Science.gov

Sample records for aldose reductase prevents

  1. Potential use of aldose reductase inhibitors to prevent diabetic complications.

    PubMed

    Zenon, G J; Abobo, C V; Carter, B L; Ball, D W

    1990-06-01

    Reviewed are (1) the biochemical basis and pathophysiology of diabetic complications and (2) the structure-activity relationships, pharmacology, pharmacokinetics, clinical trials, and adverse effects of aldose reductase inhibitors (ARIs). ARIs are a new class of drugs potentially useful in preventing diabetic complications, the most widely studied of which have been cataracts and neuropathy. ARIs inhibit aldose reductase, the first, rate-limiting enzyme in the polyol metabolic pathway. In nonphysiological hyperglycemia the activity of hexokinase becomes saturated while that of aldose reductase is enhanced, resulting in intracellular accumulation of sorbitol. Because sorbitol does not readily penetrate the cell membrane it can persist within cells, which may lead to diabetic complications. ARIs are a class of structurally dissimilar compounds that include carboxylic acid derivatives, flavonoids, and spirohydantoins. The major pharmacologic action of an ARI involves competitive binding to aldose reductase and consequent blocking of sorbitol production. ARIs delay cataract formation in animals, but the role of aldose reductase in cataract formation in human diabetics has not been established. The adverse effects of ARIs include hypersensitivity reactions. Although the polyol pathway may not be solely responsible for diabetic complications, studies suggest that therapy with ARIs could be beneficial. Further research is needed to determine the long-term impact and adverse effects of ARIs in the treatment of diabetic complications.

  2. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    SciTech Connect

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R. )

    1989-10-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change.

  3. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors.

    PubMed

    Tilton, R G; Chang, K; Pugliese, G; Eades, D M; Province, M A; Sherman, W R; Kilo, C; Williamson, J R

    1989-10-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on 1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and 2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic changes. We hypothesize that 1) increases in blood flow may reflect impaired contractile function of smooth muscle cells in resistance arterioles and 2) increases in vascular 125I-BSA permeation and urinary albumin excretion reflect impaired vascular barrier functional integrity in addition to increased hydraulic conductance secondary to

  4. Aldose Reductase Inhibition Prevents Endotoxin-Induced Inflammatory Responses in Retinal Microglia

    PubMed Central

    Chang, Kun-Che; Ponder, Jessica; LaBarbera, Daniel V.; Petrash, J. Mark

    2014-01-01

    Purpose. Retinal microglia become activated in diabetes and produce pro-inflammatory molecules associated with changes in retinal vasculature and increased apoptosis of retinal neurons and glial cells. We sought to determine if the action of aldose reductase (AR), an enzyme linked to the pathogenesis of diabetic retinopathy, contributes to activation of microglial cells. Methods. Involvement of AR in the activation process was studied using primary cultures of retinal microglia (RMG) isolated from wild-type and AR-null mice, or in mouse macrophage cultures treated with either AR inhibitors or small interfering RNA (siRNA) directed to AR. Inflammatory cytokines were measured by ELISA. Cell migration was measured using a transwell assay. Gelatin zymography was used to detect active matrix metalloproteinase (MMP)-9, while RMG-induced apoptosis of adult retinal pigment epithelium (ARPE-19) cells was studied in a cell coculture system. Results. Aldose reductase inhibition or genetic deficiency substantially reduced lipopolysacharide (LPS)-induced cytokine secretion from macrophages and RMG. Aldose reductase inhibition or deficiency also reduced the activation of MMP-9 and attenuated LPS-induced cell migration. Additionally, blockade of AR by sorbinil or through genetic means caused a reduction in the ability of activated RMG to induce apoptosis of ARPE-19 cells. Conclusions. These results demonstrate that the action of AR contributes to the activation of RMG. Inhibition of AR may be a therapeutic strategy to reduce inflammation associated with activation of RMG in disease. PMID:24677107

  5. Bioactive fraction of Saraca indica prevents diabetes induced cataractogenesis: An aldose reductase inhibitory activity

    PubMed Central

    Somani, Gauresh; Sathaye, Sadhana

    2015-01-01

    Background: The present study was designed to investigate the effect of Saraca indica (SI) flowers extract and different bioactive fraction on in vitro aldose reductase (AR) inhibitory activity, high glucose-induced cataract in goat lens and in vivo streptozotocin (STZ; 45 mg/kg, i.p) induced cataract in rats. Methods: Extract of flowers of SI tested for inhibition against rat lens AR. Furthermore, bioactive fraction was investigated against high glucose-induced opacification of the lens in vitro lens culture and STZ induced diabetic cataract in rats. Identification of the bioactive component was attempted through high-performance thin-layer chromatography, high-performance liquid chromatography and liquid chromatography-mass spectrometry analysis. Results: Ethyl acetate fraction of S. indica (EASI) produced maximum inhibition that may be due to high phenolic content. Goat lenses in media containing glucose developed a distinctly opaque ring in 72 h and treatment with EASI fraction lowered lens opacity in 72 h. Prolonged treatment with EASI to STZ-induced diabetic rats inhibited the AR activity and delayed cataract progression in a dose dependent manner. Conclusion: Ethyl acetate fraction of S. indica fraction has potential to inhibit rat lens AR enzyme and prevent cataractogenesis not only in goat lens model (in vitro), but also in STZ induced diabetic rats (in vivo). This study is suggestive of the anticataract activity of EASI fraction that could be attributed to the phytoconstituents present in the same. PMID:25709218

  6. Prevention of VEGF-induced growth and tube formation in human retinal endothelial cell by aldose reductase inhibition

    PubMed Central

    Yadav, Umesh CS; Srivastava, SK; Ramana, KV

    2012-01-01

    Objective Since diabetes-induced vascular endothelial growth factor (VEGF) is implicated in retinal angiogenesis, we aimed to examine the role of aldose reductase (AR) in VEGF–induced human retinal endothelial cell (HREC) growth and tube formation. Materials and Methods HREC were stimulated with VEGF and cell-growth was determined by MTT assay. AR inhibitor, fidarestat, to block the enzyme activity and AR siRNA to ablate AR gene expression in HREC were used to investigate the role of AR in neovascularization using cell-migration and tube formation assays. Various signaling intermediates and angiogenesis markers were assessed by Western blot analysis. Immuno-histochemical analysis of diabetic rat eyes was performed to examine VEGF expression in the retinal layer. Results Stimulation of primary HREC with VEGF caused increased cell growth and migration, and AR inhibition with fidarestat or ablation with siRNA significantly prevented it. VEGF-induced tube formation in HREC was also significantly prevented by fidarestat. Treatment of HREC with VEGF also increased the expression of VCAM, AR, and phosphorylation and activation of Akt and p38-MAP kinase, which were prevented by fidarestat. VEGF-induced expression of VEGFRII in HREC was also prevented by AR inhibition or ablation. Conclusions Our results indicate that inhibition of AR in HREC prevents tube formation by inhibiting the VEGF-induced activation of the Akt and p38-MAPK pathway and suggest a mediatory role of AR in ocular neovascularization generally implicated in retinopathy and AMD. PMID:22658411

  7. Aldose reductase mediates retinal microglia activation

    SciTech Connect

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  8. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    PubMed Central

    Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan

    2012-01-01

    Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598

  9. Aldose reductase inhibitor prevents hyperproliferation and hypertrophy of cultured rat vascular smooth muscle cells induced by high glucose.

    PubMed

    Yasunari, K; Kohno, M; Kano, H; Yokokawa, K; Horio, T; Yoshikawa, J

    1995-12-01

    Vascular remodeling is a key process in the pathophysiology of atherosclerosis. Recent evidence suggests that high glucose levels may function as a vascular smooth muscle growth and proliferation-promoting substance. To explore the role of the polyol pathway in this process, we examined the effect of an aldose reductase inhibitor (ARI), epalrestat, on the growth characteristics of cultured rat vascular smooth muscle cells (VSMCs). Epalrestat (10 nmol/L, 1 mumol/L) significantly suppressed the high glucose-induced proliferative effect as measured by [3H]thymidine incorporation by 67% and 82% in cell number, suggesting ARI as an antimitogenic factor. In VSMCs, epalrestat (10 nmol/L, 1 mumol/L) significantly suppressed the high glucose-induced incorporation of [3H]leucine by 45% and 58% with the concomitant reduction of the cell size estimated by flowcytometry. Epalrestat (1 mumol/L) also suppressed high glucose-induced intracellular NADH/NAD+ increase and membrane-bound protein kinase C activation. These results indicate that this ARI possesses an antiproliferative and antihypertrophic action on VSMCs induced by high glucose possibly through protein kinase C suppression.

  10. Aldose Reductase-catalyzed Reduction of Aldehyde Phospholipids

    PubMed Central

    Srivastava, Sanjay; Spite, Matthew; Trent, John O.; West, Matthew B.; Ahmed, Yonis; Bhatnagar, Aruni

    2012-01-01

    SUMMARY Oxidation of unsaturated phospholipids results in the generation of aldehyde side chains that remain esterified to the phospholipid backbone. Such “core” aldehydes elicit immune responses and promote inflammation. However, the biochemical mechanisms by which phospholipid aldehydes are metabolized or detoxified are not well understood. In the studies reported here, we examined whether aldose reductase (AR), which reduces hydrophobic aldehydes, metabolizes phospholipid aldehydes. Incubation with AR led to the reduction of 5-oxovaleroyl, 7-oxo-5-heptenoyl, 5-hydroxy-6-oxo-caproyl, and 5-hydroxy-8-oxo-6-octenoyl phospholipids generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The enzyme also catalyzed the reduction of phospholipid aldehydes generated from the oxidation of 1-alkyl, and 1-alkenyl analogs of PAPC, and 1-palmitoyl-2-arachidonoyl phosphatidic acid or phosphoglycerol. Aldose reductase catalyzed the reduction of chemically synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (POVPC) with a Km of 10 μM. Addition of POVPC to the culture medium led to incorporation and reduction of the aldehyde in COS-7 and THP-1 cells. Reduction of POVPC in these cells was prevented by the AR inhibitors sorbinil and tolrestat and was increased in COS-7 cells overexpressing AR. Together, these observations suggest that AR may be a significant participant in the metabolism of several structurally diverse phospholipid aldehydes. This metabolism may be a critical regulator of the pro-inflammatory and immunogenic effects of oxidized phospholipids. PMID:15465833

  11. Chicken muscle aldose reductase: purification, properties and relationship to other chicken aldo/keto reductases.

    PubMed

    Murphy, D G; Davidson, W S

    1986-01-01

    An enzyme that catalyzes the NADPH-dependent reduction of a wide range of aromatic and hydroxy-aliphatic aldehydes was purified from chicken breast muscle. This enzyme shares many properties with mammalian aldose reductases including molecular weight, relative substrate specificity, Michaelis constants, an inhibitor specificity. Therefore, it seems appropriate to call this enzyme an aldose reductase (EC 1.1.1.21). Chicken muscle aldose reductase appears to be kinetically identical to an aldose reductase that has been purified from chicken kidney (Hara et al., Eur. J. Biochem. 133, 207-214) and to hen muscle L-glycol dehydrogenase (Bernado et al., Biochim. biophys. Acta 659, 189-198). The association of this aldose reductase with muscular dystrophy in the chick is discussed.

  12. [Progress in research of aldose reductase inhibitors in traditional medicinal herbs].

    PubMed

    Feng, Chang-Gen; Zhang, Lin-Xia; Liu, Xia

    2005-10-01

    The traditional medicinal herbs are natural product, and have no obviously toxic action and side effect, and their resources are extensive. The adverse effects produced by aldose reductase inhibitors in traditional medicinal herbs are less than those from chemical synthesis and micro-organism, they can effectively prevent and delay diabetic complication, such as diabetic nephropathy, vasculopathy, retinopathy, peripheral neuropathy, and so on. They will have a wonderful respect. Flavonoid compounds and their derivates from traditional medicinal herbs are active inhibitors to aldose reductase, such as quercetin, silymarin, puerarin, baicalim, berberine and so on. In addition, some compound preparations show more strongly activity in inhibiting aldose reductase and degrading sorbitol contents, such as Shendan in traditional medicinal herbs being active inhibitors and Jianyi capsule, Jinmaitong composita, Liuwei Di-huang pill, et al. The progresses definite functions of treating diabetes complications have been reviewed.

  13. [Inhibition of aldose reductase by Chinese herbal medicine].

    PubMed

    Mao, X M; Zhang, J Q

    1993-10-01

    Seven Chinese herbal drugs were screened for experimental inhibition of lens aldose reductase activity, among which quercetin exhibited potent enzyme-inhibitory activities in vitro. Its IC50 value was 3.44 x 10(-7) mol/L. It may be helpful in the prophylaxis and treatment of diabetic complications.

  14. Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism.

    PubMed

    Crosas, Bernat; Hyndman, David J; Gallego, Oriol; Martras, Sílvia; Parés, Xavier; Flynn, T Geoffrey; Farrés, Jaume

    2003-08-01

    Aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that catalyse the reduction of a variety of carbonyl compounds, such as carbohydrates, aliphatic and aromatic aldehydes and steroids. We have studied the retinal reductase activity of human aldose reductase (AR), human small-intestine (HSI) AR and pig aldehyde reductase. Human AR and HSI AR were very efficient in the reduction of all- trans -, 9- cis - and 13- cis -retinal ( k (cat)/ K (m)=1100-10300 mM(-1).min(-1)), constituting the first cytosolic NADP(H)-dependent retinal reductases described in humans. Aldehyde reductase showed no activity with these retinal isomers. Glucose was a poor inhibitor ( K (i)=80 mM) of retinal reductase activity of human AR, whereas tolrestat, a classical AKR inhibitor used pharmacologically to treat diabetes, inhibited retinal reduction by human AR and HSI AR. All- trans -retinoic acid failed to inhibit both enzymes. In this paper we present the AKRs as an emergent superfamily of retinal-active enzymes, putatively involved in the regulation of retinoid biological activity through the assimilation of retinoids from beta-carotene and the control of retinal bioavailability.

  15. Ranirestat as a therapeutic aldose reductase inhibitor for diabetic complications.

    PubMed

    Giannoukakis, Nick

    2008-04-01

    There are currently very few drugs available to directly treat diabetic complications. Those that are indicated clinically provide symptomatic relief and do not address the underlying biochemical problems. The involvement of the sorbitol pathway in complications has provided mechanistic insights into the biochemistry of complications and the key enzyme, aldose reductase, has become an attractive pharmacologic target. Among the aldose reductase inhibitors, the most promising is ranirestat. This review outlines the studies with ranirestat and compares its efficacy with other similar inhibitors. A survey of in vitro and in vivo studies was conducted, and with publicly available data from clinical trials, ranirestat efficacy was compared with other similar agents. Ranirestat is safe, exhibits some efficacy and is perhaps the only agent advanced enough in clinical trials to warrant further consideration for diabetic complications.

  16. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl.

    PubMed Central

    Bagnasco, S M; Uchida, S; Balaban, R S; Kador, P F; Burg, M B

    1987-01-01

    Aldose reductase [aldehyde reductase 2; alditol:NAD(P)+ 1-oxidoreductase, EC 1.1.1.21] catalyzes conversion of glucose to sorbitol. Although its activity is implicated in the progression of ocular and neurological complications of diabetes, the normal function of the enzyme in most cells is unknown. Both aldose reductase activity and substantial levels of sorbitol were previously reported in renal inner medullary cells. In this tissue, the extracellular NaCl concentration normally is high and varies considerably depending on the urine concentration. We report here on a line of renal medullary cells in which medium that is high in NaCl greatly increases both aldose reductase activity and intracellular sorbitol. In these tissue culture cells (and presumably also in the renal inner medulla), the intracellular sorbitol helps balance the osmotic pressure of elevated extracellular NaCl and thus prevents cellular dehydration. PMID:3104902

  18. Aldose reductase inhibitor improves insulin-mediated glucose uptake and prevents migration of human coronary artery smooth muscle cells induced by high glucose.

    PubMed

    Yasunari, K; Kohno, M; Kano, H; Minami, M; Yoshikawa, J

    2000-05-01

    We examined involvement of the polyol pathway in high glucose-induced human coronary artery smooth muscle cell (SMC) migration using Boyden's chamber method. Chronic glucose treatment for 72 hours potentiated, in a concentration-dependent manner (5.6 to 22.2 mol/L), platelet-derived growth factor (PDGF) BB-mediated SMC migration. This potentiation was accompanied by an increase in PDGF BB binding, because of an increased number of PDGF-beta receptors, and this potentiation was blocked by the aldose reductase inhibitor epalrestat. Epalrestat at concentrations of 10 and 100 nmol/L inhibited high glucose-potentiated (22.2 mmol/L), PDGF BB-mediated migration. Epalrestat at 100 nmol/L inhibited a high glucose-induced increase in the reduced/oxidized nicotinamide adenine dinucleotide ratio and membrane-bound protein kinase C (PKC) activity in SMCs. PKC inhibitors calphostin C (100 nmol/L) and chelerythrine (1 micromol/L) each inhibited high glucose-induced, PDGF BB-mediated SMC migration. High glucose-induced suppression of insulin-mediated [(3)H]-deoxyglucose uptake, which was blocked by both calphostin C (100 nmol/L) and chelerythrine (1 micromol/L), was decreased by epalrestat (100 nmol/L). Chronic high glucose treatment for 72 hours increased intracellular oxidative stress, which was directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by epalrestat (100 nmol/L). Antisense oligonucleotide to PKC-beta isoform inhibited high glucose-mediated changes in SMC migration, insulin-mediated [(3)H]-deoxyglucose uptake, and oxidative stress. These findings suggest that high glucose concentrations potentiate SMC migration in coronary artery and that the aldose reductase inhibitor epalrestat inhibits high glucose-potentiated, PDGF BB-induced SMC migration, possibly through suppression of PKC (PKC-beta), impaired insulin-mediated glucose uptake, and oxidative stress.

  19. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  20. Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase.

    PubMed

    Li, Hong Mei; Hwang, Seung Hwan; Kang, Beom Goo; Hong, Jae Seung; Lim, Soon Sung

    2014-08-27

    The goal of this study was to determine the rat lens aldose reductase-inhibitory effects of 95% ethanol extracts from the leaves of C. esculenta and, its organic solvent soluble fractions, including the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water (H2O) layers, using dl-glyceraldehyde as a substrate. Ten compounds, namely tryptophan (1), orientin (2), isoorientin (3), vitexin (4), isovitexin (5), luteolin-7-O-glucoside (6), luteolin-7-O-rutinoside (7), rosmarinic acid (8), 1-O-feruloyl-d-glucoside (9) and 1-O-caffeoyl-d-glucoside (10) were isolated from the EtOAc and BuOH fractions of C. esculenta. The structures of compounds 1-10 were elucidated by spectroscopic methods and comparison with previous reports. All the isolates were subjected to an in vitro bioassay to evaluate their inhibitory activity against rat lens aldose reductase. Among tested compounds, compounds 2 and 3 significantly inhibited rat lens aldose reductase, with IC50 values of 1.65 and 1.92 μM, respectively. Notably, the inhibitory activity of orientin was 3.9 times greater than that of the positive control, quercetin (4.12 μM). However, the isolated compounds showed only moderate ABTS+ [2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] activity. These results suggest that flavonoid derivatives from Colocasia esculenta (L.) Schott represent potential compounds for the prevention and/or treatment of diabetic complications.

  1. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.

    PubMed

    Cook, P N; Ward, W H; Petrash, J M; Mirrlees, D J; Sennitt, C M; Carey, F; Preston, J; Brittain, D R; Tuffin, D P; Howe, R

    1995-04-18

    Aldose reductase (aldehyde reductase 2) catalyses the conversion of glucose to sorbitol, and methylglyoxal to acetol. Treatment with aldose reductase inhibitors (ARIs) is a potential approach to decrease the development of diabetic complications. The sulphonylnitromethanes are a recently discovered class of aldose reductase inhibitors, first exemplified by ICI215918. We now describe enzyme kinetic characterization of a second sulphonylnitromethane, 3',5'-dimethyl-4'-nitromethylsulphonyl-2-(2-tolyl)acetanilide (ZD5522), which is at least 10-fold more potent against bovine lens aldose reductase in vitro and which also has a greater efficacy for reduction of rat nerve sorbitol levels in vivo (ED95 = 2.8 mg kg-1 for ZD5522 and 20 mg kg-1 for ICI 215918). ZD5522 follows pure noncompetitive kinetics against bovine lens aldose reductase when either glucose or methylglyoxal is varied (K(is) = K(ii) = 7.2 and 4.3 nM, respectively). This contrasts with ICI 215918 which is an uncompetitive inhibitor (K(ii) = 100 nM) of bovine lens aldose reductase when glucose is varied. Against human recombinant aldose reductase, ZD5522 displays mixed noncompetitive kinetics with respect to both substrates (K(is) = 41 nM, K(ii) = 8 nM with glucose and K(is) = 52 nM, K(ii) = 3.8 nM with methylglyoxal). This is the first report of the effects of a sulphonylnitromethane on either human aldose reductase or utilization of methylglyoxal. These results are discussed with reference to a Di Iso Ordered Bi Bi mechanism for aldose reductase, where the inhibitors compete with binding of both the aldehyde substrate and alcohol product. This model may explain why aldose reductase inhibitors follow noncompetitive or uncompetitive kinetics with respect to aldehyde substrates, and X-ray crystallography paradoxically locates an ARI within the substrate binding site. Aldehyde reductase (aldehyde reductase 1) is closely related to aldose reductase. Inhibition of bovine kidney aldehyde reductase by ZD5522

  2. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro.

    PubMed

    Haraguchi, Hiroyuki; Hayashi, Ryosuke; Ishizu, Takashi; Yagi, Akira

    2003-09-01

    Isoaffinetin (5,7,3',4',5'-pentahydroxyflavone-6-C-glucoside) was isolated from Manilkara indica as a potent inhibitor of lens aldose reductase by bioassay-directed fractionation. This C-glucosyl flavone showed specific inhibition against aldose reductases (rat lens, porcine lens and recombinant human) with no inhibition against aldehyde reductase and NADH oxidase. Kinetic analysis showed that isoaffinetin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. A structure-activity relationship study revealed that the increasing number of hydroxy groups in the B-ring contributes to the increase in aldose reductase inhibition by C-glucosyl flavones.

  3. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  4. Investigation of the antioxidant and aldose reductase inhibitory activities of extracts from Peruvian tea plant infusions.

    PubMed

    Wang, Zhiqiang; Hwang, Seung Hwan; Guillen Quispe, Yanymee N; Gonzales Arce, Paul H; Lim, Soon Sung

    2017-09-15

    In the present study, the antioxidant and aldose reductase inhibitory activities of 24 Peruvian infusion tea plants were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and aldose reductase assays. Phoradendron sp. showed the highest inhibition of aldose reductase (IC50, 1.09±0.06μg/mL) and considerable antioxidant (IC50 of DPPH, 58.36±1.65μg/mL; IC50 of ABTS, 9.91±0.43μg/mL) effects. In order to identify the antioxidants and aldose reductase inhibitors of Phoradendron sp., DPPH-high performance liquid chromatography (HPLC) and ultrafiltration-HPLC assays were performed. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid, and 1,3,5-tri-O-caffeoylquinic acid were identified as the antioxidants and aldose reductase inhibitors; apigenin was identified as the antioxidant. Finally, Phoradendron sp. and its aldose reductase inhibitors also showed a dose-dependent anti-inflammatory effect without cellular toxicity. These results suggested that Phoradendron sp. can be a potent functional food ingredient as an antioxidant, aldose reductase inhibitor and anti-inflammatory agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. B-factor Analysis and Conformational Rearrangement of Aldose Reductase.

    PubMed

    Balendiran, Ganesaratnam K; Pandian, J Rajendran; Drake, Evin; Vinayak, Anubhav; Verma, Malkhey; Cascio, Duilio

    2014-01-01

    The NADPH-dependent reduction of glucose reaction that is catalyzed by Aldose Reductase (AR) follows a sequential ordered kinetic mechanism in which the co-factor NADPH binds to the enzyme prior to the aldehyde substrate. The kinetic/structural experiments have found a conformational change involving a hinge-like movement of a surface loop (residues 213-224) which is anticipated to take place upon the binding of the diphosphate moiety of NADPH. The reorientation of this loop, expected to permit the release of NADP(+), represents the rate-limiting step of the catalytic mechanism. This study reveals: 1) The Translation/Libration/Screw (TLS) analysis of absolute B-factors of apo AR crystal structures indicates that the 212-224 loop might move as a rigid group. 2) Residues that make the flexible loop slide in the AR binary and ternary complexes. 3) The normalized B-factors separate this segment into three different clusters with fewer residues.

  6. Determination of aldose reductase activity in the eye by localized magnetic resonance spectroscopy.

    PubMed

    Lizak, M J; Mori, K; Kador, P F

    2001-10-01

    The polyol pathway plays an important role in the formation of diabetic complications of the eye. Due to variations in the pharmacokinetic properties of aldose reductase inhibitors and variations in the degradation of the blood-ocular barrier, it is often difficult to determine the proper intraocular levels of aldose reductase inhibitor required for inhibition of aldose reductase activity in ocular tissues. Utilizing localized magnetic resonance spectroscopy (MRS), the present method can determine adequate inhibition of aldose reductase activity in the lens by noninvasively measuring polyol pathway activity in the eye. New Zealand White rabbits, under anesthesia, were administered an intravitreal injection of 3-fluoro-3-deoxy-D-glucose (3FDG). Localized MRS was then used to assess polyol pathway activity by determining the levels of 3-fluoro-3-deoxy-D-sorbitol (3FS) and 3-fluoro-3-deoxy-D-fructose (3FF) metabolite formation from 3FDG in the eye. MRS was able to follow the loss of 3FDG from the vitreous into the anterior segment of the eye and particularly into the lens and aqueous. The primary metabolism of 3FDG observed by MRS was the formation of 3FS in the lens that is catalyzed by aldose reductase. Production of 3FS was linear in time and decreased with the oral administration of an aldose reductase inhibitor.

  7. Metabolic regulation of aldose reductase activity by nitric oxide donors.

    PubMed

    Dixit, B L; Ramana, K V; Chandra, D; Jackson, E B; Srivastava, S; Bhatnagar, A; Srivastava, S K

    2001-01-30

    Regulation of aldose reductase (AR), a member of the aldo-keto reductase superfamily, by nitric oxide (NO) donors was examined. Incubation of human recombinant AR with S-nitrosoglutathione (GSNO) led to inactivation of the enzyme and the formation of an AR-glutathione adduct. In contrast, incubation with S-nitroso-N-acetyl penicillamine (SNAP) or N-(beta-D-glucopyranosyl)-SNAP (GlycoSNAP) led to an increase in enzyme activity which was accompanied by the direct nitrosation of the enzyme and the formation of a mixed disulfide with the NO-donor. To examine in vivo modification, red blood cells (RBC) and rat aortic vascular smooth muscle cells (VSMC) were incubated with 1 mM GSNO or SNAP. Exposure of VSMC to SNAP and GSNO for 2 h at 37 degrees C led to approximately 71% decrease in the enzyme activity with DL-glyceraldehyde as the substrate. Similarly, exposure of RBC in 5 mM glucose to NO-donors for 30 min at room temperature, followed by increasing the glucose concentration to 40 mM, resulted in >75% decrease in the formation of sorbitol. These investigations indicate that NO and/or its bioactive metabolites can regulate cellular AR, leading to either activation (by nitrosation) or inactivation (by S-thiolation).

  8. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors.

    PubMed

    Wang, Qi-Qin; Cheng, Ning; Zheng, Xiao-Wei; Peng, Sheng-Ming; Zou, Xiao-Qing

    2013-07-15

    Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099±0.008) μM to (2.833±0.102) μM. O(7)-Nitrooxyethyl-O(3'),O(4')-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50=(0.099±0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure-activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications.

  9. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy

    PubMed Central

    Satyanarayana, A.; Balakrishna, N.; Ayyagari, Radha; Padma, M.; Viswanath, K.; Petrash, J. Mark

    2008-01-01

    Purpose Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol, in erythrocytes. Methods We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined. Results T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects. Conclusions Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be included among other markers to establish a risk profile for development of DR. PMID:18385795

  10. Metabolic effects of aldose reductase inhibition in diabetic man.

    PubMed

    Krentz, A J; Ellis, S H; Hardman, M; Nattrass, M

    1992-01-01

    The metabolic effects of 52 weeks treatment with the aldose reductase inhibitor ponalrestat were examined in 32 diabetic patients (16 insulin treated) in a randomized, double-blind, placebo-controlled clinical trial. Twelve hour metabolic profiles were performed on two separate occasions in each patient (a) during a single-blind placebo run-in period and (b) after 52 weeks treatment with either ponalrestat 600 mg/day or matching placebo. No effects attributable to ponalrestat were evident in glucose, pyruvate, or alanine metabolism. A significant overall treatment effect was observed for lactate concentration (ponalrestat vs. placebo 12 h least square mean at 52 weeks: 1.35 vs. 1.65 mmol/l, p = 0.024). For glycerol (p = 0.018), non-esterified fatty acids (p = 0.003) and total ketone bodies (p = 0.045) there was evidence for a variation of treatment with time between the insulin treated and non-insulin treated patients, although no statistically significant overall treatment effects were observed for any metabolite. Fasting total ketone body concentration at 52 weeks was significantly elevated in the insulin-treated patients receiving ponalrestat (antilog LS mean: 0.12 vs. 0.01 mmol/l, p = 0.01). In conclusion, ponalrestat has no effect on glucose metabolism in diabetic patients. A potentially beneficial effect on lactate metabolism was accompanied by a minor ketogenic effect in insulin-treated patients.

  11. Effects of galactose feeding on aldose reductase gene expression.

    PubMed Central

    Wu, R R; Lyons, P A; Wang, A; Sainsbury, A J; Chung, S; Palmer, T N

    1993-01-01

    Aldose reductase (AR) is implicated in the pathogenesis of the diabetic complications and osmotic cataract. AR has been identified as an osmoregulatory protein, at least in the renal medulla. An outstanding question relates to the response of AR gene expression to diet-induced galactosemia in extrarenal tissues. This paper shows that AR gene expression in different tissues is regulated by a complex multifactorial mechanism. Galactose feeding in the rat is associated with a complex and, on occasions, multiphasic pattern of changes in AR mRNA levels in kidney, testis, skeletal muscle, and brain. These changes are not in synchrony with the temporal sequence of changes in tissue galactitol, galactose, and myoinositol concentrations. Moreover, galactose feeding results in changes in tissue AR activities that are not related, temporally or quantitatively, to the alterations in tissue AR mRNA or galactitol levels. It is concluded that AR gene expression and tissue AR activities are regulated by mechanisms that are not purely dependent on nonspecific alterations in intracellular metabolite concentrations. This conclusion is supported by the finding that chronic xylose feeding, despite being associated with intracellular xylitol accumulation, does not result in alterations in AR mRNA levels, at least in the kidney. PMID:8325980

  12. α-Glucosidase and aldose reductase inhibitory activities from the fruiting body of Phellinus merrillii.

    PubMed

    Huang, Guan-Jhong; Hsieh, Wen-Tsong; Chang, Heng-Yuan; Huang, Shyh-Shyun; Lin, Ying-Chih; Kuo, Yueh-Hsiung

    2011-05-25

    The inhibitory activity from the isolated component of the fruiting body Phellinus merrillii (PM) was evaluated against α-glucosidase and lens aldose reductase from Sprague-Dawley male rats and compared to the quercetin as an aldose reductase inhibitor and acarbose as an α-glucosidase inhibitor. The ethanol extracts of PM (EPM) showed the strong α-glucosidase and aldose reductase activities. α-Glucosidase and aldose reductase inhibitors were identified as hispidin (A), hispolon (B), and inotilone (C), which were isolated from EtOAc-soluble fractions of EPM. The above structures were elucidated by their spectra and comparison with the literatures. Among them, hispidin, hispolon, and inotilone exhibited potent against α-glucosidase inhibitor activity with IC(50) values of 297.06 ± 2.06, 12.38 ± 0.13, and 18.62 ± 0.23 μg/mL, respectively, and aldose reductase inhibitor activity with IC(50) values of 48.26 ± 2.48, 9.47 ± 0.52, and 15.37 ± 0.32 μg/mL, respectively. These findings demonstrated that PM may be a good source for lead compounds as alternatives for antidiabetic agents currently used. The importance of finding effective antidiabetic therapeutics led us to further investigate natural compounds.

  13. The Role of Cys-298 in Aldose Reductase Function*

    PubMed Central

    Balendiran, Ganesaratnam K.; Sawaya, Michael R.; Schwarz, Frederick P.; Ponniah, Gomathinayagam; Cuckovich, Richard; Verma, Malkhey; Cascio, Duilio

    2011-01-01

    Diabetic tissues are enriched in an “activated” form of human aldose reductase (hAR), a NADPH-dependent oxidoreductase involved in sugar metabolism. Activated hAR has reduced sensitivity to potential anti-diabetes drugs. The C298S mutant of hAR reproduces many characteristics of activated hAR, although it differs from wild-type hAR only by the replacement of a single sulfur atom with oxygen. Isothermal titration calorimetry measurements revealed that the binding constant of NADPH to the C298S mutant is decreased by a factor of two, whereas that of NADP+ remains the same. Similarly, the heat capacity change for the binding of NADPH to the C298S mutant is twice increased; however, there is almost no difference in the heat capacity change for binding of the NADP+ to the C298S. X-ray crystal structures of wild-type and C298S hAR reveal that the side chain of residue 298 forms a gate to the nicotinamide pocket and is more flexible for cysteine compared with serine. Unlike Cys-298, Ser-298 forms a hydrogen bond with Tyr-209 across the nicotinamide ring, which inhibits movements of the nicotinamide. We hypothesize that the increased polarity of the oxidized nicotinamide weakens the hydrogen bond potentially formed by Ser-298, thus, accounting for the relatively smaller effect of the mutation on NADP+ binding. The effects of the mutant on catalytic rate constants and binding constants for various substrates are the same as for activated hAR. It is, thus, further substantiated that activated hAR arises from oxidative modification of Cys-298, a residue near the nicotinamide binding pocket. PMID:21084309

  14. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    PubMed Central

    Paek, Ji Hun; Shin, Kuk Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2013-01-01

    The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM). PMID:24308003

  15. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  16. Scopoletin Inhibits Rat Aldose Reductase Activity and Cataractogenesis in Galactose-Fed Rats

    PubMed Central

    Kim, Junghyun; Kim, Chan-Sik; Lee, Yun Mi; Sohn, Eunjin; Jo, Kyuhyung; Shin, So Dam; Kim, Jin Sook

    2013-01-01

    Cataracts are a major cause of human blindness. Aldose reductase (AR) is an important rate-limiting enzyme that contributes to cataract induction in diabetic patients. Scopoletin is the main bioactive constituent of flower buds from Magnolia fargesii and is known to inhibit AR activity. To assess scopoletin's ability to mitigate sugar cataract formation in vivo, we studied its effects in a rat model of dietary galactose-induced sugar cataracts. Galactose-fed rats were orally dosed with scopoletin (10 or 50 mg/kg body weight) once a day for 2 weeks. Administering scopoletin delayed the progression of the cataracts that were induced by dietary galactose. Scopoletin also prevented galactose-induced changes in lens morphology, such as lens fiber swelling and membrane rupture. Scopoletin's protective effect against sugar cataracts was mediated by inhibiting both AR activity and oxidative stress. These results suggest that scopoletin is a useful treatment for sugar cataracts. PMID:24101940

  17. Scopoletin inhibits rat aldose reductase activity and cataractogenesis in galactose-fed rats.

    PubMed

    Kim, Junghyun; Kim, Chan-Sik; Lee, Yun Mi; Sohn, Eunjin; Jo, Kyuhyung; Shin, So Dam; Kim, Jin Sook

    2013-01-01

    Cataracts are a major cause of human blindness. Aldose reductase (AR) is an important rate-limiting enzyme that contributes to cataract induction in diabetic patients. Scopoletin is the main bioactive constituent of flower buds from Magnolia fargesii and is known to inhibit AR activity. To assess scopoletin's ability to mitigate sugar cataract formation in vivo, we studied its effects in a rat model of dietary galactose-induced sugar cataracts. Galactose-fed rats were orally dosed with scopoletin (10 or 50 mg/kg body weight) once a day for 2 weeks. Administering scopoletin delayed the progression of the cataracts that were induced by dietary galactose. Scopoletin also prevented galactose-induced changes in lens morphology, such as lens fiber swelling and membrane rupture. Scopoletin's protective effect against sugar cataracts was mediated by inhibiting both AR activity and oxidative stress. These results suggest that scopoletin is a useful treatment for sugar cataracts.

  18. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-05

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  19. Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol.

    PubMed

    Galvez, Anita S; Ulloa, Juan Alberto; Chiong, Mario; Criollo, Alfredo; Eisner, Verónica; Barros, Luis Felipe; Lavandero, Sergio

    2003-10-03

    Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.

  20. Structural characterization and functional validation of aldose reductase from the resurrection plant Xerophyta viscosa.

    PubMed

    Singh, Preeti; Sarin, Neera Bhalla

    2014-11-01

    Aldose reductases are key enzymes in the detoxification of reactive aldehyde compounds like methylglyoxal (MG) and malondialdehyde. The present study describes for first time the preliminary biochemical and structural characterization of the aldose reductase (ALDRXV4) enzyme from the resurrection plant Xerophyta viscosa. The ALDRXV4 cDNA was expressed in E. coli using pET28a expression vector, and the protein was purified using affinity chromatography. The recombinant protein showed a molecular mass of ~36 kDa. The K M (1.2 mM) and k cat (14.5 s(-1)) of the protein determined using MG as substrate was found to be comparable with other reported homologs. Three-dimensional structure prediction based on homology modeling suggested several similarities with the other aldose reductases reported from plants. Circular dichroism spectroscopy results supported the bioinformatic prediction of alpha-beta helix nature of aldose reductase proteins. Subcellular localization studies revealed that the ALDRXV4-GFP fusion protein was localized both in the nucleus and the cytoplasm. The E. coli cells overexpressing ALDRXV4 exhibited improved growth and showed tolerance against diverse abiotic stresses induced by high salt (500 mM NaCl), osmoticum (10 % PEG 6000), heavy metal (20 mM CdCl2), and MG (5 mM). Based on these results, we propose that ALDRXV4 gene from X. viscosa could be a potential candidate for developing stress-tolerant crop plants.

  1. Induction of aldose reductase gene expression in LEC rats during the development of the hereditary hepatitis and hepatoma.

    PubMed

    Takahashi, M; Hoshi, A; Fujii, J; Miyoshi, E; Kasahara, T; Suzuki, K; Aozasa, K; Taniguchi, N

    1996-04-01

    We examined age-related changes in the protein and the mRNA expression of aldose reductase in livers of Long-Evans with a cinnamon-like color (LEC) rats, which develop hereditary hepatitis and hepatoma with aging, using Long-Evans with an agouti color rats as controls. The levels of the protein and mRNA of aldose reductase increased after 20 weeks, at the stage of acute hepatitis, and were maintained at 60 weeks of age, while those of aldehyde reductase seemed to be constant at all ages. The expression of aldose reductase was marked in cancerous lesions in hepatoma-bearing LEC rat liver compared to uninvolved surrounding tissues. These results indicated that elevation of aldose reductase accompanied hepatocarcinogenesis and may be related to the acquisition of immortality of the cancer cells through detoxifying cytotoxic aldehyde compounds.

  2. Aldose reductase inhibition of a saponin-rich fraction and new furostanol saponin derivatives from Balanites aegyptiaca.

    PubMed

    Abdel Motaal, Amira; El-Askary, Hesham; Crockett, Sara; Kunert, Olaf; Sakr, Basma; Shaker, Sherif; Grigore, Alice; Albulescu, Radu; Bauer, Rudolf

    2015-08-15

    Balanites aegyptiaca Del. (Zygophyllaceae) fruits are used to treat hyperglycemia in Egyptian folk medicine and are sold by herbalists in the Egyptian open market for this purpose. Nevertheless, the fruits have not yet been incorporated into pharmaceutical dosage forms. The identity of the bioactive compounds and their possible mechanisms of action were not well understood until now. Aldose reductase inhibitors are considered vital therapeutic and preventive agents to address complications caused by hyperglycemia. The present study was carried out to identify the primary compounds responsible for the aldose reductase inhibitory activity of Balanites aegyptiaca fruits. The 70% ethanolic extract of Balanites aegyptiaca fruit mesocarp and its fractions were screened for inhibition of the aldose reductase enzyme. Bio-guided fractionation of the active butanol fraction was performed and the primary compounds present in the saponin-rich fraction (D), which were responsible for the inhibitory activity, were characterized. HPLC chromatographic profiles were established for the different fractions, using the isolated compounds as biomarkers. Aldose reductase inhibition was tested in vitro on rat liver homogenate. The butanol fraction of the 70% ethanolic extract was fractionated using vacuum liquid chromatography (VLC, RP-18 column). The most active sub-fraction D, which was eluted with 75% methanol, was subjected to preparative HPLC to isolate the bioactive compounds. The butanol fraction displayed inhibitory activity against the aldose reductase enzyme (IC50 = 55.0 ± 6 µg/ml). Sub-fraction D exhibited the highest inhibitory activity (IC50 = 12.8 ± 1 µg/ml). Five new steroidal saponin derivatives were isolated from this fraction. The isolated compounds were identified as compound 1a/b, a 7:3 mixture of the 25R:25S epimers of 26-O-β-D-glucopyranosyl-furost-5-ene-3,22,26-triol 3-O-[α-L-rhamnopyranosyl-(1→3)- β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4

  3. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  4. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  5. The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions.

    PubMed

    Aguilera, J; Prieto, J A

    2001-07-01

    The enzyme aldose reductase plays an important role in the osmo-protection mechanism of diverse organisms. Here, we show that yeast aldose reductase is encoded by the GRE3 gene. Expression of GRE3 is carbon-source independent and up-regulated by different stress conditions, such as NaCl, H2O2, 39 degrees C and carbon starvation. Measurements of enzyme activity and intracellular sorbitol in wild-type cells also indicate that yeast aldose reductase is stress-regulated. Overexpression of GRE3 increases methylglyoxal tolerance in Saccharomyces cerevisiae. Furthermore, high expression of GRE3 complements the deficiency of the glyoxalase system of a glo1delta mutant strain. Consistent with this, in vitro and in vivo assays of yeast aldose reductase activity indicate that methylglyoxal is an endogenous substrate of aldose reductase. Furthermore, addition of NaCl or H2O2 to exponential-phase cells triggers an initial transient increase in the intracellular level of methylglyoxal, which is dependent on the Gre3p and Glo1p function. These observations indicate that the metabolism of methylglyoxal is stimulated under stress conditions; and they support a methylglyoxal degradative pathway, in which this compound is metabolised by the action of aldose reductase.

  6. Extraction and identification of three major aldose reductase inhibitors from Artemisia montana.

    PubMed

    Jung, Hyun Ah; Islam, M D Nurul; Kwon, Yong Soo; Jin, Seong Eun; Son, You Kyung; Park, Jin Ju; Sohn, Hee Sook; Choi, Jae Sue

    2011-02-01

    Aldose reductase inhibitors (ARIs) provide an important therapeutic and preventive opportunity against hyperglycemia associated diabetic complications. The methanolic extracts of 12 species from the genus Artemisia exhibited significant in vitro rat lens AR (RLAR) inhibitory activities with IC(50) values ranging from 0.51 to 13.45 μg/mL (quercetin, 0.64 μg/mL). Since the whole plant of Artemisia montana showed the highest RLAR inhibitory activity, bioassay-guided fractionation was performed to obtain ethyl acetate and n-butanol fractions. Repeated column chromatography of two active fractions, yielded fifteen compounds, including four chlorogenic acids (3,5-di-O-caffeoylquinic acid, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid), six flavonoids (apigenin, luteolin, quercetin, isoquercitrin, hyperoside, luteolin 7-rutinoside), and five coumarins (umbelliferone, scoparone, scopoletin, esculetin, and scopolin); their structures were confirmed by spectroscopic methods. 3,5-Di-O-caffeoylquinic acid and chlorogenic acid, as well as test flavonoids, displayed the most potent RLAR inhibitory activities with IC(50) values ranging from 0.19 to 5.37 μM. Furthermore, the HPLC profiles of the ethyl acetate and n-butanol fractions indicated that 3,5-di-O-caffeoylquinic acid, chlorogenic acid, and hyperoside, as major compounds, might play crucial roles in RLAR inhibition. The results suggest that A. montana and three key AR inhibitors therein would clearly be potential candidates as therapeutic or preventive agents for diabetic complications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury

    PubMed Central

    Eid, Ali Hussein

    2017-01-01

    Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to high glucose (30 mM) or normal glucose (5 mM) media for 24 to 48 hours with or without the AR inhibitor epalrestat (1 μM) and assessed for changes in Akt and ERK1/2 signaling, AR expression (using western blotting), and alterations in mitochondrial membrane potential (using JC-1 staining), cell viability (using MTT assay), and cell cycle. Exposure of NRK-52E cells to high glucose media caused acute activation of Akt and ERK pathways and depolarization of mitochondrial membrane at 24 hours. Prolonged high glucose exposure (for 48 hours) induced AR expression and G1 cell cycle arrest and decreased cell viability (84% compared to control) in NRK-52E cells. Coincubation of cells with epalrestat prevented the signaling changes and renal cell injury induced by high glucose. Thus, AR inhibition represents a potential therapeutic strategy to prevent DN. PMID:28386557

  8. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins

    PubMed Central

    Shukla, Kirtikar; Pal, Pabitra Bikash; Sonowal, Himangshu; Srivastava, Satish K.

    2017-01-01

    We have shown earlier that pretreatment of cultured cells with aldose reductase (AR) inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG-) induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM)-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1) and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK-α1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins. PMID:28740855

  9. Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy.

    PubMed

    Ramirez, Mary Ann; Borja, Nancy L

    2008-05-01

    Diabetic neuropathy is one of the most common long-term complications in patients with diabetes mellitus, with a prevalence of 60-70% in the United States. Treatment options include antidepressants, anticonvulsants, tramadol, and capsaicin. These agents are modestly effective for symptomatic relief, but they do not affect the underlying pathology nor do they slow progression of the disease. Epalrestat is an aldose reductase inhibitor that is approved in Japan for the improvement of subjective neuropathy symptoms, abnormality of vibration sense, and abnormal changes in heart beat associated with diabetic peripheral neuropathy. Unlike the current treatment options for diabetic neuropathy, epalrestat may affect or delay progression of the underlying disease process. Data from experimental studies indicate that epalrestat reduces sorbitol accumulation in the sciatic nerve, erythrocytes, and ocular tissues in animals, and in erythrocytes in humans. Data from six clinical trials were evaluated, and it was determined that epalrestat 50 mg 3 times/day may improve motor and sensory nerve conduction velocity and subjective neuropathy symptoms as compared with baseline and placebo. Epalrestat is well tolerated, and the most frequently reported adverse effects include elevations in liver enzyme levels and gastrointestinal-related events such as nausea and vomiting. Epalrestat may serve as a new therapeutic option to prevent or slow the progression of diabetic neuropathy. Long-term, comparative studies in diverse patient populations are needed for clinical application.

  10. Thymol, a monoterpene, inhibits aldose reductase and high-glucose-induced cataract on isolated goat lens

    PubMed Central

    Kanchan, Divya M.; Kale, Smita S.; Somani, Gauresh S.; Kaikini, Aakruti A.; Sathaye, Sadhana

    2016-01-01

    Background: Overactivation of aldose reductase (AR) enzyme has been implicated in the development of various diabetic complications. In the present study, the inhibitory effect of thymol was investigated on AR enzyme and its anti-cataract activity was also examined on isolated goat lens. Materials and Methods: Various concentrations of thymol were incubated with AR enzyme prepared from isolated goat lens. Molecular docking studies were carried out using Schrodinger software to verify the binding of thymol with AR as well as to understand their binding pattern. Further, thymol was evaluated for its anti-cataract activity in high-glucose-induced cataract in isolated goat lens in vitro. Quercetin was maintained as standard (positive control) throughout the study. Results: Thymol showed potent inhibitory activity against goat lens AR enzyme with an IC50 value of 0.65 μg/ml. Docking studies revealed that thymol binds with AR in similar binding pattern as that of quercetin. The high–glucose-induced cataract in isolated goat lens was also improved by thymol treatment. Thymol was also able to significantly (P < 0.001) reduce the oxidative stress associated with cataract. Conclusion: The results suggest that thymol may be a potential therapeutic approach in the prevention of diabetic complications through its AR inhibitory and antioxidant activities. PMID:28216950

  11. Amelioration of Experimental Autoimmune Uveoretinitis by Aldose Reductase Inhibition in Lewis Rats

    PubMed Central

    Yadav, Umesh C. S.; Shoeb, Mohammad; Srivastava, Satish K.

    2011-01-01

    Purpose. Recently, the authors showed that the inhibition of aldose reductase (AR) prevents bacterial endotoxin-induced uveitis in rats. They have now investigated the efficacy of AR inhibitors in the prevention of experimental autoimmune-induced uveitis (EAU) in rats. Methods. Lewis rats were immunized with bovine interphotoreceptor retinoid-binding peptide (IRBP) to develop EAU. Two or 8 days after immunization, the rats started receiving the AR inhibitor fidarestat (7 mg/kg/d; intraperitoneally). They were killed when the disease was at its peak; aqueous humor (AqH) was collected from one eye, and the other eye of each rat was used for histologic studies. The protein concentration and the levels of inflammatory markers were determined in AqH. Immunohistochemical analysis of eye sections was performed to determine the expression of inflammatory markers. The effect of AR inhibition on immune response was investigated in isolated T lymphocytes. Results. Immunization of rats by IRBP peptide resulted in a significant infiltration of leukocytes in the posterior and the anterior chambers of the eye. Further, EAU caused an increase in the concentration of proteins, inflammatory cytokines, and chemokines in AqH, and the expression of inflammatory markers such as inducible-nitric oxide synthase and cycloxygenase-2 in the rat eye ciliary bodies and retina. Treatment with fidarestat significantly prevented the EAU-induced ocular inflammatory changes. AR inhibition also prevented the proliferation of spleen-derived T cells isolated from EAU rats in response to the IRBP antigen. Conclusions. These results suggest that AR could be a novel mediator of bovine IRBP-induced uveitis in rats. PMID:21900376

  12. Structure-Activity Relationship Study Reveals Benzazepine Derivatives of Luteolin as New Aldose Reductase Inhibitors for Diabetic Cataract.

    PubMed

    Sebastian, Jomon

    2016-01-01

    Hyperglycaemia in diabetic patients causes diverse range of complications and the earliest among them is diabetic cataract. The role of aldose reductase, the key enzyme in polyol pathway, is well known in the genesis of cataract in chronic diabetic patients. Controlling of sorbitol flux into lens epithelial cells through aldose reductase inhibitors is an important treatment strategy. Due to the side effects of many drugs so far developed, the development of aldose reductase inhibitors from natural sources has gained considerable attention. This study was undertaken to identify suitable drugs for diabetic cataract using molecular modeling and simulation methods. A series of 18 luteolin derivatives having in vitro inhibitory potential against aldose reductase was used to develop a common pharmacophore hypothesis AHRRR and atom-based 3D-QSAR model. The model was used for virtual screening of ZINC database and the resultant hits were docked against aldose reductase. The two drug candidates which belonged to benzazepine class of drugs scored high in the molecular docking. They were further examined for their activity and pharmacokinetic behaviour. Their druglikeness behaviour was found suitable to be used as drugs as per Lipinski's rule of five criteria. Human intestinal absorption (HIA), skin permeability (SP), blood brain barrier (BBB) penetration and plasma protein binding (PPB) was found to be in the acceptable range. Based on the results, these drugs could be considered as potential candidates in further drug development against diabetic cataract.

  13. Esculetin, a Coumarin Derivative, Inhibits Aldose Reductase Activity in vitro and Cataractogenesis in Galactose-Fed Rats

    PubMed Central

    Kim, Chan-Sik; Kim, Junghyun; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2016-01-01

    Naturally occurring coumarin compounds have received substantial attention due to their pharmaceutical effects. Esculetin is a coumarin derivative and a polyphenol compound that is used in a variety of therapeutic and pharmacological strategies. However, its effect on aldose reductase activity remains poorly understood. In this study, the potential beneficial effects of esculetin on lenticular aldose reductase were investigated in galactose-fed (GAL) rats, an animal model of sugar cataracts. Cataracts were induced in Sprague-Dawley (SD) rats via a 50% galactose diet for 2 weeks, and groups of GAL rats were orally treated with esculetin (10 or 50 mg/kg body weight). In vehicle-treated GAL rats, lens opacification was observed, and swelling and membrane rupture of the lens fiber cells were increased. Additionally, aldose reductase was highly expressed in the lens epithelium and superficial cortical fibers during cataract development in the GAL rats. Esculetin reduced rat lens aldose reductase (RLAR) activity in vitro, and esculetin treatment significantly inhibited lens opacity, as well as morphological alterations, such as swelling, vacuolation and liquefaction of lens fibers, via the inhibition of aldose reductase in the GAL rats. These results indicate that esculetin is a useful treatment for galactose-induced cataracts. PMID:26902086

  14. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum.

    PubMed

    Bhatti, Huma Aslam; Tehseen, Yildiz; Maryam, Kiran; Uroos, Maliha; Siddiqui, Bina S; Hameed, Abdul; Iqbal, Jamshed

    2017-09-05

    Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6'-hydroxyhex-3'-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095±0.77µM compare to standard sorbinil (IC50=3.14±0.02µM). Moreover, the compound (1) also showed multifolds higher activity (IC50=0.783±0.07µM) against AKR1A1 as compared to standard valproic acid (IC50=57.4±0.89µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50=4.324±1.25µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Inhibition of aldose reductase and anti-cataract action of trans-anethole isolated from Foeniculum vulgare Mill. fruits.

    PubMed

    Dongare, Vandana; Kulkarni, Chaitanya; Kondawar, Manish; Magdum, Chandrakant; Haldavnekar, Vivek; Arvindekar, Akalpita

    2012-05-01

    Foeniculum vulgare fruits are routinely consumed for their carminative and mouth freshening effect. The plant was evaluated for aldose reductase inhibition and anti-diabetic action. Bioguided fractionation using silica gel column chromatography, HPLC, and GC-MS analysis revealed trans-anethole as the bioactive constituent possessing potent aldose reductase inhibitory action, with an IC50 value of 3.8μg/ml. Prolonged treatment with the pet ether fraction of the F. vulgare distillate demonstrated improvement in blood glucose, lipid profile, glycated haemoglobin and other parameters in streptozotocin-induced diabetic rats. Trans-anethole could effectively show anti-cataract activity through the increase in soluble lens protein, reduced glutathione, catalase and SOD activity on in vitro incubation of the eye lens with 55mM glucose. Trans-anethole demonstrated noncompetitive to mixed type of inhibition of lens aldose reductase using Lineweaver Burk plot.

  16. Melatonin Reduces Cataract Formation and Aldose Reductase Activity in Lenses of Streptozotocin-induced Diabetic Rat

    PubMed Central

    Khorsand, Marjan; Akmali, Masoumeh; Sharzad, Sahab; Beheshtitabar, Mojtaba

    2016-01-01

    Background: The relationship between the high activity of aldose reductase (AR) and diabetic cataract formation has been previously investigated. The purpose of the present study was to determine the preventing effect of melatonin on streptozotocin (STZ)-induced diabetic cataract in rats. Methods: 34 adult healthy male Sprague-Dawely rats were divided into four groups. Diabetic control and diabetic+melatonin received a single dose of STZ (50 mg/kg, intraperitoneally), whereas the normal control and normal+melatonin received vehicle. The melatonin groups were gavaged with melatonin (5 mg/kg) daily for a period of 8 weeks, whereas the rats in the normal control and diabetic control groups received only the vehicle. The rats’ eyes were examined every week and cataract formation scores (0-4) were determined by slit-lamp microscope. At the end of the eighth week, the rats were sacrificed and markers of the polyol pathway and antioxidative (Glutathione, GSH) in their lens were determined. The levels of blood glucose, HbA1c and plasma malondialdhyde (MDA), as a marker of lipid peroxidation, were also measured. Results: Melatonin prevented STZ-induced hyperglycemia by decreased blood glucose and HbA1c levels. Slit lamp examination indicated that melatonin delayed cataract progression in diabetic rats. The results revealed that melatonin feeding increased the GSH levels, decreased the activities of AR and sorbitol dehydrogenase (SDH) and sorbitol formation in catractous lenses as well as plasma MDA content. Conclusion: In summary, for the first time we demonstrated that melatonin delayed the formation and progression of cataract in diabetic rat lenses. PMID:27365552

  17. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    SciTech Connect

    Zeng, Ke-Wu; Li, Jun; Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei; Tu, Peng-Fei

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  18. Aldose Reductase Deficiency Protects from Autoimmune- and Endotoxin-Induced Uveitis in Mice

    PubMed Central

    Yadav, Umesh C. S.; Shoeb, Mohammed; Srivastava, Satish K.

    2011-01-01

    Purpose. To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. Methods. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1–20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. Results. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor–treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. Conclusions. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis. PMID:21911582

  19. Inhibition of aldose reductase and xylose-induced lens opacity by puerariafuran from the roots of Pueraria lobata.

    PubMed

    Kim, Nan Hee; Kim, Young Sook; Lee, Yun Mi; Jang, Dae Sik; Kim, Jin Sook

    2010-01-01

    High sugar levels found in diabetic cataract cause the opacification of lenses by osmotic changes induced via the aldose reductase (AR)-mediated polyol pathway. In this study, puerariafuran, a 2-arylbenzofuran from Pueraria lobata, investigated the inhibitory effects upon AR, antioxidant contents and enzyme activities in the lens. The effect of puerariafuran on xylose-induced lens opacity was also examined. Puerariafuran showed potential inhibitory activity with an IC50 value of 22.34 microM against rat lens AR. The xylose-induced opacity of lenses was significantly improved when treated with puerariafuran. Xylose exposure of rat lenses significantly decreased the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, superoxide dismutase (SOD), and catalase (CAT) activity and treatment with puerariafuran significantly increased these factors. These results suggest that puerariafuran may provide a potential therapeutic approach for prevention of diabetic complications, such as cataracts.

  20. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants.

    PubMed

    Hartman, Matías D; Figueroa, Carlos M; Arias, Diego G; Iglesias, Alberto A

    2017-01-01

    Glucitol, also known as sorbitol, is a major photosynthetic product in plants from the Rosaceae family. This sugar alcohol is synthesized from glucose-6-phosphate by the combined activities of aldose-6-phosphate reductase (Ald6PRase) and glucitol-6-phosphatase. In this work we show the purification and characterization of recombinant Ald6PRase from peach leaves. The recombinant enzyme was inhibited by glucose-1-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate and orthophosphate. Oxidizing agents irreversibly inhibited the enzyme and produced protein precipitation. Enzyme thiolation with oxidized glutathione protected the enzyme from insolubilization caused by diamide, while incubation with NADP+ (one of the substrates) completely prevented enzyme precipitation. Our results suggest that Ald6PRase is finely regulated to control carbon partitioning in peach leaves. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Characterization and Purification of an Aldose Reductase from the Acidophilic and Thermophilic Red Alga Galdieria sulphuraria.

    PubMed Central

    Gross, W.; Seipold, P.; Schnarrenberger, C.

    1997-01-01

    The acidophilic and thermophilic red alga Galdieria sulphuraria is able to grow heterotrophically on at least six different pentoses. These pentoses are reduced in the cell to pentiols by an NADP-dependent aldose reductase. The pentiols are then introduced into the oxidative pentose phosphate pathway via NAD-dependent polyol dehydrogenases and pentulokinases. The aldose reductase was purified 130-fold to apparent homogeneity by column chromatography. The enzyme is a homodimer of about 80 kD, as estimated by size-exclusion chromatography and from the sedimentation behavior. The Michaelis constant values for D-xylose (27 mM), D-ribose (29 mM), D-lyxose (30 mM), and D-arabinose (38 mM) were about three to five times lower than for the L-forms of the sugars. The activity of the enzyme with hexoses, deoxysugars, and sugar phosphates was only about 5 to 10% of the rate with pentoses. In the reverse reaction the activity was low and only detectable with pentiols. No activity was measured with NAD(H) as the cosubstrate in either direction. PMID:12223702

  2. Green fluorescent protein chromophore derivatives as a new class of aldose reductase inhibitors.

    PubMed

    Saito, Ryota; Hoshi, Maiko; Kato, Akihiro; Ishikawa, Chikako; Komatsu, Toshiya

    2017-01-05

    A number of (Z)-4-arylmethylene-1H-imidazol-5(4H)-ones, which are related to the fluorescent chromophore of the Aequorea green fluorescent protein (GFP), have been synthesized and evaluated their in vitro inhibitory activity against recombinant human aldose reductase for the first time. The GFP chromophore model 1a, with a p-hydroxy group on the 4-benzylidene and a carboxymethyl group on the N1 position, exhibited strong bioactivity with an IC50 value of 0.36 μM. This efficacy is higher than that of sorbinil, a known highly potent aldose reductase inhibitor. Compound 1h, the 2-naphtylmethylidene analogue of 1a, exhibited the best inhibitory effect among the tested copounds with an IC50 value of 0.10 μM. Structure-activity relationship studies combined with docking simulations revealed the interaction mode of the newly synthesized inhibitors toward the target protein as well as the structural features required to gain a high inhibitory activity. In conclusion, the GFP chromophore model compounds synthesized in this study have proved to be potential drugs for diabetic complications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Phytochemical analysis with the antioxidant and aldose reductase inhibitory capacities of Tephrosia humilis aerial parts' extracts.

    PubMed

    Plioukas, Michael; Gabrieli, Chrysi; Lazari, Diamanto; Kokkalou, Eugene

    2016-06-01

    The aerial parts of Tephrosia humilis were tested about their antioxidant potential, their ability to inhibit the aldose/aldehyde reductase enzymes and their phenolic content. The plant material was exhaustively extracted with petroleum ether, dichloromethane and methanol, consecutively. The concentrated methanol extract was re-extracted, successively, with diethyl ether, ethyl acetate and n-butanol. All extracts showed significant antioxidant capacity, but the most effective was the ethyl acetate extract. As about the aldose reductase inhibition, all fractions, except the aqueous, were strong inhibitors of the enzyme, with the n-butanolic and ethyl acetate fractions to inhibit the enzyme above 75%. These findings provide support to the ethnopharmacological usage of the plant as antioxidant and validate its potential to act against the long-term diabetic complications. The phytochemical analysis showed the presence of 1,4-dihydroxy-3,4-(epoxyethano)-5-cyclohexene(1), cleroindicin E(2), lupeol(3), methyl p-coumarate(4), methyl 4-hydroxybenzoate(5), prunin(6), 5,7,2',5'-tetrahydroxyflavanone 7-rutinoside(7), protocatechuic acid(8), luteolin 7-glucoside(9), apigenin(10), naringin(11), rhoifolin(12) and luteolin 7-glucuronate(13).

  4. Effects of 15-month aldose reductase inhibition with fidarestat on the experimental diabetic neuropathy in rats.

    PubMed

    Kato, N; Mizuno, K; Makino, M; Suzuki, T; Yagihashi, S

    2000-10-01

    We examined the effects of long-term treatment with an aldose reductase inhibitor (ARI) fidarestat on functional, morphological and metabolic changes in the peripheral nerve of 15-month diabetic rats induced by streptozotocin (STZ). Slowed F-wave, motor nerve and sensory nerve conduction velocities were corrected dose-dependently in fidarestat-treated diabetic rats. Morphometric analysis of myelinated fibers demonstrated that frequencies of abnormal fibers such as paranodal demyelination and axonal degeneration were reduced to the extent of normal levels by fidarestat-treatment. Axonal atrophy, distorted axon circularity and reduction of myelin sheath thickness were also inhibited. These effects were associated with normalization of increased levels of sorbitol and fructose and decreased level of myo-inositol in the peripheral nerve by fidarestat. Thus, the results demonstrated that long-term treatment with fidarestat substantially inhibited the functional and structural progression of diabetic neuropathy with inhibition of increased polyol pathway flux in diabetic rats.

  5. Characterization of WY 14,643 and its Complex with Aldose Reductase

    SciTech Connect

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; Rath, Nigam P.; Cascio, Duilio; Balendiran, Ganesaratnam K.

    2016-10-10

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.

  6. Characterization of WY 14,643 and its Complex with Aldose Reductase

    PubMed Central

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; Rath, Nigam P.; Cascio, Duilio; Balendiran, Ganesaratnam K.

    2016-01-01

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR. PMID:27721416

  7. Characterization of WY 14,643 and its Complex with Aldose Reductase

    DOE PAGES

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; ...

    2016-10-10

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such asmore » WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.« less

  8. Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase.

    PubMed

    Balestri, Francesco; Moschini, Roberta; Cappiello, Mario; Mura, Umberto; Del-Corso, Antonella

    2017-06-01

    Bovine lens aldose reductase is susceptible to a copper-mediated oxidation, leading to the generation of a disulfide bridge with the concomitant incorporation of two equivalents of the metal and inactivation of the enzyme. The metal complexed by the protein remains redox active, being able to catalyse the oxidation of different physiological thiol compounds. The thiol oxidase activity displayed by the enzymatic form carrying one equivalent of copper ion (Cu1-AR) has been characterized. The efficacy of Cu1-AR in catalysing thiol oxidation is essentially comparable to the free copper in terms of both thiol concentration and pH effect. On the contrary, the two catalysts are differently affected by temperature. The specificity of the AR-bound copper towards thiols is highlighted with Cu1-AR being completely ineffective in promoting the oxidation of both low-density lipoprotein and ascorbic acid.

  9. Aldose Reductase as a Drug Target for Treatment of Diabetic Nephropathy: Promises and Challenges.

    PubMed

    El Gamal, Heba; Munusamy, Shankar

    2016-11-28

    Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes mellitus and the leading cause of end stage renal disease. One of the key pathways activated in DN is the polyol pathway, in which glucose is converted to sorbitol (a relatively non-metabolizable sugar) by the enzyme aldose reductase (AR). Shunting of glucose into this pathway causes disruption to glucose metabolism and subsequently damages the tissues via increased oxidative stress, protein kinase c activation and production of advanced glycation end products (AGE) in the kidney. This review aims to provide a comprehensive overview of the AR enzyme structure, substrate specificity and topology in normal physiology; to elaborate on the deleterious effects of AR activation in DN; and to summarize the potential therapeutic benefits and major challenges associated with AR inhibition in patients with DN.

  10. Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies.

    PubMed

    Patil, Kapil K; Gacche, Rajesh N

    2017-05-01

    On the eve of increasing incidence of diabetes mellitus and related complications, the search for novel, safe and alternatives therapeutic approaches are evolving. In the present investigation, a panel of ten dietary flavonoids such as 4'-methoxyflavanone, formononetin, hesperetin, hesperidin, naringenin, naringin, rutin, diadzin, silibinin and silymarin was evaluated as possible inhibitors of sugar induced cataractogenesis using bovine lens organ culture studies. The effect of selected flavonoids was observed on glycation induced lens opacity, AGE fluorescence, carbonyl group formation (a biomarker of glycation), protein aggregation and aldose reductase (AR) inhibition. The results obtained clearly demonstrate the efficacy of rutin and silibinin as promising leads for inhibition of glycation reaction and amelioration of sugar induced cataractogenesis. The findings of the present study may be useful for designing and development of the novel lead molecules for the management of diabetic cataract.

  11. The molecular basis for inhibition of sulindac and its metabolites towards human aldose reductase.

    PubMed

    Zheng, Xuehua; Zhang, Liping; Zhai, Jing; Chen, Yunyun; Luo, Haibin; Hu, Xiaopeng

    2012-01-02

    Sulindac (SLD) exhibits both the highest inhibitory activity towards human aldose reductase (AR) among popular non-steroidal anti-inflammatory drugs and clear beneficial clinical effects on Type 2 diabetes. However, the molecular basis for these properties is unclear. Here, we report that SLD and its pharmacologically active/inactive metabolites, SLD sulfide and SLD sulfone, are equally effective as un-competitive inhibitors of AR in vitro. Crystallographic analysis reveals that π-π stacking favored by the distinct scaffold of SLDs is pivotal to their high AR inhibitory activities. These results also suggest that SLD sulfone could be a potent lead compound for AR inhibition in vivo. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Aldose reductase deficiency protects sugar-induced lens opacification in rats.

    PubMed

    Reddy, Aramati B M; Tammali, Ravinder; Mishra, Rakesh; Srivastava, Shriram; Srivastava, Satish K; Ramana, Kota V

    2011-05-30

    Aldose reductase (AKR1B1), which catalyzes the reduction of glucose to sorbitol and lipid aldehydes to lipid alcohols, has been shown to be involved in secondary diabetic complications including cataractogenesis. Rats have high levels of AKR1B1 in lenses and readily develop diabetic cataracts, whereas mice have very low levels of AKR1B1 in their lenses and are not susceptible to hyperglycemic cataracts. Studies with transgenic mice that over-express AKR1B1 indicate that it is the key protein for the development of diabetic complications including diabetic cataract. However, no such studies were performed in genetically altered AKR1B1 rats. Hence, we developed siRNA-based AKR1B1 knockdown rats (ARKO) using the AKR1B1-siRNA-pSuper vector construct. Genotyping analysis suggested that more than 90% of AKR1B1 was knocked down in the littermates. Interestingly, all the male animals were born dead and only 3 female rats survived. Furthermore, all 3 female animals were not able to give birth to F1 generation. Hence, we could not establish an AKR1B1 rat knockdown colony. However, we examined the effect of AKR1B1 knockdown on sugar-induced lens opacification in ex vivo. Our results indicate that rat lenses obtained from AKR1B1 knockdown rats were resistant to high glucose-induced lens opacification as compared to wild-type (WT) rat lenses. Biochemical analysis of lens homogenates showed that the AKR1B1 activity and sorbitol levels were significantly lower in sugar-treated AKR1B1 knockdown rat lenses as compared to WT rat lenses treated with 50mM glucose. Our results thus confirmed the significance of AKR1B1 in the mediation of sugar-induced lens opacification and indicate the use of AKR1B1 inhibitors in the prevention of cataractogenesis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution.

    PubMed

    Steuber, Holger; Heine, Andreas; Klebe, Gerhard

    2007-05-04

    To prevent diabetic complications derived from enhanced glucose flux via the polyol pathway the development of aldose reductase inhibitors (ARIs) has been established as a promising therapeutic concept. In order to identify novel lead compounds, a virtual screening (VS) was performed successfully suggesting carboxylate-type inhibitors of sub-micromolar to micromolar affinity. Here, we combine a structural characterization of the binding modes observed by X-ray crystallography with isothermal titration calorimetry (ITC) measurements providing insights into the driving forces of inhibitor binding, particularly of the first leads from VS. Characteristic features of this novel inhibitor type include a carboxylate head group connected via an alkyl spacer to a heteroaromatic moiety, which is linked to a further nitro-substituted aromatic portion. The crystal structures of two enzyme-inhibitor complexes have been determined at resolutions of 1.43 A and 1.55 A. Surprisingly, the carboxylic group of the most potent VS lead occupies the catalytic pocket differently compared to the interaction geometry observed in almost all other crystal structures with structurally related ligands and obtained under similar conditions, as an interstitial water molecule is picked up upon ligand binding. The nitro-aromatic moiety of both leads occupies the specificity pocket of the enzyme, however, adopting a different geometry compared to the docking prediction: unexpectedly, the nitro group binds to the bottom of the specificity pocket and provokes remarkable induced-fit adaptations. A peptide group located at the active site orients in such a way that H-bond formation to one nitro group oxygen atom is enabled, whereas a neighbouring tyrosine side-chain performs a slight rotation off from the binding cavity to accommodate the nitro group. Identically constituted ligands, lacking this nitro group, exhibit an affinity drop of one order of magnitude. In addition, thermodynamic data suggest a

  14. Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose.

    PubMed

    Liu, Weihua; Liu, Peiqinq; Tao, Sha; Deng, Yanhui; Li, Xuejuan; Lan, Tian; Zhang, Xiaoyan; Guo, Fenfen; Huang, Wenge; Chen, Fengying; Huang, Heqing; Zhou, Shu-Feng

    2008-07-15

    Diabetic nephropathy (DN), one of the most serious microvascular complications of diabetes mellitus, is a major cause of end-stage renal disease. Berberine is one of the main constituents of Coptidis rhizoma and Cortex phellodendri. In the present study, we examined effects of berberine (BBR) on renal injury in streptozotocin-induced diabetic rats, and on the changes of aldose reductase (AR) and oxidative stress in cultured rat mesangial cells exposed to high glucose. Fasting blood glucose, blood urea nitrogen, creatinine, and urine protein over 24 h were detected by using the commercially available kits. Cell proliferation, collagen synthesis, aldose reductase (AR), superoxide anion, superoxide dismutase (SOD), and malondialdehyde (MDA) were detected, respectively, by different methods. In streptozotocin-induced diabetic rats, fasting blood glucose, blood urea nitrogen, creatinine, and urine protein over 24 h were significantly decreased in rats treated with 200 mg/kg berberine for 12 weeks compared with diabetic control rats (P < 0.05). This was accompanied by a reduced AR activity and gene expression at both mRNA and protein levels. In cultured rat mesangial cells exposed to high glucose, incubation of BBR significantly decreased cell proliferation, collagen synthesis and AR activity as well as its mRNA and protein levels compared with control cells (P < 0.05). In vitro, BBR also significantly increased SOD activity and decreased superoxide anion and MDA compared with control cells (P < 0.05). These results suggested that BBR could ameliorate renal dysfunction in DN rats, which may be ascribed to inhibition of AR in mesangium, reduction of oxidative stress, and amelioration of extracellular matrix synthesis and cell proliferation. Further studies are warranted to explore the role of AR in DN and the therapeutic implications by AR inhibitors such as BBR.

  15. Amelioration of Bleomycin-induced Pulmonary Fibrosis of Rats by an Aldose Reductase Inhibitor, Epalrestat

    PubMed Central

    Shen, Yuanyuan; Lu, Yining; Yang, Jieren

    2015-01-01

    Aldose reductase (AR) is known to play a crucial role in the mediation of diabetic and cardiovascular complications. Recently, several studies have demonstrated that allergen-induced airway remodeling and ovalbumin-induced asthma is mediated by AR. Epalrestat is an aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Whether AR is involved in pathogenesis of pulmonary fibrosis and whether epalrestat attenuates pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. The expression of AR, TGF-β1, α-SMA and collagen I was analyzed by immunohistochemisty, real-time PCR or western blot. In vivo, epalrestat treatment significantly ameliorated the bleomycin-mediated histological fibrosis alterations and blocked collagen deposition concomitantly with reversing bleomycin-induced expression up-regulation of TGF-β1, AR, α-SMA and collagen I (both mRNA and protein). In vitro, epalrestat remarkably attenuated proliferation of pulmonary fibroblasts and expression of α-SMA and collagen I induced by TGF-β1, and this inhibitory effect of epalrestat was accompanied by inhibiting AR expression. Knockdown of AR gene expression reversed TGF-β1-induced proliferation of fibroblasts, up-regulation of α-SMA and collagen I expression. These findings suggest that AR plays an important role in bleomycin-induced pulmonary fibrosis, and epalrestat inhibited the progression of bleomycin-induced pulmonary fibrosis is mediated via inhibiting of AR expression. PMID:26330752

  16. Design and synthesis of chiral 2H-chromene-N-imidazolo-amino acid conjugates as aldose reductase inhibitors.

    PubMed

    Gopinath, Gudipudi; Sankeshi, Venu; Perugu, Shaym; Alaparthi, Malini D; Bandaru, Srinivas; Pasala, Vijay K; Chittineni, Prasad Rao; Krupadanam, G L David; Sagurthi, Someswar R

    2016-11-29

    Aldose reductase (ALR2) inhibitors provide a viable mode to fight against diabetic complications. ALR2 exhibit plasticity in the active site vicinities and possible shifts in the nearby two supporting alpha helices. Therefore, a novel series of amino acid conjugates of chromene-3-imidazoles (13-15) were designed and synthesized based on natural isoflavonoids. The compounds were identified on the basis of spectral ((1)H NMR, (13)C NMR and MS) data and tested in vitro for ALR2 inhibitory activity with an IC50 value ranges from 0.031 ± 0.082 μM to 4.29 ± 0.55 μM. Our in silico and biochemical studies confirmed that 15e has the best inhibition activity among the synthesized compounds with a high selective index against the Aldehyde reductase (ALR1). Supplementation of 15e to STZ induced rats decreased the blood glucose levels and delayed the progression of cataract in a dose-dependent manner. The present study thus provides novel series of compounds with a promising inhibitor to prevent or delay the cataract progression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages.

    PubMed

    Singh, Mahavir; Kapoor, Aniruddh; McCracken, James; Hill, Bradford; Bhatnagar, Aruni

    2017-03-01

    Macrophages are critical drivers of the immune response during infection and inflammation. The pathogenesis of several inflammatory conditions, such as diabetes, cancer and sepsis has been linked with aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily. However, the role of AR in the early stages of innate immunity such as phagocytosis remains unclear. In this study, we examined the role of AR in regulating the growth and the phagocytic activity of bone marrow-derived mouse macrophages (BMMs) from AR-null and wild-type (WT) mice. We found that macrophages derived from AR-null mice were larger in size and had a slower growth rate than those derived from WT mice. The AR-null macrophages also displayed higher basal, and lipopolysaccharide (LPS) stimulated phagocytic activity than WT macrophages. Moreover, absence of AR led to a marked increase in cellular levels of both ATP and NADPH. These data suggest that metabolic pathways involving AR suppress macrophage energy production, and that inhibition of AR could induce a favorable metabolic state that promotes macrophage phagocytosis. Hence, modulation of macrophage metabolism by inhibition of AR might represent a novel strategy to modulate host defense responses and to modify metabolism to promote macrophage hypertrophy and phagocytosis under inflammatory conditions.

  18. A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase.

    PubMed

    Donohue, P J; Alberts, G F; Hampton, B S; Winkles, J A

    1994-03-18

    The addition of polypeptide mitogens to quiescent cell lines induces the expression of various gene products, some of which are likely to perform functions critical for cell cycle progression, DNA synthesis, and mitosis. We have used a differential display approach to identify fibroblast growth factor (FGF)-1-inducible genes in NIH-3T3 cells. One of these genes, termed FGF-regulated (FR)-1, encodes a 316-amino acid protein with approximately 82% amino acid sequence identity to an abundant protein expressed in mouse vas deferens and approximately 70% identity to human aldose reductase. The function of the vas deferens protein is unknown; however, aldose reductase is an NADPH-dependent monomeric oxidoreductase implicated in the pathogenesis of diabetic complications. FGF-1 induction of FR-1 mRNA expression is first detectable at 4 h after mitogen addition and is dependent on de novo RNA and protein synthesis. FGF-2 or phorbol ester treatment can also increase FR-1 mRNA levels; in contrast, whole blood serum or individual growth factors present in serum have only minimal effects on FR-1 mRNA expression. FR-1 mRNA is detectable in a number of mouse tissues but is most abundant in newborn liver and in adult intestine, ovary, and testis. These results raise the possibility that aldose reductase-related proteins may play a role in FGF-1- and FGF-2-stimulated mitogenesis.

  19. A defect in sodium-dependent amino acid uptake in diabetic rabbit peripheral nerve. Correction by an aldose reductase inhibitor or myo-inositol administration.

    PubMed Central

    Greene, D A; Lattimer, S A; Carroll, P B; Fernstrom, J D; Finegold, D N

    1990-01-01

    A myo-inositol-related defect in nerve sodium-potassium ATPase activity in experimental diabetes has been suggested as a possible pathogenetic factor in diabetic neuropathy. Because the sodium-potassium ATPase is essential for other sodium-cotransport systems, and because myo-inositol-derived phosphoinositide metabolites regulate multiple membrane transport processes, sodium gradient-dependent amino acid uptake was examined in vitro in endoneurial preparations derived from nondiabetic and 14-d alloxan diabetic rabbits. Untreated alloxan diabetes reduced endoneurial sodium-gradient dependent uptake of the nonmetabolized amino acid 2-aminoisobutyric acid by greater than 50%. Administration of an aldose reductase inhibitor prevented reductions in both nerve myo-inositol content and endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Myo-inositol supplementation that produced a transient pharmacological elevation in plasma myo-inositol concentration, but did not raise nerve myo-inositol content, reproduced the effect of the aldose reductase inhibitor on endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Phorbol myristate acetate, which acutely normalizes sodium-potassium ATPase activity in diabetic nerve, did not acutely correct 2-aminoisobutyric uptake when added in vitro. These data suggest that depletion of a small myo-inositol pool may be implicated in the pathogenesis of defects in amino acid uptake in diabetic nerve and that rapid correction of sodium-potassium ATPase activity with protein kinase C agonists in vitro does not acutely normalize sodium-dependent 2-aminoisobutyric acid uptake. PMID:2185278

  20. Functional Oil from Black Seed Differentially Inhibits Aldose-reductase and Ectonucleotidase Activities by Up-regulating Cellular Energy in Haloperidol-induced Hepatic Toxicity in Rat Liver.

    PubMed

    Kehinde, Akintunde Jacob

    2017-09-01

    In this study, the effect of rate-limiting enzymes involved in degradation of hepatic adenosine and intracellular sorbitol was investigated in rats exposed to haloperidol (HAL) and treated with functional oil (FO), containing principal active phytochemicals from black seed. Animals were divided into six groups (n=10): Distilled water, HAL 15 mg/kg, pre-administration/HAL 15 mg/kg, co-administration/HAL 15 mg/kg, post-administration/HAL 15 mg/kg, FO 150 mg/kg. The results of this study revealed that the activities of ectonucleotidase and aldose-reductase were significantly increased in HAL-treated rats when compared with the control (p < 0.05). However, differential treatments (pre, co and post) with FO depleted the activities of these enzymes compared with HAL-treated rats. Furthermore, therapeutic HAL administration increased the levels of key hepatic biomarkers (ALT, AST, and ALP) and malondialdehyde level with a concomitant decrease in functional hepatic cellular ATP. However, differential treatment with FO increases hepatic ATP and non-enzymatic antioxidant status, with a concomitant decrease in the levels of malondialdehyde and liver biomarkers. Therefore, results of this finding underlined the importance of aldose-reductase and econucleotidase activities in HAL induced toxicity and suggest some possible mechanisms of action by which FO prevent HAL-induced hepatic toxicity in rats.

  1. ALDOSE REDUCTASE PATHWAY CONTRIBUTES TO VULNERABILITY OF AGING MYOCARDIUM TO ISCHEMIC INJURY

    PubMed Central

    Ananthakrishnan, Radha; Li, Qing; Gomes, Teodoro; Schmidt, Ann Marie; Ramasamy, Ravichandran

    2011-01-01

    Aging men and women display both increased incidence of cardiovascular disease and complications of myocardial infarction and heart failure. We hypothesized that altered glucose metabolism, in particular, flux of glucose via the polyol pathway (PP) may be responsible, in part, for the enhanced vulnerability of aging myocardium to ischemic injury, even in the absence of superimposed disease processes linked to PP flux, such as diabetes. To test our hypothesis, we determined the expression and products of PP enzymes aldose reductase (AR) and sorbitol dehydrogenase (SDH) in hearts from Fischer 344 aged (26 month) and young (4 month) rats subjected to global ischemia followed by reperfusion in the presence or absence of blockers of PP and the measures of ischemic injury and functional recovery were determined. Expression and activities of AR and SDH were significantly higher in aged vs. young hearts, and induction of ischemia further increased AR and SDH activity in the aged hearts. Myocardial ischemic injury was significantly greater in aged vs. young hearts, and blockade of AR reduced ischemic injury and improved cardiac functional recovery on reperfusion in aged hearts. These data indicate that innate increases in activity of the PP enzymes augment myocardial vulnerability to I/R injury in aging, and that blockers of PP protect the vulnerable aging hearts. PMID:21600277

  2. Phytochemical Analysis of Agrimonia pilosa Ledeb, Its Antioxidant Activity and Aldose Reductase Inhibitory Potential

    PubMed Central

    Kim, Set Byeol; Hwang, Seung Hwan; Suh, Hong-Won; Lim, Soon Sung

    2017-01-01

    The aim of this study was to determine aldose reductase (AR) inhibitory activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of compounds from Agrimonia pilosa Ledeb (AP). We isolated agrimoniin (AM), four flavonoid glucosides and two flavonoid glucuronides from the n-butanol fraction of AP 50% methanol extract. In addition to isolated compounds, the AR-inhibitory activity and the DPPH free radical scavenging activity of catechin, 5-flavonoids, and 4-flavonoid glucosides (known components of AP) against rat lens AR (RLAR) and DPPH assay were measured. AM showed IC50 values of 1.6 and 13.0 μM against RLAR and DPPH scavenging activity, respectively. Additionally, AM, luteolin-7-O-glucuronide (LGN), quercitrin (QU), luteolin (LT) and afzelin (AZ) showed high inhibitory activity against AR and were first observed to decrease sorbitol accumulation in the rat lens under high-sorbitol conditions ex vivo with inhibitory values of 47.6%, 91.8%, 76.9%, 91.8% and 93.2%, respectively. Inhibition of recombinant human AR by AM, LGN and AZ exhibited a noncompetitive inhibition pattern. Based on our results, AP and its constituents may play partial roles in RLAR and oxidative radical inhibition. Our results suggest that AM, LGN, QU, LT and AZ may potentially be used as natural drugs for treating diabetic complications. PMID:28208627

  3. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019

  4. Aldose reductase in keratinocytes attenuates cellular apoptosis and senescence induced by UV radiation.

    PubMed

    Kang, Eun Sil; Iwata, Kazumi; Ikami, Kanako; Ham, Sun Ah; Kim, Hye Jung; Chang, Ki Churl; Lee, Jae Heun; Kim, Jae-Hwan; Park, Soo-Bong; Kim, Jin-Hoi; Yabe-Nishimura, Chihiro; Seo, Han Geuk

    2011-03-15

    Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  6. Aldose reductase inhibitory constituents of the root of Salvia miltiorhiza Bunge.

    PubMed

    Tezuka, Y; Kasimu, R; Basnet, P; Namba, T; Kadota, S

    1997-08-01

    The constituents of the MeOH extract of Salvia miltiorhiza BUNGE, which showed strong aldose reductase (AR) inhibitory activity, were examined, and two new abietane-type diterpenoids, danshenol A (1) and danshenol B (2), were isolated together with six known ones: dihydrotanshimme I (3), cryptotanshinone (4), tanshinone I (5), tanshinone IIA (6), (-)-danshexinkun A (7), and sugiol (8). Among them, 4, 5, and 8 were weak AR inhibitors with IC50 from 4.80 to > 10.0 microM, while 1, 2, 3, 6, and 7 were strong inhibitors (IC50 from 0.10 to 1.75 microM). Danshenol A (1), the strongest inhibitor, had IC50 of 0.10 microM which is comparable to that of epalrestat in clinical use. Moreover, from a consideration of IC50, and yield of each compound, it was concluded that tanshinone IIA (6) is the major active constituent of the MeOH extract and danshenol A (I) and (-)danshexinkun A(7) are the minor ones.

  7. The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage.

    PubMed

    Kumar, Deepak; Singh, Preeti; Yusuf, Mohd Aslam; Upadhyaya, Chandrama Prakash; Roy, Suchandra Deb; Hohn, Thomas; Sarin, Neera Bhalla

    2013-06-01

    We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant's survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.

  8. Effect of an aldose reductase inhibitor on type IV collagen production by human endothelial cells cultured in high glucose.

    PubMed

    Bakillah, A; Grigorova-Borsos, A M; Guillot, R; Urios, P; Sternberg, M

    1996-06-01

    Diabetic microangiopathy is characterized by a thickening of capillary basement membranes associated with type IV collagen accumulation. An increase in type IV collagen content of the aortic wall is also observed in macroangiopathy. In order to analyse the importance of the polyol pathway in the development of the collagen metabolism alterations seen in diabetic angiopathy and their prevention by aldose reductase inhibitors, we have studied the effects of sorbinil on the high glucose-induced stimulation of type IV collagen biosynthesis in human umbilical vein endothelial cells. Primary cultures were exposed to high glucose (16.7 mmol/l), with and without 0.11 mmol/l sorbinil, for 3 or 6 days after beginning of confluence. We measured the soluble type IV collagen secreted into the culture medium and the insoluble type IV collagen accumulated in the extracellular matrix and cells, by ELISA. We also studied [14C]proline incorporation into the newly synthesized collagenous and total proteins in the culture supernatant and in the extracellular matrix and cell fraction. High glucose decreased the number of cells and increased the amount of type IV collagen in the culture supernatant and in the extracellular matrix and cell fraction. It also increased proline incorporation into the newly synthesized collagenous and total proteins in the culture supernatant and in the extracellular matrix and cell fraction. Sorbinil corrected all these high glucose-induced alterations. The corrective effects of sorbinil on the proliferation and on type IV collagen metabolism of endothelial cells cultured in high glucose may be attributed to prevention of polyol pathway dysregulation.

  9. 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent.

    PubMed

    Milackova, Ivana; Prnova, Marta Soltesova; Majekova, Magdalena; Sotnikova, Ruzena; Stasko, Michal; Kovacikova, Lucia; Banerjee, Sreeparna; Veverka, Miroslav; Stefek, Milan

    2015-02-01

    The ability of flavonoids to affect multiple key pathways of glucose toxicity, as well as to attenuate inflammation has been well documented. In this study, the inhibition of rat lens aldose reductase by 3,7-di-hydroxy-2-[4-(2-chloro-1,4-naphthoquinone-3-yloxy)-3-hydroxy-phenyl]-5-hydroxy-chromen-4-one (compound 1), was studied in greater detail in comparison with the parent quercetin (compound 2). The inhibition activity of 1, characterized by IC50 in low micromolar range, surpassed that of 2. Selectivity in relation to the closely related rat kidney aldehyde reductase was evaluated. At organ level in isolated rat lenses incubated in the presence of high glucose, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner, which indicated that 1 was readily taken up by the eye lens cells and interfered with cytosolic aldose reductase. In addition, compound 1 provided macroscopic protection of colonic mucosa in experimental colitis in rats. At pharmacologically active concentrations, compound 1 and one of its potential metabolite 2-chloro-3-hydroxy-[1,4]-naphthoquinone (compound 3) did not affect osmotic fragility of red blood cells.

  10. Aldose reductase and protein tyrosine phosphatase 1B inhibitory active compounds from Syzygium cumini seeds.

    PubMed

    Sawant, Laxman; Singh, Vineet Kumar; Dethe, Shekhar; Bhaskar, Anirban; Balachandran, Jaya; Mundkinajeddu, Deepak; Agarwal, Amit

    2015-08-01

    Syzygium cumini (L.) Skeels (Myrtaceae), commonly known as jamun, is an Indian plant, traditionally well known for its medicinal properties including antidiabetic activity. To isolate the antidiabetic compounds from Syzygium cumini seeds and evaluate their activity using aldose reductase (AR) and protein-tyrosine phosphatase 1B (PTP1B) inhibition assays. The dried seeds were extracted with methanol and partitioned with ethyl acetate, butanol, and water. The extracts were screened for antidiabetic activity at a concentration of 100 µg/mL using in vitro AR and PTP 1B inhibition assays. The highly enriched fractions obtained from broad ethyl acetate fraction yielded maslinic acid (1), 5-(hydroxymethyl) furfural (2), gallic acid (3), valoneic acid dilactone (4), rubuphenol (5), and ellagic acid (6). Structures were elucidated by (1)H-NMR and (13)C-NMR. The initial ethyl acetate fraction showed AR inhibitory activity with the IC50 value of 2.50 μg/mL and PTP1B enzyme inhibition with the IC50 value of 26.36 μg/mL. Compounds 3, 4, 5, and 6 were found to inhibit AR with IC50 values of 0.77, 0.075, 0.165, and 0.12 μg/mL while the compounds 4, 5, and 6 inhibited PTP1B with IC50 values of 9.37, 28.14, and 25.96 μg/mL, respectively. The results of this study demonstrate that the isolated constituents show promising in vitro antidiabetic activity and, therefore, can be candidates for in vivo biological screening using relevant models to ascertain their antidiabetic activity.

  11. Deletion of Aldose Reductase from Mice Inhibits Diabetes-Induced Retinal Capillary Degeneration and Superoxide Generation

    PubMed Central

    Tang, Jie; Du, Yunpeng; Petrash, J. Mark; Sheibani, Nader; Kern, Timothy S.

    2013-01-01

    Purpose Pharmacologic inhibition of aldose reductase (AR) previously has been studied with respect to diabetic retinopathy with mixed results. Since drugs can have off-target effects, we studied the effects of AR deletion on the development and molecular abnormalities that contribute to diabetic retinopathy. Since recent data suggests an important role for leukocytes in the development of the retinopathy, we determined also if AR in leukocytes contributes to leukocyte-mediated death of retinal endothelial cells in diabetes. Methods Wild-type (WT; C57BL/6J) and AR deficient (AR−/−) mice were made diabetic with streptozotocin. Mice were sacrificed at 2 and 10 months of diabetes to evaluate retinal vascular histopathology, to quantify retinal superoxide production and biochemical and physiological abnormalities in the retina, and to assess the number of retinal endothelial cells killed by blood leukocytes in a co-culture system. Results Diabetes in WT mice developed the expected degeneration of retinal capillaries, and increased generation of superoxide by the retina. Leukocytes from diabetic WT mice also killed more retinal endothelial cells than did leukocytes from nondiabetic animals (p<0.0001). Deletion of AR largely (P<0.05) inhibited the diabetes-induced degeneration of retinal capillaries, as well as the increase in superoxide production by retina. AR-deficiency significantly inhibited the diabetes-induced increase in expression of inducible nitric oxide synthase (iNOS) in retina, but had no significant effect on expression of intercellular adhesion molecule-1 (ICAM-1), phosphorylated p38 MAPK, or killing of retinal endothelial cells by leukocytes. Conclusions AR contributes to the degeneration of retinal capillaries in diabetic mice. Deletion of the enzyme inhibits the diabetes-induced increase in expression of iNOS and of superoxide production, but does not correct a variety of other pro-inflammatory abnormalities associated with the development of

  12. Role of Aldose Reductase in the Metabolism and Detoxification of Carnosine-Acrolein Conjugates*

    PubMed Central

    Baba, Shahid P.; Hoetker, Joseph David; Merchant, Michael; Klein, Jon B.; Cai, Jian; Barski, Oleg A.; Conklin, Daniel J.; Bhatnagar, Aruni

    2013-01-01

    Oxidation of unsaturated lipids generates reactive aldehydes that accumulate in tissues during inflammation, ischemia, or aging. These aldehydes form covalent adducts with histidine-containing dipeptides such as carnosine and anserine, which are present in high concentration in skeletal muscle, heart, and brain. The metabolic pathways involved in the detoxification and elimination of these conjugates are, however, poorly defined, and their significance in regulating oxidative stress is unclear. Here we report that conjugates of carnosine with aldehydes such as acrolein are produced during normal metabolism and excreted in the urine of mice and adult human non-smokers as carnosine-propanols. Our studies show that the reduction of carnosine-propanals is catalyzed by the enzyme aldose reductase (AR). Carnosine-propanals were converted to carnosine-propanols in the lysates of heart, skeletal muscle, and brain tissue from wild-type (WT) but not AR-null mice. In comparison with WT mice, the urinary excretion of carnosine-propanols was decreased in AR-null mice. Carnosine-propanals formed covalent adducts with nucleophilic amino acids leading to the generation of carnosinylated proteins. Deletion of AR increased the abundance of proteins bound to carnosine in skeletal muscle, brain, and heart of aged mice and promoted the accumulation of carnosinylated proteins in hearts subjected to global ischemia ex vivo. Perfusion with carnosine promoted post-ischemic functional recovery in WT but not in AR-null mouse hearts. Collectively, these findings reveal a previously unknown metabolic pathway for the removal of carnosine-propanal conjugates and suggest a new role of AR as a critical regulator of protein carnosinylation and carnosine-mediated tissue protection. PMID:23928303

  13. Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates.

    PubMed

    Baba, Shahid P; Hoetker, Joseph David; Merchant, Michael; Klein, Jon B; Cai, Jian; Barski, Oleg A; Conklin, Daniel J; Bhatnagar, Aruni

    2013-09-27

    Oxidation of unsaturated lipids generates reactive aldehydes that accumulate in tissues during inflammation, ischemia, or aging. These aldehydes form covalent adducts with histidine-containing dipeptides such as carnosine and anserine, which are present in high concentration in skeletal muscle, heart, and brain. The metabolic pathways involved in the detoxification and elimination of these conjugates are, however, poorly defined, and their significance in regulating oxidative stress is unclear. Here we report that conjugates of carnosine with aldehydes such as acrolein are produced during normal metabolism and excreted in the urine of mice and adult human non-smokers as carnosine-propanols. Our studies show that the reduction of carnosine-propanals is catalyzed by the enzyme aldose reductase (AR). Carnosine-propanals were converted to carnosine-propanols in the lysates of heart, skeletal muscle, and brain tissue from wild-type (WT) but not AR-null mice. In comparison with WT mice, the urinary excretion of carnosine-propanols was decreased in AR-null mice. Carnosine-propanals formed covalent adducts with nucleophilic amino acids leading to the generation of carnosinylated proteins. Deletion of AR increased the abundance of proteins bound to carnosine in skeletal muscle, brain, and heart of aged mice and promoted the accumulation of carnosinylated proteins in hearts subjected to global ischemia ex vivo. Perfusion with carnosine promoted post-ischemic functional recovery in WT but not in AR-null mouse hearts. Collectively, these findings reveal a previously unknown metabolic pathway for the removal of carnosine-propanal conjugates and suggest a new role of AR as a critical regulator of protein carnosinylation and carnosine-mediated tissue protection.

  14. Inhibition of aldose reductase ameliorates ethanol‑induced steatosis in HepG2 cells.

    PubMed

    Qiu, Longxin; Cai, Chengchao; Zhao, Xiangqian; Fang, Yan; Tang, Weibiao; Guo, Chang

    2017-05-01

    Aldose reductase (AR) expression is increased in liver tissue of patients with ethanol‑induced liver disease. However, the exact role of AR in the development of ethanol‑induced liver disease has yet to be elucidated. The present study aimed to determine the effect of an AR inhibitor on ethanol‑induced steatosis in HepG2 cells and to identify possible underlying molecular mechanisms. Steatosis was induced in HepG2 cells by stimulating cells with 100 mM absolute ethanol for 48 h. Oil Red O staining was used to detect the lipid droplet accumulation in cells. Western blot analyses were used to determine protein expression levels and reverse transcription‑quantitative polymerase chain reaction was used to analyze mRNA expression levels. The results showed that AR protein expression was elevated in HepG2 cells stimulated with ethanol. HepG2 cells exhibited marked improvement of ethanol‑induced lipid accumulation following treatment with the AR inhibitor zopolrestat. Phosphorylation levels of 5' adenosine monophosphate‑activated protein kinase (AMPK) were markedly higher, whereas the mRNA expression levels of sterol‑regulatory element‑binding protein (SREBP)‑1c and fatty acid synthase (FAS) were significantly lower in zopolrestat‑treated and ethanol‑stimulated HepG2 cells compared with in untreated ethanol‑stimulated HepG2 cells. In addition, zopolrestat inhibited the ethanol‑induced expression of tumor necrosis factor (TNF)‑α. These results suggested that zopolrestat attenuated ethanol‑induced steatosis by activating AMPK and subsequently inhibiting the expression of SREBP‑1c and FAS, and by suppressing the expression of TNF‑α in HepG2 cells.

  15. Structural analysis of sulindac as an inhibitor of aldose reductase and AKR1B10.

    PubMed

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Crespo, Isidro; Porté, Sergio; Mitschler, André; Parés, Xavier; Podjarny, Alberto; Farrés, Jaume

    2015-06-05

    Aldose reductase (AR, AKR1B1) and AKR1B10 are enzymes implicated in important pathologies (diabetes and cancer) and therefore they have been proposed as suitable targets for drug development. Sulindac is the metabolic precursor of the potent non-steroidal anti-inflammatory drug (NSAID) sulindac sulfide, which suppresses prostaglandin production by inhibition of cyclooxygenases (COX). In addition, sulindac has been found to be one of the NSAIDs with higher antitumoral activity, presumably through COX inhibition. However, sulindac anticancer activity could be partially mediated through COX-independent mechanisms, including the participation of AR and AKR1B10. Previously, it had been shown that sulindac and sulindac sulfone were good AR inhibitors and the structure of the ternary complex with NADP(+) and sulindac was described (PDB ID 3U2C). In this work, we determined the three-dimensional structure of AKR1B10 with sulindac and established structure-activity relationships (SAR) of sulindac and their derivatives with AR and AKR1B10. The difference in the IC50 values for sulindac between AR (0.36 μM) and AKR1B10 (2.7 μM) might be explained by the different positioning and stacking interaction given by Phe122/Phe123, and by the presence of two buried and ordered water molecules in AKR1B10 but not in AR. Moreover, SAR analysis shows that the substitution of the sulfinyl group is structurally allowed in sulindac derivatives. Hence, sulindac and its derivatives emerge as lead compounds for the design of more potent and selective AR and AKR1B10 inhibitors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of Saussureosides A and B from Saussurea medusa.

    PubMed

    Xie, Haihui; Wang, Tao; Matsuda, Hisashi; Morikawa, Toshio; Yoshikawa, Masayuki; Tani, Tadato

    2005-11-01

    The 80% aqueous acetone extract from the whole plant of Saussurea medusa MAXIM. was found to inhibit rat lens aldose reductase (IC50=1.4 microg/ml). From this extract, flavonoids, lignans, and quinic acid derivatives were isolated together with two new ionone glycosides, saussureosides A and B. Their absolute stereostructures were elucidated on the basis of chemical and physicochemical evidence including the application of modified Mosher's method. In addition, some isolates were found to show an inhibitory effect on aldose reductase.

  17. Electrostatic complementarity in an aldose reductase complex from ultra-high-resolution crystallography and first-principles calculations.

    PubMed

    Muzet, Nicolas; Guillot, Benoît; Jelsch, Christian; Howard, Eduardo; Lecomte, Claude

    2003-07-22

    The electron density and electrostatic potential in an aldose reductase holoenzyme complex have been studied by density functional theory (DFT) and diffraction methods. Aldose reductase is involved in the reduction of glucose in the polyol pathway by using NADPH as a cofactor. The ultra-high resolution of the diffraction data and the low thermal-displacement parameters of the structure allow accurate atomic positions and an experimental charge density analysis. Based on the x-ray structural data, order-N DFT calculations have been performed on subsets of up to 711 atoms in the active site of the molecule. The charge density refinement of the protein was performed with the program MOPRO by using the transferability principle and our database of charge density parameters built from crystallographic analyses of peptides and amino acids. Electrostatic potentials calculated from the charge density database, the preliminary experimental electron density analysis, DFT computations, and atomic charges taken from the amber software dictionary are compared. The electrostatic complementarity between the cofactor NADP+ and the active site shows up clearly. The anchoring of the inhibitor is due mainly to hydrophobic forces and to only two polar interaction sites within the enzyme cavity. The potentials calculated by x-ray and DFT techniques agree reasonably well. At the present stage of the refinement, the potentials obtained directly from the database are in excellent agreement with the experimental ones. In addition, these results demonstrate the significant contribution of electron lone pairs and of atomic polarization effects to the host and guest mechanism.

  18. Chemical Constituents of Smilax china L. Stems and Their Inhibitory Activities against Glycation, Aldose Reductase, α-Glucosidase, and Lipase.

    PubMed

    Lee, Hee Eun; Kim, Jin Ah; Whang, Wan Kyunn

    2017-03-11

    The search for natural inhibitors with anti-diabetes properties has gained increasing attention. Among four selected Smilacaceae family plants, Smilax china L. stems (SCS) showed significant in vitro anti-glycation and rat lens aldose reductase inhibitory activities. Bioactivity-guided isolation was performed with SCS and four solvent fractions were obtained, which in turn yielded 10 compounds, including one phenolic acid, three chlorogenic acids, four flavonoids, one stilbene, and one phenylpropanoid glycoside; their structures were elucidated using nuclear magnetic resonance and mass spectrometry. All solvent fractions, isolated compounds, and stem extracts from plants sourced from six different provinces of South Korea were next tested for their inhibitory effects against advanced glycation end products, as well as aldose reductase. α-Glucosidase, and lipase assays were also performed on the fractions and compounds. Since compounds 3, 4, 6, and 8 appeared to be the superior inhibitors among the tested compounds, a comparative study was performed via high-performance liquid chromatography with photodiode array detection using a self-developed analysis method to confirm the relationship between the quantity and bioactivity of the compounds in each extract. The findings of this study demonstrate the potent therapeutic efficacy of SCS and its potential use as a cost-effective natural alternative medicine against type 2 diabetes and its complications.

  19. The inhibitory effect of Isoflavones isolated from Caesalpinia pulcherrima on aldose reductase in STZ induced diabetic rats.

    PubMed

    Kumar, Munipally Praveen; Sankeshi, Venu; Naik, R Ravindar; Thirupathi, P; Das, Biswanath; Raju, T N

    2015-07-25

    Increased aldose reductase activity has been implicated in the development of retinopathy due to accumulation of intracellular sugar alcohol, i.e., sorbitol. In this study, the compounds isolated from the Caesalpinia pulcherrima, have been examined for its inhibitory effects on aldose reductase (AR), which plays a major role in diabetic retinopathy. 3,6,7,4',5'-Pentamethoxy-5,3'-dihydroxyflavone (Compound 2) has shown significant inhibition of rat retina AR with an IC50 value of 16.24±0.046μM in a non-competitive manner. Molecular docking study results are steady with the pattern of AR inhibition by Compound 2 and its specificity. The supplementation of Compound 2 suppresses sorbitol accumulation in retina by decreased AR activity in STZ induced diabetic rat in dose dependent manner. Besides this, rats fed with Compound 2 have shown improved levels of antioxidant enzymes. This study revealed that Compound 2 has pharmacologically active component with a potential to inhibit rat retina AR and affecting the delaying process of diabetic retinopathy in STZ induced diabetic rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol.

    PubMed

    Sampath, Chethan; Sang, Shengmin; Ahmedna, Mohamed

    2016-12-01

    Hyperglycemic stress activates polyol pathway and aldose reductase (AR) key enzyme responsible for generating secondary complications during diabetes. In this study the therapeutic potential of phloretin, epigallocatechin 3-gallate (EGCG) and [6]-gingerol were evaluated for anti-glycating and AR inhibitory activity in vitro and in vivo systems. Human retinal pigment epithelial (HRPE) cells were induced with high glucose supplemented with the phloretin, EGCG and [6]-gingerol. Aldose reductase activity, total advanced glycation end products (AGEs) and enzyme inhibitor kinetics were assessed. Male C57BL/6J mice were randomly assigned to one of the different treatments (bioactive compounds at 2 concentrations each) with either a low fat diet or high fat diet (HFD). After sixteen weeks, AGE accumulation and AR activity was determined in heart, eyes and kidney. High glucose induced toxicity decreased cell viability compared to the untreated cells and AR activity increased to 2-5 folds from 24 to 96h. Pre-treatment of cells with phloretin, EGCG and [6]-gingerol improved cell viability and inhibited AR activity. The enzyme inhibition kinetics followed a non-competitive mode of inhibition for phloretin and EGCG whereas [6]-gingerol indicated uncompetitive type of inhibition against AR. Data from the animal studies showed high plasma glucose levels in HFD group over time, compared to the low fat diet. HFD group developed cataract and AR activity increased to 4 folds compared to the group with low fat diet. Administration of EGCG, phloretin and [6]-gingerol significantly reduced blood sugar levels, AGEs accumulation, and AR activity. These findings could provide a basis to consider using the selected dietary components alone or in combination with other therapeutic approaches to prevent diabetes-related complications in humans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Aldose reductase inhibitors for diabetic complications: Receptor induced atom-based 3D-QSAR analysis, synthesis and biological evaluation.

    PubMed

    Vyas, Bhawna; Singh, Manjinder; Kaur, Maninder; Bahia, Malkeet Singh; Jaggi, Amteshwar Singh; Silakari, Om; Singh, Baldev

    2015-06-01

    Herein, atom-based 3D-QSAR analysis was performed using receptor-guided alignment of 46 flavonoid inhibitors of aldose reductase (ALR2) enzyme. 3D-QSAR models were generated in PHASE programme, and the best model corresponding to PLS factor four (QSAR4), was selected based on different statistical parameters (i.e., Rtrain(2), 0.96; Qtest(2) 0.81; SD, 0.26). The contour plots of different structural properties generated from the selected model were utilized for the designing of five new congener molecules. These designed molecules were duly synthesized, and evaluated for their in vitro ALR2 inhibitory activity that resulted in the micromolar (IC50<22μM) activity of all molecules. Thus, the newly designed molecules having ALR inhibitory potential could be employed for the management of diabetic complications.

  2. Chemical constituents from the aerial parts of Aster koraiensis with protein glycation and aldose reductase inhibitory activities.

    PubMed

    Lee, Jun; Lee, Yun Mi; Lee, Byong Won; Kim, Joo-Hwan; Kim, Jin Sook

    2012-02-24

    Two new eudesmane-type sesquiterpene glucosides, 9β-O-(E-p-hydroxycinnamoyl)-1β,6β-dihydroxy-trans-eudesm-3-en-6-O-β-D-glucopyranoside (1) and 9α-O-(E-p-hydroxycinnamoyl)-1α,6α-11-trihydroxy-trans-eudesm-3-en-6-O-β-D-glucopyranoside (2), were isolated by the activity-guidedfractionation of an EtOAc-soluble fraction from the aerial parts of Aster koraiensis. A new dihydrobenzofuran glucoside, (2R,3S)-6-acetyl-2-[1-O-(β-D-glucopyranosyl)-2-propenyl]-5-hydroxy-3-methoxy-2,3-dihydrobenzofuran (3), was also isolated, in addition to 15 known compounds. The structures of 1-3 were determined by spectroscopic data interpretation. All of the isolates were evaluated for in vitro inhibitory activity against the formation of advanced glycation end-products and rat lens aldose reductase.

  3. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts.

    PubMed

    Jung, Hyun Ah; Yoon, Na Young; Kang, Sam Sik; Kim, Yeong Sik; Choi, Jae Sue

    2008-09-01

    Important targets for the prevention and treatment of diabetic complications include aldose reductase (AR) inhibitors (ARIs) and inhibitors of advanced glycation endproduct (AGE) formation. Here we evaluate the inhibitory activities of prenylated flavonoids isolated from Sophora flavescens, a traditional herbal medicine, on rat lens AR (RLAR), human recombinant AR (HRAR) and AGE formation. Among the tested compounds, two prenylated chalcones--desmethylanhydroicaritin (1) and 8-lavandulylkaempferol (2)--along with five prenylated flavanones--kurarinol (8), kurarinone (9), (2S)-2'-methoxykurarinone (10), (2S)-3beta,7,4'-trihydroxy-5-methoxy-8-(gamma,gamma-dimethylally)-flavanone (11), and kushenol E (13) were potent inhibitors of RLAR, with IC50 values of 0.95, 3.80, 2.13, 2.99, 3.77, 3.63 and 7.74 microM, respectively, compared with quercetin (IC50 7.73 microM). In the HRAR assay, most of the prenylated flavonoids tested showed marked inhibitory activity compared with quercetin (IC50 2.54 microM). In particular, all tested prenylated flavonols, such as desmethylanhydroicaritin (1, IC50 0.45 microM), 8-lavandulylkaempferol (2, IC50 0.79 microM) and kushenol C (3, IC50 0.85 microM), as well as a prenylated chalcone, kuraridin (5, IC50 0.27 microM), and a prenylated flavanone, (2S)-7,4'-dihydroxy-5-methoxy-8-(gamma,gamma-dimethylally)-flavanone (12, IC50 0.37 microM), showed significant inhibitory activities compared with the potent AR inhibitor epalrestat (IC50 0.28 microM). Interestingly, prenylated flavonoids 1 (IC50 104.3 microg mL(-1)), 2 (IC50 132.1 microg mL(-1)), 3 (IC50 84.6 microg mL(-1)) and 11 (IC50 261.0 microg mL(-1)), which harbour a 3-hydroxyl group, also possessed good inhibitory activity toward AGE formation compared with the positive control aminoguanidine (IC50 115.7 microg mL(-1)). Thus, S. flavescens and its prenylated flavonoids inhibit the processes that underlie diabetic complications and related diseases and may therefore have therapeutic

  4. Dissociation between biochemical and functional effects of the aldose reductase inhibitor, ponalrestat, on peripheral nerve in diabetic rats.

    PubMed Central

    Cameron, N. E.; Cotter, M. A.

    1992-01-01

    1. The aim of the study was to examine the effects in rats of two different doses of the aldose reductase inhibitor, ponalrestat, on functional measures of nerve conduction and sciatic nerve biochemistry. 2. After 1 month, streptozotocin-induced diabetes produced 22%, 23% and 15% deficits in conduction velocity of sciatic nerves supplying gastrocnemius and tibialis anterior muscles and saphenous sensory nerve respectively compared to controls. These deficits were maintained over 2 months diabetes. 3. Slower-conducting motor fibres supplying the interosseus muscles of the foot did not show a diabetic deficit compared to onset controls, however, there was a 13% reduction in conduction velocity after 2 months diabetes relative to age-matched controls, indicating a maturation deficit. 4. Resistance to hypoxic conduction failure was investigated for sciatic nerve trunks in vitro. There was an increase in the duration of hypoxia necessary for an 80% reduction in compound action potential amplitude with diabetes. This was progressive; after 1 month, hypoxia time was increased by 22% and after 2 months by 57%. 5. The effect of 1-month treatment with the aldose reductase inhibitor, ponalrestat, on the abnormalities caused by an initial month of untreated diabetes was examined. Two doses of ponalrestat were employed, 8 mg kg-1 day-1 (which is equivalent to, or greater than, the blockade employed in clinical trials), and 100 mg kg-1 day-1. 6. Sciatic nerve sorbitol content was increased 7 fold by diabetes. Both doses were effective in reducing this; 70% for 8 mg kg-1 day-1, and to within the control range for 100 mg kg-1 day-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467842

  5. Osmotic stress, not aldose reductase activity, directly induces growth factors and MAPK signaling changes during sugar cataract formation.

    PubMed

    Zhang, Peng; Xing, Kuiyi; Randazzo, James; Blessing, Karen; Lou, Marjorie F; Kador, Peter F

    2012-08-01

    In sugar cataract formation in rats, aldose reductase (AR) activity is not only linked to lenticular sorbitol (diabetic) or galactitol (galactosemic) formation but also to signal transduction changes, cytotoxic signals and activation of apoptosis. Using both in vitro and in vivo techniques, the interrelationship between AR activity, polyol (sorbitol and galactitol) formation, osmotic stress, growth factor induction, and cell signaling changes have been investigated. For in vitro studies, lenses from Sprague Dawley rats were cultured for up to 48 h in TC-199-bicarbonate media containing either 30 mM fructose (control), or 30 mM glucose or galactose with/without the aldose reductase inhibitors AL1576 or tolrestat, the sorbitol dehydrogenase inhibitor (SDI) CP-470,711, or 15 mM mannitol (osmotic-compensated media). For in vivo studies, lenses were obtained from streptozotocin-induced diabetic Sprague Dawley rats fed diet with/without the ARIs AL1576 or tolrestat for 10 weeks. As expected, lenses cultured in high glucose/galactose media or from untreated diabetic rats all showed a decrease in the GSH pool that was lessened by ARI treatment. Lenses either from diabetic rats or from glucose/galactose culture conditions showed increased expression of basic-FGF, TGF-β, and increased signaling through P-Akt, P-ERK1/2 and P-SAPK/JNK which were also normalized by ARIs to the expression levels observed in non-diabetic controls. Culturing rat lenses in osmotically compensated media containing 30 mM glucose or galactose did not lead to increased growth factor expression or altered signaling. These studies indicate that it is the biophysical response of the lens to osmotic stress that results in an increased intralenticular production of basic-FGF and TGF-β and the altered cytotoxic signaling that is observed during sugar cataract formation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Administration of ascorbic acid and an aldose reductase inhibitor (tolrestat) in diabetes: effect on urinary albumin excretion.

    PubMed

    McAuliffe, A V; Brooks, B A; Fisher, E J; Molyneaux, L M; Yue, D K

    1998-11-01

    The important role of ascorbic acid (AA) as an anti-oxidant is particularly relevant in diabetes mellitus where plasma concentrations of AA are reduced. This study was conducted to evaluate the effects of treatment with AA or an aldose reductase inhibitor, tolrestat, on AA metabolism and urinary albumin excretion in diabetes. Blood and urine samples were collected at 0, 3, 6, 9, and 12 months from 20 diabetic subjects who were randomized into two groups to receive either oral AA 500 mg twice daily or placebo. Systolic and diastolic blood pressures, HbA1c, plasma lipids, urinary albumin, and total glycosaminoglycan excretion were measured at all time points, and heparan sulphate (glycosaminoglycan) was measured at 0 and 12 months. The same parameters, as well as urinary AA excretion, were determined at 0 and 3 months for 16 diabetes subjects receiving 200 mg tolrestat/day. AA treatment increased plasma AA (ANOVA, F ratio = 12.1, p = 0.004) and reduced albumin excretion rate (AER) after 9 months (ANOVA, F ratio = 3.2, p = 0.03), but did not change the other parameters measured. Tolrestat lowered plasma AA (Wilcoxon's signed-rank test, p < 0.05), but did not change AER or the other parameters measured. The ability of AA treatment to decrease AER may be related to changes in extracellular matrix or improvement in oxidative defence mechanism. Unlike the rat model of diabetes, inhibition of aldose reductase did not normalize plasma AA or AER in humans. In fact, tolrestat reduced the plasma AA concentration, a phenomenon which may be due to increased utilization of AA. Dietary supplementation of AA in diabetic subjects may have long-term benefits in attenuating the progression of diabetic complications.

  7. Bioactivity Focus of α-Cyano-4-hydroxycinnamic acid (CHCA) Leads to Effective Multifunctional Aldose Reductase Inhibitors

    PubMed Central

    Zhang, Laitao; Li, Yi-Fang; Yuan, Sheng; Zhang, Shijie; Zheng, Huanhuan; Liu, Jie; Sun, Pinghua; Gu, Yijun; Kurihara, Hiroshi; He, Rong-Rong; Chen, Heru

    2016-01-01

    Bioactivity focus on α-cyano-4-hydroxycinnamic acid (CHCA) scaffold results in a small library of novel multifunctional aldose reductase (ALR2) inhibitors. All the entities displayed good to excellent inhibition with IC50 72–405 nM. (R,E)-N-(3-(2-acetamido-3-(benzyloxy)propanamido)propyl)-2-cyano-3-(4-hydroxy phenyl)acrylamide (5f) was confirmed as the most active inhibitor (IC50 72.7 ± 1.6 nM), and the best antioxidant. 5f bound to ALR2 with new mode without affecting the aldehyde reductase (ALR1) activity, implicating high selectivity to ALR2. 5f was demonstrated as both an effective ALR2 inhibitor (ARI) and antioxidant in a chick embryo model of hyperglycemia. It attenuated hyperglycemia-induced incidence of neural tube defects (NTD) and death rate, and significantly improved the body weight and morphology of the embryos. 5f restored the expression of paired box type 3 transcription factor (Pax3), and reduced the hyperglycemia-induced increase of ALR2 activity, sorbitol accumulation, and the generation of ROS and MDA to normal levels. All the evidences support that 5f may be a potential agent to treat diabetic complications. PMID:27109517

  8. Bioactivity Focus of α-Cyano-4-hydroxycinnamic acid (CHCA) Leads to Effective Multifunctional Aldose Reductase Inhibitors.

    PubMed

    Zhang, Laitao; Li, Yi-Fang; Yuan, Sheng; Zhang, Shijie; Zheng, Huanhuan; Liu, Jie; Sun, Pinghua; Gu, Yijun; Kurihara, Hiroshi; He, Rong-Rong; Chen, Heru

    2016-04-25

    Bioactivity focus on α-cyano-4-hydroxycinnamic acid (CHCA) scaffold results in a small library of novel multifunctional aldose reductase (ALR2) inhibitors. All the entities displayed good to excellent inhibition with IC50 72-405 nM. (R,E)-N-(3-(2-acetamido-3-(benzyloxy)propanamido)propyl)-2-cyano-3-(4-hydroxy phenyl)acrylamide (5f) was confirmed as the most active inhibitor (IC50 72.7 ± 1.6 nM), and the best antioxidant. 5f bound to ALR2 with new mode without affecting the aldehyde reductase (ALR1) activity, implicating high selectivity to ALR2. 5f was demonstrated as both an effective ALR2 inhibitor (ARI) and antioxidant in a chick embryo model of hyperglycemia. It attenuated hyperglycemia-induced incidence of neural tube defects (NTD) and death rate, and significantly improved the body weight and morphology of the embryos. 5f restored the expression of paired box type 3 transcription factor (Pax3), and reduced the hyperglycemia-induced increase of ALR2 activity, sorbitol accumulation, and the generation of ROS and MDA to normal levels. All the evidences support that 5f may be a potential agent to treat diabetic complications.

  9. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae

    Treesearch

    Min Hyung Kang; Haiying Ni; Thomas W. Jeffries

    2003-01-01

    Candida boidinii produces significant amounts of xylitol from xylose, and assays of crude homogenates for aldose (xylose) reductase (XYL1p) have been reported to show relatively high activity with NADH as a cofactor even though XYL1p purified from this yeast does not have such activity. A gene coding for XYL1p from C. boidinii (CbXYL1) was isolated by amplifying the...

  10. The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells.

    PubMed

    Wu, Li-Ying; Ma, Zi-Min; Fan, Xue-Lai; Zhao, Tong; Liu, Zhao-Hui; Huang, Xin; Li, Ming-Ming; Xiong, Lei; Zhang, Kuan; Zhu, Ling-Ling; Fan, Ming

    2010-07-01

    It has been demonstrated that hypoxic preconditioning (HP) enhances the survival ability of the organism against the subsequent acute anoxia (AA). However, it is not yet clear whether necrosis induced by AA can be prevented by HP, and what are the underlying mechanisms. In this study, we examined the effect of HP (10% O(2), 48 h) on necrosis induced by AA (0% O(2), 24 h) in PC12 cells. We found that HP delayed the regulatory volume decrease and reduced cell swelling after 24 h of exposure to AA. Since aldose reductase (AR) is involved in cell volume regulation, we detected AR mRNA expression with reverse transcription-polymerase chain reaction (RT-PCR) techniques. The AR mRNA level was dramatically elevated by HP. Furthermore, an HP-induced decrease in cell injury was reversed by berberine chloride (BB), the inhibitor of AR. In addition, sorbitol synthesized from glucose catalyzed by AR is directly related to cell volume regulation. Subsequently, we tested sorbitol content in the cytoplasm. HP clearly elevated sorbitol content, while BB inhibited the elevation induced by HP. Further study showed that a strong inhibitor of sorbitol permease, quinidine, completely reversed the protection induced by HP after AA. These data provide evidence that HP prevents necrosis induced by AA and is mediated by AR and sorbitol pathway.

  11. Synthesis and docking analysis of new heterocyclic system of tetrazolo[5',1':2,3][1,3,4]thiadiazepino [7,6-b]quinolines as aldose reductase inhibitors

    PubMed Central

    Saadatmandzadeh, Mohammad; Rahimizadeh, Mohammad; Eshghi, Hossein; Sankian, Mojtaba

    2014-01-01

    Objective(s): In recent years, the chemistry of Tetrazolo[5',1':2,3][1,3,4]thiadiazepino [7,6-b] quinolines have received considerable attention owing to their synthetic and effective biological importance which exhibits a wide variety of biological activity. As the inhibitor of aldose reductase, the aforementioned compounds may have implication in preventing complications of diabetes. Materials and Methods: A group of tetrazolo[5',1':2,3][1,3,4]thiadiazepino [7,6-b] quinoline derivatives were synthesized, and theoretically evaluated for their inhibitory potency against aldose reductase (ALR) via docking process. The docking calculation was done in Genetic Optimization for Ligand Docking (GOLD) 5.2 software using Genetic algorithm. Results: Compounds 3a and 3f showed the best inhibitory potency by GOLD score value of 78.83 and 76.88 respectively. Conclusion: All of the best models formed strong hydrogen bonds with Trp 111 and Tyr 209 via tetrazole moiety. It was found that pi-pi interaction between Tyr 209, Trp 20 and His 110 side chain and quinolin moiety was one of the common factors in enzyme-inhibitor junction. It was found that both hydrogen bonding and hydrophobic interactions are important in the structure and function of biological molecules, especially for inhibition in a complex. PMID:25691945

  12. Electrostatic Fields Near the Active Site of Human Aldose Reductase: 2. New Inhibitors and Complications due to Hydrogen Bonds†

    PubMed Central

    Xu, Lin; Cohen, Aina E.; Boxer, Steven G.

    2011-01-01

    Vibrational Stark effect spectroscopy was used to measure electrostatic fields in the hydrophobic region of the active site of human aldose reductase (hALR2). A new nitrile-containing inhibitor was designed and synthesized, and the x-ray structure of its complex, along with cofactor NADP+, with wild-type hALR2 was determined at 1.3 Å resolution. The nitrile is found to be in close proximity to T113, consistent with a hydrogen bond interaction. Two vibrational absorption peaks were observed at room temperature in the nitrile region when the inhibitor binds to wild-type hALR2, indicating that the nitrile probe experiences two different microenvironments, and these could be empirically separated into a hydrogen bonded and non-hydrogen bonded population by comparison with the mutant T113A, where a hydrogen bond to the nitrile is not present. Classical molecular dynamics simulations based on the structure predict a double-peaked distribution in protein electric fields projected along the nitrile probe. The interpretation of these two peaks as a hydrogen bond formation-dissociation process between the probe nitrile group and a nearby amino acid side chain is used to explain the observation of two IR bands, and the simulations were used to investigate the molecular details of this conformational change. Hydrogen bonding complicates the simplest analysis of vibrational frequency shifts as being due solely to electrostatic interactions through the vibrational Stark effect, and the consequences of this complication are discussed. PMID:21859105

  13. Quinazolinone-based rhodanine-3-acetic acids as potent aldose reductase inhibitors: Synthesis, functional evaluation and molecular modeling study.

    PubMed

    El-Sayed, Sherihan; Metwally, Kamel; El-Shanawani, Abdalla A; Abdel-Aziz, Lobna M; El-Rashedy, Ahmed A; Soliman, Mahmoud E S; Quattrini, Luca; Coviello, Vito; la Motta, Concettina

    2017-10-15

    A series of quinazolinone-based rhodanine-3-acetic acids was synthesized and tested for in vitro aldose reductase inhibitory activity. All the target compounds displayed nanomolar activity against the target enzyme. Compounds 3a, 3b, and 3e exhibited almost 3-fold higher activity as compared to the only marketed reference drug epalrestat. Structure-activity relationship studies indicated that bulky substituents at the 3-phenyl ring of the quinazolinone moiety are generally not tolerated in the active site of the enzyme. Insertion of a methoxy group on the central benzylidene ring was found to have a variable effect on ALR-2 activity depending on the nature of peripheral quinazolinone ring substituents. Removal of the acetic acid moiety led to inactive or weakly active target compounds. Docking and molecular dynamic simulations of the most active rhodanine-3-acetic acid derivatives were also carried out, to provide the basis for further structure-guided design of novel inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Erythritol Availability in Bovine, Murine and Human Models Highlights a Potential Role for the Host Aldose Reductase during Brucella Infection.

    PubMed

    Barbier, Thibault; Machelart, Arnaud; Zúñiga-Ripa, Amaia; Plovier, Hubert; Hougardy, Charlotte; Lobet, Elodie; Willemart, Kevin; Muraille, Eric; De Bolle, Xavier; Van Schaftingen, Emile; Moriyón, Ignacio; Letesson, Jean-Jacques

    2017-01-01

    Erythritol is the preferential carbon source for most brucellae, a group of facultative intracellular bacteria that cause a worldwide zoonosis. Since this polyol is abundant in genital organs of ruminants and swine, it is widely accepted that erythritol accounts at least in part for the characteristic genital tropism of brucellae. Nevertheless, proof of erythritol availability and essentiality during Brucella intracellular multiplication has remained elusive. To investigate this relationship, we compared ΔeryH (erythritol-sensitive and thus predicted to be attenuated if erythritol is present), ΔeryA (erythritol-tolerant but showing reduced growth if erythritol is a crucial nutrient) and wild type B. abortus in various infection models. This reporting system indicated that erythritol was available but not required for B. abortus multiplication in bovine trophoblasts. However, mice and humans have been considered to lack erythritol, and we found that it was available but not required for B. abortus multiplication in human and murine trophoblastic and macrophage-like cells, and in mouse spleen and conceptus (fetus, placenta and envelopes). Using this animal model, we found that B. abortus infected cells and tissues contained aldose reductase, an enzyme that can account for the production of erythritol from pentose cycle precursors.

  15. Erythritol Availability in Bovine, Murine and Human Models Highlights a Potential Role for the Host Aldose Reductase during Brucella Infection

    PubMed Central

    Barbier, Thibault; Machelart, Arnaud; Zúñiga-Ripa, Amaia; Plovier, Hubert; Hougardy, Charlotte; Lobet, Elodie; Willemart, Kevin; Muraille, Eric; De Bolle, Xavier; Van Schaftingen, Emile; Moriyón, Ignacio; Letesson, Jean-Jacques

    2017-01-01

    Erythritol is the preferential carbon source for most brucellae, a group of facultative intracellular bacteria that cause a worldwide zoonosis. Since this polyol is abundant in genital organs of ruminants and swine, it is widely accepted that erythritol accounts at least in part for the characteristic genital tropism of brucellae. Nevertheless, proof of erythritol availability and essentiality during Brucella intracellular multiplication has remained elusive. To investigate this relationship, we compared ΔeryH (erythritol-sensitive and thus predicted to be attenuated if erythritol is present), ΔeryA (erythritol-tolerant but showing reduced growth if erythritol is a crucial nutrient) and wild type B. abortus in various infection models. This reporting system indicated that erythritol was available but not required for B. abortus multiplication in bovine trophoblasts. However, mice and humans have been considered to lack erythritol, and we found that it was available but not required for B. abortus multiplication in human and murine trophoblastic and macrophage-like cells, and in mouse spleen and conceptus (fetus, placenta and envelopes). Using this animal model, we found that B. abortus infected cells and tissues contained aldose reductase, an enzyme that can account for the production of erythritol from pentose cycle precursors. PMID:28659902

  16. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  17. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase.

    PubMed

    Mok, So-Youn; Lee, Sanghyun

    2013-01-15

    To investigate the therapeutic potential of compounds from natural sources, Rhododendron mucronulatum for. albiflorum flowers (RMAF) and R. mucronulatum flowers (RMF) were tested for inhibition of aldose reductase (AR). The methanol extracts of RMAF and RMF exhibited AR inhibitory activities (IC(50) values 1.07 and 1.29 μg/mL, respectively). The stepwise polarity fractions of RMAF were tested for in vitro inhibition of AR from rat lenses. Of these, the ethyl acetate (EtOAc) fraction exhibited AR inhibitory activity (IC(50) 0.15 μg/mL). A chromatography of the active EtOAc fraction of RMAF led to the isolation of six flavonoids, which were identified by spectroscopic analysis as kaempferol (1), afzelin (2), quercetin (3), quercitrin (4), myricetin (5) and myricitrin (6). Compounds 1-6 exhibited high AR inhibitory activity, with IC(50) values of 0.79, 0.31, 0.48, 0.13, 11.92 and 2.67 μg/mL, respectively. HPLC/UV analysis revealed that the major flavonoids of RMAF and RMF are quercitrin (4) and myricitrin (6). Our results suggest that RMAF containing these six flavonoids could be a useful natural source in the development of a novel AR inhibitory agent against diabetic complications.

  18. Scopoletin from the flower buds of Magnolia fargesii inhibits protein glycation, aldose reductase, and cataractogenesis ex vivo.

    PubMed

    Lee, Jun; Kim, Nan Hee; Nam, Joo Won; Lee, Yun Mi; Jang, Dae Sik; Kim, Young Sook; Nam, Sang Hae; Seo, Eun-Kyoung; Yang, Min Suk; Kim, Jin Sook

    2010-09-01

    Five compounds previously known structures, scopoletin (1), northalifoline (2), stigmast-4-en-3-one (3), tiliroside (4), and oplopanone (5) were obtained from the flower buds of Magnolia fargesii using chromatographic separation methods. The structures of 1-5 were identified by the interpretation of their spectroscopic data including 1D- and 2D-NMR as well as by comparison with reported values. Three compounds 1-3 were found from M. fargesii for the first time in this study. All the isolates (1-5) were subjected to in vitro bioassays to evaluate the inhibitory activity on advanced glycation end products formation and rat lens aldose reductase (RLAR). Compound 1 showed a remarkable inhibitory activity on advanced glycation end products formation with IC(50) value of 2.93 μM (aminoguanidine: 961 μM), and showed a significant RLAR inhibitory activity with IC(50) value of 22.5 μM (3.3-tetramethyleneglutaric acid: 28.7 μM). Compound 4 exhibited potent inhibitory activity against RLAR (IC(50) = 14.9 μM). In the further experiment ex vivo, cataractogenesis of rat lenses induced with xylose was significantly inhibited by compound 1 treatment.

  19. Aldose reductase inhibition suppresses azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice.

    PubMed

    Saxena, Ashish; Shoeb, Mohammad; Tammali, Ravinder; Ramana, Kota V; Srivastava, Satish K

    2014-12-01

    Type-2 diabetes and obesity-related metabolic abnormalities are major risk factors for the development of colon cancer. In the present study, we examined the effects of polyol pathway enzyme aldose reductase (AR) inhibitor, fidarestat, on the development of azoxymethane (AOM)-induced colonic premalignant lesions in C57BL/KsJ-db/db obese mice. Our results indicate that fidarestat given in the drinking water caused a significant reduction in the total number of colonic premalignant lesions in the AOM treated obese mice. Further, the expression levels of PKC-β2, AKT, COX-2 and iNOS in the colonic mucosa of AOM-treated mice were significantly decreased by fidarestat. The serum levels of IL-1α, IP-10, MIG, TNF-α and VEGF are significantly suppressed in AOM + fidarestat treated obese mice. Fidarestat also decreased the expression of COX-2, iNOS, XIAP, survivin, β-catenin and NF-κB in high glucose-treated HT29 colon cancer cells. In conclusion, our results indicate that fidarestat inhibits the development of colonic premalignant lesions in an obesity-related colon cancer and is chemopreventive to colorectal carcinogenesis in obese individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  1. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation.

    PubMed

    Papastavrou, Nikolaos; Chatzopoulou, Maria; Ballekova, Jana; Cappiello, Mario; Moschini, Roberta; Balestri, Francesco; Patsilinakos, Alexandros; Ragno, Rino; Stefek, Milan; Nicolaou, Ioannis

    2017-04-21

    Aldose reductase (ALR2) has been the target of therapeutic intervention for over 40 years; first, for its role in long-term diabetic complications and more recently as a key mediator in inflammation and cancer. However, efforts to prepare small-molecule aldose reductase inhibitors (ARIs) have mostly yielded carboxylic acids with rather poor pharmacokinetics. To address this limitation, the 1-hydroxypyrazole moiety has been previously established as a bioisostere of acetic acid in a group of aroyl-substituted pyrrolyl derivatives. In the present work, optimization of this new class of ARIs was achieved by the addition of a trifluoroacetyl group on the pyrrole ring. Eight novel compounds were synthesized and tested for their inhibitory activity towards ALR2 and selectivity against aldehyde reductase (ALR1). All compounds proved potent and selective inhibitors of ALR2 (IC50/ALR2 = 0.043-0.242 μΜ, Selectivity index = 190-858), whilst retaining a favorable physicochemical profile. The most active (4g) and selective (4d) compounds were further evaluated for their ability to inhibit sorbitol formation in rat lenses ex vivo and to exhibit substrate-specific inhibition.

  2. Association of aldose reductase gene polymorphism (C-106T) in susceptibility of diabetic peripheral neuropathy among north Indian population.

    PubMed

    Gupta, Balram; Singh, S K

    2017-07-01

    Polymorphism in aldose reductase (ALR) gene at nucleotide C(-106)T (rs759853) in the promoter region is associated with susceptibility to development of diabetic peripheral neuropathy. The aim of this study was to detect the association of the C (-106)T polymorphism of ALR gene and its frequency among patients with type 2 diabetes mellitus with and without peripheral neuropathy. The study subjects were divided into three groups. Group I included 356 patients with diabetes having peripheral neuropathy. Group II included 294 patients with diabetes without peripheral neuropathy and group III included 181 healthy subjects. Genotyping of ALR C(-106)T SNPs was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing methods. The genetic risk among the groups was compared and tested by calculating odds ratio with 95% class interval. ALR 106TT genotype was significantly higher in group I compared to group II with an odds ratio of 2.12 (95% CI: 1.22-3.67; p<0.01). Recessive model (CC+CT vs. TT), as well as T allele distribution also showed significant association to develop neuropathy with relative risk of 1.97 (95% CI: 1.16-3.35; p<0.01) and 1.36 (95% CI: 1.07-1.72; p=0.01) respectively. In conclusion, the ALR C-106T polymorphism was associated with higher risk of peripheral neuropathy in patients with type 2 diabetes mellitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Additive effect of aldose reductase Z-4 microsatellite polymorphism and glycaemic control on cataract development in type 2 diabetes.

    PubMed

    Wang, Ying; Luk, Andrea O Y; Ng, Maggie C Y; Pang, Calvin C P; Lam, Vincent; Lee, Shao C; Lam, Dennis S C; Choy, Kwong Wai; Ma, Ronald C W; So, Wing-Yee; Chan, Juliana C N

    2014-01-01

    To examine the additive effect of the z-4 microsatellite polymorphism of aldose reductase gene (ALR2) and glycaemic control on risk of cataract in a prospective cohort of Chinese type 2 diabetic patients. The (CA)n microsatellite polymorphism of ALR2 was determined using PCR followed by capillary gel electrophoresis. Cataract was defined by presence of lens opacity on direct ophthalmoscopy or history of cataract surgery. A non-linear curve approach was used to identify the threshold of glycated hemoglobin (HbA1c) at which the odds ratio (OR) for cataract started to increase. The association of z-4 allele with cataract, above and below this threshold, was assessed using multiple logistic regression analysis. Of the 5823 patients analyzed, 28.1% had cataracts. After adjusting for conventional risk factors and using non-z-4 carriers with HbA1c<8.0% as referent group (n = 3173), the OR (95% confidence intervals) for cataract was highest in z-4 carriers with HbA1c ≥ 8.0% [1.43 (1.05-1.96), n = 244], compared to non-z-4 carriers with HbA1c ≥ 8.0 [1.27 (1.10-1.47), n = 1836] and z-4 carriers with HbA1c<8.0%[1.01 (0.77-1.29), n = 420, P(trend) < 0.001]. This additive association remained significant after additional adjustments for drug use (P(trend) = 0.002) and renal function (P(trend) = 0.01). In type 2 diabetic patients with suboptimal glycaemic control, the z-4 allele of ALR2 (CA)n polymorphism was independently associated with increased susceptibility to cataracts. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell

    PubMed Central

    Patel, DK; Kumar, R; Kumar, M; Sairam, K; Hemalatha, S

    2012-01-01

    Objective To evaluate the aldose reductase inhibitory (ARI) activity of different fractions of Hybanthus enneaspermus for potential use in diabetic cataract. Methods Total phenol and flavonoid content of different fractions was determined. ARI activity of different fractions in rat lens was investigated in vitro. Results The results showed significant level of phenolic and flavonoid content in ethyl acetate fraction [total phenol (212.15±0.79 mg/g), total flavonoid (39.11±2.27 mg/g)] and aqueous fraction [total phenol (140.62±0.57 mg/g), total flavonoid (26.07±1.49 mg/g)] as compared with the chloroform fraction [total phenol (68.56±0.51 mg/g), total flavonoid (13.41±0.82 mg/g)] and petrolium ether fraction [total phenol (36.68±0.43 mg/g), total flavonoid (11.55±1.06 mg/g)]. There was a significant difference in the ARI activity of each fraction, and it was found to be the highest in ethyl acetate fraction [IC50 (49.26±1.76 µg/mL)] followed by aqueous extract [IC50 (70.83±2.82 µg/mL)] and it was least in the petroleum ether fraction [IC50 (118.89±0.71 µg/mL)]. Chloroform fraction showed moderate activity [IC50 (98.52±1.80 µg/mL)]. Conclusions Different fractions showed significanct amount of ARI activity, where in ethyl acetate fraction it was found to be maximum which may be due to its high phenolic and flavonoid content. The extract after further evaluation may be used in the treatment of diabetic cataract. PMID:23569883

  5. Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell.

    PubMed

    Patel, Dk; Kumar, R; Kumar, M; Sairam, K; Hemalatha, S

    2012-02-01

    To evaluate the aldose reductase inhibitory (ARI) activity of different fractions of Hybanthus enneaspermus for potential use in diabetic cataract. Total phenol and flavonoid content of different fractions was determined. ARI activity of different fractions in rat lens was investigated in vitro. The results showed significant level of phenolic and flavonoid content in ethyl acetate fraction [total phenol (212.15±0.79 mg/g), total flavonoid (39.11±2.27 mg/g)] and aqueous fraction [total phenol (140.62±0.57 mg/g), total flavonoid (26.07±1.49 mg/g)] as compared with the chloroform fraction [total phenol (68.56±0.51 mg/g), total flavonoid (13.41±0.82 mg/g)] and petrolium ether fraction [total phenol (36.68±0.43 mg/g), total flavonoid (11.55±1.06 mg/g)]. There was a significant difference in the ARI activity of each fraction, and it was found to be the highest in ethyl acetate fraction [IC50 (49.26±1.76 µg/mL)] followed by aqueous extract [IC50 (70.83±2.82 µg/mL)] and it was least in the petroleum ether fraction [IC50 (118.89±0.71 µg/mL)]. Chloroform fraction showed moderate activity [IC50 (98.52±1.80 µg/mL)]. Different fractions showed significanct amount of ARI activity, where in ethyl acetate fraction it was found to be maximum which may be due to its high phenolic and flavonoid content. The extract after further evaluation may be used in the treatment of diabetic cataract.

  6. Aldose reductase from Schistosoma japonicum: crystallization and structure-based inhibitor screening for discovering antischistosomal lead compounds

    PubMed Central

    2013-01-01

    Background Schistosomiasis is a neglected tropical disease with high morbidity and mortality in the world. Currently, the treatment of this disease depends almost exclusively on praziquantel (PZQ); however, the emergence of drug resistance to PZQ in schistosomes makes the development of novel drugs an urgent task. Aldose reductase (AR), an important component that may be involved in the schistosome antioxidant defense system, is predicted as a potential drug target. Methods The tertiary structure of Schistosoma japonicum AR (SjAR) was obtained through X-ray diffraction method and then its potential inhibitors were identified from the Maybridge HitFinder library by virtual screening based on this structural model. The effects of these identified compounds on cultured adult worms were evaluated by observing mobility, morphological changes and mortality. To verify that SjAR was indeed the target of these identified compounds, their effects on recombinant SjAR (rSjAR) enzymatic activity were assessed. The cytotoxicity analysis was performed with three types of human cell lines using a Cell Counting Kit-8. Results We firstly resolved the SjAR structure and identified 10 potential inhibitors based on this structural model. Further in vitro experiments showed that one of the compounds, renamed as AR9, exhibited significant inhibition in the activity of cultured worms as well as inhibition of enzymatic activity of rSjAR protein. Cytotoxicity analysis revealed that AR9 had relatively low toxicity towards host cells. Conclusions The work presented here bridges the gap between virtual screening and experimental validation, providing an effective and economical strategy for the development of new anti-parasitic drugs. Additionally, this study also found that AR9 may become a new potential lead compound for developing novel antischistosomal drugs against parasite AR. PMID:23734964

  7. Diabetes-induced impairment in visual function in mice: contributions of p38 MAPK, rage, leukocytes, and aldose reductase.

    PubMed

    Lee, Chieh Allen; Li, Guangyuan; Patel, Mansi D; Petrash, J Mark; Benetz, Beth Ann; Veenstra, Alex; Amengual, Jaume; von Lintig, Johannes; Burant, Christopher J; Tang, Johnny; Kern, Timothy S

    2014-05-02

    Visual function is impaired in diabetes, but molecular causes of this dysfunction are not clear. We assessed effects of diabetes on visual psychophysics in mice, and tested the effect of therapeutic approaches reported previously to inhibit vascular lesions of the retinopathy. We used the optokinetic test to assess contrast sensitivity and spatial frequency threshold in diabetic C57Bl/6J mice and age-matched nondiabetic controls between 2 and 10 months of diabetes. Contributions of p38 MAP kinase (MAPK), receptor for advanced glycation end products (RAGE), leukocytes, and aldose reductase (AR) to the defect in contrast sensitivity were investigated. Cataract, a potential contributor to reductions in vision, was scored. Diabetes of 2 months' duration impaired contrast sensitivity and spatial frequency threshold in mice. The defect in contrast sensitivity persisted for at least 10 months, and cataract did not account for this impairment. Diabetic mice deficient in AR were protected significantly from development of the diabetes-induced defects in contrast sensitivity and spatial frequency threshold. In contrast, pharmacologic inhibition of p38 MAPK or RAGE, or deletion of inducible nitrous oxide synthase (iNOS) from bone marrow-derived cells did not protect the visual function in diabetes. Diabetes reduces spatial frequency threshold and contrast sensitivity in mice, and the mechanism leading to development of these defects involves AR. The mechanism by which AR contributes to the diabetes-induced defect in visual function can be probed by identifying which molecular abnormalities are corrected by AR deletion, but not other therapies that do not correct the defect in visual function.

  8. Deficiency of aldose reductase attenuates inner retinal neuronal changes in a mouse model of retinopathy of prematurity.

    PubMed

    Fu, Zhongjie; Nian, Shen; Li, Suk-Yee; Wong, David; Chung, Sookja K; Lo, Amy C Y

    2015-09-01

    Retinopathy of prematurity (ROP) is a leading cause of childhood blindness where vascular abnormality and retinal dysfunction are reported. We showed earlier that genetic deletion of aldose reductase (AR), the rate-limiting enzyme in the polyol pathway, reduced the neovascularization through attenuating oxidative stress induction in the mouse oxygen-induced retinopathy (OIR) modeling ROP. In this study, we further investigated the effects of AR deficiency on retinal neurons in the mouse OIR. Seven-day-old wild-type and AR-deficient mice were exposed to 75 % oxygen for 5 days and then returned to room air. Electroretinography was used to assess the neuronal function at postnatal day (P) 30. On P17 and P30, retinal cytoarchitecture was examined by morphometric analysis and immunohistochemistry for calbindin, protein kinase C alpha, calretinin, Tuj1, and glial fibrillary acidic protein. In OIR, attenuated amplitudes and delayed implicit time of a-wave, b-wave, and oscillatory potentials were observed in wild-type mice, but they were not significantly changed in AR-deficient mice. The morphological changes of horizontal, rod bipolar, and amacrine cells were shown in wild-type mice and these changes were partly preserved with AR deficiency. AR deficiency attenuated the Müller cell gliosis induced in OIR. Our observations demonstrated AR deficiency preserved retinal functions in OIR and AR deficiency could partly reduce the extent of retinal neuronal histopathology. These findings suggested a therapeutic potential of AR inhibition in ROP treatment with beneficial effects on the retinal neurons.

  9. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase.

    PubMed

    Blakeley, Matthew P; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-02-12

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 A, 100K; 0.80 A, 15K; 1.75 A, 293K), neutron Laue data (2.2 A, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  10. Quantum Model of Catalysis Based on a Mobile Proton Revealed by Subatomic X-ray and Neutron Diffraction Studies of h-aldose Reductase

    SciTech Connect

    Blakeley, M. P.; Ruiz, Fredrico; Cachau, Raul; Hazemann, I.; Meilleur, Flora; Mitschler, A.; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar; Cousido-Siah, Alexandra; Haertlein, M.; Joachimiak, Andrzej; Myles, Dean A A; Podjarny, A.

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Angstroms, 100K; 0.80 Angstroms, 15K; 1.75 Angstroms, 293K), neutron Laue data (2.2 Angstroms, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  11. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase

    PubMed Central

    Blakeley, Matthew P.; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N.; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Å, 100K; 0.80 Å, 15K; 1.75 Å, 293K), neutron Laue data (2.2 Å, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes. PMID:18250329

  12. Inhibitory Activities of Stauntonia hexaphylla Leaf Constituents on Rat Lens Aldose Reductase and Formation of Advanced Glycation End Products and Antioxidant

    PubMed Central

    Hwang, Seung Hwan; Kwon, Shin Hwa; Kim, Set Byeol

    2017-01-01

    Stauntonia hexaphylla (Thunb.) Decne. (Lardizabalaceae) leaves (SHL) have been used traditionally as analgesics, sedatives, diuretics, and so on, in China. To date, no data have been reported on the inhibitory effect of SHL and its constituents on rat lens aldose reductase (RLAR) and advanced glycation end products (AGEs). Therefore, the inhibitory effect of compounds isolated from SHL extract on RLAR and AGEs was investigated to evaluate potential treatments of diabetic complications. The ethyl acetate (EtOAC) fraction of SHL extract showed strong inhibitory activity on RLAR and AGEs; therefore, EtOAc fraction (3.0 g) was subjected to Sephadex LH-20 column chromatography, for further fractionation, with 100% MeOH solvent system to investigate its effect on RLAR and AGEs. Phytochemical investigation of SHL led to the isolation of seven compounds. Among the isolated compounds, chlorogenic acid, calceolarioside B, luteolin-3′-O-β-D-glucopyranoside, quercetin-3-O-β-D-glucopyranoside, and luteolin-7-O-β-D-glucopyranoside exhibited significant inhibitory activity against RLAR with IC50 in the range of 7.34–23.99 μM. In addition, 3-(3,4-dihydroxyphenyl) propionic acid, neochlorogenic acid, and luteolin-3′-O-β-D-glucopyranoside exhibited the most potent inhibitory activity against formation of AGEs, with an IC50 value of 115.07–184.06 μM, compared to the positive control aminoguanidine (820.44 μM). Based on these findings, SHL dietary supplements could be considered for the prevention and/or treatment of diabetes complication. PMID:28326319

  13. Design and synthesis of pyridazinone-substituted benzenesulphonylurea derivatives as anti-hyperglycaemic agents and inhibitors of aldose reductase - an enzyme embroiled in diabetic complications.

    PubMed

    Yaseen, Raed; Pushpalatha, H; Reddy, G Bhanuprakash; Ismael, Ameer; Ahmed, Ayad; Dheyaa, Alhamza; Ovais, Syed; Rathore, Pooja; Samim, Mohammed; Akthar, Mymoona; Sharma, Kalicharan; Shafi, Syed; Singh, Surender; Javed, Kalim

    2016-12-01

    Thirty new aryl-pyridazinone-substituted benzenesulphonylurea derivatives (I-XXX) were synthesized and evaluated for their anti-hyperglycaemic activity in glucose-fed hyperglycaemic normal rats. Twenty-three compounds (III-XI, XIV-XVII, XIX-XXIV, XXVI and XXVIII-XXX) showed more or comparable area under the curve (AUC) reduction percentage (ranging from 21.9% to 35.5%) as compared to the standard drug gliclazide (22.0%). On the basis of docking results, 18 compounds were screened for their in vitro ability to inhibit rat lens aldose reductase. Ten compounds (III-VI, XII, XVI-XVIII, XXI and XXVII) showed ARI activity with IC50 ranging from 34 to 242 μM. Out of these, two compounds IV and V showed best ARI activity which is comparable with that of quercetin. As a result, two compounds (IV and V) possessing significant dual action (anti-hyperglycaemic and aldose reductase inhibition) were identified and may be used as lead compounds for developing new drugs.

  14. Synthesis and biological evaluation of new piplartine analogues as potent aldose reductase inhibitors (ARIs)

    PubMed Central

    Ramasubba Rao, Vidadala; Muthenna, Puppala; Shankaraiah, Gundeti; Akileshwari, Chandrasekhar; Hari Babu, Kothapalli; Suresh, Ganji; Suresh Babu, Katragadda; Chandra Kumar, Rotte Sateesh; Rajendra Prasad, Kothakonda; Ashok Yadav, Potharaju; Petrash, J. Mark; Bhanuprakash Reddy, Geereddy; Madhusudana Rao, Janaswamy

    2013-01-01

    As a continuation of our efforts directed towards the development of anti-diabetic agents from natural sources, piplartine was isolated from Piper chaba, and was found to inhibit recombinant human ALR2 with an IC50 of 160 µM. To improve the efficacy, a series of analogues have been synthesized by modification of the styryl/aromatic and heterocyclic ring functionalities of this natural product lead. All the derivatives were tested for their ALR2 inhibitory activity, and results indicated that adducts 3c, 3e and 2j prepared by the Michael addition of piplartine with indole derivatives displayed potent ARI activity, while the other compounds displayed varying degrees of inhibition. The active compounds were also capable of preventing sorbitol accumulation in human red blood cells. PMID:23124161

  15. DW1029M, a novel botanical drug candidate, inhibits advanced glycation end-product formation, rat lens aldose reductase activity, and TGF-β1 signaling.

    PubMed

    Yoon, Joobyoung; Lee, Hyunyong; Chang, Hwan Bong; Choi, Hyunsik; Kim, Yong Sung; Rho, Yang Kook; Seong, Seungkyoo; Choi, Dong Hwa; Park, Dongeun; Ku, Bonchul

    2014-05-15

    DW1029M is a botanical extract consisting of Morus bark and Puerariae radix, produced by Dong-Wha Pharmaceutical, for nephroprotective drug development; it has been in phase II clinical trials in Korea. In our mechanistic investigations, we found that DW1029M inhibits advanced glycation end products (AGEs), rat lens aldose reductase (RLAR), and transforming growth factor (TGF)-β1 signaling, all of which are implicated in diabetic complications such as diabetic nephropathy and diabetic retinopathy. DW1029M inhibits AGE formation via Fe(2+) chelation. The extract contains 13 active constituents that inhibit AGE formation, 8 active constituents that inhibit RLAR activity, and 1 inhibitor of TGF-β1 signaling. Our results suggest DW1029M protects against diabetic nephropathy via blockade of AGE formation, RLAR activity, and TGF-β1 signaling. Copyright © 2014 the American Physiological Society.

  16. A meta-analysis of trials on aldose reductase inhibitors in diabetic peripheral neuropathy. The Italian Study Group. The St. Vincent Declaration.

    PubMed

    Nicolucci, A; Carinci, F; Cavaliere, D; Scorpiglione, N; Belfiglio, M; Labbrozzi, D; Mari, E; Benedetti, M M; Tognoni, G; Liberati, A

    1996-12-01

    Peripheral neuropathy is one of the most common and disabling long-term sequelae of diabetes mellitus. Aldose reductase inhibitors (ARIs) have been proposed and are increasingly used in many countries for the prevention and treatment of diabetic neuropathy. The aim of this study was to review existing evidence on the effectiveness of ARIs in the treatment of peripheral diabetic neuropathy, with particular reference to the type and clinical relevance of the end point used and to the consistency of results across studies. Thirteen randomized clinical trials (RTCs) comparing ARIs with placebo, published between 1981 and 1993 were included in the meta-analysis. Nerve conduction velocity (NCV) was the only end point reported in all trials. Treatment effect was thus evaluated in terms of NCV mean difference in four different nerves: median motor, median sensory, peroneal motor, and sural sensory. A statistically significant reduction in decline of median motor NCV was present in the treated group as compared to the control group (mean 0.91 ms-1; 95% CI 0.41-1.42 ms-1). For peroneal motor, median sensory, and sural sensory nerves results did not show any clear benefit for patients treated with ARIs. When the analysis was limited to trials with at least 1-year treatment duration, a significant effect was present for peroneal motor NCV (mean 1.24 ms-1; 95% CI 0.32-2.15 ms-1) and a benefit of borderline statistical significance was also present for median motor NCV (mean 0.69 ms-1; 95% CI-0.07-1.45 ms-1). A heterogeneous picture emerged when looking at the results of different studies and serious inconsistencies were also present in the direction of treatment effects among nerves in the same studies. Although the results of 1-year treatment on motor NCV seem encouraging, the uncertainty about the reliability of the end-point employed and the short treatment duration do not allow any clear conclusion about the efficacy of ARIs in the treatment of peripheral diabetic

  17. Evaluation of effect of alcoholic extract of heartwood of Pterocarpus marsupium on in vitro antioxidant, anti-glycation, sorbitol accumulation and inhibition of aldose reductase activity.

    PubMed

    Gupta, Pankaj; Jain, Vivek; Pareek, Ashutosh; Kumari, Preeti; Singh, Randhir; Agarwal, Priyanka; Sharma, Veena

    2017-07-01

    Rising popularity of phytomedicines in various diseased conditions have strengthened the significance of plant-research and evaluation of phytoextracts in clinical manifestations. Pterocarpus marsupium Roxb., a medicinal plant, known for its anti-oxidant and anti-diabetic activity is a rich source of phytochemicals with antihyperglycemic and antihyperlipidemic activities. However, its possible role in diabetic complications is not evaluated yet. The present study explores the possible role of alcoholic extract of heartwood of P. marsupium in the treatment of long-term diabetic complications. The alcoholic extract of P. marsupium was evaluated for advanced glycation-end-products formation, erythrocyte sorbitol accumulation and rat kidney aldose reductase enzyme inhibition at the concentration of 25-400 μg/ml using in-vitro bioassays. Also the phytoextract at the concentration of 10-320 μg/ml was evaluated for its antioxidant potential by in-vitro antioxidant assays which includes, determination of total phenol content; reducing power assay; nitric oxide scavenging activity; superoxide radical scavenging activity; total antioxidant capacity; total flavonoid content; DPPH scavenging activity; and hydrogen peroxide scavenging activity. The alcoholic extract of P. marsupium across varying concentrations showed inhibitory effect as evident by IC50 on advanced glycation-end-products formation (55.39 μg/ml), sorbitol accumulation (151.00 μg/ml) and rat kidney aldose reductase (195.88 μg/ml). The phytoextract also exhibited high phenolic and flavonoid contents with promising antioxidant potential against the antioxidant assays evaluated. The present investigation suggests that the phytoextract showed prominent antioxidant, antiglycation property and, inhibited accumulation of sorbitol and ALR enzyme, thus promising a beneficial role in reducing/delaying diabetic complications.

  18. Susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus is associated with a polymorphism at the 5' end of the aldose reductase gene

    PubMed Central

    Heesom, A.; Millward, A.; Demaine, A.

    1998-01-01

    OBJECTIVES—There is evidence that the polyol pathway is involved in the pathogenesis of diabetic neuropathy. Aldose reductase (ALR2) is the first and rate limiting enzyme of this pathway and recent studies have suggested that polymorphisms in and around the gene are associated with the development of diabetic microvascular disease. The aim was to examine the role of ALR2 in the susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus (IDDM).
METHODS—One hundred and fifty nine British white patients with IDDM and 102 normal healthy controls were studied using the polymerase chain reaction to test for a highly polymorphic microsatellite marker 2.1 kilobase (kb) upstream of the initiation site of the ALR2 gene.
RESULTS—Seven alleles were detected (Z-6, Z-4, Z-2, Z, Z+2, Z+4, and Z+6). There was a highly significant decrease in the frequency of the Z+2 allele in those patients with overt neuropathy compared with those with no neuropathy after 20 years duration of diabetes (14.1% v 38.2%, χ2 =17.3, p<0.00001). A similar difference was also found between the neuropathy group and those patients who have had diabetes for< five years with no overt neuropathy (14.1% v 30.2%, χ2=9.0, p<0.0025). The neuropathy group also had a significant decrease in the frequency of the Z/Z+2 genotype compared with those patients who have no neuropathy after 20 years duration of diabetes (14.0% v 44.7%, χ2=13.0, p<0.0005).
CONCLUSION—These results suggest that the aldose reductase gene is intimately involved in the pathogenesis of diabetic neuropathy.

 PMID:9489533

  19. Synthesis and biological evaluation of 2'-oxo-2,3-dihydro-3'H- spiro[chromene-4,5'-[1,3]oxazolidin]-3'yl]acetic acid derivatives as aldose reductase inhibitors.

    PubMed

    Rapposelli, Simona; Da Settimo, Federico; Digiacomo, Maria; La Motta, Concettina; Lapucci, Annalina; Sartini, Stefania; Vanni, Michael

    2011-06-01

    Aldose reductase (ARL2) is the first enzyme in the polyol pathway which catalyzes the NADPH-dependent reduction of glucose to sorbitol. Its involvement on diabetic complications makes this enzyme a challenge therapeutic target widely investigated to limit and/or prevent them. On this basis, a limited series of 4-spiro-oxazolidinone-benzopyran derivatives (1-7) were synthesized to evaluate them as potential ARL2 inhibitors. The activity was determined spectrophotometrically by monitoring the oxidation of NADPH catalyzed by ALR2. Within the series of compounds, the 4-methoxy derivative 1b showed to be the most active compound, exhibiting inhibitory levels in the submicromolar range. In addition, the activity against the aldehyde reductase isoform (ARL1) was also evaluated. Unlike sorbinil (reference drug) that lack of selectivity towards the two enzyme all the tested compounds resulted to be devoid of ARL1 inhibitory activity (IC(50) > 10 µM), thus proving to be selective. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase

    PubMed Central

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  1. Part 1: synthesis of irreversible inhibitors of aldose reductase with subsequent development of a carbon-13 NMR protein probe. Part 2: synthesis of selenium analogs of dopamine as potential dopamine receptor agonists

    SciTech Connect

    Ares, J.J.

    1986-01-01

    Aldose reductase converts glucose into sorbitol using NADPH as a cofactor. Sorbitol accumulation in various tissues is believed to play a major role in the development of debilitating complications of diabetes; thus, much effort has been directed toward the preparation of aldose reductase inhibitors. Of the compounds prepared, the most active are the isothiocyanate and azide analogs of the reversible aldose reductase inhibitor alrestatin. The potency of the alrestatin isothiocyanate prompted the authors to examine the possibility that isothiocyanates enriched with carbon-13 could be used as carbon-13 NMR protein probes. Toward this end, a synthesis of carbon-13 enriched phenylisothiocyanate has been developed. This reagent has been successfully utilized to study peptides via carbon-13 NMR spectroscopy. Research in their laboratory over the years has focused on answering two fundamental questions regarding the interaction of dopamine with its receptor. First, can the concept of bioisosterism be applied to dopamine agonists. Secondly, what is the actual molecular species of dopamine which interacts with the dopamine receptor. In an effort to answer these questions, methyl selenide and dimethyl selenonium analogs of dopamine have been synthesized.

  2. Construction of an Indonesian herbal constituents database and its use in Random Forest modelling in a search for inhibitors of aldose reductase.

    PubMed

    Naeem, Sadaf; Hylands, Peter; Barlow, David

    2012-02-01

    Data on phytochemical constituents of plants commonly used in traditional Indonesian medicine have been compiled as a computer database. This database (the Indonesian Herbal constituents database, IHD) currently contains details on ∼1,000 compounds found in 33 different plants. For each entry, the IHD gives details of chemical structure, trivial and systematic name, CAS registry number, pharmacology (where known), toxicology (LD(50)), botanical species, the part(s) of the plant(s) where the compounds are found, typical dosage(s) and reference(s). A second database has been also been compiled for plant-derived compounds with known activity against the enzyme, aldose reductase (AR). This database (the aldose reductase inhibitors database, ARID) contains the same details as the IHD, and currently comprises information on 120 different AR inhibitors. Virtual screening of all compounds in the IHD has been performed using Random Forest (RF) modelling, in a search for novel leads active against AR-to provide for new forms of symptomatic relief in diabetic patients. For the RF modelling, a set of simple 2D chemical descriptors were employed to classify all compounds in the combined ARID and IHD databases as either active or inactive as AR inhibitors. The resulting RF models (which gave misclassification rates of 21%) were used to identify putative new AR inhibitors in the IHD, with such compounds being identified as those giving RF scores >0.5 (in each of the three different RF models developed). In vitro assays were subsequently performed for four of the compounds obtained as hits in this in silico screening, to determine their inhibitory activity against human recombinant AR. The two compounds having the highest RF scores (prunetin and ononin) were shown to have the highest activities experimentally (giving ∼58% and ∼52% inhibition at a concentration of 15μM, respectively), while the compounds with lowest RF scores (vanillic acid and cinnamic acid) showed the

  3. Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis.

    PubMed

    Iwata, Y; Arisawa, M; Hamada, R; Kita, Y; Mizutani, M Y; Tomioka, N; Itai, A; Miyamoto, S

    2001-05-24

    Aldose reductase (AR) has been implicated in the etiology of diabetic complications. Due to the limited number of currently available drugs for the treatment of diabetic complications, we have carried out structure-based drug design and synthesis in an attempt to find new types of AR inhibitors. With the ADAM&EVE program, a three-dimensional database (ACD3D) was searched using the ligand binding site of the AR crystal structure. Out of 179 compounds selected through this search followed by visual inspection, 36 compounds were purchased and subjected to a biological assay. Ten compounds showed more than 40% inhibition of AR at a 15 microg/mL concentration. In a subsequent lead optimization, a series of analogues of the most active compound were synthesized based on the docking mode derived by ADAM&EVE. Many of these congeners exhibited higher activities compared to the mother compound. Indeed, the most potent, synthesized compound showed an approximately 20-fold increase in inhibitory activity (IC(50) = 0.21 vs 4.3 microM). Furthermore, a hydrophobic subsite was newly inferred, which would be useful for the design of inhibitors with improved affinity for AR.

  4. Structure-activity relationships and molecular modelling of new 5-arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents.

    PubMed

    Maccari, Rosanna; Vitale, Rosa Maria; Ottanà, Rosaria; Rocchiccioli, Marco; Marrazzo, Agostino; Cardile, Venera; Graziano, Adriana Carol Eleonora; Amodeo, Pietro; Mura, Umberto; Del Corso, Antonella

    2014-06-23

    A series of 5-(carbamoylmethoxy)benzylidene-2-oxo/thioxo-4-thiazolidinone derivatives (6-9) were synthesized as inhibitors of aldose reductase (AR), enzyme which plays a crucial role in the development of diabetes complications as well as in the inflammatory processes associated both to diabetes mellitus and to other pathologies. In vitro inhibitory activity indicated that compounds 6-9a-d were generally good AR inhibitors. Acetic acid derivatives 8a-d and 9a-d were shown to be the best enzyme inhibitors among the tested compounds endowed with significant inhibitory ability levels reaching submicromolar IC50 values. Moreover, some representative AR inhibitors (7a, 7c, 9a, 9c, 9d) were assayed in cultures of human keratinocytes in order to evaluate their capability to reduce NF-kB activation and iNOS expression. Compound 9c proved to be the best derivative endowed with both interesting AR inhibitory effectiveness and ability to reduce NF-kB activation and iNOS expression. Molecular docking and molecular dynamics simulations were undertaken to investigate the binding modes of selected compounds into the active site of AR in order to rationalize the inhibitory effectiveness of these derivatives.

  5. Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats.

    PubMed

    Matsumoto, Takafumi; Ono, Yoshiyuki; Kurono, Masuo; Kuromiya, Akemi; Nakamura, Keiji; Bril, Vera

    2008-07-01

    Ranirestat (AS-3201) is a novel aldose reductase (AR) inhibitor with potentially beneficial effects on diabetic sensorimotor polyneuropathy. In this study, we performed a kinetic analysis to determine the mode of inhibition of ranirestat on AR and investigated the effects of ranirestat on sorbitol levels in the sciatic nerves and lens of streptozotocin (STZ)-diabetic rats. We also evaluated the effects on motor nerve conduction velocity (MNCV) in STZ-diabetic rats. Kinetic analyses revealed that the ranirestat inhibition of AR is uncompetitive and reversible. In the sciatic nerve and lens of STZ-diabetic rats, single oral administration of ranirestat slightly reduced sorbitol levels. However, repeated oral administration of ranirestat for 5, 21, or 60 days enhanced the reducing effect of the ranirestat on sorbitol levels in the sciatic nerves and lens of STZ-diabetic rats with maximum effects after 21 days of treatment. Finally, repeated oral administration of ranirestat for 21 or 42 days dose-dependently improved the STZ-induced decrease in MNCV in STZ-diabetic rats. These findings demonstrate that repeated oral administration of ranirestat reduces sorbitol accumulation and improves MNCV in STZ-diabetic rats, indicating that ranirestat is an agent for the management of diabetic sensorimotor polyneuropathy.

  6. Three-dimensional quantitative structure-activity relationships and docking studies of some structurally diverse flavonoids and design of new aldose reductase inhibitors

    PubMed Central

    Chandra De, Utpal; Debnath, Tanusree; Sen, Debanjan; Debnath, Sudhan

    2015-01-01

    Aldose reductase (AR) plays an important role in the development of several long-term diabetic complications. Inhibition of AR activities is a strategy for controlling complications arising from chronic diabetes. Several AR inhibitors have been reported in the literature. Flavonoid type compounds are shown to have significant AR inhibition. The objective of this study was to perform a computational work to get an idea about structural insight of flavonoid type compounds for developing as well as for searching new flavonoid based AR inhibitors. The data-set comprising 68 flavones along with their pIC50 values ranging from 0.44 to 4.59 have been collected from literature. Structure of all the flavonoids were drawn in Chembiodraw Ultra 11.0, converted into corresponding three-dimensional structure, saved as mole file and then imported to maestro project table. Imported ligands were prepared using LigPrep option of maestro 9.6 version. Three-dimensional quantitative structure-activity relationships and docking studies were performed with appropriate options of maestro 9.6 version installed in HP Z820 workstation with CentOS 6.3 (Linux). A model with partial least squares factor 5, standard deviation 0.2482, R2 = 0.9502 and variance ratio of regression 122 has been found as the best statistical model. PMID:25709964

  7. 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds.

    PubMed

    Caballero, Julio

    2010-11-01

    Inhibitory activities of flavonoid derivatives against aldose reductase (AR) enzyme were modelled by using CoMFA, CoMSIA and GALAHAD methods. CoMFA and CoMSIA methods were used for deriving quantitative structure-activity relationship (QSAR) models. All QSAR models were trained with 55 compounds, after which they were evaluated for predictive ability with additional 14 compounds. The best CoMFA model included both steric and electrostatic fields, meanwhile, the best CoMSIA model included steric, hydrophobic and H-bond acceptor fields. These models had a good predictive quality according to both internal and external validation criteria. On the other hand, GALAHAD was used for deriving a 3D pharmacophore model. Twelve active compounds were used for deriving this model. The obtained model included hydrophobe, hydrogen bond acceptor and hydrogen bond donor features; it was able to identify the active AR inhibitors from the remaining compounds. These in silico tools might be useful in the rational design of new AR inhibitors.

  8. Aldose Reductase Regulates High Glucose-Induced Ectodomain Shedding of Tumor Necrosis Factor (TNF)-α via Protein Kinase C-δ and TNF-α Converting Enzyme in Vascular Smooth Muscle Cells

    PubMed Central

    Reddy, Aramati B. M.; Ramana, Kota V.; Srivastava, Sanjay; Bhatnagar, Aruni; Srivastava, Satish K.

    2009-01-01

    Chronic low-grade inflammation has emerged as a key contributor to the cardiovascular complications of diabetes, however, the mechanisms by which diabetes increases inflammation remain poorly understood. Here, we report that exposure to high glucose (HG) stimulates ectodomain shedding of TNF-α from rat aortic smooth muscle cells in culture. Our results show that exposure to HG decreases membrane-associated TNF-α. This decrease in unprocessed TNF-α was prevented by the aldose reductase (AR) inhibitor sorbinil and AR small interference RNA. Treatment with HG, but not equimolar mannitol or 3-O-methyl glucose, resulted in phosphorylation and activation of TNF-α converting enzyme (TACE) (ADAM17), which were attenuated by sorbinil or AR-specific small interference RNA. HG-induced TACE phosphorylation and TNF-α processing were also prevented by TNF-α protease inhibitor-1, an inhibitor of TACE. Inhibition of protein kinase C (PKC)-δ by rottlerin prevented HG-induced TACE activation and the accumulation of unprocessed TNF-α. Treatment with sorbinil decreased elevated levels of circulating TNF-α in streptozotocin-treated diabetic rats. Sorbinil treatment also decreased the expression of TNF-α, matrix metalloproteinase-2, matrix metalloproteinase-9, and increased tissue inhibitor of metalloproteinase-3 in vascular smooth muscle cells treated with HG and in balloon-injured carotid arteries of diabetic rats. These results indicate that HG-induced TNF-α shedding could be attributed to TACE activation, which is regulated, in part, by PKC-δ and AR. Therefore, inhibition of TACE by TNF-α protease inhibitor-1, or pharmacological inhibition of PKC-δ or AR may represent useful strategies for treating vascular inflammation associated with diabetes. PMID:18772236

  9. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae.

    PubMed

    Tahtah, Yousof; Kongstad, Kenneth T; Wubshet, Sileshi G; Nyberg, Nils T; Jønsson, Louise H; Jäger, Anna K; Qinglei, Sun; Staerk, Dan

    2015-08-21

    In this work, development of a new microplate-based high-resolution profiling assay using recombinant human aldose reductase is presented. Used together with high-resolution radical scavenging and high-resolution α-glucosidase assays, it provided the first report of a triple aldose reductase/α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main radical scavengers were ganhuangemin, viscidulin III, baicalin, oroxylin A 7-O-glucuronide, wogonoside, baicalein, wogonin, and skullcapflavone II.

  10. Effects of the New Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m on High Glucose Induced Prolongation of Cardiac QT Interval and Increase of Coronary Perfusion Pressure

    PubMed Central

    Di Filippo, C.; Ferraro, B.; Maisto, R.; Trotta, M. C.; Di Carluccio, N.; Sartini, S.; La Motta, C.; Ferraraccio, F.; Rossi, F.; D'Amico, M.

    2016-01-01

    This study investigated the effects of the new aldose reductase inhibitor benzofuroxane derivative 5(6)-(benzo[d]thiazol-2-ylmethoxy)benzofuroxane (BF-5m) on the prolongation of cardiac QT interval and increase of coronary perfusion pressure (CPP) in isolated, high glucose (33.3 mM D-glucose) perfused rat hearts. BF-5m was dissolved in the Krebs solution at a final concentration of 0.01 μM, 0.05 μM, and 0.1 μM. 33.3 mM D-glucose caused a prolongation of the QT interval and increase of CPP up to values of 190 ± 12 ms and 110 ± 8 mmHg with respect to the values of hearts perfused with standard Krebs solution (11.1 mM D-glucose). The QT prolongation was reduced by 10%, 32%, and 41%, respectively, for the concentration of BF-5m 0.01 μM, 0.05 μM, and 0.1 μM. Similarly, the CPP was reduced by 20% for BF-5m 0.05 μM and by 32% for BF-5m 0.1 μM. BF-5m also increased the expression levels of sirtuin 1, MnSOD, eNOS, and FOXO-1, into the heart. The beneficial actions of BF-5m were partly abolished by the pretreatment of the rats with the inhibitor of the sirtuin 1 activity EX527 (10 mg/kg/day/7 days i.p.) prior to perfusion of the hearts with high glucose + BF-5m (0.1 μM). Therefore, BF-5m supplies cardioprotection from the high glucose induced QT prolongation and increase of CPP. PMID:26839893

  11. Tonicity-responsive enhancer binding protein regulates the expression of aldose reductase and protein kinase C δ in a mouse model of diabetic retinopathy.

    PubMed

    Park, Jeongsook; Kim, Hwajin; Park, So Yun; Lim, Sun Woo; Kim, Yoon Sook; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Jeong, Bo-Young; Kwon, H Moo; Choi, Wan Sung

    2014-05-01

    Recent studies revealed that Tonicity-responsive enhancer binding protein (TonEBP) directly regulates the transcription of aldose reductase (AR), which catalyzes the first step of the polyol pathway of glucose metabolism. Activation of protein kinase C δ (PKCδ) is dependent on AR and it has been linked to diabetic complications. However, whether TonEBP affects expressions of AR and PKCδ in diabetic retinopathy was not clearly shown. In this study, we used TonEBP heterozygote mice to study the role of TonEBP in streptozotocin (STZ)-induced diabetic retinopathy. We performed immunofluorescence staining and found that retinal expressions of AR and PKCδ were significantly reduced in the heterozygotes compared to wild type littermates, particularly in ganglion cell layer. To examine further the effect of TonEBP reduction in retinal tissues, we performed intravitreal injection of TonEBP siRNA and confirmed the decrease in AR and PKCδ levels. In addition, we found that a proapoptotic factor, Bax level was reduced and a survival factor, Bcl2 level was increased after injection of TonEBP siRNA, indicating that TonEBP mediates apoptotic cell death. In parallel, TonEBP siRNA was applied to the in vitro human retinal pigment epithelial (ARPE-19) cells cultured in high glucose media. We have consistently found the decrease in AR and PKCδ levels and changes in apoptotic factors for survival. Together, these results clearly demonstrated that hyperglycemia-induced TonEBP plays a crucial role in increasing AR and PKCδ levels and leading to apoptotic death. Our findings suggest that TonEBP reduction is an effective therapeutic strategy for diabetic retinopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modulation of Advanced Glycation End Products, Sorbitol, and Aldose Reductase by Hydroalcohol Extract of Lagenaria siceraria Mol Standl in Diabetic Complications: An In Vitro Approach.

    PubMed

    Kajal, Anu; Singh, Randhir

    2017-09-28

    Herbal medicines have become a core interest, and they are used widely. Lagenaria siceraria is known for its antihyperglycemic, antidyslipidemic, antioxidant potential, and the present study was designed to explore the possible role of L. siceraria in attenuation of diabetic complications via in vitro modulation of advanced glycation end products (AGEs), sorbitol, and aldose reductase (ALR)-three major biomarkers of diabetic complications. To the best of our knowledge, no study has yet been carried out to explore L. siceraria to inhibit these biomarkers. Hydroalcohol extract of L. siceraria (LHA) was evaluated for its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide, nitric oxide, and superoxide radicals, total antioxidant capacity, and reducing-power assay. Antiglycation activity was carried out by bovine serum albumin (BSA) fluorescence method. Sorbitol accumulation was evaluated in red blood cells (RBCs) and ALR1 was obtained from kidney of rat to carry out the study. Quercetin was also quantified by high-performance liquid chromatography (HPLC) analysis with 14.3 mg per 100 g of LHA. LHA exhibited 854 mg/g gallic acid equivalent of phenol content and 104 mg/g quercetin equivalent of flavonoids and was found to be significantly active against the antioxidant assays evaluated. LHA has shown 80.12% inhibition of AGE formation. LHA was found to be effective against sorbitol accumulation and ALR1 inhibition with IC50 198.25 μg/ml and 6.24 μg/ml, respectively. These results reveal that LHA may exert beneficial effects against diabetic complications by its antioxidant and antiglycation potential.

  13. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: An in vitro mechanistic study.

    PubMed

    Wu, Jie; Li, Xue; Wan, Wencheng; Yang, Qiaohong; Ma, Weifeng; Chen, Dan; Hu, Jiangmiao; Chen, C-Y Oliver; Wei, Xiaoyong

    2017-02-23

    Dendrobium. chrysotoxum Lindl is a commonly used species of medicinal Dendrobium which belongs to the family of Orchidaceae, locally known as "Shihu" or "Huangcao". D. chrysotoxum Lindl is widely known for medicinal values in traditional Chinese medicine as it possesses anti-inflammatory, anti-hyperglycemic induction, antitumor and antioxidant properties. To characterize the interaction between gigantol extracted from D. chrysotoxum Lindl and the AR gene, and determine gigantol's efficacy against cataractogenesis. Human lens epithelial cells (HLECs) were induced by glucose as the model group. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess AR gene expression. Then, the mode of interaction of gigantol with the AR gene was evaluated by UV-visible spectroscopy, atomic force microscope (AFM) and surface-enhanced Raman spectroscopy (SERS). The binding constant was determined by UV-visible. Gigantol depressed AR gene expression in HLECs. UV-visible spectra preliminarily indicated that interaction between the AR gene and gigantol may follow the groove mode, with a binding constant of 1.85×10(3)L/mol. Atomic force microscope (AFM) data indicated that gigantol possibly bound to insert AR gene base pairs of the double helix. Surface-enhanced Raman spectroscopy (SERS) studies further supported these observations. Gigantol extracted from D. chrysotoxum Lindl not only has inhibitory effects on aldose reductase, but also inhibits AR gene expression. These findings provide a more comprehensive theoretical basis for the use of Dendrobium for the treatment of diabetic cataract. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Aldose reductase inhibitor counteracts the enhanced expression of matrix metalloproteinase-10 and improves corneal wound healing in galactose-fed rats

    PubMed Central

    Matsumoto, Takafumi; Tomomatsu, Takeshi; Matsumura, Takehiro; Takihara, Yuji; Inatani, Masaru

    2013-01-01

    Purpose We investigated the effect of an aldose reductase inhibitor (ARI) and the role of matrix metalloproteinase (MMP)-10 on recovery after corneal epithelium removal in a rat diabetic keratopathy model. Methods Three-week-old Sprague-Dawley rats were fed the following diets for 6 weeks: normal MF chow (MF), 50% galactose (Gal), and 50% Gal containing 0.01% ARI (Gal +ARI). The corneal epithelium was removed using n-heptanol, and the area of epithelial defects was photographed and measured every 24 h. Real-time reverse transcriptase PCR, western blotting, and immunohistochemistry were used to determine the expression profile of MMP-10 and integrin α3. Results Compared to the MF control group, the amount of galactitol in the Gal group increased approximately 200-fold, which was reduced to sevenfold by ARI treatment. The area of corneal erosion in the Gal group was significantly larger than in the MF group at 72 h and thereafter (p<0.01, unpaired t test). The expression level of MMP-10 was enhanced at both the protein and mRNA levels by exposure to a high concentration of Gal, while integrin α3 expression decreased at the protein level but remained unchanged at the mRNA level. Delayed epithelial wound healing and alterations in the expression levels of MMP-10 and integrin α3 were normalized by ARI. The corneal erosion closure rate was significantly decreased with topical recombinant MMP-10. Conclusions These studies confirm that the increased expression of MMP-10 induced by Gal feeding is counteracted by ARI treatment and suggest a role of MMP-10 in modulating corneal epithelial wound healing. PMID:24339723

  15. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE).

    PubMed

    Baba, Shahid P; Hellmann, Jason; Srivastava, Sanjay; Bhatnagar, Aruni

    2011-05-30

    Diabetes results in enhanced chemical modification of proteins by advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) precursors. These modifications have been linked to the development of several secondary diabetic complications. Our previous studies showed that aldose reductase (AR; AKR1B3) catalyzes the reduction of ALEs and AGEs precursors; however, the in vivo significance of this metabolic pathway during diabetes and obesity has not been fully assessed. Therefore we examined the role of AR in regulating ALEs and AGEs formation in murine models of diet-induced obesity and streptozotocin-induced diabetes. In comparison with wild-type (WT) and AR-null mice fed normal chow, mice fed a high-fat (HF) diet (42% kcal fat) showed increased accumulation of AGEs and protein-acrolein adducts in the plasma. AGEs and acrolein adducts were also increased in the epididymal fat of WT and AR-null mice fed a HF diet. Deletion of AR increased the accumulation of 4-hydroxy-trans-2-nonenal (HNE) protein adduct in the plasma and increased the expression of the AGE receptor (RAGE) in HF fed mice. No change in AGEs formation was observed in the kidneys of HF-fed mice. In comparison, renal tissue from AR-null mice treated with streptozotocin showed greater AGE accumulation than streptozotocin-treated WT mice. These data indicated that AR regulated the accumulation of lipid peroxidation derived aldehydes and AGEs under conditions of severe, but not mild, hyperglycemia and that deletion of AR increased RAGE-induction via mechanisms that were independent of AGEs accumulation.

  16. Evaluation of AC(n) and C(-106)T polymorphisms of the aldose reductase gene in Brazilian patients with DM1 and susceptibility to diabetic retinopathy

    PubMed Central

    Richeti, Flávio; Noronha, Renata Maria; Waetge, Ricardo Temudo Lessa; Cabral de Vasconcellos, José Paulo; Francisco de Souza, Osías; Kneipp, Bianca; Assis, Nilma; Rocha, Mylene Neves; Calliari, Luís Eduardo Procópio; Longui, Carlos Alberto; Monte, Osmar

    2007-01-01

    Purpose Diabetic retinopathy (DR) is one of the most important microvascular complications in both type 1 and type 2 diabetes. In Brazil, its proliferative form is the second cause of irreversible blindness among adults of working age. Despite the strong association of DR with disease duration and degree of chronic hyperglycemia, genetic predisposition has been recognized as a possible trigger in the development of this complication. Recent studies have demonstrated that the development of DR in patients with type 1 diabetes is associated with the occurrence of polymorphisms at the 5'-end of the aldose reductase gene (ALR2). There are no reports investigating these polymorphisms in type 1 diabetes Brazilian patients. The aim of this study was to investigate the relationship between the AC(n) repeat and C(-106)T polymorphisms of the ALR2 gene with the susceptibility to the development of DR in Brazilian patients with type 1 diabetes. Methods We selected 64 patients who had diabetes for at least 10 years from Santa Casa de São Paulo and State University of Campinas. The study group was divided into the following: Group 1, patients with no evidence of diabetic retinopathy; group 2, patients with nonproliferative diabetic retinopathy (NPDR); and group 3, patients with proliferative diabetic retinopathy (PDR), confirmed by fundoscopy. The AC(n) microsatellite region was evaluated through polymerase chain reaction (PCR) and automated genotyping and the C(-106)T substitution through polymerase chain reaction/restriction fragment length polymorphism (RFLP). Results When each allele of the AC(n) polymorphism was evaluated, the Z allele (24 repeats) was significantly associated with the development of PDR (p=0.014). The C allele of the C(-106)T substitution wasn't associated with the susceptibility to this microvascular complication (p=0.153). When the Z and C allele were concomitantly evaluated regarding their presence or absence a positive correlation was observed for the

  17. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design.

    PubMed

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Porté, Sergio; de Lera, Ángel R; Martín, María J; Manzanaro, Sonia; de la Fuente, Jesús A; Terwesten, Felix; Betz, Michael; Klebe, Gerhard; Farrés, Jaume; Parés, Xavier; Podjarny, Alberto

    2014-03-01

    Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.

  18. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage.

    PubMed

    Ho, Eric C M; Lam, Karen S L; Chen, Yuk Shan; Yip, Johnny C W; Arvindakshan, Meena; Yamagishi, Shin-Ichiro; Yagihashi, Soroku; Oates, Peter J; Ellery, Craig A; Chung, Stephen S M; Chung, Sookja K

    2006-07-01

    The exaggerated flux through polyol pathway during diabetes is thought to be a major cause of lesions in the peripheral nerves. Here, we used aldose reductase (AR)-deficient (AR(-/-)) and AR inhibitor (ARI)-treated mice to further understand the in vivo role of polyol pathway in the pathogenesis of diabetic neuropathy. Under normal conditions, there were no obvious differences in the innervation patterns between wild-type AR (AR(+/+)) and AR(-/-) mice. Under short-term diabetic conditions, AR(-/-) mice were protected from the reduction of motor and sensory nerve conduction velocities observed in diabetic AR(+/+) mice. Sorbitol levels in the sciatic nerves of diabetic AR(+/+) mice were increased significantly, whereas sorbitol levels in the diabetic AR(-/-) mice were significantly lower than those in diabetic AR(+/+) mice. In addition, signs of oxidative stress, such as increased activation of c-Jun NH(2)-terminal kinase (JNK), depletion of reduced glutathione, increase of superoxide formation, and DNA damage, observed in the sciatic nerves of diabetic AR(+/+) mice were not observed in the diabetic AR(-/-) mice, indicating that the diabetic AR(-/-) mice were protected from oxidative stress in the sciatic nerve. The diabetic AR(-/-) mice also excreted less 8-hydroxy-2'-deoxyguanosine in urine than diabetic AR(+/+) mice. The structural abnormalities observed in the sural nerve of diabetic AR(+/+) mice were less severe in the diabetic AR(-/-) mice, although it was only mildly protected by AR deficiency under short-term diabetic conditions. Signs of oxidative stress and functional and structural abnormalities were also inhibited by the ARI fidarestat in diabetic AR(+/+) nerves, similar to those in diabetic AR(-/-) mice. Taken together, increased polyol pathway flux through AR is a major contributing factor in the early signs of diabetic neuropathy, possibly through depletion of glutathione, increased superoxide accumulation, increased JNK activation, and DNA damage.

  19. Expression of constitutive cyclo-oxygenase (COX-1) in rats with streptozotocin-induced diabetes; effects of treatment with evening primrose oil or an aldose reductase inhibitor on COX-1 mRNA levels.

    PubMed

    Fang, C; Jiang, Z; Tomlinson, D R

    1997-02-01

    Altered prostanoid metabolism participates in the pathogenesis of diabetic complications. The rate-limiting enzyme in the control of prostanoid metabolism is constitutive cyclo-oxygenase (COX-1). This study examined the possibility that altered prostanoid metabolism derives from altered COX-1 expression in those tissues from diabetic rats, with characteristic changes in prostanoid production and related haemodynamics. This account also describes a procedure for estimation of minute amounts of COX-1 mRNA by reverse transcription and competitive polymerase chain reaction (RT-cPCR) amplification. In streptozotocin-diabetic rats (STZ-D, 55 mg/kg body weight), compared with age-matched controls, the level of COX-1 mRNA (in attomoles/micrograms tRNA +/- 1SD) was significantly decreased in sciatic nerve (0.50 +/- 0.26 versus 0.89 +/- 0.32 in controls; P < 0.05) and thoracic aorta (3.99 +/- 1.67 versus 8.80 +/- 2.37 in controls; P < 0.05). There were no differences in COX-1 mRNA in diabetic and control rat kidney and retina, though there was a trend towards increased expression with diabetes in the latter. Evening primrose oil (EPO) treatment increased COX-1 mRNA in nerve and retina to levels in diabetic rats that were higher than those of non-diabetic controls (1.21 +/- 0.28 for nerve and 0.065 +/- 0.017 for retina, where control retinae gave 0.031 +/- 0.020-see above for nerve). Treatment of diabetic rats with an aldose reductase inhibitor was without effect on COX-1 mRNA levels in the tissues examined. This study demonstrates that the changes in COX-1 mRNA levels in diabetic rats are organ specific and suggests that altered prostanoid metabolism can, in part, be explained by altered COX-1 expression. Apart from providing arachidonate as substrate for COX, EPO stimulates COX-1 expression in some tissues.

  20. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  1. NADPH-dependent reductases and polyol formation in human leukemia cell lines.

    PubMed

    Sato, Sanai; Secchi, E Filippo; Sakurai, Shinichi; Ohta, Nobuo; Fukase, Shigeru; Lizak, Martin J

    2003-02-01

    Because of the limited availability of human tissues, leukemia cell lines are often utilized as the models for human leukocytes. In this study, we investigated the NADPH-dependent reductases and polyol pathway in commonly utilized human leukemia cell lines. The relative amounts of aldose and aldehyde reductases were estimated by separating two enzymes with chromatofocusing. The flux of glucose through the polyol pathway was examined by 19F-NMR using 3-fluoro-3-deoxy-D-glucose (3FG) as substrate. Sugar alcohol analysis was conducted by gas chromatography. In myelocytic leukemia cells, the major reductase was aldehyde reductase, and levels of aldose reductase were extremely low. Although lymphocytic cells also contained both aldose and aldehyde reductases, the levels of aldose reductase appeared to be higher in lymphocytic cells than myeolcytic cells. In two lymphocytic cells MOLT-4 and SKW6.4, aldose reductase is clearly dominant. When incubated in medium containing D-galactose, all cell lines quickly accumulated galactitol. There was correlation between galactitol levels and aldose reductase levels. The aldose reductase inhibitor FK 366 significantly reduced the formation of galactitol. 19F-NMR of the cells cultured with 3FG as substrate demonstrated the formation of 3-fluoro-3-dexoy-sorbitol in all the cell lines examined in this study. The relative amounts of sorbitol and fructose varied significantly among the cells. The data confirm that the polyol pathway is present in both myelocytic and lymphocytic leukemia cell lines. However, there is a large variation among the cell lines in the levels of enzymes and flux of glucose through the polyol pathway.

  2. Monotherapy with HMG-CoA reductase inhibitors and secondary prevention in coronary artery disease.

    PubMed

    Rackley, C E

    1996-09-01

    Although thrombolytic drugs, percutaneous transluminal coronary angioplasty, and coronary artery bypass grafting have provided major advances in the treatment of coronary artery disease, the use of lipid-lowering drugs for secondary prevention has significantly reduced cardiovascular events in the population with coronary artery disease. Secondary prevention trials using HMG-CoA reductase inhibitors include the Familial Atherosclerosis Treatment Study (FATS), the Monitored Atherosclerosis Regression Study (MARS), the Canadian Coronary Atherosclerosis Intervention Trial (CCAIT), the Asymptomatic Carotid Artery Progression Study (ACAPS), the Multi Anti-Atheroma Study (MAAS), the Scandinavian Simvastatin Survival Study (4S), the Pravastatin Limitation of Atherosclerosis in Coronary Arteries (PLAC I), the Regression Growth Evaluation Statin Study (REGRESS), the Pravastatin Multinational Study, and the Pravastatin, Lipids, and Atherosclerosis in Carotids (PLAC II). Mean changes from baseline of lipid fractions in these trials included: total cholesterol 18 to 35% reduction; low-density lipoprotein (LDL) cholesterol 26 to 46% reduction; high-density lipoprotein (HDL) cholesterol 5 to 15% increase; and triglyceride 7 to 22% reduction. Angiographic regression or lack of progression was statistically demonstrated in the FATS, MARS, CCAIT, MAAS, PLAC I, and REGRESS trials. Cardiovascular events decreased 25 to 92% in all trials, and there was a significant reduction in both cardiovascular and total mortality in the 4S. The greater reduction in cardiovascular events than in anatomic changes suggests that the HMG-CoA reductase inhibitors stabilized the surface of plaques. Monotherapy with HMG-CoA reductase inhibitors provides the clinical opportunity to modify the natural history of coronary artery disease.

  3. Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer.

    PubMed

    Selenius, Markus; Rundlöf, Anna-Klara; Olm, Eric; Fernandes, Aristi P; Björnstedt, Mikael

    2010-04-01

    Selenium is an essential element that is specifically incorporated as selenocystein into selenoproteins. It is a potent modulator of eukaryotic cell growth with strictly concentration-dependant effects. Lower concentrations are necessary for cell survival and growth, whereas higher concentrations inhibit growth and induce cell death. It is well established that selenium has cancer preventive effects, and several studies also have shown that it has strong anticancer effects with a selective cytotoxicity on malignant drug-resistant cells while only exerting marginal effects on normal and benign cells. This cancer-specific cytotoxicity is likely explained by high affinity selenium uptake dependent on proteins connected to multidrug resistance. One of the most studied selenoproteins in cancer is thioredoxin reductase (TrxR) that has important functions in neoplastic growth and is an important component of the resistant phenotype. Several reports have shown that TrxR is induced in tumor cells and pre-neoplastic cells, and several commonly used drugs interact with the protein. In this review, we summarize the current knowledge of selenium as a potent preventive and tumor selective anticancer drug, and we also discuss the potential of using the expression and modulation of the selenoprotein TrxR in the diagnostics and treatment of cancer.

  4. Advances in pharmacological strategies for the prevention of cataract development

    PubMed Central

    Gupta, S K; Selvan, V Kalai; Agrawal, S S; Saxena, Rohit

    2009-01-01

    Cataractous-opacification of the lens is one of the leading causes of blindness in India. The situation can be managed by surgical removal of the cataractous lens. Various pharmacological strategies have been proposed for the prevention and treatment of cataract. Information on possible benefits of putative anticataract agents comes from a variety of approaches, ranging from laboratory experiments, both in vitro and in vivo, to epidemiological studies in patients. This review deals with the various mechanisms, and possible pharmacological interventions for the prevention of cataract. The article also reviews research on potential anticataractous agents, including aldose reductase inhibitors, glutathione boosters, antiglycating agents, vitamins and various drugs from indigenous sources. PMID:19384010

  5. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  6. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins.

    PubMed

    Pirazzini, Marco; Azarnia Tehran, Domenico; Zanetti, Giulia; Megighian, Aram; Scorzeto, Michele; Fillo, Silvia; Shone, Clifford C; Binz, Thomas; Rossetto, Ornella; Lista, Florigio; Montecucco, Cesare

    2014-09-25

    Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.

  7. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development

    PubMed Central

    Billings, Sara E.; Pierzchalski, Keely; Butler Tjaden, Naomi E.; Pang, Xiao-Yan; Trainor, Paul A.; Kane, Maureen A.; Moise, Alexander R.

    2013-01-01

    Oxidation of retinol via retinaldehyde results in the formation of the essential morphogen all-trans-retinoic acid (ATRA). Previous studies have identified critical roles in the regulation of embryonic ATRA levels for retinol, retinaldehyde, and ATRA-oxidizing enzymes; however, the contribution of retinaldehyde reductases to ATRA metabolism is not completely understood. Herein, we investigate the role of the retinaldehyde reductase Dhrs3 in embryonic retinoid metabolism using a Dhrs3-deficient mouse. Lack of DHRS3 leads to a 40% increase in the levels of ATRA and a 60% and 55% decrease in the levels of retinol and retinyl esters, respectively, in Dhrs3−/− embryos compared to wild-type littermates. Furthermore, accumulation of excess ATRA is accompanied by a compensatory 30–50% reduction in the expression of ATRA synthetic genes and a 120% increase in the expression of the ATRA catabolic enzyme Cyp26a1 in Dhrs3−/− embryos vs. controls. Excess ATRA also leads to alterations (40–80%) in the expression of several developmentally important ATRA target genes. Consequently, Dhrs3−/− embryos die late in gestation and display defects in cardiac outflow tract formation, atrial and ventricular septation, skeletal development, and palatogenesis. These data demonstrate that the reduction of retinaldehyde by DHRS3 is critical for preventing formation of excess ATRA during embryonic development.—Billings, S. E., Pierzchalski, K., Butler Tjaden, N. E., Pang, X.-Y., Trainor, P. A., Kane, M. A., Moise, A. R. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development. PMID:24005908

  8. Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation.

    PubMed

    Blakytny, R; Harding, J J

    1997-06-01

    With no measurable protein synthesis occurring in the centre of the lens, structural proteins and enzymes there will need to be stable for many years, if not decades, in order to maintain lens integrity and function. Recent work has indicated that alpha-crystallin, which is sequentially related to heat shock proteins, has chaperone-like properties in that it is capable of preventing heat-induced aggregation of various proteins, including other crystallins. Thus this universal vertebrate lens protein may contribute to maintenance of lens integrity by protecting other lens proteins from non-enzymic insults or the consequences thereof. We previously showed that the enzyme glutathione reductase was inactivated in a time-dependent manner when incubated with various sugars, suggesting glycation was responsible for this effect. In this paper we confirmed that this was the case. Using this enzyme model system, the inclusion of either bovine or human alpha-crystallin protected against the inactivation of glutathione reductase by fructation. This action was specific, with control proteins displaying no such protection. Use of high performance liquid chromatography supported the fact that alpha-crystallin did not act simply by mopping up free sugar but rather maintained the activity of the modified enzyme. Dose-dependent experiments indicated that human alpha-crystallin was more effective than its bovine counterpart, which might be expected considering the much longer lifespan of humans. The stoichiometry of the protection by both alpha-crystallins indicated that alpha-crystallin with glutathione reductase was not acting like GroEL as a large complex with a hydrophobic pore, but rather that individual subunits may be capable of acting as chaperones.

  9. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  10. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development.

    PubMed

    Billings, Sara E; Pierzchalski, Keely; Butler Tjaden, Naomi E; Pang, Xiao-Yan; Trainor, Paul A; Kane, Maureen A; Moise, Alexander R

    2013-12-01

    Oxidation of retinol via retinaldehyde results in the formation of the essential morphogen all-trans-retinoic acid (ATRA). Previous studies have identified critical roles in the regulation of embryonic ATRA levels for retinol, retinaldehyde, and ATRA-oxidizing enzymes; however, the contribution of retinaldehyde reductases to ATRA metabolism is not completely understood. Herein, we investigate the role of the retinaldehyde reductase Dhrs3 in embryonic retinoid metabolism using a Dhrs3-deficient mouse. Lack of DHRS3 leads to a 40% increase in the levels of ATRA and a 60% and 55% decrease in the levels of retinol and retinyl esters, respectively, in Dhrs3(-/-) embryos compared to wild-type littermates. Furthermore, accumulation of excess ATRA is accompanied by a compensatory 30-50% reduction in the expression of ATRA synthetic genes and a 120% increase in the expression of the ATRA catabolic enzyme Cyp26a1 in Dhrs3(-/-) embryos vs. controls. Excess ATRA also leads to alterations (40-80%) in the expression of several developmentally important ATRA target genes. Consequently, Dhrs3(-/-) embryos die late in gestation and display defects in cardiac outflow tract formation, atrial and ventricular septation, skeletal development, and palatogenesis. These data demonstrate that the reduction of retinaldehyde by DHRS3 is critical for preventing formation of excess ATRA during embryonic development.

  11. Biliverdin reductase A in the prevention of cellular senescence against oxidative stress.

    PubMed

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri; Park, Sang Chul

    2011-01-31

    Biliverdin reductase A (BLVRA), an enzyme that converts biliverdin to bilirubin, has recently emerged as a key regulator of the cellular redox cycle. However, the role of BLVRA in the aging process remains unclear. To study the role of BLVRA in the aging process, we compared the stress responses of young and senescent human diploid fibroblasts (HDFs) to the reactive oxygen species (ROS) inducer, hydrogen peroxide (H2O2). H2O2 markedly induced BLVRA activity in young HDFs, but not in senescent HDFs. Additionally, depletion of BLVRA reduced the H2O2-dependent induction of heme oxygenase-1 (HO-1) in young HDFs, but not in senescent cells, suggesting an aging-dependent differential modulation of responses to oxidative stress. The role of BLVRA in the regulation of cellular senescence was confirmed when lentiviral RNAi- transfected stable primary HDFs with reduced BLVRA expression showed upregulation of the CDK inhibitor family members p16, p53, and p21, followed by cell cycle arrest in G0-G1 phase with high expression of senescence-associated β-galactosidase. Taken together, these data support the notion that BLVRA contributes significantly to modulation of the aging process by adjusting the cellular oxidative status.

  12. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency.

    PubMed

    Strauss, Kevin A; Morton, D Holmes; Puffenberger, Erik G; Hendrickson, Christine; Robinson, Donna L; Wagner, Conrad; Stabler, Sally P; Allen, Robert H; Chwatko, Grazyna; Jakubowski, Hieronim; Niculescu, Mihai D; Mudd, S Harvey

    2007-06-01

    Over a four-year period, we collected clinical and biochemical data from five Amish children who were homozygous for missense mutations in 5,10-methylenetetrahydrofolate reductase (MTHFR c.1129C>T). The four oldest patients had irreversible brain damage prior to diagnosis. The youngest child, diagnosed and started on betaine therapy as a newborn, is healthy at her present age of three years. We compared biochemical data among four groups: 16 control subjects, eight heterozygous parents, and five affected children (for the latter group, both before and during treatment with betaine anhydrous). Plasma amino acid concentrations were used to estimate changes in cerebral methionine uptake resulting from betaine therapy. In all affected children, treatment with betaine (534+/-222 mg/kg/day) increased plasma S-adenosylmethionine, improved markers of tissue methyltransferase activity, and resulted in a threefold increase of calculated brain methionine uptake. Betaine therapy did not normalize plasma total homocysteine, nor did it correct cerebral 5-methyltetrahydrofolate deficiency. We conclude that when the 5-methyltetrahydrofolate content of brain tissue is low, dietary betaine sufficient to increase brain methionine uptake may compensate for impaired cerebral methionine recycling. To effectively support the metabolic requirements of rapid brain growth, a large dose of betaine should be started early in life.

  13. Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms.

    PubMed

    Wassef, Ramez; Haenold, Ronny; Hansel, Alfred; Brot, Nathan; Heinemann, Stefan H; Hoshi, Toshinori

    2007-11-21

    Parkinson's disease (PD), a common neurodegenerative disease, is caused by loss of dopaminergic neurons in the substantia nigra. Although the underlying cause of the neuronal loss is unknown, oxidative stress is thought to play a major role in the pathogenesis of PD. The amino acid methionine is readily oxidized to methionine sulfoxide, and its reduction is catalyzed by a family of enzymes called methionine sulfoxide reductases (MSRs). The reversible oxidation-reduction cycle of methionine involving MSRs has been postulated to act as a catalytic antioxidant system protecting cells from oxidative damage. Here, we show that one member of the MSR family, MSRA, inhibits development of the locomotor and circadian rhythm defects caused by ectopic expression of human alpha-synuclein in the Drosophila nervous system. Furthermore, we demonstrate that one way to enhance the MSRA antioxidant system is dietary supplementation with S-methyl-L-cysteine (SMLC), found abundantly in garlic, cabbage, and turnips. SMLC, a substrate in the catalytic antioxidant system mediated by MSRA, prevents the alpha-synuclein-induced abnormalities. Therefore, interventions focusing on the enzymatic reduction of oxidized methionine catalyzed by MSRA represent a new prevention and therapeutic approach for PD and potentially for other neurodegenerative diseases involving oxidative stress.

  14. Finasteride, a 5alpha-reductase inhibitor, potentiates antinociceptive effects of morphine, prevents the development of morphine tolerance and attenuates abstinence behavior in the rat.

    PubMed

    Verdi, Javad; Ahmadiani, Abolhassan

    2007-05-01

    It has been shown that morphine increases 5alpha-reductase enzyme activity in the rat central nervous system; however importance of this finding on morphine analgesia, tolerance and dependence has not been reported. In the present study, we investigated inhibition of 5alpha-reductase enzyme on morphine effects using finasteride. To determine whether the 5alpha-reductase enzyme interact with morphine analgesia, finasteride (5 mg/kg, i.p.) was administrated with morphine (5 and 7 mg/kg, i.p.). The tail-flick test was used to assess the nociceptive threshold, before and 15, 30, 45, 60 and 90 min after drug administration. In tolerance experiments, morphine 20 mg/kg was injected i.p., twice daily for 4 days. The development and expression of dependence were assessed in the naloxone precipitation test 5 days after the morphine (20-30 mg/kg, i.p.) administration. We found that finasteride could potentiate the antinociceptive effect of morphine. In addition, chronic finasteride administration effectively blocked development of tolerance and dependence to morphine. Following chronic morphine administration, single dose injection of finasteride failed to reverse tolerance but prevented naloxone precipitate withdrawal syndrome. Therefore, it was concluded that there is a functional relationship between 5alpha-reductase enzyme and morphine.

  15. Catalytic Isomerization of Biomass‐Derived Aldoses: A Review

    PubMed Central

    Delidovich, Irina

    2016-01-01

    Abstract Selected aldohexoses (d‐glucose, d‐mannose, and d‐galactose) and aldopentoses (d‐xylose, l‐arabinose, and d‐ribose) are readily available components of biopolymers. Isomerization reactions of these substances are very attractive as carbon‐efficient processes to broaden the portfolio of abundant monosaccharides. This review focuses on the chemocatalytic isomerization of aldoses into the corresponding ketoses as well as epimerization of aldoses at C2. Recent advances in the fields of catalysis by bases and Lewis acids are considered. The emphasis is laid on newly uncovered catalytic systems and mechanisms of carbohydrate transformations. PMID:26948404

  16. Preventative effects of Ginkgo biloba extract (EGb761) on high glucose-cultured opacity of rat lens.

    PubMed

    Lu, Qian; Yang, Tingting; Zhang, Mingzhu; Du, Lei; Liu, Ling; Zhang, Nan; Guo, Hao; Zhang, Fan; Hu, Gang; Yin, Xiaoxing

    2014-05-01

    Diabetic cataract is one of the earliest secondary complications of diabetes, and it is characterized by opacification of the eye lens. In this study, we examined the protective effects of Ginkgo biloba extract (EGb761) on rat lenses cultured in high-glucose conditions. The cultured rat lenses were divided into six groups: normal group, high-glucose group, high glucose plus low, medium, and high concentrations of EGb761 groups, and a high glucose plus bendazac lysine group. The activities of antioxidases, aldose reductase, advanced glycosylation end products, transforming growth factor-β2, Smad2/3, E-cadherin, and α-smooth muscle actin were assessed by different methods. Compared with the levels in the high glucose group, EGb761 decreased the intensity of oxidative stress, decreased aldose reductase activation and the level of advanced glycosylation end products, and suppress the transforming growth factor-β2 or Smad pathway activation, further increase the expression of E-cadherin and decrease α-smooth muscle actin, and therefore, prevents the pathological changes of high glucose-induced lens epithelial cells and ameliorated lens opacity. These results suggest that EGb761 has protective effects on several pharmacological targets in the progress of diabetic cataract and is a potential drug for the prevention of diabetic cataract.

  17. HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress.

    PubMed

    Yasunari, K; Maeda, K; Minami, M; Yoshikawa, J

    2001-06-01

    In vitro and in vivo evidence of a decrease in vascular smooth muscle cell (SMC) migration induced by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been reported. When added to SMC cultures for 6 hours, the HMG-CoA reductase inhibitors fluvastatin, simvastatin, and pravastatin at 1 micromol/L resulted in a 48%, 50%, and 16% suppression, respectively, of human coronary SMC migration; these reductions mirrored the suppression in oxidative stress induced by 1 micromol/L lysophosphatidylcholine (lyso-PC) of 50%, 53% and 19%, respectively. The hydroxylated metabolites of fluvastatin, M(2) and M(3), at 1 micromol/L also suppressed the enhancement of SMC migration by 58% and 45% and the increase in oxidative stress induced by lyso-PC of 58% and 49%, respectively. Lyso-PC activated phospholipase D and protein kinase C (PKC), and this activation was also suppressed by HMG-CoA reductase inhibitors. The inhibition of phospholipase D and PKC was reversed by 100 micromol/L mevalonate, its isoprenoid derivative, farnesol, and geranylgeraniol but not by 10 micromol/L squalene. Antisense oligodeoxynucleotides at 5 micromol/L to PKC-alpha, but not those to the PKC-beta isoform, suppressed the lyso-PC-mediated increases in SMC migration and oxidative stress. These findings suggest that HMG-CoA reductase inhibitors have direct antimigratory effects on the vascular wall beyond their effects on plasma lipids and that they might exert such antimigratory effects via suppression of the phospholipase D- and PKC (possibly PKC-alpha)-induced increase in oxidative stress, which might in turn prevent significant coronary artery disease.

  18. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.

    PubMed

    Wiebe, Marilyn G; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-11-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.

  19. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  20. Catalytic Isomerization of Biomass-Derived Aldoses: A Review.

    PubMed

    Delidovich, Irina; Palkovits, Regina

    2016-03-21

    Selected aldohexoses (D-glucose, D-mannose, and D-galactose) and aldopentoses (D-xylose, L-arabinose, and D-ribose) are readily available components of biopolymers. Isomerization reactions of these substances are very attractive as carbon-efficient processes to broaden the portfolio of abundant monosaccharides. This review focuses on the chemocatalytic isomerization of aldoses into the corresponding ketoses as well as epimerization of aldoses at C2. Recent advances in the fields of catalysis by bases and Lewis acids are considered. The emphasis is laid on newly uncovered catalytic systems and mechanisms of carbohydrate transformations. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. A kinetic estimate of the free aldehyde content of aldoses

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The relative free aldehyde content of eight hexoses and four pentoses has been estimated within about 10% from the rate constants for their reaction with urazole (1,2,4-triazole-3,5-dione). These values of the percent free aldehyde are in agreement with those estimated from CD measurements, but are more accurate. The relative free aldehyde contents for the aldoses were then correlated to various literature NMR measurements to obtain the absolute values. This procedure was also done for three deoxyaldoses, which react much more rapidly than can be accounted for by the free aldehyde content. This difference in reactivity between aldoses and deoxyaldoses is due to the inductive effect of the H versus the OH on C-2'. This may help explain why deoxyribonucleosides hydrolyze much more rapidly than ribonucleosides.

  2. A kinetic estimate of the free aldehyde content of aldoses

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The relative free aldehyde content of eight hexoses and four pentoses has been estimated within about 10% from the rate constants for their reaction with urazole (1,2,4-triazole-3,5-dione). These values of the percent free aldehyde are in agreement with those estimated from CD measurements, but are more accurate. The relative free aldehyde contents for the aldoses were then correlated to various literature NMR measurements to obtain the absolute values. This procedure was also done for three deoxyaldoses, which react much more rapidly than can be accounted for by the free aldehyde content. This difference in reactivity between aldoses and deoxyaldoses is due to the inductive effect of the H versus the OH on C-2'. This may help explain why deoxyribonucleosides hydrolyze much more rapidly than ribonucleosides.

  3. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  4. Phenylcoumaran Benzylic Ether Reductase Prevents Accumulation of Compounds Formed under Oxidative Conditions in Poplar Xylem[W

    PubMed Central

    Niculaes, Claudiu; Morreel, Kris; Kim, Hoon; Lu, Fachuang; McKee, Lauren S.; Ivens, Bart; Haustraete, Jurgen; Vanholme, Bartel; Rycke, Riet De; Hertzberg, Magnus; Fromm, Jorg; Bulone, Vincent; Polle, Andrea; Ralph, John; Boerjan, Wout

    2014-01-01

    Phenylcoumaran benzylic ether reductase (PCBER) is one of the most abundant proteins in poplar (Populus spp) xylem, but its biological role has remained obscure. In this work, metabolite profiling of transgenic poplar trees downregulated in PCBER revealed both the in vivo substrate and product of PCBER. Based on mass spectrometry and NMR data, the substrate was identified as a hexosylated 8–5-coupling product between sinapyl alcohol and guaiacylglycerol, and the product was identified as its benzyl-reduced form. This activity was confirmed in vitro using a purified recombinant PCBER expressed in Escherichia coli. Assays performed on 20 synthetic substrate analogs revealed the enzyme specificity. In addition, the xylem of PCBER-downregulated trees accumulated over 2000-fold higher levels of cysteine adducts of monolignol dimers. These compounds could be generated in vitro by simple oxidative coupling assays involving monolignols and cysteine. Altogether, our data suggest that the function of PCBER is to reduce phenylpropanoid dimers in planta to form antioxidants that protect the plant against oxidative damage. In addition to describing the catalytic activity of one of the most abundant enzymes in wood, we provide experimental evidence for the antioxidant role of a phenylpropanoid coupling product in planta. PMID:25238751

  5. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  6. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-09-15

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  7. Thioredoxin reductase.

    PubMed Central

    Mustacich, D; Powis, G

    2000-01-01

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  8. Synthesis and biological evaluation of novel gigantol derivatives as potential agents in prevention of diabetic cataract

    USDA-ARS?s Scientific Manuscript database

    As a continuation of our efforts directed towards the development of natural anti-diabetic cataract agents, gigantol was isolated from Herba dendrobii and was found to inhibit both aldose reductase (AR) and inducible nitric oxide synthase (iNOS) activity, which play a significant role in the develop...

  9. HMG CoA reductase inhibitors (statins) for preventing acute kidney injury after surgical procedures requiring cardiac bypass.

    PubMed

    Lewicki, Michelle; Ng, Irene; Schneider, Antoine G

    2015-03-11

    Acute kidney injury (AKI) is common in patients undergoing cardiac surgery among whom it is associated with poor outcomes, prolonged hospital stays and increased mortality. Statin drugs can produce more than one effect independent of their lipid lowering effect, and may improve kidney injury through inhibition of postoperative inflammatory responses. This review aimed to look at the evidence supporting the benefits of perioperative statins for AKI prevention in hospitalised adults after surgery who require cardiac bypass. The main objectives were to 1) determine whether use of statins was associated with preventing AKI development; 2) determine whether use of statins was associated with reductions in in-hospital mortality; 3) determine whether use of statins was associated with reduced need for RRT; and 4) determine any adverse effects associated with the use of statins. We searched the Cochrane Renal Group's Specialised Register to 13 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. Randomised controlled trials (RCTs) that compared administration of statin therapy with placebo or standard clinical care in adult patients undergoing surgery requiring cardiopulmonary bypass and reporting AKI, serum creatinine (SCr) or need for renal replacement therapy (RRT) as an outcome were eligible for inclusion. All forms and dosages of statins in conjunction with any duration of pre-operative therapy were considered for inclusion in this review. All authors extracted data independently and assessments were cross-checked by a second author. Likewise, assessment of study risk of bias was initially conducted by one author and then by a second author to ensure accuracy. Disagreements were arbitrated among authors until consensus was reached. Authors from two of the included studies provided additional data surrounding post-operative SCr as well as need for RRT. Meta-analyses were used to assess the outcomes of AKI, SCr

  10. Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae.

    PubMed

    Park, Eun-Hee; Lee, Ha-Yeon; Ryu, Yeon-Woo; Seo, Jin-Ho; Kim, Myoung-Dong

    2011-10-01

    The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG- 3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and H(2)O(2), respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugar-independent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.

  11. Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis.

    PubMed

    Méndez, Andrea A E; Pena, Liliana B; Benavides, María P; Gallego, Susana M

    2016-12-01

    In the present study we evaluated the pre-treatment (priming) of Arabidopsis thaliana plants with sodium nitroprusside (SNP), a NO-donor, as an interesting approach for improving plant tolerance to cadmium stress. We focused on the cell redox balance and on the methionine sulfoxide reductases (MSR) family as a key component of such response. MSR catalyse the reversible oxidation of MetSO residues back to Met. Five MSRA genes and nine MSRB genes have been identified in A. thaliana, coding for proteins with different subcellular locations. After treating 20 days-old A. thaliana (Col 0) plants with 100 μM CdCl2, increased protein carbonylation in leaf tissue, lower chlorophyll content and higher levels of reactive oxygen species (ROS) in chloroplasts were detected, together with increased accumulation of all MSR transcripts evaluated. Further analysis showed reduction in guaiacol peroxidase activity (GPX) and increased catalase (CAT) activity, with no effect on ascorbate peroxidase (APX) activity. Pre-exposition of plants to 100 μM SNP before cadmium treatment restored redox balance; this seems to be linked to a better performance of antioxidant defenses. Our results indicate that NO priming may be acting as a modulator of plant antioxidant system by interfering in oxidative responses and by preventing up-regulation of MSR genes caused by metal exposure. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Aldo–Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers

    PubMed Central

    Matsunaga, Toshiyuki; Wada, Yasuhiro; Endo, Satoshi; Soda, Midori; El-Kabbani, Ossama; Hara, Akira

    2011-01-01

    The human aldo–keto reductase AKR1B10, originally identified as an aldose reductase-like protein and human small intestine aldose reductase, is a cytosolic NADPH-dependent reductase that metabolizes a variety of endogenous compounds, such as aromatic and aliphatic aldehydes and dicarbonyl compounds, and some drug ketones. The enzyme is highly expressed in solid tumors of several tissues including lung and liver, and as such has received considerable interest as a relevant biomarker for the development of those tumors. In addition, AKR1B10 has been recently reported to be significantly up-regulated in some cancer cell lines (medulloblastoma D341 and colon cancer HT29) acquiring resistance toward chemotherapeutic agents (cyclophosphamide and mitomycin c), suggesting the validity of the enzyme as a chemoresistance marker. Although the detailed information on the AKR1B10-mediated mechanisms leading to the drug resistance process is not well understood so far, the enzyme has been proposed to be involved in functional regulations of cell proliferation and metabolism of drugs and endogenous lipids during the development of chemoresistance. This article reviews the current literature focusing mainly on expression profile and roles of AKR1B10 in the drug resistance of cancer cells. Recent developments of AKR1B10 inhibitors and their usefulness in restoring sensitivity to anticancer drugs are also reviewed. PMID:22319498

  13. Efficacy of HMG-CoA reductase inhibitors in the prevention of cerebrovascular attack in 1016 patients older than 75 years among 4014 type 2 diabetic individuals.

    PubMed

    Hayashi, Toshio; Kubota, Kiyoshi; Kawashima, Seinosuke; Sone, Hirohito; Watanabe, Hiroshi; Ohrui, Takashi; Yokote, Koutaro; Takemoto, Minoru; Araki, Atsushi; Noda, Mitsuhiko; Noto, Hiroshi; Sakuma, Ichiro; Yoshizumi, Masao; Ina, Koichiro; Nomura, Hideki

    2014-12-20

    HMG-CoA reductase inhibitors (statins) reduce ischemic heart disease (IHD) in middle-aged diabetic individuals, and LDL-cholesterol (LDL-C) is a risk factor. However, their preventive effects on cerebrovascular attack (CVA) have not been identified in elderly, especially in elderly ≥ 75 years (late elderly), who account for approximately 30% of diabetic individuals in Japan. Randomized controlled studies of statins for late elderly are difficult to carry out, because many co-morbidities in elderly disrupt randomized controlled conditions. We performed a prospective cohort study (Japan Cholesterol and Diabetes Mellitus Study) with 5.5 years of follow-up since 2004. A total of 4014 type 2 diabetic patients without previous IHD or CVA (n=1936 women; age = 67.4 ± 9.5 years; ≥ 75 years: n = 1016) were enrolled, while 405 patients were registered as sub-cohort patients. We recorded detailed information on medications and laboratory data after every change in medication in patients of sub-cohort and suffered from IHD or CVA. We subdivided statin-users into prevalent, new and non-users. A total of 104 CVAs occurred during 5.5-years. Plasma HDL-C level was inversely correlated with CVA in patients ≥ 65 years. In case-control study, among patients who were not prescribed statins, CVA increased in age-dependent manner. CVA incidence was lower in prevalent and new statin-users than in non-users (hazard ratio [HR]:0.46, 0.523), especially in late elderly (HR: 0.51, 0.21). Statins reduced CVAs mainly due to a direct effect and partially due to the effects of HDL-C and glucose metabolism. No significant differences were observed between statins. Statins prevented CVA in middle-aged, elderly and late elderly diabetic patients via a direct effect. This study is the first to demonstrate the usefulness of observational studies for statistically analyzing agents' effects on late elderly. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Diabetes-induced increases in vascular permeability and changes in granulation tissue levels of sorbitol, myo-inositol, chiro-inositol, and scyllo-inositol are prevented by sorbinil.

    PubMed

    Williamson, J R; Chang, K; Rowold, E; Marvel, J; Tomlinson, M; Sherman, W R; Ackermann, K E; Kilo, C

    1986-04-01

    In a recently developed animal model, we investigated the pathogenesis of diabetic vascular disease and demonstrated that 125I-albumin permeation is markedly increased in new "granulation tissue" vessels formed in subcutaneous tissue after the onset of diabetes. The studies described in this report were undertaken to examine the effects of an aldose reductase inhibitor on diabetes-induced increases in vascular permeability in this animal model. 125I-albumin permeation was assessed 3 weeks after the subcutaneous implantation of sterile preweighed polyester fabric (to stimulate angiogenesis) in diabetic male Sprague-Dawley rats, in controls, and in diabetic rats given sorbinil approximately 12 or approximately 25 mg/kg/d mixed in ground rat chow. Sorbinil administration prevented the diabetes-induced increase in vascular permeability by approximately 60% at the lower dose and by approximately 80% at the higher dose without affecting body weight or plasma glucose levels. Diabetes-induced changes in tissue levels of sorbitol, myo-inositol, scyllo-inositol, and chiro-inositol were also prevented by the high dose of sorbinil (data were not obtained for the lower dose). These observations are consistent with evidence linking diabetic cataracts and neuropathy to imbalances in sorbitol/inositol metabolism and support the hypothesis that diabetic vascular disease as well as neuropathy and cataracts are mediated by excess metabolism of glucose through the polyol pathway. Furthermore, these observations suggest that increased vascular permeability associated with diabetic microangiopathy in humans may be prevented by inhibitors of aldose reductase without the need to normalize blood glucose levels.

  15. Carbohydrate C-Glycoside Ketones: Introducing Ketone Chemistry into Locked-Ring Aldose Sugars

    USDA-ARS?s Scientific Manuscript database

    Chemical modification of aldose sugars at the anomeric position typically results in ring opening, and therefore the loss of structural integrity of the parent sugar molecule. This produces modified carbohydrates that differ markedly from the parent molecule. The research presented here focuses on...

  16. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid--Role of HMG-CoA reductase.

    PubMed

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Raja, Boobalan; Chatterjee, Suvro

    2016-04-15

    The present study was designed to evaluate the effect of sinapic acid, a bioactive phenolic acid on high blood pressure associated cardiac dysfunction, kidney fibrosis and lipid alterations in N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Sinapic acid was administered to rats orally at a dosage of 40 mg/kg everyday for a period of 4 weeks. Sinapic acid treatment significantly decreased mean arterial pressure, left ventricular end diastolic pressure, organ weights (liver and kidney), lipid peroxidation products in tissues (liver and kidney), activities of hepatic marker enzymes and the levels of renal function markers in serum of l-NAME rats. Sinapic acid treatment also significantly increased the level of plasma nitric oxide metabolites, and enzymatic and non-enzymatic antioxidants in tissues of l-NAME rats. Tissue damage was assessed by histopathological examination. Alterations in plasma angiotensin-converting enzyme activity, level of plasma lipoproteins and tissue lipids were corrected by sinapic acid treatment in l-NAME rats. Sinapic acid treatment significantly decreased the activity of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase in plasma and liver, whereas the activity of lecithin cholesterol acyl transferase was significantly increased in the plasma of hypertensive rats. Docking result showed the interaction between sinapic acid and HMG-CoA reductase. Sinapic acid has shown best ligand binding energy of -5.5 kcal/M. Moreover, in chick embryo model, sinapic acid improved vessel density on chorioallantoic membrane. These results of the present study concludes that sinapic acid acts as a protective agent against hypertension associated cardiac dysfunction, kidney fibrosis and lipid alterations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 5α-Reductase Inhibition Prevents the Luteal Phase Increase in Plasma Allopregnanolone Levels and Mitigates Symptoms in Women with Premenstrual Dysphoric Disorder.

    PubMed

    Martinez, Pedro E; Rubinow, David R; Nieman, Lynnette K; Koziol, Deloris E; Morrow, A Leslie; Schiller, Crystal E; Cintron, Dahima; Thompson, Karla D; Khine, Khursheed K; Schmidt, Peter J

    2016-03-01

    Changes in neurosteroid levels during the luteal phase of the menstrual cycle may precipitate affective symptoms. To test this hypothesis, we stabilized neurosteroid levels by administering the 5α-reductase inhibitor dutasteride to block conversion of progesterone to its neurosteroid metabolite allopregnanolone in women with premenstrual dysphoric disorder (PMDD) and in asymptomatic control women. Sixteen women with prospectively confirmed PMDD and 16 control women participated in one of two separate randomized, double-blind, placebo-controlled, cross-over trials, each lasting three menstrual cycles. After one menstrual cycle of single-blind placebo, participants were randomized to receive, for the next two menstrual cycles, either double-blind placebo or dutasteride (low-dose 0.5 mg/day in the first eight PMDD and eight control women or high-dose 2.5 mg/day in the second group of women). All women completed the daily rating form (DRF) and were evaluated in clinic during the follicular and luteal phases of each menstrual cycle. Main outcome measures were the DRF symptoms of irritability, sadness, and anxiety. Analyses were performed with SAS PROC MIXED. In the low-dose group, no significant effect of dutasteride on PMDD symptoms was observed compared with placebo (ie, symptom cyclicity maintained), and plasma allopregnanolone levels increased in women with PMDD from follicular to the luteal phases, suggesting the absence of effect of the low-dose dutasteride on 5α-reductase. In contrast, the high-dose group experienced a statistically significant reduction in several core PMDD symptoms (ie, irritability, sadness, anxiety, food cravings, and bloating) on dutasteride compared with placebo. Dutasteride had no effect on mood in controls. Stabilization of allopregnanolone levels from the follicular to the luteal phase of the menstrual cycle by blocking the conversion of progesterone to its 5α-reduced neurosteroid metabolite mitigates symptoms in PMDD. These data

  18. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  19. Aralia elata prevents neuronal death by downregulating tonicity response element binding protein in diabetic retinopathy.

    PubMed

    Kim, Seong-Jae; Yoo, Woong-Sun; Kim, Hwajin; Kwon, Jeong Eun; Hong, Eun-Kyung; Choi, Meeyoung; Han, Yongseop; Chung, Inyoung; Seo, Seongwook; Park, Jongmoon; Yoo, Ji-Myong; Choi, Wan-Sung

    2015-01-01

    The present study addresses the role of tonicity response element binding protein (TonEBP) in retinal ganglion cell (RGC) death in diabetic retinopathy and the impact of Aralia elata extract on the TonEBP/RGC interaction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). Control mice received phosphate-buffered saline. After five injections of STZ or saline buffer, A. elata extract was administered by daily oral tube feeding for 7 weeks. All mice were killed at 2 months after the last injection of STZ or saline and the extent of cell death together with the protein expression levels of TonEBP, aldose reductase (AR) and nuclear factor-kappa B (NF-κB) were examined. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive signals were colocalized with TonEBP-immunoreactive RGCs. The apoptotic cell death of RGCs and the expression levels of TonEBP, AR and NF-κB were significantly increased in the retinas of diabetic mice compared with controls at 2 months after the induction of diabetes. However, these changes were effectively blocked by the administration of A. elata extract. These results indicate that A. elata prevents diabetes-induced RGC apoptosis and downregulates TonEBP expression. Therefore, A. elata extract may have therapeutic potential to prevent diabetes-induced retinal neurodegeneration in diabetic retinopathy. © 2015 S. Karger AG, Basel.

  20. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers.

    PubMed

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash

    2017-02-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.

  1. Prevention of LDL-suppression of HMG-CoA reductase (HMGR) activity by progesterone (PG): evidence for cytochrome P-450 involvement

    SciTech Connect

    Sexton, R.C.; Gupta, A.; Panini, S.R.; Rudney, H.

    1987-05-01

    Incubation of rat intestinal epithelial cells (IEC-6) with PG has been reported by us to prevent the suppression of HMGR activity by LDL. In the present study, addition of LDL and PG to IEC-6 cells resulted in a 2 fold increase in cellular free cholesterol (CH) in 24 h, while HMGR activity remained elevated. PG did not affect the internalization and degradation of (/sup 125/I) LDL nor the accumulation of free (/sup 3/H) CH in cells incubated with (/sup 3/H-cholesteryl linoleate)-LDL. Also, PG did not affect the intracellular transport of LDL-derived (/sup 3/H) CH to the plasma membrane nor the efflux of the (/sup 3/H) CH into medium containing human high density lipoprotein. Addition of LDL to cells, in which the cellular CH was radiolabeled from (/sup 3/H) acetate, resulted in an increased formation of radiolabeled oxysterols, detected by HPLC, and a corresponding decrease in HMGR activity. PG attenuated both the LDL-induced formation of oxysterols and suppression of HMGR activity. PG inhibited cytochrome P-450 dependent oxidation of benzphetamine, aminopyrine and aniline by liver microsomes from phenobarbitol treated rats. These results suggest PG may prevent LDL suppression of HMGR activity in IEC-6 cells by inhibiting cytochrome P-450 dependent formation of regulatory oxysterols.

  2. Sorbinil does not prevent hyperfiltration, elevated ultrafiltration pressure and albuminuria in streptozotocin-diabetic rats.

    PubMed

    Körner, A; Celsi, G; Eklöf, A C; Linné, T; Persson, B; Aperia, A

    1992-05-01

    The effects of aldose reductase inhibition on kidney function were studied in rats with streptozotocin-induced diabetes mellitus. Diabetic rats were fed sorbinil (20 and 50 mg/kg) by daily gastric gavage and were compared with untreated diabetic rats and normal rats. The rats were under daily supervision with regard to blood glucose control, insulin administration and body weight. The aim was to promote continuous body growth and to maintain the blood glucose concentration at around 22 mmol/l without large day-to-day fluctuations. The renal functional changes observed in this well-established diabetic model closely resembled those reported in human Type 1 (insulin-dependent) diabetes mellitus. Sorbinil treatment completely prevented renal cortical sorbital accumulation, but did not abolish kidney enlargement or the increase in ultrafiltration pressure and glomerular filtration rate. Albumin excretion was increased to the same extent in the sorbinil-treated and in the untreated diabetic rats. We conclude that increased metabolism of glucose to sorbitol does not cause the hyperfiltration in rats with streptozotocin-induced diabetes.

  3. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate*

    PubMed Central

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-01-01

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  4. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    PubMed

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Immunological approach to the regulation of nitrate reductase in Monoraphidium braunii.

    PubMed

    Díez, J; López-Ruiz, A

    1989-02-01

    The effects of different culture conditions on nitrate reductase activity and nitrate reductase protein from Monoraphidium braunii have been studied, using two different immunological techniques, rocket immunoelectrophoresis and an enzyme-linked immunosorbent assay, to determine nitrate reductase protein. The nitrogen sources ammonium and glutamine repressed nitrate reductase synthesis, while nitrite, alanine, and glutamate acted as derepressors. There was a four- to eightfold increase of nitrate reductase activity and a twofold increase of nitrate reductase protein under conditions of nitrogen starvation versus growth on nitrate. Nitrate reductase synthesis was repressed in darkness. However, when Monoraphidium was grown under heterotrophic conditions with glucose as the carbon and energy source, the synthesis of nitrate reductase was maintained. With ammonium or darkness, changes in nitrate reductase activity correlated fairly well with changes in nitrate reductase protein, indicating that in both cases loss of activity was due to repression and not to inactivation of the enzyme. Experiments using methionine sulfoximine, to inhibit ammonium assimilation, showed that ammonium per se and not a product of its metabolism was the corepressor of the enzyme. The appearance of nitrate reductase activity after transferring the cells to induction media was prevented by cycloheximide and by 6-methylpurine, although in this latter case the effect was observed only in cells preincubated with the inhibitor for 1 h before the induction period.

  6. Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1-A resolution.

    PubMed

    Khurana, S; Powers, D B; Anderson, S; Blaber, M

    1998-06-09

    The three-dimensional structure of Corynebacterium 2, 5-diketo-D-gluconic acid reductase A (2,5-DKGR A; EC 1.1.1.-), in complex with cofactor NADPH, has been solved by using x-ray crystallographic data to 2.1-A resolution. This enzyme catalyzes stereospecific reduction of 2,5-diketo-D-gluconate (2,5-DKG) to 2-keto-L-gulonate. Thus the three-dimensional structure has now been solved for a prokaryotic example of the aldo-keto reductase superfamily. The details of the binding of the NADPH cofactor help to explain why 2,5-DKGR exhibits lower binding affinity for cofactor than the related human aldose reductase does. Furthermore, changes in the local loop structure near the cofactor suggest that 2,5-DKGR will not exhibit the biphasic cofactor binding characteristics observed in aldose reductase. Although the crystal structure does not include substrate, the two ordered water molecules present within the substrate-binding pocket are postulated to provide positional landmarks for the substrate 5-keto and 4-hydroxyl groups. The structural basis for several previously described active-site mutants of 2,5-DKGR A is also proposed. Recent research efforts have described a novel approach to the synthesis of L-ascorbate (vitamin C) by using a genetically engineered microorganism that is capable of synthesizing 2,5-DKG from glucose and subsequently is transformed with the gene for 2,5-DKGR. These modifications create a microorganism capable of direct production of 2-keto-L-gulonate from D-glucose, and the gulonate can subsequently be converted into vitamin C. In economic terms, vitamin C is the single most important specialty chemical manufactured in the world. Understanding the structural determinants of specificity, catalysis, and stability for 2,5-DKGR A is of substantial commercial interest.

  7. Vitamin U, a novel free radical scavenger, prevents lens injury in rats administered with valproic acid.

    PubMed

    Tunali, S; Kahraman, S; Yanardag, R

    2015-09-01

    Valproic acid (2-propyl-pentanoic acid, VPA) is the most widely prescribed antiepileptic drug due to its ability to treat a broad spectrum of seizure types. VPA exhibits various side effects such as organ toxicity, teratogenicity, and visual disturbances. S-Methylmethioninesulfonium is a derivative of the amino acid methionine and it is widely referred to as vitamin U (Vit U). This study was aimed to investigate the effects of Vit U on lens damage parameters of rats exposed to VPA. Female Sprague Dawley rats were divided into four groups. Group I comprised control animals. Group II included control rats supplemented with Vit U (50 mg/kg/day) for 15 days. Group III was given only VPA (500 mg/kg/day) for 15 days. Group IV was given VPA + Vit U (in same dose and time). Vit U was given to rats by gavage and VPA was given intraperitoneally. On the 16th day of experiment, all the animals which were fasted overnight were killed. Lens was taken from animals, homogenized in 0.9% saline to make up to 10% (w/v) homogenate. The homogenates were used for protein, glutathione, lipid peroxidation levels, and antioxidant enzymes activities. Lens lipid peroxidation levels and aldose reductase and sorbitol dehydrogenase activities were increased in VPA group. On the other hand, glutathione levels, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and paraoxonase activities were decreased in VPA groups. Treatment with Vit U reversed these effects. This study showed that Vit U exerted antioxidant properties and may prevent lens damage caused by VPA.

  8. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

    NASA Astrophysics Data System (ADS)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

  9. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  10. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, C.; Sempéré, R.

    2003-04-01

    Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in

  12. Prevention

    MedlinePlus

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  13. Catalytic properties and crystal structure of quinoprotein aldose sugar dehydrogenase from hyperthermophilic archaeon Pyrobaculum aerophilum.

    PubMed

    Sakuraba, Haruhiko; Yokono, Kaori; Yoneda, Kazunari; Watanabe, Akira; Asada, Yasuhiko; Satomura, Takenori; Yabutani, Tomoki; Motonaka, Junko; Ohshima, Toshihisa

    2010-10-15

    We identified a gene encoding a soluble quinoprotein glucose dehydrogenase homologue in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The enzyme was extremely thermostable, and the activity of the pyrroloquinoline quinone (PQQ)-bound holoenzyme was not lost after incubation at 100 degrees C for 10 min. The crystal structure of the enzyme was determined in both the apoform and as the PQQ-bound holoenzyme. The overall fold of the P. aerophilum enzyme showed significant similarity to that of soluble quinoprotein aldose sugar dehydrogenase (Asd) from E. coli. However, clear topological differences were observed in the two long loops around the PQQ-binding sites of the two enzymes. Structural comparison revealed that the hyperthermostability of the P. aerophilum enzyme is likely attributable to the presence of an extensive aromatic pair network located around a beta-sheet involving N- and C-terminal beta-strands. 2010 Elsevier Inc. All rights reserved.

  14. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  15. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  16. Prevention

    Treesearch

    Kerry Britton; Barbara Illman; Gary Man

    2010-01-01

    Prevention is considered the most cost-effective element of the Forest Service Invasive Species Strategy (USDA Forest Service 2004). What makes prevention difficult is the desire to maximize free trade and the resulting benefits to society while, at the same time, protecting natural resources. The role of science is to first identify which commodities pose an...

  17. Histochemical localization of nitrate reductase.

    PubMed

    Vaughn, K C; Duke, S O

    1981-01-01

    NADH-dependent nitrate reductase (E.C. 1.6.6.1) was ultrastructurally localized in norflurazon-treated and control soybean cotyledons [Glycine max (L.) Merr.] by a method based upon the increase in osmiophilia due to the formation of an azo dye. The reaction product was observed in small vesicles throughout the cytoplasm. An apparent transport of nitrite to the plastid, the site of nitrite reduction, may occur through fusion of the nitrite-containing vesicles with the chloroplast envelope. Plants grown in tungstate lacked nitrate reductase activity as measured by standard assay procedures, and showed no increase in osmiophilia, suggesting a degree of specificity of this cytochemical procedure.

  18. A Gas Chromatographic Method for the Determination of Aldose and Uronic Acid Constituents of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Jones, Thomas M.; Albersheim, Peter

    1972-01-01

    A major problem in determining the composition of plant cell wall polysaccharides has been the lack of a suitable method for accurately determining the amounts of galacturonic and glucuronic acids in such polymers. A gas chromatographic method for aldose analysis has been extended to include uronic acids. Cell wall polysaccharides are depolymerized by acid hydrolysis followed by treatment with a mixture of fungal polysaccharide-degrading enzymes. The aldoses and uronic acids released by this treatment are then reduced with NaBH4 to alditols and aldonic acids, respectively. The aldonic acids are separated from the alditols with Dowex-1 (acetate form) ion exchange resin, which binds the aldonic acids. The alditols, which do not bind, are washed from the resin and then acetylated with acetic anhydride to form the alditol acetate derivatives. The aldonic acids are eluted from the resin with HCl. After the resin has been removed, the HCl solution of the aldonic acids is evaporated to dryness, converting the aldonic acids to aldonolactones. The aldonolactones are reduced with NaBH4 to the corresponding alditols, dried and acetylated. The resulting alditol acetate mixtures produced from the aldoses and those from the uronic acids are analyzed separately by gas chromatography. This technique has been used to determine the changes in composition of Red Kidney bean (Phaseolus vulgaris) hypocotyl cell walls during growth, and to compare the cell wall polysaccharide compositions of several parts of bean plants. Galacturonic acid is found to be a major component of all the cell wall polysaccharides examined. PMID:16658086

  19. Steroidal pyrazolines evaluated as aromatase and quinone reductase-2 inhibitors for chemoprevention of cancer.

    PubMed

    Abdalla, Mohamed M; Al-Omar, Mohamed A; Bhat, Mashooq A; Amr, Abdel-Galil E; Al-Mohizea, Abdullah M

    2012-05-01

    The aromatase and quinone reductase-2 inhibition of synthesized heterocyclic pyrazole derivatives fused with steroidal structure for chemoprevention of cancer is reported herein. All compounds were interestingly less toxic than the reference drug (Cyproterone(®)). The aromatase inhibitory activities of these compounds were much more potent than the lead compound resveratrol, which has an IC(50) of 80 μM. In addition, all the compounds displayed potent quinone reductase-2 inhibition. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). The aromatase and quinone reductase-2 inhibitors resulting from this study have potential value in the treatment and prevention of cancer.

  20. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.

    PubMed

    Wang, Jing-Fang; Wei, Dong-Qing; Lin, Ying; Wang, Yong-Hua; Du, Hong-Li; Li, Yi-Xve; Chou, Kuo-Chen

    2007-07-27

    NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.

  1. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes

    PubMed Central

    Spite, Matthew; Baba, Shahid P.; Ahmed, Yonis; Barski, Oleg A.; Nijhawan, Kanchan; Petrash, J. Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-01-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone (‘core’ aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte–endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C16:0-20:4 phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C16:0-20:4 phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are

  2. LC-MS-MS Characterization of Forced Degradation Products of Fidarestat, a Novel Aldose Reductase Inhibitor: Development and Validation of a Stability-Indicating RP-HPLC Method.

    PubMed

    Talluri, M V N Kumar; Khatoon, Lubna; Kalariya, Pradipbhai D; Chavan, Balasaheb B; Ragampeta, Srinivas

    2015-10-01

    An accurate, precise, robust and selective stability-indicating liquid chromatographic (LC) method has been developed for the monitoring of fidarestat in the presence of its forced degradants. The drug was subjected to hydrolysis (acid, alkali and neutral degradation), oxidation, photolysis and thermal stress conditions. The drug degraded significantly under hydrolytic (basic, acidic and neutral) and oxidative stress conditions, whereas it was found to be stable in photolytic and thermal conditions. The chromatographic separation was achieved on a Grace C18, (250 mm × 4.6 mm × 5 μm) column using gradient mobile phase system consisting of 10 mM of ammonium acetate buffer at pH 4 and acetonitrile at a flow rate of 1 mL/min with UV detection at 283 nm. The developed method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS-MS) for characterization of all the degradation products. A total of five new degradation products were identified and characterized by LC-QTOF-MS-MS. The developed LC method was validated as per ICH guideline Q2 (R1). The proposed method was found to be successively applied for the quality control of fidarestat in bulk drug analysis.

  3. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; hide

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  4. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  5. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  6. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1987-01-01

    In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812

  7. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase

    SciTech Connect

    Hallenbeck, P.C. ); Clark, M.A.; Barrett, E.L. )

    1989-06-01

    Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions. Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (<0.33%). It was also prevented by the presence of 0.1 mM nitrate. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10{sup {minus}7} M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10{sup {minus}7}M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADHP and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.

  8. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  9. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  10. Cysteine-286 as the site of acylation of the Lux-specific fatty acyl-CoA reductase.

    PubMed

    Lee, C Y; Meighen, E A

    1997-04-04

    The channelling of fatty acids into the fatty aldehyde substrate for the bacterial bioluminescence reaction is catalyzed by a fatty acid reductase multienzyme complex, which channels fatty acids through the thioesterase (LuxD), synthetase (LuxE) and reductase (LuxC) components. Although all three components can be readily acylated in extracts of different luminescent bacteria, this complex has been successfully purified only from Photobacterium phosphoreum and the sites of acylation identified on LuxD and LuxE. To identify the acylation site on LuxC, the nucleotide sequence of P. phosphoreum luxC has been determined and the gene expressed in a mutant Escherichia coli strain. Even in crude extracts, the acylated reductase intermediate as well as acyl-CoA reductase activity could be readily detected, providing the basis for analysis of mutant reductases. Comparison of the amino-acid sequences of LuxC from P. phosphoreum, P. leiognathi and other luminescent bacteria, showed that only three cysteine residues (C171, C279, and C286) were conserved. As a cysteine residue on LuxC has been implicated in fatty acyl transfer, each of the conserved cysteine residues of the P. phosphoreum and P. leiognathi reductases was converted to a serine residue, and the properties of the mutant proteins examined. Only mutation of C286-blocked reductase activity and prevented formation of the acylated reductase intermediate, showing that C286 is the site of acylation on LuxC.

  11. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  12. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... About half of these individuals adopt a male gender role in adolescence or early adulthood. Related Information ... 1730-5. Citation on PubMed Cohen-Kettenis PT. Gender change in 46,XY persons with 5alpha-reductase- ...

  13. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  14. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  15. Catabolism of 1,5-anhydro-D-fructose in Sinorhizobium morelense S-30.7.5: discovery, characterization, and overexpression of a new 1,5-anhydro-D-fructose reductase and its application in sugar analysis and rare sugar synthesis.

    PubMed

    Kühn, Annette; Yu, Shukun; Giffhorn, Friedrich

    2006-02-01

    The bacterium Sinorhizobium morelense S-30.7.5 was isolated by a microbial screening using the sugar 1,5-anhydro-D-fructose (AF) as the sole carbon source. This strain metabolized AF by a novel pathway involving its reduction to 1,5-anhydro-D-mannitol (AM) and the further conversion of AM to D-mannose by C-1 oxygenation. Growth studies showed that the AF metabolizing capability is not confined to S. morelense S-30.7.5 but is a more common feature among the Rhizobiaceae. The AF reducing enzyme was purified and characterized as a new NADPH-dependent monomeric reductase (AFR, EC 1.1.1.-) of 35.1 kDa. It catalyzed the stereoselective reduction of AF to AM and also the conversion of a number of 2-keto aldoses (osones) to the corresponding manno-configurated aldoses. In contrast, common aldoses and ketoses, as well as nonsugar aldehydes and ketones, were not reduced. A database search using the N-terminal AFR sequence retrieved a putative 35-kDa oxidoreductase encoded by the open reading frame Smc04400 localized on the chromosome of Sinorhizobium meliloti 1021. Based on sequence information for this locus, the afr gene was cloned from S. morelense S-30.7.5 and overexpressed in Escherichia coli. In addition to the oxidoreductase of S. meliloti 1021, AFR showed high sequence similarities to putative oxidoreductases of Mesorhizobium loti, Brucella suis, and B. melitensis but not to any oxidoreductase with known functions. AFR could be assigned to the GFO/IDH/MocA family on the basis of highly conserved common structural features. His6-tagged AFR was used to demonstrate the utility of this enzyme for AF analysis and synthesis of AM, as well as related derivatives.

  16. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  17. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  18. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2014-07-01

    The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes. Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ∼6 weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers

  19. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  20. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  1. The tyrosyl free radical in ribonucleotide reductase.

    PubMed Central

    Gräslund, A; Sahlin, M; Sjöberg, B M

    1985-01-01

    The enzyme, ribonucleotide reductase, catalyses the formation of deoxyribonucleotides from ribonucleotides, a reaction essential for DNA synthesis in all living cells. The Escherichia coli ribonucleotide reductase, which is the prototype of all known eukaryotic and virus-coded enzymes, consists of two nonidentical subunits, proteins B1 and B2. The B2 subunit contains an antiferromagnetically coupled pair of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of an electron, has its unpaired spin density delocalized in the aromatic ring of tyrosine. Effects of iron-radical interaction indicate a relatively close proximity between the iron center and the radical. The EPR signal of the radical can be studied directly in frozen packed cells of E. coli or mammalian origin, if the cells are made to overproduce ribonucleotide reductase. The hypothetic role of the tyrosyl free radical in the enzymatic reaction is not yet elucidated, except in the reaction with the inhibiting substrate analogue 2'-azido-CDP. In this case, the normal tyrosyl radical is destroyed with concomitant appearance of a 2'-azido-CDP-localized radical intermediate. Attempts at spin trapping of radical reaction intermediates have turned out negative. In E. coli the activity of ribonucleotide reductase may be regulated by enzymatic activities that interconvert a nonradical containing form and the fully active protein B2. In synchronized mammalian cells, however, the cell cycle variation of ribonucleotide reductase, studied by EPR, was shown to be due to de novo protein synthesis. Inhibitors of ribonucleotide reductase are of medical interest because of their ability to control DNA synthesis. One example is hydroxyurea, used in cancer therapy, which selectively destroys the tyrosyl free radical. PMID:3007085

  2. Inhibition of human anthracycline reductases by emodin - A possible remedy for anthracycline resistance.

    PubMed

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects.

  3. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  4. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase.

    PubMed

    Liu, G Y

    2009-09-01

    The complete mRNA sequences of two soybean (glycine max) genes-vestitone reductase and chalcone reductase, were amplified using the rapid amplification of cDNA ends methods. The sequence analysis of these two genes revealed that soybean vestitone reductase gene encodes a protein of 327 amino acids which has high homology with the vestitone reductase of Medicago sativa (77%). The soybean chalcone reductase gene encodes a protein of 314 amino acids that has high homology with the chalcone reductase of kudzu vine (88%) and medicago sativa (83%). The expression profiles of the soybean vestitone reductase and chalcone reductase genes were studied and the results indicated that these two soybean genes were differentially expressed in detected soybean tissues including leaves, stems, roots, inflorescences, embryos and endosperm. Our experiment established the foundation for further research on these two soybean genes.

  5. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase

    PubMed Central

    Schumacher, Marc M; Elsabrouty, Rania; Seemann, Joachim; Jo, Youngah; DeBose-Boyd, Russell A

    2015-01-01

    Schnyder corneal dystrophy (SCD) is an autosomal dominant disorder in humans characterized by abnormal accumulation of cholesterol in the cornea. SCD-associated mutations have been identified in the gene encoding UBIAD1, a prenyltransferase that synthesizes vitamin K2. Here, we show that sterols stimulate binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase, which is subject to sterol-accelerated, endoplasmic reticulum (ER)-associated degradation augmented by the nonsterol isoprenoid geranylgeraniol through an unknown mechanism. Geranylgeraniol inhibits binding of UBIAD1 to reductase, allowing its degradation and promoting transport of UBIAD1 from the ER to the Golgi. CRISPR-CAS9-mediated knockout of UBIAD1 relieves the geranylgeraniol requirement for reductase degradation. SCD-associated mutations in UBIAD1 block its displacement from reductase in the presence of geranylgeraniol, thereby preventing degradation of reductase. The current results identify UBIAD1 as the elusive target of geranylgeraniol in reductase degradation, the inhibition of which may contribute to accumulation of cholesterol in SCD. DOI: http://dx.doi.org/10.7554/eLife.05560.001 PMID:25742604

  6. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-05

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 μM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.

  7. Crystal Structure of Saccharomyces Cerevisiae 3'-Phosphoadenosine-5'-Phosphosulfate Reductase Complexed With Adenosine 3',5'-Bisphosphate

    SciTech Connect

    Yu, Z.; Lemongello, D.; Segel, I.H.; Fisher, A.J.

    2009-05-28

    Most assimilatory bacteria, fungi, and plants species reduce sulfate (in the activated form of APS or PAPS) to produce reduced sulfur. In yeast, PAPS reductase reduces PAPS to sulfite and PAP. Despite the difference in substrate specificity and catalytic cofactor, PAPS reductase is homologous to APS reductase in both sequence and structure, and they are suggested to share the same catalytic mechanism. Metazoans do not possess the sulfate reduction pathway, which makes APS/PAPS reductases potential drug targets for human pathogens. Here, we present the 2.05 A resolution crystal structure of the yeast PAPS reductase binary complex with product PAP bound. The N-terminal region mediates dimeric interactions resulting in a unique homodimer assembly not seen in previous APS/PAPS reductase structures. The 'pyrophosphate-binding' sequence (47)TTAFGLTG(54) defines the substrate 3'-phosphate binding pocket. In yeast, Gly54 replaces a conserved aspartate found in APS reductases vacating space and charge to accommodate the 3'-phosphate of PAPS, thus regulating substrate specificity. Also, for the first time, the complete C-terminal catalytic motif (244)ECGIH(248) is revealed in the active site. The catalytic residue Cys245 is ideally positioned for an in-line attack on the beta-sulfate of PAPS. In addition, the side chain of His248 is only 4.2 A from the Sgamma of Cys245 and may serve as a catalytic base to deprotonate the active site cysteine. A hydrophobic sequence (252)RFAQFL(257) at the end of the C-terminus may provide anchoring interactions preventing the tail from swinging away from the active site as seen in other APS/PAPS reductases.

  8. Fumarate Reductase Activity of Streptococcus faecalis

    PubMed Central

    Aue, B. J.; Diebel, R. H.

    1967-01-01

    Some characteristics of a fumarate reductase from Streptococcus faecalis are described. The enzyme had a pH optimum of 7.4; optimal activity was observed when the ionic strength of the phosphate buffer was adjusted to 0.088. The Km value of the enzyme for reduced flavin mononucleotide was 2 × 10−4 m as determined with a 26-fold preparation. In addition to fumarate, the enzyme reduced maleate and mesaconate. No succinate dehydrogenase activity was detected, but succinate did act as an inhibitor of the fumarate reductase activity. Other inhibitors were malonate, citraconate, and trans-, trans-muconate. Metal-chelating agents did not inhibit the enzyme. A limited inhibition by sulfhydryl-binding agents was observed, and the preparations were sensitive to air oxidation and storage. Glycine, alanine, histidine, and possibly lysine stimulated fumarate reductase activity in the cell-free extracts. However, growth in media supplemented with glycine did not enhance fumarate reductase activity. The enzymatic activity appears to be constitutive. PMID:4960892

  9. Post-translational Regulation of Nitrate Reductase

    USDA-ARS?s Scientific Manuscript database

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  10. Synthesis of symmetric disulfides as potential alternative substrates for trypanothione reductase and glutathione reductase: Part 1.

    PubMed

    Jaouhari, R; Besheya, T; McKie, J H; Douglas, K T

    1995-12-01

    The synthesis of a series of symmetrical disulfides as potential substrates of trypanothione reductase and glutathione reductase was described. The key intermediate in the synthetic approach was the choice of S-(t)butylmercapto-L-cysteine (1). The spermidine ring in the native substrate, trypanothione disulfide (TSST), was replaced with 3-dimethyl-aminopropylamine (DMAPA), while theγ-Glu moiety was replaced by phenylalanyl or tryptophanyl residues. The same modifications in theγ-Glu moiety of glutathione disulfide (GSSG) were applied.

  11. Identification of structural domains within the large subunit of herpes simplex virus ribonucleotide reductase.

    PubMed

    Conner, J; Cross, A; Murray, J; Marsden, H

    1994-12-01

    The large subunit (R1) of herpes simplex virus (HSV) ribonucleotide reductase is a bifunctional protein consisting of a unique N-terminal protein kinase domain and a ribonucleotide reductase domain. Previous studies showed that the two functional domains are linked by a protease sensitive site. Here we provide evidence for two subdomains, of 30K and 53K, within the reductase domain. The two fragments, which were produced by limited proteolysis and were resistant to further degradation, remained tightly associated in a complex containing two molecules of each. They were capable of binding the R2 subunit of HSV ribonucleotide reductase with approximately the same affinity as the intact protein but the complex did not complement the small subunit (R2) to give an active enzyme. At low concentrations (0.4 micrograms/ml) of trypsin or V8 protease, cleavage between the subdomains was prevented by the presence of the N-terminal protein kinase domain. At higher protease concentrations (1 micrograms/ml) the N-terminal domain is extensively proteolysed and the 30K and 53K domains were generated. Identical results were obtained using purified R1 isolated from infected cell extracts or following expression in Escherichia coli. The origin of the two domains was investigated by N-terminal sequencing of the 53K fragment and by examining their reactivity with a panel of R1-specific monoclonal antibodies which we isolated and epitope mapped for that purpose. The trypsin cleavage site was found to lie between arginine 575 and asparagine 576, and proteolysis in this region was not prevented by the presence of R2 or the nonapeptide YAGAVVNDL. We propose that the ribonucleotide reductase region of HSV R1 exists in a two domain structure, and that the interdomain linking region is protected by the unique N terminus.

  12. The Intergenic Interplay between Aldose 1-Epimerase-Like Protein and Pectin Methylesterase in Abiotic and Biotic Stress Control

    PubMed Central

    Sheshukova, Ekaterina V.; Komarova, Tatiana V.; Pozdyshev, Denis V.; Ershova, Natalia M.; Shindyapina, Anastasia V.; Tashlitsky, Vadim N.; Sheval, Eugene V.; Dorokhov, Yuri L.

    2017-01-01

    The mechanical damage that often precedes the penetration of a leaf by a pathogen promotes the activation of pectin methylesterase (PME); the activation of PME leads to the emission of methanol, resulting in a “priming” effect on intact leaves, which is accompanied by an increased sensitivity to Tobacco mosaic virus (TMV) and resistance to bacteria. In this study, we revealed that mRNA levels of the methanol-inducible gene encoding Nicotiana benthamiana aldose 1-epimerase-like protein (NbAELP) in the leaves of intact plants are very low compared with roots. However, stress and pathogen attack increased the accumulation of the NbAELP mRNA in the leaves. Using transiently transformed plants, we obtained data to support the mechanism underlying AELP/PME-related negative feedback The insertion of the NbAELP promoter sequence (proNbAELP) into the N. benthamiana genome resulted in the co-suppression of the natural NbAELP gene expression, accompanied by a reduction in the NbAELP mRNA content and increased PME synthesis. Knockdown of NbAELP resulted in high activity of PME in the cell wall and a decrease in the leaf glucose level, creating unfavorable conditions for Agrobacterium tumefaciens reproduction in injected leaves. Our results showed that NbAELP is capable of binding the TMV movement protein (MPTMV) in vitro and is likely to affect the cellular nucleocytoplasmic transport, which may explain the sensitivity of NbAELP knockdown plants to TMV. Although NbAELP was primarily detected in the cell wall, the influence of this protein on cellular PME mRNA levels might be associated with reduced transcriptional activity of the PME gene in the nucleus. To confirm this hypothesis, we isolated the N. tabacum PME gene promoter (proNtPME) and showed the inhibition of proNtPME-directed GFP and GUS expression in leaves when co-agroinjected with the NbAELP-encoding plasmid. We hypothesized that plant wounding and/or pathogen attack lead to PME activation and increased methanol

  13. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase.

    PubMed Central

    Poolman, B; Royer, T J; Mainzer, S E; Schmidt, B F

    1990-01-01

    The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the isolation of galE, a special polymerase chain reaction-based technique was used to amplify the region upstream of galM prior to cloning. The galM protein was homologous to the mutarotase of Acinetobacter calcoaceticus, whereas the galE protein was homologous to UDPglucose 4-epimerase of Escherichia coli and Streptomyces lividans. The amino acid sequences of galM and galE proteins also showed significant similarity with the carboxy-terminal and amino-terminal domains, respectively, of UDPglucose 4-epimerase from Kluyveromyces lactis and Saccharomyces cerevisiae, suggesting that the yeast enzymes contain an additional, yet unidentified (mutarotase) activity. In accordance with the open reading frames of the structural genes, galM and galE were expressed as polypeptides with apparent molecular masses of 39 and 37 kilodaltons, respectively. Significant activities of mutarotase and UDPglucose 4-epimerase were detected in lysates of E. coli cells containing plasmids encoding galM and galE. Expression of galE in E. coli was increased 300-fold when the gene was placed downstream of the tac promoter. The gene order for the gal-lac gene cluster of S. thermophilus is galE-galM-lacS-lacZ. The flanking regions of these genes were searched for consensus promoter sequences and further characterized by primer extension analysis. Analysis of mRNA levels for the gal and lac genes in S. thermophilus showed a strong reduction upon growth in medium containing glucose instead of lactose. The activities of the lac (lactose transport and beta-galactosidase) and gal (UDPglucose 4-epimerase) proteins of lactose- and glucose-grown S. thermophilus cells matched the mRNA levels. Images PMID:1694527

  14. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily.

    PubMed Central

    Hoog, S S; Pawlowski, J E; Alzari, P M; Penning, T M; Lewis, M

    1994-01-01

    The 3.0-A-resolution x-ray structure of rat liver 3 alpha-hydroxysteroid dehydrogenase/dihydrodiol dehydrogenase (3 alpha-HSD, EC 1.1.1.50) was determined by molecular replacement using human placental aldose reductase as the search model. The protein folds into an alpha/beta or triose-phosphate isomerase barrel and lacks a canonical Rossmann fold for binding pyridine nucleotide. The structure contains a concentration of hydrophobic amino acids that lie in a cavity near the top of the barrel and that are presumed to be involved in binding hydrophobic substrates (steroids, prostaglandins, and polycyclic aromatic hydrocarbons) and inhibitors (nonsteroidal antiinflammatory drugs). At the distal end of this cavity lie three residues in close proximity that have been implicated in catalysis by site-directed mutagenesis--Tyr-55, Asp-50, and Lys-84. Tyr-55 is postulated to act as the general acid. 3 alpha-HSD shares significant sequence identity with other HSDs that belong to the aldo-keto reductase superfamily and these may show similar architecture. Other members of this family include prostaglandin F synthase and rho-crystallin. By contrast, 3 alpha-HSD shares no sequence identity with HSDs that are members of the short-chain alcohol dehydrogenase family but does contain the Tyr-Xaa-Xaa-Xaa-Lys consensus sequence implicated in catalysis in this family. In the 3 alpha-HSD structure these residues are on the periphery of the barrel and are unlikely to participate in catalysis. Images PMID:8146147

  15. Identification of a 4-deoxy-L-erythro-5-hexoseulose uronic acid reductase, FlRed, in an alginolytic bacterium Flavobacterium sp. strain UMI-01.

    PubMed

    Inoue, Akira; Nishiyama, Ryuji; Mochizuki, Shogo; Ojima, Takao

    2015-01-16

    In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC 4.2.2.3 and EC 4.2.2.11). The monosaccharide is non-enzymatically converted to 4-deoxy-L-ery thro-5-hexoseulose uronic acid (DEH), then reduced to 2-keto-3-deoxy-D-gluconate (KDG) by a specific reductase, and metabolized through the Entner-Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR) superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%-88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed) was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  16. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  17. Augmentation of CFTR maturation by S-nitrosoglutathione reductase

    PubMed Central

    Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J.; Lewis, Stephen J.

    2015-01-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. PMID:26637637

  18. Inhibition of pea ferredoxin-NADP(H) reductase by Zn-ferrocyanide.

    PubMed

    Dupuy, Daniela L Catalano; Rial, Daniela V; Ceccarelli, Eduardo A

    2004-11-01

    Ferredoxin-NADP(H) reductases (FNRs) represent a prototype of enzymes involved in numerous metabolic pathways. We found that pea FNR ferricyanide diaphorase activity was inhibited by Zn2+ (Ki 1.57 microM). Dichlorophenolindophenol diaphorase activity was also inhibited by Zn2+ (Ki 1.80 microM), but the addition of ferrocyanide was required, indicating that the inhibitor is an arrangement of both ions. Escherichia coli FNR was also inhibited by Zn-ferrocyanide, suggesting that inhibition is a consequence of common structural features of these flavoenzymes. The inhibitor behaves in a noncompetitive manner for NADPH and for artificial electron acceptors. Analysis of the oxidation state of the flavin during catalysis in the presence of the inhibitor suggests that the electron-transfer process between NADPH and the flavin is not significantly altered, and that the transfer between the flavin and the second substrate is mainly affected. Zn-ferrocyanide interacts with the reductase, probably increasing the accessibility of the prosthetic group to the solvent. Ferredoxin reduction was also inhibited by Zn-ferrocyanide in a noncompetitive manner, but the observed Ki was about nine times higher than those for the diaphorase reactions. The electron transfer to Anabaena flavodoxin was not affected by Zn-ferrocyanide. Binding of the apoflavodoxin to the reductase was sufficient to overcome the inhibition by Zn-ferrocyanide, suggesting that the interaction of FNRs with their proteinaceous electron partners may induce a conformational change in the reductase that alters or completely prevents the inhibitory effect.

  19. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  20. FRUCTOSE-6-PHOSPHATE REDUCTASE FROM SALMONELLA GALLINARUM

    PubMed Central

    Zancan, Glaci T.; Bacila, Metry

    1964-01-01

    Zancan, Glaci T. (Universidade do Paraná, Curitiba, Paraná, Brazil), and Metry Bacila. Fructose-6-phosphate reductase from Salmonella gallinarum. J. Bacteriol. 87:614–618. 1964.—A fructose-6-phosphate reductase present in cell-free extracts of Salmonella gallinarum was purified approximately 42 times. The optimal pH for this enzyme is 8.0. The enzyme is specific for fructose-6-phosphate and reduced nicotinamide adenine dinucleotide (NADH). The dissociation constants are 1.78 × 10−4m for fructose-6-phosphate and 8.3 × 10−5m for NADH. The Q10, reaction order, and equilibrium constant were determined. The enzyme is sensitive to p-chloromercuribenzoic acid, but not to o-iodosobenzoic acid nor to N-ethylmaleimide. PMID:14127579

  1. Characterization of human platelet glutathione reductase.

    PubMed

    Moroff, G; Kosow, D P

    1978-12-08

    Glutathione reductase (NAD(P)h:oxidized glutathione oxidoreductase, EC 1.6.4.2) has been purified 1000-fold from the cytoplasmic fraction of human platelets. Salts, including the heretofore unreported effect of sodium citrate, activate the NADPH-dependent reduction of oxidized glutathione. Sodium citrate and monovalent salt activation appears to involve multiple sites having different binding affinities. At sub-saturating sodium phosphate, non-linear double reciprocal plots indicative of substrate activation by oxidized glutathione were observed. Initial velocity double reciprocal plots at sub-saturating and saturating concentrations of phosphate generate a family of converging lines. NADP+ is a partial inhibitor, indicating that the reduction of oxidized glutathione can proceed by more than one pathway. FMN, FAD, and riboflavin inhibit platelet glutathione reductase by influencing only the V while nitrofurantoin inhibition is associated with an increase Koxidized glutathione and a decreased V.

  2. Characterization of erythrose reductases from filamentous fungi

    PubMed Central

    2013-01-01

    Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected. PMID:23924507

  3. One statin, two statins, three statins, more: similarities and differences of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    PubMed

    Turkoski, Beatrice B

    2011-01-01

    Statin drugs (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are one of the most widely prescribed drugs today. They are considered first-line therapy to lower blood serum cholesterol levels in conjunction with therapeutic lifestyle changes for both primary and secondary prevention of cardiovascular events. In the following discussion, a brief explanation of the background of statins will explain why they are deemed so important today. The similarities and differences between the different statins will be addressed, including a look at dosage, side effects, and cautions for the seven 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors currently available.

  4. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-03-10

    Enzyme electrodes show great potential for many applications, as biosensors and more recently as anodes and cathodes in biocatalytic fuel cells for power generation. Enzymes have advantages over metal catalysts, as they provide high specificity and reaction rates, while operating under mild conditions. Here we report on studies related to development of mass-producible, completely enzymatic printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks containing mediators and laccase, for reduction of oxygen, or aldose dehydrogenase, for oxidation of glucose. Mediator performance in these printed formats is compared to relative rate constants for the enzyme-mediator reaction in solution, for a range of anode and cathode mediators. The power output and stability of fuels cells using an acidophilic laccase isolated from Trametes hirsuta is greater, at pH 5, than that for cells based on Melanocarpus albomyces laccase, that shows optimal activity closer to neutral pH, at pH 6. Highest power output, although of limited stability, was observed for ThL/ABTS cathodes, providing a maximum power density of 3.5 μWcm(-2) at 0.34 V, when coupled to an ALDH glucose anode mediated by an osmium complex. The stability of cell voltage above a threshold of 200 mV under a moderate 75 kΩ load is used to benchmark printed fuel cell performance. Highest stability was obtained for a printed fuel cell using osmium complexes as mediators of glucose oxidation by aldose dehydrogenase, and oxygen reduction by T. hirsuta laccase, maintaining cell voltage above 200 mV for 137 h at pH 5. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells.

  5. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism. PMID:26536144

  6. Methionine sulfoxide reductase contributes to meeting dietary methionine requirements

    PubMed Central

    Zhao, Hang; Kim, Geumsoo; Levine, Rodney L.

    2012-01-01

    Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild. PMID:22521563

  7. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    PubMed Central

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  8. Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.

    PubMed

    Gromer, Stephan; Gross, Jurgen H

    2002-03-22

    Biochemical and clinical evidence indicates that monomethylated selenium compounds are crucial for the tumor preventive effects of the trace element selenium and that methylselenol (CH(3)SeH) is a key metabolite. As suggested by Ganther (Ganther, H. E. (1999) Carcinogenesis 20, 1657-1666), methylselenol and its precursor methylseleninate might exert their effects by inhibition of the selenoenzyme thioredoxin reductase via the irreversible formation of a diselenide bridge. Here we report that methylseleninate does not act as an inhibitor of mammalian thioredoxin reductase but is in fact an excellent substrate (K(m) of 18 microm, k(cat) of 23 s(-1)), which is reduced by the enzyme according to the equation 2 NADPH + 2 H(+) + CH(3)SeO(2)H --> 2 NADP(+) + 2 H(2)O + CH(3)SeH. The selenium-containing product of this reaction was identified by mass spectrometry. Nascent methylselenol was found to efficiently reduce both H(2)O(2) and glutathione disulfide. The implications of these findings for the antitumor activity of selenium are discussed. Methylseleninate was a poor substrate not only for human glutathione reductase but also for the non-selenium thioredoxin reductases enzymes from Drosophila melanogaster and Plasmodium falciparum. This suggests that the catalytic selenocysteine residue of mammalian thioredoxin reductase is essential for methylseleninate reduction.

  9. Expression, and Molecular and Enzymatic Characterization of Cu-Containing Nitrite Reductase from a Marine Ammonia-Oxidizing Gammaproteobacterium, Nitrosococcus oceani

    PubMed Central

    Kondo, Keitaro; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) remove intracellular nitrite to prevent its toxicity by a nitrifier denitrification pathway involving two denitrifying enzymes, nitrite reductase and nitric oxide reductase. Here, a Cu-containing nitrite reductase from Nitrosococcus oceani strain NS58, a gammaproteobacterial marine AOB, was expressed in Escherichia coli and purified to homogeneity. Sequence homology analysis indicated that the nitrite reductase from N. oceani was phylogenetically closer to its counterparts from denitrifying bacteria than that of the betaproteobacterium Nitrosomonas europaea. The recombinant enzyme was a homotrimer of a 32 kDa subunit molecule. The enzyme was green in the oxidized state with absorption peaks at 455 nm and 575 nm. EPR spectroscopy indicated the presence of type 2 Cu. Molecular activities and the affinity constant for the nitrite were determined to be 1.6×103 s−1 and 52 μM, respectively. PMID:22641151

  10. Effect of Light on Chemical Modification of Chloroplast Ferredoxin-NADP Reductase 1

    PubMed Central

    Carrillo, Nestor; Lucero, Héctor A.; Vallejos, Rubén H.

    1980-01-01

    Chemical modification of spinach chloroplasts by phenylglyoxal and dansyl chloride resulted in inhibition of NADP photoreduction. The rate of inactivation was higher with both reagents when modification was carried out in the light with methylviologen or phenazine methosulfate present. Uncouplers prevent the effect of light. Electron transport from water to methylviologen was not affected by the modifiers. The presence of 10 millimolar NADP completely protected the membrane-bound reductase against inactivation by phenylglyoxal. With lower concentrations, protection was higher in the light than in the dark. The apparent dissociation constants of the enzyme-substrate complex for NADP were 0.9 and 0.1 millimolar for the dark and light inactivation, respectively. Inactivation of NADP photoreduction by dansyl chloride was completely prevented by ferredoxin, but only partially by nucleotides. The diaphorase activity was inhibited in chloroplasts modified by phenylglyoxal, but not when modified by dansyl chloride. The results suggest that energizing thylakoid membranes by light induces a conformational change in membrane-bound ferredoxin-NADP reductase, and that the reductase is an allotopic enzyme. PMID:16661221

  11. Limited proteolysis of the nitrate reductase from spinach leaves.

    PubMed

    Kubo, Y; Ogura, N; Nakagawa, H

    1988-12-25

    The functional structure of assimilatory NADH-nitrate reductase from spinach leaves was studied by limited proteolysis experiments. After incubation of purified nitrate reductase with trypsin, two stable products of 59 and 45 kDa were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The fragment of 45 kDa was purified by Blue Sepharose chromatography. NADH-ferricyanide reductase and NADH-cytochrome c reductase activities were associated with this 45-kDa fragment which contains FAD, heme, and NADH binding fragment. After incubation of purified nitrate reductase with Staphylococcus aureus V8 protease, two major peaks were observed by high performance liquid chromatography size exclusion gel filtration. FMNH2-nitrate reductase and reduced methyl viologen-nitrate reductase activities were associated with the first peak of 170 kDa which consists of two noncovalently associated (75-90-kDa) fragments. NADH-ferricyanide reductase activity, however, was associated with the second peak which consisted of FAD and NADH binding sites. Incubation of the 45-kDa fragment with S. aureus V8 protease produced two major fragments of 28 and 14 kDa which contained FAD and heme, respectively. These results indicate that the molybdenum, heme, and FAD components of spinach nitrate reductase are contained in distinct domains which are covalently linked by exposed hinge regions. The molybdenum domain appears to be important in the maintenance of subunit interactions in the enzyme complex.

  12. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  13. The orphan protein bis-γ-glutamylcystine reductase joins the pyridine nucleotide-disulfide reductase family

    PubMed Central

    Kim, Juhan; Copley, Shelley D.

    2014-01-01

    Facile DNA sequencing became possible decades after many enzymes had been purified and characterized. Consequently, there are still “orphan” enyzmes whose activity is known but the genes that encode them have not been identified. Identification of the genes encoding orphan enzymes is important because it allows correct annotation of genes of unknown function or with mis-assigned function. Bis-γ-glutamylcystine reductase (GCR) is an orphan protein that was purified in 1988. This enzyme catalyzes the reduction of bis-γ-glutamylcystine. γ-Glutamylcysteine (γ-Glu-Cys) is the major low molecular weight thiol in halobacteria. We purified GCR from Halobacterium sp. NRC-1 and identified the sequence of 23 tryptic peptides by NanoLC electrospray ionization tandem mass spectrometry. These peptides cover 62% of the protein predicted to be encoded by a gene in Halobacterium sp. NRC-1 that is annotated as mercuric reductase. GCR and mercuric reductase activities were assayed using enzyme that was expressed in E. coli and re-folded from inclusion bodies. The enzyme had robust GCR activity, but no mercuric reductase activity. The genomes of most, but not all, halobacteria for which whole genome sequences are available have close homologs of GCR, suggesting that there is more to be learned about the low molecular weight thiols used in halobacteria. PMID:23560638

  14. 3-Methyleneoxindole Reductase of Peas 1

    PubMed Central

    Moyed, H. S.; Williamson, Valerie

    1967-01-01

    A 100-fold purification of a reduced triphosphopyridine nucleotide/3-methyleneoxindole reductase of peas has been achieved using conventional protein fractionation procedures. Reduced diphosphopyridine nucleotide is 25-fold less effective than reduced triphosphopyridine nucleotide as the reductant. The preparation is free of other reductase activities including those linking the oxidation of reduced pyridine nucleotide coenzymes to the reduction of cytochrome c; vitamins K1, K2, and K3; O2; nitrate; oxidized glutathione; and thiazolyl blue tetrazolium. The affinity of the enzyme for 3-methyleneoxindole (Ks = 0.5 mm 3-methyleneoxindole) is relatively high. It is, therefore, reasonable to assume that 3-methyleneoxindole is the normal substrate. The enzyme is inhibited by indole-3-acetic acid, indole-3-aldehyde, and by l-naph-thaleneacetic acid. While these are not especially powerful inhibitors (K1 = 1.9-4.0 mm) the competitive relationship with 3-methyleneoxindole indicates that significant inhibition might occur at low intracellular concentrations of the substrate. PMID:6042360

  15. Enzyme toolbox: novel enantiocomplementary imine reductases.

    PubMed

    Scheller, Philipp N; Fademrecht, Silvia; Hofelzer, Sebastian; Pleiss, Jürgen; Leipold, Friedemann; Turner, Nicholas J; Nestl, Bettina M; Hauer, Bernhard

    2014-10-13

    Reducing reactions are among the most useful transformations for the generation of chiral compounds in the fine-chemical industry. Because of their exquisite selectivities, enzymatic approaches have emerged as the method of choice for the reduction of C=O and activated C=C bonds. However, stereoselective enzymatic reduction of C=N bonds is still in its infancy-it was only recently described after the discovery of enzymes capable of imine reduction. In our work, we increased the spectrum of imine-reducing enzymes by database analysis. By combining the currently available knowledge about the function of imine reductases with the experimentally uncharacterized diversity stored in protein sequence databases, three novel imine reductases with complementary enantiopreference were identified along with amino acids important for catalysis. Furthermore, their reducing capability was demonstrated by the reduction of the pharmaceutically relevant prochiral imine 2-methylpyrroline. These novel enzymes exhibited comparable to higher catalytic efficiencies than previously described enzymes, and their biosynthetic potential is highlighted by the full conversion of 2-methylpyrroline in whole cells with excellent selectivities.

  16. Soluble ascorbate free radical reductase in the human lens.

    PubMed

    Bando, M; Obazawa, H

    1994-01-01

    A major and a minor ascorbate free radical (AFR) reductase were separated from the soluble fraction in the human lens cortex by DEAE-cellulose ion-exchange column chromatography. These AFR reductases also exhibited diaphorase activity using dichlorophenolindophenol and ferricyanide as electron acceptors. The major AFR reductase was partially purified by 5'AMP-Sepharose 4B affinity column chromatography. This partially purified AFR reductase showed a single band of diaphorase activity in native polyacrylamide disc gel electrophoresis. This activity band corresponded to the major protein observed in protein staining by Coomassie Brilliant Blue. However, the protein staining by Coomassie Brilliant Blue showed this activity band surrounded by diffused staining. Molecular weight of the partially purified AFR reductase was determined to be 32 kDa by gel filtration, and the apparent Km value for AFR was about 15 microM. This major lens AFR reductase could be distinguished from soluble Neurospora, Euglena and cucumber AFR reductases, and from two ubiquitous enzymes with reduction activity of AFR and/or foreign compounds, ie, NADH-cytochrome b5 reductase and DT-diaphorase, by their molecular weights, Km values and/or ion-exchange chromatographic behaviors.

  17. Functional and Phylogenetic Divergence of Fungal Adenylate-Forming Reductases

    PubMed Central

    Kalb, Daniel; Lackner, Gerald

    2014-01-01

    A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes. PMID:25085485

  18. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  19. Structural and biochemical characterization of cinnamoyl-coa reductases

    USDA-ARS?s Scientific Manuscript database

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  20. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols.

    PubMed

    Panini, S R; Sexton, R C; Gupta, A K; Parish, E J; Chitrakorn, S; Rudney, H

    1986-11-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-[2-(diethylamino)-ethoxy]androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy[3H]anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase (Saucier et al. 1985. J. Biol. Chem. 260: 14571-14579). In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. U18666A had the unusual effect of potentiating the inhibitory effect of 25-hydroxylanostene-3-one but did not influence the effect of

  1. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    PubMed

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode.

  2. The aldo-keto reductases (AKRs): Overview.

    PubMed

    Penning, Trevor M

    2015-06-05

    The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using

  3. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  4. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  5. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  6. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    SciTech Connect

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also be used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.

  7. Expression in Escherichia coli of Cytochrome c Reductase Activity from a Maize NADH:Nitrate Reductase Complementary DNA 1

    PubMed Central

    Campbell, Wilbur H.

    1992-01-01

    A cDNA clone was isolated from a maize (Zea mays L. cv W64A×W183E) scutellum λgt11 library using maize leaf NADH:nitrate reductase Zmnr1 cDNA clone as a hybridization probe; it was designated Zmnr1S. Zmnr1S was shown to be an NADH:nitrate reductase clone by nucleotide sequencing and comparison of its deduced amino acid sequence to Zmnr1. Zmnr1S, which is 1.8 kilobases in length and contains the code for both the cytochrome b and flavin adenine dinucleotide domains of nitrate reductase, was cloned into the EcoRI site of the Escherichia coli expression vector pET5b and expressed. The cell lysate contained NADH:cytochrome c reductase activity, which is a characteristic partial activity of NADH:nitrate reductase dependent on the cytochrome b and flavin adenine dinucleotide domains. Recombinant cytochrome c reductase was purified by immunoaffinity chromatography on monoclonal antibody Zm2(69) Sepharose. The purified cytochrome c reductase, which had a major size of 43 kilodaltons, was inhibited by polyclonal antibodies for maize leaf NADH:nitrate reductase and bound these antibodies when blotted to nitrocellulose. Ultraviolet and visible spectra of oxidized and NADH-reduced recombinant cytochrome c reductase were nearly identical with those of maize leaf NADH:nitrate reductase. These two enzyme forms also had very similar kinetic properties with respect to NADH-dependent cytochrome c and ferricyanide reduction. ImagesFigure 2Figure 3 PMID:16668941

  8. Analyses of glutathione reductase hypomorphic mice indicate a genetic knockout.

    PubMed

    Rogers, Lynette K; Tamura, Toshiya; Rogers, Bryan J; Welty, Stephen E; Hansen, Thomas N; Smith, Charles V

    2004-12-01

    A strain of mice (Gr1a1Neu) that exhibited tissue glutathione reductase (GR) activities that were substantially lower (less than 10% in liver) than the corresponding activities in control mice has been reported. The present report describes characterization of the mutation(s) in the GR gene of these mice. RT-PCR of mRNA from the Neu mice indicated a substantial deletion in the normal GR coding sequence. Southern blots revealed that the deletion involved a region spanning from intron 1 through intron 5. The exact breakpoints of the deletion were characterized by PCR and sequencing through the region encompassing the deletion. The deletion involves nucleotides 10840 through 23627 of the genomic GR gene and functionally deletes exons 2 through 5. In addition, the deletion produces a frame shift in exon 6 and introduces a stop codon in exon 7 that would prevent translation of the remainder of the protein. Consequently, the Neu mice are incapable of producing a functional GR protein and appear to be genetic knockouts for GR. The Neu mice offer live animal models with which to test hypotheses regarding oxidant mechanisms of tissue injury in vivo.

  9. Kinetic mechanism of pulmonary carbonyl reductase.

    PubMed

    Matsuura, K; Nakayama, T; Nakagawa, M; Hara, A; Sawada, H

    1988-05-15

    The kinetic mechanism of guinea-pig lung carbonyl reductase was studied at pH 7 in the forward reaction with five carbonyl substrates and NAD(P)H and in the reverse reaction with propan-2-ol and NAD(P)+. In each case the enzyme mechanism was sequential, and product-inhibition studies were consistent with a di-iso ordered bi bi mechanism, in which NAD(P)H binds to the enzyme first and NAD(P)+ leaves last and the binding of cofactor induces isomerization. The kinetic and binding studies of the cofactors and several inhibitors such as pyrazole, benzoic acid, Cibacron Blue and benzamide indicate that the cofactor and Cibacron Blue bind to the free enzyme whereas the other inhibitors bind to the binary and/or ternary complexes.

  10. Kinetic mechanism of pulmonary carbonyl reductase.

    PubMed Central

    Matsuura, K; Nakayama, T; Nakagawa, M; Hara, A; Sawada, H

    1988-01-01

    The kinetic mechanism of guinea-pig lung carbonyl reductase was studied at pH 7 in the forward reaction with five carbonyl substrates and NAD(P)H and in the reverse reaction with propan-2-ol and NAD(P)+. In each case the enzyme mechanism was sequential, and product-inhibition studies were consistent with a di-iso ordered bi bi mechanism, in which NAD(P)H binds to the enzyme first and NAD(P)+ leaves last and the binding of cofactor induces isomerization. The kinetic and binding studies of the cofactors and several inhibitors such as pyrazole, benzoic acid, Cibacron Blue and benzamide indicate that the cofactor and Cibacron Blue bind to the free enzyme whereas the other inhibitors bind to the binary and/or ternary complexes. PMID:3048244

  11. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance.

    PubMed

    Trimmer, Elizabeth E

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydofolate (CH2-H4folate) to 5-methyltetrahydrofolate (CH3-H4folate). The enzyme employs a noncovalently-bound flavin adenine dinucleotide (FAD), which accepts reducing equivalents from NAD(P)H and transfers them to CH2-H4folate. The reaction provides the sole source of CH3-H4folate, which is utilized by methionine synthase in the synthesis of methionine from homocysteine. MTHFR plays a key role in folate metabolism and in the homeostasis of homocysteine; mutations in the enzyme lead to hyperhomocyst(e)inemia. A common C677T polymorphism in MTHFR has been associated with an increased risk for the development of cardiovascular disease, Alzheimer's disease, and depression in adults, and of neural tube defects in the fetus. The mutation also confers protection for certain types of cancers. This review presents the current knowledge of the enzyme, its biochemical characterization, and medical significance.

  12. The cytochrome bd respiratory oxygen reductases.

    PubMed

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. 2011 Elsevier B.V. All rights reserved.

  13. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  14. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity.

    PubMed

    Vaidyanathan, Ramanathan; Gopalram, Shubaash; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Pandian, Sureshbabu Ram Kumar; Gurunathan, Sangiliyandi

    2010-01-01

    Nanostructure materials are attracting a great deal of attention because of their potential for achieving specific processes and selectivity, especially in biological and pharmaceutical applications. The generation of silver nanoparticles using optimized nitrate reductase for the reduction of Ag(+) with the retention of enzymatic activity in the complex is being reported. This report involves the optimization of enzyme activity to bring about enhanced nanoparticle synthesis. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of nitrate reductase by Bacillus licheniformis at pH 8. The four variables involved in the study of nitrate reductase were Glucose, Peptone, Yeast extract and KNO(3). Glucose had a significant effect on nitrate reductase production. The optimized medium containing (%) Glucose: 1.5, Peptone: 1, Yeast extract: 0.35 and KNO(3): 0.35 resulted in a nitrate reductase activity of 452.206 U/ml which is same as that of the central level. The medium A (showing least nitrate reductase activity) and the medium B (showing maximum nitrate reductase activity) were compared for the synthesis. Spectrophotometric analysis revealed that the particles exhibited a peak at 431 nm and the A(431) for the medium B was 2-fold greater than that of the medium A. The particles were also characterized using TEM. The particles synthesized using the optimized enzyme activity ranged from 10 to 80 nm and therefore can be extended to various medicinal applications.

  15. Biochemical and structural characterization of quinoprotein aldose sugar dehydrogenase from Thermus thermophilus HJ6: Mutational analysis of Tyr156 in the substrate-binding site.

    PubMed

    Kim, Han-Woo; Wang, Ji-Yeon; Lee, Ji-Yeon; Park, Ae-Kyung; Park, Hyun; Jeon, Sung-Jong

    2016-10-15

    The gene encoding a quinoprotein aldose sugar dehydrogenase (ASD) from Thermus thermophilus HJ6 (Tt_ASD) was cloned and sequenced; it comprised 1059 nucleotides encoding a protein containing 352 amino acids that had a predicted molecular mass of 38.9 kDa. The deduced amino acid sequence showed 42.9% and 33.9% identities to the ASD proteins from Pyrobaculum aerophilum and Escherichia coli, respectively. The biochemical properties of Tt_ASD were characterized. The optimum pH for the oxidation of glucose was 7.0-7.5 and the optimum temperature was 70 °C. The half-life of heat inactivation for the apoenzyme was about 25 min at 85 °C. The enzyme was highly thermostable, and the activity of the pyrroloquinoline quinone-bound holoenzyme was not lost after incubation at 85 °C for 100 min. Tt_ASD could oxidize various sugars, including hexoses, pentoses, disaccharides, and polysaccharides, in addition to alcohols. Structural analysis suggested that Tyr156 would be the substrate-binding residue. Two mutants, Y156A and Y156K, had impaired activities and affinities for all substrates and completely lost their activities for alcohols. This structural and mutational analysis of Tt_ASD demonstrates the crucial role of Tyr156 in determining substrate specificity.

  16. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase

    PubMed Central

    Erb, Tobias J.; Brecht, Volker; Fuchs, Georg; Müller, Michael; Alber, Birgit E.

    2009-01-01

    Chemo- and stereoselective reductions are important reactions in chemistry and biology, and reductases from biological sources are increasingly applied in organic synthesis. In contrast, carboxylases are used only sporadically. We recently described crotonyl-CoA carboxylase/reductase, which catalyzes the reduction of (E)-crotonyl-CoA to butyryl-CoA but also the reductive carboxylation of (E)-crotonyl-CoA to ethylmalonyl-CoA. In this study, the complete stereochemical course of both reactions was investigated in detail. The pro-(4R) hydrogen of NADPH is transferred in both reactions to the re face of the C3 position of crotonyl-CoA. In the course of the carboxylation reaction, carbon dioxide is incorporated in anti fashion at the C2 atom of crotonyl-CoA. For the reduction reaction that yields butyryl-CoA, a solvent proton is added in anti fashion instead of the CO2. Amino acid sequence analysis showed that crotonyl-CoA carboxylase/reductase is a member of the medium-chain dehydrogenase/reductase superfamily and shares the same phylogenetic origin. The stereospecificity of the hydride transfer from NAD(P)H within this superfamily is highly conserved, although the substrates and reduction reactions catalyzed by its individual representatives differ quite considerably. Our findings led to a reassessment of the stereospecificity of enoyl(-thioester) reductases and related enzymes with respect to their amino acid sequence, revealing a general pattern of stereospecificity that allows the prediction of the stereochemistry of the hydride transfer for enoyl reductases of unknown specificity. Further considerations on the reaction mechanism indicated that crotonyl-CoA carboxylase/reductase may have evolved from enoyl-CoA reductases. This may be useful for protein engineering of enoyl reductases and their application in biocatalysis. PMID:19458256

  17. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  18. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  19. Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis

    PubMed Central

    Abreu, Vinícius; Diniz, Carlos; Dorneles, Elaine M. S.; Barh, Debmalya

    2017-01-01

    Based on the ability of nitrate reductase synthesis, Corynebacterium pseudotuberculosis is classified into two biovars: Ovis and Equi. Due to the presence of nitrate reductase, the Equi biovar can survive in absence of oxygen. On the other hand, Ovis biovar that does not have nitrate reductase is able to adapt to various ecological niches and can grow on certain carbon sources. Apart from these two biovars, some other strains are also able to carry out the reduction of nitrate. The enzymes that are involved in electron transport chain are also identified by in silico methods. Findings about pathogen metabolism can contribute to the identification of relationship between nitrate reductase and the C. pseudotuberculosis pathogenicity, virulence factors, and discovery of drug targets. PMID:28316974

  20. Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis.

    PubMed

    Almeida, Sintia; Sousa, Cassiana; Abreu, Vinícius; Diniz, Carlos; Dorneles, Elaine M S; Lage, Andrey P; Barh, Debmalya; Azevedo, Vasco

    2017-01-01

    Based on the ability of nitrate reductase synthesis, Corynebacterium pseudotuberculosis is classified into two biovars: Ovis and Equi. Due to the presence of nitrate reductase, the Equi biovar can survive in absence of oxygen. On the other hand, Ovis biovar that does not have nitrate reductase is able to adapt to various ecological niches and can grow on certain carbon sources. Apart from these two biovars, some other strains are also able to carry out the reduction of nitrate. The enzymes that are involved in electron transport chain are also identified by in silico methods. Findings about pathogen metabolism can contribute to the identification of relationship between nitrate reductase and the C. pseudotuberculosis pathogenicity, virulence factors, and discovery of drug targets.

  1. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.

    PubMed

    Gamenara, Daniela; Domínguez de María, Pablo

    2014-05-21

    Adding value to organic synthesis. Novel imine reductases enable the enantioselective reduction of imines to afford optically active amines. Likewise, novel bioinspired artificial metalloenzymes can perform the same reaction as well. Emerging proof-of-concepts are herein discussed.

  2. Purification and characterization of assimilatory nitrite reductase from Candida utilis.

    PubMed

    Sengupta, S; Shaila, M S; Rao, G R

    1996-07-01

    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

  3. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  4. Distribution of Prx-linked hydroperoxide reductase activity among microorganisms.

    PubMed

    Takeda, Kouji; Nishiyama, Yoshitaka; Yoda, Koji; Watanabe, Toshihiro; Nimura-Matsune, Kaori; Mura, Kiyoshi; Tokue, Chiyoko; Katoh, Tetzuya; Kawasaki, Shinji; Niimura, Youichi

    2004-01-01

    Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.

  5. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s(-1). This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  6. Microsecond subdomain folding in dihydrofolate reductase.

    PubMed

    Arai, Munehito; Iwakura, Masahiro; Matthews, C Robert; Bilsel, Osman

    2011-07-08

    The characterization of microsecond dynamics in the folding of multisubdomain proteins has been a major challenge in understanding their often complex folding mechanisms. Using a continuous-flow mixing device coupled with fluorescence lifetime detection, we report the microsecond folding dynamics of dihydrofolate reductase (DHFR), a two-subdomain α/β/α sandwich protein known to begin folding in this time range. The global dimensions of early intermediates were monitored by Förster resonance energy transfer, and the dynamic properties of the local Trp environments were monitored by fluorescence lifetime detection. We found that substantial collapse occurs in both the locally connected adenosine binding subdomain and the discontinuous loop subdomain within 35 μs of initiation of folding from the urea unfolded state. During the fastest observable ∼550 μs phase, the discontinuous loop subdomain further contracts, concomitant with the burial of Trp residue(s), as both subdomains achieve a similar degree of compactness. Taken together with previous studies in the millisecond time range, a hierarchical assembly of DHFR--in which each subdomain independently folds, subsequently docks, and then anneals into the native conformation after an initial heterogeneous global collapse--emerges. The progressive acquisition of structure, beginning with a continuously connected subdomain and spreading to distal regions, shows that chain entropy is a significant organizing principle in the folding of multisubdomain proteins and single-domain proteins. Subdomain folding also provides a rationale for the complex kinetics often observed.

  7. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  8. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-10-01

    Current generation by mediated enzyme electron transfer at electrode surfaces can be harnessed to provide biosensors and redox reactions in enzymatic fuel cells. A glucose/oxygen enzymatic fuel cell can provide power for portable and implantable electronic devices. High volume production of enzymatic fuel cell prototypes will likely require printing of electrode and catalytic materials. Here we report on preparation and performance of, completely enzymatic, printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks, enzyme and mediator. A comparison of cell performance using a range of mediators for either glucose oxidase (GOx) or aldose dehydrogenase (ALDH) oxidation of glucose at the anode and ABTS and a fungal laccase, for reduction of oxygen at the cathode, is reported. Highest power output, although of limited stability, is observed for ALDH anodes mediated by an osmium complex, providing a maximum power density of 3.5 μW cm(-2) at 0.34 V, when coupled to a laccase/ABTS cathode. The stability of cell voltage in a biobattery format, above a threshold of 200 mV under a moderate 75 kΩ load, is used to benchmark printed fuel cell performance. Highest stability is obtained for printed fuel cells using ALDH, providing cell voltages over the threshold for up to 74 h, compared to only 2 h for cells with anodes using GOx. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Sulfite reductase protects plants against sulfite toxicity.

    PubMed

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  10. Purification and properties of proline reductase from Clostridium sticklandii.

    PubMed

    Seto, B; Stadtman, T C

    1976-04-25

    Proline reductase of Clostridium sticklandii is a membrane-bound protein and is released by treatment with detergents. The enzyme has been purified to homogeneity and is estimated by gel filtration and sedimentation equilibrium centrifugation to have a molecular weight of 298,000 to 327,000. A minimum molecular weight of 30,000 to 31,000 was calculated on the basis of sodium dodecyl sulfate-acrylamide gel electrophoresis and amino acid composition. Amino acid analysis showed a preponderance of acidic amino acids. No tryptophan was detected in the protein either spectrophotometrically or by amino acid analysis. A total of 20 sulfhydryl groups measured by titration of the reduced protein with 5,5'-dithiobis(2-nitrobenzoic acid) is in agreement with 20 cystic acid residues determined in hydrolysates of performic acid-oxidized protein. No molybdenum, iron, or selenium was found in the pure protein. Although NADH is the physiological electron donor for the proline reductase complex, the purified 300,000 molecular weight reductase component is inactive in the presence of NADH in vitro. Dithiothreitol, in contrast, can serve as electron donor both for unpurified (putative proline reductase complex) and purified proline reductase in vitro.

  11. Uterine glutathione reductase activity: modulation by estrogens and progesterone.

    PubMed

    Díaz-Flores, M; Baiza-Gutman, L A; Pedrón, N N; Hicks, J J

    1999-10-29

    The aim of this study was to determine whether glutathione reductase activity in uterine tissue is regulated by sex hormones. In spayed rats uterine glutathione reductase was significantly increased by exogenous estrogen (P< 0.01), progesterone (P< 0.01) or estrogen plus progesterone (P<0.01). When enzyme activity is expressed per mg protein, daily administration of estrogen or progesterone induces a progressive increase of this enzyme between 24 to 48 h or 24 to 72 h of treatment, respectively. Whereas the combination of both steroids causes an earlier and higher increase in glutathione reductase activity at 24 h of treatment. Estradiol singly or in combination with progesterone induced the highest protein concentration in the uterus. Whereas uterine DNA concentration is only significantly affected by estradiol. Our results suggest that uterine glutathione reductase is regulated by estradiol and progesterone and may be involved in maintaining levels of reduced glutathione in the uterus. This compound may be required for control of the redox state of thiol groups and in detoxification reactions involving H2O2 and electrophylic substances. The antioxidant action of estrogens is partially due to the stimulation of glutathione reductase.

  12. Bacterial morphinone reductase is related to Old Yellow Enzyme.

    PubMed Central

    French, C E; Bruce, N C

    1995-01-01

    Morphinone reductase, produced by Pseudomonas putida M10, catalyses the NADH-dependent saturation of the carbon-carbon double bond of morphinone and codeinone, and is believed to be involved in the metabolism of morphine and codeine. The structural gene encoding morphinone reductase, designated morB, was cloned from Ps. putida M10 genomic DNA by the use of degenerate oligonucleotide probes based on elements of the amino acid sequence of the purified enzyme. Sequence analysis and structural characteristics indicated that morphinone reductase is related to the flavoprotein alpha/beta-barrel oxidoreductases, and is particularly similar to Old Yellow Enzyme of Saccharomyces spp. and the related oestrogen-binding protein of Candida albicans. Expressed sequence tags from several plant species show high homology to these enzymes, suggesting the presence of a family of enzymes conserved in plants and fungi. Although related bacterial proteins are known, morphinone reductase appears to be more similar to the eukaryotic proteins. Morphinone reductase was overexpressed in Escherichia coli, and has potential applications for the industrial preparation of semisynthetic opiates. Images Figure 1 Figure 5 PMID:8554504

  13. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  14. Dynamic Control of Electron Transfers in Diflavin Reductases

    PubMed Central

    Aigrain, Louise; Fatemi, Fataneh; Frances, Oriane; Lescop, Ewen; Truan, Gilles

    2012-01-01

    Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases. PMID:23203109

  15. [Methylenetetrahydrofolate reductase and methionine synthase reductase gene polymorphisms in ethnic Han women from Linyi].

    PubMed

    Zhang, Yan-li; Lu, Yan-qiang; Li, Hua-feng; Rui, Xin-yi; Zhang, Li-jun; Wu, Chuan-ye; Fang, Ai-min; Wang, Gui-xi

    2012-12-01

    To explore the distribution of genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) 677C/T, 1298A/C and methionine synthase reductase (MTRR) 66A/G among ethnic Han females from Linyi, and to correlate it with serum level of homocysteine (Hcy). A cross-sectional study was carried out. Oral epithelial cell samples were collected from 825 subjects. MTHFR and MTRR gene polymorphisms were determined with a Taqman-Minor Groove Binder (MGB) method. Distribution of gene polymorphisms was analyzed and compared with others regions of China including Weifang, Zhengzhou, Deyang and Hainan. A biochemical assay was also carried out to determine the total Hcy in plasma of 281 subjects. The reductase activity of MTHFR was classified into decreased and stable groups according to genetic polymorphism of MTHFR. Correlation between MTHFR groups and total Hcy level were also explored. (1) The frequencies of MTHFR677CC, CT and TT genotypes of the selected subjects were 16.7%, 48.3% and 35.0%, respectively. The frequencies of MTHFR 1298AA, AC and CC genotypes were 76.0%, 21.6% and 2.4%, respectively. And those of MTRR 66AA, AG and GG genotypes were 54.7%, 39.4% and 5.9%, respectively. For the selected subjects, their frequency of MTHFR 677TT genotype was higher than that of Deyang and Hainan (P< 0.01), whilst the frequency of MTHFR 1298CC genotype was lower than that of Deyang and Hainan (P < 0.01), and the frequency of MTRR 66 GG genotype was lower than that of Hainan (P< 0.01). (2) The Hcy level for those with decreased MTHFR activity was significantly higher than those with stable MTHFR activity (P< 0.05). MTHFR gene 677C/T, 1298A/C and MTRR 66A/G polymorphisms in ethnic Han women from Linyi have differed significantly from other regions of China. Decreased MTHFR activity caused by genetic polymorphisms is a risk factor for raised Hcy level.

  16. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe

    PubMed Central

    1995-01-01

    Elevated levels of certain membrane proteins, including the sterol biosynthetic enzyme HMG-CoA reductase, induce proliferation of the endoplasmic reticulum. When the amounts of these proteins return to basal levels, the proliferated membranes are degraded, but the molecular details of this degradation remain unknown. We have examined the degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. In this yeast, increased levels of the Saccharomyces cerevisiae HMG-CoA reductase isozyme encoded by HMG1 induced several types of membranes, including karmellae, which formed a cap of stacked membranes that partially surrounded the nucleus. When expression of HMG1 was repressed, the karmellae detached from the nucleus and formed concentric, multilayered membrane whorls that were then degraded. During the degradation process, CDCFDA-stained compartments distinct from preexisting vacuoles formed within the interior of the whorls. In addition to these compartments, particles that contained neutral lipids also formed within the whorl. As the thickness of the whorl decreased, the lipid particle became larger. When degradation was complete, only the lipid particle remained. Cycloheximide treatment did not prevent the formation of whorls. Thus, new protein synthesis was not needed for the initial stages of karmellae degradation. On the contrary, cycloheximide promoted the detachment of karmellae to form whorls, suggesting that a short lived protein may be involved in maintaining karmellae integrity. Taken together, these results demonstrate that karmellae membranes differentiated into self-degradative organelles. This process may be a common pathway by which ER membranes are turned over in cells. PMID:7559789

  17. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase

    PubMed Central

    2013-01-01

    Background The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. Results To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Conclusion Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo. PMID:24308601

  18. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    PubMed

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  19. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  20. Selenium in thioredoxin reductase: a mechanistic perspective.

    PubMed

    Lacey, Brian M; Eckenroth, Brian E; Flemer, Stevenson; Hondal, Robert J

    2008-12-02

    Most high M(r) thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys(1)-Cys(2)) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys(2) position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pK(a) as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pK(a) of the selenol relative to a thiol obviates its need to be protonated upon S-Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to

  1. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  2. Do cytochromes function as oxygen sensors in the regulation of nitrate reductase biosynthesis?

    PubMed Central

    MacGregor, C H; Bishop, C W

    1977-01-01

    The observation that oxygen represses nitrate reductase biosynthesis in a hemA mutant grown aerobically with or without delta-aminolevulinic acid indicates that cytochromes are not responsible for nitrate reductase repression in aerobically grown cells. PMID:326768

  3. Studies on the regulation of assimilatory nitrate reductase in Ankistrodesmus braunii.

    PubMed

    Diez, J; Chaparro, A; Vega, J M; Relimpio, A

    1977-01-01

    In the green alga Ankistrodesmus braunii, all the activities associated with the nitrate reductase complex (i.e., NAD(P)H-nitrate reductase, NAD(P)H-cytochrome c reductase and FMNH2-or MVH-nitrate reductase) are nutritionally repressed by ammonia or methylamine. Besides, ammonia or methylamine promote in vivo the reversible inactivation of nitrate reductase, but not of NAD(P)H-cytochrome c reductase. Subsequent removal of the inactivating agent from the medium causes reactivation of the inactive enzyme. Menadione has a striking stimulation on the in vivo reactivation of the inactive enzyme. The nitrate reductase activities, but not the diaphorase activity, can be inactivated in vitro by preincubating a partially purified enzyme preparation with NADH or NADPH. ADP, in the presence of Mg(2+), presents a cooperative effect with NADH in the in vitro inactivation of nitrate reductase. This effect appears to be maximum at a concentration of ADP equimolecular with that of NADH.

  4. Biomarkers of Adverse Response to Mercury: Histopathology versus Thioredoxin Reductase Activity

    PubMed Central

    Branco, Vasco; Ramos, Paula; Canário, João; Lu, Jun; Holmgren, Arne; Carvalho, Cristina

    2012-01-01

    Exposure to mercury is normally assessed by measuring its accumulation in hair, blood or urine. Currently, the biomarkers of effect that have been proposed for mercurials, such as coproporphyrines or oxidative stress markers, are not sensitive enough and lack specificity. Selenium and selenoproteins are important targets for mercury and thioredoxin reductase (TrxR) in particular was shown to be very sensitive to mercury compounds both in vitro and in vivo. In this study we looked into the relation between the inhibition of thioredoxin reductase (TrxR) activity and histopathological changes caused by exposure to mercurials. Juvenile zeabra-seabreams were exposed to Hg2+ or MeHg for 28 days and histopathological changes were analyzed in the liver and kidney as well as TrxR activity. Both mercurials caused histopathological changes in liver and kidney, albeit Hg2+ caused more extensive and severe lesions. Likewise, both mercurials decreased TrxR activity, being Hg2+ a stronger inhibitor. Co-exposure to Hg2+ and Se fully prevented TrxR inhibition in the liver and reduced the severity of lesions in the organ. These results show that upon exposure to mercurials, histopathological alterations correlate with the level of TrxR activity and point to the potential use of this enzyme as a biomarker of mercury toxicity. PMID:22888199

  5. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases.

    PubMed

    Liew, Siaw-Cheok; Gupta, Esha Das

    2015-01-01

    The Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with various diseases (vascular, cancers, neurology, diabetes, psoriasis, etc) with the epidemiology of the polymorphism of the C677T that varies dependent on the geography and ethnicity. The 5,10-Methylenetetrahydrofolate reductase (MTHFR) locus is mapped on chromosome 1 at the end of the short arm (1p36.6). This enzyme is important for the folate metabolism which is an integral process for cell metabolism in the DNA, RNA and protein methylation. The mutation of the MTHFR gene which causes the C677T polymorphism is located at exon 4 which results in the conversion of valine to alanine at codon 222, a common polymorphism that reduces the activity of this enzyme. The homozygous mutated subjects have higher homocysteine levels while the heterozygous mutated subjects have mildly raised homocysteine levels compared with the normal, non-mutated controls. Hyperhomocysteinemia is an emerging risk factor for various cardiovascular diseases and with the increasing significance of this polymorphism in view of the morbidity and mortality impact on the patients, further prevention strategies and nutritional recommendations with the supplementation of vitamin B12 and folic acid which reduces plasma homocysteine level would be necessary as part of future health education. This literature review therefore focuses on the recent evidence-based reports on the associations of the MTHFR C677T polymorphism and the various diseases globally. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose-ketose isomers using tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Chen, Ye; Leary, Julie A.

    2005-02-01

    A mass spectrometry based method for the direct determination of kinetic constants for phosphoglucose isomerase (PGI) and phosphomannose isomerase (PMI) is described. PGI catalyzes the interconversion between glucose-6-phosphate (Glc6P) and fructose-6-phosphate (Fru6P) and PMI performs the same function between mannose-6-phosphate (Man6P) and Fru6P. These two enzymes are essential in the pathways of glycolytic or oxidative metabolism of carbohydrates and have been considered as potential therapeutic targets. Traditionally, they are assayed either by spectrophotometric detection of Glc6P with one or more coupling enzymes or by a colorimetric detection of Fru6P. However, no suitable assay for Man6P has been developed yet to study the reaction of PMI in the direction from Fru6P to Man6P. In the work presented herein, a general assay for the isomeric substrate-product pair between Glc6P and Fru6P or between Man6P and Fru6P was developed, with the aim of directly studying the kinetics of PGI and PMI in both directions. The 6-phosphorylated aldose and ketose isomers were distinguished based on their corresponding tandem mass spectra (MS2) obtained on a quadrupole ion trap mass spectrometer, and a multicomponent quantification method was utilized to determine the composition of binary mixtures. Using this method, the conversion between Fru6P and Glc6P and that between Fru6P and Man6P are directly monitored. The equilibrium constants for the reversible reactions catalyzed by PGI and PMI are measured to be 0.3 and 1.1, respectively, and the kinetic parameters for both substrates of PGI and PMI are also determined. The values of KM and Vmax for Fru6P as substrate of PMI are reported to be 0.15 mM and 7.78 [mu]mol/(min mg), respectively. All other kinetic parameters measured correlate well with those obtained using traditional methods, demonstrating the accuracy and reliability of this assay.

  7. Inhibition of Vibrio harveyi bioluminescence by cerulenin: In vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis

    SciTech Connect

    Byers, D.M. ); Meighen, E.A. )

    1989-07-01

    Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with ({sup 3}H)myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10{mu}g/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from ({sup 14}C)acetate, whereas uptake and incorporation of exogenous ({sup 14}C)myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with ({sup 3}H)tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with ({sup 3}H)tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which ({sup 3}H)myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.

  8. Dihydrofolate Reductase Activity in Strains of Streptococcus faecium var. durans Resistant to Methasquin and Amethopterin1

    PubMed Central

    Rader, Jeanne I.; Hutchison, Dorris J.

    1972-01-01

    Resistance to the antifolates methasquin and amethopterin has been studied in new strains of Streptococcus faecium var. durans. Two methasquin-resistant strains (SF/MQ, SF/MQT) and an amethopterin-resistant strain (SF/AM) were selected independently from the wild-type S. faecium var. durans (SF/O). SF/MQT is a thymine auxotroph. Total dihydrofolate reductase activity was elevated in each of the resistant strains. The greatest increase (36-fold) was observed in extracts of SF/AM. The methasquin-resistant strains, SF/MQ and SF/MQT, had 29-fold and 8-fold, respectively, more dihydrofolate reductase activity than the parental strain. Total dihydrofolate reductase activity of SF/O was separable by gel filtration into two components: a folate reductase (11%) and a specific dihydrofolate reductase (89%). Folate reductase activity was associated with 88% of the total dihydrofolate reductase activity of SF/MQT, with specific dihydrofolate reductase activity accounting for the remaining 12%. In SF/MQ and SF/AM, folate reductase activity was associated with 97% of the total dihydrofolate reductase activity. Studies of the inhibition by methasquin and amethopterin of partially purified folate reductase and specific dihydrofolate reductase of the mutant strains suggested that resistance was not accompanied by changes in the affinities of these enzymes for either antifolate. PMID:4401600

  9. Expression of nitrite and nitric oxide reductases in free-living and plant-associated Agrobacterium tumefaciens C58 cells.

    PubMed

    Baek, Seung-Hun; Shapleigh, James P

    2005-08-01

    A number of the bacteria that form associations with plants are denitrifiers. To learn more about how the association with plants affects expression of denitrification genes, the regulation of nitrite and nitric oxide reductases was investigated in Agrobacterium tumefaciens. Analysis of free-living cells revealed that expression of the genes encoding nitrite and nitric oxide reductases, nirK and nor, respectively, requires low-oxygen conditions, nitric oxide, and the transcriptional regulator NnrR. Expression of nor was monitored in plant-associated bacteria using nor-gfp fusion expression. In root association experiments, only a small percentage of the attached cells were fluorescent, even when they were incubated under a nitrogen atmosphere. Inactivation of nirK had no significant effect on the ability of A. tumefaciens to bind to plant roots regardless of the oxygen tension, but it did decrease the occurrence of root-associated fluorescent cells. When wild-type cells containing the gfp fusion were infiltrated into leaves, most cells eventually became fluorescent. The same result was obtained when a nirK mutant was used, suggesting that nitric oxide activated nor expression in the endophytic bacteria. Addition of a nitric oxide synthase inhibitor to block nitric oxide generation by the plant prevented gfp expression in infiltrated nitrite reductase mutants, demonstrating that plant-derived nitric oxide can activate nor expression in infiltrated cells.

  10. Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense

    PubMed Central

    Lin, Kan; O'Brien, Kathryn M.; Trujillo, Carolina; Wang, Ruojun; Wallach, Joshua B.; Schnappinger, Dirk

    2016-01-01

    Mycobacterium tuberculosis (Mtb) must cope with exogenous oxidative stress imposed by the host. Unlike other antioxidant enzymes, Mtb’s thioredoxin reductase TrxB2 has been predicted to be essential not only to fight host defenses but also for in vitro growth. However, the specific physiological role of TrxB2 and its importance for Mtb pathogenesis remain undefined. Here we show that genetic inactivation of thioredoxin reductase perturbed several growth-essential processes, including sulfur and DNA metabolism and rapidly killed and lysed Mtb. Death was due to cidal thiol-specific oxidizing stress and prevented by a disulfide reductant. In contrast, thioredoxin reductase deficiency did not significantly increase susceptibility to oxidative and nitrosative stress. In vivo targeting TrxB2 eradicated Mtb during both acute and chronic phases of mouse infection. Deliberately leaky knockdown mutants identified the specificity of TrxB2 inhibitors and showed that partial inactivation of TrxB2 increased Mtb’s susceptibility to rifampicin. These studies reveal TrxB2 as essential thiol-reducing enzyme in Mtb in vitro and during infection, establish the value of targeting TrxB2, and provide tools to accelerate the development of TrxB2 inhibitors. PMID:27249779

  11. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis.

    PubMed

    Siméone, Roxane; Constant, Patricia; Guilhot, Christophe; Daffé, Mamadou; Chalut, Christian

    2007-07-01

    Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.

  12. The role of thioredoxin reductase and glutathione reductase in plumbagin-induced, reactive oxygen species-mediated apoptosis in cancer cell lines.

    PubMed

    Hwang, Geun Hye; Ryu, Jung Min; Jeon, Yu Jin; Choi, Joonhyeok; Han, Ho Jae; Lee, You-Mie; Lee, Sangkyu; Bae, Jong-Sup; Jung, Jong-Wha; Chang, Woochul; Kim, Lark Kyun; Jee, Jun-Goo; Lee, Min Young

    2015-10-15

    Plumbagin is a secondary metabolite that was first identified in the Plumbago genus of plants. It is a naphthoquinone compound with anti-atherosclerosis, anticancer, anti-inflammatory, antimicrobial, contraceptive, cardiotonic, immunosuppressive, and neuroprotective activities. However, the mechanisms of plumbagin's activities are largely unknown. In this study, we examined the effect of plumbagin on HepG2 hepatocellular carcinoma cells as well as LLC lung cancer cells, SiHa cervical carcinoma cells. Plumbagin significantly decreased HepG2 cell viability in a dose-dependent manner. Additionally, treatment with plumbagin significantly increased the Bax/Bcl-2 ratio and caspase-3/7 activity. Using the similarity ensemble approach (SEA)-a state-of-the-art cheminformatic technique-we identified two previously unknown cellular targets of plumbagin: thioredoxin reductase (TrxR) and glutathione reductase (GR). This was then confirmed using protein- and cell-based assays. We found that plumbagin was directly reduced by TrxR, and that this reduction was inhibited by the TrxR inhibitor, sodium aurothiomalate (ATM). Plumbagin also decreased the activity of GR. Plumbagin, and the GR inhibitor sodium arsenite all increased intracellular reactive oxygen species (ROS) levels and this increase was significantly attenuated by pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) in HepG2 cells. Plumbagin increased TrxR-1 and heme oxygenase (HO)-1 expression and pretreatment with NAC significantly attenuated the plumbagin-induced increase of TrxR-1 and HO-1 expression in HepG2 cells, LLC cells and SiHa cells. Pretreatment with NAC significantly prevented the plumbagin-induced decrease in cell viability in these cell types. In conclusion, plumbagin exerted its anticancer effect by directly interacting with TrxR and GR, and thus increasing intracellular ROS levels.

  13. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  14. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  15. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  16. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  17. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  18. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  19. Obtaining partial purified xylose reductase from Candida guilliermondii

    PubMed Central

    Tomotani, Ester Junko; de Arruda, Priscila Vaz; Vitolo, Michele; de Almeida Felipe, Maria das Graças

    2009-01-01

    The enzymatic bioconversion of xylose into xylitol by xylose reductase (XR) is an alternative for chemical and microbiological processes. The partial purified XR was obtained by using the following three procedures: an agarose column, a membrane reactor or an Amicon Ultra-15 50K Centrifugal Filter device at yields of 40%, 7% and 67%, respectively. PMID:24031408

  20. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  1. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.

    PubMed

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-28

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  2. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria

    PubMed Central

    Casciotti, Karen L.; Ward, Bess B.

    2001-01-01

    The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of β-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria. PMID:11319103

  3. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  4. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  5. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  6. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  7. Studies on Marek's Disease Virus Encoded Ribonucleotide Reductase

    USDA-ARS?s Scientific Manuscript database

    Ribonucleotide reductase (RR) is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleotides in prokaryotic and eukaryotic cells. The enzyme consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme. Herpesviruses express a functional R...

  8. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].

    PubMed

    Belikova, Iu O; Kotliar, A B

    1988-04-01

    Succinate:ubiquinone reductase was shown to catalyze the oxidation of L- and D-stereoisomers of malate by artificial electron acceptors and ubiquinone. The rate of malate oxidation by succinate:ubiquinone reductase is by two orders of magnitude lower than that for the natural substrate--succinate. The values of kinetic constants for the oxidation of D- and L-stereoisomers of malate are equal to: V infinity = 0.1 mumol/min/mg protein, Km = 2 mM and V infinity = 0.05 mumol/min/mg protein, Km = 2 mM, respectively. The malate dehydrogenase activity is fully inhibited by the inhibitors of the dicarboxylate-binding site of the enzyme, i.e., N-ethylmaleimide and malonate and is practically insensitive to carboxin, a specific inhibitor of the ubiquinone-binding center. The enol form of oxaloacetate was shown to be the product of malate oxidation by succinate:ubiquinone reductase. The kinetics of inhibition of the enzyme activity by the ketone and enol forms of oxaloacetate was studied. Both forms of oxaloacetate effectively inhibit the succinate:ubiquinone reductase reaction.

  9. Molecular genetics of steroid 5 alpha-reductase 2 deficiency.

    PubMed Central

    Thigpen, A E; Davis, D L; Milatovich, A; Mendonca, B B; Imperato-McGinley, J; Griffin, J E; Francke, U; Wilson, J D; Russell, D W

    1992-01-01

    Two isozymes of steroid 5 alpha-reductase encoded by separate loci catalyze the conversion of testosterone to dihydrotestosterone. Inherited defects in the type 2 isozyme lead to male pseudohermaphroditism in which affected males have a normal internal urogenital tract but external genitalia resembling those of a female. The 5 alpha-reductase type 2 gene (gene symbol SRD5A2) was cloned and shown to contain five exons and four introns. The gene was localized to chromosome 2 band p23 by somatic cell hybrid mapping and chromosomal in situ hybridization. Molecular analysis of the SRD5A2 gene resulted in the identification of 18 mutations in 11 homozygotes, 6 compound heterozygotes, and 4 inferred compound heterozygotes from 23 families with 5 alpha-reductase deficiency. 6 apparent recurrent mutations were detected in 19 different ethnic backgrounds. In two patients, the catalytic efficiency of the mutant enzymes correlated with the severity of the disease. The high proportion of compound heterozygotes suggests that the carrier frequency of mutations in the 5 alpha-reductase type 2 gene may be higher than previously thought. Images PMID:1522235

  10. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.

    PubMed

    Wang, Jun; Keceli, Gizem; Cao, Rui; Su, Jiangtao; Mi, Zhiyuan

    2017-01-01

    This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.

  11. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  12. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  13. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  14. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  15. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  16. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  17. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer.

    PubMed

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.

  18. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    PubMed Central

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  19. Homocysteine and Stroke Risk: Modifying Effect of Methylenetetrahydrofolate Reductase C677T Polymorphism and Folic Acid Intervention.

    PubMed

    Zhao, Min; Wang, Xiaobin; He, Mingli; Qin, Xianhui; Tang, Genfu; Huo, Yong; Li, Jianping; Fu, Jia; Huang, Xiao; Cheng, Xiaoshu; Wang, Binyan; Hou, Fan Fan; Sun, Ningling; Cai, Yefeng

    2017-05-01

    Elevated blood homocysteine concentration increases the risk of stroke, especially among hypertensive individuals. Homocysteine is largely affected by the methylenetetrahydrofolate reductase C677T polymorphism and folate status. Among hypertensive patients, we aimed to test the hypothesis that the association between homocysteine and stroke can be modified by the methylenetetrahydrofolate reductase C677T polymorphism and folic acid intervention. We analyzed the data of 20 424 hypertensive adults enrolled in the China Stroke Primary Prevention Trial. The participants, first stratified by methylenetetrahydrofolate reductase genotype, were randomly assigned to receive double-blind treatments of 10-mg enalapril and 0.8-mg folic acid or 10-mg enalapril only. The participants were followed up for a median of 4.5 years. In the control group, baseline log-transformed homocysteine was associated with an increased risk of first stroke among participants with the CC/CT genotype (hazard ratio, 3.1; 1.1-9.2), but not among participants with the TT genotype (hazard ratio, 0.7; 0.2-2.1), indicating a significant gene-homocysteine interaction (P=0.008). In the folic acid intervention group, homocysteine showed no significant effect on stroke regardless of genotype. Consistently, folic acid intervention significantly reduced stroke risk in participants with CC/CT genotypes and high homocysteine levels (tertile 3; hazard ratio, 0.73; 0.55-0.97). In Chinese hypertensive patients, the effect of homocysteine on the first stroke was significantly modified by the methylenetetrahydrofolate reductase C677T genotype and folic acid supplementation. Such information may help to more precisely predict stroke risk and develop folic acid interventions tailored to individual genetic background and nutritional status. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00794885. © 2017 American Heart Association, Inc.

  20. Comparative Studies on the Induction and Inactivation of Nitrate Reductase in Corn Roots and Leaves 1

    PubMed Central

    Aslam, Muhammad; Oaks, Ann

    1976-01-01

    A comparison of induction and inactivation of nitrate reductase and two of its component activities, namely FMNH2-nitrate reductase and NO3−-induced NADH-cytochrome c reductase, was made in roots and leaves of corn (Zea mays L. var. W64A × 182E). The three activities were induced in parallel in both tissues when NO3− was supplied. WO4= suppressed the induction of NADH- and FMNH2-nitrate reductase activities in root tips and leaves. The NO3−-induced NADH-cytochrome c reductase activity showed a normal increase in roots treated with WO4=. In leaves, on the other hand, there was a marked superinduction of the NO3−-induced NADH-cytochrome c reductase in the presence of WO4=. The half-life values of NADH-nitrate reductase and FMNH2-nitrate reductase measured by removing NO3− and adding WO4= to the medium, were 4 hours in root tips and 6 hours in excised leaves. Addition of NO3− in the induction medium together with WO4= gave partial protection of NADH-nitrate reductase and FMNH2-nitrate reductase activities in both root tips and leaves with a t0.5 of 6 and 8 hours, respectively. NO3− also reduced the loss of nitrate reductase activity from mature root sections. In the presence of cycloheximide, both NADH-nitrate reductase and NO3−-induced NADH-cytochrome c reductase activities were lost at similar rates in root tips. NO3− protected the loss of NO3−-induced NADH-cytochrome c reductase to the same extent as that of NADH-nitrate reductase. PMID:16659529

  1. Measurement of nitrous oxide reductase activity in aquatic sediments

    SciTech Connect

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N/sub 2/O reductase assay. Sediments consumed small added quantities of N/sub 2/O over short periods (a few hours). In experiments with sediment slurries, N/sub 2/O reductase activity was inhibited by 0/sub 2/, C/sub 2/H/sub 2/, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 ..mu..M) did not influence activity, and moderate levels (about 150 ..mu..M) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N/sub 2/O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater, estuarine, and alkaline-saline environments. An in situ assay was devised in which a solution of N/sub 2/O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N/sub 2/O per m/sup 2/ per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N/sub 2/O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N/sub 2/O per m/sup 2/ per h made with the acetylene block assay.

  2. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  3. Identification of 5α-reductase isoenzymes in canine skin.

    PubMed

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  4. Leukemia L1210 cell lines resistant to ribonucleotide reductase inhibitors.

    PubMed

    Cory, J G; Carter, G L

    1988-02-15

    Leukemia L1210 cell lines, ED1 and ED2, were generated which were resistant to the cytotoxic effects of deoxyadenosine/erythro-9-(2-hydroxyl-3-nonyl)adenine and deoxyadenosine/erythro-9-(2-hydroxyl-3-nonyl)adenine plus 2,3-dihydro-1H-pyrazole[2,3a]imidazole/Desferal, respectively. The ED1 and ED2 were characterized to show that these cell lines had increased levels of ribonucleotide reductase as measured by CDP reduction. The reductase activity in crude cell-free extracts from the ED1 and ED2 cells was not inhibited by dATP. For CDP reductase, the activation by adenylylimido diphosphate and inhibition by dGTP and dTTP in these extracts from the ED1 and ED2 cells were the same as for the wild-type L1210 cells. The ED1 and ED2 cells were highly cross-resistant, as measured by growth inhibition, to deoxyguanosine/8-aminoguanosine, 2-fluorodeoxyadenosine, and 2-fluoroadenine arabinoside. While the ED2 cells showed resistance to 2,3-dihydro-1H-pyrazole-[2,3a]-imidazole/Desferal (6-fold), the ED1 and ED2 cell lines showed less resistance to hydroxyurea, 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone, and the dialdehyde of inosine. These data indicate that the mechanisms of resistance to the ribonucleotide reductase inhibitors are related to the increased level of ribonucleotide reductase activity and to the decreased sensitivity of the effector-binding subunit to dATP.

  5. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A

    1983-01-01

    Assimilatory nitrate reductase (NAD(P)H-nitrate oxidoreductase, EC 1.6.6.2) from the green alga Ankistrodesmus braunii can be purified to homogeneity by dye-ligand chromatography on blue-Sepharose. The purified enzyme, whose turnover number is 623 s-1, presents an optimum pH of 7.5 and Km values of 13 microM, 23 microM and 0.15 mM for NADH, NADPH and nitrate, respectively. The NADH-nitrate reductase activity exhibits an iso ping pong bi bi kinetic mechanism. The molecular weight of the native nitrate reductase is 467 400, while that of its subunits is 58 750. These values suggest an octameric structure for the enzyme, which has been confirmed by electron microscopy. As deduced from spectrophotometric and fluorimetric studies, the enzyme contains FAD and cytochrome b-557 as prosthetic groups. FAD is not covalently bound to the protein and is easily dissociated in diluted solutions from the enzyme. Its apparent Km value is 4 nM, indicative of a high affinity of the enzyme for FAD. The results of the quantitative analyses of prosthetic groups indicate that nitrate reductase contains four molecules of flavin, four heme irons, and two atoms of molybdenum. The three components act sequentially transferring electrons from reduced pyridine nucleotides to nitrate, thus forming a short electron transport chain along the protein. A mechanism is proposed for the redox interconversion of the nitrate reductase activity. Inactivation seems to occur by formation of a stable complex of reduced enzyme with cyanide or superoxide, while reactivation is a consequence of reoxidation of the inactive enzyme. Both reactions imply the transfer of only one electron.

  6. Treatment of hirsutism with 5 alpha-reductase inhibitors.

    PubMed

    Brooks, J R

    1986-05-01

    Much os the evidence gathered from studies of 5 alpha-reductase activity levels and androgen metabolism in the skin of hirsute women and the excretion of androgen metabolites by hirsute women indicates that 5 alpha-reduced androgens are probably of primary importance in hirsutism. Unfortunately, until very recently, the lack of a suitable 5 alpha-reductase inhibitor made it very difficult to adequately test the hypothesis that such an inhibitor might be useful in the treatment of hirsutism and certain other androgen-related diseases. No substance was available which had good, unambiguous activity in vivo as a 5 alpha-reductase inhibitor. A number of 4-azasteroids have now been found to possess excellent 5 alpha-reductase inhibitory activity both in vitro and in vivo. Among other properties, several of these compounds show little or no affinity for the androgen receptor of rat prostate cytosol, they attenuate the growth promoting effect of T, but not DHT, on the ventral prostate of castrated male rats, they cause a marked reduction in prostatic DHT concentration in acutely treated rats and dogs and they bring about a significant decline in prostate size in chronically treated rats and dogs. It is expected that, in the near future, one or more of these highly active 5 alpha-reductase inhibitors will be tested in the clinic as a treatment for hirsutism. The results of those studies will be awaited with a great deal of interest since they should considerably advance our understanding of this disease and possibly contribute to its control.

  7. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents.

    PubMed

    Fritz, Gerhard; Henninger, Christian; Huelsenbeck, Johannes

    2011-01-01

    HMG-CoA reductase inhibitors (statins) are widely used in the therapy of hypercholesterolemia. Apart from their lipid-lowering activity, they have pleiotropic effects that are attributed to the inhibition of regulatory proteins, including Ras-homologous (Rho) GTPases. Here, we discuss the potential usefulness of statins to prevent normal tissue damage provoked by radiotherapy. Statins reduce the mRNA expression of pro-inflammatory and pro-fibrotic cytokines stimulated by ionizing radiation in vitro and alleviate IR-induced inflammation and fibrosis in vivo. The currently available data indicate that statins accelerate the rapid repair of DNA double-strand breaks and, moreover, mitigate the DNA damage response induced by IR. Furthermore, statins increase the mRNA expression of DNA repair factors in vivo. Thus, although the molecular mechanisms involved are still ambiguous, preclinical data concordantly show a promising radioprotective capacity of statins.

  8. Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer.

    PubMed

    Liu, Shixuan; Cheng, Wei; Fowle Grider, Ronald; Shen, Guomin; Li, Weikai

    2014-01-01

    The intramembrane vitamin K epoxide reductase (VKOR) supports blood coagulation in humans and is the target of the anticoagulant warfarin. VKOR and its homologues generate disulphide bonds in organisms ranging from bacteria to humans. Here, to better understand the mechanism of VKOR catalysis, we report two crystal structures of a bacterial VKOR captured in different reaction states. These structures reveal a short helix at the hydrophobic active site of VKOR that alters between wound and unwound conformations. Motions of this 'horizontal helix' promote electron transfer by regulating the positions of two cysteines in an adjacent loop. Winding of the helix separates these 'loop cysteines' to prevent backward electron flow. Despite these motions, hydrophobicity at the active site is maintained to facilitate VKOR catalysis. Biochemical experiments suggest that several warfarin-resistant mutations act by changing the conformation of the horizontal helix. Taken together, these studies provide a comprehensive understanding of VKOR function.

  9. The Lactone form of stachybotrydial: a new inhibitor of dihydrofolate reductase from stachybotrys sp. FN298.

    PubMed

    Kwon, Yun-Ju; Sohn, Mi-Jin; Kim, Hyun-Ju; Kim, Won-Gon

    2014-01-01

    Dihydrofolate reductase (DHFR) has been confirmed to be a novel target for antibacterial drug development. In this study, we determined that a fungal metabolite from Stachybotrys sp. FN298 can inhibit the DHFR of Staphylococcus aureus. Its structure was identified as a lactone form of stachybotrydial using mass spectrometry and nuclear magnetic resonance analysis. This compound inhibited S. aureus DHFR with a half-maximal inhibitory concentration of 41 µM. It also prevented the growth of S. aureus and methicillin-resistant S. aureus (MRSA) with a minimum inhibitory concentration of 32 µg·mL(-1). To our knowledge, this is the first description of a DHFR inhibitor of microbial origin. The inhibitory function of the lactone form of stachybotrydial highlights its potential for development into a new broad-spectrum antibacterial agent and as an agent against MRSA.

  10. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  11. The Interaction of Microsomal Cytochrome P450 2B4 with its Redox Partners, Cytochrome P450 Reductase and Cytochrome b5

    PubMed Central

    Im, Sang-Choul; Waskell, Lucy

    2010-01-01

    1 Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼ 10 to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼ 15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase. PMID:21055385

  12. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control

    PubMed Central

    Athanasiou, Dimitra; Bevilacqua, Dalila; Aguila, Monica; McCulley, Caroline; Kanuga, Naheed; Iwawaki, Takao; Paul Chapple, J.; Cheetham, Michael E.

    2014-01-01

    Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110–C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease. PMID:25055872

  13. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control.

    PubMed

    Athanasiou, Dimitra; Bevilacqua, Dalila; Aguila, Monica; McCulley, Caroline; Kanuga, Naheed; Iwawaki, Takao; Chapple, J Paul; Cheetham, Michael E

    2014-12-15

    Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110-C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease.

  14. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  15. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  16. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.

  17. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  18. Pyrroline-5-Carboxylate Reductase in Soybean Nodules 1

    PubMed Central

    Chilson, Oscar P.; Kelly-Chilson, Anne E.; Schneider, Julie D.

    1992-01-01

    Characteristics of pyrroline-5-carboxylate reductase (P5CR) from Bradyrhizobium japonicum bacteroids and cultured rhizobia were compared with those of the enzyme in soybean nodule host cytosol. Reductase from host cytosol differed from that in bacteroids in: (a) the effect of pH on enzymic activity, (b) the capacity to catalyze both reduction of pyrroline-5-carboxylic acid and NAD+-dependent proline oxidation, (c) apparent affinities for pyrroline-5-carboxylic acid, and (d) sensitivities to inhibition by NADP+ and proline. The K1 for proline inhibition of P5CR in bacteroid cytosol was 1.8 millimolar. The properties of P5CR in B. japonicum and bacteroid cytosol were similar. The specific activities of P5CR in the cytosolic fractions of the nodule host and the bacteroid compartment were also comparable. PMID:16668837

  19. Characterization of 12-Oxo-Phytodienoic Acid Reductase in Corn

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1986-01-01

    12-Oxo-phytodienoic acid reductase, an enzyme of the biosynthetic pathway that converts linolenic acid to jasmonic acid, has been characterized from the kernel and seedlings of corn (Zea mays L.). The molecular weight of the enzyme, estimated by gel filtration, was 54,000. Optimum enzyme activity was observed over a broad pH range, from pH 6.8 to 9.0. The enzyme had a Km of 190 micromolar for its substrate, 12-oxo-phytodienoic acid. The preferred reductant was NADPH, for which the enzyme exhibited a Km of 13 micromolar, compared with 4.2 millimolar for NADH. Reductase activity was low in the corn kernel but increased five-fold by the fifth day after germination and then gradually declined. PMID:16664582

  20. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  1. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala)

    PubMed Central

    Herrera-Juárez, Álvaro Miguel; Martínez-González, José de Jesús; del Arenal Mena, Irene Patricia; Flores-Herrera, Óscar

    2017-01-01

    A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR), thioredoxin-glutathione reductase (TGR), and a putative thioredoxin reductase (TrxR) was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life. PMID:28787021

  2. Autoregulation of the Synthesis of Nitrate Reductase in Aspergillus nidulans

    PubMed Central

    Cove, D. J.; Pateman, J. A.

    1969-01-01

    In Aspergillus nidulans, the syntheses of nitrate and nitrite reductases are induced by nitrate, and are repressed by ammonium. It is possible in wild-type strains to overcome partially the repressive effect of ammonium, by the addition of high concentrations of nitrate to the growth medium. Mutations which lead to the production of abnormal nitrate reductase affect in addition the control of the synthesis of the nitrate-metabolizing enzymes, which in these strains are produced constitutively. That this is not due to the accumulation of an internal inducer has now been shown, as these mutants have been found to be unable to respond to nitrate induction in the presence of ammonium in the same way as do wild-type strains. To explain these findings, we propose that the nitrate reductase molecule provides the recognition site for nitrate in the control system, such that when it is not complexed with nitrate it acts as a co-repressor, and, when it is complexed, as a co-inducer. PMID:5776531

  3. The effect of quercetin and galangin on glutathione reductase.

    PubMed

    Paulíková, Helena; Berczeliová, Elena

    2005-12-01

    Quercetin and galangin can change the activity of glutathione reductase. Quercetin (a catechol structure in the B-ring) and galangin (any hydroxyl group in the B-ring) have different biological activities but, both possess high antioxidant abilities. Quercetin during the antioxidative action, is converted into an oxidized products (o-semiquinone and o-quinone), and subsequently glutathionyl adducts may be formed or SH-enzyme can be inhibited. We have tried to see whether inhibition of glutathione reductase (GR) can be influenced by preincubation of enzyme with NADPH (a creation of reduced form of enzyme, GRH(2)) and whether diaphorase activity of the enzyme is decreased by these flavonoids. The results confirmed that quercetin inhibits GRH(2) and inhibition is reduced by addition of EDTA or N-acetylcysteine. Both of flavonoids have no effect on diaphorase activity of glutathione reductase and this enzyme could increase the production of free radicals by catalysis of reduction of o-quinone during action of quercetin in vivo.

  4. Structural and functional diversity of ferredoxin-NADP(+) reductases.

    PubMed

    Aliverti, Alessandro; Pandini, Vittorio; Pennati, Andrea; de Rosa, Matteo; Zanetti, Giuliana

    2008-06-15

    Although all ferredoxin-NADP(+) reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP(+) to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design.

  5. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues*

    PubMed Central

    Youngblut, Matthew D.; Tsai, Chi-Lin; Clark, Iain C.; Carlson, Hans K.; Maglaqui, Adrian P.; Gau-Pan, Phonchien S.; Redford, Steven A.; Wong, Alan; Tainer, John A.; Coates, John D.

    2016-01-01

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO32− bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  6. Rat liver thioredoxin and thioredoxin reductase: purification and characterization.

    PubMed

    Luthman, M; Holmgren, A

    1982-12-21

    A reproducible scheme has been developed for the preparation of rat liver thioredoxin and thioredoxin reductase (EC 1.6.4.5) by using assays based on reduction of insulin and 5,5'-dithiobis(2-nitrobenzoic acid), respectively. Both proteins were purified to homogeneity, as judged from polyacrylamide gel electrophoresis. Thioredoxin had a molecular weight of 12 000 and contained about 110 amino acids including 4 half-cystines and an NH2-terminal valine. Peptide maps of reduced and carboxymethylated thioredoxin showed that the protein had the active center sequence -Cys-Gly-Pro-Cys-Lys-Met- characteristic of thioredoxins also from procaryotes. Prolonged air oxidation of fully reduced thioredoxin created inactive, aggregated disulfide-containing molecules. Thioredoxin reductase showed a subunit molecular weight of 58 000 and a native molecular weight of 116 000. The enzyme was highly specific for NADPH with a Km of 6 microM. It contained FAD as prosthetic group and was sensitive to inhibition by arsenite. Thioredoxin reductase had a Km of 2.5 microM for rat and calf liver thioredoxin and a Kcat of 3000 min-1.

  7. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis.

    PubMed

    Gahloth, Deepankar; Dunstan, Mark S; Quaglia, Daniela; Klumbys, Evaldas; Lockhart-Cairns, Michael P; Hill, Andrew M; Derrington, Sasha R; Scrutton, Nigel S; Turner, Nicholas J; Leys, David

    2017-09-01

    Carboxylic acid reductase (CAR) catalyzes the ATP- and NADPH-dependent reduction of carboxylic acids to the corresponding aldehydes. The enzyme is related to the nonribosomal peptide synthetases, consisting of an adenylation domain fused via a peptidyl carrier protein (PCP) to a reductase termination domain. Crystal structures of the CAR adenylation-PCP didomain demonstrate that large-scale domain motions occur between the adenylation and thiolation states. Crystal structures of the PCP-reductase didomain reveal that phosphopantetheine binding alters the orientation of a key Asp, resulting in a productive orientation of the bound nicotinamide. This ensures that further reduction of the aldehyde product does not occur. Combining crystallography with small-angle X-ray scattering (SAXS), we propose that molecular interactions between initiation and termination domains are limited to competing PCP docking sites. This theory is supported by the fact that (R)-pantetheine can support CAR activity for mixtures of the isolated domains. Our model suggests directions for further development of CAR as a biocatalyst.

  8. Early diagnosis and management of 5 alpha-reductase deficiency.

    PubMed Central

    Odame, I; Donaldson, M D; Wallace, A M; Cochran, W; Smith, P J

    1992-01-01

    Two siblings of Pakistani origin, karyotype 46 XY, were born with predominantly female external genitalia with minute phallus, bifid scrotum, urogenital sinus, and palpable gonads. The older sibling at the age of 8 days showed an adequate testosterone response to human chorionic gonadotrophin (hCG) stimulation. The diagnosis of 5 alpha-reductase deficiency was made at age 6 years when no 5 alpha-reduced glucocorticoid metabolites were detectable in urine even after tetracosactrin (Synacthen) stimulation. In the younger sibling the diagnosis of 5 alpha-reductase deficiency was provisionally made at the early age of 3 days on the basis of high urinary tetrahydrocortisol (THF)/allotetrahydrocortisol (5 alpha-THF) ratio and this ratio increased with age confirming the diagnosis. Plasma testosterone: dihydrotestosterone (DHT) ratio before and after hCG stimulation was within normal limits at age 3 days but was raised at age 9 months. Topical DHT cream application to the external genitalia promoted significant phallic growth in both siblings and in the older sibling corrective surgery was facilitated. In prepubertal male pseudohermaphrodites with normal or raised testosterone concentrations, phallic growth in response to DHT cream treatment could be an indirect confirmation of 5 alpha-reductase deficiency. Images Figure 1 PMID:1626992

  9. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase

    NASA Astrophysics Data System (ADS)

    Lay, Angelina J.; Jiang, Xing-Mai; Kisker, Oliver; Flynn, Evelyn; Underwood, Anne; Condron, Rosemary; Hogg, Philip J.

    2000-12-01

    Disulphide bonds in secreted proteins are considered to be inert because of the oxidizing nature of the extracellular milieu. An exception to this rule is a reductase secreted by tumour cells that reduces disulphide bonds in the serine proteinase plasmin. Reduction of plasmin initiates proteolytic cleavage in the kringle 5 domain and release of the tumour blood vessel inhibitor angiostatin. New blood vessel formation or angiogenesis is critical for tumour expansion and metastasis. Here we show that the plasmin reductase isolated from conditioned medium of fibrosarcoma cells is the glycolytic enzyme phosphoglycerate kinase. Recombinant phosphoglycerate kinase had the same specific activity as the fibrosarcoma-derived protein. Plasma of mice bearing fibrosarcoma tumours contained several-fold more phosphoglycerate kinase, as compared with mice without tumours. Administration of phosphoglycerate kinase to tumour-bearing mice caused an increase in plasma levels of angiostatin, and a decrease in tumour vascularity and rate of tumour growth. Our findings indicate that phosphoglycerate kinase not only functions in glycolysis but is secreted by tumour cells and participates in the angiogenic process as a disulphide reductase.

  10. Cloning and Sequence Analysis of Two Pseudomonas Flavoprotein Xenobiotic Reductases

    PubMed Central

    Blehert, David S.; Fox, Brian G.; Chambliss, Glenn H.

    1999-01-01

    The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5α. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems. PMID:10515912

  11. Quinone Reductase Induction as a Biomarker for Cancer Chemoprevention⊥

    PubMed Central

    Cuendet, Muriel; Oteham, Carol P.; Moon, Richard C.; Pezzuto, John M.

    2007-01-01

    Chemoprevention involves the use of natural or synthetic substances to reduce the risk of developing cancer. Strategies for protecting cells from initiation events include decreasing metabolic enzymes responsible for generating reactive species (phase I enzymes) while increasing phase II enzymes that can deactivate radicals and electrophiles known to intercede in normal cellular processes. Reduction of electrophilic quinones by quinone reductase is an important detoxification pathway. Following evaluation of approximately 3000 plant and marine organism extracts, the number characterized as “active” was established in the range of 12% of the total, and over 60 active compounds have been isolated as quinone reductase inducers. One of them, isoliquiritigenin (1), isolated from tonka bean, was shown to be a monofunctional inducer by having similar quinone reductase inducing ability in wild-type Hepa 1c1c7 cells and two mutant cell lines. To further investigate the mechanism of induction, HepG2 human hepatoma cells stably transfected with ARE-luciferase plasmid were used. Isoliquiritigenin (1) significantly induced the luciferase activity in a dose-dependent manner. On the basis of these results, a full-term cancer chemoprevention study was conducted with 7,12-dimethylbenz[a]anthracene (DMBA)-treated female Sprague-Dawley rats. Dietary administration of 1 increased tumor latency. Based on these promising preliminary results, additional mechanistic studies are underway, as well as full-term carcinogenesis studies with chronic administration schedules. PMID:16562858

  12. The existence and significance of a mitochondrial nitrite reductase.

    PubMed

    Nohl, Hans; Staniek, Katrin; Kozlov, Andrey V

    2005-01-01

    The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.

  13. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.

    PubMed

    Kratzer, Regina; Wilson, David K; Nidetzky, Bernd

    2006-09-01

    Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.

  14. Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium

    PubMed Central

    Rouf, Syed Fazle; Kitowski, Vera; Böhm, Oliver M.; Rhen, Mikael; Jäger, Timo; Bange, Franz-Christoph

    2011-01-01

    Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium. PMID:22073230

  15. HMG-CoA Reductase Inhibition Promotes Neurological Recovery, Peri-Lesional Tissue Remodeling, and Contralesional Pyramidal Tract Plasticity after Focal Cerebral Ischemia

    PubMed Central

    Kilic, Ertugrul; Reitmeir, Raluca; Kilic, Ülkan; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kelestemur, Taha; Ethemoglu, Muhsine Sinem; Ozturk, Gurkan; Hermann, Dirk M.

    2014-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery. PMID:25565957

  16. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants1[W][OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Brychkova, Galina; Kurmanbayeva, Assylay; Bekturova, Aizat; Ventura, Yvonne; Khozin-Goldberg, Inna; Eppel, Amir; Fluhr, Robert; Sagi, Moshe

    2014-01-01

    Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5′-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves. PMID:24987017

  17. [Adverse drug reactions of hydroxymethylglutaryl-CoA reductase inhibitors reported to agency for medicinal products and medical devices].

    PubMed

    Skvrce, Nikica Mirosević; Bozina, Nada; Sarinić, Viola Macolić; Tomić, Sinisa

    2010-01-01

    Hydroxymethylglutaryl-CoA reductase inhibitors (statins) are drugs used in the treatment of chronic diseases and frequently in concomitant therapy with many other drugs. Therefore, the risk of adverse drug reactions (ADRs), especially those caused by interactions is high. Aim of the study was to describe and analyze ADRs caused by statins reported to Croatian Agency from March 2005 to December 2008, and to emphasize reasons of their occurrence. 136 of statin ADRs were reported. 12 % of all reported statins' ADRs were caused by interactions, which is higher than percent (5.6%) of interactions caused by all other drugs in 2005 and 2006. Proportion of serious ADRs related to administered dose and thus preventable was higher than proportion of all ADRs caused by statins (p = 0.003). Most serious ADRs could have been prevented with better understanding of interactions and by use of pharmacogenomics in identifying patients that are because of genetic predisposition more sensitive to standard doses.

  18. Structure of the Molybdenum Site of EEcherichia Coli Trimethylamine N-Oxide Reductase

    SciTech Connect

    Zhang, L.; Nelson, K.Johnson; Rajagopalan, K.V.; George, G.N.

    2009-05-28

    We report a structural characterization of the molybdenum site of recombinant Escherichia coli trimethylamine N-oxide (TMAO) reductase using X-ray absorption spectroscopy. The enzyme active site shows considerable similarity to that of dimethyl sulfoxide (DMSO) reductase, in that, like DMSO reductase, the TMAO reductase active site can exist in multiple forms. Examination of the published crystal structure of TMAO oxidase from Shewanella massilia indicates that the postulated Mo coordination structure is chemically impossible. The presence of multiple active site structures provides a potential explanation for the anomalous features reported from the crystal structure.

  19. Ammonification in Bacillus subtilis Utilizing Dissimilatory Nitrite Reductase Is Dependent on resDE

    PubMed Central

    Hoffmann, Tamara; Frankenberg, Nicole; Marino, Marco; Jahn, Dieter

    1998-01-01

    During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation. PMID:9422613

  20. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  1. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  2. Components of glycine reductase from Eubacterium acidaminophilum. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein PA.

    PubMed

    Lübbers, M; Andreesen, J R

    1993-10-15

    The genes encoding thioredoxin reductase (trxB), thioredoxin (trxA), protein PA of glycine reductase (grdA) and the first 23 amino acids of the large subunit of protein PC of glycine reductase (grdC) belonging to the reductive deamination systems present in Eubacterium acidaminophilum were cloned and sequenced. The proteins were products of closely linked genes with 314 codons (thioredoxin reductase), 110 codons (thioredoxin), and 158 codons (protein PA). The protein previously called 'atypically small lipoamide dehydrogenase' or 'electron transferring flavoprotein' could now conclusively be identified as a thioredoxin reductase (subunit mass of 34781 Da) by the alignment with the enzyme of Escherichia coli showing the same typical order of the corresponding domains. The thioredoxin (molecular mass of 11742 Da) deviated considerably from the known consensus sequence, even in the most strongly conserved redox-active segment WCGPC that was now GCVPC. The selenocysteine of protein PA (molecular mass of 16609 Da) was encoded by TGA. The protein was highly similar to those of Clostridium purinolyticum and Clostridium sticklandii involved in glycine reductase. Thioredoxin reductase and thioredoxin of E. acidaminophilum could be successfully expressed in E. coli.

  3. The Combined Extract of Purple Waxy Corn and Ginger Prevents Cataractogenesis and Retinopathy in Streptozotocin-Diabetic Rats

    PubMed Central

    Thiraphatthanavong, Paphaphat; Thukham-mee, Wipawee; Lertrat, Kamol; Suriharn, Bhalang

    2014-01-01

    Based on the crucial roles of oxidative stress and aldose reductase on diabetic complications and the protective effect against diabetic eye complication of purple waxy corn and ginger (PWCG) together with the synergistic effect concept, we aimed to determine anticataract and antiretinopathy effects of the combined extract of purple waxy corn and ginger (PWCG). The streptozotocin diabetics with the blood glucose levels >250 mg·dL−1 were orally given the extract at doses of 50, 100, and 200 mg/kg·BW−1 for 10 weeks. Then, lens opacity and histopathology of retina were determined. The changes of MDA together with the activities of SOD, CAT, GPx, and AR in lens were also determined using biochemical assays. All doses of PWCG decreased lens opacity, MDA, and AR in the lens of diabetic rats. The elevation of CAT and GPx activities was also observed. The antiretinopathy property of the combined extract was also confirmed by the increased number of neurons in ganglion cell layer and thickness of total retina and retinal nuclear layer in diabetic rats. PWCG is the potential functional food to protect against diabetic cataract and retinopathy. However, further studies concerning toxicity and clinical trial are still essential. PMID:25614778

  4. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals.

    PubMed

    Gnanamani, A; Kavitha, V; Radhakrishnan, N; Suseela Rajakumar, G; Sekaran, G; Mandal, A B

    2010-09-01

    The present study demonstrates hexavalent chromium reduction and trivalent chromium tolerance behavior of marine Bacillus sp., MTCC 5514 through its extracellular enzyme reductase and biosurfactants production. The isolate reduces 10-2000 mg/L of hexavalent chromium to trivalent chromium with in 24-96 h respectively and the release of extracellular chromium reductase, found responsible for the reduction. Upon reduction, the concentration of trivalent chromium in the medium found comparatively less. Experimental results reveal, biosurfactants activity found responsible for the less concentration of Cr(III). Hypothetically, trivalent chromium upon formation get entrapped in the micelle of biosurfactants, prevents microbial cells from exposure towards trivalent chromium. Thus, the chosen isolate exhibit tolerance and growth with the increasing concentration of chromium.

  5. Effect of Tinospora cordifolia on experimental diabetic neuropathy

    PubMed Central

    Nadig, Pratibha D.; Revankar, Roshni R.; Dethe, Shankar M.; Narayanswamy, Sriniwas B.; Aliyar, Meharban A.

    2012-01-01

    Objectives: To evaluate the effect of aqueous extract of stem of Tinospora cordifolia (TC) on hyperalgesia in streptozotocin induced diabetic rats and in- vitro aldose reductase inhibition. Materials and Methods: Wistar albino rats, rendered diabetic with streptozotocin, were divided into 5 groups, namely the diabetic control treated with vehicle (DC), standard control which received glibenclamide+metformin (SC), test groups treated with 100, 200and 400 mg/kg b.w. of Tinospora cordifolia (TC1, TC2 and TC3 respectively). A group of five normal animals served as normal control (NC). Fasting blood glucose, body weight and reaction time to tail flick were measured one week after induction of diabetes. The animals were then treated orally for two weeks after which the same parameters were repeated. In-vitro aldose reductase inhibition assay was carried out at concentrations of 5, 10, 25, 50, 100 and 200 mcg/ml of Tinospora cordifolia using rat lens from normal rats. The in-vivo results were analysed with Mann Whitney test. Results: The DC group demonstrated a decrease in the reaction time (hyperalgesia) compared to NC while a significant increase in the reaction time was observed with SC, TC2 and TC3 groups (p<0.05) as compared to the DC group. TC1 and TC2 showed a significant reduction in body weight compared to their baseline values (p<0.05). There was no significant change in the fasting blood glucose (FBS) in any of the groups. In-vitro aldose reductase inhibition was observed with TC with an IC50 of 103 mcg/ml. Conclusions: Tinospora cordifolia prevents the hyperalgesia in experimental diabetic neuropathy. It has an aldose reductase inhibitory activity in-vitro which may contribute to the beneficial effects. PMID:23112417

  6. Vegetables’ juice influences polyol pathway by multiple mechanisms in favour of reducing development of oxidative stress and resultant diabetic complications

    PubMed Central

    Tiwari, Ashok K.; Kumar, D. Anand; Sweeya, Pisupati S.; Chauhan, H. Anusha; Lavanya, V.; Sireesha, K.; Pavithra, K.; Zehra, Amtul

    2014-01-01

    Objective: Hyperglycemia induced generation of free radicals and consequent development of oxidative stress by polyol pathway is one of the crucial mechanisms stirring up development of diabetic complications. We evaluated influence of ten vegetables’ juice on polyol pathway along with their antioxidant and antioxidative stress potentials. Materials and Methods: Aldose reductase activity was determined utilising goat lens and human erythrocytes. In goat lens, utilization of nicotinamine adenine dinucleotide phosphate (NADPH) and aldose reductase inhibition was assayed. In human erythrocytes, sorbitol formation was measured as an index of aldose reductase activity under normoglycemic and hyperglycemic conditions. Ability of juices in inhibiting oxidative damage to deoxyribose sugar and calf thymus DNA and inhibitory activity against hydrogen peroxide induced hemolysis of erythrocytes was also analysed. Phytochemical contents like total polyphenol, total flavonoid and total protein were measured to find their influence on biological activities. Results: Vegetables’ juice displayed varying degrees of inhibitory potentials in mitigating NADPH dependent catalytic activity of aldose reductase in goat lens, accumulation of sorbitol in human erythrocytes under different glucose concentrations; Fenton-reaction induced oxidative damage to deoxyribose sugar, and calf thymus DNA. Substantial variations in vegetables phytochemicals content were also noticed in this study. Conclusions: Vegetables’ juice possesses potent activities in influencing polyol pathway by various mechanisms in favour of reducing development of oxidative stress independent of their inherent antioxidative properties. Juice of ivy gourd followed by green cucumber and ridge gourd were among the most potent for they displayed strong activities on various parameters analysed in this study. These vegetables’ juice may become part of mechanism-based complementary antioxidant therapy to prevent

  7. TonEBP/NFAT5 regulates downstream osmoregulatory proteins during freeze-thaw stress in the wood frog.

    PubMed

    Zhang, Yichi; Al-Attar, Rasha; Storey, Kenneth B

    2017-09-22

    Rana sylvatica, known as the wood frog, can survive extremely cold temperatures during winter by undergoing full-body freezing, where it tolerates freezing of 65-70% of its total body water. During freezing, cellular dehydration decreases damage to the cell by preventing ice crystallization. Challenged with many stresses, these animals are forced to develop physiological adaptations to osmoregulation and osmoprotection that are necessary to ensure their survival. The purpose of this study was to elucidate a potential mechanism by which the transcription factor, NFAT5, regulates the expression of three osmoregulatory proteins (aldose reductase, SMIT, and BGT-1). These three proteins control cellular concentrations of the organic osmolytes: betaine (BGT-1), myo-inositol (SMIT), and sorbitol (aldose reductase). We studied this mechanism during the freeze-thaw stress in R. sylvatica liver, kidney, and skeletal muscle. Protein expression of BGT-1, SMIT, aldose reductase, and NFAT5 were examined using immunoblotting. We identified that the NFAT5 pathway facilitated osmoregulation in a tissue-specific manner during freezing. In skeletal muscle, we demonstrated that NFAT5 upregulation in thawing led to increases in the protein levels of BGT-1. In liver, NFAT5 was upregulated during freezing, along with aldose reductase. Furthermore, neither of these patterns of expression were observed in kidney as none of these four proteins showed differential expression during freezing or thawing. Therefore, the NFAT5 osmoregulatory pathway appears to be tissue-specific. Our novel findings on a mechanism of osmoregulation in R. sylvatica highlight the importance of studying naturally stress-tolerant animals to identify novel pro-survival pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Structural and Biochemical Characterization of Cinnamoyl-CoA Reductases.

    PubMed

    Sattler, Steven A; Walker, Alexander M; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-02-01

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species.

  10. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites

    PubMed Central

    Bonilla, Mariana; Gladyshev, Vadim N.

    2013-01-01

    Abstract Significance: Platyhelminth parasites cause chronic infections that are a major cause of disability, mortality, and economic losses in developing countries. Maintaining redox homeostasis is a major adaptive problem faced by parasites and its disruption can shift the biochemical balance toward the host. Platyhelminth parasites possess a streamlined thiol-based redox system in which a single enzyme, thioredoxin glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase (TR) domains, supplies electrons to oxidized glutathione (GSSG) and thioredoxin (Trx). TGR has been validated as a drug target for schistosomiasis. Recent Advances: In addition to glutathione (GSH) and Trx reduction, TGR supports GSH-independent deglutathionylation conferring an additional advantage to the TGR redox array. Biochemical and structural studies have shown that the TR activity does not require the Grx domain, while the glutathione reductase and deglutathionylase activities depend on the Grx domain, which receives electrons from the TR domains. The search for TGR inhibitors has identified promising drug leads, notably oxadiazole N-oxides. Critical Issues: A conspicuous feature of platyhelminth TGRs is that their Grx-dependent activities are temporarily inhibited at high GSSG concentrations. The mechanism underlying the phenomenon and its biological relevance are not completely understood. Future Directions: The functional diversity of Trxs and Grxs encoded in platyhelminth genomes remains to be further assessed to thoroughly understand the TGR-dependent redox network. Optimization of TGR inhibitors and identification of compounds targeting other parasite redox enzymes are good options to clinically develop relevant drugs for these neglected, but important diseases. Antioxid. Redox Signal. 19, 735–745. PMID:22909029

  11. Purification and properties of nitrate reductase from Mitsuokella multiacidus.

    PubMed

    Yamamoto, I; Shimizu, H; Tsuji, T; Ishimoto, M

    1986-03-01

    Nitrate reductase of Mitsuokella multiacidus (formerly Bacteroides multiacidus) was solublized from the membrane fraction with 1% sodium deoxycholate and purified 40-fold by immunoaffinity chromatography on the antibody-Affi-Gel 10 column. The preparation showed a major band (86% of total protein) with enzyme activity and a minor band on polyacrylamide gel after disc electrophoresis in the presence of 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a major band, the relative mobility of which corresponded to a molecular weight of 160,000, and two minor bands. The molecular weight of the enzyme was determined to be 160,000 by gel filtration on Bio-Gel A-1.5 m in the presence of 0.1% deoxycholate. Molybdenum cofactor was detected in the enzyme by fluorescence spectroscopy and by complementation of nitrate reductase from the nit-1 mutant of Neurospora crassa. The M. multiacidus enzyme catalyzed reduction of nitrate, chlorate, and bromate using methyl viologen as an electron donor. The maximal activity was found at pH 6.2-7.5 for nitrate reduction. Either methyl or benzyl viologen served well as the electron donor, but FAD, FMN, and horse heart cytochrome c were not effective. Ferredoxin from Clostridium pasteurianum supplied electron to the nitrate reductase. The purified enzyme had Km values of 0.13 mM, 0.12 mM, and 0.22 mM for nitrate, methyl viologen, and ferredoxin, respectively. The enzyme activity was inhibited by cyanide (85% at 1 mM), azide (88% at 0.1 mM), and thiocyanate (75% at 10 mM).

  12. Modulating hemoglobin nitrite reductase activity through allostery: a mathematical model.

    PubMed

    Rong, Zimei; Alayash, Abdu I; Wilson, Michael T; Cooper, Chris E

    2013-11-30

    The production of nitric oxide by hemoglobin (Hb) has been proposed to play a major role in the control of blood flow. Because of the allosteric nature of hemoglobin, the nitrite reductase activity is a complex function of oxygen partial pressure PO2. We have previous developed a model to obtain the micro rate constants for nitrite reduction by R state (kR) and T state (kT) hemoglobin in terms of the experimental maximal macro rate constant kNmax and the corresponding oxygen concentration PO2max. However, because of the intrinsic difficulty in obtaining accurate macro rate constant kN, from available experiments, we have developed an alternative method to determine the micro reaction rate constants (kR and kT) by fitting the simulated macro reaction rate curve (kN versus PO2) to the experimental data. We then use our model to analyze the effect of pH (Bohr Effect) and blood ageing on the nitrite reductase activity, showing that the fall of bisphosphoglycerate (BPG) during red cell storage leads to increase NO production. Our model can have useful predictive and explanatory power. For example, the previously described enhanced nitrite reductase activity of ovine fetal Hb, in comparison to the adult protein, may be understood in terms of a weaker interaction with BPG and an increase in the value of kT from 0.0087M(-1)s(-1) to 0.083M(-1)s(-1). Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    PubMed

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  14. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    SciTech Connect

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  15. The dynamic energy landscape of dihydrofolate reductase catalysis.

    PubMed

    Boehr, David D; McElheny, Dan; Dyson, H Jane; Wright, Peter E

    2006-09-15

    We used nuclear magnetic resonance relaxation dispersion to characterize higher energy conformational substates of Escherichia coli dihydrofolate reductase. Each intermediate in the catalytic cycle samples low-lying excited states whose conformations resemble the ground-state structures of preceding and following intermediates. Substrate and cofactor exchange occurs through these excited substates. The maximum hydride transfer and steady-state turnover rates are governed by the dynamics of transitions between ground and excited states of the intermediates. Thus, the modulation of the energy landscape by the bound ligands funnels the enzyme through its reaction cycle along a preferred kinetic path.

  16. Methylenetetrahydrofolate Reductase C677T: Hypoplastic Left Heart and Thrombosis.

    PubMed

    Spronk, Kimberly J; Olivero, Anthony D; Haw, Marcus P; Vettukattil, Joseph J

    2015-10-01

    The incidence of congenital heart defects is higher in infants with mutation of methylenetetrahydrofolate reductase (MTHFR) gene. The MTHFR C677T gene decreases the bioavailability of folate and increases plasma homocysteine, a risk factor for thrombosis. There have been no reported cases in the literature on the clinical implications of this procoagulable state in the setting of cyanotic heart disease, which itself has prothrombotic predisposition. Two patients with hypoplastic left heart syndrome developed postoperative thrombotic complications, both were homozygous for MTHFR C677T. We present these cases and highlight the implications of MTHFR mutation in the management of complex congenital heart disease. © The Author(s) 2015.

  17. Differential Light Induction of Nitrate Reductases in Greening and Photobleached Soybean Seedlings 1

    PubMed Central

    Kakefuda, Genichi; Duke, Stanley H.; Duke, Stephen O.

    1983-01-01

    Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3−, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3− and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3− and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3−. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3−, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3− requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3− requirement for induction were quite different. Km values for NO3− were identical for both nitrate reductases. PMID:16663185

  18. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.

    PubMed

    Milhim, Mohammed; Gerber, Adrian; Neunzig, Jens; Hannemann, Frank; Bernhardt, Rita

    2016-08-10

    Cytochromes P450 (P450s) require electron transfer partners to catalyze substrate conversions. With regard to biotechnological approaches, the elucidation of novel electron transfer proteins is of special interest, as they can influence the enzymatic activity and specificity of the P450s. In the current work we present the identification and characterization of a novel soluble NADPH-dependent diflavin reductase from Bacillus megaterium with activity towards a bacterial (CYP106A1) and a microsomal (CYP21A2) P450 and, therefore, we referred to it as B. megaterium cytochrome P450 reductase (BmCPR). Sequence analysis of the protein revealed besides the conserved FMN-, FAD- and NADPH-binding motifs, the presence of negatively charged cluster, which is thought to represent the interaction domain with P450s and/or cytochrome c. BmCPR was expressed and purified to homogeneity in Escherichia coli. The purified BmCPR exhibited a characteristic diflavin reductase spectrum, and showed a cytochrome c reducing activity. Furthermore, in an in vitro reconstituted system, the BmCPR was able to support the hydroxylation of testosterone and progesterone with CYP106A1 and CYP21A2, respectively. Moreover, in view of the biotechnological application, the BmCPR is very promising, as it could be successfully utilized to establish CYP106A1- and CYP21A2-based whole-cell biotransformation systems, which yielded 0.3g/L hydroxy-testosterone products within 8h and 0.16g/L 21-hydroxyprogesterone within 6h, respectively. In conclusion, the BmCPR reported herein owns a great potential for further applications and studies and should be taken into consideration for bacterial and/or microsomal CYP-dependent bioconversions.

  19. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  20. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin

    PubMed Central

    Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.

    2009-01-01

    Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797

  1. Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase.

    PubMed

    Xie, Maohua; Yen, Yun; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Curran, Walter J; Doetsch, Paul W; Deng, Xingming

    2014-01-01

    DNA replication stress is an inefficient DNA synthesis process that leads replication forks to progress slowly or stall. Two main factors that cause replication stress are alterations in pools of deoxyribonucleotide (dNTP) precursors required for DNA synthesis and changes in the activity of proteins required for synthesis of dNTPs. Ribonucleotide reductase (RNR), containing regulatory hRRM1 and catalytic hRRM2 subunits, is the enzyme that catalyzes the conversion of ribonucleoside diphosphates (NDP) to deoxyribonucleoside diphosphates (dNDP) and thereby provides dNTP precursors needed for the synthesis of DNA. Here, we demonstrate that either endogenous or exogenous expression of Bcl2 results in decreases in RNR activity and intracellular dNTP, retardation of DNA replication fork progression, and increased rate of fork asymmetry leading to DNA replication stress. Bcl2 colocalizes with hRRM1 and hRRM2 in the cytoplasm and directly interacts via its BH4 domain with hRRM2 but not hRRM1. Removal of the BH4 domain of Bcl2 abrogates its inhibitory effects on RNR activity, dNTP pool level, and DNA replication. Intriguingly, Bcl2 directly inhibits RNR activity by disrupting the functional hRRM1/hRRM2 complex via its BH4 domain. Our findings argue that Bcl2 reduces intracellular dNTPs by inhibiting ribonucleotide reductase activity, thereby providing insight into how Bcl2 triggers DNA replication stress.

  2. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.

  3. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    PubMed Central

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa

    2017-01-01

    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase. PMID:28116039

  4. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  5. Synthesis and metabolism of inhibitors of ribonucleotide reductase

    SciTech Connect

    Smith, F.T.

    1985-01-01

    In an effort to prepare more effective inhibitors of ribo-nucleotide reductase a series of 2-substituted-4,6-dihydroxypyrimidines was prepared via the appropriately substituted benzamidine. None of the compounds exhibited in vivo activity against L1210 leukemia. No further testing was performed. In order to investigate the metabolism of 3,4-dihydroxybenzohydroxamic acid, a known inhibitor of ribonucleotide reductase, radiolabeled 3,4-dihydroxybenzohydroxamic acid was synthesized by a modification of the procedure of Pichat and Tostain. /sup 14/C-3,4-Dihydroxybenzoic acid was converted to the methyl ester and subsequently reacted with hydroxylamine to give the hydroxamic acid. /sup 14/C-3,4-Dihydroxybenzohydroxamic acid was given i.p. to Sprague-Dawley rats. Excretion occurred mainly (72%) via the urine. HPLC coupled with GC/MS analyses showed that the compound was excreted mainly unchanged. The compound was metabolized to 3,4-dihydroxybenzamide, 4-methoxy-3-hydroxybenzohydroxamic acid, and 4-hydroxy-3-methoxybenzohydroxamic acid. HPLC analysis also showed the lack of formation of any glucuronide or sulfate conjugates through either the hydroxamic acid or catechol functionalities.

  6. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    SciTech Connect

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M. )

    1989-07-25

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by {sup 31}P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase.

  7. Human Neuroglobin Functions as a Redox-regulated Nitrite Reductase*

    PubMed Central

    Tiso, Mauro; Tejero, Jesús; Basu, Swati; Azarov, Ivan; Wang, Xunde; Simplaceanu, Virgil; Frizzell, Sheila; Jayaraman, Thottala; Geary, Lisa; Shapiro, Calli; Ho, Chien; Shiva, Sruti; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2011-01-01

    Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins. PMID:21296891

  8. Fluorescent analogues of methotrexate: characterization and interaction with dihydrofolate reductase.

    PubMed

    Kumar, A A; Kempton, R J; Anstead, G M; Freisheim, J H

    1983-01-18

    The dansylated derivatives of lysine and ornithine analogues of methotrexate exhibit fluorescence properties characteristic of the dansyl moiety with an excitation at 328 nm and an emission maximum at 580 nm in aqueous media. As in the case of dansyl amino acids, the fluorescence emission is dependent upon the polarity of the medium. In solvents of low dielectric constant there is an enhancement of the dansyl fluorescence intensity as well as a shift to shorter wavelengths. The dansylated analogues show a reduction in the quantum yields as compared to N epsilon-dansyl-L-lysine and 5-(N,N-dimethylamino)-1-naphthalenesulfonic acid. The absorption spectra of the two dansyl analogues are similar to the spectra of the parent basic amino acid precursors but with reduced molar extinction values. The two fluorescent analogues of methotrexate were found to be potent inhibitors of purified dihydrofolate reductases from Lactobacillus casei and from chicken liver. The binding of these fluorescent analogues to either dihydrofolate reductase resulted in 10-15-nm blue shift of the ligand emission maxima and a 2-5-fold enhancement of the emission. These fluorescent properties of the bound ligands indicate a possible interaction of the dansyl moiety with a region on the enzyme molecule which is more hydrophobic relative to the surrounding solvent.

  9. Properties of the arsenate reductase of plasmid R773.

    PubMed

    Gladysheva, T B; Oden, K L; Rosen, B P

    1994-06-14

    Resistance to toxic oxyanions in Escherichia coli is conferred by the ars operon carried on plasmid R773. The gene products of this operon catalyze extrusion of antimonials and arsenicals from cells of E. coli, thus providing resistance to those toxic oxyanions. In addition, resistance to arsenate is conferred by the product of the arsC gene. In this report, purified ArsC protein was shown to catalyze reduction of arsenate to arsenite. The enzymatic activity of the ArsC protein required glutaredoxin as a source of reducing equivalents. Other reductants, including glutathione and thioredoxin, were not effective electron donors. A spectrophotometric assay was devised in which arsenate reduction was coupled to NADPH oxidation. The results obtained with the coupled assay corresponded to those found by direct reduction of radioactive arsenate to arsenite. The only substrate of the reaction was arsenate (Km = 8 mM); other oxyanions including phosphate, sulfate, and antimonate were not reduced. Phosphate and sulfate were weak inhibitors, while the product, arsenite, was a stronger inhibitor (Ki = 0.1 mM). Arsenate reductase activity exhibited a pH optimum of 6.3-6.8. These results indicate that the ArsC protein is a novel reductase, and elucidation of its enzymatic mechanism should be of interest.

  10. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  11. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    USDA-ARS?s Scientific Manuscript database

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  12. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  13. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    USDA-ARS?s Scientific Manuscript database

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  14. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed

    French, C E; Nicklin, S; Bruce, N C

    1996-11-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one.

  15. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed Central

    French, C E; Nicklin, S; Bruce, N C

    1996-01-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one. PMID:8932320

  16. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings.

    PubMed

    Warner, R L; Huffaker, R C

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  17. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  18. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  19. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes.

    PubMed

    Yao, Jiangwei; Ericson, Megan E; Frank, Matthew W; Rock, Charles O

    2016-12-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes

    PubMed Central

    Ericson, Megan E.; Frank, Matthew W.

    2016-01-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. PMID:27736774

  1. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis

    PubMed Central

    Ames, Brian D.; Nguyen, Chi; Bruegger, Joel; Smith, Peter; Xu, Wei; Ma, Suzanne; Wong, Emily; Wong, Steven; Xie, Xinkai; Li, Jesse W.-H.; Vederas, John C.; Tang, Yi; Tsai, Shiou-Chuan

    2012-01-01

    Lovastatin is an important statin prescribed for the treatment and prevention of cardiovascular diseases. Biosynthesis of lovastatin uses an iterative type I polyketide synthase (PKS). LovC is a trans-acting enoyl reductase (ER) that specifically reduces three out of eight possible polyketide intermediates during lovastatin biosynthesis. Such trans-acting ERs have been reported across a variety of other fungal PKS enzymes as a strategy in nature to diversify polyketides. How LovC achieves such specificity is unknown. The 1.9-Å structure of LovC reveals that LovC possesses a medium-chain dehydrogenase/reductase (MDR) fold with a unique monomeric assembly. Two LovC cocrystal structures and enzymological studies help elucidate the molecular basis of LovC specificity, define stereochemistry, and identify active-site residues. Sequence alignment indicates a general applicability to trans-acting ERs of fungal PKSs, as well as their potential application to directing biosynthesis. PMID:22733743

  2. Asymmetric Reduction of Activated Alkenes by Pentaerythritol Tetranitrate Reductase: Specificity and Control of Stereochemical Outcome by Reaction Optimisation

    PubMed Central

    Fryszkowska, Anna; Toogood, Helen; Sakuma, Michiyo; Gardiner, John M.; Stephens, Gill M.; Scrutton, Nigel S.

    2009-01-01

    We show that pentaerythritol tetranitrate reductase (PETNR), a member of the ‘ene’ reductase old yellow enzyme family, catalyses the asymmetric reduction of a variety of industrially relevant activated α,β-unsaturated alkenes including enones, enals, maleimides and nitroalkenes. We have rationalised the broad substrate specificity and stereochemical outcome of these reductions by reference to molecular models of enzyme-substrate complexes based on the crystal complex of the PETNR with 2-cyclohexenone 4a. The optical purity of products is variable (49–99% ee), depending on the substrate type and nature of substituents. Generally, high enantioselectivity was observed for reaction products with stereogenic centres at Cβ (>99% ee). However, for the substrates existing in two isomeric forms (e.g., citral 11a or nitroalkenes 18–19a), an enantiodivergent course of the reduction of E/Z-forms may lead to lower enantiopurities of the products. We also demonstrate that the poor optical purity obtained for products with stereogenic centres at Cα is due to non-enzymatic racemisation. In reactions with ketoisophorone 3a we show that product racemisation is prevented through reaction optimisation, specifically by shortening reaction time and through control of solution pH. We suggest this as a general strategy for improved recovery of optically pure products with other biocatalytic conversions where there is potential for product racemisation. PMID:20396613

  3. Effects of HMG-CoA reductase inhibitors on growth and differentiation of cultured rat skeletal muscle cells.

    PubMed

    Veerkamp, J H; Smit, J W; Benders, A A; Oosterhof, A

    1996-04-12

    HMG-CoA reductase inhibitors have been associated with skeletal muscle myopathy, ranging from asymptomatic elevations of serum creatine kinase (CK) activity to rhabdomyolysis. In this study, we assessed the effects of addition of different concentrations of simvastatin and pravastatin on growth and differentiation of cultured primary rat skeletal muscle cells. Protein concentrations, CK activity and percentage CK-MM, which is a parameter for maturation, were determined. Effects were generally stronger if inhibitors were added to both growth and differentiation medium rather than only to differentiation medium. Addition of 25 microM pravastatin caused only a decrease of CK activity. Addition of 1-5 microM simvastatin resulted in a decrease of protein concentration, CK activity and percentage CK-MM, whereas 25 microM simvastatin resulted in cell death. Addition of mevalonic acid or cholesterol could not prevent the effects of 1 microM simvastatin. In addition, 1 microM simvastatin did not influence the cholesterol and phospholipid content of the cells. Superfusion of cultured cells with simvastatin concentrations of 10 microM and higher caused a transient increase of the cytoplasmic calcium concentration followed by an apparent second rise and cell puncture. The results indicate that HMG-CoA reductase inhibitors may affect skeletal muscle cell regeneration in vivo by a direct toxic effect on growth and differentiation.

  4. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design

    PubMed Central

    Khan, M. Omar F.

    2007-01-01

    Trypanosomiasis and leishmaniasis are two debilitating disease groups caused by parasites of Trypanosoma and Leishmania spp. and affecting millions of people worldwide. A brief outline of the potential targets for rational drug design against these diseases are presented, with an emphasis placed on the enzyme trypanothione reductase. Trypanothione reductase was identified as unique to parasites and proposed to be an effective target against trypanosomiasis and leishmaniasis. The biochemical basis of selecting this enzyme as a target, with reference to the simile and contrast to human analogous enzyme glutathione reductase, and the structural aspects of its active site are presented. The process of designing selective inhibitors for the enzyme trypanothione reductase has been discussed. An overview of the different chemical classes of inhibitors of trypanothione reductase with their inhibitory activities against the parasites and their prospects as future chemotherapeutic agents are briefly revealed. PMID:21901070

  5. Isolation of ascorbate free radical reductase from rabbit lens soluble fraction.

    PubMed

    Bando, Masayasu; Inoue, Takashi; Oka, Mikako; Nakamura, Kayako; Kawai, Kenji; Obazawa, Hajime; Kobayashi, Shizuko; Takehana, Makoto

    2004-12-01

    Ascorbate free radical (AFR) reductase with diaphorase activity was isolated from the rabbit lens soluble fraction to characterise some molecular properties of the enzyme. The isolation was accomplished using gel filtration (Sephadex G-75 superfine or Sephacryl S-200 HR), affinity chromatography (Affi-Gel Blue), native isoelectric focusing and two-dimensional gel electrophoresis. A major soluble AFR reductase was found at an isoelectric point of 8.4 and a molecular weight of 31 kDa, and a few minor enzymes were also detected in the range of pI 7.0-8.6. An unknown N-terminal partial amino acid sequence was determined in one peptide fragment prepared from the major enzyme fraction. From the sequence analysis, it is discussed that the lens soluble AFR reductase may differ from NADH-cytochrome b5 reductase reported to be involved in the membrane-bound AFR reductase activity of mitochondria, microsomes and plasma membrane.

  6. Comparison of finasteride (Proscar), a 5 alpha reductase inhibitor, and various commercial plant extracts in in vitro and in vivo 5 alpha reductase inhibition.

    PubMed

    Rhodes, L; Primka, R L; Berman, C; Vergult, G; Gabriel, M; Pierre-Malice, M; Gibelin, B

    1993-01-01

    Human prostate was used as a source of 5 alpha reductase. Compounds were incubated with an enzyme preparation and [3H]testosterone. [3H]-dihydrotestosterone production was measured to calculate 5 alpha reductase activity. IC50 values (ng/ml) were finasteride = 1; Permixon = 5,600; Talso = 7,000; Strogen Forte = 31,000; Prostagutt = 40,000; and Tadenan = 63,000. Bazoton and Harzol had no activity at concentrations up to 500,000 ng/ml. In castrate rats stimulated with testosterone (T) or dihydrotestosterone (DHT), finasteride, but not Permixon or Bazoton, inhibited T stimulated prostate growth, while none of the three compounds inhibited DHT stimulated growth. These results demonstrate that finasteride inhibits 5 alpha reductase, while Permixon and Bazoton have neither anti-androgen nor 5 alpha reductase inhibitory activity. In addition, in a 7 day human clinical trial, finasteride, but not Permixon or placebo, decreased serum DHT in men, further confirming the lack of 5 alpha reductase inhibition by Permixon. Finasteride and the plant extracts listed above do not inhibit the binding of DHT to the rat prostatic androgen receptor (concentrations to 100 micrograms/ml). Based on these results, it is unlikely that these plant extracts would shrink the prostate by inhibiting androgen action or 5 alpha reductase.

  7. Immunocytochemical localization of short-chain family reductases involved in menthol biosynthesis in peppermint.

    PubMed

    Turner, Glenn W; Davis, Edward M; Croteau, Rodney B

    2012-06-01

    Biosynthesis of the p-menthane monoterpenes in peppermint occurs in the secretory cells of the peltate glandular trichomes and results in the accumulation of primarily menthone and menthol. cDNAs and recombinant enzymes are well characterized for eight of the nine enzymatic steps leading from the 5-carbon precursors to menthol, and subcellular localization of several key enzymes suggests a complex network of substrate and product movement is required during oil biosynthesis. In addition, studies concerning the regulation of oil biosynthesis have demonstrated a temporal partition of the pathway into an early, biosynthetic program that results in the accumulation of menthone and a later, oil maturation program that leads to menthone reduction and concomitant menthol accumulation. The menthone reductase responsible for the ultimate pathway reduction step, menthone-menthol reductase (MMR), has been characterized and found to share significant sequence similarity with its counterpart reductase, a menthone-neomenthol reductase, which catalyzes a minor enzymatic reaction associated with oil maturation. Further, the menthone reductases share significant sequence similarity with the temporally separate and mechanistically different isopiperitenone reductase (IPR). Here we present immunocytochemical localizations for these reductases using a polyclonal antibody raised against menthone-menthol reductase. The polyclonal antibody used for this study showed little specificity between these three reductases, but by using it for immunostaining of tissues of different ages we were able to provisionally separate staining of an early biosynthetic enzyme, IPR, found in young, immature leaves from that of the oil maturation enzyme, MMR, found in older, mature leaves. Both reductases were localized to the cytoplasm and nucleoplasm of the secretory cells of peltate glandular trichomes, and were absent from all other cell types examined.

  8. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes.

    PubMed Central

    Cohen, G; Yanko, M; Mislovati, M; Argaman, A; Schreiber, R; Av-Gay, Y; Aharonowitz, Y

    1993-01-01

    The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated. Images PMID:8349555

  9. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution.

    PubMed Central

    Quandt, K S; Hultquist, D E

    1994-01-01

    Flavin reductase catalyzes electron transfer from reduced pyridine nucleotides to methylene blue or riboflavin, and this catalysis is the basis of the therapeutic use of methylene blue or riboflavin in the treatment of methemoglobinemia. A cDNA for a mammalian flavin reductase has been isolated and sequenced. Degenerate oligonucleotides, with sequences based on amino acid sequences of peptides derived from bovine erythrocyte flavin reductase, were used as primers in PCR to selectively amplify a partial cDNA that encodes the bovine reductase. The template used in the PCR was first strand cDNA synthesized from bovine liver total RNA using oligo(dT) primers. A PCR product was used as a specific probe to screen a bovine liver cDNA library. The sequence determined from two overlapping clones contains an open reading frame of 621 nucleotides and encodes 206 amino acids. The amino acid sequence deduced from the bovine liver flavin reductase cDNA matches the amino acid sequences determined for erythrocyte reductase-derived peptides, and the predicted molecular mass of 22,001 Da for the liver reductase agrees well with the molecular mass of 21,994 Da determined for the erythrocyte reductase by electrospray mass spectrometry. The amino acid sequence at the N terminus of the reductase has homology to sequences of pyridine nucleotide-dependent enzymes, and the predicted secondary structure, beta alpha beta, resembles the common nucleotide-binding structural motif. RNA blot analysis indicates a single 1-kilobase reductase transcript in human heart, kidney, liver, lung, pancreas, placenta, and skeletal muscle. Images PMID:7937764

  10. Kinetic studies of the induction of nitrate reductase and cytochrome c reductase in the fungus Aspergillus nidulans

    PubMed Central

    Cove, D. J.

    1967-01-01

    In an earlier paper (Cove, 1966) it was reported that the kinetics of appearance of nitrate reductase (NADPH–nitrate oxidoreductase, EC 1.6.6.3) on the addition of nitrate to a growing culture of Aspergillus nidulans were different in certain respects from those found for many Escherichia coli enzymes. When urea is used as an initial nitrogen source, a further difference is found: enzyme synthesis is no longer continuous. This interruption of synthesis does not appear to be due to synchronous cell division in the culture, nor to be due to accumulation of ammonia. Fluctuations in the intracellular concentration of nitrate, though appearing to be partly responsible for the discontinuity of enzyme syntheses, cannot account for all the observations. Two related hypotheses are put forward to explain this discontinuity of synthesis; each suggests that nitrate reductase is intimately concerned with its own synthesis. One possibility is that the enzyme when it is not in the form of a complex with nitrate is a co-repressor of its own synthesis, and the other that the enzyme is its own repressor. PMID:6049855

  11. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    PubMed

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  12. Individualized supplementation of folic acid according to polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) reduced pregnant complications.

    PubMed

    Li, Xiujuan; Jiang, Jing; Xu, Min; Xu, Mei; Yang, Yan; Lu, Wei; Yu, Xuemei; Ma, Jianlin; Pan, Jiakui

    2015-01-01

    This study aimed to detect the genotype distributions and allele frequencies of methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and methionine synthase reductase (MTRR) A66G polymorphisms of pregnant women in Jiaodong region in China, and to investigate whether folic acid supplementation affect the pregnancy complications. A total of 7,812 pregnant women from the Jiaodong region in Shandong province in China. By using Taqman-MGB, 2,928 pregnant women (case group) were tested for the genotype distributions and allele frequencies of MTHFR C677T, A1298C and MTRR A66G polymorphisms. Folic acid metabolism ability was ranked at four levels and then pregnant women in different rank group were supplemented with different doses of folic acid. Their pregnancy complications were followed up and compared with 4,884 pregnant women without folic acid supplementation (control group) in the same hospital. The allele frequencies of MTHFR C677T were 49.1 and 50.9%; those of MTHFR A1298C were 80.2 and 19.8%, and those of MTRR A66G were 74.1 and 25.9%. After supplemented with folic acid, the complication rates in different age groups were significantly reduced, especially for gestational diabetes mellitus and hypertension. Periconceptional folic acid supplementation and healthcare following gene polymorphism testing may be a powerful measure to decrease congenital malformations. © 2015 S. Karger AG, Basel.

  13. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  14. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    PubMed

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  15. Purification of NADPH-cytochrome c reductase from swine testis microsomes by chromatofocusing and characterization of the purified reductase.

    PubMed

    Kuwada, M; Ohsawa, Y; Horie, S

    1985-07-18

    A purified NADPH-cytochrome c reductase (NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was prepared from swine testis microsomes by detergent solubilization followed by a procedure including chromatofocusing. The reductase was eluted at an isoelectric point of 4.8 from the chromatofocusing column. 730-fold purification was achieved with an overall yield of 1.2%. The preparation was found to be homogeneous upon polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate (SDS). Upon SDS-polyacrylamide gel electrophoresis, however, the purified preparation resolved into one major band (Mr 78 000) and two minor bands (Mr 60 000 and 15 000). The enzyme contained about 1 mol each of FMN and FAD, which were both extractable with trichloroacetic acid and also boiling water. The oxidized form of the enzyme showed the absorption spectrum of a typical flavoprotein. Aerobic reduction with NADPH resulted in conversion of the spectrum into one of an air-stable semiquinone form. The activity of the purified preparation was 26 mumol cytochrome c reduced/min per mg protein under the standard assay conditions at 22 degrees C. The enzyme catalyzed the reaction through a ping-pong mechanism.

  16. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase[S

    PubMed Central

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Spina, Michele; Tran, Chi Nhan; Falconi, Maurizio; Eleuteri, Anna Maria; Angeletti, Mauro

    2011-01-01

    Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (Ki in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration. PMID:21357570

  17. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  18. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  19. Rape prevention

    MedlinePlus

    Date rape - prevention; Sexual assault - prevention ... Centers for Disease Control and Prevention. Sexual assault and abuse and STDs. In: 2015 sexually transmitted diseases treatment guidelines 2015. Updated June 4, 2015. www.cdc.gov/ ...

  20. Prostate Cancer Cells Differ in Testosterone Accumulation, Dihydrotestosterone Conversion, and Androgen Receptor Signaling Response to Steroid 5α-Reductase Inhibitors

    PubMed Central

    Wu, Yue; Godoy, Alejandro; Azzouni, Faris; Wilton, John H.; Ip, Clement; Mohler, James L.

    2014-01-01

    BACKGROUND Blocking 5α-reductase-mediated testosterone conversion to dihydrotestosterone (DHT) with finasteride or dutasteride is the driving hypothesis behind two prostate cancer prevention trials. Factors affecting intracellular androgen levels and the androgen receptor (AR) signaling axis need to be examined systematically in order to fully understand the outcome of interventions using these drugs. METHODS The expression of three 5α-reductase isozymes, as determined by immunohistochemistry and qRT-PCR, was studied in five human prostate cancer cell lines. Intracellular testosterone and DHT were analyzed using mass spectrometry. A luciferase reporter assay and AR-regulated genes were used to evaluate the modulation of AR activity. RESULTS Prostate cancer cells were capable of accumulating testosterone to a level 15–50 times higher than that in the medium. The profile and expression of 5α-reductase isozymes did not predict the capacity to convert testosterone to DHT. Finasteride and dutasteride were able to depress testosterone uptake in addition to lowering intracellular DHT. The inhibition of AR activity following drug treatment often exceeded the expected response due to reduced availability of DHT. The ability to maintain high intracellular testosterone might compensate for the shortage of DHT. CONCLUSIONS The biological effect of finasteride or dutasteride appears to be complex and may depend on the interplay of several factors, which include testosterone turnover, enzymology of DHT production, ability to use testosterone and DHT interchangeably, and propensity of cells for off-target AR inhibitory effect. PMID:23813697

  1. Flavin-Dependent Enzymes in Cancer Prevention

    PubMed Central

    Wojcieszyńska, Danuta; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2012-01-01

    Statistical studies have demonstrated that various agents may reduce the risk of cancer’s development. One of them is activity of flavin-dependent enzymes such as flavin-containing monooxygenase (FMO)GS-OX1, FAD-dependent 5,10-methylenetetrahydrofolate reductase and flavin-dependent monoamine oxidase. In the last decade, many papers concerning their structure, reaction mechanism and role in the cancer prevention were published. In our work, we provide a more in-depth analysis of flavin-dependent enzymes and their contribution to the cancer prevention. We present the actual knowledge about the glucosinolate synthesized by flavin-containing monooxygenase (FMO)GS-OX1 and its role in cancer prevention, discuss the influence of mutations in FAD-dependent 5,10-methylenetetrahydrofolate reductase on the cancer risk, and describe FAD as an important cofactor for the demethylation of histons. We also present our views on the role of riboflavin supplements in the prevention against cancer. PMID:23222680

  2. Targeting Thioredoxin Reductase 1 Reduction in Cancer Cells Inhibits Self-Sufficient Growth and DNA Replication

    PubMed Central

    Yoo, Min-Hyuk; Xu, Xue-Ming; Carlson, Bradley A.; Patterson, Andrew D.; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2007-01-01

    Thioredoxin reductase 1 (TR1) is a major redox regulator in mammalian cells. As an important antioxidant selenoprotein, TR1 is thought to participate in cancer prevention, but is also known to be over-expressed in many cancer cells. Numerous cancer drugs inhibit TR1, and this protein has been proposed as a target for cancer therapy. We previously reported that reduction of TR1 levels in cancer cells reversed many malignant characteristics suggesting that deficiency in TR1 function is antitumorigenic. The molecular basis for TR1's role in cancer development, however, is not understood. Herein, we found that, among selenoproteins, TR1 is uniquely overexpressed in cancer cells and its knockdown in a mouse cancer cell line driven by oncogenic k-ras resulted in morphological changes characteristic of parental (normal) cells, without significant effect on cell growth under normal growth conditions. When grown in serum-deficient medium, TR1 deficient cancer cells lose self-sufficiency of growth, manifest a defective progression in their S phase and a decreased expression of DNA polymerase α, an enzyme important in DNA replication. These observations provide evidence that TR1 is critical for self-sufficiency in growth signals of malignant cells, that TR1 acts largely as a pro-cancer protein and it is indeed a primary target in cancer therapy. PMID:17971875

  3. 5,10 Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects

    SciTech Connect

    Ou, C.Y.; Brown, V.K.; Khoury, M.J.

    1996-06-28

    Persons with a thermolabile form of the enzyme 5,10 methylenetetrahydrofolate reductase (MTHFR) have reduced enzyme activity and increased plasma homocysteine which can be lowered by supplemental folic acid. Thermolability of the enzyme has recently been shown to be caused by a common mutation (677C{sup {r_arrow}}T) in the MTHFR gene. We studied 41 fibroblast cultures from NTD-affected fetuses and compared their genotypes with those of 109 blood specimens from individuals in the general population. 677C{sup {r_arrow}}T homozygosity was associated with a 7.2 fold increased risk for NTDs (95% confidence interval: 1.8-30.3; p value: 0.001). These preliminary data suggest that the 677C{sup {r_arrow}}T polymorphism of the MTHFR gene is a risk factor for spina bifida and anencephaly that may provide a partial biologic explanation for why folic acid prevents these types of NTD. 13 refs., 1 fig., 1 tab.

  4. Class I Ribonucleotide Reductases: Metallocofactor Assembly and Repair In Vitro and In Vivo

    PubMed Central

    Cotruvo, Joseph A.; Stubbe, JoAnne

    2015-01-01

    Incorporation of metallocofactors essential for the activity of many enyzmes is a major mechanism of posttranslational modification. The cellular machinery required for these processes in the case of mono- and dinuclear nonheme iron and manganese cofactors has remained largely elusive. In addition, many metallocofactors can be converted to inactive forms, and pathways for their repair have recently come to light. The class I ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides and require dinuclear metal clusters for activity: an FeIIIFeIII-tyrosyl radical (Y•) cofactor (class Ia), a MnIIIMnIII-Y• cofactor (class Ib), and a MnIVFeIII cofactor (class Ic). The class Ia, Ib, and Ic RNRs are structurally homologous and contain almost identical metal coordination sites. Recent progress in our under-standing of the mechanisms by which the cofactor of each of these RNRs is generated in vitro and in vivo and by which the damaged cofactors are repaired is providing insight into how nature prevents mismetallation and orchestrates active cluster formation in high yields. PMID:21456967

  5. Folic acid rivals methylenetetrahydrofolate reductase (MTHFR) gene-silencing effect on MEPM cell proliferation and apoptosis.

    PubMed

    Xiao, Wen-Lin; Wu, Min; Shi, Bing

    2006-11-01

    It's clear that environmental factors play a role in the aetiology of orofacial clefting (OFC) and an important area of future research will be to unravel interactions that occur between candidate genes and environmental factors during early development of the embryo. Periconceptional folic acid supplementation may reduce the risk of OFC. Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene reduce availability of 5-methylenetetrahydrofolate, the predominant circulating form of folic acid. To determine the effect of MTHFR gene mutation on murine embryonic palatal mesenchymal (MEPM) cells and the interaction with folic acid supplement, we used RNAi study in the primary cultures of MEPM cells. The cells of MTHFR gene silencing grew slower and the apoptosis cell number was more than the cells of control. Supplement with 20 microg/ml folic acid was the best to preventing teratogenic effect of MTHFR gene silencing. By flow cytometry analysis of cell cycle, results were shown that the MEPM cells were retarded in G(0)/G(1) after MTHFR gene silencing. While using 20 microg/ml folic acid supplements could make cell transit the G(1)/S restriction point and the cells growth was close to normal level.

  6. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans.

    PubMed

    Zhang, Qiong; Nguyen, Thao; McMichael, Megan; Velu, Sadanandan E; Zou, Jing; Zhou, Xuedong; Wu, Hui

    2015-08-01

    Streptococcus mutans is a major aetiological agent of dental caries. Formation of biofilms is a key virulence factor of S. mutans. Drugs that inhibit S. mutans biofilms may have therapeutic potential. Dihydrofolate reductase (DHFR) plays a critical role in regulating the metabolism of folate. DHFR inhibitors are thus potent drugs and have been explored as anticancer and antimicrobial agents. In this study, a library of analogues based on a DHFR inhibitor, trimetrexate (TMQ), an FDA-approved drug, was screened and three new analogues that selectively inhibited S. mutans were identified. The most potent inhibitor had a 50% inhibitory concentration (IC50) of 454.0±10.2nM for the biofilm and 8.7±1.9nM for DHFR of S. mutans. In contrast, the IC50 of this compound for human DHFR was ca. 1000nM, a >100-fold decrease in its potency, demonstrating the high selectivity of the analogue. An analogue that exhibited the least potency for the S. mutans biofilm also had the lowest activity towards inhibiting S. mutans DHFR, further indicating that inhibition of biofilms is related to reduced DHFR activity. These data, along with docking of the most potent analogue to the modelled DHFR structure, suggested that the TMQ analogues indeed selectively inhibited S. mutans through targeting DHFR. These potent and selective small molecules are thus promising lead compounds to develop new effective therapeutics to prevent and treat dental caries.

  7. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    SciTech Connect

    Liu, Zhen-Bo; Shen, Xun

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  8. The 15kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways.

    PubMed

    Tsuji, Petra A; Carlson, Bradley A; Yoo, Min-Hyuk; Naranjo-Suarez, Salvador; Xu, Xue-Ming; He, Yiwen; Asaki, Esther; Seifried, Harold E; Reinhold, William C; Davis, Cindy D; Gladyshev, Vadim N; Hatfield, Dolph L

    2015-01-01

    Selenoproteins mediate much of the cancer-preventive properties of the essential nutrient selenium, but some of these proteins have been shown to also have cancer-promoting effects. We examined the contributions of the 15kDa selenoprotein (Sep15) and thioredoxin reductase 1 (TR1) to cancer development. Targeted down-regulation of either gene inhibited anchorage-dependent and anchorage-independent growth and formation of experimental metastases of mouse colon carcinoma CT26 cells. Surprisingly, combined deficiency of Sep15 and TR1 reversed the anti-cancer effects observed with down-regulation of each single gene. We found that inflammation-related genes regulated by Stat-1, especially interferon-γ-regulated guanylate-binding proteins, were highly elevated in Sep15-deficient, but not in TR1-deficient cells. Interestingly, components of the Wnt/β-catenin signaling pathway were up-regulated in cells lacking both TR1 and Sep15. These results suggest that Sep15 and TR1 participate in interfering regulatory pathways in colon cancer cells. Considering the variable expression levels of Sep15 and TR1 found within the human population, our results provide insights into new roles of selenoproteins in cancer.

  9. Rac1-mediated effects of HMG-CoA reductase inhibitors (statins) in cardiovascular disease.

    PubMed

    Adam, Oliver; Laufs, Ulrich

    2014-03-10

    HMG-CoA reductase inhibitors (statins) lower serum cholesterol concentrations and are beneficial in the primary and secondary prevention of coronary heart disease. The positive clinical effects have only partially been reproduced with other lipid-lowering interventions suggesting potential statin effects in addition to cholesterol lowering. In experimental models, direct beneficial cardiovascular effects that are mediated by the inhibition of isoprenoids have been documented, which serve as lipid attachments for intracellular signaling molecules such as small Rho guanosine triphosphate-binding proteins, whose membrane localization and function are dependent on isoprenylation. Rac1 GTPase is an established master regulator of cell motility through the cortical actin reorganization and of reactive oxygen species generation through the regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Observations in cells, animals, and humans have implicated the activation of Rac1 GTPase as a key component of cardiovascular pathologies, including the endothelial dysfunction, cardiac hypertrophy and fibrosis, atrial fibrillation, stroke, hypertension, and chronic kidney disease. However, the underlying signal transduction remains incompletely understood. Based on the recent advance made in Rac1 research in the cardiovascular system by using mouse models with transgenic overexpression of activated Rac1 or conditional knockout, as well as Rac1-specific small molecule inhibitor NSC 23766, the improved understanding of the Rac1-mediated effects statins may help to identify novel therapeutic targets and strategies.

  10. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  11. Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance.

    PubMed

    Im, Yang Ju; Ji, Mikyoung; Lee, Alice; Killens, Rushyannah; Grunden, Amy M; Boss, Wendy F

    2009-10-01

    Plants produce reactive oxygen species (ROS) in response to environmental stresses sending signaling cues, which, if uncontrolled, result in cell death. Like other aerobic organisms, plants have ROS-scavenging enzymes, such as superoxide dismutase (SOD), which removes superoxide anion radical (O(2)(-)) and prevents the production and buildup of toxic free radicals. However, increasing the expression of cytosolic SODs is complex, and increasing their production in vivo has proven to be challenging. To avoid problems with endogenous regulation of gene expression, we expressed a gene from the archaeal hyperthermophile Pyrococcus furiosus that reduces O(2)(-). P. furiosus uses superoxide reductase (SOR) rather than SOD to remove superoxide. SOR is a thermostable enzyme that reduces O(2)(-) in a one-electron reduction without producing oxygen. We show that P. furiosus SOR can be produced as a functional enzyme in planta and that plants producing SOR have enhanced tolerance to heat, light, and chemically induced ROS. Stress tolerance in the SOR-producing plants correlates positively with a delayed increase in ROS-sensitive transcripts and a decrease in ascorbate peroxidase activity. The SOR plants provide a good model system to study the impact of cytosolic ROS on downstream signaling in plant growth and development. Furthermore, this work demonstrates that this synthetic approach for reducing cytosolic ROS holds promise as a means for improving stress tolerance in crop plants.