyskinetic effect appears to be due to modulation of both D1- and D2/D3-receptor function, as FIN also reduced abnormal

  1. 3D-QSAR studies on unsaturated 4-azasteroids as human 5alpha-reductase inhibitors: a self organizing molecular field analysis approach.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Bhardwaj, T R; Kumar, Manoj

    2010-02-01

    Azasteroids have been reported as inhibitors of human 5alpha-reductase enzyme. These were designed by substitution of one carbon atom of steroidal A ring by heteroatom nitrogen. Due to lack of information on the crystal structure of human 5alpha-reductase, 3D-QSAR study has been performed on a series of unsaturated 4-azasteroids using Self Organizing Molecular Field Analysis (SOMFA) for rationalizing the molecular properties and human 5alpha-reductase inhibitory activities. The statistical results having good cross-validated r(2)(cv) (0.783), non cross-validated r(2) (0.806) and F-test value (87.282), showed satisfied predictive ability. Analysis of SOMFA models through electrostatic and shape grids provide useful information for the design and optimization of new steroidal human 5alpha-reductase inhibitors.

  2. Persistent erectile dysfunction in men exposed to the 5α-reductase inhibitors, finasteride, or dutasteride

    PubMed Central

    Yarnold, Paul R.; Cashy, John; Brannigan, Robert E.; Nardone, Beatrice; Micali, Giuseppe; West, Dennis Paul

    2017-01-01

    Importance Case reports describe persistent erectile dysfunction (PED) associated with exposure to 5α-reductase inhibitors (5α-RIs). Clinical trial reports and the manufacturers’ full prescribing information (FPI) for finasteride and dutasteride state that risk of sexual adverse effects is not increased by longer duration of 5α-RI exposure and that sexual adverse effects of 5α-RIs resolve in men who discontinue exposure. Objective Our chief objective was to assess whether longer duration of 5α-RI exposure increases risk of PED, independent of age and other known risk factors. Men with shorter 5α-RI exposure served as a comparison control group for those with longer exposure. Design We used a single-group study design and classification tree analysis (CTA) to model PED (lasting ≥90 days after stopping 5α-RI). Covariates included subject attributes, diseases, and drug exposures associated with sexual dysfunction. Setting Our data source was the electronic medical record data repository for Northwestern Medicine. Subjects The analysis cohorts comprised all men exposed to finasteride or dutasteride or combination products containing one of these drugs, and the subgroup of men 16–42 years old and exposed to finasteride ≤1.25 mg/day. Main outcome and measures Our main outcome measure was diagnosis of PED beginning after first 5α-RI exposure, continuing for at least 90 days after stopping 5α-RI, and with contemporaneous treatment with a phosphodiesterase-5 inhibitor (PDE5I). Other outcome measures were erectile dysfunction (ED) and low libido. PED was determined by manual review of medical narratives for all subjects with ED. Risk of an adverse effect was expressed as number needed to harm (NNH). Results Among men with 5α-RI exposure, 167 of 11,909 (1.4%) developed PED (persistence median 1,348 days after stopping 5α-RI, interquartile range (IQR) 631.5–2320.5 days); the multivariable model predicting PED had four variables: prostate disease, duration

  3. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS.

    PubMed

    Seker, F B; Kilic, U; Caglayan, B; Ethemoglu, M S; Caglayan, A B; Ekimci, N; Demirci, S; Dogan, A; Oztezcan, S; Sahin, F; Yilmaz, B; Kilic, E

    2015-01-22

    Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20 mg/kg each for 3 days and their anti-epileptic activities were tested and compared in rats. Epileptiform activity in the brain was induced by an intracortical penicillin G injection. Among HMG-CoA reductase inhibitors, simvastatin-treatment was less effective in terms of spike frequency as compared with atorvastatin- and rosuvastatin-treated animals. Atorvastatin treatment reduced spike frequencies and amplitudes significantly throughout the experiment. However, the most pronounced anti-epileptic effect was observed in rosuvastatin-treated animals, which was associated with improved blood-brain barrier (BBB) integrity, increased expression of endothelial nitric oxide synthase (eNOS) mRNA and decreased expressions of pro-apoptotic p53, Bax and caspase-3 mRNAs. Inhibition of eNOS activity with L-NG-Nitroarginine Methyl Ester (L-NAME) reversed the anti-epileptic effect of rosuvastatin significantly. However, L-NAME did not alter the effect of rosuvastatin on the levels of p53, Bax and caspase-3 mRNA expression. Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with

  4. Involvement of tyrosine phosphorylation in HMG-CoA reductase inhibitor-induced cell death in L6 myoblasts.

    PubMed

    Mutoh, T; Kumano, T; Nakagawa, H; Kuriyama, M

    1999-02-05

    Our previous studies have shown that the HMG-CoA reductase (HCR) inhibitor (HCRI), simvastatin, causes myopathy in rabbits and kills L6 myoblasts. The present study was designed to elucidate the molecular mechanism of HCRI-induced cell death. We have demonstrated that simvastatin induces the tyrosine phosphorylation of several cellular proteins within 10 min. These phosphorylations were followed by apoptosis, as evidenced by the occurrence of internucleosomal DNA fragmentation and by morphological changes detected with Nomarski optics. Simvastatin-induced cell death was prevented by tyrosine kinase inhibitors. The MTT assay revealed that the addition of mevalonic acid into the culture medium partially inhibited simvastatin-induced cell death. Thus, these results suggested that protein tyrosine phosphorylation might play an important role in the intracellular signal transduction pathway mediating the HCRI-induced death of myoblasts.

  5. Structure-activity relationships of pyrrole based S-nitrosoglutathione reductase inhibitors: pyrrole regioisomers and propionic acid replacement.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Colagiovanni, Dorothy B; Mutka, Sarah C; Blonder, Joan P; Stout, Adam M; Richards, Jane P; Chun, Lawrence; Rosenthal, Gary J

    2011-06-15

    S-Nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, cardiovascular, and gastrointestinal systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently undergoing clinical development. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on scaffold modification and propionic acid replacement. We identified equally potent and novel GSNOR inhibitors having pyrrole regioisomers as scaffolds using a structure based approach.

  6. Thermodynamic and Structure Guided Design of Statin Based Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

    SciTech Connect

    Sarver, Ronald W.; Bills, Elizabeth; Bolton, Gary; Bratton, Larry D.; Caspers, Nicole L.; Dunbar, James B.; Harris, Melissa S.; Hutchings, Richard H.; Kennedy, Robert M.; Larsen, Scott D.; Pavlovsky, Alexander; Pfefferkorn, Jeffrey A.; Bainbridge, Graeme

    2008-10-02

    Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2--7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC{sub 50} = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a {Delta}H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.

  7. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors.

    PubMed

    Capasso, Clemente; Supuran, Claudiu T

    2014-06-01

    Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families.

  8. Thermodynamic and structure guided design of statin based inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase.

    PubMed

    Sarver, Ronald W; Bills, Elizabeth; Bolton, Gary; Bratton, Larry D; Caspers, Nicole L; Dunbar, James B; Harris, Melissa S; Hutchings, Richard H; Kennedy, Robert M; Larsen, Scott D; Pavlovsky, Alexander; Pfefferkorn, Jeffrey A; Bainbridge, Graeme

    2008-07-10

    Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2-7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC 50 = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a Delta H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.

  9. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    PubMed

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  10. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    PubMed Central

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. PMID:26170618

  11. 5α-reductase Inhibitors and Risk of High-grade or Lethal Prostate Cancer

    PubMed Central

    Preston, Mark A.; Wilson, Kathryn; Markt, Sarah C.; Ge, Rongbin; Morash, Christopher; Stampfer, Meir J.; Loda, Massimo F.; Giovannucci, Edward; Mucci, Lorelei A.; Olumi, Aria F.

    2014-01-01

    Importance 5α-reductase inhibitors (5ARIs) are widely used for benign prostatic hyperplasia despite controversy regarding potential risk of high-grade prostate cancer with use. Furthermore, the effect of 5ARIs on progression and prostate cancer death remains unclear. Objective To determine the association between 5ARI use and development of high-grade or lethal prostate cancer. Design, Setting, and Participants Prospective observational study of 38,058 men followed for prostate cancer diagnosis and outcomes between 1996–2010 in the Health Professionals Follow-up Study. Exposure Use of 5ARIs between 1996–2010. Main Outcome Measures Cox proportional hazards models were used to estimate risk of prostate cancer diagnosis or development of lethal disease with 5ARI use, adjusting for possible confounders including prostate specific antigen testing. Results During 448,803 person-years of follow-up, we ascertained 3681 incident prostate cancer cases. Of these, 289 were lethal (metastatic or fatal), 456 were high-grade (Gleason 8–10), 1238 were Gleason grade 7, and 1600 were low-grade (Gleason 2–6). A total of 2878 (7.6%) men reported use of 5ARIs between 1996 and 2010. After adjusting for confounders, men who reported ever using 5ARIs over the study period had a reduced risk of overall prostate cancer (HR 0.77; 95% CI, 0.65–0.91). 5ARI users had a reduced risk of Gleason 7 (HR 0.67; 95% CI, 0.49–0.91) and low-grade (Gleason 2–6) prostate cancer (HR 0.74; 95% CI, 0.57–0.95). 5ARI use was not associated with risk of high-grade (Gleason 8–10, HR 0.97; 95% CI, 0.64–1.46) or lethal disease (HR 0.99; 95% CI, 0.58–1.69). Increased duration of use was associated with significantly lower risk of overall prostate cancer (HR for 1 year of additional use 0.95; 95% CI, 0.92–0.99), localized (HR 0.95; 95% CI, 0.90–1.00), and low-grade disease (HR 0.92; 95% CI, 0.85–0.99). There was no association for lethal, high-grade, or grade 7 disease. Conclusions and

  12. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis.

    PubMed

    Giacoppo, Juliana O S; Mancini, Daiana T; Guimarães, Ana P; Gonçalves, Arlan S; da Cunha, Elaine F F; França, Tanos C C; Ramalho, Teodorico C

    2015-02-16

    In the present work, we applied docking and molecular dynamics techniques to study 11 compounds inside the enzymes dihydrofolate reductase (DHFR) from the biological warfare agent Bacillus anthracis (BaDHFR) and Homo sapiens sapiens (HssDHFR). Six of these compounds were selected for a study with the mutant BaF96IDHFR. Our results corroborated with experimental data and allowed the proposition of a new molecule with potential activity and better selectivity for BaDHFR.

  13. Charaterization of bumarsin, a 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitor from Mesobuthus martensii Karsch venom.

    PubMed

    Chai, S C; Armugam, A; Strong, P N; Jeyaseelan, K

    2012-09-01

    Scorpion venoms are rich sources of bioactive peptides and are widely known for their ion channel inhibiting properties. We have isolated, cloned and characterized a venom protein (Bumarsin) from the Chinese scorpion, Mesobuthus martensii Karsch. Bumarsin cDNA encodes a 8132 Da, 72 amino acid mature protein that most probably exists in its native form as a Cys-bridged homodimer. We have identified this novel protein to be an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity. 0.6 μM of Bumarsin inhibits 32% of the HMG-CoA reductase activity, in comparison to 10 μM simvastatin which only inhibits 35% of the activity. RT-PCR and SELDI-TOF mass spectrometric studies demonstrate that bumarsin regulates the expression of both genes and proteins involved in cholesterol homeostasis. Our results suggest that bumarsin may provide a model for the design of novel drugs that can be used to modulate cholesterol homeostasis.

  14. Myopathy induced by HMG-CoA reductase inhibitors in rabbits: a pathological, electrophysiological, and biochemical study.

    PubMed

    Nakahara, K; Kuriyama, M; Sonoda, Y; Yoshidome, H; Nakagawa, H; Fujiyama, J; Higuchi, I; Osame, M

    1998-09-01

    A combination of electrophysiological, pathological, and biochemical studies were performed in myopathy induced by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors. Simvastatin (a lipophilic inhibitor) or pravastatin (a hydrophilic inhibitor) were administered by gavage to rabbits. In Group I (simvastatin-treated group, 50 mg/kg/day for 4 weeks), four rabbits showed muscle necrosis and high serum creatine kinase (CK) levels, and all six rabbits showed electrical myotonia. In Group II (pravastatin-treated group, 100 mg/kg/day for 4 weeks), no rabbit showed either condition. In Group III (pravastatin-treated group, 200 mg/kg/day for 3 weeks plus 300 mg/kg/day for 3 weeks), one rabbit showed muscle necrosis and high serum CK level and two rabbits showed electrical myotonia. The pathological findings were muscle fiber necrosis and degeneration with increased acid phosphatase activity by light microscopy, autophagic vacuoles and mitochondrial swelling, and disruption and hypercontraction of myofibrils by electron microscopy. Ubiquinone content decreased in skeletal muscle by 22 to 36% in Group I, by 18 to 52% in Group II, and by 49 to 72% in Group III. However, mitochondrial enzyme activities of respiratory chain were normal in all groups. These results indicate that myopathy was not induced by a secondary dysfunction of mitochondrial respiration due to low ubiquinone levels.

  15. A [32P]-NAD+-based method to identify and quantitate long residence time enoyl-ACP reductase inhibitors

    PubMed Central

    Yu, Weixuan; Neckles, Carla; Chang, Andrew; Bommineni, Gopal Reddy; Spagnuolo, Lauren; Zhang, Zhuo; Liu, Nina; Lai, Christina; Truglio, James; Tonge, Peter J.

    2015-01-01

    The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-ACP reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-32P] NAD(P+) cofactor. Twenty-three FabI inhibitors were analyzed and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percent drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady state kinetic methods for compounds with tR values of 10-100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 °C to 37 °C . PMID:25684450

  16. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer.

    PubMed

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M; Mesecar, Andrew D; Cushman, Mark

    2010-07-15

    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC50 0.59 microM) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC50 70 nM) and 84 (IC50 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC50 of 80 microM. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC50 1.7 microM and 0.27 microM, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  17. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

    PubMed

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline

    2014-06-06

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.

  18. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer

    SciTech Connect

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M.; Mesecar, Andrew D.; Cushman, Mark

    2012-07-11

    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC{sub 50} 0.59 {mu}M) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC{sub 50} 70 nM) and 84 (IC{sub 50} 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC{sub 50} of 80 {mu}M. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC{sub 50} 1.7 {mu}M and 0.27 {mu}M, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  19. A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium.

    PubMed

    Mukerjee, Anindita; Iyidogan, Pinar; Castellanos-Gonzalez, Alejandro; Cisneros, José A; Czyzyk, Daniel; Ranjan, Amalendu Prakash; Jorgensen, William L; White, A Clinton; Vishwanatha, Jamboor K; Anderson, Karen S

    2015-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having μM antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy.

  20. [Adverse drug reactions of hydroxymethylglutaryl-CoA reductase inhibitors reported to agency for medicinal products and medical devices].

    PubMed

    Skvrce, Nikica Mirosević; Bozina, Nada; Sarinić, Viola Macolić; Tomić, Sinisa

    2010-01-01

    Hydroxymethylglutaryl-CoA reductase inhibitors (statins) are drugs used in the treatment of chronic diseases and frequently in concomitant therapy with many other drugs. Therefore, the risk of adverse drug reactions (ADRs), especially those caused by interactions is high. Aim of the study was to describe and analyze ADRs caused by statins reported to Croatian Agency from March 2005 to December 2008, and to emphasize reasons of their occurrence. 136 of statin ADRs were reported. 12 % of all reported statins' ADRs were caused by interactions, which is higher than percent (5.6%) of interactions caused by all other drugs in 2005 and 2006. Proportion of serious ADRs related to administered dose and thus preventable was higher than proportion of all ADRs caused by statins (p = 0.003). Most serious ADRs could have been prevented with better understanding of interactions and by use of pharmacogenomics in identifying patients that are because of genetic predisposition more sensitive to standard doses.

  1. The effect of a 5 alpha-reductase inhibitor on androgen-mediated growth of the dog prostate.

    PubMed

    Wenderoth, U K; George, F W; Wilson, J D

    1983-08-01

    The administration of testosterone cypionate (0.4 mg/kg BW . day) to castrated male dogs caused a doubling of prostate weight within 4 weeks and an increase in the content of testosterone and dihydrotestosterone in the prostate. When the 5 alpha-reductase inhibitor 17-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one (3 mg/kg BW . day) was administered simultaneously with testosterone cypionate, prostatic testosterone content increased from 0.5 +/- 0.2 to 4.1 +/- 1.3 ng/mg DNA, the increase in prostatic dihydrotestosterone content was prevented, and prostatic size decreased to half the starting weight. These results suggest that dihydrotestosterone formation plays a role in prostatic growth.

  2. The 5α-reductase inhibitor finasteride is not associated with alterations in sleep spindles in men referred for polysomnography

    PubMed Central

    Goldstein, Michael R.; Cook, Jesse D.; Plante, David T.

    2015-01-01

    Objective Endogenous neurosteroids that potentiate the GABAA receptor are thought to enhance the generation of sleep spindles. This study tested the hypothesis that the 5α-reductase inhibitor finasteride, an agent associated with reductions in neurosteroids, would be associated with reduced sleep spindles in men referred for polysomnography. Methods Spectral analysis and spindle waveform detection were performed on electroencephalographic (EEG) sleep data in the 11–16Hz sigma band, as well as several subranges, from 27 men taking finasteride and 27 matched comparison patients (ages 18 to 81 years). Results No significant differences between groups were observed for spectral power or sleep spindle morphology measures, including spindle density, amplitude, duration, and integrated spindle activity. Conclusions Contrary to our hypothesis, these findings demonstrate that finasteride is not associated with alterations in sleep spindle range activity or spindle morphology parameters. PMID:26494125

  3. Implications and problems in analysing cytotoxic activity of hydroxyurea in combination with a potential inhibitor of ribonucleotide reductase.

    PubMed

    Nocentini, G; Barzi, A; Franchetti, P

    1990-01-01

    The cytotoxicity of hydroxyurea in combination with 2.2'-bipyridyl-6-carbothioamide (a potential inhibitor of ribonucleotide reductase) on P388 murine leukemia is reported. Synergistic activity was studied using various interpretations of the isobologram method and the combination index method. We evaluated the pros and cons of these methods and their overall usefulness. In our opinion, to obtain all possible information from a compound association, it is important to choose a formally correct method that (a) can quantitatively evaluate synergism or antagonism, (b) may offer the possibility of averaging final results, (c) needs a minimal amount of experimental data, and (d) is rapid. Moreover, we emphasize both the utility of testing at least three molar ratios of compound association and the importance of carefully choosing the fractional inhibition used in calculating the combination effect. Such evaluation of drug combinations gives information essential to the preparation of new anticancer drug regimens and to the early assessment of biochemical interactions.

  4. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-07

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range.

  5. Discrimination of Potent Inhibitors of Toxoplasma gondii Enoyl-Acyl Carrier Protein Reductase by Thermal Shift Assay

    PubMed Central

    Afanador, Gustavo A.; Muench, Stephen P.; McPhillie, Martin; Fomovska, Alina; Schön, Arne; Zhou, Ying; Cheng, Gang; Stec, Jozef; Freundlich, Joel S.; Shieh, Hong-Ming; Anderson, John W.; Jacobus, David P.; Fidock, David A.; Kozikowski, Alan P.; Fishwick, Colin W.; Rice, David W.; Freire, Ernesto; McLeod, Rima; Prigge, Sean T.

    2014-01-01

    Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway which is distinct from the type I pathway found in humans. Enoyl-Acyl Carrier Protein Reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal chemistry studies. We evaluated a series of triclosan analogs for their ability to inhibit the growth of Toxoplasma gondii, a pervasive human pathogen, and its ENR enzyme (TgENR). Several compounds were identified that inhibited TgENR at low nanomolar concentrations, but could not be further differentiated due to the limited dynamic range of the TgENR activity assay. Thus, we adapted a thermal shift assay (TSA) to directly measure the dissociation constant (Kd) of the most potent inhibitors identified in this study as well as inhibitors from previous studies. Furthermore, the TSA allowed us to determine the mode of action of these compounds in the presence of NADH or NAD+ cofactors. We found that all of the inhibitors bind to a TgENR/NAD+ complex, but that they differed in their dependence on NAD+ concentration. Ultimately, we were able to identify compounds which bind to the TgENR/NAD+ complex in the low femtomolar range. This shows how TSA data combined with enzyme inhibition, parasite growth inhibition data and ADMET predictions allow for better discrimination between potent ENR inhibitors for future medicine development. PMID:24295325

  6. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    SciTech Connect

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D.

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  7. Incidence of Sepsis and Mortality With Prior Exposure of HMG-COA Reductase Inhibitors in a Surgical Intensive Care Population.

    PubMed

    Schurr, James W; Wu, Wenchen; Smith-Hannah, Alexandria; Smith, Candace J; Barrera, Rafael

    2016-01-01

    The anti-inflammatory properties of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) may reduce the risk of developing sepsis in surgical intensive care patients and improve outcomes in those who do become septic. The objective of this study was to assess whether surgical intensive care unit (SICU) patients with prior exposure to HMG-CoA reductase inhibitors had a lower incidence of developing sepsis and improved outcomes. A retrospective cohort study was conducted. Patient demographic data, statin use, sequential organ failure assessment (SOFA) scores, vasopressor requirements, ventilator days, length of SICU stay, and mortality in septic patients were collected. Incidence of development of sepsis was determined using systemic inflammatory response syndrome criteria. Patients were grouped into cohorts based on whether they met the sepsis criteria and if they had previously received statins. Cohorts of patients who did and did not become septic with prior statin exposure were compared and an odds ratio was calculated to determine a protective effect. The setting was a SICU. The study comprised of 455 SICU patients and had no interventions. Among the 455 SICU patients, 427 patients were included for the final results. Patients receiving statins verses not receiving statins were similar in demographics. Previous statin exposure had a protective effect in the development of sepsis (9.77% on statins vs. 33.6% without statins; odds ratio 0.203, confidence interval 0.118-0.351). Of those patients who developed sepsis, there was a statistically significant decrease in 28-day mortality in patients with prior statin exposure (P = 0.0341). No statistical difference was noted in length of stay, vasopressor requirements, or days on mechanical ventilation. Prior exposure to statins may have a protective effect on the development of sepsis and decrease mortality in critically ill surgical patients.

  8. Effect of MK-906, a specific 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates in normal men.

    PubMed

    Rittmaster, R S; Stoner, E; Thompson, D L; Nance, D; Lasseter, K C

    1989-01-01

    To determine the hormonal effects of MK-906, an orally active 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates, 12 healthy men were given 10, 20, 50, and 100 mg MK-906 2 weeks apart in randomized order in a 4-period crossover design. Serum testosterone (T), dihydrotestosterone (DHT), androstanediol glucuronide, and androsterone glucuronide were measured before and 24 hours after each dose. The effect of MK-906 on glucuronyl transferase activity, the enzyme responsible for androstanediol glucuronide and androsterone glucuronide formation, was assessed in vitro using rat prostate tissue. Serum T levels were unchanged after all doses. Serum DHT, androstanediol glucuronide, and androsterone glucuronide were suppressed by 70, 40, and 56%, respectively, after the 10-mg dose, and by 82, 52, and 66% after the 100-mg dose (P less than 0.02 for the comparison between the 10 and 100-mg doses for all three steroids), respectively. Baseline serum T and DHT levels were strongly correlated (R = 0.89, P = 0.0002), as were androstanediol glucuronide and androsterone glucuronide levels (R = 0.78, P = 0.003), but there was no correlation between DHT levels and the levels of either conjugated steroid. MK-906 had no effect on glucuronyl transferase activity in vitro. It was concluded that single doses of MK-906 suppress both conjugated and unconjugated 5 alpha-reduced androgens. While all three steroids appeared to be good markers of systemic 5 alpha-reductase inhibition, further research will be needed to determine which steroid best reflects tissue DHT levels in patients receiving these inhibitors.

  9. Evaluation of the 5α-reductase inhibitor finasteride on reproduction and gonadal development in medaka, Oryzias latipes.

    PubMed

    Lee, Michael R; Loux-Turner, Jana R; Oliveira, Kenneth

    2015-05-15

    5-α reductase (5αR) inhibitors have an anti-androgenic effect in mammals because they inhibit the conversion of testosterone to the potent androgen, dihydrotestosterone. Finasteride is a type-2 5αR inhibitor that is used as a human pharmaceutical for the treatment of prostate cancer, benign prostate hyperplasia and male pattern baldness. This study evaluated the impacts of finasteride (50, 500 and 5000μg/L) on the development and reproduction of medaka (Oryzias latipes) exposed continuously over multiple generations (F0, F1 and F2). The exposure was initiated with reproductively mature fish (F0 generation) and continued until the hatching of the F2 generation. There were no significant effects on survival, fecundity or fertility in the F0 (50, 500, 5000μg/L) and F1 (50, 500μg/L) generations. The F1 generation exposed to 5000μg/L exhibited significant mortality. Histopathology of the gonads demonstrated that medaka and pre-clinical species respond similarly to finasteride exposure. Intersex condition and maldeveloped gonads were observed in F0 generation males exposed to 5000μg/L and F1 generation males exposed to 500μg/L. F1 generation males exposed to 500μg/L displayed reduced gonadosomatic index with an increased incidence of testicular degeneration. Males in both generations exhibited an increased incidence of Leydig cell hyperplasia at concentrations ⩾500μg/L. F0 generation females exposed to 5000μg/L exhibited increased gonadosomatic index. An increased prevalence of accelerated post-ovulatory follicle involution was observed in females at concentrations ⩾500μg/L in both generations. The gonadal changes induced by finasteride support the idea that 5-α reductase inhibition impacts androgen signaling in fish. Results from this study are discussed in the context of differential expression of the androgen receptor between species of fish.

  10. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    PubMed

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass.

  11. The safety evaluation of fluvastatin, an HMG-CoA reductase inhibitor, in beagle dogs and rhesus monkeys.

    PubMed

    Hartman, H A; Myers, L A; Evans, M; Robison, R L; Engstrom, R G; Tse, F L

    1996-01-01

    Fluvastatin is a potent synthetic competitive inhibitor of beta-hydroxy-beta-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the biosynthetic pathway for hepatic cholesterol synthesis. The therapeutic indication is reduction of elevated total and low-density lipoprotein cholesterol levels. Results from four toxicity studies in beagle dogs and one study in rhesus monkeys following oral administration of fluvastatin are reported. In two 26-week dog studies, doses were 0, 1, 8, or 48 mg/kg/day (reduced to 36 mg/kg/day in Week 7) and 0, 6, 24, or 36 mg/kg/day (reduced to 30 mg/kg/day in Week 2). In a 2-year dog study, doses were 0, 1, 8, or 16 mg/kg/day. Dose levels in the 26-week monkey study were 0, 0.6, 12, and 48 mg/kg/day (raised to 84 mg/kg/day in Week 17 and to 108 mg/kg/day in Week 22). In these studies, evaluations included clinical and physical examinations, body weight and food consumption, electrocardiography, ophthalmoscopy, hematology and clinical chemistries, urinalysis, blood drug concentration, and macroscopic and microscopic examinations of observed lesions and representative tissues. In the 26- and 52-week dog studies and the monkey study, lenticular biochemistry, the HMG-CoA reductase activity of liver microsomes, and serum lipid concentrations were investigated. The fourth dog study was a single-dose toxicokinetic study in which 48 mg/kg [3H]-fluvastatin was monitored for up to 2 weeks. Sampling was limited to ocular tissues for enzyme analysis. Doses of > or = 24 mg/kg/day were lethal in dogs. At lethal doses, ataxia, convulsions, fecal blood, multifocal congestion and hemorrhage, isolated foci of malacia in the medulla oblongata, and liver necrosis were observed. Reduced weight gain, emesis, cataracts, elevated liver enzymes, reduced cholesterol, and gallbladder inflammation with mucosal hyperplasia occurred at > or = 8 mg/kg/day. In contrast to other HMG-CoA reductase inhibitors, fluvastatin did not cause significant

  12. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  13. Comparison of finasteride (Proscar), a 5 alpha reductase inhibitor, and various commercial plant extracts in in vitro and in vivo 5 alpha reductase inhibition.

    PubMed

    Rhodes, L; Primka, R L; Berman, C; Vergult, G; Gabriel, M; Pierre-Malice, M; Gibelin, B

    1993-01-01

    Human prostate was used as a source of 5 alpha reductase. Compounds were incubated with an enzyme preparation and [3H]testosterone. [3H]-dihydrotestosterone production was measured to calculate 5 alpha reductase activity. IC50 values (ng/ml) were finasteride = 1; Permixon = 5,600; Talso = 7,000; Strogen Forte = 31,000; Prostagutt = 40,000; and Tadenan = 63,000. Bazoton and Harzol had no activity at concentrations up to 500,000 ng/ml. In castrate rats stimulated with testosterone (T) or dihydrotestosterone (DHT), finasteride, but not Permixon or Bazoton, inhibited T stimulated prostate growth, while none of the three compounds inhibited DHT stimulated growth. These results demonstrate that finasteride inhibits 5 alpha reductase, while Permixon and Bazoton have neither anti-androgen nor 5 alpha reductase inhibitory activity. In addition, in a 7 day human clinical trial, finasteride, but not Permixon or placebo, decreased serum DHT in men, further confirming the lack of 5 alpha reductase inhibition by Permixon. Finasteride and the plant extracts listed above do not inhibit the binding of DHT to the rat prostatic androgen receptor (concentrations to 100 micrograms/ml). Based on these results, it is unlikely that these plant extracts would shrink the prostate by inhibiting androgen action or 5 alpha reductase.

  14. Wortmannilactones I-L, new NADH-fumarate reductase inhibitors, induced by adding suberoylanilide hydroxamic acid to the culture medium of Talaromyces wortmannii.

    PubMed

    Liu, Wen-Cai; Wang, Yi-Yu; Liu, Jun-Hui; Ke, Ai-Bing; Zheng, Zhi-Hui; Lu, Xin-Hua; Luan, Yu-Shi; Xiu, Zhi-Long; Dong, Yue-Sheng

    2016-11-01

    With the aim of finding more potential inhibitors against NADH-fumarate reductase (specific target for treating helminthiasis and cancer) from natural resources, Talaromyces wortmannii was treated with the epigenome regulatory agent suberoylanilide hydroxamic acid, which resulted in the isolation of four new wortmannilactones derivatives (wortmannilactones I-L, 1-4). The structures of these new compounds were elucidated based on IR, HRESIMS and NMR spectroscopic data analyses. These four new compounds showed potent inhibitory activity against NADH-fumarate reductase with the IC50 values ranging from 0.84 to 1.35μM.

  15. Steroidal 5α-reductase inhibitors using 4-androstenedione as substrate.

    PubMed

    Cabeza, Marisa; Trejo, Karla Valeria; González, Claudia; García, Perla; Soriano, Juan; Heuze, Yvonne; Bratoeff, Eugene

    2011-10-01

    The aim of this study was to determine the capacity of some progesterone derivatives, to inhibit the conversion of labeled androstenedione ([(3)H] 4-dione) to [(3)H]dihydrotestosterone ([(3)H]DHT) in prostate nuclear membrane fractions, where the 5α-reductase activity is present. The enzyme 5α-reductase catalyzes the 5α-reduction of 4-dione whereas the 17β-hydroxysteroid dehydrogenase catalyzes the transformation of 4-dione to testosterone or 5α-dione to dihydrotestosterone (DHT). Moreover, we also investigated the role of unlabeled 5α-dione in these pathways. In order to determine the inhibitory effect of different concentrations of the progesterone derivatives in the conversion of [(3)H] 4-dione to [(3)H]DHT, homogenates of human prostate were incubated with [(3)H] 4-dione, NADPH and increasing concentrations of non-labeled 5α-dione. The incubating mixture was extracted and purified using thin layer chromatography. The fraction of the chromatogram corresponding to the standard of DHT was separated and the radioactivity determined. The results showed that the presence of [(3)H] 4-dione plus unlabelled 5α-dione produced similar levels of DHT as compared to [(3)H] 4-dione. On the other hand, the results indicated that 17α-hydroxypregn-4-ene-3,20-dione 5 and 4-bromo-17α-hydroxypregn-4-ene-3,20-dione 7b, were the most potent steroids to inhibit the conversion of [(3)H] 4-dione to [(3)H]DHT, showing IC(50) values of 2 and 1.6 nM, respectively.

  16. New ester derivatives of dehydroepiandrosterone as 5α-reductase inhibitors.

    PubMed

    Arellano, Yazmín; Bratoeff, Eugene; Garrido, Mariana; Soriano, Juan; Heuze, Yvonne; Cabeza, Marisa

    2011-11-01

    The aim of this study was to synthesize different ester derivatives of dehydroepiandrosterone with therapeutic potential as antiandrogens. The biological effect of these steroids was demonstrated in in vivo as well as in vitro experiments. In the in vivo experiments, we measured the activity of seven steroids on the weight of the prostate and seminal vesicles of gonadectomized hamsters treated with testosterone. For the in vitro studies, we determined the IC(50) values by measuring the concentration of the steroidal derivatives that inhibits 50% of the activity of 5α-reductase present in human prostate and also its binding capacity to the androgen receptors (AR) obtained from rat's prostate cytosol. The results from these experiments indicated that compounds 7 5α,6β-dibromo-3β-propanoyloxyandrostan-17-one, 8 5α,6β-dibromo-3β-butanoyloxyandrostan-17-one and 9 5α,6β-dibromo-3β-(3'-oxapentanoyloxy)-androstan-17-one, significantly decreased the weight of the prostate and seminal vesicles as compared to testosterone treated animals; this reduction of the weight of these glands was comparable to that produced by Finasteride 11. On the other hand, compounds 4 3β-acetoxyandrost-5-en-17-one, 5 3β-hexanoyloxyandrost-5-en-17-one 6 3β-(3'-oxapentanoyloxy)-androst-5-en-17-one, 7 and 12 dehydroepiandrosterone, (commercially available) inhibited the enzyme 5α-reductase. Compounds 4, 5, 6, 8 and 9 (IC(50) values of 5.2±1.2, 0.049±0.002, 6.4±1.1, 0.10±0.045, and 6.8±0.9 nM, respectively) exhibited the highest inhibitory activity. However, none of these compounds binds to the AR.

  17. The Anticancer Agent Chaetocin Is a Competitive Substrate and Inhibitor of Thioredoxin Reductase

    PubMed Central

    Tibodeau, Jennifer D.; Benson, Linda M.; Isham, Crescent R.; Owen, Whyte G.

    2009-01-01

    Abstract We recently reported that the antineoplastic thiodioxopiperazine natural product chaetocin potently induces cellular oxidative stress, thus selectively killing cancer cells. In pursuit of underlying molecular mechanisms, we now report that chaetocin is a competitive and selective substrate for the oxidative stress mitigation enzyme thioredoxin reductase-1 (TrxR1) with lower Km than the TrxR1 native substrate thioredoxin (Trx; chaetocin Km = 4.6 ± 0.6 μM, Trx Km = 104.7 ± 26 μM), thereby attenuating reduction of the critical downstream ROS remediation substrate Trx at achieved intracellular concentrations. Consistent with a role for TrxR1 targeting in the anticancer effects of chaetocin, overexpression of the TrxR1 downstream effector Trx in HeLa cells conferred resistance to chaetocin-induced, but not to doxorubicin-induced, cytotoxicity. As the TrxR/Trx pathway is of central importance in limiting cellular reactive oxygen species (ROS)—and as chaetocin exerts its selective anticancer effects via ROS imposition—the inhibition of TrxR1 by chaetocin has potential to explain its selective anticancer effects. These observations have important implications not just with regard to the mechanism of action and clinical development of chaetocin and related thiodioxopiperazines, but also with regard to the utility of molecular targets within the thioredoxin reductase/thioredoxin pathway in the development of novel candidate antineoplastic agents. Antioxid. Redox Signal. 11, 1097–1106. PMID:18999987

  18. Computation of affinity and selectivity: Binding of 2,4-diaminopteridine and 2,4-diaminoquinazoline inhibitors to dihydrofolate reductases

    NASA Astrophysics Data System (ADS)

    Marelius, John; Graffner-Nordberg, Malin; Hansson, Tomas; Hallberg, Anders; Åqvist, Johan

    1998-03-01

    Binding energy calculations for complexes of mutant and wild-type human dihydrofolate reductases with 2,4-diaminopteridine and 2,4-diaminoquinazoline inhibitors are reported. Quantitative insight into binding energetics of these molecules is obtained from calculations based on force field energy evaluation and thermal sampling by molecular dynamics simulations. The calculated affinity of methotrexate for wild-type and mutant enzymes is reasonably well reproduced. Truncation of the methotrexate glutamate tail results in a loss of affinity by several orders of magnitude. No major difference in binding strength is predicted between the pteridines and the quinazolines, while the N-methyl group present in methotrexate appears to confer significantly stronger binding. The recent improvement, which is used here, of our linear interaction energy method for binding affinity prediction, as well as problems with treating charged and flexible ligands are discussed. This approach should be suitable in a drug discovery context for prediction of binding energies of new inhibitors prior to their synthesis, when some information about the binding mode is available.

  19. Modification of triclosan scaffold in search of improved inhibitors for enoyl-acyl carrier protein (ACP) reductase in Toxoplasma gondii.

    PubMed

    Stec, Jozef; Fomovska, Alina; Afanador, Gustavo A; Muench, Stephen P; Zhou, Ying; Lai, Bo-Shiun; El Bissati, Kamal; Hickman, Mark R; Lee, Patty J; Leed, Susan E; Auschwitz, Jennifer M; Sommervile, Caroline; Woods, Stuart; Roberts, Craig W; Rice, David; Prigge, Sean T; McLeod, Rima; Kozikowski, Alan P

    2013-07-01

    Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was used to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4' of the well-known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16 a and 16 c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against recombinant TgENR were found to be 43 and 26 nM, respectively. Additionally, 11 other analogues in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16 a and 16 c are deemed to be excellent starting points for the development of new medicines to effectively treat Toxoplasma gondii infections.

  20. Development of a functional assay to detect inhibitors of Plasmodium falciparum glutathione reductase utilizing liquid chromatography-mass spectrometry.

    PubMed

    Burkard, Lexi; Scheuermann, Alexis; Simithy, Johayra; Calderón, Angela I

    2016-04-01

    Plasmodium falciparum (Pf) like most other organisms, has a sophisticated antioxidant system, part of which includes glutathione reductase (GR). GR works by recycling toxic glutathione disulfide to glutathione, thereby reducing reactive oxygen species and making a form of glutathione (GSH) the parasite can use. Inhibition of this enzyme in Pf impedes parasite growth. In addition, it has been confirmed that PfGR is not identical to human GR. Thus, PfGR is an excellent target for antimalarial drug development. A functional assay utilizing liquid chromatography-mass spectrometry was developed to specifically identify and evaluate inhibitors of PfGR. Using recombinant PfGR enzyme and 1,4-naphthoquinone (1) as a reference compound and 4-nitrobenzothiadiazole (2) and methylene blue (3) as additional compounds, we quantified the concentration of GSH produced compared with a control to determine the inhibitory effect of these compounds. Our results coincide with that presented in literature: compounds 1-3 inhibit PfGR with IC50 values of 2.71, 8.38, and 19.23 µm, respectively. Good precision for this assay was exhibited by low values of intraday and interday coefficient of variation (3.1 and 2.4%, respectively). Thus, this assay can be used to screen for other potential inhibitors of PfGR quickly and accurately.

  1. Modified 2,4-diaminopyrimidine-based dihydrofolate reductase inhibitors as potential drug scaffolds against Bacillus anthracis

    PubMed Central

    Nammalwar, Baskar; Bourne, Christina R.; Wakeham, Nancy; Bourne, Philip C.; Barrow, Esther W.; Muddala, N. Prasad; Bunce, Richard A.; Berlin, K. Darrell; Barrow, William W.

    2014-01-01

    The current paper describes the synthesis and biological evaluation of dihydrophthalazine-appended 2,4-diaminopyrimidine (DAP) inhibitors (1) oxidized at the methylene bridge linking the DAP ring to the central aromatic ring and (2) modified at the central ring ether groups. Structures 4a-b incorporating an oxidized methylene bridge showed a decrease in activity, while slightly larger alkyl groups (CH2CH3 versus CH3) on the central ring oxygen atoms (R2 and R3) had a minimal impact on the inhibition. Comparison of the potency data for previously reported RAB1 and BN-53 with the most potent of the new derivatives (19b and 20a-b) showed similar values for inhibition of cellular growth and direct enzymatic inhibition (MICs 0.5-2 μg/mL). Compounds 29-34 with larger ester and ether groups containing substituted aromatic rings at R3 exhibited slightly reduced activity (MICs 2-16 μg/mL). One explanation for this attenuated activity could be encroachment of the extended R3 into the neighboring NADPH co-factor. These results indicate that modest additions to the central ring oxygen atoms are well tolerated, while larger modifications have the potential to act as dual-site inhibitors of dihydrofolate reductase (DHFR). PMID:25435253

  2. Modification of Triclosan Scaffold in Search of Improved Inhibitors for Enoyl-Acyl Carrier Protein (ACP) Reductase in Toxoplasma gondii

    PubMed Central

    Stec, Jozef; Fomovska, Alina; Afanador, Gustavo A.; Muench, Stephen P.; Zhou, Ying; Lai, Bo-Shiun; Bissati, Kamal El; Hickman, Mark R.; Lee, Patty J.; Leed, Susan E.; Auschwitz, Jennifer M.; Sommervile, Caroline; Woods, Stuart; Roberts, Craig W.; Rice, David; Prigge, Sean T.; McLeod, Rima; Kozikowski, Alan P.

    2013-01-01

    Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was utilized to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4′ of the well-known ENR inhibitor triclosan afforded a series of 29 new analogs. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16a and 16c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against the recombinant TgENR were 43 and 26 nM, respectively. Additionally, 11 other analogs in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16a and 16c are deemed to be an excellent starting point for the development of new medicines to effectively treat Toxoplasma gondii infections. PMID:23776166

  3. Virtually Designed Triclosan-Based Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis and of Plasmodium falciparum.

    PubMed

    Owono Owono, Luc C; Ntie-Kang, Fidele; Keita, Melalie; Megnassan, Eugene; Frecer, Vladimir; Miertus, Stanislav

    2015-05-01

    We report here new chemical structures of predicted nanomolar triclosan-based inhibitors (TCLs) of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) virtually proposed by computer-assisted molecular design. 3D models of InhA-TCL complexes were prepared by in situ modifications of the reference crystal structure (PDB entry 1P45) for a training set of 15 TCLs with known InhA inhibitory activities. A QSAR model was built leading to linear correlation between the calculated free energies of complexation (ΔΔGcom ) and experimental values IC50 (exp) : pIC50 =-0.0657×ΔΔGcom +3.0502, R(2) =0.96. In addition, ligand-based quantitative pharmacophore model (PH4) was built from bound conformations of the training set compounds and confirmed the correlation between molecular models and observed activities: pIC50 (exp=) 0.8929×pIC50 (pre) -0.441, R(2) =0.95. Structural information from both models helped us to propose new TCL analogues. A virtual library of TCLs with known predicted activities against enoyl-acyl carrier protein reductase of Plasmodium falciparum (PfENR) was evaluated, revealing dual target TCLs. Moreover, analysis of binding site interactions suggested enriching substitutions, which led to more potent TCLs with predicted pIC50 (pre) as low as 7 nM. The computational approach, which used both free energy estimated from molecular modeling and 3D-QSAR pharmacophore model, was helpful in virtually proposing the dual-targeted drugs and provided valuable information for the design of novel potential antituberculotic agents.

  4. New steroidal lactones as 5α-reductase inhibitors and antagonists for the androgen receptor.

    PubMed

    Garrido, Mariana; Bratoeff, Eugene; Bonilla, Dulce; Soriano, Juan; Heuze, Yvonne; Cabeza, Marisa

    2011-11-01

    This study reports the synthesis of several new steroidal lactones: 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-3'-oxapentanoate (11), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-propanoate (12), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-butanoate (13), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-pentanoate (14), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-hexanoate (15), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-3'-oxapentanoate (16), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-propanoate (17), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-butanoate (18), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-pentanoate (19) and 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-hexanoate (20) with a therapeutic potential as antiandrogens. The biological effect of these steroids was demonstrated in in vivo as well as in vitro experiments. In the in vivo experiments, we measured the activity of ten new steroidal derivatives on the weight of the prostate and seminal vesicle glands of gonadectomized hamsters treated with testosterone. For the in vitro studies, we determined the IC(50) values by measuring the concentration of the steroidal derivatives that inhibits 50% of the activity of the 5α-reductase enzyme present in human prostate and also its binding capacity to the androgen receptors (AR) obtained from rat's prostate cytosol. The results from these experiments indicated that compounds 11-20, significantly decreased the weight of the prostate and seminal vesicles as compared to testosterone treated animals; this reduction of the weight of these glands was comparable to that produced by Finasteride. On the other hand, compounds 11-20 inhibited the enzyme 5α-reductase, with compounds 14-19 (IC(50) values of 4.2 ± 0.95, 0.025 ± 0.003, 1.2 ± 0.45, 1.2 ± 0.1, 0.028 ± 0.003, and 0.069 ± 0.005 nM, respectively) showing the highest inhibitory activity. The results from the in vitro experiments indicated that only 15-17 bind to the AR.

  5. Resistance of herpes simplex virus type 1 to peptidomimetic ribonucleotide reductase inhibitors: selection and characterization of mutant isolates.

    PubMed Central

    Bonneau, A M; Kibler, P; White, P; Bousquet, C; Dansereau, N; Cordingley, M G

    1996-01-01

    Herpes simplex virus (HSV) encodes its own ribonucleotide reductase (RR), which provides the high levels of deoxynucleoside triphosphates required for viral DNA replication in infected cells. HSV RR is composed of two distinct subunits, R1 and R2, whose association is required for enzymatic activity. Peptidomimetic inhibitors that mimic the C-terminal amino acids of R2 inhibit HSV RR by preventing the association of R1 and R2. These compounds are candidate antiviral therapeutic agents. Here we describe the in vitro selection of HSV type 1 KOS variants with three- to ninefold-decreased sensitivity to the RR inhibitor BILD 733. The resistant isolates have growth properties in vitro similar to those of wild-type KOS but are more sensitive to acyclovir, possibly as a consequence of functional impairment of their RRs. A single amino acid substitution in R1 (Ala-1091 to Ser) was associated with threefold resistance to BILD 733, whereas an additional substitution (Pro-1090 to Leu) was required for higher levels of resistance. These mutations were reintroduced into HSV type 1 KOS and shown to be sufficient to confer the resistance phenotype. Studies in vitro with RRs isolated from cells infected with these mutant viruses demonstrated that these RRs bind BILD 733 more weakly than the wild-type enzyme and are also functionally impaired, exhibiting an elevated dissociation constant (Kd) for R1-R2 subunit association and/or reduced activity (kcat). This work provides evidence that the C-terminal end of HSV R1 (residues 1090 and 1091) is involved in R2 binding interactions and demonstrates that resistance to subunit association inhibitors may be associated with compromised activity of the target enzyme. PMID:8551616

  6. Design and Synthesis of Aryl Ether Inhibitors of the Bacillus Anthracis Enoyl–ACP Reductase

    PubMed Central

    Tipparaju, Suresh K.; Mulhearn, Debbie C.; Klein, Gary M.; Chen, Yufeng; Tapadar, Subhasish; Bishop, Molly H.; Yang, Shuo; Chen, Juan; Ghassemi, Mahmood; Santarsiero, Bernard D.; Cook, James L.; Johlfs, Mary; Mesecar, Andrew D.; Johnson, Michael E.; Kozikowski, Alan P.

    2009-01-01

    The problem of increasing bacterial resistance to the current generation of antibiotics is well documented. This includes such pathogens as methicillin–resistant Staphylococcus aureus and the potential for developing drug–resistant pathogens for use as bioweapons, such as Bacillus anthracis. The biphenyl ether, antibacterial triclosan exhibits broad–spectrum activity and provides a potential scaffold for the development of new, broad–spectrum antibiotics targeting the fatty acid biosynthetic pathway, via inhibition of enoyl–acyl carrier protein reductase (ENR). We have utilized a structure–based approach to develop novel aryl ether analogs of triclosan that target ENR, the product of the FabI gene, from Bacillus anthracis (BaENR). Structure–based design methods were used for the expansion of the compound series including X-ray crystal structure determination, molecular docking, and QSAR methods. Structural modifications were made to both phenyl rings of the 2-phenoxyphenyl core. A number of compounds were derived that exhibited improved potency against BaENR and increased efficacy against both the Sterne strain of B. anthracis and the methicillin–resistant strain of S. aureus. X-ray crystal structures of BaENR in complex with triclosan and two other compounds help explain the improved efficacy of the new compounds and suggest future rounds of optimisation that might be used to improve their potency. PMID:18663709

  7. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent.

    PubMed

    Zhang, Baoxin; Duan, Dongzhu; Ge, Chunpo; Yao, Juan; Liu, Yaping; Li, Xinming; Fang, Jianguo

    2015-02-26

    The selenoprotein thioredoxin reductases (TrxRs) are attractive targets for anticancer drugs development. Xanthohumol (Xn), a naturally occurring polyphenol chalcone from hops, has received increasing attention because of its multiple pharmacological activities. We synthesized Xn and its 43 analogues and discovered that compound 13n displayed the highest cytotoxicity toward HeLa cells (IC50 = 1.4 μM). Structure-activity relationship study indicates that the prenyl group is not necessary for cytotoxicity, and introducing electron-withdrawing group, especially on the meta-position, is favored. In addition, methylation of the phenoxyl groups generally improves the potency. Mechanistic study revealed that 13n selectively inhibits TrxR and induces reactive oxygen species and apoptosis in HeLa cells. Cells overexpressing TrxR are resistant to 13n insult, while knockdown of TrxR sensitizes cells to 13n treatment, highlighting the physiological significance of targeting TrxR by 13n. The clarification of the structural determinants for the potency would guide the design of novel potent molecules for future development.

  8. Novel dehydroepiandrosterone benzimidazolyl derivatives as 5α-reductase isozymes inhibitors.

    PubMed

    Arellano, Yazmín; Bratoeff, Eugene; Segura, Tania; Mendoza, Maria Eugenia; Sánchez-Márquez, Araceli; Medina, Yesica; Heuze, Yvonne; Soriano, Juan; Cabeza, Marisa

    2016-12-01

    5α-R isozymes (types 1 and 2) play an important role in prostate gland development because they are responsible for intraprostatic dihydrotestosterone (DHT) levels when the physiological serum testosterone (T) concentration is low. In this study, we synthesized seven novel dehydroepiandrosterone derivatives with benzimidazol moiety at C-17, and determined their effect on the activity of 5α-reductase types 1 and 2. The derivatives with an aliphatic ester at C-3 of the dehydroepiandrosterone scaffold induced specific inhibition of 5α-R1 activity, whereas those with a cycloaliphatic ester (cyclopropyl, cyclobutyl, or cyclopentyl ring) or an alcohol group at C-3 inhibited the activity of both isozymes. Derivatives with a cyclohexyl or cycloheptyl ester at C-3 showed no inhibitory activity. In pharmacological experiments, derivatives with esters having an alcohol or the aliphatic group or one of the three smaller cycloaliphatic rings at C-3 decreased the diameter of male hamster flank organs, with the cyclobutyl and cyclopentyl esters exhibiting higher effect. With exception of the cyclobutyl and cyclopentyl esters, these compounds reduced the weight of the prostate and seminal vesicles.

  9. Design and synthesis of aryl ether inhibitors of the Bacillus anthracis enoyl-ACP reductase.

    PubMed

    Tipparaju, Suresh K; Mulhearn, Debbie C; Klein, Gary M; Chen, Yufeng; Tapadar, Subhasish; Bishop, Molly H; Yang, Shuo; Chen, Juan; Ghassemi, Mahmood; Santarsiero, Bernard D; Cook, James L; Johlfs, Mary; Mesecar, Andrew D; Johnson, Michael E; Kozikowski, Alan P

    2008-08-01

    The problem of increasing bacterial resistance to the current generation of antibiotics is well documented. Known resistant pathogens such as methicillin-resistant Staphylococcus aureus are becoming more prevalent, while the potential exists for developing drug-resistant pathogens for use as bioweapons, such as Bacillus anthracis. The biphenyl ether antibacterial agent, triclosan, exhibits broad-spectrum activity by targeting the fatty acid biosynthetic pathway through inhibition of enoyl-acyl carrier protein reductase (ENR) and provides a potential scaffold for the development of new, broad-spectrum antibiotics. We used a structure-based approach to develop novel aryl ether analogues of triclosan that target ENR, the product of the fabI gene, from B. anthracis (BaENR). Structure-based design methods were used for the expansion of the compound series including X-ray crystal structure determination, molecular docking, and QSAR methods. Structural modifications were made to both phenyl rings of the 2-phenoxyphenyl core. A number of compounds exhibited improved potency against BaENR and increased efficacy against both the Sterne strain of B. anthracis and the methicillin-resistant strain of S. aureus. X-ray crystal structures of BaENR in complex with triclosan and two other compounds help explain the improved efficacy of the new compounds and suggest future rounds of optimization that might be used to improve their potency.

  10. Development of a Novel Virtual Screening Cascade Protocol to Identify Potential Trypanothione Reductase Inhibitors

    PubMed Central

    2009-01-01

    The implementation of a novel sequential computational approach that can be used effectively for virtual screening and identification of prospective ligands that bind to trypanothione reductase (TryR) is reported. The multistep strategy combines a ligand-based virtual screening for building an enriched library of small molecules with a docking protocol (AutoDock, X-Score) for screening against the TryR target. Compounds were ranked by an exhaustive conformational consensus scoring approach that employs a rank-by-rank strategy by combining both scoring functions. Analysis of the predicted ligand−protein interactions highlights the role of bulky quaternary amine moieties for binding affinity. The scaffold hopping (SHOP) process derived from this computational approach allowed the identification of several chemotypes, not previously reported as antiprotozoal agents, which includes dibenzothiepine, dibenzooxathiepine, dibenzodithiepine, and polycyclic cationic structures like thiaazatetracyclo-nonadeca-hexaen-3-ium. Assays measuring the inhibiting effect of these compounds on T. cruzi and T. brucei TryR confirm their potential for further rational optimization. PMID:19296695

  11. Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo

    SciTech Connect

    Wang Xufang; Zhang Jinsong . E-mail: zjszyzzc@mail.hf.ah.cn; Xu Tongwen

    2007-01-01

    Cyclophosphamide (CTX) is in the nitrogen mustard group of alkylating antineoplastic chemotherapeutic agents. It is one of the most frequently used antitumor agents for the treatment of a broad spectrum of human cancers. Thioredoxin reductase (TrxR) catalyze the NADPH-dependent reduction of thioredoxin and play an important role in multiple cellular events related to carcinogenesis including cell proliferation, apoptosis, and cell signaling. This enzyme represents a promising target for the development of cytostatic agents. The purpose of this study is to determine whether CTX could target TrxR in vivo. Lewis lung carcinoma and solid H22 hepatoma treated with 50-250 mg/kg CTX for 3 h lost TrxR activity in a dose-dependent fashion. Over 75% and 95% of TrxR activity was lost at the dose of 250 mg/kg. There was, however, a recovery of TrxR activity such that it attained normal levels by 120 h after a dose of 250 mg/kg. In addition, we found that CTX caused a preferential TrxR inhibition over other antioxidant enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase. We also used ascites H22 cells to investigate cancer cells response after TrxR was inhibited by CTX in vivo since CTX is needed to be activated by liver cytochrome P450 enzymes. The time course and dose-dependent changes of cellular TrxR activity were similar with those in tumor tissue. CTX caused a dose-dependent cellular proliferation inhibition which was positively correlated with TrxR inhibition at 3 h. Furthermore, when 3 h CTX-treated cells with various TrxR backgrounds, harvested from ascites-bearing mice, were implanted into mice, the proliferations of these cells were again proportionally dependent on TrxR activity. The TrxR inhibition could thereby be considered as a crucial mechanism contributing to anticancer effect seen upon clinical use of CTX.

  12. Novel antitumor adamantane-azole gold(I) complexes as potential inhibitors of thioredoxin reductase.

    PubMed

    Garcia, Adriana; Machado, Rafael Carvalhaes; Grazul, Richard Michael; Lopes, Miriam Teresa Paz; Corrêa, Charlane Cimini; Dos Santos, Hélio F; de Almeida, Mauro Vieira; Silva, Heveline

    2016-04-01

    Gold complexes that could act as antitumor agents have attracted great attention. Heterocyclic compounds and their metal complexes display a broad spectrum of pharmacological properties. The present study reports the preparation and characterization of four novel gold(I) complexes containing tertiary phosphine and new ligands 5-adamantyl-1,3-thiazolidine-2-thione, 3-methyladamantane-1,3,4-oxadiazole-2-thione. Spectroscopic data suggest that gold is coordinated to the exocyclic sulfur atom in all cases, as confirmed by X-ray crystallographic data obtained for complex (1) and supported by quantum-mechanical calculations. The cytotoxicity of the compounds has been evaluated in comparison to cisplatin and auranofin in three different tumor cell lines, colon cancer (CT26WT), metastatic skin melanoma (B16F10), mammary adenocarcinoma (4T1) and kidney normal cell (BHK-21). The gold complexes were more active than their respective free ligands and able to inhibit the thioredoxin reductase (TrxR) enzyme, even in the presence of albumin. Molecular modeling studies were carried out to understand the interaction between the compounds and the TrxR enzyme, considered as a potential target for new compounds in cancer treatment. The docking results show that the adamantane ring is essential to stabilize the ligand-enzyme complex prior the formation of covalent bond with gold center. The structure of the new gold compounds was established on the basis of spectroscopic data, DFT calculations and X-ray diffraction. TrxR inhibition was evaluated and the results correlated with the assays in tumor cells, suggesting the TrxR as possible target for these compounds.

  13. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar?

    PubMed

    Christians, U; Jacobsen, W; Floren, L C

    1998-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.88) inhibitors are the most effective drugs to lower cholesterol in transplant patients. However, immunosuppressants and several other drugs used after organ transplantation are cytochrome P4503A (CYP3A, EC 1.14.14.1) substrates. Pharmacokinetic interaction with some of the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, specifically lovastatin and simvastatin, leads to an increased incidence of muscle skeletal toxicity in transplant patients. It is our objective to review the role of drug metabolism and drug interactions of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, and cerivastatin. In the treatment of transplant patients, from a drug interaction perspective, pravastatin, which is not significantly metabolized by CYP enzymes, and fluvastatin, presumably a CYP2C9 substrate, compare favorably with the other statins for which the major metabolic pathways are catalyzed by CYP3A.

  14. Discovery of novel hepatoselective HMG-CoA reductase inhibitors for treating hypercholesterolemia: a bench-to-bedside case study on tissue selective drug distribution.

    PubMed

    Pfefferkorn, Jeffrey A; Litchfield, John; Hutchings, Richard; Cheng, Xue-Min; Larsen, Scott D; Auerbach, Bruce; Bush, Mark R; Lee, Chitase; Erasga, Noe; Bowles, Daniel M; Boyles, David C; Lu, Gina; Sekerke, Catherine; Askew, Valerie; Hanselman, Jeffrey C; Dillon, Lisa; Lin, Zhiwu; Robertson, Andrew; Olsen, Karl; Boustany, Carine; Atkinson, Karen; Goosen, Theunis C; Sahasrabudhe, Vaishali; Chupka, Jonathan; Duignan, David B; Feng, Bo; Scialis, Renato; Kimoto, Emi; Bi, Yi-An; Lai, Yurong; El-Kattan, Ayman; Bakker-Arkema, Rebecca; Barclay, Paul; Kindt, Erick; Le, Vu; Mandema, Jaap W; Milad, Mark; Tait, Bradley D; Kennedy, Robert; Trivedi, Bharat K; Kowala, Mark

    2011-05-01

    The design of drugs with selective tissue distribution can be an effective strategy for enhancing efficacy and safety, but understanding the translation of preclinical tissue distribution data to the clinic remains an important challenge. As part of a discovery program to identify next generation liver selective HMG-CoA reductase inhibitors we report the identification of (3R,5R)-7-(4-((3-fluorobenzyl)carbamoyl)-5-cyclopropyl-2-(4-fluorophenyl)-1H-imidazol-1-yl)-3,5-dihydroxyheptanoic acid (26) as a candidate for treating hypercholesterlemia. Clinical evaluation of 26 (PF-03491165), as well as the previously reported 2 (PF-03052334), provided an opportunity for a case study comparison of the preclinical and clinical pharmacokinetics as well as pharmacodynamics of tissue targeted HMG-CoA reductase inhibitors.

  15. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase.

    PubMed

    Wang, Hui; Liu, Li; Lu, Yang; Pan, Pan; Hooker, Jacob M; Fowler, Joanna S; Tonge, Peter J

    2015-11-01

    PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.

  16. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase

    DOE PAGES

    Wang, Hui; Liu, Li; Lu, Yang; ...

    2015-07-14

    PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.

  17. One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening†

    PubMed Central

    2009-01-01

    The enzyme pteridine reductase 1 (PTR1) is a potential target for new compounds to treat human African trypanosomiasis. A virtual screening campaign for fragments inhibiting PTR1 was carried out. Two novel chemical series were identified containing aminobenzothiazole and aminobenzimidazole scaffolds, respectively. One of the hits (2-amino-6-chloro-benzimidazole) was subjected to crystal structure analysis and a high resolution crystal structure in complex with PTR1 was obtained, confirming the predicted binding mode. However, the crystal structures of two analogues (2-amino-benzimidazole and 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole) in complex with PTR1 revealed two alternative binding modes. In these complexes, previously unobserved protein movements and water-mediated protein−ligand contacts occurred, which prohibited a correct prediction of the binding modes. On the basis of the alternative binding mode of 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole, derivatives were designed and selective PTR1 inhibitors with low nanomolar potency and favorable physicochemical properties were obtained. PMID:19527033

  18. Growth of LAPC4 prostate cancer xenograft tumor is insensitive to 5α-reductase inhibitor dutasteride

    PubMed Central

    Garcia, Raquel Ramos; Masoodi, Khalid Z; Pascal, Laura E; Nelson, Joel B; Wang, Zhou

    2014-01-01

    Intermittent androgen deprivation therapy (IADT) allows prostate cancer patients a break from the side-effects of continuous androgen deprivation therapy (ADT). Although clinical studies suggest that IADT can significantly improve patient quality of life over ADT, it has not been demonstrated to improve patient survival. Recently, increased survival has been demonstrated when 5α-reductase inhibitors have been used during the off-cycle of IADT in animal xenograft tumor models LNCaP and LuCaP35. In the current study, the sensitivity of LAPC4 xenograft tumor regrowth to the 5ARI dutasteride was determined. Tumor regrowth and gene expression changes in LAPC4 tumors were compared to the previously determined response of LNCaP and LuCaP35 xenograft tumors to 5ARI treatment during the off-cycle of IADT, LAPC4, LNCaP and LuCaP35 tumors were sensitive to androgen manipulation. However, in contrast to LNCaP and LuCaP35, dutasteride treatment during testosterone-stimulated prostate regrowth did not affect tumor regrowth or the expression of androgen responsive genes. Tumor response to dutasteride during the off-cycle of IADT is variable in xenograft prostate tumor models. Future studies will be required to elucidate the mechanisms contributing to the dutasteride resistance observed in the LAPC4 model during the off-cycle. PMID:25374909

  19. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation.

    PubMed

    Pandey, Rajan Kumar; Kumbhar, Bajarang Vasant; Srivastava, Shubham; Malik, Ruchi; Sundar, Shyam; Kunwar, Ambarish; Prajapati, Vijay Kumar

    2017-01-01

    Visceral leishmaniasis affects people from 70 countries worldwide, mostly from Indian, African and south American continent. The increasing resistance to antimonial, miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an antileishmanial drug with excellent efficacy and safety profile. In this study we have docked series of febrifugine analogues (n = 8813) against trypanothione reductase in three sequential docking modes. Extra precision docking resulted into 108 ligands showing better docking score as compared to two reference ligand. Furthermore, 108 febrifugine analogues and reference inhibitor clomipramine were subjected to ADMET, QikProp and molecular mechanics, the generalized born model and solvent accessibility study to ensure the toxicity caused by compounds and binding-free energy, respectively. Two best ligands (FFG7 and FFG2) qualifying above screening parameters were further subjected to molecular dynamics simulation. Conducting these studies, here we confirmed that 6-chloro-3-[3-(3-hydroxy-2-piperidyl)-2-oxo-propyl]-7-(4-pyridyl) quinazolin-4-one can be potential drug candidate to fight against Leishmania donovani parasites.

  20. Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors.

    PubMed

    Penning, Trevor M; Steckelbroeck, Stephan; Bauman, David R; Miller, Meredith W; Jin, Yi; Peehl, Donna M; Fung, Kar-Ming; Lin, Hseuh-Kung

    2006-03-27

    Human aldo-keto reductases (AKR) of the 1A, 1B, 1C and 1D subfamilies are involved in the pre-receptor regulation of nuclear (steroid hormone and orphan) receptors by regulating the local concentrations of their lipophilic ligands. AKR1C3 is one of the most interesting isoforms. It was cloned from human prostate and the recombinant protein was found to function as a 3-, 17- and 20-ketosteroid reductase with a preference for the conversion of Delta4-androstene-3,17-dione to testosterone implicating this enzyme in the local production of active androgens within the prostate. Using a validated isoform specific real-time RT-PCR procedure the AKR1C3 transcript was shown to be more abundant in primary cultures of epithelial cells than stromal cells, and its expression in stromal cells increased with benign and malignant disease. Using a validated isoform specific monoclonal Ab, AKR1C3 protein expression was also detected in prostate epithelial cells by immunoblot analysis. Immunohistochemical staining of prostate tissue showed that AKR1C3 was expressed in adenocarcinoma and surprisingly high expression was observed in the endothelial cells. These cells are a rich source of prostaglandin G/H synthase 2 (COX-2) and vasoactive prostaglandins (PG) and thus the ability of recombinant AKR1C enzymes to act as PGF synthases was compared. AKR1C3 had the highest catalytic efficiency (kcat/Km) for the 11-ketoreduction of PGD2 to yield 9alpha,11beta-PGF2 raising the prospect that AKR1C3 may govern ligand access to peroxisome proliferator activated receptor (PPARgamma). Activation of PPARgamma is often a pro-apoptotic signal and/or leads to terminal differentiation, while 9alpha,11beta-PGF2 is a pro-proliferative signal. AKR1C3 is potently inhibited by non-steroidal anti-inflammatory drugs suggesting that the cancer chemopreventive properties of these agents may be mediated either by inhibition of AKR1C3 or COX. To discriminate between these effects we developed potent AKR1C

  1. Differential effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors on the development of myopathy in young rats.

    PubMed

    Reijneveld, J C; Koot, R W; Bredman, J J; Joles, J A; Bär, P R

    1996-06-01

    HMG-CoA reductase inhibitors (statins), cholesterol-lowering drugs that have not been approved for use in children and adolescents, may cause myopathy as a side effect. We compared the effects of three statins (simva-, prava- and lovastatin) in young rats to determine whether skeletal muscle of young animals is more susceptible than that of adults. We also evaluated whether the type of statin (lipophilic versus hydrophilic) determines the degree of muscle damage. Administration via chow of simvastatin (15 mg/kg of body weight/d) and lovastatin (43-55 mg/kg of body weight/d), both lipophilic, caused stunted growth, high creatine kinase (CK) activity in plasma, and severe myopathy. Statin doses that caused damage were much lower for young rats than for adults. Pravastatin (8-55 mg/kg of body weight/d), a hydrophilic drug, caused none of these symptoms. Histologic analysis of hind paw muscles of simvastatin-and lovastatin-treated rats showed abundant signs of damage (hypercontraction, fiber necrosis) in the extensor digitorum longus, correlating with the symptoms noted above. No cellular infiltrates were seen at the onset, pointing to a noninflammatory myopathy. Pravastatin-treated rats never showed signs of myopathy. Impaired DNA synthesis may explain why muscle toxicity is seen at lower doses in young, rapidly developing rats than in adult animals. The differences in muscle damage between the statins may be attributed to differences in lipophilicity and thus in tissue selectivity. Our results can be important when considering drug therapy in young patients with inherited lipoprotein disorders.

  2. Effects of HMG-CoA reductase inhibitors on excitation-contraction coupling of rat skeletal muscle.

    PubMed

    Pierno, S; De Luca, A; Liantonio, A; Camerino, C; Conte Camerino, D

    1999-01-01

    3-Hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors currently used as cholesterol-lowering drugs produce side effects in patients, one of which is myopathy. In the present study we compared the effect of a 3-month chronic treatment with two different compounds, simvastatin and pravastatin, on the excitation-contraction coupling of rat skeletal muscle fibers, the mechanism which links membrane depolarization to the movements of cytosolic Ca2+ from intracellular stores. The voltage threshold for mechanical activation of extensor digitorum longus muscle fibers in response to depolarizing pulses of various durations was studied in vitro by the two intracellular microelectrode method in 'point' voltage clamp mode. Simvastatin (5-50 mg/kg) modified the mechanical threshold of striated fibers in a dose-dependent manner. The muscle fibers of rats treated with 10 mg/kg and 50 mg/kg of simvastatin needed significantly less depolarization to contract than did untreated fibers at each pulse duration, suggesting that levels of cytosolic Ca2+ were higher. Consequently, the rheobase voltage for fiber contraction was significantly shifted toward more negative potentials with respect to controls by 2.4 mV and 7.1 mV in the 10 mg/kg and 50 mg/kg simvastatin-treated animals, respectively. Pravastatin treatment at 100 mg/kg did not produce any alteration of excitation-contraction coupling since the rheobase voltage was similar to that of controls. The different physicochemical properties of the two drugs may underlie the different effect observed because lipophilic agents, such as simvastatin, have been shown to affect sterol biosynthesis in many tissues, whereas the hydrophilic pravastatin is hepato-selective.

  3. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    SciTech Connect

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  4. Risk of Fractures and Falls during and after 5-α Reductase Inhibitor Use: A Nationwide Cohort Study

    PubMed Central

    Robinson, David; Garmo, Hans; Stattin, Pär; Michaëlsson, Karl

    2015-01-01

    Background Lower urinary tract symptoms are common among older men and 5-α reductase inhibitors (5-ARI) are a group of drugs recommended in treating these symptoms. The effect on prostate volume is mediated by a reduction in dihydrotestosterone; however, this reduction is counterbalanced by a 25% rise in serum testosterone levels. Therefore, 5-ARI use might have systemic effects and differentially affect bone mineral density, muscular mass and strength, as well as falls, all of which are major determinants of fractures in older men. Methods We conducted a nationwide cohort study of all Swedish men who used 5-ARI by comparing their risk of hip fracture, any type of fracture and of falls with matched control men randomly selected from the population and unexposed to 5-ARI. Results During 1 417 673 person-years of follow-up, 10 418 men had a hip fracture, 19 570 any type of fracture and 46 755 a fall requiring hospital care. Compared with unexposed men, current users of 5-ARI had an adjusted hazard ratio (HR) of 0.96 (95% CI 0.91–1.02) for hip fracture, an HR of 0.94 (95% CI 0.90–0.98) for all fracture and an HR of 0.99 (95% CI 0.96–1.02) for falls. Former users had an increased risk of hip fractures (HR 1.10, 95% CI 1.01–1.19). Conclusion 5-ARI is safe from a bone health perspective with an unaltered risk of fractures and falls during periods of use. After discontinuation of 5-ARI, there is a modest increase in the rate of fractures and falls. PMID:26469978

  5. Effects of a purported aromatase and 5α-reductase inhibitor on hormone profiles in college-age men.

    PubMed

    Wilborn, Colin; Taylor, Lem; Poole, Chris; Foster, Cliffa; Willoughby, Darryn; Kreider, Richard

    2010-12-01

    The purpose of this study was to determine the effects of an alleged aromatase and 5-α reductase inhibitor (AI) on strength, body composition, and hormonal profiles in resistance-trained men. Thirty resistance-trained men were randomly assigned in a double-blind manner to ingest 500 mg of either a placebo (PL) or AI once per day for 8 wk. Participants participated in a 4-d/wk resistance-training program for 8 wk. At Weeks 0, 4, and 8, body composition, 1-repetition-maximum (1RM) bench press and leg press, muscle endurance, anaerobic power, and hormonal profiles were assessed. Statistical analyses used a 2-way ANOVA with repeated measures for all criterion variables (p ≤ .05). Significant Group × Time interaction effects occurred over the 8-wk period for percent body fat (AI: -1.77% ± 1.52%, PL: -0.55% ± 1.72%; p = .048), total testosterone (AI: 0.97 ± 2.67 ng/ml, PL: -2.10 ± 3.75 ng/ml; p = .018), and bioavailable testosterone (AI: 1.32 ± 3.45 ng/ml, PL: -1.69 ± 3.94 ng/ml; p = .049). Significant main effects for time (p ≤ .05) were noted for bench- and leg-press 1RM, lean body mass, and estradiol. No significant changes were detected among groups for Wingate peak or mean power, total body weight, dihydrotestosterone, hemodynamic variables, or clinical safety data (p > .05). The authors concluded that 500 mg of dailyAI supplementation significantly affected percent body fat, total testosterone, and bioavailable testosterone compared with a placebo in a double-blind fashion.

  6. Use of hydroxy-methyl-glutaryl coenzyme A reductase inhibitors is associated with risk of lymphoid malignancies.

    PubMed

    Iwata, Hiroshi; Matsuo, Keitaro; Hara, Shigeo; Takeuchi, Kengo; Aoyama, Tomonori; Murashige, Naoko; Kanda, Yoshinobu; Mori, Shin-Ichiro; Suzuki, Risturo; Tachibana, Shintaro; Yamane, Masaaki; Odawara, Masato; Mutou, Yoshitomo; Kami, Masahiro

    2006-02-01

    It has been speculated that the use of hydroxy-methyl-glutaryl coenzyme A reductase inhibitors (statins) is associated with the risk of malignant diseases. Considering their immunosuppressive activities, malignant diseases that are associated with an immunosuppressive status seem feasible to examine the association. We therefore examined the association between statin use and development of lymphoid malignancies in a case-control study. Cases were 221 consecutive incident cases with histopathologically proven lymphoid malignancies (lymphoma and myeloma), hospitalized in the Department of Hematology of Toranomon Hospital (Tokyo, Japan) between 1995 and 2001. Two independent control groups, comprising 442 and 437 inpatients without malignancies from the Departments of Orthopedics and Otorhinolaryngology of the same hospital, were selected to test for consistency of association. Controls were matched individually with cases for age, sex and year of admission. Subject information, including statin use, was abstracted from medical records at the time of hospitalization. Strength of association was evaluated as an adjusted odds ratios (aOR) using a conditional logistic regression model. A higher frequency of statin use was found among patients with lymphoid malignancies in comparison with both orthopedic (aOR 2.11, 95% CI 1.20-3.69, P = 0.009) and otorhinolaryngology patients (aOR 2.59, 95% CI 1.45-4.65, P = 0.001), the significance being maintained when the two control groups were combined (aOR 2.24, 95% CI 1.37-3.66, P = 0.001). In conclusion, we observed an elevated risk of lymphoid malignancy with statin use among Japanese patients. Further evaluations in different populations are required to draw conclusions as to the carcinogenicity of lymphoid malignancies with statin use.

  7. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  8. 2,4-Diaminothieno[2,3-d]pyrimidine lipophilic antifolates as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase.

    PubMed

    Rosowsky, A; Papoulis, A T; Queener, S F

    1997-10-24

    Ten previously unreported 2,4-diaminothieno[2,3-d]pyrimidine lipophilic dihydrofolate reductase inhibitors were synthesized as potential inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Pivaloylation of 2,4-diamino-5-methylthieno[2,3-d]pyrimidine followed by dibromination with N-bromosuccinimide in the presence of benzoyl peroxide gave 2,4-bis(pivaloylamino)-6-bromo-5-(bromomethyl)thieno[2,3-d]pyrimid ine, which after condensation with substituted anilines or N-methylanilines and deprotection with base yielded 2,4-diamino-6-bromo-5-[(substituted anilino)methyl]thieno[2,3-d]pyrimidines. Removal of the 6-bromo substituent was accomplished with sodium borohydride and palladium chloride. The reaction yields were generally good to excellent. The products were tested as inhibitors of dihydrofolate reductase (DHFR) from P. carinii, T. gondii, and rat liver. Although the IC50 could not be reached for the 6-unsubstituted compounds because of their extremely poor solubility, three of the five 6-bromo derivatives were soluble enough to allow the IC50 to be determined against all three enzymes. 2,4-Diamino-5-[3,5-dichloro-4-(1-pyrrolo)anilino]methyl]- 6-bromothieno[2,3-d]pyrimidine was the most active of the 6-bromo derivatives, with an IC50 of 7.5 microM against P. carinii DHFR, but showed no selectivity for either P. carinii or T. gondii DHFR relative to the enzyme from rat liver.

  9. HMG-CoA reductase inhibitor improves endothelial dysfunction in spontaneous hypertensive rats via down-regulation of caveolin-1 and activation of endothelial nitric oxide synthase.

    PubMed

    Suh, Jung-Won; Choi, Dong-Ju; Chang, Hyuk-Jae; Cho, Young-Seok; Youn, Tae-Jin; Chae, In-Ho; Kim, Kwang-Il; Kim, Cheol-Ho; Kim, Hyo-Soo; Oh, Buyng-Hee; Park, Young-Bae

    2010-01-01

    Hypertension is associated with endothelial dysfunction and increased cardiovascular risk. Caveolin-1 regulates nitric oxide (NO) signaling by modulating endothelial nitric oxide synthase (eNOS). The purpose of this study was to examine whether HMG-CoA reductase inhibitor improves impaired endothelial function of the aorta in spontaneous hypertensive rat (SHR) and to determine the underlying mechanisms involved. Eight-week-old male SHR were assigned to either a control group (CON, n=11) or a rosuvastatin group (ROS, n=12), rosuvastatin (10 mg/kg/day) administered for eight weeks. Abdominal aortic rings were prepared and responses to acetylcholine (10(-9)-10(-4) M) were determined in vitro. To evaluate the potential role of NO and caveolin-1, we examined the plasma activity of NOx, eNOS, phosphorylated-eNOS and expression of caveolin-1. The relaxation in response to acetylcholine was significantly enhanced in ROS compared to CON. Expression of eNOS RNA was unchanged, whereas NOx level and phosphorylated-eNOS at serine-1177 was increased accompanied with depressed level of caveolin-1 in ROS. We conclude that 3-Hydroxy-3-methylglutaryl Coenzyme-A (HMG-CoA) reductase inhibitor can improve impaired endothelial dysfunction in SHR, and its underlying mechanisms are associated with increased NO production. Furthermore, HMG-CoA reductase inhibitor can activate the eNOS by phosphorylation related to decreased caveolin-1 abundance. These results imply the therapeutic strategies for the high blood pressure-associated endothelial dysfunction through modifying caveolin status.

  10. HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis: role of RhoA/ROCK and MAPK pathways.

    PubMed

    Rupérez, Mónica; Rodrigues-Díez, Raquel; Blanco-Colio, Luis Miguel; Sánchez-López, Elsa; Rodríguez-Vita, Juan; Esteban, Vanesa; Carvajal, Gisselle; Plaza, Juan José; Egido, Jesús; Ruiz-Ortega, Marta

    2007-08-01

    3-Hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) present beneficial effects in cardiovascular diseases. Angiotensin II (Ang II) contributes to cardiovascular damage through the production of profibrotic factors, such as connective tissue growth factor (CTGF). Our aim was to investigate whether HMG-CoA reductase inhibitors could modulate Ang II responses, evaluating CTGF expression and the mechanisms underlying this process. In cultured vascular smooth muscle cells (VSMCs) atorvastatin and simvastatin inhibited Ang II-induced CTGF production. The inhibitory effect of statins on CTGF upregulation was reversed by mevalonate and geranylgeranylpyrophosphate, suggesting that RhoA inhibition could be involved in this process. In VSMCs, statins inhibited Ang II-induced Rho membrane localization and activation. In these cells Ang II regulated CTGF via RhoA/Rho kinase activation, as shown by inhibition of Rho with C3 exoenzyme, RhoA dominant-negative overexpression, and Rho kinase inhibition. Furthermore, activation of p38MAPK and JNK, and redox process were also involved in Ang II-mediated CTGF upregulation, and were downregulated by statins. In rats infused with Ang II (100 ng/kg per minute) for 2 weeks, treatment with atorvastatin (5 mg/kg per day) diminished aortic CTGF and Rho activation without blood pressure modification. Rho kinase inhibition decreased CTGF upregulation in rat aorta, mimicking statin effect. CTGF is a vascular fibrosis mediator. Statins diminished extracellular matrix (ECM) overexpression caused by Ang II in vivo and in vitro. In summary, HMG-CoA reductase inhibitors inhibit several intracellular signaling systems activated by Ang II (RhoA/Rho kinase and MAPK pathways and redox process) involved in the regulation of CTGF. Our results may explain, at least in part, some beneficial effects of statins in cardiovascular diseases.

  11. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    SciTech Connect

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  12. Risk of gynecomastia and breast cancer associated with the use of 5-alpha reductase inhibitors for benign prostatic hyperplasia

    PubMed Central

    Hagberg, Katrina Wilcox; Divan, Hozefa A; Fang, Shona C; Nickel, J Curtis; Jick, Susan S

    2017-01-01

    Background Clinical trial results suggest that 5-alpha reductase inhibitors (5ARIs) for the treatment of benign prostatic hyperplasia (BPH) may increase the risk of gynecomastia and male breast cancer, but epidemiological studies have been limited. Patients and methods We conducted a cohort study with nested case–control analyses using the UK Clinical Practice Research Datalink. We identified men diagnosed with BPH who were free from Klinefelter syndrome, prostate, genital or urinary cancer, prostatectomy or orchiectomy, or evidence of gynecomastia or breast cancer. Patients entered the cohort at age ≥40 years and at least 3 years after the start of their electronic medical record. We classified exposure as 5ARIs (alone or in combination with alpha blockers [ABs]), AB only, or unexposed to 5ARIs and ABs. Cases were men who had a first-time diagnosis of gynecomastia or breast cancer. Incidence rates and incidence rate ratios (IRRs) with 95% confidence intervals (CIs) in the gynecomastia analysis and crude and adjusted odds ratios (ORs) with 95% CIs in both analyses were calculated. Results Compared to no exposure, gynecomastia risk was elevated for users of 5ARIs (alone or in combination with ABs) in both the cohort (IRR=3.55, 95% CI 3.05–4.14) and case–control analyses (OR=3.31, 95% CI 2.66–4.10), whereas the risk was null for users of AB only. The increased risk of gynecomastia with the use of 5ARIs persisted regardless of the number of prescriptions, exposure timing, and presence or absence of concomitant prescriptions for drugs known to be associated with gynecomastia. The risk was higher for dutasteride than for finasteride. 5ARI users did not have an increased risk of breast cancer compared to unexposed men (OR=1.52, 95% CI 0.61–3.80). Conclusion In men with BPH, 5ARIs significantly increased the risk of gynecomastia, but not breast cancer, compared to AB use and no exposure. PMID:28228662

  13. HMG-CoA reductase inhibitor-induced myopathy in the rat: cyclosporine A interaction and mechanism studies.

    PubMed

    Smith, P F; Eydelloth, R S; Grossman, S J; Stubbs, R J; Schwartz, M S; Germershausen, J I; Vyas, K P; Kari, P H; MacDonald, J S

    1991-06-01

    Recent clinical evidence indicates a potential for skeletal muscle toxicity after therapy with HMG-CoA reductase inhibitors (HMGRIs) in man. Although the incidence of drug-induced skeletal muscle toxicity is very low (0.1-0.2%) with monotherapy, it may increase following concomitant drug therapy with the immunosuppressant, cyclosporine A (CsA), and possibly with certain other hypolipidemic agents. In the Sprague-Dawley rat, very high, pharmacologically comparable dosages (150-1200 mg/kg/day) of structurally similar HMGRIs (lovastatin, simvastatin, pravastatin and L-647, 318) produced dose-related increases in the incidence and severity of skeletal muscle degeneration. Physical signs included inappetence, decreased activity, loss of body weight, localized alopecia and mortality. To evaluate the interaction between HMGRIs and CsA, a rat model of CsA-induced cholestasis was developed. In this 2-week model, the skeletal muscle toxicity of the HMGRIs was clearly potentiated by CsA (10 mg/kg/day). Doses of HMGRIs which did not produce skeletal muscle toxicity when given alone caused between 75 and 100% incidence of myopathy (very slight to marked skeletal muscle degeneration) when CsA was coadministered. Typical light microscopic changes included myofiber necrosis with interstitial edema and inflammatory infiltration in areas of acute injury. Histochemical characterization of the muscle lesion indicated that type 2B fibers (primarily glycolytic white fibers) were most sensitive to this toxicity but that, with prolonged administration, all fiber types were ultimately affected. Results of pharmacokinetic studies in rats treated with various HMGRIs +/- CsA indicated that coadministration of CsA alters the disposition of these compounds, resulting in increased systemic exposure (e.g., increased area under the plasma drug concentration vs. time curve-AUC) and consequent (up to 13-fold) increases in skeletal muscle drug levels. Evaluation of the potential interaction between

  14. Use of bacterial surrogates as a tool to explore antimalarial drug interaction: Synergism between inhibitors of malarial dihydrofolate reductase and dihydropteroate synthase.

    PubMed

    Talawanich, Yuwadee; Kamchonwongpaisan, Sumalee; Sirawaraporn, Worachart; Yuthavong, Yongyuth

    2015-09-01

    Interaction between antimalarial drugs is important in determining the outcome of chemotherapy using drug combinations. Inhibitors of dihydrofolate reductase (DHFR) such as pyrimethamine and of dihydropteroate synthase (DHPS) such as sulfa drugs are known to have synergistic interactions. However, studies of the synergism are complicated by the fact that the malaria parasite can also salvage exogenous folates, and the salvage may also be affected by the drugs. It is desirable to have a convenient system to study interaction of DHFR and DHPS inhibitors without such complications. Here, we describe the use of Escherichia coli transformed with malarial DHFR and DHPS, while its own corresponding genes have been inactivated by optimal concentration of trimethoprim and genetic knockout, respectively, to study the interaction of the inhibitors. Marked synergistic effects are observed for all combinations of pyrimethamine and sulfa inhibitors in the presence of trimethoprim. At 0.05μM trimethoprim, sum of fractional inhibitory concentrations, ΣFIC of pyrimethamine with sulfadoxine, pyrimethamine with sulfathiazole, pyrimethamine with sulfamethoxazole, and pyrimethamine with dapsone are in the range of 0.24-0.41. These results show synergism between inhibitors of the two enzymes even in the absence of folate transport and uptake. This bacterial surrogate system should be useful as a tool for assessing the interactions of drug combinations between the DHFR and DHPS inhibitors.

  15. Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI).

    PubMed

    Mehboob, Shahila; Song, Jinhua; Hevener, Kirk E; Su, Pin-Chih; Boci, Teuta; Brubaker, Libby; Truong, Lena; Mistry, Tina; Deng, Jiangping; Cook, James L; Santarsiero, Bernard D; Ghosh, Arun K; Johnson, Michael E

    2015-03-15

    Francisella tularensis, the causative agent of tularemia, presents a significant biological threat and is a Category A priority pathogen due to its potential for weaponization. The bacterial FASII pathway is a viable target for the development of novel antibacterial agents treating Gram-negative infections. Here we report the advancement of a promising series of benzimidazole FabI (enoyl-ACP reductase) inhibitors to a second-generation using a systematic, structure-guided lead optimization strategy, and the determination of several co-crystal structures that confirm the binding mode of designed inhibitors. These compounds display an improved low nanomolar enzymatic activity as well as promising low microgram/mL antibacterial activity against both F. tularensis and Staphylococcus aureus and its methicillin-resistant strain (MRSA). The improvements in activity accompanying structural modifications lead to a better understanding of the relationship between the chemical structure and biological activity that encompasses both enzymatic and whole-cell activity.

  16. Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography

    PubMed Central

    2011-01-01

    Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei, the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR–ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay. PMID:21851087

  17. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors.

    PubMed

    Takeda, Michio; Noshiro, Rie; Onozato, Maristela Lika; Tojo, Akihiro; Hasannejad, Habib; Huang, Xiu-Lin; Narikawa, Shinichi; Endou, Hitoshi

    2004-01-12

    The purpose of this study was to elucidate the role of human organic anion transporters (human OATs) in the induction of drug-induced skeletal muscle abnormalities. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have been clinically used for lowering plasma cholesterol levels, and are known to induce various forms of skeletal muscle abnormalities including myopathy and rhabdomyolysis. Immunohistochemical analysis revealed that human OAT1 and human OAT3 are localized in the cytoplasmic membrane of the human skeletal muscles. The activities of human OATs were measured using mouse cell lines from renal proximal tubules stably expressing human OATs. Human OAT3, but not human OAT1, mediates the transport of pravastatin. Fluvastatin inhibited organic anion uptake mediated by human OAT1 in a mixture of competitive and noncompetitive manner, whereas simvastatin and fluvastatin noncompetitively inhibited the organic anion uptake mediated by human OAT3. In conclusion, the organic anion transporters OAT1 and OAT3 are localized in the cytoplasmic membrane of human skeletal muscles. Pravastatin, simvasatin, and fluvasatin inhibit human OATs activity. These results suggest that muscle organic anion transporters play a role in the muscular side effects of HMG-CoA reductase inhibitors.

  18. Hep-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase.

    PubMed

    Shaw, M K; Newton, R S; Sliskovic, D R; Roth, B D; Ferguson, E; Krause, B R

    1990-07-31

    CI-981, a novel synthetic inhibitor of HMG-CoA reductase, was previously reported to be highly liver-selective using an ex vivo approach. In order to determine liver-selectivity at the cellular level, CI-981 was evaluated in cell culture and compared to lovastatin, pravastatin, fluvastatin and BMY-21950. Using human cell lines, none of the compounds tested showed liver-selectivity, i.e. strong inhibition of cholesterol synthesis in Hep-G2 cells (liver model) but weak inhibition in human fibroblasts (peripheral cell model). In contrast, all drugs tested produced equal and potent inhibition of sterol synthesis in primary cultures of rat hepatocytes, and CI-981, pravastatin and BMY-21950 were more than 100-fold more potent in rat hepatocytes compared to human fibroblasts. Since all compounds were also equally potent at inhibiting sterol synthesis in a rat subcellular system and in vivo, the data suggest that the use of Hep-G2 cells may not be the cell system of choice in which to study inhibition of hepatic cholesterogenesis or to demonstrate liver selectivity of inhibitors of HMG-CoA reductase.

  19. Can HMG Co-A reductase inhibitors (“statins”) slow the progression of age-related macular degeneration? The Age-Related Maculopathy Statin Study (ARMSS)

    PubMed Central

    Guymer, Robyn H; Dimitrov, Peter N; Varsamidis, Mary; Lim, Lyndell L; Baird, Paul N; Vingrys, Algis J; Robman, Luba

    2008-01-01

    Age-related macular degeneration (AMD) is responsible for the majority of visual impairment in the Western world. The role of cholesterol-lowering medications, HMG Co-A reductase inhibitors or statins, in reducing the risk of AMD or of delaying its progression has not been fully investigated. A 3-year prospective randomized controlled trial of 40 mg simvastatin per day compared to placebo in subjects at high risk of AMD progression is described. This paper outlines the primary aims of the Age-Related Maculopathy Statin Study (ARMSS), and the methodology involved. Standardized clinical grading of macular photographs and comparison of serial macular digital photographs, using the International grading scheme, form the basis for assessment of primary study outcomes. In addition, macular function is assessed at each visit with detailed psychophysical measurements of rod and cone function. Information collected in this study will assist in the assessment of the potential value of HMG Co-A reductase inhibitors (statins) in reducing the risk of AMD progression. PMID:18982929

  20. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase.

    PubMed

    Cheng, Yu-Rong; Sun, Zhi-Jie; Cui, Gu-Zhen; Song, Xiaojin; Cui, Qiu

    2016-11-01

    Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4°C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120Gy yielded more DHA compared with cells from 40Gy, 80Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4°C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27g/Lh and 30% from 21 to 27g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress.

  1. Regulation of cytochrome P450 expression by inhibitors of hydroxymethylglutaryl-coenzyme A reductase in primary cultured rat hepatocytes and in rat liver.

    PubMed

    Kocarek, T A; Reddy, A B

    1996-11-01

    It was previously demonstrated that treatment of primary cultured rat hepatocytes with lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, induced the mRNAs for several cytochromes P450 (P450s), including CYP2B1/2, CYP3A1/2, and CYP4A. In this study, we have compared the effects of lovastatin with those of three additional HMG-CoA reductase inhibitors (simvastatin, pravastatin, and the structurally dissimilar drug fluvastatin) on P450 expression in primary cultured rat hepatocytes, and we have also characterized the effects of in vivo treatment with fluvastatin on P450 expression in rat liver. Treatment of cultured hepatocytes with lovastatin, simvastatin, or fluvastatin increased CYP2B1/2, CYP3A1/2, and CYP4A mRNA and immunoreactive protein levels over the dose range (3 x 10(-6) to 3 x 10(-5) M) required to increase the amount of HMG-CoA reductase mRNA. The increases in CYP2B1/2 levels produced by 3 x 10(-5) M fluvastatin treatment were larger than those produced by lovastatin or simvastatin treatment or by treatment with 10(-4) M phenobarbital. In contrast, treatment of cultured hepatocytes with 3 x 10(-5) M lovastatin, simvastatin, or fluvastatin increased CYP3A1/2 and CYP4A mRNA and immunoreactive protein to lower levels than those produced by treatment with 10(-5) M dexamethasone or 10(-4) M ciprofibrate. Treatment of cultured hepatocytes with pravastatin had little or no effect on the amount of any of the P450s examined, although this drug induced HMG-CoA reductase mRNA as effectively as did fluvastatin. Incubation of hepatocytes with 10(-4) M fluvastatin increased CYP1A1 mRNA to 67% of the level induced by treatment with 10(-5) M beta-naphthoflavone. Doses of 50 or 100 mg/ kg/day fluvastatin administered for 3 days to rats increased the hepatic levels of CYP2B1/2 and CYP4A mRNA and immunoreactive protein, although to much lower levels than those produced by treatment with phenobarbital or ciprofibrate, respectively. Treatment of

  2. Molecular Docking and Binding Mode Analysis of Plant Alkaloids as in vitro and in silico Inhibitors of Trypanothione Reductase from Trypanosoma cruzi.

    PubMed

    Argüelles, Alonso J; Cordell, Geoffrey A; Maruenda, Helena

    2016-01-01

    Trypanothione reductase (TryR) is a key enzyme in the metabolism of Trypanosoma cruzi, the parasite responsible for Chagas disease. The available repertoire of TryR inhibitors relies heavily on synthetic substrates of limited structural diversity, and less on plant-derived natural products. In this study, a molecular docking procedure using a Lamarckian Genetic Algorithm was implemented to examine the protein-ligand binding interactions of strong in vitro inhibitors for which no X-ray data is available. In addition, a small, skeletally diverse, set of natural alkaloids was assessed computationally against T. cruzi TryR in search of new scaffolds for lead development. The preferential binding mode (low number of clusters, high cluster population), together with the deduced binding interactions were used to discriminate among the virtual inhibitors. This study confirms the prior in vitro data and proposes quebrachamine, cephalotaxine, cryptolepine, (22S,25S)-tomatidine, (22R,25S)-solanidine, and (22R,25R)-solasodine as new alkaloid scaffold leads in the search for more potent and selective TryR inhibitors.

  3. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  4. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    SciTech Connect

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D.

    2009-07-10

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  5. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.

    PubMed

    Schormann, N; Senkovich, O; Walker, K; Wright, D L; Anderson, A C; Rosowsky, A; Ananthan, S; Shinkre, B; Velu, S; Chattopadhyay, D

    2008-12-01

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  6. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  7. Synthesis and activity of novel 16-dehydropregnenolone acetate derivatives as inhibitors of type 1 5α-reductase and on cancer cell line SK-LU-1.

    PubMed

    Silva-Ortiz, Aylin Viviana; Bratoeff, Eugene; Ramírez-Apan, Teresa; Heuze, Yvonne; Sánchez, Araceli; Soriano, Juan; Cabeza, Marisa

    2015-12-15

    Testosterone (T) plays a crucial role in prostate growth. In androgen-dependent tissues T is reduced to dihydrotestosterone (DHT) because of the presence of the 5α-reductase enzyme. This androgen is more active than T, since it has a higher affinity for the androgen receptor (AR). When this mechanism is altered, androgen-dependent diseases, including prostate cancer, could result. The aim of this study was to synthesize several 16-dehydropregnenolone acetate derivatives containing a triazole ring at C-21 and a linear or alicyclic ester moiety at C-3 of the steroidal skeleton. These steroids were designed as potential inhibitors of the activity of both types (1 and 2) of 5α-reductase. The cytotoxic activity of these compounds was also evaluated on a panel of PC-3, MCF7, and SK-LU-1 human cancer cell lines. The results from this study showed that with the exception of steroids 20-oxo-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-3β-yl-propionate and 20-oxo-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-3β-yl-pentanoate, the compounds exhibit a lower inhibitory activity for both isoenzymes of 5α-reductase than finasteride. Furthermore the 3β-hydroxy-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-20-one and 20-oxo-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-3β-yl-acetate derivatives display 80% cytotoxic activity on the SK-LU-1 cell line. These results also indicated that the triazole derivatives, which have a hydroxyl or acetoxy group at C-3, could have an anticancer effect, whereas the derivatives with a alicyclic ester group at C-3 do not show biological activity.

  8. Fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, scavenges free radicals and inhibits lipid peroxidation in rat liver microsomes.

    PubMed

    Yamamoto, A; Hoshi, K; Ichihara, K

    1998-11-13

    We investigated the effect of fluvastatin sodium (fluvastatin) and pravastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, on the formation of thiobarbituric acid reactive substances both in vivo and in vitro in rat liver microsomes and on active oxygen species. Oral administration of fluvastatin at low doses (3.13 and 6.25 mg/kg) inhibited the formation of thiobarbituric acid reactive substances in rat liver microsomes, but high doses (12.5 and 25 mg/kg) did not change the formation of thiobarbituric acid reactive substances. Fluvastatin at any dose used had no effect on the content of cytochrome P-450 and the activity of NADPH-cytochrome P-450 reductase. In in vitro experiments, concentrations of fluvastatin ranging from 1 x 10(-6) - 1 x 10(-4) M markedly inhibited NADPH-dependent lipid peroxidation in liver microsomes, but pravastatin weakly inhibited lipid peroxidation. The order of magnitude of inhibition of each drug on in vitro lipid peroxidation was butylated hydroxytoluene > probucol > or = fluvastatin > pravastatin. Moreover, fluvastatin chemically scavenged active oxygen species such as hydroxyl radicals and superoxide anion generated by the Fenton reaction and by the xanthine-xanthine oxidase system, respectively, but pravastatin showed no scavenging of superoxide anion. These results indicate that the suppression of in vivo and in vitro lipid peroxidation in liver microsomes may be, at least in part, due to the scavenging by fluvastatin of free radicals.

  9. Synthesis and biological evaluation of esters of 16-formyl-17-methoxy-dehydroepiandrosterone derivatives as inhibitors of 5α-reductase type 2.

    PubMed

    Sánchez-Márquez, Araceli; Arellano, Yazmín; Bratoeff, Eugene; Heuze, Yvonne; Córdova, Karen; Nieves, Gladys; Soriano, Juan; Cabeza, Marisa

    2016-12-01

    In this study, we investigated the in vitro effect of 16-formyl-17-methoxy dehydroepiandrosterone derivatives on the activity of 5α-reductase type 2 (5α-R2) obtained from human prostate. The activity of different concentrations of these derivatives was determined for the conversion of labelled testosterone to dihydrotestosterone. The results indicated that an aliphatic ester moiety at the C-3 position of these derivatives increases their in vitro potency as inhibitors of 5α-R2 activity compared to finasteride®, which is considered to be a potent inhibitor of 5α-R2. In this case, the augmentation of the lipophilicity of these dehydroepiandrosterone derivatives increased their potency as inhibitors of 5α-R2. However, the presence of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl rings as the cycloaliphatic ester moiety at C-3 of the formyl methoxy dehydroepiandrosterone scaffold did not inhibit the activity of this enzyme. This may be due to the presence of steric factors between the enzyme and the spatial structure of these derivatives.

  10. Synthesis of 17beta-N-substituted 19-Nor-10-azasteroids as inhibitors of human 5alpha-reductases I and II.

    PubMed

    Scarpi, Dina; Occhiato, Ernesto G; Danza, Giovanna; Serio, Mario; Guarna, Antonio

    2002-11-01

    The synthesis of 17beta-[N-(phenyl)methyl/phenyl-amido] substituted 10-azasteroids has been accomplished by either the TiCl4- or TMSOTf-catalysed reaction of carbamates 11 and 12 with Danishefsky's diene. The reaction provided 5alpha-H isomers 3a-5a and 5beta-H isomers 3b-5b depending on the reaction conditions. Both epimers of each compound were tested against human 5alpha-reductase types I and II. Unexpectedly, 5beta-H compounds were found more active than their 5alpha-H counterparts, the best inhibitors being 3b (IC50=279 and 2000 nM toward isoenzyme I and II, respectively) and 5b (IC50=913 and 247 nM toward isoenzymes I and II, respectively).

  11. Structure-Based Design, Synthesis, and Evaluation of 2'-(2-Hydroxyethyl)-2'-deoxyadenosine and the 5'-Diphosphate Derivative as Ribonucleotide Reductase Inhibitors

    SciTech Connect

    Sun, D.; Xu, H.; Wijerathna, S.R.; Dealwis, C.; Lee, R.E.

    2010-08-27

    Analysis of the recently solved X-ray crystal structures of Saccharomyces cerevisiae ribonucleotide reductase I (ScRnr1) in complex with effectors and substrates led to the discovery of a conserved water molecule located at the active site that interacted with the 2'-hydroxy group of the nucleoside ribose. In this study 2'-(2-hydroxyethyl)-2'-deoxyadenosine 1 and the 5'-diphosphate derivative 2 were designed and synthesized to see if the conserved water molecule could be displaced by a hydroxymethylene group, to generate novel RNR inhibitors as potential antitumor agents. Herein we report the synthesis of analogues 1 and 2, and the co-crystal structure of adenosine diphosphate analogue 2 bound to ScRnr1, which shows the conserved water molecule is displaced as hypothesized.

  12. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme.

    PubMed

    Leopoldini, Monica; Malaj, Naim; Toscano, Marirosa; Sindona, Giovanni; Russo, Nino

    2010-10-13

    Density functional theory was applied to study the binding mode of new flavonoids as possible inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), an enzyme that catalyzes the four-electron reduction of HMGCoA to mevalonate, the committed step in the biosynthesis of sterols. The investigated flavonoid conjugates brutieridin and melitidin were recently quantified in the bergamot fruit extracts and identified to be structural analogues of statins, lipids concentration lowering drugs that inhibit HMGR. Computations allowed us to perform a detailed analysis of the geometrical and electronic features affecting the binding of these compounds, as well as that of the excellent simvastatin drug, to the active site of the enzyme and to give better insight into the inhibition process.

  13. 2,4-Diamino-6,7-dihydro-5H-cyclopenta[d]pyrimidine analogues of trimethoprim as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase.

    PubMed

    Rosowsky, A; Papoulis, A T; Queener, S F

    1998-03-12

    Three previously unreported (R,S)-2,4-diamino-5-[(3,4,5-trimethoxyphenyl) alkyl]-6,7-dihydro-5H-cyclopenta[d]pyrimidines 15a-c were synthesized as analogues of trimethoprim (TMP) and were tested as inhibitors of Pneumocystis carinii, Toxoplasma gondii, and rat liver dihydrofolate reductase (DHFR). The length of the alkyl bridge between the cyclopenta[d]pyrimidine and trimethoxyphenyl moiety ranged from one in 15a to three carbons in 15c. The products were tested as competitive inhibitors of the reduction of dihydrofolate by Pneumocystis carinii, Toxoplasma gondii, and rat liver DHFR. Compounds 15a-c had IC50 values of > 32, 1.8 and 1.3 microM, respectively, against P. carinii DHFR, as compared to 12 microM for TMP. Against the T. gondii enzyme, 15a-c had IC50 values of 21, 0.14 and 0.14 microM, respectively, as compared to 2.7 microM for TMP. Inhibitors 15b and 15c with two- and three-carbon bridges were significantly more potent than 15a against all three enzymes. Unlike TMP, 15b and 15c were better inhibitors of the rat liver enzyme than of the microbial enzymes. The potency of 15b and 15c against rat liver DHFR was less than has been reported for the corresponding 6,7-dihydro-5H-cyclopenta[d]pyrimidines with a classical p-aminobenzoyl-L-glutamate side chain as inhibitors of bovine, murine, and human DHFR.

  14. Potential risk of myopathy by HMG-CoA reductase inhibitors: a comparison of pravastatin and simvastatin effects on membrane electrical properties of rat skeletal muscle fibers.

    PubMed

    Pierno, S; De Luca, A; Tricarico, D; Roselli, A; Natuzzi, F; Ferrannini, E; Laico, M; Camerino, D C

    1995-12-01

    To get insight into the potential risk of myopathy associated with therapy involving 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, we evaluated in vivo and in vitro the effects of a daily 2 to 3-month treatment with pravastatin (100 mg/kg) and with simvastatin (5, 10 and 50 mg/kg) on the electrical properties of rat skeletal muscle fibers. The electromyographic activity revealed no sign of myopathy during treatment with pravastatin and with simvastatin. At the end of the treatment, the passive and active membrane electrical parameters of the extensor digitorum longus muscles were measured in vitro by computerized two-intracellular-microelectrode technique. A dose-dependent reduction of membrane chloride conductance was recorded in extensor digitorum longus fibers of simvastatin-treated groups, and at 50 mg/kg the reduction of chloride conductance was significant in 6 out of the 7 treated rats. By contrast, none of the pravastatin-treated rats showed significant alteration of chloride conductance. Consequently, the excitability parameters were modified by simvastatin but not by pravastatin treatment, whereas the resting membrane potential was not affected. An increase in potassium conductance, reduced by in vitro application of glybenclamide, was recorded in 30% of the simvastatin-treated rats (50 mg/kg) and in only 15% of the pravastatin-treated rats. Our results suggest that the risk of myopathy is much higher with the lipophilic simvastatin than with the hydrophilic pravastatin and support the hypothesis that the muscle toxicity of HMG-CoA reductase inhibitors is due to an intracellular action mediated by the inhibition of muscle cholesterol synthesis.

  15. Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms.

    PubMed

    Kumar, Anil; Sharma, Neha; Gupta, Amit; Kalonia, Harikesh; Mishra, Jitendriya

    2012-08-30

    Neuro-inflammation and oxidative stress plays a key role in the pathophysiology of Parkinson's disease (PD). Studies demonstrated that neuro-inflammation and associated infiltration of inflammatory cells into central nervous system are inhibited by 3-hydroxy-3-methyl glutaryl co-enzyme A (HMG-CoA) reductase inhibitors. Based on these experimental evidences, the present study has been designed to evaluate the neuroprotective effect of HMG-CoA reductase inhibitors (atorvastatin and simvastatin) against 6-hydroxydopamine (6-OHDA) induced unilateral lesion model of PD. In the present study, the animals were divided into nine groups (n=15 per group). Group I: Naive (without treatment); Group II: Sham (surgery performed, vehicle administered); Group III: Atorvastatin (20mg/kg); Group IV: Simvastatin (30 mg/kg); Group V: Control [Intrastriatal 6-OHDA (20 μg; single unilateral injection)]; Groups VI and VII: 6-OHDA (20 μg)+atorvastatin (10mg/kg and 20mg/kg) respectively; Groups VIII and IX: 6-OHDA (20 μg)+simvastatin (15 mg/kg and 30 mg/kg) respectively. Intrastriatal administration of 6-OHDA (20 μg; 4 μl of 5 μg/μl) significantly caused impairment in body weight, locomotor activity, rota-rod performance, oxidative defense and mitochondrial enzyme complex activity, and increase in the inflammatory cytokine levels (TNF-α and IL-6) as compared to naive animals. Atorvastatin (20mg/kg) and simvastatin (30 mg/kg) drug treatment significantly improved these behavioral and biochemical alterations restored mitochondrial enzyme complex activities and attenuated neuroinflammatory markers in 6-OHDA (20 μg) treated animals as compared to control group. The findings of the present study demonstrate the neuroprotective potential of statins in experimental model of 6-OHDA induced Parkinson like symptoms.

  16. Synthesis, biological profile, and quantitative structure-activity relationship of a series of novel 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    PubMed

    Sit, S Y; Parker, R A; Motoc, I; Han, W; Balasubramanian, N; Catt, J D; Brown, P J; Harte, W E; Thompson, M D; Wright, J J

    1990-11-01

    A series of 9,9-bis(4-fluorophenyl)-3,5-dihydroxy-8-(alkyltetrazol-5-yl)- 6,8-nonadienoic acid derivatives 1 were synthesized and found to inhibit competitively the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The analogues having 1N-methyltetrazol-5-yl attached to the C8-position (3a, 4a, R1 = R2 = F) are the most active in suppressing cholesterol biosynthesis in both in vitro and in vivo models: the IC50 for the chiral form of 3a is 19 nM, Ki = 4.3 x 10(-9)M when Km for HMG-CoA is 28 x 10(-6) M;1 the ED50 (oral) value corresponding to the lactone derivative (4a, BMY 22089) is approximately 0.1 mg/kg. Further, BMY 21950 is nearly 2 orders of magnitude more active in parenchymal heptaocytes, from which most of the serum cholesterol originates, than in other cell preparations (such as spleen, testes, ileum, adrenal, and ocular lens epithelial cells; Table III). This apparent tissue specificity may be highly beneficial since the blocking of cholesterol biosynthesis in other vital organs could eventually lead to undesirable side effects. In addition to the chemical synthesis and biological evaluation, a theoretical study aimed at relating the HMG-CoA reductase inhibitory potency to the three-dimensional structure of the inhibitors was undertaken. With a combination of molecular mapping and 3D-QSAR techniques, it was possible to determine a logical candidate for the conformation of the bound inhibitor and to quantitatively relate inhibitory potency to the shape and size of both the binding site and the C8-substituent.

  17. The 5α-reductase inhibitor Dutasteride but not Finasteride protects dopamine neurons in the MPTP mouse model of Parkinson's disease.

    PubMed

    Litim, Nadhir; Bourque, Mélanie; Al Sweidi, Sara; Morissette, Marc; Di Paolo, Thérèse

    2015-10-01

    Finasteride and Dutasteride are 5α-reductase inhibitors used in the clinic to treat endocrine conditions and were recently found to modulate brain dopamine (DA) neurotransmission and motor behavior. We investigated if Finasteride and Dutasteride have a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) male mice as a model of Parkinson's disease (PD). Experimental groups included saline treated controls and mice treated with saline, Finasteride (5 and 12.5 mg/kg) or Dutasteride (5 and 12.5 mg/kg) for 5 days before and 5 days after MPTP administration (4 MPTP injections, 6.5 mg/kg on day 5 inducing a moderate DA depletion) and then they were euthanized. MPTP administration decreased striatal DA contents measured by HPLC while serotonin contents remained unchanged. MPTP mice treated with Dutasteride 5 and 12.5 mg/kg had higher striatal DA and metabolites (DOPAC and HVA) contents with a decrease of metabolites/DA ratios compared to saline-treated MPTP mice. Finasteride had no protective effect on striatal DA contents. Tyrosine hydroxylase (TH) mRNA levels measured by in situ hybridization in the substantia nigra pars compacta were unchanged. Dutasteride at 12.5 mg/kg reduced the effect of MPTP on specific binding to striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) measured by autoradiography. MPTP reduced compared to controls plasma testosterone (T) and dihydrotestosterone (DHT) concentrations measured by liquid chromatography-tandem mass spectrometry; Dutasteride and Finasteride increased plasma T levels while DHT levels remained low. In summary, our results showed that a 5α-reductase inhibitor, Dutasteride has neuroprotective activity preventing in male mice the MPTP-induced loss of several dopaminergic markers.

  18. Brain and Optic System Pathology in Hypocholesterolemic Dogs Treated with a Competitive Inhibitor of 3-hydroxy-3-methylglutaryl Coenzyme A Reductase

    PubMed Central

    Berry, P. H.; MacDonald, J. S.; Alberts, A. W.; Molon-Noblot, S.; Chen, J. S.; Lo, C.-Y. L.; Greenspan, M. D.; Allen, H.; Durand-Cavagna, G.; Jensen, R.; Bailly, Y.; Delort, P.; Duprat, P.

    1988-01-01

    The cholesterol lowering compound lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34 HMG CoA reductase), was given in nine separate experiments to normocholesterolemic dogs at rates up to 180 times the maximum therapeutic dose in man (1 mg/kg/day). Mean serum total cholesterol concentrations were reduced as much as 88% below normal. Clinical evidence of neurotoxicity occurred in up to 37% of animals given 180 mg/kg/day lovastatin for 11 or more days, especially in one laboratory where the dosing regime resulted in higher concentrations of plasma drug levels. Dogs receiving 60 mg/kg/day or less never exhibited neurologic signs. The central nervous system (CNS) of affected dogs exhibited endothelial degeneration and hemorrhagic encephalopathy. Focal extravasation of horseradish peroxidase occurred frequently (6/8) in the retrolaminar optic nerve of asymptomatic or clinically affected dogs given 180 mg/kg/day lovastatin, with endothelial degeneration and discrete optic nerve degenerative lesions interpreted as ischemic. The association between the degree of hypocholesterolemia and occurrence of clinical signs was not exact. Total brain cholesterol was similar in treated and control dogs. Hypocholesterolemic dogs had proportionally lowered serum concentrations of alpha-tocopherol, but oral supplementation of this vitamin did not prevent the neurologic syndrome. Endothelial degeneration in the CNS and optic nerve may have reflected in vitro morphologic effects of HMG CoA reductase inhibitors due to extreme inhibition of nonsterol isoprene synthesis. Retinogeniculate axonal (Wallerianlike) degeneration occurred in ≥12% of dogs given 60 mg/kg/day or more lovastatin, with central chromatolysis of occasional retinal ganglion cells. These neuroaxonal changes may have been secondary to vascular effects, but superimposed direct neurotoxic action at the high dosage levels of lovastatin could not be excluded. There was no

  19. The effect of electron transport (ET) inhibitors and thiabendazole on the fumarate reductase (FR) and succinate dehydrogenase (SDH) of Strongyloides ratti infective (L3) larvae.

    PubMed

    Armson, A; Grubb, W B; Mendis, A H

    1995-02-01

    The fumarate reductase (FR) and succinate dehydrogenase (SDH) activities of isolated submitochondrial particles (SMPs) prepared from axenised L3 larvae of S. ratti were characterised with respect to their response to a selected range of inhibitors. Rotenone (a specific inhibitor of electron transport Complex I) inhibited the S. ratti FR (EC50 = 3.0 x 10(-7) M) but not SDH. This strongly suggests that the S. ratti FR is functionally linked with the S. ratti ET-Complex I. 2-Thenoyltrifluoroacetone (TTFA, an inhibitor of ET-Complex II) inhibited FR (EC50 = 2.6 x 10(-5) M) and SDH (EC50 = 2.8 x 10(-5) M) with similar effectiveness. Sodium malonate (substrate analogue of succinate) had a greater affinity for SDH (EC50 = 6.8 x 10(-4) M), than FR (EC50 = 1.9 x 10(-2) M). Sodium fumarate was ca. 8-fold more effective in inhibiting the S. ratti FR (EC50 = 6.0 x 10(-4) M) than SDH (EC50 = 4.8 x 10(-3) M). The S. ratti FR was more sensitive to inhibition by thiabendazole (TBZ; EC50 = 4.6 x 10(-4) M) than SDH (EC50 > 1.0 x 10(-3) M), suggesting that one of the sites-of-action of TBZ to be the FR of S. ratti mitochondria. More potent inhibitors of S. ratti FR, if developed, may prove to be effective chemotherapeutic agents in the management of human strongloidiasis.

  20. New Iminodiacetate-Thiosemicarbazone Hybrids and Their Copper(II) Complexes Are Potential Ribonucleotide Reductase R2 Inhibitors with High Antiproliferative Activity.

    PubMed

    Zaltariov, Mirela F; Hammerstad, Marta; Arabshahi, Homayon J; Jovanović, Katarina; Richter, Klaus W; Cazacu, Maria; Shova, Sergiu; Balan, Mihaela; Andersen, Niels H; Radulović, Siniša; Reynisson, Jóhannes; Andersson, K Kristoffer; Arion, Vladimir B

    2017-03-20

    As ribonucleotide reductase (RNR) plays a crucial role in nucleic acid metabolism, it is an important target for anticancer therapy. The thiosemicarbazone Triapine is an efficient R2 inhibitor, which has entered ∼20 clinical trials. Thiosemicarbazones are supposed to exert their biological effects through effectively binding transition-metal ions. In this study, six iminodiacetate-thiosemicarbazones able to form transition-metal complexes, as well as six dicopper(II) complexes, were synthesized and fully characterized by analytical, spectroscopic techniques (IR, UV-vis; (1)H and (13)C NMR), electrospray ionization mass spectrometry, and X-ray diffraction. The antiproliferative effects were examined in several human cancer and one noncancerous cell lines. Several of the compounds showed high cytotoxicity and marked selectivity for cancer cells. On the basis of this, and on molecular docking calculations one lead dicopper(II) complex and one thiosemicarbazone were chosen for in vitro analysis as potential R2 inhibitors. Their interaction with R2 and effect on the Fe(III)2-Y· cofactor were characterized by microscale thermophoresis, and two spectroscopic techniques, namely, electron paramagnetic resonance and UV-vis spectroscopy. Our findings suggest that several of the synthesized proligands and copper(II) complexes are effective antiproliferative agents in several cancer cell lines, targeting RNR, which deserve further investigation as potential anticancer drugs.

  1. Effect of NK-104, a new synthetic HMG-CoA reductase inhibitor, on triglyceride secretion and fatty acid oxidation in rat liver.

    PubMed

    Yamamoto, K; Todaka, N; Goto, H; Jayasooriya, A P; Sakono, M; Ogawa, Y; Fukuda, N

    1999-01-01

    For the investigation of the mechanism responsible for the hypotriglyceridemic effect of NK-104, a new synthetic inhibitor of HMG-CoA reductase, the rate-limiting enzyme for cholesterol synthesis, isolated rat liver was perfused with or without NK-104 in the presence of exogenous [1-(14)C]oleic acid substrate. Addition of NK-104 tended to increase the ketone body production while it caused a significant decrease in the secretion rate of triglyceride by the perfused liver without affecting uptake of exogenous [1-(14)C]oleic acid. The inhibitor also significantly decreased hepatic triglyceride concentration. The altered triglyceride secretion was accompanied by a concomitant decreased incorporation of exogenous [1-(14)C]oleate into triglyceride. The conversion of exogenous [1-(14)C]oleic acid substrate indicated an inverse relationship between the pathways of oxidation and esterification. No effect of NK-104 on hepatic secretion of cholesterol was observed. These results suggest that NK-104 exerts its hypotriglyceridemic action, primarily by diverting the exogenous free fatty acid to the pathways of oxidation at the expense of esterification.

  2. Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI)

    SciTech Connect

    Mehboob, Shahila; Song, Jinhua; Hevener, Kirk E.; Su, Pin-Chih; Boci, Teuta; Brubaker, Libby; Truong, Lena; Mistry, Tina; Deng, Jiangping; Cook, James L.; Santarsiero, Bernard D.; Ghosh, Arun K.; Johnson, Michael E.

    2015-01-29

    Francisella tularensis, the causative agent of tularemia, presents a significant biological threat and is a Category A priority pathogen due to its potential for weaponization. In the bacterial FASII pathway we found it a viable target for the development of novel antibacterial agents treating Gram-negative infections. Here, we report the advancement of a promising series of benzimidazole FabI (enoyl-ACP reductase) inhibitors to a second-generation using a systematic, structure-guided lead optimization strategy, and the determination of several co-crystal structures that confirm the binding mode of designed inhibitors. Furthermore, these compounds display an improved low nanomolar enzymatic activity as well as promising low microgram/mL antibacterial activity against both F. tularensis and Staphylococcus aureus and its methicillin-resistant strain (MRSA). Finally, the improvements in activity accompanying structural modifications lead to a better understanding of the relationship between the chemical structure and biological activity that encompasses both enzymatic and whole-cell activity.

  3. Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI)

    DOE PAGES

    Mehboob, Shahila; Song, Jinhua; Hevener, Kirk E.; ...

    2015-01-29

    Francisella tularensis, the causative agent of tularemia, presents a significant biological threat and is a Category A priority pathogen due to its potential for weaponization. In the bacterial FASII pathway we found it a viable target for the development of novel antibacterial agents treating Gram-negative infections. Here, we report the advancement of a promising series of benzimidazole FabI (enoyl-ACP reductase) inhibitors to a second-generation using a systematic, structure-guided lead optimization strategy, and the determination of several co-crystal structures that confirm the binding mode of designed inhibitors. Furthermore, these compounds display an improved low nanomolar enzymatic activity as well as promisingmore » low microgram/mL antibacterial activity against both F. tularensis and Staphylococcus aureus and its methicillin-resistant strain (MRSA). Finally, the improvements in activity accompanying structural modifications lead to a better understanding of the relationship between the chemical structure and biological activity that encompasses both enzymatic and whole-cell activity.« less

  4. Aqueous Molecular Dynamics Simulations of the M. tuberculosis Enoyl-ACP Reductase-NADH System and Its Complex with a Substrate Mimic or Diphenyl Ethers Inhibitors

    PubMed Central

    da Silva Lima, Camilo Henrique; de Alencastro, Ricardo Bicca; Kaiser, Carlos Roland; de Souza, Marcus Vinícius Nora; Rodrigues, Carlos Rangel; Albuquerque, Magaly Girão

    2015-01-01

    Molecular dynamics (MD) simulations of 12 aqueous systems of the NADH-dependent enoyl-ACP reductase from Mycobacterium tuberculosis (InhA) were carried out for up to 20–40 ns using the GROMACS 4.5 package. Simulations of the holoenzyme, holoenzyme-substrate, and 10 holoenzyme-inhibitor complexes were conducted in order to gain more insight about the secondary structure motifs of the InhA substrate-binding pocket. We monitored the lifetime of the main intermolecular interactions: hydrogen bonds and hydrophobic contacts. Our MD simulations demonstrate the importance of evaluating the conformational changes that occur close to the active site of the enzyme-cofactor complex before and after binding of the ligand and the influence of the water molecules. Moreover, the protein-inhibitor total steric (ELJ) and electrostatic (EC) interaction energies, related to Gly96 and Tyr158, are able to explain 80% of the biological response variance according to the best linear equation, pKi = 7.772 − 0.1885 × Gly96 + 0.0517 × Tyr158 (R2 = 0.80; n = 10), where interactions with Gly96, mainly electrostatic, increase the biological response, while those with Tyr158 decrease. These results will help to understand the structure-activity relationships and to design new and more potent anti-TB drugs. PMID:26457706

  5. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase.

    PubMed

    Pandey, Rajan Kumar; Kumbhar, Bajarang Vasant; Sundar, Shyam; Kunwar, Ambarish; Prajapati, Vijay Kumar

    2017-02-01

    Visceral leishmaniasis (VL) is the most fatal form of leishmaniasis and it affects 70 countries worldwide. Increasing drug resistant for antileishmanial drugs such as miltefosine, sodium stibogluconate and pentamidine has been reported in the VL endemic region. Amphotericin B has shown potential antileishmanial activity in different formulations but its cost of treatment and associated nephrotoxicity have limited its use by affected people living in the endemic zone. To control the VL infection in the affected countries, it is necessary to develop new antileishmanial compounds with high efficacy and negligible toxicity. Computer aided programs such as binding free energy estimation; ADMET prediction and molecular dynamics simulation can be used to investigate novel antileishmanial molecules in shorter duration. To develop antileishmanial lead molecule, we performed standard precision (SP) docking for 1160 benzoxaborole analogs along with reference inhibitors against trypanothione reductase of Leishmania parasite. Furthermore, extra precision (XP) docking, ADMET prediction, prime MM-GBSA was conducted over 115 ligands, showing better docking score than reference inhibitors to get potential antileishmanial compounds. Simultaneously, area under the curve (AUC) was estimated using ROC plot to validate the SP and XP docking protocol. Later on, two benzoxaborole analogs with best MM-GBSA ΔG-bind were subjected to molecular simulation and docking confirmation to ensure the ligand interaction with TR. The presented drug discovery based on computational study confirms that BOB27 can be used as a potential drug candidate and warrants further experimental investigation to fight against VL in endemic areas.

  6. Catalytic Isomerization of Biomass‐Derived Aldoses: A Review

    PubMed Central

    Delidovich, Irina

    2016-01-01

    Abstract Selected aldohexoses (d‐glucose, d‐mannose, and d‐galactose) and aldopentoses (d‐xylose, l‐arabinose, and d‐ribose) are readily available components of biopolymers. Isomerization reactions of these substances are very attractive as carbon‐efficient processes to broaden the portfolio of abundant monosaccharides. This review focuses on the chemocatalytic isomerization of aldoses into the corresponding ketoses as well as epimerization of aldoses at C2. Recent advances in the fields of catalysis by bases and Lewis acids are considered. The emphasis is laid on newly uncovered catalytic systems and mechanisms of carbohydrate transformations. PMID:26948404

  7. Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening.

    PubMed

    Zhang, Qing Y; Wan, Jian; Xu, Xin; Yang, Guang F; Ren, Yan L; Liu, Jun J; Wang, Hui; Guo, Yu

    2007-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate crystallography study (Istvan and Deisenhofer Science 2001, 292, 1160-1164), which established a solid basis of structure and mechanism for the rational design, optimization, and development of even better HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR) with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit, obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2) up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property (electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new compounds of non-statin-like structures but with high pIC(50) values were sorted out in the present study.

  8. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist

    DTIC Science & Technology

    2013-10-01

    distribution. Mol Endocrinol 1997, 11, 1971-1984. 17. Stanbrough, M.; Bubley, G. J.; Ross , K.; Golub, T. R.; Rubin, M. A.; Penning, T. M.; Febbo, P...21. Cherian, M. T.; Wilson , E. M.; Shapiro, D. J. A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive

  9. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  10. In vivo and in vitro effect of androstene derivatives as 5α-reductase type 1 enzyme inhibitors.

    PubMed

    Bratoeff, Eugene; Sánchez, Araceli; Arellano, Yazmín; Heuze, Yvonne; Soriano, Juan; Cabeza, Marisa

    2013-12-01

    The aim of these studies was to synthesize twelve ester derivatives of dehydroepiandrosterone with therapeutic potential. The effect of 1-12 was demonstrated in the flank organs of gonadectomized hamsters treated with testosterone and the synthesized steroids. In vitro studies were carried out determining the IC50 values for the inhibition of the activity of 5α-reductase type 1 and 2, which are present in rat liver and human prostate respectively. The binding of 1-12 to the androgen receptors (AR) was determined using rat's prostate cytosol. Steroids 1-12 containing different substituents in the phenyl group of the ester moiety in C-3 reduced the flank organs and inhibited the activity of 5α-R type 1; however only steroids 1 and 2 inhibited 5α-R type 2. 1-12 did not bind to the AR. The modification of one atom of the substituents in the phenyl group of the ester moiety in C-3 changed their biological potency (IC50).

  11. Synthesis and biological evaluation of novel inhibitors against 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea.

    PubMed

    Chen, Haifeng; Han, Xinya; Qin, Nian; Wei, Lin; Yang, Yue; Rao, Li; Chi, Bo; Feng, Lingling; Ren, Yanliang; Wan, Jian

    2016-03-15

    1,3,8-Trihydroxynaphthalene reductase (3HNR) is an essential enzymes that is involved in fungal melanin biosynthesis. Based on the structural informations of active site of 3HNR, a series of β-nitrostyrene compounds were rationally designed and synthesized. The enzymatic activities of these compounds showed that most of them exhibited high inhibitory activities (<5.0 μM) against 3HNR; compound 3-2 exhibit the highest inhibitory activity (IC50=0.29 μM). In particular, some of these compounds had moderate fungicidal activity against Magnaporthe grisea. Compound 3-4 showed high in vivo activities against M. grisea (EC50=9.5 ppm). Furthermore, compound 3-2 was selected as a representative molecule, and the probable binding mode of this compound and the surrounding residues in the active site of 3HNR was elucidated by using molecular dock. The positive results suggest that β-nitrostyrene derivatives are most likely to be promising leads toward the discovery of novel agent of rice blast.

  12. Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.

    PubMed

    Perchellet, Jean-Pierre H; Perchellet, Elisabeth M; Crow, Kyle R; Buszek, Keith R; Brown, Neil; Ellappan, Sampathkumar; Gao, Ge; Luo, Diheng; Minatoya, Machiko; Lushington, Gerald H

    2009-11-01

    Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive. Although the correlation between the concentration-dependent inhibitions of HMG-CoA reductase activity over 10 min in the cell-free assay and L1210 tumor cell proliferation over 4 days in culture is unclear, some bioactive MRLs elicit interesting combinations of statin-like (IC50: 7.4-8.0 microM) and anti-tumor (IC50: 1.4-2.3 microM) activities. The HMG-CoA reductase-inhibiting activities of pravastatin and an MRL persist in the presence of increasing concentrations of NADPH. But increasing concentrations of HMG-CoA block the HMG-CoA reductase-inhibiting activity of pravastatin without altering that of an MRL, suggesting that MRLs and existing statins may have different mechanisms of enzyme interaction and inhibition. When tested together, suboptimal concentrations of synthetic MRLs and existing statins have additive inhibitory effects on HMG-CoA reductase activity. Preliminary molecular docking studies with MRL-based inhibitors indicate that these ligands fit sterically well into the HMG-CoA reductase statin-binding receptor model and, in contrast to mevastatin, may occupy a narrow channel housing the pyridinium moiety on NADP+.

  13. Pharmacodynamic potentiation of antiepileptic drugs' effects by some HMG-CoA reductase inhibitors against audiogenic seizures in DBA/2 mice.

    PubMed

    Russo, Emilio; Donato di Paola, Eugenio; Gareri, Pietro; Siniscalchi, Antonio; Labate, Angelo; Gallelli, Luca; Citraro, Rita; De Sarro, Giovambattista

    2013-04-01

    It is known that the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are effective in both the primary and the secondary prevention of ischemic heart disease. Increasing evidence indicates that statins have protective effects in several neurological diseases including stroke, cerebral ischemia, Parkinson disease, multiple sclerosis, traumatic brain injury and epilepsy. The aim of the present research was to evaluate the effects of some HMG-CoA reductase inhibitors (i.e. lovastatin, simvastatin, atorvastatin, fluvastatin and pravastatin) commonly used for the treatment of hypercholesterolemia in the DBA/2 mice, an animal model of generalized tonic-clonic seizures. Furthermore, the co-administration of these compounds with some antiepileptic drugs (AEDs; i.e. carbamazepine, diazepam, felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, topiramate and valproate) was studied in order to identify possible positive pharmacological interactions. Simvastatin only was active against both the tonic and clonic phase of audiogenic seizures, whereas the other statins tested were only partially effective against the tonic phase with the following order of potency: lovastatin>fluvastatin>atorvastatin; pravastatin was completely ineffective up to the dose of 150mg/kg. The co-administration of ineffective doses of all statins with AEDs generally increased the potency of the latter reducing their ED50 values. In particular, simvastatin was the most active in potentiating the activity of AEDs and the combinations of statins with carbamazepine, diazepam, felbamate, lamotrigine, topiramate and valproate were the most favorable, whereas, the co-administrations with the other AEDs studied was in most cases neutral. The increase in potency was generally associated with an enhancement of motor impairment (TD50); however, the therapeutic index (TD50/ED50) of combined treatment of AEDs with statins was predominantly more

  14. Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.

    2001-09-01

    Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.

  15. HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage.

    PubMed

    Pääjärvi, Gerd; Roudier, Emilie; Crisby, Milita; Högberg, Johan; Stenius, Ulla

    2005-03-01

    3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, statins, are widely used cholesterol-lowering drugs and have been shown to have anticancer effects in many models. We have investigated the effect of statins on Mdm2, a p53-specific ubiquitin ligase. It was found that pravastatin induced Mdm2 phosphorylation at Ser166 and at 2A10 antibody-specific epitopes in HepG2 cells, while mRNA levels were unchanged. Furthermore, pravastatin was found to induce phosphorylation of mTOR at Ser2448. Ser166 phosphorylation of Mdm2 was abrogated by an inhibitor of mTOR, rapamycin, but not by the PI3-kinase inhibitors LY294002 and wortmannin. Ser166 phosphorylation of Mdm2 has been associated to active Mdm2 and has been shown to increase its ubiquitin ligase activity and lead to increased p53 degradation. Our data show that statins attenuated the p53 response to DNA damage. Thus, in HepG2 cells pravastatin and simvastatin pretreatment attenuated the p53 response to DNA damage induced by 5-fluorouracil and benzo(a)pyrene. Similar attenuation was induced when p53 stabilization was induced by the inhibitor of nuclear export, leptomycin B. Furthermore, in the DNA-damaged cells, half-lives of Mdm2 and p53 were decreased by statins, indicating a more rapid formation of p53/Mdm2 complexes and facilitated p53 degradation. The induction of p53 responsive genes and apoptosis was attenuated. Mdm2 and p53 were also studied in vivo in rat liver employing immunohistochemistry, and it was found that constitutive Mdm2 expression was changed in livers of pravastatin-treated rats. We also show that the p53 response to a challenging dose of diethylnitrosamine was attenuated in hepatocytes in situ and in primary cultures of hepatocytes by pravastatin pretreatment. Taken together, these data indicate that statins induce an mTOR-dependent Ser166 phosphorylation of Mdm2, and this effect may attenuate the duration and intensity of the p53 response to DNA damage in hepatocytes.

  16. Fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, suppresses very low-density lipoprotein secretion in puromycin aminonucleoside-nephrotic rats.

    PubMed

    Moritomo, Y; Hirano, T; Ebara, T; Kurokawa, M; Naito, H; Furukawa, S; Nagano, S

    1994-01-01

    The effects of fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on the hyperlipidemia associated with nephrosis were studied. Nephrotic rats, induced by a single intraperitoneal injection of puromycin aminonucleoside (100 mg/kg body weight), had significantly higher plasma triglyceride (TG), total cholesterol and apoprotein (apo) B concentrations than controls. Fluvastatin was administrated as a 0.01% solution in drinking water for 14 days to either normal control or nephrotic rats. Concentrations of TG and apo B in plasma, and very low-density lipoprotein (VLDL) in nephrosis were completely normalized by the treatment with fluvastatin, but concentrations of cholesterol in plasma and each lipoprotein fraction were not altered by the treatment. The ratio of apo E to C in VLDL was significantly decreased in nephrotic rats, but the fluvastatin treatment increased this ratio. TG secretion rate estimated by the Triton WR1339 method was significantly increased in nephrotic rats, but was normalized by fluvastatin. Percent composition of TG in newly secreted VLDL particles in post-Triton plasma was not decreased by fluvastatin treatment, suggesting that the number of newly secreted VLDL particles was reduced by the treatment. Postheparin plasma lipolytic activities were not affected by the fluvastatin treatment. These results demonstrate that fluvastatin can effectively ameliorate the high concentration of VLDL by suppressing the hepatic secretion in nephrotic rats, and suggest that an inhibition of cholesterol biosynthesis suppresses VLDL secretion from the liver.

  17. AFN-1252 is a potent inhibitor of enoyl-ACP reductase from Burkholderia pseudomallei—Crystal structure, mode of action, and biological activity

    PubMed Central

    Narasimha Rao, Krishnamurthy; Lakshminarasimhan, Anirudha; Joseph, Sarah; Lekshmi, Swathi U; Lau, Ming-Seong; Takhi, Mohammed; Sreenivas, Kandepu; Nathan, Sheila; Yusof, Rohana; Abd Rahman, Noorsaadah; Ramachandra, Murali; Antony, Thomas; Subramanya, Hosahalli

    2015-01-01

    Melioidosis is a tropical bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei; Bpm), a Gram-negative bacterium. Current therapeutic options are largely limited to trimethoprim-sulfamethoxazole and β-lactam drugs, and the treatment duration is about 4 months. Moreover, resistance has been reported to these drugs. Hence, there is a pressing need to develop new antibiotics for Melioidosis. Inhibition of enoyl-ACP reducatase (FabI), a key enzyme in the fatty acid biosynthesis pathway has shown significant promise for antibacterial drug development. FabI has been identified as the major enoyl-ACP reductase present in B. pseudomallei. In this study, we evaluated AFN-1252, a Staphylococcus aureus FabI inhibitor currently in clinical development, for its potential to bind to BpmFabI enzyme and inhibit B. pseudomallei bacterial growth. AFN-1252 stabilized BpmFabI and inhibited the enzyme activity with an IC50 of 9.6 nM. It showed good antibacterial activity against B. pseudomallei R15 strain, isolated from a melioidosis patient (MIC of 2.35 mg/L). X-ray structure of BpmFabI with AFN-1252 was determined at a resolution of 2.3 Å. Complex of BpmFabI with AFN-1252 formed a symmetrical tetrameric structure with one molecule of AFN-1252 bound to each monomeric subunit. The kinetic and thermal melting studies supported the finding that AFN-1252 can bind to BpmFabI independent of cofactor. The structural and mechanistic insights from these studies might help the rational design and development of new FabI inhibitors. PMID:25644789

  18. Evaluating Thermodynamic Integration Performance of the New Amber Molecular Dynamics Package and Assess Potential Halogen Bonds of Enoyl-ACP Reductase (FabI) Benzimidazole Inhibitors

    PubMed Central

    Su, Pin-Chih; Johnson, Michael E.

    2015-01-01

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the para-halogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme. PMID:26666582

  19. Evaluating thermodynamic integration performance of the new amber molecular dynamics package and assess potential halogen bonds of enoyl-ACP reductase (FabI) benzimidazole inhibitors.

    PubMed

    Su, Pin-Chih; Johnson, Michael E

    2016-04-05

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the parahalogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme.

  20. Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching.

    PubMed

    Hevener, Kirk E; Mehboob, Shahila; Su, Pin-Chih; Truong, Kent; Boci, Teuta; Deng, Jiangping; Ghassemi, Mahmood; Cook, James L; Johnson, Michael E

    2012-01-12

    Enoyl-acyl carrier protein (ACP) reductase, FabI, is a key enzyme in the bacterial fatty acid biosynthesis pathway (FAS II). FabI is an NADH-dependent oxidoreductase that acts to reduce enoyl-ACP substrates in a final step of the pathway. The absence of this enzyme in humans makes it an attractive target for the development of new antibacterial agents. FabI is known to be unresponsive to structure-based design efforts due to a high degree of induced fit and a mobile flexible loop encompassing the active site. Here we discuss the development, validation, and careful application of a ligand-based virtual screen used for the identification of novel inhibitors of the Francisella tularensis FabI target. In this study, four known classes of FabI inhibitors were used as templates for virtual screens that involved molecular shape and electrostatic matching. The program ROCS was used to search a high-throughput screening library for compounds that matched any of the four molecular shape queries. Matching compounds were further refined using the program EON, which compares and scores compounds by matching electrostatic properties. Using these techniques, 50 compounds were selected, ordered, and tested. The tested compounds possessed novel chemical scaffolds when compared to the input query compounds. Several hits with low micromolar activity were identified and follow-up scaffold-based searches resulted in the identification of a lead series with submicromolar enzyme inhibition, high ligand efficiency, and a novel scaffold. Additionally, one of the most active compounds showed promising whole-cell antibacterial activity against several Gram-positive and Gram-negative species, including the target pathogen. The results of a preliminary structure-activity relationship analysis are presented.

  1. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles

    PubMed Central

    Kouassi, Affiba Florance; Kone, Mawa; Keita, Melalie; Esmel, Akori; Megnassan, Eugene; N’Guessan, Yao Thomas; Frecer, Vladimir; Miertus, Stanislav

    2015-01-01

    We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs) inhibitors of enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTb). Three-dimensional (3D) models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB) entry code: 4U0J), the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50exp). First, we built a gas phase quantitative structure-activity relationships (QSAR) model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50exp. Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom) of InhA-PCAM complex formation and IC50exp (pIC50exp = −0.1552·ΔΔGcom + 5.0448, R2 = 0.94), which was further validated with a 3D-QSAR pharmacophore model generation (PH4). Structural information from the models guided us in designing of a virtual combinatorial library (VL) of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME) focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50pre reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles. PMID:26703572

  2. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles.

    PubMed

    Kouassi, Affiba Florance; Kone, Mawa; Keita, Melalie; Esmel, Akori; Megnassan, Eugene; N'Guessan, Yao Thomas; Frecer, Vladimir; Miertus, Stanislav

    2015-12-12

    We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs) inhibitors of enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTb). Three-dimensional (3D) models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB) entry code: 4U0J), the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50(exp)). First, we built a gas phase quantitative structure-activity relationships (QSAR) model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50(exp). Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom) of InhA-PCAM complex formation and IC50(exp) (pIC50(exp) = -0.1552·ΔΔGcom + 5.0448, R² = 0.94), which was further validated with a 3D-QSAR pharmacophore model generation (PH4). Structural information from the models guided us in designing of a virtual combinatorial library (VL) of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME) focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50(pre) reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles.

  3. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3.

    PubMed

    Traven, Katja; Sinreih, Maša; Stojan, Jure; Seršen, Sara; Kljun, Jakob; Bezenšek, Jure; Stanovnik, Branko; Turel, Iztok; Rižner, Tea Lanišnik

    2015-06-05

    The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes.

  4. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.

    PubMed

    Wiebe, Marilyn G; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-11-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.

  5. New nonsteroidal steroid 5 alpha-reductase inhibitors. Syntheses and structure-activity studies on carboxamide phenylalkyl-substituted pyridones and piperidones.

    PubMed

    Hartmann, R W; Reichert, M

    2000-05-01

    In the search for nonsteroidal inhibitors of 5 alpha-reductase for the treatment of benign prostatic hyperplasia (BPH), we synthesized diisopropyl (1a-8a) and tert-butyl (1b-8b) benzamides, as well as ethyl benzoates (1c, 3c), which were substituted in 4 position via variable alkyl spacer (n = 0: 1-4, n = 1: 5, 7 and n = 3: 6, 8) with a 1-methyl-2-pyridone (1, 2, 5, 6) or a 1-methyl-2-piperidone (3, 4, 7, 8) moiety mimicking steroidal ring A. The directly connected benzamides (1a-4a, 1b-4b) and benzoates (1c, 3c) were obtained by palladium-catalysed coupling reaction of diethyl(3-pyridyl)-borane with 4-bromobenzoic acid derivatives, followed by alpha-oxidation of the 1-methyl-pyridinium salt and subsequent separation of the regioisomers. Catalytic hydrogenation of the pyridones (1, 2) led to the piperidones (3, 4). The preparation of the benzamides with a methylene (5, 7) and a propylene spacer (6, 8), respectively, started with the reduction of the keto group of 5-benzoyl-1,2-dihydro-1-methyl-2(1H)-pyridone and catalytic hydrogenation of the alkene obtained by Wittig reaction of 5-formyl-1,2-dihydro-1-methyl-2(1H)-pyridone with (2-phenylethyl)triphenylphosphonium bromide, respectively. The phenyl ring was functionalized by Friedel-Crafts reaction, haloform cleavage to give the acid, formation of the acid chloride, and subsequent treatment with the appropriate amines. Again, catalytic hydrogenation of the pyridones (5, 6) led to the piperidones (7, 8). The 5 alpha-reductase inhibitory properties were determined using rat ventral prostate, as well as human BPH tissue as enzyme source, 1 beta-2 beta-[3H]testosterone as substrate and a HPLC procedure for the separation of dihydrotestosterone (DHT). Tested at a concentration of 100 microM, the inhibition values of 1-8 ranged from 0-79%. Significant differences were observed between rat and human enzyme. The most active compound was ethyl 4-(1-methyl-2-oxopiperid-5-yl)benzoate 3c (68%) for the human enzyme and N,N-bis(1

  6. Regulation of rat liver hydroxymethylglutaryl coenzyme A reductase by a new class of noncompetitive inhibitors. Effects of dichloroacetate and related carboxylic acids on enzyme activity.

    PubMed Central

    Stacpoole, P W; Harwood, H J; Varnado, C E

    1983-01-01

    Dichloroacetate (DCA) markedly reduces circulating cholesterol levels in animals and in patients with combined hyperlipoproteinemia or homozygous familial hypercholesterolemia (FH). To investigate the mechanism of its cholesterol-lowering action, we studied the effects of DCA and its hepatic metabolites, glyoxylate and oxalate, on the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) obtained from livers of healthy, reverse light-cycled rats. Oral administration of DCA for 4 d decreased HMG CoA reductase activity 46% at a dose of 50 mg/kg per d, and 82% at a dose of 100 mg/kg per d. A 24% decrease in reductase activity was observed as early as 1 h after a single dose of 50 mg/kg DCA. The inhibitory effect of the drug was due to a fall in both expressed enzyme activity and the total number of reductase molecules present. DCA also decreased reductase activity when added to suspensions of isolated hepatocytes. With chronic administration, DCA inhibited 3H2O incorporation into cholesterol by 38% and into triglycerides by 52%. When liver microsomes were incubated with DCA, the pattern of inhibition of reductase activity was noncompetitive for both HMG CoA (inhibition constant [Ki] 11.8 mM) and NADPH (Ki 11.6 mM). Inhibition by glyoxylate was also noncompetitive for both HMG CoA (Ki 1.2 mM) and NADPH (Ki 2.7 mM). Oxalate inhibited enzyme activity only at nonsaturating concentrations of NADPH (Ki 5.6 mM). Monochloroacetate, glycollate, and ethylene glycol, all of which can form glyoxylate, also inhibited reductase activity. Using solubilized and 60-fold purified HMG CoA reductase, we found that the inhibitory effect of glyoxylate was reversible. Furthermore, the inhibition by glyoxylate was an effect exerted on the reductase itself, rather than on its regulatory enzymes, reductase kinase and reductase phosphatase. We conclude that the cholesterol-lowering effect of DCA is mediated, at least in part, by inhibition of endogenous cholesterol

  7. A kinetic estimate of the free aldehyde content of aldoses

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The relative free aldehyde content of eight hexoses and four pentoses has been estimated within about 10% from the rate constants for their reaction with urazole (1,2,4-triazole-3,5-dione). These values of the percent free aldehyde are in agreement with those estimated from CD measurements, but are more accurate. The relative free aldehyde contents for the aldoses were then correlated to various literature NMR measurements to obtain the absolute values. This procedure was also done for three deoxyaldoses, which react much more rapidly than can be accounted for by the free aldehyde content. This difference in reactivity between aldoses and deoxyaldoses is due to the inductive effect of the H versus the OH on C-2'. This may help explain why deoxyribonucleosides hydrolyze much more rapidly than ribonucleosides.

  8. Long-term Combination Therapy With α-Blockers and 5α-Reductase Inhibitors in Benign Prostatic Hyperplasia: Patient Adherence and Causes of Withdrawal From Medication

    PubMed Central

    2016-01-01

    Purpose To investigate long-term therapeutic effects and patient adherence to a combination therapy of a 5α-reductase inhibitor and an α-blocker and to identify causes of withdrawal from medication in patients with clinical benign prostatic hyperplasia (BPH). Methods BPH patients with lower urinary tract symptoms (LUTS) receiving combination therapy with follow-ups for 1–12 years were retrospectively analyzed. Therapeutic effects were assessed at baseline and annually by measuring International Prostatic Symptoms Score, quality of life index, total prostate volume (TPV), maximal flow rate, voided volume, postvoid residual volume and prostate-specific antigen level. Causes of discontinued combination therapy were also investigated. Results A total of 625 patients, aged 40–97 years (mean, 73 years) were retrospectively analyzed. All measured parameters showed significant improvements after combination therapy. Three hundred sixty-nine patients (59%) discontinued combination therapy with a mean treatment duration of 2.2 years. The most common reasons for discontinued treatment were changing medication to monotherapy with α-blockers or antimuscarinics (124 patients, 19.8%), receiving surgical intervention (39 patients, 6.2%), and LUTS improvement (53 patients, 8.5%). Only 64 patients (10.2%) were loss to follow-up and 6 (1.0%) discontinued combined treatment due to adverse effects. Smaller TPV after short-term combination treatment caused withdrawal from combination therapy. Conclusions BPH patients receiving long-term combination therapy showed significant improvement in all measured parameters. Changing medication, improved LUTS and choosing surgery are common reasons for discontinuing combination herapy. A smaller TPV after short-term combination treatment was among the factors that caused withdrawal from combination therapy. PMID:28043104

  9. HMG CoA reductase inhibitor-induced myotoxicity: pravastatin and lovastatin inhibit the geranylgeranylation of low-molecular-weight proteins in neonatal rat muscle cell culture.

    PubMed

    Flint, O P; Masters, B A; Gregg, R E; Durham, S K

    1997-07-01

    In previous studies, inhibition of cholesterol synthesis by HMG CoA reductase inhibitors (HMGRI) was associated with myotoxicity in cultures of neonatal rat skeletal myotubes, and rhabdomyolysis in rats, rabbits, and humans in vivo. In vitro myotoxicity was directly related to HMGRI-induced depletion of mevalonate, farnesol, and geranylgeraniol, since supplementation with these intermediate metabolites abrogated the toxicity. Both farnesol and geranylgeraniol are required for the posttranslational modification, or isoprenylation, of essential regulatory proteins in mammalian cells. The objective of the present study was to measure changes in protein isoprenylation in cultured neonatal rat skeletal muscle cells exposed for 24 hr to increasing concentrations of pravastatin or lovastatin. Proteins were labeled with [3H]mevalonate, [3H]farnesyl pyrophosphate (FPP), or [3H]geranylgeranyl pyrophosphate (GGPP), and then separated by SDS-PAGE and quantitated by scintillation counting and densitometry of autoradiographs. Mevalonate and FPP labeling of the majority of proteins increased in a concentration-dependent manner, even at concentrations greater than 2 microM lovastatin and 25 microM pravastatin that completely inhibited cholesterol synthesis. In contrast, mevalonate and FPP labeling of three protein bands with molecular weights of 26.6, 27.7, and 28.9 kDa was markedly inhibited at concentrations higher than 1 microM lovastatin and 400 microM pravastatin, which inhibited protein synthesis and disrupted myotube morphology after longer exposures in a previous study. In contrast, these proteins were equally well labeled by GGPP at all HMGRI concentrations tested, suggesting that isoprenylation of the 26.9-, 27.8-, and 28.9-kDa proteins requires geranylgeraniol. The results of this study indicate that HMGRI-induced myotoxicity is most likely related to reduced posttranslational modification of specific regulatory proteins by geranylgeraniol.

  10. Statins, HMG-CoA Reductase Inhibitors, Improve Neovascularization by Increasing the Expression Density of CXCR4 in Endothelial Progenitor Cells.

    PubMed

    Chiang, Kuang-Hsing; Cheng, Wan-Li; Shih, Chun-Ming; Lin, Yi-Wen; Tsao, Nai-Wen; Kao, Yung-Ta; Lin, Chih-Ting; Wu, Shinn-Chih; Huang, Chun-Yao; Lin, Feng-Yen

    2015-01-01

    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, are used to reduce cholesterol biosynthesis in the liver. Accordingly, statins regulate nitric oxide (NO) and glutamate metabolism, inflammation, angiogenesis, immunity and endothelial progenitor cells (EPCs) functions. The function of EPCs are regulated by stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β), etc. Even though the pharmacologic mechanisms by which statins affect the neovasculogenesis of circulating EPCs, it is still unknown whether statins affect the EPCs function through the regulation of CXCR4, a SDF-1 receptor expression. Therefore, we desired to explore the effects of statins on CXCR4 expression in EPC-mediated neovascularization by in vitro and in vivo analyses. In animal studies, we analyzed the effects of atorvastatin or rosuvastatin treatments in recovery of capillary density and blood flow, the expression of vWF and CXCR4 at ischemia sites in hindlimb ischemia ICR mice. Additionally, we analyzed whether the atorvastatin or rosuvastatin treatments increased the mobilization, homing, and CXCR4 expression of EPCs in hindlimb ischemia ICR mice that underwent bone marrow transplantation. The results indicated that statins treatment led to significantly more CXCR4-positive endothelial progenitor cells incorporated into ischemic sites and in the blood compared with control mice. In vivo, we isolated human EPCs and analyzed the effect of statins treatment on the vasculogenic ability of EPCs and the expression of CXCR4. Compared with the control groups, the neovascularization ability of EPCs was significantly improved in the atorvastatin or rosuvastatin group; this improvement was dependent on CXCR4 up-regulation. The efficacy of statins on improving EPC neovascularization was related to the SDF-1α/CXCR4 axis and might be regulated by the NO. In conclusion, atorvastatin and rosuvastatin improved

  11. Beneficial effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardiac function in ischemic and nonischemic heart failure.

    PubMed

    Aoyagi, Teruhiko; Nakamura, Fumitaka; Tomaru, Takanobu; Toyo-Oka, Teruhiko

    2008-01-01

    HMG-CoA reductase inhibitors (statins) have recently been reported to improve cardiac function, and decrease the incidence of heart failure (HF) in hyperlipidemic patients. However, evidence for statin treatment in patients with HF remains a subject of debate. Thus, a study was initiated to examine the effects of pitavastatin on cardiac function evaluated by echocardiographic findings and plasma brain natriuretic peptide (BNP) levels in patients with HF. Twenty-three patients with HF were treated with pitavastatin 1-2 mg/day in addition to standard therapy for 7.5 +/- 3.8 months. Left ventricular end-diastolic dimension (LVDd) and left ventricular end-systolic dimension (LVDs) were determined by echocardiography. Left ventricular ejection fraction (LVEF) was calculated using Teichholz's formula. Serum lipid and plasma BNP levels were also measured. During the follow-up period, LVEF was increased from 42 +/- 11 to 48 +/- 13% (P = 0.002). LVDs was reduced from 43 +/- 10 to 40 +/- 10 mm (P < 0.001), while there was no change in LVDd. E/A (n = 10) and deceleration time (n = 7), obtained in some patients, did not change significantly (0.89 +/- 0.33 to 0.77 +/- 0.17%, and 215 +/- 46 to 227 +/- 72 msec, respectively). In addition, the plasma BNP level was moderately, but significantly decreased from 94 +/- 78 to 70 +/- 56 pg/mL (P = 0.005). In subgroup analysis, LVEF was improved in both patients with ischemic and nonischemic HF. There was no significant correlation between the percent change in serum total cholesterol and the percent change in LVEF by pitavastatin treatment. Serum total cholesterol, LDL-cholesterol, and triglycerides decreased by 21%, 30%, and 15%, respectively, and HDL-cholesterol increased by 12%. Pitavastatin improved cardiac function in patients with HF, which generally worsens with time. The results suggest that pitavastatin may be beneficial for treatment of HF.

  12. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans.

    PubMed

    Watanabe, Takao; Kusuhara, Hiroyuki; Maeda, Kazuya; Kanamaru, Hiroshi; Saito, Yoshikazu; Hu, Zhuohan; Sugiyama, Yuichi

    2010-02-01

    Elucidation of the rate-determining process in the overall hepatic elimination of drugs is critical for predicting their intrinsic hepatic clearance and the impact of variation of sequestration clearance on their systemic concentration. The present study investigated the rate-determining process in the overall hepatic elimination of the HMG-CoA reductase inhibitors pravastatin, pitavastatin, atorvastatin, and fluvastatin both in rats and humans. The uptake of these statins was saturable in both rat and human hepatocytes. Intrinsic hepatic clearance obtained by in vivo pharmacokinetic analysis in rats was close to the uptake clearance determined by the multiple indicator dilution method but much greater than the intrinsic metabolic clearance extrapolated from an in vitro model using liver microsomes. In vivo uptake clearance of the statins in humans (pravastatin, 1.44; pitavastatin, 30.6; atorvastatin, 12.7; and fluvastatin, 62.9 ml/min/g liver), which was obtained by multiplying in vitro uptake clearance determined in cryopreserved human hepatocytes by rat scaling factors, was within the range of overall in vivo intrinsic hepatic clearance (pravastatin, 0.84-1.2; pitavastatin, 14-35; atorvastatin, 11-19; and fluvastatin, 123-185 ml/min/g liver), whereas the intrinsic metabolic clearance of atorvastatin and fluvastatin was considerably low compared with their intrinsic hepatic clearance. Their uptake is the rate-determining process in the overall hepatic elimination of the statins in rats, and this activity likely holds true for humans. In vitro-in vivo extrapolation of the uptake clearance using a cryopreserved human hepatocytes model and rat scaling factors will be effective for predicting in vivo intrinsic hepatic clearance involving active uptake.

  13. The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981.

    PubMed

    Kearney, A S; Crawford, L F; Mehta, S C; Radebaugh, G W

    1993-10-01

    The pH dependence of the interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981 ([R-(R*,R*)]-2-(4-fluorophenyl)- beta,delta-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl ]- 1H-pyrrole-1-hepatonic acid), are important considerations when choosing and developing one of the forms of these compounds. Over a pH range of 2.1 to 6.0 and at 30 degrees C, the apparent solubility of the sodium salt of CI-981 (i.e., the hydroxyacid form) increases about 60-fold, from 20.4 micrograms/mL to 1.23 mg/mL, and the profile yields a pKa for the terminal carboxyl group of 4.46. In contrast, over a pH range of 2.3 to 7.7 and also at 30 degrees C, the apparent solubility of the lactone form of CI-981 varies little, and the mean solubility is 1.34 (+/- 0.53) micrograms/mL. The kinetics of interconversion and the equilibrium between the hydroxyacid and the lactone forms have been studied as a function of pH, buffer concentration, and temperature at a fixed ionic strength (0.5 M) using a stability-indicating HPLC assay. The acid-catalyzed reaction is reversible, whereas the base-catalyzed reaction can be treated as an irreversible reaction. More specifically, at pH < 6, an equilibrium favoring the hydroxyacid form is established, whereas at pH > 6, the equilibrium reaction is no longer detectable and greatly favors the hydroxyacid form.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells.

    PubMed

    Silva-Ortiz, Aylin Viviana; Bratoeff, Eugene; Ramírez-Apan, Teresa; Heuze, Yvonne; Soriano, Juan; Moreno, Isabel; Bravo, Marisol; Bautista, Lucero; Cabeza, Marisa

    2017-03-01

    The aim of this study was to synthesize several 16-dehydropregnenolone derivatives containing an imidazole ring at C-21 and a different ester moiety at C-3 as inhibitors of 5α-reductase 1 and 2 isoenzymes. Their binding capacity to the androgen receptor (AR) was also studied. Additionally, we evaluated their pharmacological effect in a castrated hamster model and their cytotoxic activity on a panel of cancer cells (PC-3, MCF7, SK-LU-1). The results showed that only the derivatives with an alicyclic ester at C-3 showed 5α-R2 enzyme inhibition activity, the most potent of them being 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-cyclohexanecarboxylate with an IC50 of 29nM. This is important because prostatic benign hyperplasia is directly associated with the presence of 5α-R2. However, all the derivatives failed to inhibit 5α-R1 or bind to the AR. These alicyclic ester derivatives decreased the weight and size of androgen-dependent glands in the hamster, indicating they are very active in vivo and are not toxic. In addition, the 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-acetate derivative showed the highest cytotoxic activity on the three cancer cell lines studied. It is therefore important in the synthesis of steroidal compounds to consider the size of the ester moiety at C-3 of the steroid skeleton, which is key in obtaining biological activity, as observed in this experiment.

  15. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    SciTech Connect

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Langan, Paul; Dealwis, Chris G.

    2009-11-18

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.

  16. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.

  17. Use of 5-α-Reductase Inhibitors for Prostate Cancer Chemoprevention: American Society of Clinical Oncology/American Urological Association 2008 Clinical Practice Guideline

    PubMed Central

    Kramer, Barnett S.; Hagerty, Karen L.; Justman, Stewart; Somerfield, Mark R.; Albertsen, Peter C.; Blot, William J.; Ballentine Carter, H.; Costantino, Joseph P.; Epstein, Jonathan I.; Godley, Paul A.; Harris, Russell P.; Wilt, Timothy J.; Wittes, Janet; Zon, Robin; Schellhammer, Paul

    2009-01-01

    Purpose To develop an evidence-based guideline on the use of 5-α-reductase inhibitors (5-ARIs) for prostate cancer chemoprevention. Methods The American Society of Clinical Oncology (ASCO) Health Services Committee (HSC), ASCO Cancer Prevention Committee, and the American Urological Association Practice Guidelines Committee jointly convened a Panel of experts, who used the results from a systematic review of the literature to develop evidence-based recommendations on the use of 5-ARIs for prostate cancer chemoprevention. Results The systematic review completed for this guideline identified 15 randomized clinical trials that met the inclusion criteria, nine of which reported prostate cancer period prevalence. Conclusion Asymptomatic men with a prostate-specific antigen (PSA) ≤ 3.0 ng/mL who are regularly screened with PSA or are anticipating undergoing annual PSA screening for early detection of prostate cancer may benefit from a discussion of both the benefits of 5-ARIs for 7 years for the prevention of prostate cancer and the potential risks (including the possibility of high-grade prostate cancer). Men who are taking 5-ARIs for benign conditions such as lower urinary tract [obstructive] symptoms (LUTS) may benefit from a similar discussion, understanding that the improvement of LUTS relief should be weighed with the potential risks of high-grade prostate cancer from 5-ARIs (although the majority of the Panel members judged the latter risk to be unlikely). A reduction of approximately 50% in PSA by 12 months is expected in men taking a 5-ARI; however, because these changes in PSA may vary across men, and within individual men over time, the Panel cannot recommend a specific cut point to trigger a biopsy for men taking a 5-ARI. No specific cut point or change in PSA has been prospectively validated in men taking a 5-ARI. PMID:19252137

  18. X-ray structure of the ternary MTX•NADPH complex of the anthrax dihydrofolate reductase: a pharmacophore for dual-site inhibitor design

    PubMed Central

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Dealwis, Chris G.

    2009-01-01

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90° and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3Å resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low μM concentrations. The apparent Kd for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 μM. PMID:19374017

  19. Angiotensin Converting Enzyme Inhibitor and HMG-CoA Reductase Inhibitor as Adjunct Treatment for Persons with HIV Infection: A Feasibility Randomized Trial

    PubMed Central

    Baker, Jason V.; Huppler Hullsiek, Kathleen; Prosser, Rachel; Duprez, Daniel; Grimm, Richard; Tracy, Russell P.; Rhame, Frank; Henry, Keith; Neaton, James D.

    2012-01-01

    Background Treatments that reduce inflammation and cardiovascular disease (CVD) risk among individuals with HIV infection receiving effective antiretroviral therapy (ART) are needed. Design and Methods We conducted a 2×2 factorial feasibility study of lisinopril (L) (10 mg daily) vs L-placebo in combination with pravastatin (P) (20 mg daily) vs P-placebo among participants receiving ART with undetectable HIV RNA levels, a Framingham 10 year risk score (FRS) ≥3%, and no indication for ACE-I or statin therapy. Tolerability and adherence were evaluated. Longitudinal mixed models assessed changes in blood pressure (BP), blood lipids, and inflammatory biomarkers from baseline through months 1 and 4. Results Thirty-seven participants were randomized and 34 [lisinopril/pravastatin (n = 9), lisinopril/P-placebo (n = 8), L-placebo/pravastatin (n = 9), L-placebo/P-placebo (n = 8)] attended at least one follow-up visit. Participants were 97% male, 41% white, 67% were current smokers, and 65% were taking a protease inhibitor. Median age was 48 years, CD4 count 483 cells/mm3, FRS 7.79%, total cholesterol 184 mg/dL, and LDL-C 95 mg/dL. There was no treatment difference for pravastatin vs P-placebo in total cholesterol, LDL-C, or any of the inflammatory biomarkers. Participants randomized to lisinopril vs. L-placebo had significant declines in diastolic BP (−3.3 mmHg, p = 0.05), hsCRP (−0.61 µg/mL, p = 0.02) and TNF-α (−0.17 pg/mL, p = 0.04). Participants taking lisinopril vs L-placebo were more likely to report missed doses (88 vs 35%; p = 0.001) and have adherence <90% by pill count (42 vs. 0%; p = 0.02). Few participants from either group reported side effects (n = 3 vs. n = 1). Conclusions The modest BP changes and decreased adherence with lisinopril and absence of lipid differences with pravastatin suggest future studies of these drug classes should consider a run-in period to assess adherence and use a different statin

  20. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride.

    PubMed

    Wiebe, John P; Rivas, Martin A; Mercogliano, Maria F; Elizalde, Patricia V; Schillaci, Roxana

    2015-05-01

    Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that

  1. Simvastatin, an HMG-CoA reductase inhibitor, induces the synthesis and secretion of apolipoprotein AI in HepG2 cells and primary hamster hepatocytes.

    PubMed

    Bonn, Victoria; Cheung, Raphael C; Chen, Biao; Taghibiglou, Changiz; Van Iderstine, Stephen C; Adeli, Khosrow

    2002-07-01

    Clinical studies have recently suggested that statin treatment may beneficially elevate plasma concentrations of high density lipoprotein (HDL)-cholesterol in patients with hyperlipidemia. Here, we have investigated the effect of a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase on the synthesis and secretion of apolipoprotein AI (apoAI) in two model systems, HepG2 cells and primary hamster hepatocytes. Cultured cells were incubated with different doses of simvastatin (0.1-10 microM) for a period of 18 h. A dose-dependent increase in synthesis and secretion of apoAI was observed in both cell types. There was a significant increase in the synthesis of apoAI in HepG2 cells (44.3+/-12.1%), and hamster hepatocytes (212+/-2%) after treatment with 10 microM of the statin. The increase in apoAI synthesis appeared to result in a higher level of apoAI secreted into the culture media in both cell types (49.2+/-7.8% in HepG2, 197+/-0.2% in hamster hepatocytes). ApoAI mRNA levels were also significantly increased in both cell types in response to statin treatment. Control experiments with transferrin confirmed specificity of the effect on apoAI secretion. Analysis of a density fraction containing HDL particles in culture media revealed an increase in HDL-associated apoAI of 94.3+/-2.1% in HepG2 cells and 27.0+/-0.03% in hamster hepatocytes following 10 microM simvastatin-treatment. Comparative studies of simvastatin and lovastatin indicated a differential ability to induce apoAI synthesis and secretion, with simvastatin having a more significant effect. Thus, acute statin treatment of cultured hepatocytes (transformed as well as primary) resulted in a significant upregulation of apoAI mRNA and apoAI synthesis, causing oversecretion of apoAI and HDL extracellularly. The stimulatory effect on apoAI synthesis and secretion may thus explain the clinical observation of an elevated plasma HDL-cholesterol level in hyperlipidemic patients treated with

  2. Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2, 4-diaminopteridine analogues with a bridged diarylamine side chain.

    PubMed

    Rosowsky, A; Cody, V; Galitsky, N; Fu, H; Papoulis, A T; Queener, S F

    1999-11-18

    As part of a larger search for potent as well as selective inhibitors of dihydrofolate reductase (DHFR) enzymes from opportunistic pathogens found in patients with AIDS and other immune disorders, N-[(2,4-diaminopteridin-6-yl)methyl]dibenz[b,f]azepine (4a) and the corresponding dihydrodibenz[b,f]azepine, dihydroacridine, phenoxazine, phenothiazine, carbazole, and diphenylamine analogues were synthesized from 2, 4-diamino-6-(bromomethyl)pteridine in 50-75% yield by reaction with the sodium salts of the amines in dry tetrahydrofuran at room temperature. The products were tested for the ability to inhibit DHFR from Pneumocystis carinii (pcDHFR), Toxoplasma gondii (tgDHFR), Mycobacterium avium (maDHFR), and rat liver (rlDHFR). The member of the series with the best combination of potency and species selectivity was 4a, with IC(50) values against the four enzymes of 0. 21, 0.043, 0.012, and 4.4 microM, respectively. The dihydroacridine, phenothiazine, and carbazole analogues were also potent, but nonselective. Of the compounds tested, 4a was the only one to successfully combine the potency of trimetrexate with the selectivity of trimethoprim. Molecular docking simulations using published 3D structural coordinates for the crystalline ternary complexes of pcDHFR and hDHFR suggested a possible structural interpretation for the binding selectivity of 4a and the lack of selectivity of the other compounds. According to this model, 4a is selective because of a unique propensity of the seven-membered ring in the dibenz[b,f]azepine moiety to adopt a puckered orientation that allows it to fit more comfortably into the active site of the P. carinii enzyme than into the active site of the human enzyme. Compound 4a was also evaluated for the ability to be taken up into, and retard the growth of, P. carinii and T. gondii in culture. The IC(50) of 4a against P. carinii trophozoites after 7 days of continuous drug treatment was 1.9 microM as compared with previously observed IC(50

  3. Cholesterol-lowering effect of NK-104, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, in guinea pig model of hyperlipidemia.

    PubMed

    Aoki, T; Yamazaki, H; Suzuki, H; Tamaki, T; Sato, F; Kitahara, M; Saito, Y

    2001-01-01

    Although benefits of statins have been demonstrated even in normolipidemic patients at high risk, the main target of statin therapy is the hypercholesterolemic patient. The aim of this study was to examine the hypocholesterolemic effect of NK-104 ((+)-monocalcium bis((3R,5S,6S)-7-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolyl]- 3,5-dihydroxy-6-heptenoate), CAS 147526-32-7), a potent 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, and its mechanism of action in hypercholesterolemic animals. In guinea pigs fed a diet containing 15% (w/w) fat rich in laurate for 6 weeks, the liver cholesterol content was markedly increased and plasma total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and LDL-apoB were elevated 4.8, 5.2 and 1.7 times, respectively, compared with normal diet fed animals. These changes were maintained by reduced LDL clearance in the presence of markedly cholesterol-enriched LDL in the plasma. In this model, the LDL-C reduction rates by 0.1, 0.3 and 1 mg/kg of NK-104 orally administered for 2 weeks (from week 4 to week 6), were 11, 27 and 32%, respectively, from controls, being similar in normal guinea pigs previously examined. Those for 3 and 10 mg/kg of atorvastatin (CAS 134523-00-5) were 25 and 39%, respectively. Thus about 10 times higher doses of atorvastatin were required than of NK-104 to cause a similar cholesterol-lowering effect. This reduction of plasma cholesterol was accompanied by an improvement of LDL clearance (24 and 47% increase in fractional catabolic rate by 1 mg/kg of NK-104 and 10 mg/kg of atorvastatin, respectively) and LDL composition. In conclusion, in guinea pig hypercholesterolemia caused by high-laurate diet, NK-104 and atorvastatin lowered plasma cholesterol levels with an improvement of LDL composition and with an increase in LDL clearance, presumably through reduction of the liver cholesterol content, although hepatic cholesterol synthesis might have been markedly suppressed in this model.

  4. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  5. A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-A(y) mice.

    PubMed

    Wang, Kai; Bao, Li; Ma, Ke; Zhang, Jinjin; Chen, Baosong; Han, Junjie; Ren, Jinwei; Luo, Huajun; Liu, Hongwei

    2017-02-15

    Three new meroterpenoids, ganoleucin A-C (1-3), together with five known meroterpenoids (4-8), were isolated from the fruiting bodies of Ganoderma leucocontextum. The structures of the new compounds were elucidated by extensive spectroscopic analysis, circular dichroism (CD) spectroscopy, and chemical transformation. The inhibitory effects of 1-8 on HMG-CoA reductase and α-glucosidase were tested in vitro. Ganomycin I (4), 5, and 8 showed stronger inhibitory activity against HMG-CoA reductase than the positive control atorvastatin. Compounds 1, and 3-8 presented potent noncompetitive inhibitory activity against α-glucosidase from both yeast and rat small intestinal mucosa. Ganomycin I (4), the most potent inhibitor against both α-glucosidase and HMG-CoA reductase, was synthesized and evaluated for its in vivo bioactivity. Pharmacological results showed that ganomycin I (4) exerted potent and efficacious hypoglycemic, hypolipidemic, and insulin-sensitizing effects in KK-A(y) mice.

  6. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    PubMed Central

    Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan

    2012-01-01

    Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598

  7. Thioredoxin reductase.

    PubMed Central

    Mustacich, D; Powis, G

    2000-01-01

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  8. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-09-15

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  9. Synthesis, biological activity, and three-dimensional quantitative structure-activity relationship model for a series of benzo[c]quinolizin-3-ones, nonsteroidal inhibitors of human steroid 5alpha-reductase 1.

    PubMed

    Occhiato, Ernesto G; Ferrali, Alessandro; Menchi, Gloria; Guarna, Antonio; Danza, Giovanna; Comerci, Alessandra; Mancina, Rosa; Serio, Mario; Garotta, Gianni; Cavalli, Andrea; De Vivo, Marco; Recanatini, Maurizio

    2004-07-01

    New 5alpha-reductase 1 (5alphaR-1) inhibitors were designed to complete a consistent set of analogues suitable for a 3D QSAR study. These compounds were synthesized by a modification of the aza-Robinson annulation, further functionalized by Pd-catalyzed cross-coupling processes, and were tested with human 5alphaR-1 expressed in Chinese hamster ovary 1827 cells. It turned out that the potency of the resulting inhibitors was strongly dependent on the type of substitution at the 8 position, with the IC(50) values ranging from 8.1 to 1050 nM. The construction of this homogeneous set of molecules allowed a 3D QSAR study. In particular, comparative molecular field analysis (CoMFA) was used to correlate the potency of the inhibitors with their physicochemical features. Highly accurate evaluations of the atomic point charges were carried out by means of quantum chemical calculations at the DFT/B3LYP level of theory followed by the RESP fitting procedure. It turned out that increasing the reliability of electrostatic parameters greatly affected the statistical results of the QSAR analysis. The 3D QSAR model proposed could be very useful in the further development of 5alphaR-1 inhibitors, which are suitable candidates to be evaluated as drugs in the treatment of 5alphaR-1 related diseases such as acne and alopecia in men and hirsutism in women.

  10. Design, synthesis, and docking of highly hypolipidemic agents: Schizosaccharomyces pombe as a new model for evaluating alpha-asarone-based HMG-CoA reductase inhibitors.

    PubMed

    Argüelles, Nancy; Sánchez-Sandoval, Eugenia; Mendieta, Aarón; Villa-Tanaca, Lourdes; Garduño-Siciliano, Leticia; Jiménez, Fabiola; Cruz, María Del Carmen; Medina-Franco, José L; Chamorro-Cevallos, Germán; Tamariz, Joaquín

    2010-06-15

    A series of alpha-asarone-based analogues was designed by conducting docking experiments with published crystal structures of human HMG-CoA reductase. Indeed, synthesis and evaluation of this series showed a highly hypocholesterolemic in vivo activity in a murine model, as predicted by previous docking studies. In agreement with this model, the polar groups attached to the benzene ring could play a key role in the enzyme binding and probably also in its biological activity, mimicking the HMG-moiety of the natural substrate. The hypolipidemic action mechanism of these compounds was investigated by developing a simple, efficient, and novel model for determining HMG-CoA reductase inhibition. The partial purification of the enzyme from Schizosaccharomyces pombe allowed for testing of alpha-asarone- and fibrate-based analogues, resulting in positive and significant inhibitory activity.

  11. In vitro myotoxicity of the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, pravastatin, lovastatin, and simvastatin, using neonatal rat skeletal myocytes.

    PubMed

    Masters, B A; Palmoski, M J; Flint, O P; Gregg, R E; Wang-Iverson, D; Durham, S K

    1995-03-01

    Pravastatin, lovastatin, and simvastatin, drugs which lower cholesterol by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, have been linked to skeletal myopathies in humans and rats. The myotoxicity of these three drugs was compared, after 48 hr exposure, in cultures of primary neonatal rat skeletal myotubes. Measurements included HMG CoA reductase activity ([14C]acetate incorporation into cholesterol), indicators of membrane damage (CPK, LDH, and AST), cell viability (mitochondrial dehydrogenase metabolism of MTT), protein synthesis ([3H]leucine incorporation), and energy status (ATP). All three drugs inhibited cholesterol synthesis to the same extent in rat hepatocytes (IC50s approximately 0.07 microM). Lovastatin- and simvastatin-induced inhibition of cholesterol synthesis in myotubes was unchanged compared to that of hepatocytes, but pravastatin was 85-fold less potent (IC50 = 5.9 microM). Protein synthesis and ATP levels were the most sensitive indicators of toxicity. Pravastatin (IC50 = 759 microM) was > 100-fold less inhibitory of protein synthesis than lovastatin (IC50 = 5.4 microM) or simvastatin (IC50 = 1.9 microM). Addition of mevalonic acid (the immediate product of the HMG CoA reductase reaction), as 100 microM mevalonic acid lactone, reversed the toxicity of all three drugs. Removal of serum for 24-72 hr did not alter the toxicity of any of the drugs compared to cultures containing 10% serum, suggesting that differences in protein binding did not account for the differences in toxicity of the drugs. These results indicate that pravastatin is less myotoxic than lovastatin or simvastatin in this in vitro system using neonatal rat skeletal muscle cells, and this differential toxicity is correlated with the selective decrease in inhibition of HMG CoA reductase by pravastatin in nonhepatic tissues.

  12. Prostate Cancer Cells Differ in Testosterone Accumulation, Dihydrotestosterone Conversion, and Androgen Receptor Signaling Response to Steroid 5α-Reductase Inhibitors

    PubMed Central

    Wu, Yue; Godoy, Alejandro; Azzouni, Faris; Wilton, John H.; Ip, Clement; Mohler, James L.

    2014-01-01

    BACKGROUND Blocking 5α-reductase-mediated testosterone conversion to dihydrotestosterone (DHT) with finasteride or dutasteride is the driving hypothesis behind two prostate cancer prevention trials. Factors affecting intracellular androgen levels and the androgen receptor (AR) signaling axis need to be examined systematically in order to fully understand the outcome of interventions using these drugs. METHODS The expression of three 5α-reductase isozymes, as determined by immunohistochemistry and qRT-PCR, was studied in five human prostate cancer cell lines. Intracellular testosterone and DHT were analyzed using mass spectrometry. A luciferase reporter assay and AR-regulated genes were used to evaluate the modulation of AR activity. RESULTS Prostate cancer cells were capable of accumulating testosterone to a level 15–50 times higher than that in the medium. The profile and expression of 5α-reductase isozymes did not predict the capacity to convert testosterone to DHT. Finasteride and dutasteride were able to depress testosterone uptake in addition to lowering intracellular DHT. The inhibition of AR activity following drug treatment often exceeded the expected response due to reduced availability of DHT. The ability to maintain high intracellular testosterone might compensate for the shortage of DHT. CONCLUSIONS The biological effect of finasteride or dutasteride appears to be complex and may depend on the interplay of several factors, which include testosterone turnover, enzymology of DHT production, ability to use testosterone and DHT interchangeably, and propensity of cells for off-target AR inhibitory effect. PMID:23813697

  13. Structural analysis of a holoenzyme complex of mouse dihydrofolate reductase with NADPH and a ternary complex with the potent and selective inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b, f]azepin-5-yl)methylpteridine

    SciTech Connect

    Cody, Vivian; Pace, Jim; Rosowsky, Andre

    2008-09-01

    The structures of mouse DHFR holo enzyme and a ternary complex with NADPH and a potent inhibitor are described. It has been shown that 2, 4-diamino-6-arylmethylpteridines and 2, 4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure–activity profile observed for a series of substituted dibenz[b, f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b, f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 Å resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2′-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59–64) by 0.6 Å compared with pcDHFR ternary complexes. These data are consistent with the

  14. Preliminary LC-MS Based Screening for Inhibitors of Plasmodium falciparum Thioredoxin Reductase (PfTrxR) among a Set of Antimalarials from the Malaria Box.

    PubMed

    Tiwari, Neil K; Reynolds, Priscilla J; Calderón, Angela I

    2016-03-28

    Plasmodium falciparum thioredoxin reductase (PfTrxR) has been identified as a potential drug target to combat growing antimalarial drug resistance. Medicines for Malaria Venture (MMV) has pre-screened and identified a set of 400 antimalarial compounds called the Malaria Box. From those, we have evaluated their mechanisms of action through inhibition of PfTrxR and found new active chemical scaffolds. Five compounds with significant PfTrxR inhibitory activity, with IC50 values ranging from 0.9-7.5 µM against the target enzyme, were found out of the Malaria Box.

  15. Structural Analysis of a Holoenzyme Complex of Mouse Dihydrofolate Reductase With NADPH And a Ternary Complex With the Potent And Selective Inhibitor 2,4-Diamino-6-(2'-Hydroxydibenz[b,F]azepin-5-YI)

    SciTech Connect

    Cody, V.; Pace, J.; Rosowsky, A.

    2009-05-12

    It has been shown that 2,4-diamino-6-arylmethylpteridines and 2,4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2,4-diamino-6-(2{prime}-hydroxydibenz[b,f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 A resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2{prime}-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59-64) by 0.6 A compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.

  16. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  17. Synthesis and highly potent hypolipidemic activity of alpha-asarone- and fibrate-based 2-acyl and 2-alkyl phenols as HMG-CoA reductase inhibitors.

    PubMed

    Mendieta, Aarón; Jiménez, Fabiola; Garduño-Siciliano, Leticia; Mojica-Villegas, Angélica; Rosales-Acosta, Blanca; Villa-Tanaca, Lourdes; Chamorro-Cevallos, Germán; Medina-Franco, José L; Meurice, Nathalie; Gutiérrez, Rsuini U; Montiel, Luisa E; Cruz, María Del Carmen; Tamariz, Joaquín

    2014-11-01

    In the search for new potential hypolipidemic agents, the present study focused on the synthesis of 2-acyl phenols (6a-c and 7a-c) and their saturated side-chain alkyl phenols (4a-c and 5a-c), and on the evaluation of their hypolipidemic activity using a murine Tyloxapol-induced hyperlipidemic protocol. The whole series of compounds 4-7 greatly and significantly reduced elevated serum levels of total cholesterol, LDL-cholesterol, and triglycerides, with series 6 and 7 showing the greatest potency ever found in our laboratory. At the minimum dose (25mg/kg/day), the latter compounds lowered cholesterol by 68-81%, LDL by 72-86%, and triglycerides by 59-80%. This represents a comparable performance than that shown by simvastatin. Experimental evidence and docking studies suggest that the activity of these derivatives is associated with the inhibition of HMG-CoA reductase.

  18. Role of polymorphisms in factor V (FV Leiden), prothrombin, plasminogen activator inhibitor type-1 (PAI-1), methylenetetrahydrofolate reductase (MTHFR) and cystathionine β-synthase (CBS) genes as risk factors for thrombophilias.

    PubMed

    Miranda-Vilela, A L

    2012-09-01

    Thrombophilias are defined as a predisposition to thrombosis due to hematological changes which induce blood hypercoagulability; they can be inherited or acquired. They are individually characterized by a large phenotypic variability, even when they occur within the same family. Hereditary thrombophilias are, in most cases, due to changes related to physiological coagulation inhibitors or mutations in the genes of coagulation factors. High levels of plasma homocysteine may also be responsible for vaso-occlusive episodes and may have acquired (nutritional deficiencies of folate and vitamins B6 and B12) and/or genetic causes (mutations in the genes responsible for expression of enzymes involved in the intracellular metabolism of homocysteine). Considering that: (1) thromboses are events of multigenic and multifactorial etiopathology; (2) the presence of mutations in several genes significantly increases the risk of their occurrence; (3) the vascular territory (venous and/or arterial) affected involves different pathophysiological mechanisms and treatments, knowledge of genetic variants that may contribute to the risk and variability of the phenotypic manifestations of these diseases is extremely important. This understanding may provide support for a more individualized and therefore more effective treatment for thrombophilia carriers. Thus, this mini-review aims to address a comprehensive summary of thrombophilias and thrombosis, and discuss the role of polymorphisms in Factor V (FV Leiden), Prothrombin, Plasminogen activator inhibitor type-1 (PAI-1), Methylenetetrahydrofolate reductase (MTHFR) and Cystathionine β-synthase (CBS) genes as risk factors for thrombophilias.

  19. Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure Activity Relationships

    PubMed Central

    Adeniji, Adegoke O.; Twenter, Barry M.; Byrns, Michael C.; Jin, Yi; Chen, Mo; Winkler, Jeffrey D.; Penning, Trevor M.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castrate resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required since compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular are potent but non-selective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid as lead compound, five classes of structural analogs were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads towards new therapeutics for CRPC. PMID:22263837

  20. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily.

    PubMed Central

    Hoog, S S; Pawlowski, J E; Alzari, P M; Penning, T M; Lewis, M

    1994-01-01

    The 3.0-A-resolution x-ray structure of rat liver 3 alpha-hydroxysteroid dehydrogenase/dihydrodiol dehydrogenase (3 alpha-HSD, EC 1.1.1.50) was determined by molecular replacement using human placental aldose reductase as the search model. The protein folds into an alpha/beta or triose-phosphate isomerase barrel and lacks a canonical Rossmann fold for binding pyridine nucleotide. The structure contains a concentration of hydrophobic amino acids that lie in a cavity near the top of the barrel and that are presumed to be involved in binding hydrophobic substrates (steroids, prostaglandins, and polycyclic aromatic hydrocarbons) and inhibitors (nonsteroidal antiinflammatory drugs). At the distal end of this cavity lie three residues in close proximity that have been implicated in catalysis by site-directed mutagenesis--Tyr-55, Asp-50, and Lys-84. Tyr-55 is postulated to act as the general acid. 3 alpha-HSD shares significant sequence identity with other HSDs that belong to the aldo-keto reductase superfamily and these may show similar architecture. Other members of this family include prostaglandin F synthase and rho-crystallin. By contrast, 3 alpha-HSD shares no sequence identity with HSDs that are members of the short-chain alcohol dehydrogenase family but does contain the Tyr-Xaa-Xaa-Xaa-Lys consensus sequence implicated in catalysis in this family. In the 3 alpha-HSD structure these residues are on the periphery of the barrel and are unlikely to participate in catalysis. Images PMID:8146147

  1. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  2. Augmentation of CFTR maturation by S-nitrosoglutathione reductase

    PubMed Central

    Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J.; Lewis, Stephen J.

    2015-01-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. PMID:26637637

  3. Design, synthesis, and biological and crystallographic evaluation of novel inhibitors of Plasmodium falciparum enoyl-ACP-reductase (PfFabI).

    PubMed

    Belluti, Federica; Perozzo, Remo; Lauciello, Leonardo; Colizzi, Francesco; Kostrewa, Dirk; Bisi, Alessandra; Gobbi, Silvia; Rampa, Angela; Bolognesi, Maria Laura; Recanatini, Maurizio; Brun, Reto; Scapozza, Leonardo; Cavalli, Andrea

    2013-10-10

    Malaria, a disease of worldwide significance, is responsible for over one million deaths annually. The liver-stage of Plasmodium's life cycle is the first, obligatory, but clinically silent step in malaria infection. The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been found to be essential for complete liver-stage development and has been regarded as a potential antimalarial target for the development of drugs for malaria prophylaxis and liver-stage eradication. In this paper, new coumarin-based triclosan analogues are reported and their biological profile is explored in terms of inhibitory potency against enzymes of the PfFAS-II pathway. Among the tested compounds, 7 and 8 showed the highest inhibitory potency against Pf enoyl-ACP-reductase (PfFabI), followed by 15 and 3. Finally, we determined the crystal structures of compounds 7 and 11 in complex with PfFabI to identify their mode of binding and to confirm outcomes of docking simulations.

  4. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo Andrade; Hopfinger, Anton J.

    2001-01-01

    A set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines were studied using four-dimensional quantitative structure-activity relationship (4D-QSAR) analysis. The corresponding biological activities of these compounds include IC50 inhibition constants for both the wild type, and a specific mutant type of Plasmodium falciparum dihydrofolate reductase (DHFR). Two thousand conformations of each analog were sampled to generate a conformational ensemble profile (CEP) from a molecular dynamics simulation (MDS) of 100,000 conformer trajectory states. Each sampled conformation was placed in a 1 Å cubic grid cell lattice for each of five trial alignments. The frequency of occupation of each grid cell was computed for each of six types of pharmacophore groups of atoms of each compound. These grid cell occupancy descriptors (GCODs) were then used as a descriptor pool to construct 4D-QSAR models. Models for inhibition of both the `wild' type and the mutant enzyme were generated which provide detailed spatial pharmacophore requirements for inhibition in terms of atom types and their corresponding relative locations in space. The 4D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the Plasmodium falciparum DHFR to current antimalarials. One feature identified is a slightly different binding alignment of the ligands to the mutant form of the enzyme as compared to the wild type.

  5. Structural and Enzymatic Analyses Reveal the Binding Mode of a Novel Series of Francisella tularensis Enoyl Reductase (FabI) Inhibitors

    SciTech Connect

    Mehboob, Shahila; Hevener, Kirk E.; Truong, Kent; Boci, Teuta; Santarsiero, Bernard D.; Johnson, Michael E.

    2012-10-10

    Because of structural and mechanistic differences between eukaryotic and prokaryotic fatty acid synthesis enzymes, the bacterial pathway, FAS-II, is an attractive target for the design of antimicrobial agents. We have previously reported the identification of a novel series of benzimidazole compounds with particularly good antibacterial effect against Francisella tularensis, a Category A biowarfare pathogen. Herein we report the crystal structure of the F. tularensis FabI enzyme in complex with our most active benzimidazole compound bound with NADH. The structure reveals that the benzimidazole compounds bind to the substrate site in a unique conformation that is distinct from the binding motif of other known FabI inhibitors. Detailed inhibition kinetics have confirmed that the compounds possess a novel inhibitory mechanism that is unique among known FabI inhibitors. These studies could have a strong impact on future antimicrobial design efforts and may reveal new avenues for the design of FAS-II active antibacterial compounds.

  6. Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study.

    PubMed

    Margiotta-Casaluci, Luigi; Hannah, Robert E; Sumpter, John P

    2013-03-15

    In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low μg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 μg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 μg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations.

  7. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors.

    PubMed

    Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2013-11-01

    A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor.

  8. Influence of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ubiquinone levels in rat skeletal muscle and heart: relationship to cytotoxicity and inhibitory activity for cholesterol synthesis in human skeletal muscle cells.

    PubMed

    Yamazaki, Hiroyuki; Suzuki, Mahomi; Aoki, Taro; Morikawa, Shigeru; Maejima, Takashi; Sato, Fumiyasu; Sawanobori, Kimio; Kitahara, Masaki; Kodama, Tatsuhiko; Saito, Yasushi

    2006-12-01

    Although statins are prescribed as relatively safe and effective drugs for hypercholesterolemic patients, it has been reported that a significant side effect, myopathy, occurs infrequently during medication. Moreover, because statins decrease cardiac ubiquinone levels, the risk of cardiac dysfunction has been suggested. This study sought to evaluate and compare the cytotoxicity of statins (cerivastatin, pitavastatin, fluvastatin, simvastatin, atorvastatin and pravastatin) in cultured human skeletal muscle cells (HSkMCs) and the effects on ubiquinone levels in statin-treated rat skeletal muscle and heart. Cerivastatin, the most potent inhibitor of HMG-CoA reductase, showed the strongest cytotoxicity (over 10-fold) among the statins examined, while the effects of the others were in a similar range. In rat experiments, neither pitavastatin nor cerivastatin decreased ubiquinone levels in skeletal muscle, but both dose-dependently lowered ubiquinone levels in the heart. As the rates of reduction by pitavastatin (9.6% at 30 mg/kg) and cerivastatin (9.7% at 0.3 mg/kg) were almost equal, it was estimated that cerivastatin reduced ubiquinone levels in the rat heart approximately 100-fold more strongly than pitavastatin, based on the effective doses. We found that cerivastatin showed the most potent cytotoxicity in HSkMCs and strongly lowered ubiquinone levels in the rat heart.

  9. Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Stec, Jozef; Vilchèze, Catherine; Lun, Shichun; Perryman, Alexander L; Wang, Xin; Freundlich, Joel S; Bishai, William; Jacobs, William R; Kozikowski, Alan P

    2014-11-01

    New triclosan (TRC) analogues were evaluated for their activity against the enoyl-acyl carrier protein reductase InhA in Mycobacterium tuberculosis (Mtb). TRC is a well-known inhibitor of InhA, and specific modifications to its positions 5 and 4' afforded 27 derivatives; of these compounds, seven derivatives showed improved potency over that of TRC. These analogues were active against both drug-susceptible and drug-resistant Mtb strains. The most active compound in this series, 4-(n-butyl)-1,2,3-triazolyl TRC derivative 3, had an MIC value of 0.6 μg mL(-1) (1.5 μM) against wild-type Mtb. At a concentration equal to its MIC, this compound inhibited purified InhA by 98 %, and showed an IC50 value of 90 nM. Compound 3 and the 5-methylisoxazole-modified TRC 14 were able to inhibit the biosynthesis of mycolic acids. Furthermore, mc(2) 4914, an Mtb strain overexpressing inhA, was found to be less susceptible to compounds 3 and 14, supporting the notion that InhA is the likely molecular target of the TRC derivatives presented herein.

  10. Biological Evaluation of Potent Triclosan-Derived Inhibitors of the Enoyl-Acyl Carrier Protein Reductase InhA in Drug-sensitive and Drug-resistant Strains of Mycobacterium tuberculosis

    PubMed Central

    Vilchèze, Catherine; Lun, Shichun; Perryman, Alexander L.; Wang, Xin; Freundlich, Joel S.; Bishai, William; Jacobs, William R.

    2014-01-01

    New triclosan (TRC) analogs were evaluated for their activity against the enoyl-acyl carrier protein reductase InhA in Mycobacterium tuberculosis (Mtb). TRC is a well-known inhibitor of InhA and specific modifications to its positions 5 and 4′ afforded twenty-seven derivatives; of these compounds seven derivatives showed an improved potency in comparison to TRC. These analogs were active against both drug-susceptible and drug-resistant Mtb strains. The most active compound in this series, 3, had an MIC value of 0.6 μg/mL (1.5 μM) against wild-type Mtb. At a concentration equal to its MIC, this molecule inhibited the purified InhA enzyme to the extent of 98%, and it showed an IC50 value of 90 nM. Compounds 3 and 14 were able to inhibit the biosynthesis of mycolic acids. Furthermore, mc24914, an Mtb strain overexpressing inhA, was resistant to the compounds 3 and 14, supporting the notion that InhA is the likely molecular target of the TRC derivatives presented herein. PMID:25165007

  11. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells.

    PubMed Central

    Hernández-Perera, O; Pérez-Sala, D; Navarro-Antolín, J; Sánchez-Pascuala, R; Hernández, G; Díaz, C; Lamas, S

    1998-01-01

    Endothelial dysfunction associated with atherosclerosis has been attributed to alterations in the L-arginine-nitric oxide (NO)-cGMP pathway or to an excess of endothelin-1 (ET-1). The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to ameliorate endothelial function. However, the physiological basis of this observation is largely unknown. We investigated the effects of Atorvastatin and Simvastatin on the pre-proET-1 mRNA expression and ET-1 synthesis and on the endothelial NO synthase (eNOS) transcript and protein levels in bovine aortic endothelial cells. These agents inhibited pre-proET-1 mRNA expression in a concentration- and time-dependent fashion (60-70% maximum inhibition) and reduced immunoreactive ET-1 levels (25-50%). This inhibitory effect was maintained in the presence of oxidized LDL (1-50 microg/ml). No significant modification of pre-proET-1 mRNA half-life was observed. In addition, mevalonate, but not cholesterol, reversed the statin-mediated decrease of pre-proET-1 mRNA levels. eNOS mRNA expression was reduced by oxidized LDL in a dose-dependent fashion (up to 57% inhibition), whereas native LDL had no effect. Statins were able to prevent the inhibitory action exerted by oxidized LDL on eNOS mRNA and protein levels. Hence, these drugs might influence vascular tone by modulating the expression of endothelial vasoactive factors. PMID:9637705

  12. 3-Hydroxyl-3-methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitor (Statin)-induced 28-kDa Interleukin-1β Interferes with Mature IL-1β Signaling*

    PubMed Central

    Davaro, Facundo; Forde, Sorcha D.; Garfield, Mark; Jiang, Zhaozhao; Halmen, Kristen; Tamburro, Nelsy Depaula; Kurt-Jones, Evelyn; Fitzgerald, Katherine A.; Golenbock, Douglas T.; Wang, Donghai

    2014-01-01

    Multiple clinical trials have shown that the 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors known as statins have anti-inflammatory effects. However, the underlying molecular mechanism remains unclear. The proinflammatory cytokine interleukin-1β (IL-1β) is synthesized as a non-active precursor. The 31-kDa pro-IL-1β is processed into the 17-kDa active form by caspase-1-activating inflammasomes. Here, we report a novel signaling pathway induced by statins, which leads to processing of pro-IL-1β into an intermediate 28-kDa form. This statin-induced IL-1β processing is independent of caspase-1- activating inflammasomes. The 28-kDa form of IL-1β cannot activate interleukin-1 receptor-1 (IL1R1) to signal inflammatory responses. Instead, it interferes with mature IL-1β signaling through IL-1R1 and therefore may dampen inflammatory responses initiated by mature IL-1β. These results may provide new clues to explain the anti-inflammatory effects of statins. PMID:24790079

  13. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  14. Inhibition of cholesterol synthesis ex vivo and in vivo by fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase.

    PubMed

    Yamamoto, A; Itoh, S; Hoshi, K; Ichihara, K

    1995-03-15

    The inhibitory effect of fluvastatin sodium (fluvastatin), a new type of 3-hydroxy-3-methylglutaryl (HMG) coenzyme A inhibitor, on de novo cholesterol synthesis was investigated and compared with that of pravastatin. Fluvastatin at a concentration of 12.5 mg/kg inhibited sterol synthesis ex vivo from [14C]acetate in rat liver and ileum by 97-99% with respect to the control, while the inhibition in kidney was 55%. The inhibition by fluvastatin in the liver and ileum persisted for approximately 9 h after administration. Significant differences between fluvastatin also had an inhibitory effect on cholesterol synthesis in vivo in various tissues of rats given [14C]acetate intraperitoneally. Sterol synthesis in the liver, ileum and kidney was inhibited by over 95% 3 h after administration of 6.25 mg/kg of fluvastatin. Significant differences between fluvastatin and pravastatin were found in the liver and ileum. Fluvastatin was more potent than pravastatin in inhibiting both ex vivo and in vivo sterol synthesis in the ileum (but not in kidney) and liver.

  15. The effect of compactin, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme-A reductase activity, on cholesterogenesis and serum cholesterol levels in rats and chicks.

    PubMed

    Fears, R; Richards, D H; Ferres, H

    1980-04-01

    Compactin, [7-(1,2,6,7,8,8a-hexahydro-2-methyl-8-(2-methylbutyrylox)naphthyl)-3-hydroxyheptan-5-olide], a potent competitive inhibitor of the rate-determining step in cholesterol biosynthesis, was used to study the influence of changes in cholesterogenesis on serum cholesterol levels. Up to 3 h after a single oral dose (20 or 50 mg/kg) or after the last of a series of daily oral doses (50 mg/kg for 7 or 28 days) to young, male normolipidaemic rats, compactin consistently inhibited cholesterogenesis measured using 3H20 in liver, ileum and other extrahepatic tissues without affecting fatty acid synthesis. Compactin did not reduce serum or tissue cholesterol nor affect the serum concentration of other lipids nor the ratio between lipoprotein classes. A diurnal variation in the effect of compactin on cholesterogenesis was observed. For example, by 12--20 h after dosing, cholesterogenesis at all sites was increased above the comparable control value, indicating the induction of enzyme synthesis and overall there was little effect on the mass of cholesterol synthesized per day. Similar results were obtained using male chicks. Inhibition of cholesterogenesis by compactin was also observed in cholestyramine-treated rats, in which cholesterol turnover was markedly increased, and even in cholesterol-fed rats, in which cholesterogenesis already was repressed. In neither case, however, was inhibition of cholesterogenesis accompanied by a hypocholesterolaemic effect. It is concluded that a more persistent suppression of cholesterogenesis, than that observed with compactin in the rat, may be required in order to affect serum cholesterol concentrations.

  16. Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of antiatherogenic activity of hydroxymethylglutaryl-coenzyme A reductase inhibitor Atorvastatin and hepatic LRP1 expression.

    PubMed

    Moon, Jae Hoon; Kang, Saet Byol; Park, Jong Suk; Lee, Byung Wan; Kang, Eun Seok; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo

    2011-07-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) binds to apolipoprotein E and serves as a receptor for remnant lipoproteins in the liver, thus playing an important role in clearing these atherogenic particles. In this study, we investigated the effect of atorvastatin, a hydroxymethylglutaryl-coenzyme A reductase inhibitor, on hepatic LRP1 expression. We used HepG2 and Hep3B cells for in vitro study, and Otsuka Long-Evans Tokushima fatty and Sprague-Dawley rats for in vivo study. We used relatively high pharmacologic dose of atorvastatin in this study (in vitro, 0.5 μmol/L in culture media, for 48 hours; in vivo, 20 mg/[kg d], for 6 weeks). Atorvastatin increased LRP1 and low-density lipoprotein (LDL) receptor expression in HepG2 and Hep3B cells and induced hepatic LRP1 and LDL receptor expression in chow diet-fed Sprague-Dawley rats and high-fat diet-fed Otsuka Long-Evans Tokushima fatty rats. Atorvastatin decreased intracellular sterol level and increased the amount of the nuclear form of sterol response element-binding protein-2 (SREBP-2) in both HepG2 and Hep3B cells as well as in two animal models. Treatment of HepG2 cells with LDL increased intracellular sterol level and reduced LRP1, LDL receptor, and SREBP-2. When SREBP-2 in HepG2 cells was knocked down by small interfering RNA, the induction of LRP1 expression by atorvastatin did not take place. In conclusion, up-regulation of hepatic LRP1 might be a novel mechanism by which statin treatment decreases remnant lipoproteins. In addition, SREBP-2 acts as a mediator of atorvastatin-induced up-regulation of hepatic LRP1. Future studies using standard doses of atorvastatin in humans are needed to elucidate clinical relevance of these findings.

  17. Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo-keto reductase 1C33 by site-directed mutagenesis.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Ikari, Akira; El-Kabbani, Ossama; Hara, Akira; Kitade, Yukio

    2015-03-01

    In rabbit tissues, hydroxysteroid dehydrogenase belonging to the aldo-keto reductase (AKR) superfamily exists in six isoforms (AKRs: 1C5 and 1C29-1C33), sharing >73% amino acid sequence identity. AKR1C33 is strictly NADPH-specific, in contrast to dual NADPH/NADH specificity of the other isoforms. All coenzyme-binding residues of the structurally elucidated AKR1C5 are conserved in other isoforms, except that S217 (interacting with the pyrophosphate moiety) and T273 (interacting with the 2'-phosphate moiety) are replaced with F217 and N272, respectively, in AKR1C33. To explore the determinants for the NADPH specificity of AKR1C33, we prepared its F217S and N272T mutant enzymes. The mutation of F217S, but not N272T, converted AKR1C33 into a dually coenzyme-specific form that showed similar kcat values for NAD(P)H to those of AKR1C32. The reverse mutation (S217F) in dually coenzyme-specific AKR1C32 produced a strictly NADPH-specific form. The F217S mutation also abolished the activity towards 3-keto-5β-cholestanes that are substrates specific to AKR1C33, and markedly decreased the sensitivity to 4-pregnenes (such as deoxycorticosterone and medroxyprogesterone acetate) that were found to be potent mixed-type inhibitors of the wild-type enzyme. The results indicate the important role of F217 in the strict NADPH-dependency, as well as its involvement in the unique catalytic properties of AKR1C33.

  18. Fumarate Reductase Activity of Streptococcus faecalis

    PubMed Central

    Aue, B. J.; Diebel, R. H.

    1967-01-01

    Some characteristics of a fumarate reductase from Streptococcus faecalis are described. The enzyme had a pH optimum of 7.4; optimal activity was observed when the ionic strength of the phosphate buffer was adjusted to 0.088. The Km value of the enzyme for reduced flavin mononucleotide was 2 × 10−4 m as determined with a 26-fold preparation. In addition to fumarate, the enzyme reduced maleate and mesaconate. No succinate dehydrogenase activity was detected, but succinate did act as an inhibitor of the fumarate reductase activity. Other inhibitors were malonate, citraconate, and trans-, trans-muconate. Metal-chelating agents did not inhibit the enzyme. A limited inhibition by sulfhydryl-binding agents was observed, and the preparations were sensitive to air oxidation and storage. Glycine, alanine, histidine, and possibly lysine stimulated fumarate reductase activity in the cell-free extracts. However, growth in media supplemented with glycine did not enhance fumarate reductase activity. The enzymatic activity appears to be constitutive. PMID:4960892

  19. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  20. The tyrosyl free radical in ribonucleotide reductase.

    PubMed Central

    Gräslund, A; Sahlin, M; Sjöberg, B M

    1985-01-01

    The enzyme, ribonucleotide reductase, catalyses the formation of deoxyribonucleotides from ribonucleotides, a reaction essential for DNA synthesis in all living cells. The Escherichia coli ribonucleotide reductase, which is the prototype of all known eukaryotic and virus-coded enzymes, consists of two nonidentical subunits, proteins B1 and B2. The B2 subunit contains an antiferromagnetically coupled pair of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of an electron, has its unpaired spin density delocalized in the aromatic ring of tyrosine. Effects of iron-radical interaction indicate a relatively close proximity between the iron center and the radical. The EPR signal of the radical can be studied directly in frozen packed cells of E. coli or mammalian origin, if the cells are made to overproduce ribonucleotide reductase. The hypothetic role of the tyrosyl free radical in the enzymatic reaction is not yet elucidated, except in the reaction with the inhibiting substrate analogue 2'-azido-CDP. In this case, the normal tyrosyl radical is destroyed with concomitant appearance of a 2'-azido-CDP-localized radical intermediate. Attempts at spin trapping of radical reaction intermediates have turned out negative. In E. coli the activity of ribonucleotide reductase may be regulated by enzymatic activities that interconvert a nonradical containing form and the fully active protein B2. In synchronized mammalian cells, however, the cell cycle variation of ribonucleotide reductase, studied by EPR, was shown to be due to de novo protein synthesis. Inhibitors of ribonucleotide reductase are of medical interest because of their ability to control DNA synthesis. One example is hydroxyurea, used in cancer therapy, which selectively destroys the tyrosyl free radical. PMID:3007085

  1. Improved multiparametric MRI discrimination between low-risk prostate cancer and benign tissues in a small cohort of 5α-reductase inhibitor treated individuals as compared with an untreated cohort.

    PubMed

    Starobinets, Olga; Kurhanewicz, John; Noworolski, Susan M

    2017-02-06

    The purpose of this study was to determine whether 5α-reductase inhibitors (5-ARIs) affect the discrimination between low-grade prostate cancer and benign tissues on multiparametric MRI (mpMRI). Twenty men with biopsy-proven Gleason 3 + 3 prostate cancer and 3 T mpMRI were studied. Ten patients (Tx) had been receiving 5-ARIs for at least a year at scan time. Ten untreated patients (Un) were matched to the treated cohort. For each subject two regions of interest representing cancerous and benign tissues were drawn within the peripheral zone of each prostate, MR measures evaluated, and cancer contrast versus benign (contrast = (MRTumor  - MRHealthy )/MRHealthy ) calculated. Decreased cancer contrast was noted on T2 -weighted images: 0.4 (Un) versus 0.3 (Tx). However, for functional MR measures, a better separation of cancerous and benign tissues was observed in the treated group. Cancer contrast on high-b diffusion-weighted imaging (DWI) was 0.61 (Un) versus 0.99 (Tx). Logistic regression analysis yielded higher AUC (area under the curve) values for distinguishing cancerous from benign regions in treated subjects on high-b DWI (0.71 (Un), 0.94 (Tx)), maximal enhancement slope (0.95 (Un), 1 (Tx)), peak enhancement (0.84 (Un), 0.93 (Tx)), washout slope (0.78 (Un), 0.99 (Tx)), K(trans) (0.9 (Un), 1 (Tx)), and combined measures (0.86 (Un), 0.99 (Tx)). Coefficients of variation for MR measures were lower in benign and cancerous tissues in the treated group compared with the untreated group. This study's results suggest an increase in homogeneity of benign and malignant peripheral zone prostatic tissues with 5-ARI exposure, observed as reduced variability of MR measures after treatment. Cancer discrimination was lower with T2 -weighted imaging, but was higher with functional MR measures in a 5-ARI-treated cohort compared with controls.

  2. Exploration of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays

    PubMed Central

    Dey, Baishakhi; Mitra, Analava; Katakam, Prakash; Singla, Rajeev K

    2014-01-01

    AIM: To investigate the presence and potency of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays. METHODS: The leaf extracts of the three different Eucalyptus species [E. globulus (EG), E. citriodora (EC), E. camaldulensis (ECA)] were subjected to in vitro assay procedures to explore the prevalence of natural enzyme inhibitors (NEIs) after preliminary qualitative and quantitative phytochemical evaluations, to study their inhibitory actions against the enzymes like α-amylase, α-glucosidase, aldose reductase, angiotensin converting enzyme and dipeptidyl peptidase 4 playing pathogenic roles in type 2 diabetes. The antioxidant potential and total antioxidant capacity of the species were also evaluated. RESULTS: Major bioactive compounds like polyphenols (341.75 ± 3.63 to 496.85 ± 3.98) and flavonoids (4.89 ± 0.01 to 7.15 ± 0.02) were found in appreciable quantity in three species. Based on the IC50 values of the extracts under investigation, in all assays the effectivity was in the order of EG > ECA > EC. The results of the ferric reducing antioxidant power assay showed that the reducing ability of the species was also in the order of EG > ECA > EC. A strong correlation (R2 = 0.81-0.99) was found between the phenolic contents and the inhibitory potentials of the extracts against the targeted enzymes. CONCLUSION: These results show immense hypoglycemic potentiality of the Eucalyptus Spp. and a remarkable source of NEIs for a future phytotherapeutic approach in Type 2 diabetes. PMID:24748933

  3. Immunological approach to the regulation of nitrate reductase in Monoraphidium braunii.

    PubMed

    Díez, J; López-Ruiz, A

    1989-02-01

    The effects of different culture conditions on nitrate reductase activity and nitrate reductase protein from Monoraphidium braunii have been studied, using two different immunological techniques, rocket immunoelectrophoresis and an enzyme-linked immunosorbent assay, to determine nitrate reductase protein. The nitrogen sources ammonium and glutamine repressed nitrate reductase synthesis, while nitrite, alanine, and glutamate acted as derepressors. There was a four- to eightfold increase of nitrate reductase activity and a twofold increase of nitrate reductase protein under conditions of nitrogen starvation versus growth on nitrate. Nitrate reductase synthesis was repressed in darkness. However, when Monoraphidium was grown under heterotrophic conditions with glucose as the carbon and energy source, the synthesis of nitrate reductase was maintained. With ammonium or darkness, changes in nitrate reductase activity correlated fairly well with changes in nitrate reductase protein, indicating that in both cases loss of activity was due to repression and not to inactivation of the enzyme. Experiments using methionine sulfoximine, to inhibit ammonium assimilation, showed that ammonium per se and not a product of its metabolism was the corepressor of the enzyme. The appearance of nitrate reductase activity after transferring the cells to induction media was prevented by cycloheximide and by 6-methylpurine, although in this latter case the effect was observed only in cells preincubated with the inhibitor for 1 h before the induction period.

  4. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10.

  5. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates.

    PubMed

    Sentürk, Murat; Talaz, Oktay; Ekinci, Deniz; Cavdar, Hüseyin; Küfrevioğlu, Omer Irfan

    2009-07-01

    Glutathione reductase (GR), is responsible for the existence of GSH molecule, a crucial antioxidant against oxidative stress reagents. The antimalarial activities of some redox active compounds are attributed to their inhibition of antioxidant flavoenzyme glutathione reductase, and inhibitors are therefore expected to be useful for the treatment of malaria. Twelve organic nitrate derivatives were synthesized and treated with human erythrocyte GR. The molecules were identified as strong GR inhibitors and novel antimalaria candidates.

  6. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers.

    PubMed

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash

    2017-02-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.

  7. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design

    PubMed Central

    Khan, M. Omar F.

    2007-01-01

    Trypanosomiasis and leishmaniasis are two debilitating disease groups caused by parasites of Trypanosoma and Leishmania spp. and affecting millions of people worldwide. A brief outline of the potential targets for rational drug design against these diseases are presented, with an emphasis placed on the enzyme trypanothione reductase. Trypanothione reductase was identified as unique to parasites and proposed to be an effective target against trypanosomiasis and leishmaniasis. The biochemical basis of selecting this enzyme as a target, with reference to the simile and contrast to human analogous enzyme glutathione reductase, and the structural aspects of its active site are presented. The process of designing selective inhibitors for the enzyme trypanothione reductase has been discussed. An overview of the different chemical classes of inhibitors of trypanothione reductase with their inhibitory activities against the parasites and their prospects as future chemotherapeutic agents are briefly revealed. PMID:21901070

  8. Efficacy, tissue distribution and biliary excretion of methyl (3R*,5S*)-(E)-3,5-dihydroxy-9,9-diphenyl-6,8-nonadienoate (CP-83101), a hepatoselective inhibitor of HMG-CoA reductase activity in the rat.

    PubMed

    Harwood, H J; Silva, M; Chandler, C E; Mikolay, L; Pellarin, L D; Barbacci-Tobin, E; Wint, L T; McCarthy, P A

    1990-09-15

    Methyl (3R*,5S*)-(E)-3,5-dihydroxy-9,9-diphenyl-6,8-nonadienoate, CP-83101, was identified as a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, inhibiting enzyme activity in vitro with an IC50 of 8.5 +/- 0.7 microM and a Ki with respect to HMG-CoA of 2.6 microM. CP-83101 also inhibited rat hepatic sterol biosynthesis by 39 +/- 7% at a dose of 100 mg/kg. [3H]CP-83101, administered orally to rats, exhibited peak plasma levels at approximately 1 hr that declined thereafter with an apparent half-time of 2-3 hr. Peak tissue levels also occurred 1 hr following oral administration of [3H]CP-83101. The decline in radioactivity in the liver, however, was considerably slower than that noted in blood, whereas the half-life in non-hepatic tissues was approximately 1 hr. Liver/blood ratios of 14, and liver/lens ratios of greater than 3000, following oral administration of [3H]CP-83101, were similar to those previously reported for other HMG-CoA reductase inhibitors, suggesting a high degree of tissue selectivity. In addition, liver/adrenal and liver/ovary ratios were approximately 1000 at all time points examined between 30 min and 24 hr following oral [3H]CP-83101 administration, indicating a high specificity for hepatic versus other steroidogenic tissues. Evaluation of intravenous versus oral administration of the water-soluble, free acid, sodium salt of [3H]CP-83101 in bile duct canulated rats indicated that approximately 20% of orally administered CP-83101 is absorbed from the gastrointestinal tract, and that absorbed CP-83101 is cleared rapidly from the plasma via the liver and from the liver via the bile. In addition, several lines of evidence suggest that CP-83101 may undergo enterohepatic recirculation. Agents of this synthetic series may thus possess advantages over other HMG-CoA reductase inhibitors with respect to tissue kinetics and specificity.

  9. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  10. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate*

    PubMed Central

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-01-01

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  11. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

    NASA Astrophysics Data System (ADS)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

  12. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  13. Diabetic neuropathy: structural analysis of nerve hydration by Magnetic Resonance Spectroscopy

    SciTech Connect

    Griffey, R.H.; Eaton, P.; Sibbitt, R.R.; Sibbitt, W.L. Jr.; Bicknell, J.M.

    1988-11-18

    The water content of the sural nerve of diabetic patients was quantitatively defined by magnetic resonance proton imaging as a putative reflection of activity of the aldose-reductase pathway. Thirty-nine patients were evaluated, comparing group A, symptomatic diabetic men with sensory neuropathy; group B, similarly symptomatic diabetic men treated aldose-reductase inhibition; group C, neurologically asymptomatic diabetic men; and group D, control nondiabetic men. Marked increase in hydration of the sural nerve was seen in more than half of the symptomatic diabetic patients. Two of 11 neurologically asymptomatic diabetics had increased nerve hydration, suggesting a presymptomatic alteration of the nerve. Symptomatic diabetics treated with aldose-reductase inhibitors had normal nerve water levels. Increased level of peripheral nerve water represents a new finding in diabetes mellitus. It seems to be related to aldose-reductase activity, involved in the development of neuropathy, and similar to events that occur in other target tissue in human diabetes.

  14. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  15. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].

    PubMed

    Belikova, Iu O; Kotliar, A B

    1988-04-01

    Succinate:ubiquinone reductase was shown to catalyze the oxidation of L- and D-stereoisomers of malate by artificial electron acceptors and ubiquinone. The rate of malate oxidation by succinate:ubiquinone reductase is by two orders of magnitude lower than that for the natural substrate--succinate. The values of kinetic constants for the oxidation of D- and L-stereoisomers of malate are equal to: V infinity = 0.1 mumol/min/mg protein, Km = 2 mM and V infinity = 0.05 mumol/min/mg protein, Km = 2 mM, respectively. The malate dehydrogenase activity is fully inhibited by the inhibitors of the dicarboxylate-binding site of the enzyme, i.e., N-ethylmaleimide and malonate and is practically insensitive to carboxin, a specific inhibitor of the ubiquinone-binding center. The enol form of oxaloacetate was shown to be the product of malate oxidation by succinate:ubiquinone reductase. The kinetics of inhibition of the enzyme activity by the ketone and enol forms of oxaloacetate was studied. Both forms of oxaloacetate effectively inhibit the succinate:ubiquinone reductase reaction.

  16. Inhibition of carbonyl reductase activity in pig heart by alkyl phenyl ketones.

    PubMed

    Imamura, Yorishige; Narumi, Rika; Shimada, Hideaki

    2007-02-01

    The inhibitory effects of alkyl phenyl ketones on carbonyl reductase activity were examined in pig heart. In this study, carbonyl reductase activity was estimated as the ability to reduce 4-benzoylpyridine to S(-)-alpha-phenyl-4-pyridylmethanol in the cytosolic fraction from pig heart (pig heart cytosol). The order of their inhibitory potencies was hexanophenone > valerophenone > heptanophenone > butyrophenone > propiophenone. The inhibitory potencies of acetophenone and nonanophenone were much lower. A significant relationship was observed between Vmax/Km values for the reduction of alkyl phenyl ketones and their inhibitory potencies for carbonyl reductase activity in pig heart cytosol. Furthermore, hexanophenone was a competitive inhibitor for the enzyme activity. These results indicate that several alkyl phenyl ketones including hexanophenone inhibit carbonyl reductase activity in pig heart cytosol, by acting as substrate inhibitors.

  17. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, C.; Sempéré, R.

    2003-04-01

    Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in

  18. A DFT-based QSAR study on inhibition of human dihydrofolate reductase.

    PubMed

    Karabulut, Sedat; Sizochenko, Natalia; Orhan, Adnan; Leszczynski, Jerzy

    2016-11-01

    Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase, for example in treatment of patients whose immune system are affected by human immunodeficiency virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were analyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The prediction set was characterized by R(2)=0.60 and RMSE=3.59. Factors responsible for inhibition process were identified and discussed. The resulting model was validated via cross validation and Y-scrambling procedure. From the best model, we found several mass-related descriptors and Sanderson electronegativity-related descriptors that have the best correlations with the investigated inhibitory concentration. These descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase inhibitors.

  19. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  20. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  1. A Gas Chromatographic Method for the Determination of Aldose and Uronic Acid Constituents of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Jones, Thomas M.; Albersheim, Peter

    1972-01-01

    A major problem in determining the composition of plant cell wall polysaccharides has been the lack of a suitable method for accurately determining the amounts of galacturonic and glucuronic acids in such polymers. A gas chromatographic method for aldose analysis has been extended to include uronic acids. Cell wall polysaccharides are depolymerized by acid hydrolysis followed by treatment with a mixture of fungal polysaccharide-degrading enzymes. The aldoses and uronic acids released by this treatment are then reduced with NaBH4 to alditols and aldonic acids, respectively. The aldonic acids are separated from the alditols with Dowex-1 (acetate form) ion exchange resin, which binds the aldonic acids. The alditols, which do not bind, are washed from the resin and then acetylated with acetic anhydride to form the alditol acetate derivatives. The aldonic acids are eluted from the resin with HCl. After the resin has been removed, the HCl solution of the aldonic acids is evaporated to dryness, converting the aldonic acids to aldonolactones. The aldonolactones are reduced with NaBH4 to the corresponding alditols, dried and acetylated. The resulting alditol acetate mixtures produced from the aldoses and those from the uronic acids are analyzed separately by gas chromatography. This technique has been used to determine the changes in composition of Red Kidney bean (Phaseolus vulgaris) hypocotyl cell walls during growth, and to compare the cell wall polysaccharide compositions of several parts of bean plants. Galacturonic acid is found to be a major component of all the cell wall polysaccharides examined. PMID:16658086

  2. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase

    PubMed Central

    Srinivasan, Bharath; Tonddast-Navaei, Sam; Skolnick, Jeffrey

    2015-01-01

    Gram-negative bacteria are implicated in the causation of life-threatening hospital-acquired infections. They acquire rapid resistance to multiple drugs and available antibiotics. Hence, there is the need to discover new antibacterial agents with novel scaffolds. For the first time, this study explores the 1,3,5-triazine-2,4-diamine and 1,2,4-triazine-2,4-diamine group of compounds as potential inhibitors of E. coli DHFR, a pivotal enzyme in the thymidine and purine synthesis pathway. Using differential scanning fluorimetry, DSF, fifteen compounds with various substitutions on either the 3rd or 4th positions on the benzene group of 6,6-dimethyl-1-(benzene)-1,3,5-triazine-2,4-diamine were shown to bind to the enzyme with varying affinities. Then, the dose dependence of inhibition by these compounds was determined. Preliminary quantitative structure-activity relationship analysis and docking studies implicate the alkyl linker group and the sulfonyl fluoride group in increasing the potency of inhibition. 4-[4-[3-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]butyl]benzenesulfonyl fluoride (NSC120927), the best hit from the study and a molecule with no reported inhibition of E. coli DHFR, potently inhibits the enzyme with a Ki value of 42.50 ± 5.34 nM, followed by 4-[6-[4-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]hexyl]benzenesulfonyl fluoride(NSC132279), with a Ki value of 100.9 ± 12.7 nM. Detailed kinetic characterization of the inhibition brought about by five small-molecule hits shows that these inhibitors bind to the dihydrofolate binding site with preferential binding to the NADPH-bound binary form of the enzyme. Furthermore, in search of novel diaminotriazine scaffolds, it is shown that lamotrigine, a 1,2,4-triazine-3,5-diamine and a sodium-ion channel blocker class of antiepileptic drug, also inhibits E. coli DHFR. This is the first comprehensive study on the binding and inhibition brought about by diaminotriazines of a gram

  3. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.

    PubMed

    Wang, Jing-Fang; Wei, Dong-Qing; Lin, Ying; Wang, Yong-Hua; Du, Hong-Li; Li, Yi-Xve; Chou, Kuo-Chen

    2007-07-27

    NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.

  4. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design

    PubMed Central

    Saravanamuthu, Ahilan; Vickers, Tim J.; Bond, Charles S.; Peterson, Mark R.; Hunter, William N.; Fairlamb, Alan H.

    2012-01-01

    SUMMARY Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible. PMID:15102853

  5. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  6. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  7. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase

    NASA Astrophysics Data System (ADS)

    Lay, Angelina J.; Jiang, Xing-Mai; Kisker, Oliver; Flynn, Evelyn; Underwood, Anne; Condron, Rosemary; Hogg, Philip J.

    2000-12-01

    Disulphide bonds in secreted proteins are considered to be inert because of the oxidizing nature of the extracellular milieu. An exception to this rule is a reductase secreted by tumour cells that reduces disulphide bonds in the serine proteinase plasmin. Reduction of plasmin initiates proteolytic cleavage in the kringle 5 domain and release of the tumour blood vessel inhibitor angiostatin. New blood vessel formation or angiogenesis is critical for tumour expansion and metastasis. Here we show that the plasmin reductase isolated from conditioned medium of fibrosarcoma cells is the glycolytic enzyme phosphoglycerate kinase. Recombinant phosphoglycerate kinase had the same specific activity as the fibrosarcoma-derived protein. Plasma of mice bearing fibrosarcoma tumours contained several-fold more phosphoglycerate kinase, as compared with mice without tumours. Administration of phosphoglycerate kinase to tumour-bearing mice caused an increase in plasma levels of angiostatin, and a decrease in tumour vascularity and rate of tumour growth. Our findings indicate that phosphoglycerate kinase not only functions in glycolysis but is secreted by tumour cells and participates in the angiogenic process as a disulphide reductase.

  8. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  9. Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression.

    PubMed

    Habib, Fouad K; Ross, Margaret; Ho, Clement K H; Lyons, Valerie; Chapman, Karen

    2005-03-20

    The phytotherapeutic agent Serenoa repens is an effective dual inhibitor of 5alpha-reductase isoenzyme activity in the prostate. Unlike other 5alpha-reductase inhibitors, Serenoa repens induces its effects without interfering with the cellular capacity to secrete PSA. Here, we focussed on the possible pathways that might differentiate the action of Permixon from that of synthetic 5alpha-reductase inhibitors. We demonstrate that Serenoa repens, unlike other 5alpha-reductase inhibitors, does not inhibit binding between activated AR and the steroid receptor-binding consensus in the promoter region of the PSA gene. This was shown by a combination of techniques: assessment of the effect of Permixon on androgen action in the LNCaP prostate cancer cell line revealed no suppression of AR and maintenance of PSA protein expression at control levels. This was consistent with reporter gene experiments showing that Permixon failed to interfere with AR-mediated transcriptional activation of PSA and that both testosterone and DHT were equally effective at maintaining this activity. Our results demonstrate that despite Serenoa repens effective inhibition of 5alpha-reductase activity in the prostate, it did not suppress PSA secretion. Therefore, we confirm the therapeutic advantage of Serenoa repens over other 5alpha-reductase inhibitors as treatment with the phytotherapeutic agent will permit the continuous use of PSA measurements as a useful biomarker for prostate cancer screening and for evaluating tumour progression.

  10. HMG-CoA reductase activity in human liver microsomes: comparative inhibition by statins.

    PubMed

    Dansette, P M; Jaoen, M; Pons, C

    2000-05-01

    The aim of this study was to compare a number of vastatins, HMG-CoA reductase inhibitors, in human liver microsomes. HMG-CoA reductase activity was four times lower than the activity in untreated rat liver microsomes. Vastatins could be classified in this in vitro assay in three classes both in human and rat microsomes: the first one including cerivastatin with an IC50 of 6 nM, the second one with atorvastatin and fluvastatin (IC50) between 40 and 100 nM) and the third one containing pravastatin, simvastatin and lovastatin (IC50 between 100 and 300 nM).

  11. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites

    PubMed Central

    Bonilla, Mariana; Gladyshev, Vadim N.

    2013-01-01

    Abstract Significance: Platyhelminth parasites cause chronic infections that are a major cause of disability, mortality, and economic losses in developing countries. Maintaining redox homeostasis is a major adaptive problem faced by parasites and its disruption can shift the biochemical balance toward the host. Platyhelminth parasites possess a streamlined thiol-based redox system in which a single enzyme, thioredoxin glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase (TR) domains, supplies electrons to oxidized glutathione (GSSG) and thioredoxin (Trx). TGR has been validated as a drug target for schistosomiasis. Recent Advances: In addition to glutathione (GSH) and Trx reduction, TGR supports GSH-independent deglutathionylation conferring an additional advantage to the TGR redox array. Biochemical and structural studies have shown that the TR activity does not require the Grx domain, while the glutathione reductase and deglutathionylase activities depend on the Grx domain, which receives electrons from the TR domains. The search for TGR inhibitors has identified promising drug leads, notably oxadiazole N-oxides. Critical Issues: A conspicuous feature of platyhelminth TGRs is that their Grx-dependent activities are temporarily inhibited at high GSSG concentrations. The mechanism underlying the phenomenon and its biological relevance are not completely understood. Future Directions: The functional diversity of Trxs and Grxs encoded in platyhelminth genomes remains to be further assessed to thoroughly understand the TGR-dependent redox network. Optimization of TGR inhibitors and identification of compounds targeting other parasite redox enzymes are good options to clinically develop relevant drugs for these neglected, but important diseases. Antioxid. Redox Signal. 19, 735–745. PMID:22909029

  12. Properties of the arsenate reductase of plasmid R773.

    PubMed

    Gladysheva, T B; Oden, K L; Rosen, B P

    1994-06-14

    Resistance to toxic oxyanions in Escherichia coli is conferred by the ars operon carried on plasmid R773. The gene products of this operon catalyze extrusion of antimonials and arsenicals from cells of E. coli, thus providing resistance to those toxic oxyanions. In addition, resistance to arsenate is conferred by the product of the arsC gene. In this report, purified ArsC protein was shown to catalyze reduction of arsenate to arsenite. The enzymatic activity of the ArsC protein required glutaredoxin as a source of reducing equivalents. Other reductants, including glutathione and thioredoxin, were not effective electron donors. A spectrophotometric assay was devised in which arsenate reduction was coupled to NADPH oxidation. The results obtained with the coupled assay corresponded to those found by direct reduction of radioactive arsenate to arsenite. The only substrate of the reaction was arsenate (Km = 8 mM); other oxyanions including phosphate, sulfate, and antimonate were not reduced. Phosphate and sulfate were weak inhibitors, while the product, arsenite, was a stronger inhibitor (Ki = 0.1 mM). Arsenate reductase activity exhibited a pH optimum of 6.3-6.8. These results indicate that the ArsC protein is a novel reductase, and elucidation of its enzymatic mechanism should be of interest.

  13. Pitavastatin: the newest HMG-CoA reductase inhibitor.

    PubMed

    Watson, Karol E

    2010-01-01

    Statins were first introduced in the 1980s as a treatment of hypercholesterolemia. They provide a remarkable array of clinical benefits, including the reduction of low-density lipoprotein cholesterol, total cholesterol, and triglycerides, and elevation of high-density lipoprotein cholesterol. The US Food and Drug Administration has recently approved a new statin-pitavastatin-for launch in 2010. In several clinical trials, pitavastatin has shown favorable clinical efficacy, a positive safety profile, and encouraging clinical experience in Japan and other parts of Asia.

  14. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  15. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  16. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity.

    PubMed

    Lucena, Carlos; Waters, Brian M; Romera, F Javier; García, María José; Morales, María; Alcántara, Esteban; Pérez-Vicente, Rafael

    2006-01-01

    In previous works, it has been shown, by using ethylene inhibitors and precursors, that ethylene could participate in the regulation of the enhanced ferric reductase activity of Fe-deficient Strategy I plants. However, it was not known whether ethylene regulates the ferric reductase gene expression or other aspects related to this activity. This paper is a study of the effects of ethylene inhibitors and precursors on the expression of the genes encoding the ferric reductases and iron transporters of Arabidopsis thaliana (FRO2 and IRT1) and Lycopersicon esculentum (=Solanum lycopersicum) (FRO1 and IRT1) plants. The effects of ethylene inhibitors and precursors on the activity of the iron reductase and the iron transporter have been examined in parallel. Also studied were the effects of ethylene inhibitors and precursors on the expression of the H(+)-ATPase genes of cucumber (CsHA1 and CsHA2) and the transcription factor genes of tomato (LeFER) and Arabidopsis (AtFRU or AtFIT1, an LeFER homologue) that regulate ferric reductase, iron transporter, and H(+)-ATPse activity. The results obtained suggest that ethylene participates in the regulation of ferric reductase, the iron transporter, and H(+)-ATPase gene expression by affecting the FER (or FER-like) levels.

  17. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  18. Daio-Orengedokuto inhibits HMG-CoA reductase and pancreatic lipase.

    PubMed

    Kim, Young-Suk; Jung, Eun-Ah; Shin, Ji-Eun; Chang, Jong-Chul; Yang, Hyung-Kil; Kim, Nam-Jae; Cho, Ki-Ho; Bae, Hyung-Sup; Moon, Sang-Kwan; Kim, Dong-Hyun

    2002-11-01

    To evaluate the antihyperlipidemic activities of Orengedokuto (OT) and Daio-Orengedokuto (DOT), the inhibitory effects of these polyprescriptions on HMG-CoA reductase and pancreatic lipase and on the rat hyperlipidemic model induced by Triton WR-1339 were measured. OT potently inhibited HMG-CoA reductase but did not inhibit lipase. Among their ingredients, Coptidis Rhizoma was the most potent inhibitor, followed by Rhei Rhizoma. The HMG-CoA reductase-inhibitory activity of 80% EtOH extract was superior to that of water extract. However, DOT potently inhibited HMG CoA-reductase as well as pancreatic lipase. In the rat hyperlipidemic model induced by Triton WR-1339, OT and DOT decreased serum total cholesterol and low-density lipoprotein cholesterol levels. DOT also decreased serum triglyceride levels, but OT did not decrease it. These results suggest that the antihyperlipidemic activity of DOT may originate from the inhibition of pancreatic lipase as well as HMG-CoA reductase.

  19. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability.

    PubMed

    Dams, T; Auerbach, G; Bader, G; Jacob, U; Ploom, T; Huber, R; Jaenicke, R

    2000-03-31

    Two high-resolution structures have been obtained for dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima in its unliganded state, and in its ternary complex with the cofactor NADPH and the inhibitor, methotrexate. While the overall fold of the hyperthermophilic enzyme is closely similar to monomeric mesophilic dihydrofolate reductase molecules, its quaternary structure is exceptional, in that T. maritima dihydrofolate reductase forms a highly stable homodimer. Here, the molecular reasons for the high intrinsic stability of the enzyme are elaborated and put in context with the available data on the physical parameters governing the folding reaction. The molecule is extremely rigid, even with respect to structural changes during substrate binding and turnover. Subunit cooperativity can be excluded from structural and biochemical data. Major contributions to the high intrinsic stability of the enzyme result from the formation of the dimer. Within the monomer, only subtle stabilizing interactions are detectable, without clear evidence for any of the typical increments of thermal stabilization commonly reported for hyperthermophilic proteins. The docking of the subunits is optimized with respect to high packing density in the dimer interface, additional salt-bridges and beta-sheets. The enzyme does not show significant structural changes upon binding its coenzyme, NADPH, and the inhibitor, methotrexate. The active-site loop, which is known to play an important role in catalysis in mesophilic dihydrofolate reductase molecules, is rearranged, participating in the association of the subunits; it no longer participates in catalysis.

  20. 5 Alpha-reductase inhibitory and antiandrogenic activities of novel steroids in hamster seminal vesicles.

    PubMed

    Cabeza, Marisa; Bratoeff, Eugene; Flores, Eugenio; Ramírez, Elena; Calleros, Jorge; Montes, Diana; Quiroz, Alexandra; Heuze, Ivonne

    2002-11-01

    The pharmacological activity of several 16-bromosubstituted trienediones 4 and 5, 16-methyl substituted dienediones 6 and 7 and the 16-methyl substituted trienedione 8 was determined on gonadectomized hamster seminal vesicles by measuring the in vitro conversion of testosterone (T) to dihydrotestosterone (DHT) as 5alpha-reductase inhibitors and also the ability of these steroids to bind to the androgen receptor. Steroids 6 and 7 when injected together with T decreased the weight of the seminal vesicles thus showing an antiandrogenic effect. Compounds 5 and 6 reduced substantially the conversion of T to DHT and therefore can be considered good inhibitors for the enzyme 5alpha-reductase; however both steroids failed to form a complex with the androgen receptor. On the other hand compound 7 which showed a very small inhibitory activity for the enzyme 5alpha-reductase, exhibited a very high affinity for the androgen receptor and thus can be considered an effective antiandrogen. This compound also reduced substantially the weight of the seminal vesicles. Steroids 4 and 8 did not reduce the weight of the seminal vesicles and exhibited a low affinity for the androgen receptor; 8 showed a weak 5alpha-reductase inhibitory activity, whereas 4 exhibited a weak androgenic effect.

  1. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  2. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... About half of these individuals adopt a male gender role in adolescence or early adulthood. Related Information ... 1730-5. Citation on PubMed Cohen-Kettenis PT. Gender change in 46,XY persons with 5alpha-reductase- ...

  3. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  4. Fluorescent analogues of methotrexate: characterization and interaction with dihydrofolate reductase.

    PubMed

    Kumar, A A; Kempton, R J; Anstead, G M; Freisheim, J H

    1983-01-18

    The dansylated derivatives of lysine and ornithine analogues of methotrexate exhibit fluorescence properties characteristic of the dansyl moiety with an excitation at 328 nm and an emission maximum at 580 nm in aqueous media. As in the case of dansyl amino acids, the fluorescence emission is dependent upon the polarity of the medium. In solvents of low dielectric constant there is an enhancement of the dansyl fluorescence intensity as well as a shift to shorter wavelengths. The dansylated analogues show a reduction in the quantum yields as compared to N epsilon-dansyl-L-lysine and 5-(N,N-dimethylamino)-1-naphthalenesulfonic acid. The absorption spectra of the two dansyl analogues are similar to the spectra of the parent basic amino acid precursors but with reduced molar extinction values. The two fluorescent analogues of methotrexate were found to be potent inhibitors of purified dihydrofolate reductases from Lactobacillus casei and from chicken liver. The binding of these fluorescent analogues to either dihydrofolate reductase resulted in 10-15-nm blue shift of the ligand emission maxima and a 2-5-fold enhancement of the emission. These fluorescent properties of the bound ligands indicate a possible interaction of the dansyl moiety with a region on the enzyme molecule which is more hydrophobic relative to the surrounding solvent.

  5. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  6. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  7. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd)

    SciTech Connect

    Zahedi Avval, Farnaz; Berndt, Carsten; Pramanik, Aladdin; Holmgren, Arne

    2009-02-13

    Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.

  8. Structure of a bacterial homologue of vitamin K epoxide reductase

    SciTech Connect

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.; Boyd, Dana; Beckwith, Jon; Rapoport, Tom A.

    2010-03-19

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

  9. Chemometrics Optimized Extraction Procedures, Phytosynergistic Blending and in vitro Screening of Natural Enzyme Inhibitors Amongst Leaves of Tulsi, Banyan and Jamun

    PubMed Central

    De, Baishakhi; Bhandari, Koushik; Singla, Rajeev K.; Katakam, Prakash; Samanta, Tanmoy; Kushwaha, Dilip Kumar; Gundamaraju, Rohit; Mitra, Analava

    2015-01-01

    -oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Conclusion: Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. SUMMARY The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes. Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon

  10. Rnr4p, a novel ribonucleotide reductase small-subunit protein.

    PubMed Central

    Wang, P J; Chabes, A; Casagrande, R; Tian, X C; Thelander, L; Huffaker, T C

    1997-01-01

    Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex. PMID:9315671

  11. Biological Role of Aldo–Keto Reductases in Retinoic Acid Biosynthesis and Signaling

    PubMed Central

    Ruiz, F. Xavier; Porté, Sergio; Parés, Xavier; Farrés, Jaume

    2012-01-01

    Several aldo–keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance. PMID:22529810

  12. A Concise Enantioselective Synthesis of (−)-Ranirestat

    PubMed Central

    Trost, Barry M.; Osipov, Maksim; Dong, Guangbin

    2010-01-01

    A concise, enantioselective synthesis of the potent aldose reductase inhibitor ranirestat (1) is reported. The synthesis was accomplished employing inexpensive, commercially available starting materials. A palladium-catalyzed asymmetric allylic alkylation (Pd-AAA) of malonate 4 was utilized as a key transformation to construct the tetrasubstituted chiral center in the target. PMID:20148531

  13. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2014-07-01

    The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes. Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ∼6 weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers

  14. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins.

    PubMed

    Pirazzini, Marco; Azarnia Tehran, Domenico; Zanetti, Giulia; Megighian, Aram; Scorzeto, Michele; Fillo, Silvia; Shone, Clifford C; Binz, Thomas; Rossetto, Ornella; Lista, Florigio; Montecucco, Cesare

    2014-09-25

    Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.

  15. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are required by reversible phosphorylation and/or Ca2+ ions.

    PubMed Central

    Douglas, P; Pigaglio, E; Ferrer, A; Halfords, N G; MacKintosh, C

    1997-01-01

    In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported

  16. Fumarate-Mediated Inhibition of Erythrose Reductase, a Key Enzyme for Erythritol Production by Torula corallina

    PubMed Central

    Lee, Jung-Kul; Koo, Bong-Seong; Kim, Sang-Yong

    2002-01-01

    Torula corallina, a strain presently being used for the industrial production of erythritol, has the highest erythritol yield ever reported for an erythritol-producing microorganism. The increased production of erythritol by Torula corallina with trace elements such as Cu2+ has been thoroughly reported, but the mechanism by which Cu2+ increases the production of erythritol has not been studied. This study demonstrated that supplemental Cu2+ enhanced the production of erythritol, while it significantly decreased the production of a major by-product that accumulates during erythritol fermentation, which was identified as fumarate by instrumental analyses. Erythrose reductase, a key enzyme that converts erythrose to erythritol in T. corallina, was purified to homogeneity by chromatographic methods, including ion-exchange and affinity chromatography. In vitro, purified erythrose reductase was significantly inhibited noncompetitively by increasing the fumarate concentration. In contrast, the enzyme activity remained almost constant regardless of Cu2+ concentration. This suggests that supplemental Cu2+ reduced the production of fumarate, a strong inhibitor of erythrose reductase, which led to less inhibition of erythrose reductase and a high yield of erythritol. This is the first report that suggests catabolite repression by a tricarboxylic acid cycle intermediate in T. corallina. PMID:12200310

  17. Nitrate reduction in Haloferax alexandrinus: the case of assimilatory nitrate reductase.

    PubMed

    Kilic, Volkan; Kilic, Gözde Aydoğan; Kutlu, Hatice Mehtap; Martínez-Espinosa, Rosa María

    2017-03-21

    Haloferax alexandrinus Strain TM JCM 10717(T) = IFO 16590(T) is an extreme halophilic archaeon able to produce significant amounts of canthaxanthin. Its genome sequence has been analysed in this work using bioinformatics tools available at Expasy in order to look for genes encoding nitrate reductase-like proteins: respiratory nitrate reductase (Nar) and/or assimilatory nitrate reductase (Nas). The ability of the cells to reduce nitrate under aerobic conditions was tested. The enzyme in charge of nitrate reduction under aerobic conditions (Nas) has been purified and characterised. It is a monomeric enzyme (72 ± 1.8 kDa) that requires high salt concentration for stability and activity. The optimum pH value for activity was 9.5. Effectiveness of different substrates, electron donors, cofactors and inhibitors was also reported. High nitrite concentrations were detected within the culture media during aerobic/microaerobic cells growth. The main conclusion from the results is that this haloarchaeon reduces nitrate aerobically thanks to Nas and may induce denitrification under anaerobic/microaerobic conditions using nitrate as electron acceptor. The study sheds light on the role played by haloarchaea in the biogeochemical cycle of nitrogen, paying special attention to nitrate reduction processes. Besides, it provides useful information for future attempts on microecological and biotechnological implications of haloarchaeal nitrate reductases.

  18. Inhibition of human anthracycline reductases by emodin - A possible remedy for anthracycline resistance.

    PubMed

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects.

  19. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  20. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  1. Photosystem I cyclic electron transport: Measurement of ferredoxin-plastoquinone reductase activity.

    PubMed

    Cleland, R E; Bendall, D S

    1992-12-01

    Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP(+) reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.

  2. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  3. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  4. Atypical features of Thermus thermophilus succinate:quinone reductase.

    PubMed

    Kolaj-Robin, Olga; Noor, Mohamed R; O'Kane, Sarah R; Baymann, Frauke; Soulimane, Tewfik

    2013-01-01

    The Thermus thermophilus succinate:quinone reductase (SQR), serving as the respiratory complex II, has been homologously produced under the control of a constitutive promoter and subsequently purified. The detailed biochemical characterization of the resulting wild type (wt-rcII) and His-tagged (rcII-His(8)-SdhB and rcII-SdhB-His(6)) complex II variants showed the same properties as the native enzyme with respect to the subunit composition, redox cofactor content and sensitivity to the inhibitors malonate, oxaloacetate, 3-nitropropionic acid and nonyl-4-hydroxyquinoline-N-oxide (NQNO). The position of the His-tag determined whether the enzyme retained its native trimeric conformation or whether it was present in a monomeric form. Only the trimer exhibited positive cooperativity at high temperatures. The EPR signal of the [2Fe-2S] cluster was sensitive to the presence of substrate and showed an increased rhombicity in the presence of succinate in the native and in all recombinant forms of the enzyme. The detailed analysis of the shape of this signal as a function of pH, substrate concentration and in the presence of various inhibitors and quinones is presented, leading to a model for the molecular mechanism that underlies the influence of succinate on the rhombicity of the EPR signal of the proximal iron-sulfur cluster.

  5. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase.

    PubMed

    Liu, G Y

    2009-09-01

    The complete mRNA sequences of two soybean (glycine max) genes-vestitone reductase and chalcone reductase, were amplified using the rapid amplification of cDNA ends methods. The sequence analysis of these two genes revealed that soybean vestitone reductase gene encodes a protein of 327 amino acids which has high homology with the vestitone reductase of Medicago sativa (77%). The soybean chalcone reductase gene encodes a protein of 314 amino acids that has high homology with the chalcone reductase of kudzu vine (88%) and medicago sativa (83%). The expression profiles of the soybean vestitone reductase and chalcone reductase genes were studied and the results indicated that these two soybean genes were differentially expressed in detected soybean tissues including leaves, stems, roots, inflorescences, embryos and endosperm. Our experiment established the foundation for further research on these two soybean genes.

  6. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules.

    PubMed

    Horchani, Faouzi; Prévot, Marianne; Boscari, Alexandre; Evangelisti, Edouard; Meilhoc, Eliane; Bruand, Claude; Raymond, Philippe; Boncompagni, Eric; Aschi-Smiti, Samira; Puppo, Alain; Brouquisse, Renaud

    2011-02-01

    Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.

  7. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure

    PubMed Central

    Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets. PMID:27904805

  8. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  9. The modulation of carbonyl reductase 1 by polyphenols.

    PubMed

    Boušová, Iva; Skálová, Lenka; Souček, Pavel; Matoušková, Petra

    2015-01-01

    Carbonyl reductase 1 (CBR1), an enzyme belonging to the short-chain dehydrogenases/reductases family, has been detected in all human tissues. CBR1 catalyzes the reduction of many xenobiotics, including important drugs (e.g. anthracyclines, nabumetone, bupropion, dolasetron) and harmful carbonyls and quinones. Moreover, it participates in the metabolism of a number of endogenous compounds and it may play a role in certain pathologies. Plant polyphenols are not only present in many human food sources, but are also a component of many popular dietary supplements and herbal medicines. Many studies reviewed herein have demonstrated the potency of certain flavonoids, stilbenes and curcuminoids in the inhibition of the activity of CBR1. Interactions of these polyphenols with transcriptional factors, which regulate CBR1 expression, have also been reported in several studies. As CBR1 plays an important role in drug metabolism as well as in the protection of the organism against potentially harmful carbonyls, the modulation of its expression/activity may have significant pharmacological and/or toxicological consequences. Some polyphenols (e.g. luteolin, apigenin and curcumin) have been shown to be very potent CBR1 inhibitors. The inhibition of CBR1 seems useful regarding the increased efficacy of anthracycline therapy, but it may cause the worse detoxification of reactive carbonyls. Nevertheless, all known information about the interactions of polyphenols with CBR1 have only been based on the results of in vitro studies. With respect to the high importance of CBR1 and the frequent consumption of polyphenols, in vivo studies would be very helpful for the evaluation of risks/benefits of polyphenol interactions with CBR1.

  10. 1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents

    PubMed Central

    Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

    2013-01-01

    The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

  11. Interactions of Methylene Blue with Human Disulfide Reductases and Their Orthologues from Plasmodium falciparum▿

    PubMed Central

    Buchholz, Kathrin; Schirmer, R. Heiner; Eubel, Jana K.; Akoachere, Monique B.; Dandekar, Thomas; Becker, Katja; Gromer, Stephan

    2008-01-01

    Methylene blue (MB) has experienced a renaissance mainly as a component of drug combinations against Plasmodium falciparum malaria. Here, we report biochemically relevant pharmacological data on MB such as rate constants for the uncatalyzed reaction of MB at pH 7.4 with cellular reductants like NAD(P)H (k = 4 M−1 s−1), thioredoxins (k = 8.5 to 26 M−1 s−1), dihydrolipoamide (k = 53 M−1 s−1), and slowly reacting glutathione. As the disulfide reductases are prominent targets of MB, optical tests for enzymes reducing MB at the expense of NAD(P)H under aerobic conditions were developed. The product leucomethylene blue (leucoMB) is auto-oxidized back to MB at pH 7 but can be stabilized by enzymes at pH 5.0, which makes this colorless compound an interesting drug candidate. MB was found to be an inhibitor and/or a redox-cycling substrate of mammalian and P. falciparum disulfide reductases, with the kcat values ranging from 0.03 s−1 to 10 s−1 at 25°C. Kinetic spectroscopy of mutagenized glutathione reductase indicates that MB reduction is conducted by enzyme-bound reduced flavin rather than by the active-site dithiol Cys58/Cys63. The enzyme-catalyzed reduction of MB and subsequent auto-oxidation of the product leucoMB mean that MB is a redox-cycling agent which produces H2O2 at the expense of O2 and of NAD(P)H in each cycle, turning the antioxidant disulfide reductases into pro-oxidant enzymes. This explains the terms subversive substrate or turncoat inhibitor for MB. The results are discussed in cell-pathological and clinical contexts. PMID:17967916

  12. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase.

    PubMed Central

    Poolman, B; Royer, T J; Mainzer, S E; Schmidt, B F

    1990-01-01

    The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the isolation of galE, a special polymerase chain reaction-based technique was used to amplify the region upstream of galM prior to cloning. The galM protein was homologous to the mutarotase of Acinetobacter calcoaceticus, whereas the galE protein was homologous to UDPglucose 4-epimerase of Escherichia coli and Streptomyces lividans. The amino acid sequences of galM and galE proteins also showed significant similarity with the carboxy-terminal and amino-terminal domains, respectively, of UDPglucose 4-epimerase from Kluyveromyces lactis and Saccharomyces cerevisiae, suggesting that the yeast enzymes contain an additional, yet unidentified (mutarotase) activity. In accordance with the open reading frames of the structural genes, galM and galE were expressed as polypeptides with apparent molecular masses of 39 and 37 kilodaltons, respectively. Significant activities of mutarotase and UDPglucose 4-epimerase were detected in lysates of E. coli cells containing plasmids encoding galM and galE. Expression of galE in E. coli was increased 300-fold when the gene was placed downstream of the tac promoter. The gene order for the gal-lac gene cluster of S. thermophilus is galE-galM-lacS-lacZ. The flanking regions of these genes were searched for consensus promoter sequences and further characterized by primer extension analysis. Analysis of mRNA levels for the gal and lac genes in S. thermophilus showed a strong reduction upon growth in medium containing glucose instead of lactose. The activities of the lac (lactose transport and beta-galactosidase) and gal (UDPglucose 4-epimerase) proteins of lactose- and glucose-grown S. thermophilus cells matched the mRNA levels. Images PMID:1694527

  13. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  14. Identification of a 4-deoxy-L-erythro-5-hexoseulose uronic acid reductase, FlRed, in an alginolytic bacterium Flavobacterium sp. strain UMI-01.

    PubMed

    Inoue, Akira; Nishiyama, Ryuji; Mochizuki, Shogo; Ojima, Takao

    2015-01-16

    In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC 4.2.2.3 and EC 4.2.2.11). The monosaccharide is non-enzymatically converted to 4-deoxy-L-ery thro-5-hexoseulose uronic acid (DEH), then reduced to 2-keto-3-deoxy-D-gluconate (KDG) by a specific reductase, and metabolized through the Entner-Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR) superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%-88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed) was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  15. Synthesis of 3-[(N-carboalkoxy)ethylamino]-indazole-dione derivatives and their biological activities on human liver carbonyl reductase.

    PubMed

    Berhe, Solomon; Slupe, Andrew; Luster, Choice; Charlier, Henry A; Warner, Don L; Zalkow, Leon H; Burgess, Edward M; Enwerem, Nkechi M; Bakare, Oladapo

    2010-01-01

    A series of indazole-dione derivatives were synthesized by the 1,3-dipolar cycloaddition reaction of appropriate substituted benzoquinones or naphthoquinones and N-carboalkoxyamino diazopropane derivatives. These compounds were evaluated for their effects on human carbonyl reductase. Several of the analogs were found to serve as substrates for carbonyl reductase with a wide range of catalytic efficiencies, while four analogs display inhibitory activities with IC(50) values ranging from 3-5 microM. Two of the inhibitors were studied in greater detail and were found to be noncompetitive inhibitors against both NADPH and menadione with K(I) values ranging between 2 and 11 microM. Computational studies suggest that conformation of the compounds may determine whether the indazole-diones bind productively to yield product or nonproductively to inhibit the enzyme.

  16. Inactivation of plasminogen activator inhibitor by oxidants

    SciTech Connect

    Lawrence, D.A.; Loskutoff, D.J.

    1986-10-21

    The rapidly acting plasminogen activator inhibitor (PAI) purified from cultured bovine endothelial cells (BAEs) was inactivated during iodination with chloramine T and other oxidizing iodination systems. Inactivation was observed in the absence of iodine, suggesting that the loss of activity resulted from the oxidizing conditions employed. In an attempt to further study the nature of this inactivation, the PAI was treated with chloramine T under conditions that specifically oxidize methionine and cystein residues. Both PAI inhibitory activity and the ability of the PAI to form complexes with tissue-type PA were decreased in a dose-dependent manner by such treatment. PAI activity was measured with the lysis of /sup 125/I-labelled fibrin. The reductase is a DTT-dependent enzyme that specifically converts methionine sulfoxide to methionine. Little activity was restored by either the reductase or DTT alone. These results indicate that the oxidation of at least one critical methionine residue is responsible for the loss of PAI activity upon iodination. In this respect, the BAE PAI resembles ..cap alpha../sub 1/-protease inhibitor, a well-characterized elastase inhibitor that also is inactivated by oxidants. Both inhibitors are members of the serine protease inhibitor superfamily (Serpins), and both have a methionine residue in their reactive center.

  17. Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate.

    PubMed

    Dawson, Alice; Gibellini, Federica; Sienkiewicz, Natasha; Tulloch, Lindsay B; Fyfe, Paul K; McLuskey, Karen; Fairlamb, Alan H; Hunter, William N

    2006-09-01

    The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 A resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the beta6-alpha6 loop and alpha6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis.

  18. FRUCTOSE-6-PHOSPHATE REDUCTASE FROM SALMONELLA GALLINARUM

    PubMed Central

    Zancan, Glaci T.; Bacila, Metry

    1964-01-01

    Zancan, Glaci T. (Universidade do Paraná, Curitiba, Paraná, Brazil), and Metry Bacila. Fructose-6-phosphate reductase from Salmonella gallinarum. J. Bacteriol. 87:614–618. 1964.—A fructose-6-phosphate reductase present in cell-free extracts of Salmonella gallinarum was purified approximately 42 times. The optimal pH for this enzyme is 8.0. The enzyme is specific for fructose-6-phosphate and reduced nicotinamide adenine dinucleotide (NADH). The dissociation constants are 1.78 × 10−4m for fructose-6-phosphate and 8.3 × 10−5m for NADH. The Q10, reaction order, and equilibrium constant were determined. The enzyme is sensitive to p-chloromercuribenzoic acid, but not to o-iodosobenzoic acid nor to N-ethylmaleimide. PMID:14127579

  19. Characterization of erythrose reductases from filamentous fungi

    PubMed Central

    2013-01-01

    Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected. PMID:23924507

  20. Trypanothione Reductase: A Target for the Development of Anti-Trypanosoma cruzi drugs.

    PubMed

    Vázquez, Karina; Paulino, Margot; Salas, Cristian O; Zarate-Ramos, Juan J; Vera, Brenda; Rivera, Gildardo

    2017-03-15

    Chagas disease or American trypanosomiasis is a major parasitic disease in Latin America with treatment available via two drugs: nifurtimox and benznidazole. These two treatments are ineffective in the chronic phase of the disease. Therefore, there is a need for the development of new, efficient and safe drugs for the treatment of these diseases. With this goal, one of the promising targets proposed is the trypanothione reductase (TR), a key enzyme important in the metabolism of Trypanosoma cruzi. In this review, we analyze the importance of TR as a drug target, as well as their compounds inhibitors reported in the last decade as potential therapeutic agents for Chagas disease.

  1. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    PubMed Central

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453

  2. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia.

    PubMed

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan; Ahmad, Siti Aqlima

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.

  3. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-03-10

    Enzyme electrodes show great potential for many applications, as biosensors and more recently as anodes and cathodes in biocatalytic fuel cells for power generation. Enzymes have advantages over metal catalysts, as they provide high specificity and reaction rates, while operating under mild conditions. Here we report on studies related to development of mass-producible, completely enzymatic printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks containing mediators and laccase, for reduction of oxygen, or aldose dehydrogenase, for oxidation of glucose. Mediator performance in these printed formats is compared to relative rate constants for the enzyme-mediator reaction in solution, for a range of anode and cathode mediators. The power output and stability of fuels cells using an acidophilic laccase isolated from Trametes hirsuta is greater, at pH 5, than that for cells based on Melanocarpus albomyces laccase, that shows optimal activity closer to neutral pH, at pH 6. Highest power output, although of limited stability, was observed for ThL/ABTS cathodes, providing a maximum power density of 3.5 μWcm(-2) at 0.34 V, when coupled to an ALDH glucose anode mediated by an osmium complex. The stability of cell voltage above a threshold of 200 mV under a moderate 75 kΩ load is used to benchmark printed fuel cell performance. Highest stability was obtained for a printed fuel cell using osmium complexes as mediators of glucose oxidation by aldose dehydrogenase, and oxygen reduction by T. hirsuta laccase, maintaining cell voltage above 200 mV for 137 h at pH 5. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells.

  4. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism. PMID:26536144

  5. The partial characterization of purified nitrite reductase and hydroxylamine oxidase from Nitrosomonas europaea

    PubMed Central

    Ritchie, G. A. F.; Nicholas, D. J. D.

    1974-01-01

    Nitrite reductase has been separated from cell-free extracts of Nitrosomonas and partially purified from hydroxylamine oxidase by polyacrylamide-gel electrophoresis. In its oxidized state the enzyme, which did not contain haem, had an extinction maximum at 590nm, which was abolished on reduction. Sodium diethyldithiocarbamate was a potent inhibitor of nitrite reductase. Enzyme activity was stimulated 2.5-fold when remixed with hydroxylamine oxidase, but was unaffected by mammalian cytochrome c. The enzyme also exhibited a low hydroxylamine-dependent nitrite reductase activity. The results suggest that this enzyme is similar to the copper-containing `denitrifying enzyme' of Pseudomonas denitrificans. A dithionite-reduced, 465nm-absorbing haemoprotein was associated with homogeneous preparations of hydroxylamine oxidase. The band at 465nm maximum was not reduced during the oxidation of hydroxylamine although the extinction was abolished on addition of hydroxylamine, NO2− or CO. These last-named compounds when added to the oxidized enzyme precluded the appearance of the 465nm-absorption band on addition of dithionite. Several properties of 465nm-absorbing haemoprotein are described. PMID:4154745

  6. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N

    2015-01-01

    Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage.

  7. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  8. Methionine sulfoxide reductase contributes to meeting dietary methionine requirements

    PubMed Central

    Zhao, Hang; Kim, Geumsoo; Levine, Rodney L.

    2012-01-01

    Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild. PMID:22521563

  9. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  10. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    PubMed Central

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  11. Limited proteolysis of the nitrate reductase from spinach leaves.

    PubMed

    Kubo, Y; Ogura, N; Nakagawa, H

    1988-12-25

    The functional structure of assimilatory NADH-nitrate reductase from spinach leaves was studied by limited proteolysis experiments. After incubation of purified nitrate reductase with trypsin, two stable products of 59 and 45 kDa were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The fragment of 45 kDa was purified by Blue Sepharose chromatography. NADH-ferricyanide reductase and NADH-cytochrome c reductase activities were associated with this 45-kDa fragment which contains FAD, heme, and NADH binding fragment. After incubation of purified nitrate reductase with Staphylococcus aureus V8 protease, two major peaks were observed by high performance liquid chromatography size exclusion gel filtration. FMNH2-nitrate reductase and reduced methyl viologen-nitrate reductase activities were associated with the first peak of 170 kDa which consists of two noncovalently associated (75-90-kDa) fragments. NADH-ferricyanide reductase activity, however, was associated with the second peak which consisted of FAD and NADH binding sites. Incubation of the 45-kDa fragment with S. aureus V8 protease produced two major fragments of 28 and 14 kDa which contained FAD and heme, respectively. These results indicate that the molybdenum, heme, and FAD components of spinach nitrate reductase are contained in distinct domains which are covalently linked by exposed hinge regions. The molybdenum domain appears to be important in the maintenance of subunit interactions in the enzyme complex.

  12. Regulation of schistosome egg production by HMG CoA reductase

    SciTech Connect

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.

  13. Effects of glucose on sorbitol pathway activation, cellular redox, and metabolism of myo-inositol, phosphoinositide, and diacylglycerol in cultured human retinal pigment epithelial cells.

    PubMed Central

    Thomas, T P; Porcellati, F; Kato, K; Stevens, M J; Sherman, W R; Greene, D A

    1994-01-01

    Sorbitol (aldose reductase) pathway flux in diabetes perturbs intracellular metabolism by two putative mechanisms: reciprocal osmoregulatory depletion of other organic osmolytes e.g., myo-inositol, and alterations in NADPH/NADP+ and/or NADH/NAD+. The "osmolyte" and "redox" hypotheses predict secondary elevations in CDP-diglyceride, the rate-limiting precursor for phosphatidylinositol synthesis, but through different mechanisms: the "osmolyte" hypothesis via depletion of intracellular myo-inositol (the cosubstrate for phosphatidylinositol-synthase) and the "redox" hypothesis through enhanced de novo synthesis from triose phosphates. The osmolyte hypothesis predicts diminished phosphoinositide-derived arachidonyl-diacylglycerol, while the redox hypothesis predicts increased total diacylglycerol and phosphatidic acid. In high aldose reductase expressing retinal pigment epithelial cells, glucose-induced, aldose reductase inhibitor-sensitive CDP-diglyceride accumulation and inhibition of 32P-incorporation into phosphatidylinositol paralleled myo-inositol depletion (but not cytoplasmic redox, that was unaffected by glucose) and depletion of arachidonyl-diacylglycerol. 3 mM pyruvate added to the culture medium left cellular redox unaltered, but stimulated Na(+)-dependent myo-inositol uptake, accumulation, and incorporation into phosphatidylinositol. These results favor myo-inositol depletion rather than altered redox as the primary cause of glucose-induced aldose reductase-related defects in phospholipid metabolism in cultured retinal pigment epithelial cells. Images PMID:8201009

  14. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase.

    PubMed

    Shi, Fu-Mei; Li, Ying-Zhang

    2008-01-31

    The source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants. The NR inhibitor had a significant effect on VD-toxins-induced NO production; whereas NOS inhibitor had a slight effect. NR activity was significantly implicated in NO production. The results indicated that as NO was induced in response to VD-toxins in Arabidopsis, the major source was the NR pathway. The production of NOS-system appeared to be secondary.

  15. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia

    PubMed Central

    Baskaran, Gunasekaran; Salvamani, Shamala; Ahmad, Siti Aqlima; Shaharuddin, Noor Azmi; Pattiram, Parveen Devi; Shukor, Mohd Yunus

    2015-01-01

    The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl), 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and α-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases. PMID:25609924

  16. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  17. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607.

    PubMed

    Schiering, N; Kabsch, W; Moore, M J; Distefano, M D; Walsh, C T; Pai, E F

    1991-07-11

    Several hundred million tons of toxic mercurials are dispersed in the biosphere. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase and mercuric ion reductase (MerA). The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases, catalyses the reaction NADPH + Hg(II)----NADP+ + H+ + Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), p1258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn501 and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon. These domains can be proteolytically cleaved off without changing the catalytic efficiency. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  18. Enzyme toolbox: novel enantiocomplementary imine reductases.

    PubMed

    Scheller, Philipp N; Fademrecht, Silvia; Hofelzer, Sebastian; Pleiss, Jürgen; Leipold, Friedemann; Turner, Nicholas J; Nestl, Bettina M; Hauer, Bernhard

    2014-10-13

    Reducing reactions are among the most useful transformations for the generation of chiral compounds in the fine-chemical industry. Because of their exquisite selectivities, enzymatic approaches have emerged as the method of choice for the reduction of C=O and activated C=C bonds. However, stereoselective enzymatic reduction of C=N bonds is still in its infancy-it was only recently described after the discovery of enzymes capable of imine reduction. In our work, we increased the spectrum of imine-reducing enzymes by database analysis. By combining the currently available knowledge about the function of imine reductases with the experimentally uncharacterized diversity stored in protein sequence databases, three novel imine reductases with complementary enantiopreference were identified along with amino acids important for catalysis. Furthermore, their reducing capability was demonstrated by the reduction of the pharmaceutically relevant prochiral imine 2-methylpyrroline. These novel enzymes exhibited comparable to higher catalytic efficiencies than previously described enzymes, and their biosynthetic potential is highlighted by the full conversion of 2-methylpyrroline in whole cells with excellent selectivities.

  19. Soluble ascorbate free radical reductase in the human lens.

    PubMed

    Bando, M; Obazawa, H

    1994-01-01

    A major and a minor ascorbate free radical (AFR) reductase were separated from the soluble fraction in the human lens cortex by DEAE-cellulose ion-exchange column chromatography. These AFR reductases also exhibited diaphorase activity using dichlorophenolindophenol and ferricyanide as electron acceptors. The major AFR reductase was partially purified by 5'AMP-Sepharose 4B affinity column chromatography. This partially purified AFR reductase showed a single band of diaphorase activity in native polyacrylamide disc gel electrophoresis. This activity band corresponded to the major protein observed in protein staining by Coomassie Brilliant Blue. However, the protein staining by Coomassie Brilliant Blue showed this activity band surrounded by diffused staining. Molecular weight of the partially purified AFR reductase was determined to be 32 kDa by gel filtration, and the apparent Km value for AFR was about 15 microM. This major lens AFR reductase could be distinguished from soluble Neurospora, Euglena and cucumber AFR reductases, and from two ubiquitous enzymes with reduction activity of AFR and/or foreign compounds, ie, NADH-cytochrome b5 reductase and DT-diaphorase, by their molecular weights, Km values and/or ion-exchange chromatographic behaviors.

  20. Functional and Phylogenetic Divergence of Fungal Adenylate-Forming Reductases

    PubMed Central

    Kalb, Daniel; Lackner, Gerald

    2014-01-01

    A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes. PMID:25085485

  1. Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense

    PubMed Central

    Lin, Kan; O'Brien, Kathryn M.; Trujillo, Carolina; Wang, Ruojun; Wallach, Joshua B.; Schnappinger, Dirk

    2016-01-01

    Mycobacterium tuberculosis (Mtb) must cope with exogenous oxidative stress imposed by the host. Unlike other antioxidant enzymes, Mtb’s thioredoxin reductase TrxB2 has been predicted to be essential not only to fight host defenses but also for in vitro growth. However, the specific physiological role of TrxB2 and its importance for Mtb pathogenesis remain undefined. Here we show that genetic inactivation of thioredoxin reductase perturbed several growth-essential processes, including sulfur and DNA metabolism and rapidly killed and lysed Mtb. Death was due to cidal thiol-specific oxidizing stress and prevented by a disulfide reductant. In contrast, thioredoxin reductase deficiency did not significantly increase susceptibility to oxidative and nitrosative stress. In vivo targeting TrxB2 eradicated Mtb during both acute and chronic phases of mouse infection. Deliberately leaky knockdown mutants identified the specificity of TrxB2 inhibitors and showed that partial inactivation of TrxB2 increased Mtb’s susceptibility to rifampicin. These studies reveal TrxB2 as essential thiol-reducing enzyme in Mtb in vitro and during infection, establish the value of targeting TrxB2, and provide tools to accelerate the development of TrxB2 inhibitors. PMID:27249779

  2. Down-regulation of dihydrofolate reductase inhibits the growth of endothelial EA.hy926 cell through induction of G1 cell cycle arrest via up-regulating p53 and p21(waf1/cip1) expression.

    PubMed

    Fei, Zhewei; Gao, Yong; Qiu, Mingke; Qi, Xianqin; Dai, Yuxin; Wang, Shuqing; Quan, Zhiwei; Liu, Yingbin; Ou, Jingmin

    2016-03-01

    Folic acid supplementation may meliorate cardiovascular disease risk by improving vascular endothelial structure and function. However, the underlying mechanisms are still lack of a global understanding. To be used, folic acid must be converted to 7,8-dihydrofolate by dihydrofolate reductase to generate one-carbon derivatives serving as important cellular cofactors in the synthesis of nucleotides and amino acids required for cell growth. Therefore, this study explored the effect of dihydrofolate reductase knockdown on endothelial EA.hy926 cell growth and the mechanism involved. We found that down-regulation of dihydrofolate reductase inhibited EA.hy926 cell proliferation, and induced G1 phase arrest. Meanwhile, the expression of regulators necessary for G1/S phase transition, such as cyclin-dependent kinases CDK2, CDK4 and CDK6, were remarkably down-regulated; by contrast, the cell cycle inhibitors p21(waf/cip1), p27(Kip1) and p53 were significantly up-regulated after dihydrofolate reductase knockdown. Furthermore, supplementation of 5-methyltetrahydrofolate to the dihydrofolate reductase knockdown cells could weaken the inhibitory effect of dihydrofolate reductase knockdown on cell proliferation, simultaneously, inducing the expression of p53 and p21(waf/cip1) falling back moderately. Our findings suggest that attenuating dihydrofolate reductase may cause imbalanced expression of cell cycle regulators, especially up-regulation of p53-p21(waf/cip1) pathway, leading to G1 cell cycle arrest, thereby inhibiting the growth of endothelial EA.hy926 cells.

  3. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  4. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  5. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  6. The role of thioredoxin reductase and glutathione reductase in plumbagin-induced, reactive oxygen species-mediated apoptosis in cancer cell lines.

    PubMed

    Hwang, Geun Hye; Ryu, Jung Min; Jeon, Yu Jin; Choi, Joonhyeok; Han, Ho Jae; Lee, You-Mie; Lee, Sangkyu; Bae, Jong-Sup; Jung, Jong-Wha; Chang, Woochul; Kim, Lark Kyun; Jee, Jun-Goo; Lee, Min Young

    2015-10-15

    Plumbagin is a secondary metabolite that was first identified in the Plumbago genus of plants. It is a naphthoquinone compound with anti-atherosclerosis, anticancer, anti-inflammatory, antimicrobial, contraceptive, cardiotonic, immunosuppressive, and neuroprotective activities. However, the mechanisms of plumbagin's activities are largely unknown. In this study, we examined the effect of plumbagin on HepG2 hepatocellular carcinoma cells as well as LLC lung cancer cells, SiHa cervical carcinoma cells. Plumbagin significantly decreased HepG2 cell viability in a dose-dependent manner. Additionally, treatment with plumbagin significantly increased the Bax/Bcl-2 ratio and caspase-3/7 activity. Using the similarity ensemble approach (SEA)-a state-of-the-art cheminformatic technique-we identified two previously unknown cellular targets of plumbagin: thioredoxin reductase (TrxR) and glutathione reductase (GR). This was then confirmed using protein- and cell-based assays. We found that plumbagin was directly reduced by TrxR, and that this reduction was inhibited by the TrxR inhibitor, sodium aurothiomalate (ATM). Plumbagin also decreased the activity of GR. Plumbagin, and the GR inhibitor sodium arsenite all increased intracellular reactive oxygen species (ROS) levels and this increase was significantly attenuated by pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) in HepG2 cells. Plumbagin increased TrxR-1 and heme oxygenase (HO)-1 expression and pretreatment with NAC significantly attenuated the plumbagin-induced increase of TrxR-1 and HO-1 expression in HepG2 cells, LLC cells and SiHa cells. Pretreatment with NAC significantly prevented the plumbagin-induced decrease in cell viability in these cell types. In conclusion, plumbagin exerted its anticancer effect by directly interacting with TrxR and GR, and thus increasing intracellular ROS levels.

  7. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.

    PubMed

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter

    2015-06-01

    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  8. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance.

    PubMed

    Trimmer, Elizabeth E

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydofolate (CH2-H4folate) to 5-methyltetrahydrofolate (CH3-H4folate). The enzyme employs a noncovalently-bound flavin adenine dinucleotide (FAD), which accepts reducing equivalents from NAD(P)H and transfers them to CH2-H4folate. The reaction provides the sole source of CH3-H4folate, which is utilized by methionine synthase in the synthesis of methionine from homocysteine. MTHFR plays a key role in folate metabolism and in the homeostasis of homocysteine; mutations in the enzyme lead to hyperhomocyst(e)inemia. A common C677T polymorphism in MTHFR has been associated with an increased risk for the development of cardiovascular disease, Alzheimer's disease, and depression in adults, and of neural tube defects in the fetus. The mutation also confers protection for certain types of cancers. This review presents the current knowledge of the enzyme, its biochemical characterization, and medical significance.

  9. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity.

    PubMed

    Vaidyanathan, Ramanathan; Gopalram, Shubaash; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Pandian, Sureshbabu Ram Kumar; Gurunathan, Sangiliyandi

    2010-01-01

    Nanostructure materials are attracting a great deal of attention because of their potential for achieving specific processes and selectivity, especially in biological and pharmaceutical applications. The generation of silver nanoparticles using optimized nitrate reductase for the reduction of Ag(+) with the retention of enzymatic activity in the complex is being reported. This report involves the optimization of enzyme activity to bring about enhanced nanoparticle synthesis. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of nitrate reductase by Bacillus licheniformis at pH 8. The four variables involved in the study of nitrate reductase were Glucose, Peptone, Yeast extract and KNO(3). Glucose had a significant effect on nitrate reductase production. The optimized medium containing (%) Glucose: 1.5, Peptone: 1, Yeast extract: 0.35 and KNO(3): 0.35 resulted in a nitrate reductase activity of 452.206 U/ml which is same as that of the central level. The medium A (showing least nitrate reductase activity) and the medium B (showing maximum nitrate reductase activity) were compared for the synthesis. Spectrophotometric analysis revealed that the particles exhibited a peak at 431 nm and the A(431) for the medium B was 2-fold greater than that of the medium A. The particles were also characterized using TEM. The particles synthesized using the optimized enzyme activity ranged from 10 to 80 nm and therefore can be extended to various medicinal applications.

  10. The benzimidazole based drugs show good activity against T. gondii but poor activity against its proposed enoyl reductase enzyme target.

    PubMed

    Wilkinson, Craig; McPhillie, Martin J; Zhou, Ying; Woods, Stuart; Afanador, Gustavo A; Rawson, Shaun; Khaliq, Farzana; Prigge, Sean T; Roberts, Craig W; Rice, David W; McLeod, Rima; Fishwick, Colin W; Muench, Stephen P

    2014-02-01

    The enoyl acyl-carrier protein reductase (ENR) enzyme of the apicomplexan parasite family has been intensely studied for antiparasitic drug design for over a decade, with the most potent inhibitors targeting the NAD(+) bound form of the enzyme. However, the higher affinity for the NADH co-factor over NAD(+) and its availability in the natural environment makes the NADH complex form of ENR an attractive target. Herein, we have examined a benzimidazole family of inhibitors which target the NADH form of Francisella ENR, but despite good efficacy against Toxoplasma gondii, the IC50 for T. gondii ENR is poor, with no inhibitory activity at 1 μM. Moreover similar benzimidazole scaffolds are potent against fungi which lack the ENR enzyme and as such we believe that there may be significant off target effects for this family of inhibitors.

  11. Mycobacterium tuberculosis dihydrofolate reductase reveals two conformational states and a possible low affinity mechanism to antifolate drugs.

    PubMed

    Dias, Marcio Vinicius Bertacine; Tyrakis, Petros; Domingues, Romenia Ramos; Paes Leme, Adriana Franco; Blundell, Tom L

    2014-01-07

    Inhibition of the biosynthesis of tetrahydrofolate (THF) has long been a focus in the treatment of both cancer and infectious diseases. Dihydrofolate reductase (DHFR), which catalyzes the last step, is one of the most thoroughly explored targets of this pathway, but there are no DHFR inhibitors used for tuberculosis treatment. Here, we report a structural, site-directed mutagenesis and calorimetric analysis of Mycobacterium tuberculosis DHFR (MtDHFR) in complex with classical DHFR inhibitors. Our study provides insights into the weak inhibition of MtDHFR by trimethoprim and other antifolate drugs, such as pyrimethamine and cycloguanil. The construction of the mutant Y100F, together with calorimetric studies, gives insights into low affinity of MtDHFR for classical DHFR inhibitors. Finally, the structures of MtDHFR in complex with pyrimethamine and cycloguanil define important interactions in the active site and provide clues to the more effective design of antibiotics targeted against MtDHFR.

  12. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2016-01-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single base pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed, pathogen-specific antibiotics have the potential to overcome this liability. PMID:26931811

  13. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-10-01

    Current generation by mediated enzyme electron transfer at electrode surfaces can be harnessed to provide biosensors and redox reactions in enzymatic fuel cells. A glucose/oxygen enzymatic fuel cell can provide power for portable and implantable electronic devices. High volume production of enzymatic fuel cell prototypes will likely require printing of electrode and catalytic materials. Here we report on preparation and performance of, completely enzymatic, printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks, enzyme and mediator. A comparison of cell performance using a range of mediators for either glucose oxidase (GOx) or aldose dehydrogenase (ALDH) oxidation of glucose at the anode and ABTS and a fungal laccase, for reduction of oxygen at the cathode, is reported. Highest power output, although of limited stability, is observed for ALDH anodes mediated by an osmium complex, providing a maximum power densi