Sample records for aldose reductase rlar

  1. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  2. Inhibitory effects of 2'-hydroxychalcones on rat lens aldose reductase and rat platelet aggregation.

    PubMed

    Lim, S S; Jung, S H; Ji, J; Shin, K H; Keum, S R

    2000-11-01

    Inhibitory effects of synthetic 2'-hydroxychalcone derivatives on rat lens aldose reductase (RLAR) and on platelet aggregation were investigated for the prevention or the treatment of chronic diabetic complications. 5'-chloro-4,2'-dihydroxychalcone (8) and 5'-chloro-3,2'-dihydroxychalcone (27) exhibited a potent inhibitory effect on rat platelet aggregation induced by ADP (IC50=0.10 and 0.06 mg/ml, respectively) and collagen (IC50=44 and 16 microg/ml, respectively) but showed relatively weak inhibitory activities on RLAR.

  3. Aldose reductase inhibitory, anti-cataract and antioxidant potential of selected medicinal plants from the Marathwada region, India.

    PubMed

    Gacche, R N; Dhole, N A

    2011-04-01

    The water, ethanol and chloroform extracts of selected plants such as Adhatoda vasica (L.) (Acanthaceae), Caesalpinia bonduc (L.), Cassia fistula (L.) (Caesalpiniaceae) and Biophytum sensitivum (L.) (Oxalidaceae) were evaluated for rat lens aldose reductase inhibitory (RLAR) potential, anti-cataract and antioxidant activities. All the samples inhibited the aldose reductase considerably and exhibited anti-cataract activity, while C. fistula (IC(50), 0.154 mg mL(-1)) showed significant RLAR inhibitory activity as compared to the other tested samples, and was further found to be more effective in maintaining sugar-induced lens opacity in the rat lens model. The antioxidant potential of plant extracts was determined using DPPH (2,2-diphenyl-1-picryl hydrazine), hydroxyl (OH), nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) scavenging activities, along with determination of reducing power, ferrous ion chelating ability and inhibition of polyphenol oxidase (PPO). The extracts of the tested plant showed significant free radical scavenging activities and inhibited the activity of enzyme PPO, a model oxidising enzyme. The plant samples were found to possess considerable amounts of vitamin C, total polyphenols and flavonoids.

  4. Aldose reductase inhibitors from the leaves of Myrciaria dubia (H. B. & K.) McVaugh.

    PubMed

    Ueda, H; Kuroiwa, E; Tachibana, Y; Kawanishi, K; Ayala, F; Moriyasu, M

    2004-11-01

    Ellagic acid (1) and its two derivatives, 4-O-methylellagic acid (2) and 4-(alpha-rhamnopyranosyl)ellagic acid (3) were isolated as inhibitors of aldose reductase (AR) from Myrciaria dubia (H. B. & K.) McVaugh. Compound 2 was the first isolated from the nature. Compound 3 showed the strongest inhibition against human recombinant AR (HRAR) and rat lens AR (RLAR). Inhibitory activity of compound 3 against HRAR (IC50 value = 4.1 x 10(-8) M) was 60 times more than that of quercetin (2.5 x 10(-6) M). The type of inhibition against HRAR was uncompetitive.

  5. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase.

    PubMed

    Jung, Hyun Ah; Yoon, Na Young; Bae, Hyun Ju; Min, Byung-Sun; Choi, Jae Sue

    2008-11-01

    As part of our ongoing search of natural sources for therapeutic and preventive agents for diabetic complications, the rat lens aldose reductase (RLAR) inhibitory effect of Coptidis Rhizoma (the rhizome of Coptis chinensis Franch) was evaluated. Its extract and fractions exhibited broad and moderate RLAR inhibitory activities of 38.9 approximately 67.5 microg/mL. In an attempt to identify bioactive components, six quaternary protoberberine-type alkaloids (berberine, palmatine, jateorrhizine, epiberberine, coptisine, and groenlandicine) and one quaternary aporphine-type alkaloid (magnoflorine) were isolated from the most active n-BuOH fraction, and the chemical structures therein were elucidated on the basis of spectroscopic evidence and comparison with published data. The anti-diabetic complications capacities of seven C. chinensis-derived alkaloids were evaluated via RLAR and human recombinant AR (HRAR) inhibitory assays. Although berberine and palmatine were previously reported as prime contributors to AR inhibition, these two major components exhibited no AR inhibitory effects at a higher concentration of 50 microg/ml in the present study. Conversely, epiberberine, coptisine, and groenlandicine exhibited moderate inhibitory effects with IC(50) values of 100.1, 118.4, 140.1 microM for RLAR and 168.1, 187.3, 154.2 microM for HRAR. The results clearly indicated that the presence of the dioxymethylene group in the D ring and the oxidized form of the dioxymethylene group in the A ring were partly responsible for the AR inhibitory activities of protoberberine-type alkaloids. Therefore, Coptidis Rhizoma, and the alkaloids contained therein, would clearly have beneficial uses in the development of therapeutic and preventive agents for diabetic complications and diabetes mellitus.

  6. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications.

    PubMed

    Saraswat, Megha; Muthenna, P; Suryanarayana, P; Petrash, J Mark; Reddy, G Bhanuprakash

    2008-01-01

    Activation of polyol pathway due to increased aldose reductase activity is one of the several mechanisms that have been implicated in the development of various secondary complications of diabetes. Though numerous synthetic aldose reductase inhibitors have been tested, these have not been very successful clinically. Therefore, a number of common plant/ natural products used in Indian culinary have been evaluated for their aldose reductase inhibitory potential in the present study. The aqueous extracts of 22 plant-derived materials were prepared and evaluated for the inhibitory property against rat lens and human recombinant aldose reductase. Specificity of these extracts towards aldose reductase was established by testing their ability to inhibit a closely related enzyme viz, aldehyde reductase. The ex vivo incubation of erythrocytes in high glucose containing medium was used to underscore the significance in terms of prevention of intracellular sorbitol accumulation. Among the 22 dietary sources tested, 10 showed considerable inhibitory potential against both rat lens and human recombinant aldose reductase. Prominent inhibitory property was found in spinach, cumin, fennel, lemon, basil and black pepper with an approximate IC50 of 0.2 mg/mL with an excellent selectivity towards aldose reductase. As against this, 10 to 20 times higher concentrations were required for 50% inhibition of aldehyde reductase. Reduction in the accumulation of intracellular sorbitol by the dietary extracts further substantiated their in vivo efficacy. The findings reported here indicate the scope of adapting life-style modifications in the form of inclusion of certain common sources in the diet for the management of diabetic complications.

  7. Inhibitory effect of chalcone derivatives on recombinant human aldose reductase.

    PubMed

    Iwata, S; Nagata, N; Omae, A; Yamaguchi, S; Okada, Y; Shibata, S; Okuyama, T

    1999-03-01

    More than fifty chalcone derivatives were synthesized to examine structure-activity relationships against human aldose reductase. Certain 2',4'-dihydroxychalcone derivatives inhibited human aldose reductase activities, and 2',4',2, 4-tetrahydroxychalcone and 2',4',2-trihydroxychalcone showed potent inhibitory activity with IC50 values of 7.4x10(-9) M and 1.6x10(-7) M, respectively. On the other hand, cis-form chalcones, which were isomerized from the original trans-forms by irradiation of daylight in methanol solution, promoted the activity of human aldose reductase.

  8. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity.

    PubMed

    Kato, A; Yasuko, H; Goto, H; Hollinshead, J; Nash, R J; Adachi, I

    2009-03-01

    Aldose reductase inhibitors have considerable potential for the treatment of diabetic complications, without increased risk of hypoglycemia. Search for components inhibiting aldose reductase led to the discovery of active compounds contained in Evodia rutaecarpa Bentham (Rutaceae), which is the one of the component of Kampo-herbal medicine. The hot water extract from the E. rutaecarpa was subjected to distribution or gel filtration chromatography to give an active compound, N2-(2-methylaminobenzoyl)tetrahydro-1H-pyrido[3,4-b]indol-1-one (rhetsinine). It inhibited aldose reductase with IC(50) values of 24.1 microM. Furthermore, rhetsinine inhibited sorbitol accumulation by 79.3% at 100 microM. These results suggested that the E. rutaecarpa derived component, rhetsinine, would be potentially useful in the treatment of diabetic complications.

  9. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

    PubMed

    Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara

    2018-02-07

    Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera.

    PubMed

    Gupta, Sakshi; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-05-01

    Aldose reductase is primarily involved in development of long-term diabetic complications due to increased polyol pathway activity. The synthetic aldose reductase inhibitors are not very successful clinically. Therefore, the natural sources may be exploited for safer and effective aldose reductase inhibitors. In the present study, the aldose reductase inhibitory potential of hydroalcoholic and alkaloidal extracts of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera was evaluated. The hydroalcoholic and alkaloidal extracts of the selected plants were prepared. The different concentrations of hydroalcoholic and alkaloidal extracts of these plants were evaluated for their goat lens aldose reductase inhibitory activity using dl-glyceraldehyde as substrate. The aldose reductase inhibitory potential of extracts was assessed in terms of their IC50 value. Amongst the hydroalcoholic extracts, the highest aldose reductase inhibitory activity was shown by P. nigrum (IC50 value 35.64±2.7 μg/mL) followed by M. koenigii (IC50 value 45.67±2.57 μg/mL), A. mexicana (IC50 value 56.66±1.30 μg/mL), and N. nucifera (IC50 value 59.78±1.32 μg/mL). Among the alkaloidal extracts, highest inhibitory activity was shown by A. mexicana (IC50 value 25.67±1.25 μg/mL), followed by N. nucifera (IC50 value 28.82±1.85 μg/mL), P. nigrum (IC50 value 30.21±1.63 μg/mL), and M. koenigii (IC50 value 35.66±1.64 μg/mL). It may be concluded that the alkaloidal extracts of these plants possess potent aldose reductase inhibitory activity and may be therapeutically exploited in diabetes-related complications associated with increased activity of aldose reductase.

  11. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum.

    PubMed

    Bhatti, Huma Aslam; Tehseen, Yildiz; Maryam, Kiran; Uroos, Maliha; Siddiqui, Bina S; Hameed, Abdul; Iqbal, Jamshed

    2017-12-01

    Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6'-hydroxyhex-3'-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC 50 value of 2.095±0.77µM compare to standard sorbinil (IC 50 =3.14±0.02µM). Moreover, the compound (1) also showed multifolds higher activity (IC 50 =0.783±0.07µM) against AKR1A1 as compared to standard valproic acid (IC 50 =57.4±0.89µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC 50 =4.324±1.25µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Biological activity of aldose reductase and lipophilicity of pyrrolyl-acetic acid derivatives

    NASA Astrophysics Data System (ADS)

    Kumari, A.; Kumari, R.; Kumar, R.; Gupta, M.

    2011-12-01

    Quantitative Structure-Activity Relationship modeling is a powerful approach for correlating an organic compound to its lipophilicity. In this paper QSAR models are established for estimation of correlation of the lipophilicity of a series of pyrrolyl-acetic acid derivatives, inhibitors of the aldose reductase enzyme, in the n-octanol-water system with biological activity of aldose reductase. Lipophilicity, expressed by the logarithm of n-octnol-water partition coefficient log P and biological activity of aldose reductase inhibitory activity by log it. Result obtained by QSAR modeling of compound series reveal a definite trend in biological activity and a further improvement in quantitative relationships are established if, beside log P, Hammett electronic constant σ and connectivity index chi-3 (3 χ) term included in the regression equation. The tri-parametric model with log P, 3 χ and σ as correlating parameters have been found to be the best which gives a variance of 87% ( R 2 = 0.8743). A compound has been found to be serious outlier and when the same has been excluded the model explains about 94% variance of the data set ( R 2 = 0.9447). The topological index (3 χ) has been found to be a good parameter for modeling the biological activity.

  13. Novel aldose reductase inhibitors: a patent survey (2006--present).

    PubMed

    Chatzopoulou, Maria; Alexiou, Polyxeni; Kotsampasakou, Eleni; Demopoulos, Vassilis J

    2012-11-01

    Initially studied for its central role in the pathogenesis of chronic diabetic complications, aldose reductase (ALR2) gains more attention over the years as its implication in inflammatory diseases is being established, along with the therapeutic potential of its inhibitors. Reviewing the patents that were published since 2006, it is getting clear that the search for new chemical entities has subsided, giving rise to natural products and plant extracts with ALR2 inhibitory activity. Other aspects that were prominent were the search for proper forms of known inhibitors, in a way to improve their impaired physicochemical profile, as well as potential combination therapies with other compounds of pharmaceutical interest. On the spotlight were patents enhancing the therapeutic usage of aldose reductase inhibitors (ARIs) to various pathological conditions including cancer and inflammation-mediated diseases such as sepsis, asthma, and cancer. Although new chemical entities are scarcely registered and patented after many years of inconclusive clinical trials, the involvement of ALR2 to inflammatory pathologies might renew the interest in the field of ARIs.

  14. [Aldose reductase gene polymorphism and rate of appearance of retinopathy in non insulin dependent diabetics].

    PubMed

    Olmos, P; Acosta, A M; Schiaffino, R; Díaz, R; Alvarado, D; O'Brien, A; Muñoz, X; Arriagada, P; Claro, J C; Vega, R; Vollrath, V; Velasco, S; Emmerich, M; Maiz, A

    1999-04-01

    Recent studies suggest that polymorphisms associated to the aldose reductase gene could be related to early retinopathy in noninsulin dependent diabetics (NIDDM). There is also new interest on the genetic modulation of coagulation factors in relation to this complication. To look for a possible relationship between the rate of appearance of retinopathy and the genotype of (AC)n polymorphic marker associated to aldose reductase gene. A random sample of 27 NIDDM, aged 68.1 +/- 10.6 years, with a mean diabetes duration of 20.7 +/- 4.8 years and a mean glycosilated hemoglobin of 10.6 +/- 1.6%, was studied. The genotype of the (AC)n, polymorphic marker associated to the 5' end of the aldose reductase (ALR2) gene was determined by 32P-PCR plus sequenciation. Mutations of the factor XIII-A gene were studied by single stranded conformational polymorphism, sequenciation and restriction fragment length polymorphism. Four patients lacked the (AC)24 and had a higher rate of appearance of retinopathy than patients with the (AC)24 allele (0.0167 and 0.0907 score points per year respectively, p = 0.047). Both groups had similar glycosilated hemoglobin (11.7 +/- 0.2 and 10.5 +/- 1.6% respectively). Factor XIII gene mutations were not related to the rate of appearance of retinopathy. Our data suggest that the absence of the (AC)24 allele of the (AC)n polymorphic marker associated to the 5' end of the aldose reductase gene, is associated to a five fold reduction of retinopathy appearance rate.

  15. Protective effect of Pterocarpus marsupium bark extracts against cataract through the inhibition of aldose reductase activity in streptozotocin-induced diabetic male albino rats.

    PubMed

    Xu, YanLi; Zhao, Yongxia; Sui, YaNan; Lei, XiaoJun

    2018-04-01

    The present study was aimed to investigate the protective effect of Pterocarpus marsupium bark extracts against cataract in streptozotocin-induced diabetic male albino rats. Aldose reductase is a key enzyme in the intracellular polyol pathway, which plays a major role in the development of diabetic cataract. Rats were divided into five groups as normal control, diabetic control, and diabetic control treated with different concentrations of Pterocarpus marsupium bark extracts. Presence of major constituents in Pterocarpus marsupium bark extract was performed by qualitative analysis. Body weight changes, blood glucose, blood insulin, and reduced glutathione (GSH) and aldose reductase mRNA and protein expression were determined. Rat body weight gain was noted following treatment with bark extracts. The blood glucose was reduced up to 36% following treatment with bark extracts. The blood insulin and tissue GSH contents were substantially increased more than 100% in diabetic rats following treatment with extracts. Aldose reductase activity was reduced up to 79.3% in diabetic rats following treatment with extracts. V max , K m , and K i of aldose reductase were reduced in the lens tissue homogenate compared to the diabetic control. Aldose reductase mRNA and protein expression were reduced more than 50% following treatment with extracts. Treatment with Pterocarpus marsupium bark was able to normalize these levels. Taking all these data together, it is concluded that the use of Pterocarpus marsupium bark extracts could be the potential therapeutic approach for the reduction of aldose reductase against diabetic cataract.

  16. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme.

    PubMed Central

    Neuhauser, W; Haltrich, D; Kulbe, K D; Nidetzky, B

    1997-01-01

    During growth on d-xylose the yeast Candida tenuis produces one aldose reductase that is active with both NADPH and NADH as coenzyme. This enzyme has been isolated by dye ligand and anion-exchange chromatography in yields of 76%. Aldose reductase consists ofa single 43 kDa polypeptide with an isoelectric point of 4.70. Initial velocity, product inhibition and binding studies are consistent with a compulsory-ordered, ternary-complex mechanism with coenzyme binding first and leaving last. The catalytic efficiency (kcat/Km) in d-xylose reduction at pH 7 is more than 60-fold higher than that in xylitol oxidation and reflects significant differences in the corresponding catalytic centre activities as well as apparent substrate-binding constants. The enzyme prefers NADP(H) approx. 2-fold to NAD(H), which is largely due to better apparent binding of the phosphorylated form of the coenzyme. NADP+ is a potent competitive inhibitor of the NADH-linked aldehyde reduction (Ki 1.5 microM), whereas NAD+ is not. Unlike mammalian aldose reductase, the enzyme from C. tenuis is not subject to oxidation-induced activation. Evidence of an essential lysine residue located in or near the coenzyme binding site has been obtained from chemical modification of aldose reductase with pyridoxal 5'-phosphate. The results are discussed in the context of a comparison of the enzymic properties of yeast and mammalian aldose reductase. PMID:9307017

  17. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase.

    PubMed

    Chen, Baosong; Tian, Jin; Zhang, Jinjin; Wang, Kai; Liu, Li; Yang, Bo; Bao, Li; Liu, Hongwei

    2017-07-01

    Seven new compounds including four lanostane triterpenoids, lucidenic acids Q-S (1-3) and methyl ganoderate P (4), and three triterpene-farnesyl hydroquinone conjugates, ganolucinins A-C (5-7), one new natural product ganomycin J (8), and 73 known compounds (9-81) were isolated from fruiting bodies of Ganoderma lucidum. The structures of the compounds 1-8 were determined by spectroscopic methods. Bioactivities of compounds isolated were assayed against HMG-CoA reductase, aldose reductase, α-glucosidase, and PTP1B. Ganolucidic acid η (39), ganoderenic acid K (44), ganomycin J (8), and ganomycin B (61) showed strong inhibitory activity against HMG-CoA reductase with IC 50 of 29.8, 16.5, 30.3 and 14.3μM, respectively. Lucidumol A (67) had relatively good effect against aldose reductase with IC 50 of 19.1μM. Farnesyl hydroquinones ganomycin J (8), ganomycin B (61), ganomycin I (62), and triterpene-farnesyl hydroquinone conjugates ganoleuconin M (76) and ganoleuconin O (79) possessed good inhibitory activity against α-glucosidase with IC 50 in the range of 7.8 to 21.5μM. This work provides chemical and biological evidence for the usage of extracts of G. lucidum as herbal medicine and food supplements for the control of hyperglycemic and hyperlipidemic symptoms. Copyright © 2017. Published by Elsevier B.V.

  18. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    PubMed Central

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  19. Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, J.B.; Kojis, T.; Heinzmann, C.

    1993-09-01

    Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, the authors mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q43, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other activemore » genes, non-aldose reductase homologous sequences, or pseudogenes. 24 refs., 3 figs., 2 tabs.« less

  20. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Ke-Wu; Li, Jun; Dong, Xin

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators.more » Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.« less

  1. Flavonoids from Litsea japonica Inhibit AGEs Formation and Rat Lense Aldose Reductase In Vitro and Vessel Dilation in Zebrafish.

    PubMed

    Lee, Ik-Soo; Kim, Yu Jin; Jung, Seung-Hyun; Kim, Joo-Hwan; Kim, Jin Sook

    2017-02-01

    In our ongoing efforts to identify effective naturally sourced agents for the treating of diabetic complications, two new ( 1 and 2 ) and 11 known phenolic compounds ( 3 - 13 ) were isolated from an 80 % ethanol extract of Litsea japonica leaves. The structures of the new compounds were established by spectroscopic and chemical studies. These isolates ( 1 - 13 ) were subjected to an in vitro bioassay evaluating their inhibitory activity on advanced glycation end products formation and rat lens aldose reductase activity. Of the compounds evaluated, the flavonoids ( 3, 4, 6 - 8, 11 , and 12 ) markedly inhibited advanced glycation end products formation, with IC 50 values of 7.4-72.0 µM, compared with the positive control, aminoguanidine (IC 50  = 975.9 µM). In the rat lens aldose reductase assay, consistent with the inhibition of advanced glycation end products formation, the flavonoids ( 3, 4, 6 - 8, 11 , and 12 ) exhibited considerable inhibition of rat lens aldose reductase activity, with IC 50 values of 1.1-12.5 µM. In addition, the effects of kaempferol ( 4 ) and tiliroside ( 7 ) on the dilation of hyaloid-retinal vessels induced by high glucose in larval zebrafish were investigated. Only kaempferol significantly reduced the diameters of high glucose-induced hyaloid-retinal vessels, by 52.2 % at 10 µM, compared with those in the high glucose-treated control group. Georg Thieme Verlag KG Stuttgart · New York.

  2. Litsea japonica Extract Inhibits Aldose Reductase Activity and Hyperglycemia-Induced Lenticular Sorbitol Accumulation in db/db Mice.

    PubMed

    Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook

    2015-01-01

    Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity.

  3. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols.

    PubMed

    Chethan, S; Dharmesh, Shylaja M; Malleshi, Nagappa G

    2008-12-01

    Retinopathy is a major cause of blindness in the Western world, while cataract is one of the three major causes of blindness worldwide. Diabetes is one of the major risk factor in retinopathy and cataract. The prevalence of blindness in India is 15 per 1000 while cataract alone accounts for 80% of this blindness. Diabetes induced cataract is characterized by an accumulation of sorbitol which is mediated by the action of a key enzyme aldose reductase (AR). Non-enzymatic glycation (binding of glucose to protein molecule) induced during diabetes appear to be the key factor for AR mediated sugar-induced cataract. Finger millet polyphenols (FMP) being a major anti-diabetic and antioxidant component, we have evaluated them for AR inhibiting activity. Phenolic constituents in FMP such as gallic, protocatechuic, p-hydroxy benzoic, p-coumaric, vanillic, syringic, ferulic, trans-cinnamic acids and the quercetin inhibited cataract eye lens effectively, the latter was more potent with an IC(50) of 14.8nM. Structure function analysis revealed that phenolics with OH group at 4th position was important for aldose reductase inhibitory property. Also the presence of neighboring O-methyl group in phenolics denatured the AR activity. Finger millet seed coat polyphenols (SCP) has been found to inhibit AR reversibly by non-competitive inhibition. Results thus, provide a stronger evidence for the potentials of FMP in inhibiting cataractogenesis in humans.

  4. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors.

    PubMed

    Wang, Qi-Qin; Cheng, Ning; Zheng, Xiao-Wei; Peng, Sheng-Ming; Zou, Xiao-Qing

    2013-07-15

    Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099±0.008) μM to (2.833±0.102) μM. O(7)-Nitrooxyethyl-O(3'),O(4')-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50=(0.099±0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure-activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Advance in dietary polyphenols as aldose reductases inhibitors: structure-activity relationship aspect.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2015-01-01

    The dietary polyphenols as aldose reductases inhibitors (ARIs) have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting aldose reductases (AR). The molecular structures influence the inhibition of the following: (1) The methylation and methoxylation of the hydroxyl group at C3, C3', and C4' of flavonoids decreased or little affected the inhibitory potency. However, the methylation and methoxylation of the hydroxyl group at C5, C6, and C8 significantly enhanced the inhibition. Moreover, the methylation and methoxylation of C7-OH influence the inhibitory activity depending on the substitutes on rings A and B of flavonoids. (2) The glycosylation on 3-OH of flavonoids significantly increased or little affected the inhibition. However, the glycosylation on 7-OH and 4'-OH of flavonoids significantly decreased the inhibition. (3) The hydroxylation on A-ring of flavones and isoflavones, especially at positions 5 and 7, significantly improved the inhibition and the hydroxylation on C3' and C4' of B-ring of flavonoids remarkably enhanced the inhibition; however, the hydroxylation on the ring C of flavones significantly weakened the inhibition. (4) The hydrogenation of the C2=C3 double bond of flavones reduced the inhibition. (5) The hydrogenation of α=β double bond of stilbenes hardly affected the inhibition and the hydroxylation on C3' of stilbenes decreased the inhibition. Moreover, the methylation of the hydroxyl group of stilbenes obviously reduced the activity. (6) The hydroxylation on C4 of chalcone significantly increased the inhibition and the methylation on C4 of chalcone remarkably weakened the inhibition.

  6. Litsea japonica Extract Inhibits Aldose Reductase Activity and Hyperglycemia-Induced Lenticular Sorbitol Accumulation in db/db Mice

    PubMed Central

    Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook

    2015-01-01

    Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity. PMID:25802544

  7. Aldose reductase inhibitory compounds from Xanthium strumarium.

    PubMed

    Yoon, Ha Na; Lee, Min Young; Kim, Jin-Kyu; Suh, Hong-Won; Lim, Soon Sung

    2013-09-01

    As part of our ongoing search for natural sources of therapeutic and preventive agents for diabetic complications, we evaluated the inhibitory effects of components of the fruit of Xanthium strumarium (X. strumarium) on aldose reductase (AR) and galactitol formation in rat lenses with high levels of glucose. To identify the bioactive components of X. strumarium, 7 caffeoylquinic acids and 3 phenolic compounds were isolated and their chemical structures were elucidated on the basis of spectroscopic evidence and comparison with published data. The abilities of 10 X. strumarium-derived components to counteract diabetic complications were investigated by means of inhibitory assays with rat lens AR (rAR) and recombinant human AR (rhAR). From the 10 isolated compounds, methyl-3,5-di-O-caffeoylquinate showed the most potent inhibition, with IC₅₀ values of 0.30 and 0.67 μM for rAR and rhAR, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate, methyl-3,5-di-O-caffeoylquinate showed competitive inhibition of rhAR. Furthermore, methyl-3,5-di-O-caffeoylquinate inhibited galactitol formation in the rat lens and in erythrocytes incubated with a high concentration of glucose, indicating that this compound may be effective in preventing diabetic complications.

  8. Aldose reductase mediates retinal microglia activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migrationmore » in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.« less

  9. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds

    PubMed Central

    Kalita, Diganta; Holm, David G.; LaBarbera, Daniel V.; Petrash, J. Mark

    2018-01-01

    Diabetes mellitus is a chronic disease that is becoming a serious global health problem. Diabetes has been considered to be one of the major risks of cataract and retinopathy. Synthetic and natural product inhibitors of carbohydrate degrading enzymes are able to reduce type 2 diabetes and its complications. For a long time, potatoes have been portrayed as unhealthy for diabetic patients by some nutritionist due to their high starch content. However, purple and red potato cultivars have received considerable attention from consumers because they have high levels of polyphenolic compounds that have potent antioxidant activities. In this study, we screened the total phenolics (TP) and total anthocyanins (TA) and analyzed the phenolic and anthocyanin compounds in selected potato cultivars and advanced selections with distinct flesh colors (purple, red, yellow and white). Purple and red potato cultivars had higher levels of TP and TA than tubers with other flesh colors. Chlorogenic acid is the predominant phenolic acid, and major anthocyanin is composed of the derivatives of petunidin, peonidin, malvidin and pelargonidin. We tested the potential inhibitory effect of potato extracts on the activities of α-amylase and α-glucosidase, which were targeted to develop antidiabetic therapeutic agents. We also measured inhibitory effect of potato extracts on aldose reductase (AR) which is a key enzyme that has been a major drug target for the development of therapies to treat diabetic complications. Purple flesh tubers extract showed the most effective inhibition of α-amylase, α-glucosidase, and aldose reductase with IC50 values 25, 42, and 32 μg/ml, respectively. Kinetic studies showed that anthocyanins are noncompetitive inhibitors of these enzymes, whereas phenolic acids behaved as mixed inhibitors for α-amylase and α-glucosidase and noncompetitive inhibitors for AR. This study supports the development of a positive and healthful image of potatoes, which is an

  10. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds.

    PubMed

    Kalita, Diganta; Holm, David G; LaBarbera, Daniel V; Petrash, J Mark; Jayanty, Sastry S

    2018-01-01

    Diabetes mellitus is a chronic disease that is becoming a serious global health problem. Diabetes has been considered to be one of the major risks of cataract and retinopathy. Synthetic and natural product inhibitors of carbohydrate degrading enzymes are able to reduce type 2 diabetes and its complications. For a long time, potatoes have been portrayed as unhealthy for diabetic patients by some nutritionist due to their high starch content. However, purple and red potato cultivars have received considerable attention from consumers because they have high levels of polyphenolic compounds that have potent antioxidant activities. In this study, we screened the total phenolics (TP) and total anthocyanins (TA) and analyzed the phenolic and anthocyanin compounds in selected potato cultivars and advanced selections with distinct flesh colors (purple, red, yellow and white). Purple and red potato cultivars had higher levels of TP and TA than tubers with other flesh colors. Chlorogenic acid is the predominant phenolic acid, and major anthocyanin is composed of the derivatives of petunidin, peonidin, malvidin and pelargonidin. We tested the potential inhibitory effect of potato extracts on the activities of α-amylase and α-glucosidase, which were targeted to develop antidiabetic therapeutic agents. We also measured inhibitory effect of potato extracts on aldose reductase (AR) which is a key enzyme that has been a major drug target for the development of therapies to treat diabetic complications. Purple flesh tubers extract showed the most effective inhibition of α-amylase, α-glucosidase, and aldose reductase with IC50 values 25, 42, and 32 μg/ml, respectively. Kinetic studies showed that anthocyanins are noncompetitive inhibitors of these enzymes, whereas phenolic acids behaved as mixed inhibitors for α-amylase and α-glucosidase and noncompetitive inhibitors for AR. This study supports the development of a positive and healthful image of potatoes, which is an

  11. Characterization of WY 14,643 and its Complex with Aldose Reductase

    DOE PAGES

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; ...

    2016-10-10

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such asmore » WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.« less

  12. Characterization of WY 14,643 and its Complex with Aldose Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such asmore » WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.« less

  13. Characterization of WY 14,643 and its Complex with Aldose Reductase

    PubMed Central

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; Rath, Nigam P.; Cascio, Duilio; Balendiran, Ganesaratnam K.

    2016-01-01

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR. PMID:27721416

  14. Aldose reductase enzyme and its implication to major health problems of the 21(st) century.

    PubMed

    Alexiou, Polyxeni; Pegklidou, Kyriaki; Chatzopoulou, Maria; Nicolaou, Ioannis; Demopoulos, Vassilis J

    2009-01-01

    Aldose reductase enzyme (ALR2) of the polyol metabolic pathway, apart from its role as detoxifying enzyme towards toxic aldehydes, osmoregulator in the kidney and regulator of sperm maturation, was first found to be implicated in the etiology of the long term diabetic complications. However, to date, emerging reports have suggested that under normal glucose concentration, ALR2 may be up-regulated by factors other than hyperglycemia and therefore be involved also in other pathological processes that have become major threats to human health in the 21(st) century. Such pathologies are a number of cardiac disorders, inflammation, mood disorders, renal insufficiency and ovarian abnormalities. In addition, ALR2 was found to be over-expressed in different human cancers such as liver, breast, ovarian, cervical and rectal cancers. Although several aldose reductase inhibitors (ARIs) have progressed to the clinical level, only one is currently on the market. Thus, attention is currently targeted to discover ARIs of distinct chemical structures, being neither hydantoin nor carboxylic acid derivatives. The present review focuses on the molecular mechanisms by which ALR2 is implicated in a number of pathologies, on various aspects concerning its catalytic mechanism and its active site, and on the main classes of ARIs that have been developed to date, as well as on reported (quantitive) structure-activity relationships. The presented data aim to support the notion that ARIs are of pharmacotherapeutic interest for the pharmaceutical community and highlight essential aspects for the development of efficient and potent ARIs.

  15. Inhibition of aldose reductase by Gentiana lutea extracts.

    PubMed

    Akileshwari, Chandrasekhar; Muthenna, Puppala; Nastasijević, Branislav; Joksić, Gordana; Petrash, J Mark; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications.

  16. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae

    Treesearch

    Min Hyung Kang; Haiying Ni; Thomas W. Jeffries

    2003-01-01

    Candida boidinii produces significant amounts of xylitol from xylose, and assays of crude homogenates for aldose (xylose) reductase (XYL1p) have been reported to show relatively high activity with NADH as a cofactor even though XYL1p purified from this yeast does not have such activity. A gene coding for XYL1p from C. boidinii (CbXYL1) was isolated by amplifying the...

  17. Inhibition of Aldose Reductase by Gentiana lutea Extracts

    PubMed Central

    Akileshwari, Chandrasekhar; Muthenna, Puppala; Nastasijević, Branislav; Joksić, Gordana; Petrash, J. Mark; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications. PMID:22844269

  18. Phytochemical profile, aldose reductase inhibitory, and antioxidant activities of Indian traditional medicinal Coccinia grandis (L.) fruit extract.

    PubMed

    Kondhare, Dasharath; Lade, Harshad

    2017-12-01

    Coccinia grandis (L.) fruits (CGFs) are commonly used for culinary purposes and has several therapeutic applications in the Southeast Asia. The aim of this work was to evaluate phytochemical profile, aldose reductase inhibitory (ARI), and antioxidant activities of CGF extract. The CGFs were extracted with different solvents including petroleum ether, dichloromethane, acetone, methanol, and water. The highest yield of total extractable compounds (34.82%) and phenolic content (11.7 ± 0.43 mg of GAE/g dried extract) was found in methanol extract, whereas water extract showed the maximum content of total flavonoids (82.8 ± 7.8 mg QE/g dried extract). Gas chromatography-mass spectroscopy (GC-MS) analysis of methanol and water extract revealed the presence of flavonoids, phenolic compounds, alkaloids, and glycosides in the CGFs. Results of the in vitro ARI activity against partially purified bovine lens aldose reductase showed that methanol extract of CGFs exhibited 96.6% ARI activity at IC 50 value 6.12 µg/mL followed by water extract 89.1% with the IC 50 value 6.50 µg/mL. In addition, methanol and water extracts of CGF showed strong antioxidant activities including ABTS *+ scavenging, DPPH* scavenging, and hydroxyl radical scavenging. Our results suggest that high percentage of both flavonoids and phenolic contents in the CGFs are correlated with the ARI and antioxidant activities. The fruits of C. grandis are thus potential bifunctional agents with ARI and antioxidant activities that can be used for the prevention and management of DM and associated diseases.

  19. Flavonoid alkaloids from Scutellaria moniliorrhiza with anti-inflammatory activities and inhibitory activities against aldose reductase.

    PubMed

    Han, Qing-Tong; Ren, Yan; Li, Gui-Sheng; Xiang, Kang-Lin; Dai, Sheng-Jun

    2018-05-11

    Four undescribed flavonoid alkaloids, as two pairs of enantiomers, were initially isolated as a racemate from the whole plant of Scutellaria moniliorrhiza. By means of chiral HPLC, four isomers, named scumonilines A-D, were successfully separated, and their chemical structures including absolute configurations were established by mass as well as NMR spectroscopy and CD technique. In vitro, four flavonoid alkaloids showed anti-inflammatory activities, with IC 50 values against the release of β-glucuronidase from polymorphonuclear leukocytes of rats being in the range 5.16-5.85 μΜ. Moreover, four compounds were evaluated for their inhibitory activities against aldose reductase, and gave IC 50 values in the range 2.29-3.03 μΜ. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Antidiabetic complications and anti-Alzheimer activities of sophoflavescenol, a prenylated flavonol from Sophora flavescens, and its structure-activity relationship.

    PubMed

    Jung, Hyun Ah; Jin, Seong Eun; Park, Jun-Seong; Choi, Jae Sue

    2011-05-01

    It was previously reported that prenylated flavonols from Sophora flavescens are inhibitors of rat lens aldose reductase (RLAR), human recombinant aldose reductase (HRAR), advanced glycation endproducts (AGE), β-secretase (BACE1) and cholinesterases (ChE). Based upon structure-activity relationships, 3,4'-dihydroxy flavonols with a prenyl or lavandulyl group substitution at the C-8 position, and a hydroxy group at the C-5, are important for such inhibition. In our ongoing study to isolate active principles from S. flavescens by an activity-guided isolation procedure, further detailed phytochemical investigations of the CH(2)Cl(2) fraction were conducted via repeated chromatography over silica gel and Sephadex LH-20 columns. This ultimately resulted in the isolation of a promising active sophoflavescenol with higher inhibitory activities among the current prenylated flavonols isolated from S. flavescens against RLAR, HRAR, AGE, BACE1 and ChEs. The results further support that 3,4'-dihydroxy flavonols with a prenyl or lavandulyl substitution at the C-8 position and a methoxy group at C-5 represent a new class of RLAR, HRAR and AGE inhibitors. Nevertheless, the C-5 hydroxyl group of prenylated flavonoids is important for inhibition of BACE1 and ChEs, indicating that the hydroxyl group at C-5 might be the main contributor to the augmentation and/or modification of prenylated flavonol activity. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Molecular modelling and synthesis of spiroimidazolidine-2,4-diones with dual activities as hypoglycemic agents and selective inhibitors of aldose reductase.

    PubMed

    Salem, Manar G; Abdel Aziz, Yasmine M; Elewa, Marwa; Elshihawy, Hosam A; Said, Mohamed M

    2018-05-02

    Novel derivatives of spiroimidazolidinedione were synthesized and evaluated as hypoglycemic agents through binding to sulfonylurea receptor 1 (SUR1) in pancreatic beta-cells. Their selectivity index was calculated against both aldehyde reductase (ALR1) and aldose reductase (ALR2). Aldehyde reductase is a key enzyme in the polyol pathway that is involved in the etiology of the secondary diabetic complications. All structures were confirmed by microanalysis and by IR, 1 H NMR, 13 C NMR and EI-MS spectroscopy. The investigated compounds were subjected to molecular docking and an in silico prediction study to determine their free energy of binding (ΔG) values and predict their physicochemical properties and drug-likeness scores. Compound 1'-(5-chlorothiophene-2-ylsulfonyl)spiro[cyclohexane-1,5'-imidazolidine]-2',4'-dione showed IC 50 0.47 µM and 79% reduction in blood glucose level with a selectivity index 127 for ALR2. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Inhibitory activity and mechanism of inhibition of the N-[[(4-benzoylamino)phenyl]sulfonyl]amino acid aldose reductase inhibitors.

    PubMed

    DeRuiter, J; Mayfield, C A

    1990-11-15

    A series of substituted N-[[(4-benzoylamino)phenyl]sulfonyl]amino acids (BAPS-amino acids) were synthesized by established methods, and the stereochemistry of the products was confirmed by HPLC analysis after chiral derivatization. When tested against aldose reductase (alditol:NADP+ oxidoreductase; EC 1.1.1.21; ALR2) isolated from rat lens, all of the BAPS-amino acids were determined to be significantly more inhibitory than the corresponding N-(phenylsulfonyl)amino acids. Structure-inhibition and enzyme kinetic analyses suggest that the BAPS-amino acids inhibit ALR2 by a mechanism similar to the N-(phenylsulfonyl)amino acids. However, multiple inhibition analyses indicate that the increased inhibitory activity of the BAPS-amino acids is a result of interaction with multiple sites present on ALR2. Enzyme specificity studies with several of the BAPS-amino acids demonstrated that these compounds do not produce significant inhibition of other nucleotide-requiring enzymes including aldehyde reductase (alcohol: NADP+ oxidoreductase; EC 1.1.1.2; ALR1).

  3. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase.

    PubMed

    Blakeley, Matthew P; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-02-12

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 A, 100K; 0.80 A, 15K; 1.75 A, 293K), neutron Laue data (2.2 A, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  4. Quantum Model of Catalysis Based on a Mobile Proton Revealed by Subatomic X-ray and Neutron Diffraction Studies of h-aldose Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeley, M. P.; Ruiz, Fredrico; Cachau, Raul

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Angstroms, 100K; 0.80 Angstroms, 15K; 1.75 Angstroms, 293K), neutron Laue data (2.2 Angstroms, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  5. The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase.

    PubMed

    Misuri, Livia; Cappiello, Mario; Balestri, Francesco; Moschini, Roberta; Barracco, Vito; Mura, Umberto; Del-Corso, Antonella

    2017-12-01

    Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE.

  6. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase

    PubMed Central

    Blakeley, Matthew P.; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N.; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Å, 100K; 0.80 Å, 15K; 1.75 Å, 293K), neutron Laue data (2.2 Å, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes. PMID:18250329

  7. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial.

    PubMed

    Hotta, Nigishi; Akanuma, Yasuo; Kawamori, Ryuzo; Matsuoka, Kempei; Oka, Yoshitomo; Shichiri, Motoaki; Toyota, Takayoshi; Nakashima, Mitsuyoshi; Yoshimura, Isao; Sakamoto, Nobuo; Shigeta, Yukio

    2006-07-01

    We sought to evaluate the long-term efficacy and safety of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy. Subjects with diabetic neuropathy, median motor nerve conduction velocity (MNCV) >or=40 m/s, and HbA(1c)

  8. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  9. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019

  10. In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol.

    PubMed

    Sampath, Chethan; Sang, Shengmin; Ahmedna, Mohamed

    2016-12-01

    Hyperglycemic stress activates polyol pathway and aldose reductase (AR) key enzyme responsible for generating secondary complications during diabetes. In this study the therapeutic potential of phloretin, epigallocatechin 3-gallate (EGCG) and [6]-gingerol were evaluated for anti-glycating and AR inhibitory activity in vitro and in vivo systems. Human retinal pigment epithelial (HRPE) cells were induced with high glucose supplemented with the phloretin, EGCG and [6]-gingerol. Aldose reductase activity, total advanced glycation end products (AGEs) and enzyme inhibitor kinetics were assessed. Male C57BL/6J mice were randomly assigned to one of the different treatments (bioactive compounds at 2 concentrations each) with either a low fat diet or high fat diet (HFD). After sixteen weeks, AGE accumulation and AR activity was determined in heart, eyes and kidney. High glucose induced toxicity decreased cell viability compared to the untreated cells and AR activity increased to 2-5 folds from 24 to 96h. Pre-treatment of cells with phloretin, EGCG and [6]-gingerol improved cell viability and inhibited AR activity. The enzyme inhibition kinetics followed a non-competitive mode of inhibition for phloretin and EGCG whereas [6]-gingerol indicated uncompetitive type of inhibition against AR. Data from the animal studies showed high plasma glucose levels in HFD group over time, compared to the low fat diet. HFD group developed cataract and AR activity increased to 4 folds compared to the group with low fat diet. Administration of EGCG, phloretin and [6]-gingerol significantly reduced blood sugar levels, AGEs accumulation, and AR activity. These findings could provide a basis to consider using the selected dietary components alone or in combination with other therapeutic approaches to prevent diabetes-related complications in humans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Bioactive constituents from Chinese natural medicines. XXXII. aminopeptidase N and aldose reductase inhibitors from Sinocrassula indica: structures of sinocrassosides B(4), B(5), C(1), and D(1)-D(3).

    PubMed

    Morikawa, Toshio; Xie, Haihui; Wang, Tao; Matsuda, Hisashi; Yoshikawa, Masayuki

    2008-10-01

    From the methanolic extract of the whole plant of Sinocrassula indica (Crassulaceae), six new flavonol glycosides, sinocrassosides B(4) (1), B(5) (2), C(1) (3), D(1) (4), D(2) (5), and D(3) (6), were isolated together with 30 compounds. The structures of 1-6 were elucidated on the basis of chemical and physicochemical evidence. In addition, several constituents were found to show inhibitory effects on aminopeptidase N and aldose reductase.

  12. Crystal packing modifies ligand binding affinity: the case of aldose reductase.

    PubMed

    Cousido-Siah, Alexandra; Petrova, Tatiana; Hazemann, Isabelle; Mitschler, André; Ruiz, Francesc X; Howard, Eduardo; Ginell, Stephan; Atmanene, Cédric; Van Dorsselaer, Alain; Sanglier-Cianférani, Sarah; Joachimiak, Andrzej; Podjarny, Alberto

    2012-11-01

    The relationship between the structures of protein-ligand complexes existing in the crystal and in solution, essential in the case of fragment-based screening by X-ray crystallography (FBS-X), has been often an object of controversy. To address this question, simultaneous co-crystallization and soaking of two inhibitors with different ratios, Fidarestat (FID; K(d) = 6.5 nM) and IDD594 (594; K(d) = 61 nM), which bind to h-aldose reductase (AR), have been performed. The subatomic resolution of the crystal structures allows the differentiation of both inhibitors, even when the structures are almost superposed. We have determined the occupation ratio in solution by mass spectrometry (MS) Occ(FID)/Occ(594) = 2.7 and by X-ray crystallography Occ(FID)/Occ(594) = 0.6. The occupancies in the crystal and in solution differ 4.6 times, implying that ligand binding potency is influenced by crystal contacts. A structural analysis shows that the Loop A (residues 122-130), which is exposed to the solvent, is flexible in solution, and is involved in packing contacts within the crystal. Furthermore, inhibitor 594 contacts the base of Loop A, stabilizing it, while inhibitor FID does not. This is shown by the difference in B-factors of the Loop A between the AR-594 and AR-FID complexes. A stable loop diminishes the entropic energy barrier to binding, favoring 594 versus FID. Therefore, the effect of the crystal environment should be taken into consideration in the X-ray diffraction analysis of ligand binding to proteins. This conclusion highlights the need for additional methodologies in the case of FBS-X to validate this powerful screening technique, which is widely used. Copyright © 2012 Wiley Periodicals, Inc.

  13. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    PubMed

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  14. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  15. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianwei; State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062; Zhang, John Z. H.

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. Inmore » this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.« less

  16. Medicinal flowers. XXXX . Structures of dihydroisocoumarin glycosides and inhibitory effects on aldose reducatase from the flowers of Hydrangea macrophylla var.thunbergii.

    PubMed

    Liu, Jiang; Nakamura, Seikou; Zhuang, Yan; Yoshikawa, Masayuki; Hussein, Ghazi Mohamed Eisa; Matsuo, Kyohei; Matsuda, Hisashi

    2013-01-01

    Six dihydroisocoumarin glycosides, florahydrosides I and II, thunberginol G 8-O-β-d-glucopyranoside, thunberginol C 8-O-β-d-glucopyranoside, 4-hydroxythunberginol G 3'-O-β-d-glucopyranoside, and thunberginol D 3'-O-β-d-glucopyranoside, have been isolated from the flowers of Hydrangea macrophylla Seringe var. thunbergii Makino (Saxifragaceae) together with 20 known compounds. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. Among the constituents, acylated quinic acid analog, neochlorogenic acid, was shown to substantially inhibit aldose reductase [IC50=5.6 µm]. In addition, the inhibitory effects on aldose reductase of several caffeoylquinic acid analogs were examined for structure-activity relationship study. As the results, 4,5-O-trans-p-dicaffeoyl-d-quinic acid was found to exhibit a potent inhibitory effect [IC50=0.29 µm].

  17. A potential therapeutic role for aldose reductase inhibitors in the treatment of endotoxin-related inflammatory diseases

    PubMed Central

    Pandey, Saumya; Srivastava, Satish K

    2012-01-01

    Introduction Aldose reductase (AR) initially thought to be involved in the secondary diabetic complications because of its glucose reducing potential. However, evidence from recent studies indicates that AR is an excellent reducer of a number of lipid peroxidation-derived aldehydes as well as their glutathione conjugates, which regulate inflammatory signals initiated by oxidants such as cytokines, growth factors and bacterial endotoxins, and revealed the potential use of AR inhibition as an approach to prevent inflammatory complications. Areas covered An extensive Internet and Medline search was performed to retrieve information on understanding the role of AR inhibition in the pathophysiology of endotoxin-mediated inflammatory disorders. Overall, inhibition of AR appears to be a promising strategy for the treatment of endotoxemia, sepsis and other related inflammatory diseases. Expert opinion Current knowledge provides enough evidence to indicate that AR inhibition is a logical therapeutic strategy for the treatment of endotoxin-related inflammatory diseases. Since, AR inhibitors have already gone to Phase-iii clinical studies for diabetic complications and found to be safe for human use, their use in endotoxin–related inflammatory diseases could be expedited. However, one of the major challenges will be the discovery of AR regulated clinically-relevant biomarkers to identify susceptible individuals at risk of developing inflammatory diseases, thereby warranting future research in this area. PMID:22283786

  18. Subatomic and atomic crystallographic studies of aldose reductase: implications for inhibitor binding.

    PubMed

    Podjarny, A; Cachau, R E; Schneider, T; Van Zandt, M; Joachimiak, A

    2004-04-01

    The determination of several of aldose reductase-inhibitor complexes at subatomic resolution has revealed new structural details, including the specific interatomic contacts involved in inhibitor binding. In this article, we review the structures of the complexes of ALR2 with IDD 594 (resolution: 0.66 angstrom, IC50 (concentration of the inhibitor that produced half-maximal effect): 30 nM, space group: P2(1)), IDD 393 (resolution: 0.90 angstrom, IC50: 6 nM, space group: P1), fidarestat (resolution: 0.92 angstrom, IC50: 9 nM, space group: P2(1)) and minalrestat (resolution: 1.10 angstrom, IC50: 73 nM, space group: P1). The structures are compared and found to be highly reproductible within the same space group (root mean square (RMS) deviations: 0.15 approximately 0.3 angstrom). The mode of binding of the carboxylate inhibitors IDD 594 and IDD 393 is analysed. The binding of the carboxylate head can be accurately determined by the subatomic resolution structures, since both the protonation states and the positions of the atoms are very precisely known. The differences appear in the binding in the specificity pocket. The high-resolution structures explain the differences in IC50, which are confirmed both experimentally by mass spectrometry measures of VC50 and theoretically by free energy perturbation calculations. The binding of the cyclic imide inhibitors fidarestat and minalrestat is also described, focusing on the observation of a Cl(-) ion which binds simultaneously with fidarestat. The presence of this anion, binding also to the active site residue His110, leads to a mechanism in which the inhibitor can bind in a neutral state and then become charged inside the active site pocket. This mechanism can explain the excellent in vivo properties of cyclic imide inhibitors. In summary, the complete and detailed information supplied by the subatomic resolution structures can explain the differences in binding energy of the different inhibitors.

  19. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase.

    PubMed

    Mok, So-Youn; Lee, Sanghyun

    2013-01-15

    To investigate the therapeutic potential of compounds from natural sources, Rhododendron mucronulatum for. albiflorum flowers (RMAF) and R. mucronulatum flowers (RMF) were tested for inhibition of aldose reductase (AR). The methanol extracts of RMAF and RMF exhibited AR inhibitory activities (IC(50) values 1.07 and 1.29 μg/mL, respectively). The stepwise polarity fractions of RMAF were tested for in vitro inhibition of AR from rat lenses. Of these, the ethyl acetate (EtOAc) fraction exhibited AR inhibitory activity (IC(50) 0.15 μg/mL). A chromatography of the active EtOAc fraction of RMAF led to the isolation of six flavonoids, which were identified by spectroscopic analysis as kaempferol (1), afzelin (2), quercetin (3), quercitrin (4), myricetin (5) and myricitrin (6). Compounds 1-6 exhibited high AR inhibitory activity, with IC(50) values of 0.79, 0.31, 0.48, 0.13, 11.92 and 2.67 μg/mL, respectively. HPLC/UV analysis revealed that the major flavonoids of RMAF and RMF are quercitrin (4) and myricitrin (6). Our results suggest that RMAF containing these six flavonoids could be a useful natural source in the development of a novel AR inhibitory agent against diabetic complications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case.

    PubMed

    Guillot, Benoît; Jelsch, Christian; Podjarny, Alberto; Lecomte, Claude

    2008-05-01

    The valence electron density of the protein human aldose reductase was analyzed at 0.66 angstroms resolution. The methodological developments in the software MoPro to adapt standard charge-density techniques from small molecules to macromolecular structures are described. The deformation electron density visible in initial residual Fourier difference maps was significantly enhanced after high-order refinement. The protein structure was refined after transfer of the experimental library multipolar atom model (ELMAM). The effects on the crystallographic statistics, on the atomic thermal displacement parameters and on the structure stereochemistry are analyzed. Constrained refinements of the transferred valence populations Pval and multipoles Plm were performed against the X-ray diffraction data on a selected substructure of the protein with low thermal motion. The resulting charge densities are of good quality, especially for chemical groups with many copies present in the polypeptide chain. To check the effect of the starting point on the result of the constrained multipolar refinement, the same charge-density refinement strategy was applied but using an initial neutral spherical atom model, i.e. without transfer from the ELMAM library. The best starting point for a protein multipolar refinement is the structure with the electron density transferred from the database. This can be assessed by the crystallographic statistical indices, including Rfree, and the quality of the static deformation electron-density maps, notably on the oxygen electron lone pairs. The analysis of the main-chain bond lengths suggests that stereochemical dictionaries would benefit from a revision based on recently determined unrestrained atomic resolution protein structures.

  1. Downregulation of aldose reductase is responsible for developmental abnormalities of the silkworm purple quail-like mutant (q-lp).

    PubMed

    Wang, Pingyang; Bi, Simin; Wei, Weiyang; Qiu, Zhiyong; Xia, Dingguo; Shen, Xingjia; Zhao, Qiaoling

    2018-05-03

    Aldose reductase (AR) is a rate-limiting enzyme in the polyol pathway and is also the key enzyme involved in diabetic complications. The silkworm purple quail-like mutant (q-l p ) exhibits pigmented dots on its epidermis. The q-l p mutant also shows developmental abnormalities and decreased vitality. In this study, fat bodies from the q-l p mutant and the wildtype 932VR strain were subjected to two-dimensional gel electrophoresis (2-DE) analysis, and the Bombyx mori AR (BmAR) protein was found to be significantly downregulated in the q-l p mutant. The expression of BmAR at the mRNA level was also significantly downregulated, as verified through quantitative reverse transcription PCR (qRT-PCR). Knockdown of the expression of BmAR via RNAi resulted in a reduction of silkworm weight. The sorbitol level in q-l p was significantly lower than in the wildtype. These results suggested that the BmAR gene is closely related to the development of the q-l p mutant. Investigation of the cause of BmAR downregulation in the q-l p mutant could contribute to revealing the function of AR in insects and offers a new method of identifying AR inhibitors for the treatment of diabetic complications. Copyright © 2017. Published by Elsevier B.V.

  2. Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis.

    PubMed

    Iwata, Y; Arisawa, M; Hamada, R; Kita, Y; Mizutani, M Y; Tomioka, N; Itai, A; Miyamoto, S

    2001-05-24

    Aldose reductase (AR) has been implicated in the etiology of diabetic complications. Due to the limited number of currently available drugs for the treatment of diabetic complications, we have carried out structure-based drug design and synthesis in an attempt to find new types of AR inhibitors. With the ADAM&EVE program, a three-dimensional database (ACD3D) was searched using the ligand binding site of the AR crystal structure. Out of 179 compounds selected through this search followed by visual inspection, 36 compounds were purchased and subjected to a biological assay. Ten compounds showed more than 40% inhibition of AR at a 15 microg/mL concentration. In a subsequent lead optimization, a series of analogues of the most active compound were synthesized based on the docking mode derived by ADAM&EVE. Many of these congeners exhibited higher activities compared to the mother compound. Indeed, the most potent, synthesized compound showed an approximately 20-fold increase in inhibitory activity (IC(50) = 0.21 vs 4.3 microM). Furthermore, a hydrophobic subsite was newly inferred, which would be useful for the design of inhibitors with improved affinity for AR.

  3. Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice.

    PubMed

    Baba, Shahid P; Zhang, Deqing; Singh, Mahavir; Dassanayaka, Sujith; Xie, Zhengzhi; Jagatheesan, Ganapathy; Zhao, Jingjing; Schmidtke, Virginia K; Brittian, Kenneth R; Merchant, Michael L; Conklin, Daniel J; Jones, Steven P; Bhatnagar, Aruni

    2018-05-01

    Pathological cardiac hypertrophy is associated with the accumulation of lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and acrolein in the heart. These aldehydes are metabolized via several pathways, of which aldose reductase (AR) represents a broad-specificity route for their elimination. We tested the hypothesis that by preventing aldehyde removal, AR deficiency accentuates the pathological effects of transverse aortic constriction (TAC). We found that the levels of AR in the heart were increased in mice subjected to TAC for 2 weeks. In comparison with wild-type (WT), AR-null mice showed lower ejection fraction, which was exacerbated 2 weeks after TAC. Levels of atrial natriuretic peptide and myosin heavy chain were higher in AR-null than in WT TAC hearts. Deficiency of AR decreased urinary levels of the acrolein metabolite, 3-hydroxypropylmercapturic acid. Deletion of AR did not affect the levels of the other aldehyde-metabolizing enzyme - aldehyde dehydrogenase 2 in the heart, or its urinary product - (N-Acetyl-S-(2-carboxyethyl)-l-cystiene). AR-null hearts subjected to TAC showed increased accumulation of HNE- and acrolein-modified proteins, as well as increased AMPK phosphorylation and autophagy. Superfusion with HNE led to a greater increase in p62, LC3II formation, and GFP-LC3-II punctae formation in AR-null than WT cardiac myocytes. Pharmacological inactivation of JNK decreased HNE-induced autophagy in AR-null cardiac myocytes. Collectively, these results suggest that during hypertrophy the accumulation of lipid peroxidation derived aldehydes promotes pathological remodeling via excessive autophagy, and that metabolic detoxification of these aldehydes by AR may be essential for maintaining cardiac function during early stages of pressure overload. Published by Elsevier Ltd.

  4. Effects of fidarestat, an aldose reductase inhibitor, on nerve conduction velocity and bladder function in streptozotocin-treated female rats.

    PubMed

    Zotova, Elena G; Christ, George J; Zhao, Weixin; Tar, Moses; Kuppam, Srini D; Arezzo, Joseph C

    2007-01-01

    The effects of fidarestat, an aldose reductase inhibitor (ARI), were assessed on nerve conduction velocity (NCV) in somatic nerves and on multiple measures of bladder function in rats made hyperglycemic with streptozotocin (STZ) and in age-matched controls. Nerve conduction velocity was recorded at baseline and at 10, 20, 30, and 50 days after confirmation of the STZ-induced hyperglycemia in all rats (N=47); bladder function was assessed in a representative subset of rats (N=20) at Day 50. Caudal NCV was markedly slowed by STZ, and this effect was significantly reversed by fidarestat. The initial deficit and treatment-related improvement were especially evident for responses driven by high-frequency repetitive stimulation. Of the 11 parameters of bladder activity assessed, four measures-bladder capacity, micturition volume, micturition frequency, and bladder weight-were significantly different in the control and STZ-treated groups. These deficits were not affected by fidarestat. At Day 50, the induced deficits in bladder function were highly correlated with caudal NCV (r values ranging from 0.70 to 0.96; P values ranging from .02 to <.0001). These results suggested that fidarestat improved the slowing of somatic nerve NCV in hyperglycemic rats, but it was not effective in reversing associated bladder dysfunction, in spite of the highly significant correlation between these two diabetes-induced deficits. Possible explanations for this dissociation are discussed.

  5. Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells.

    PubMed

    Fu, Jiang; Tay, S S W; Ling, E A; Dheen, S T

    2007-11-01

    Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro. NSCs were exposed to physiological d-glucose concentration (PG, 5 mmol/L), PG with l-glucose (25 mmol/L), or high d-glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy.

  6. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  7. Prospecting for Novel Plant-Derived Molecules of Rauvolfia serpentina as Inhibitors of Aldose Reductase, a Potent Drug Target for Diabetes and Its Complications

    PubMed Central

    Pathania, Shivalika; Randhawa, Vinay; Bagler, Ganesh

    2013-01-01

    Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects. PMID:23613832

  8. Prospecting for novel plant-derived molecules of Rauvolfia serpentina as inhibitors of Aldose Reductase, a potent drug target for diabetes and its complications.

    PubMed

    Pathania, Shivalika; Randhawa, Vinay; Bagler, Ganesh

    2013-01-01

    Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects.

  9. Association of aldose reductase gene polymorphism (C-106T) in susceptibility of diabetic peripheral neuropathy among north Indian population.

    PubMed

    Gupta, Balram; Singh, S K

    2017-07-01

    Polymorphism in aldose reductase (ALR) gene at nucleotide C(-106)T (rs759853) in the promoter region is associated with susceptibility to development of diabetic peripheral neuropathy. The aim of this study was to detect the association of the C (-106)T polymorphism of ALR gene and its frequency among patients with type 2 diabetes mellitus with and without peripheral neuropathy. The study subjects were divided into three groups. Group I included 356 patients with diabetes having peripheral neuropathy. Group II included 294 patients with diabetes without peripheral neuropathy and group III included 181 healthy subjects. Genotyping of ALR C(-106)T SNPs was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing methods. The genetic risk among the groups was compared and tested by calculating odds ratio with 95% class interval. ALR 106TT genotype was significantly higher in group I compared to group II with an odds ratio of 2.12 (95% CI: 1.22-3.67; p<0.01). Recessive model (CC+CT vs. TT), as well as T allele distribution also showed significant association to develop neuropathy with relative risk of 1.97 (95% CI: 1.16-3.35; p<0.01) and 1.36 (95% CI: 1.07-1.72; p=0.01) respectively. In conclusion, the ALR C-106T polymorphism was associated with higher risk of peripheral neuropathy in patients with type 2 diabetes mellitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease.

    PubMed

    Samuels, Ivy S; Lee, Chieh-Allen; Petrash, J Mark; Peachey, Neal S; Kern, Timothy S

    2012-11-01

    Streptozotocin (STZ)-induced diabetes is associated with reductions in the electrical response of the outer retina and retinal pigment epithelium (RPE) to light. Aldose reductase (AR) is the first enzyme required in the polyol-mediated metabolism of glucose, and AR inhibitors have been shown to improve diabetes-induced electroretinogram (ERG) defects. Here, we used control and AR -/- mice to determine if genetic inactivation of this enzyme likewise inhibits retinal electrophysiological defects observed in a mouse model of type 1 diabetes. STZ was used to induce hyperglycemia and type 1 diabetes. Diabetic and age-matched nondiabetic controls of each genotype were maintained for 22 weeks, after which ERGs were used to measure the light-evoked components of the RPE (dc-ERG) and the neural retina (a-wave, b-wave). In comparison to their nondiabetic controls, wildtype (WT) and AR -/- diabetic mice displayed significant decreases in the c-wave, fast oscillation, and off response components of the dc-ERG but not in the light peak response. Nondiabetic AR -/- mice displayed larger ERG component amplitudes than did nondiabetic WT mice; however, the amplitude of dc-ERG components in diabetic AR -/- animals were similar to WT diabetics. ERG a-wave amplitudes were not reduced in either diabetic group, but b-wave amplitudes were lower in WT and AR -/-diabetic mice. These findings demonstrate that the light-induced responses of the RPE and outer retina are disrupted in diabetic mice, but these defects are not due to photoreceptor dysfunction, nor are they ameliorated by deletion of AR. This latter finding suggests that benefits observed in other studies utilizing pharmacological inhibitors of AR might have been secondary to off-target effects of the drugs.

  11. Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A.

    PubMed

    Howard, E I; Sanishvili, R; Cachau, R E; Mitschler, A; Chevrier, B; Barth, P; Lamour, V; Van Zandt, M; Sibley, E; Bon, C; Moras, D; Schneider, T R; Joachimiak, A; Podjarny, A

    2004-06-01

    The first subatomic resolution structure of a 36 kDa protein [aldose reductase (AR)] is presented. AR was cocrystallized at pH 5.0 with its cofactor NADP+ and inhibitor IDD 594, a therapeutic candidate for the treatment of diabetic complications. X-ray diffraction data were collected up to 0.62 A resolution and treated up to 0.66 A resolution. Anisotropic refinement followed by a blocked matrix inversion produced low standard deviations (<0.005 A). The model was very well ordered overall (CA atoms' mean B factor is 5.5 A2). The model and the electron-density maps revealed fine features, such as H-atoms, bond densities, and significant deviations from standard stereochemistry. Other features, such as networks of hydrogen bonds (H bonds), a large number of multiple conformations, and solvent structure were also better defined. Most of the atoms in the active site region were extremely well ordered (mean B approximately 3 A2), leading to the identification of the protonation states of the residues involved in catalysis. The electrostatic interactions of the inhibitor's charged carboxylate head with the catalytic residues and the charged coenzyme NADP+ explained the inhibitor's noncompetitive character. Furthermore, a short contact involving the IDD 594 bromine atom explained the selectivity profile of the inhibitor, important feature to avoid toxic effects. The presented structure and the details revealed are instrumental for better understanding of the inhibition mechanism of AR by IDD 594, and hence, for the rational drug design of future inhibitors. This work demonstrates the capabilities of subatomic resolution experiments and stimulates further developments of methods allowing the use of the full potential of these experiments. Copyright 2004 Wiley-Liss, Inc.

  12. A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism.

    PubMed

    Niimi, Naoko; Yako, Hideji; Takaku, Shizuka; Kato, Hiroshi; Matsumoto, Takafumi; Nishito, Yasumasa; Watabe, Kazuhiko; Ogasawara, Saori; Mizukami, Hiroki; Yagihashi, Soroku; Chung, Sookja K; Sango, Kazunori

    2018-03-01

    The increased glucose flux into the polyol pathway via aldose reductase (AR) is recognized as a major contributing factor for the pathogenesis of diabetic neuropathy, whereas little is known about the functional significance of AR in the peripheral nervous system. Spontaneously immortalized Schwann cell lines established from long-term cultures of AR-deficient and normal C57BL/6 mouse dorsal root ganglia and peripheral nerves can be useful tools for studying the physiological and pathological roles of AR. These cell lines, designated as immortalized knockout AR Schwann cells 1 (IKARS1) and 1970C3, respectively, demonstrated distinctive Schwann cell phenotypes, such as spindle-shaped morphology and immunoreactivity to S100, p75 neurotrophin receptor, and vimentin, and extracellular release of neurotrophic factors. Conditioned media obtained from these cells promoted neuronal survival and neurite outgrowth of cultured adult mouse dorsal root ganglia neurons. Microarray and real-time RT-PCR analyses revealed significantly down-regulated mRNA expression of polyol pathway-related enzymes, sorbitol dehydrogenase and ketohexokinase, in IKARS1 cells compared with those in 1970C3 cells. In contrast, significantly up-regulated mRNA expression of aldo-keto reductases (AKR1B7 and AKR1B8) and aldehyde dehydrogenases (ALDH1L2, ALDH5A1, and ALDH7A1) was detected in IKARS1 cells compared with 1970C3 cells. Exposure to reactive aldehydes (3-deoxyglucosone, methylglyoxal, and 4-hydroxynonenal) significantly up-regulated the mRNA expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in 1970C3 cells. Because no significant differences in viability between these two cell lines after exposure to these aldehydes were observed, it can be assumed that the aldehyde detoxification is taken over by AKR1B7 and AKR1B8 in the absence of AR. © 2017 International Society for Neurochemistry.

  13. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  14. Cofactor-Dependent Aldose Dehydrogenase of Rhodopseudomonas spheroides

    PubMed Central

    Niederpruem, Donald J.; Doudoroff, Michael

    1965-01-01

    Niederpruem, Donald J. (University of California, Berkeley), and Michael Doudoroff. Cofactor-dependent aldose dehydrogenase of Rhodopseudomonas spheroides. J. Bacteriol. 89:697–705. 1965.—Particulate enzyme preparations of cell extracts of Rhodopseudomonas spheroides possess constitutive dehydrogenase and oxidase activities for aldose sugars, reduced nicotinamide adenine dinucleotide (NADH2), and succinate. The dehydrogenation of aldoses requires an unidentified cofactor which is not required for the oxidation of succinate nor of NADH2. The cofactor is present in the particulate fraction of aerobic cells, but is unavailable to the enzyme system. It can be liberated by boiling or by treatment with salts at high concentration. The cofactor also appears in the soluble fraction of aerobic cells, but only after exponential growth has ceased. Extracts of cells grown anaerobically in the light possess the apoenzyme, but not the cofactor, for aldose oxidation. Cofactor activity was found in extracts of Bacterium anitratum (= Moraxella sp.) but not in Escherichia coli, Pseudomonas fluorescens, yeast, or mouse liver. In 0.075 m tris(hydroxymethyl)aminomethane-phosphoric acid buffer (pH 7.3), the oxidation of NADH2 was stimulated and succinoxidase was inhibited by high salt concentrations. PMID:14273648

  15. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: An in vitro mechanistic study.

    PubMed

    Wu, Jie; Li, Xue; Wan, Wencheng; Yang, Qiaohong; Ma, Weifeng; Chen, Dan; Hu, Jiangmiao; Chen, C-Y Oliver; Wei, Xiaoyong

    2017-02-23

    Dendrobium. chrysotoxum Lindl is a commonly used species of medicinal Dendrobium which belongs to the family of Orchidaceae, locally known as "Shihu" or "Huangcao". D. chrysotoxum Lindl is widely known for medicinal values in traditional Chinese medicine as it possesses anti-inflammatory, anti-hyperglycemic induction, antitumor and antioxidant properties. To characterize the interaction between gigantol extracted from D. chrysotoxum Lindl and the AR gene, and determine gigantol's efficacy against cataractogenesis. Human lens epithelial cells (HLECs) were induced by glucose as the model group. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess AR gene expression. Then, the mode of interaction of gigantol with the AR gene was evaluated by UV-visible spectroscopy, atomic force microscope (AFM) and surface-enhanced Raman spectroscopy (SERS). The binding constant was determined by UV-visible. Gigantol depressed AR gene expression in HLECs. UV-visible spectra preliminarily indicated that interaction between the AR gene and gigantol may follow the groove mode, with a binding constant of 1.85×10 3 L/mol. Atomic force microscope (AFM) data indicated that gigantol possibly bound to insert AR gene base pairs of the double helix. Surface-enhanced Raman spectroscopy (SERS) studies further supported these observations. Gigantol extracted from D. chrysotoxum Lindl not only has inhibitory effects on aldose reductase, but also inhibits AR gene expression. These findings provide a more comprehensive theoretical basis for the use of Dendrobium for the treatment of diabetic cataract. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Pharmacophore modeling, molecular docking, and molecular dynamics simulation approaches for identifying new lead compounds for inhibiting aldose reductase 2.

    PubMed

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; Lee, Keun Woo

    2012-07-01

    Aldose reductase 2 (ALR2), which catalyzes the reduction of glucose to sorbitol using NADP as a cofactor, has been implicated in the etiology of secondary complications of diabetes. A pharmacophore model, Hypo1, was built based on 26 compounds with known ALR2-inhibiting activity values. Hypo1 contains important chemical features required for an ALR2 inhibitor, and demonstrates good predictive ability by having a high correlation coefficient (0.95) as well as the highest cost difference (128.44) and the lowest RMS deviation (1.02) among the ten pharmacophore models examined. Hypo1 was further validated by Fisher's randomization method (95%), test set (r = 0.91), and the decoy set shows the goodness of fit (0.70). Furthermore, during virtual screening, Hypo1 was used as a 3D query to screen the NCI database, and the hit leads were sorted by applying Lipinski's rule of five and ADME properties. The best-fitting leads were subjected to docking to identify a suitable orientation at the ALR2 active site. The molecule that showed the strongest interactions with the critical amino acids was used in molecular dynamics simulations to calculate its binding affinity to the candidate molecules. Thus, Hypo1 describes the key structure-activity relationship along with the estimated activities of ALR2 inhibitors. The hit molecules were searched against PubChem to find similar molecules with new scaffolds. Finally, four molecules were found to satisfy all of the chemical features and the geometric constraints of Hypo1, as well as to show good dock scores, PLPs and PMFs. Thus, we believe that Hypo1 facilitates the selection of novel scaffolds for ALR2, allowing new classes of ALR2 inhibitors to be designed.

  17. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.

    PubMed

    Wiebe, Marilyn G; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-11-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.

  18. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights

    PubMed Central

    Timucin, Ahmet Can; Basaga, Huveyda

    2016-01-01

    SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed. PMID:27536992

  19. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.

    PubMed

    Richard, S; Tamas, C; Sell, D R; Monnier, V M

    1991-08-01

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  20. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE)

    PubMed Central

    Baba, Shahid P.; Hellmann, Jason; Srivastava, Sanjay; Bhatnagar, Aruni

    2011-01-01

    Diabetes results in enhanced chemical modification of proteins by advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) precursors. These modifications have been linked to the development of several secondary diabetic complications. Our previous studies showed that aldose reductase (AR; AKR1B3) catalyzes the reduction of ALEs and AGEs precursors; however, the in vivo significance of this metabolic pathway during diabetes and obesity has not been fully assessed. Therefore we examined the role of AR in regulating ALEs and AGEs formation in murine models of diet-induced obesity and streptozotocin-induced diabetes. In comparison with wild-type (WT) and AR-null mice fed normal chow, mice fed a high-fat (HF) diet (42% kcal fat) showed increased accumulation of AGEs and protein–acrolein adducts in the plasma. AGEs and acrolein adducts were also increased in the epididymal fat of WT and AR-null mice fed a HF diet. Deletion of AR increased the accumulation of 4-hydroxy-trans-2-nonenal (HNE) protein adduct in the plasma and increased the expression of the AGE receptor (RAGE) in HF fed mice. No change in AGEs formation was observed in the kidneys of HF-fed mice. In comparison, renal tissue from AR-null mice treated with streptozotocin showed greater AGE accumulation than streptozotocin-treated WT mice. These data indicated that AR regulated the accumulation of lipid peroxidation derived aldehydes and AGEs under conditions of severe, but not mild, hyperglycemia and that deletion of AR increased RAGE-induction via mechanisms that were independent of AGEs accumulation. PMID:21276777

  1. Aldose reductase modulates acute activation of mesenchymal markers via the β-catenin pathway during cardiac ischemia-reperfusion.

    PubMed

    Thiagarajan, Devi; O' Shea, Karen; Sreejit, Gopalkrishna; Ananthakrishnan, Radha; Quadri, Nosirudeen; Li, Qing; Schmidt, Ann Marie; Gabbay, Kenneth; Ramasamy, Ravichandran

    2017-01-01

    Aldose reductase (AR: human, AKR1B1; mouse, AKR1B3), the first enzyme in the polyol pathway, plays a key role in mediating myocardial ischemia/reperfusion (I/R) injury. In earlier studies, using transgenic mice broadly expressing human AKR1B1 to human-relevant levels, mice devoid of Akr1b3, and pharmacological inhibitors of AR, we demonstrated that AR is an important component of myocardial I/R injury and that inhibition of this enzyme protects the heart from I/R injury. In this study, our objective was to investigate if AR modulates the β-catenin pathway and consequent activation of mesenchymal markers during I/R in the heart. To test this premise, we used two different experimental models: in vivo, Akr1b3 null mice and wild type C57BL/6 mice (WT) were exposed to acute occlusion of the left anterior descending coronary artery (LAD) followed by recovery for 48 hours or 28 days, and ex-vivo, WT and Akr1b3 null murine hearts were perfused using the Langendorff technique (LT) and subjected to 30 min of global (zero-flow) ischemia followed by 60 min of reperfusion. Our in vivo results reveal reduced infarct size and improved functional recovery at 48 hours in mice devoid of Akr1b3 compared to WT mice. We demonstrate that the cardioprotection observed in Akr1b3 null mice was linked to acute activation of the β-catenin pathway and consequent activation of mesenchymal markers and genes linked to fibrotic remodeling. The increased activity of the β-catenin pathway at 48 hours of recovery post-LAD was not observed at 28 days post-infarction, thus indicating that the observed increase in β-catenin activity was transient in the mice hearts devoid of Akr1b3. In ex vivo studies, inhibition of β-catenin blocked the cardioprotection observed in Akr1b3 null mice hearts. Taken together, these data indicate that AR suppresses acute activation of β-catenin and, thereby, blocks consequent induction of mesenchymal markers during early reperfusion after myocardial ischemia

  2. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  3. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine Maillard reaction products on aldose reductase and tyrosinase.

    PubMed

    Hwang, Seung Hwan; Wang, Zhiqiang; Suh, Hong-Won; Lim, Soon Sung

    2018-03-01

    This study aimed to better understand the functional properties of ribose and 20 amino acid Maillard reaction products (MRPs). The ABTS + radical scavenging ability of the ribose-20 amino acid MRPs was evaluated. Among the MRPs, ribose-histidine MRPs (RH-MRPs) showed the highest inhibitory activities on the ABTS + radical scavenging ability, aldose reductase (AR), and tyrosinase compared to other MRPs. Functional compounds with antioxidant and AR inhibitory activities have been recognized as an important strategy in the prevention and treatment of diabetic complications, and the search for tyrosinase inhibitors is important for the treatment of hyperpigmentation, development of skin-whitening agents, and use as preservatives in the food industry. On this basis, we sought to isolate and identify compounds with inhibitory activities against AR and tyrosinase. RH-MRPs were heated at 120 °C for 2 h and fractionated using four solvents: methylene chloride (MC), ethyl acetate, n-butanol, and water. The highest inhibitions were found in the MC fraction. The two compounds from this fraction were purified by silica gel column and preparative thin layer chromatography, and identified as 2-hydroxy-3-methylcyclopent-2-enone and furan-3-carboxylic acid. AR inhibition, tyrosinase inhibition, and ABTS + scavenging (IC 50 ) of 2-hydroxy-3-methylcyclopent-2-enone were 4.47, 721.91 and 9.81 μg mL -1 , respectively. In this study, inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from RH-MRP were demonstrated on AR, tyrosinase, and its antioxidant activity for the first time. RH-MRP and its constituents can be developed as beneficial functional food sources and cosmetic materials and should be investigated further as potential functional food sources.

  4. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study.

    PubMed

    Hotta, N; Toyota, T; Matsuoka, K; Shigeta, Y; Kikkawa, R; Kaneko, T; Takahashi, A; Sugimura, K; Koike, Y; Ishii, J; Sakamoto, N

    2001-10-01

    The purpose of this study was to evaluate the efficacy of fidarestat, a novel aldose reductase (AR) inhibitor, in a double-blind placebo controlled study in patients with type 1 and type 2 diabetes and associated peripheral neuropathy. A total of 279 patients with diabetic neuropathy were treated with placebo or fidarestat at a daily dose of 1 mg for 52 weeks. The efficacy evaluation was based on change in electrophysiological measurements of median and tibial motor nerve conduction velocity, F-wave minimum latency, F-wave conduction velocity (FCV), and median sensory nerve conduction velocity (forearm and distal), as well as an assessment of subjective symptoms. Over the course of the study, five of the eight electrophysiological measures assessed showed significant improvement from baseline in the fidarestat-treated group, whereas no measure showed significant deterioration. In contrast, in the placebo group, no electrophysiological measure was improved, and one measure significantly deteriorated (i.e., median nerve FCV). At the study conclusion, the fidarestat-treated group was significantly improved compared with the placebo group in two electrophysiological measures (i.e., median nerve FCV and minimal latency). Subjective symptoms (including numbness, spontaneous pain, sensation of rigidity, paresthesia in the sole upon walking, heaviness in the foot, and hypesthesia) benefited from fidarestat treatment, and all were significantly improved in the treated versus placebo group at the study conclusion. At the dose used, fidarestat was well tolerated, with an adverse event profile that did not significantly differ from that seen in the placebo group. The effects of fidarestat-treatment on nerve conduction and the subjective symptoms of diabetic neuropathy provide evidence that this treatment alters the progression of diabetic neuropathy.

  5. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers.

    PubMed

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash

    2017-02-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate*

    PubMed Central

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-01-01

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  7. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    PubMed

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Plants Used in the Management of Diabetic Complications

    PubMed Central

    Dodda, D.; Ciddi, V.

    2014-01-01

    Diabetes is a disease, which has assumed vital public health importance because of the complications associated with it. Various mechanisms including polyol pathway along with a complex integrating paradigm have been implicated in glucose-mediated complications. Though polyol pathway was established as a major mechanism, precise pathogenesis of these complications is not yet completely elucidated. Thus research focus was shifted towards key enzyme, aldose reductase in the pathway. Even though various compounds with aldose reductase inhibitory activity were synthesised, a very few compounds are under clinical use. However, studies on these compounds were always under conflicting results and an attempt has been made to review various natural substances with aldose reductase inhibitory activity and their role in management of diabetic complications. PMID:24843182

  9. A kinetic estimate of the free aldehyde content of aldoses

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The relative free aldehyde content of eight hexoses and four pentoses has been estimated within about 10% from the rate constants for their reaction with urazole (1,2,4-triazole-3,5-dione). These values of the percent free aldehyde are in agreement with those estimated from CD measurements, but are more accurate. The relative free aldehyde contents for the aldoses were then correlated to various literature NMR measurements to obtain the absolute values. This procedure was also done for three deoxyaldoses, which react much more rapidly than can be accounted for by the free aldehyde content. This difference in reactivity between aldoses and deoxyaldoses is due to the inductive effect of the H versus the OH on C-2'. This may help explain why deoxyribonucleosides hydrolyze much more rapidly than ribonucleosides.

  10. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice

    PubMed Central

    Roncal-Jimenez, Carlos A.; Lanaspa-Garcia, Miguel A.; Oppelt, Sarah A.; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E.; Johnson, Ginger; MacLean, Paul S.; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R.; Johnson, Richard J.

    2016-01-01

    Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. NEW & NOTEWORTHY This study increases our

  11. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice.

    PubMed

    Song 宋志林, Zhilin; Roncal-Jimenez, Carlos A; Lanaspa-Garcia, Miguel A; Oppelt, Sarah A; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E; Johnson, Ginger; MacLean, Paul S; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R; Johnson, Richard J

    2017-02-01

    Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. This study increases our understanding of the

  12. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases

    PubMed Central

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-01-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. PMID:22619179

  13. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.

    PubMed

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-08-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. Copyright © 2012 The Protein Society.

  14. Vegetables’ juice influences polyol pathway by multiple mechanisms in favour of reducing development of oxidative stress and resultant diabetic complications

    PubMed Central

    Tiwari, Ashok K.; Kumar, D. Anand; Sweeya, Pisupati S.; Chauhan, H. Anusha; Lavanya, V.; Sireesha, K.; Pavithra, K.; Zehra, Amtul

    2014-01-01

    Objective: Hyperglycemia induced generation of free radicals and consequent development of oxidative stress by polyol pathway is one of the crucial mechanisms stirring up development of diabetic complications. We evaluated influence of ten vegetables’ juice on polyol pathway along with their antioxidant and antioxidative stress potentials. Materials and Methods: Aldose reductase activity was determined utilising goat lens and human erythrocytes. In goat lens, utilization of nicotinamine adenine dinucleotide phosphate (NADPH) and aldose reductase inhibition was assayed. In human erythrocytes, sorbitol formation was measured as an index of aldose reductase activity under normoglycemic and hyperglycemic conditions. Ability of juices in inhibiting oxidative damage to deoxyribose sugar and calf thymus DNA and inhibitory activity against hydrogen peroxide induced hemolysis of erythrocytes was also analysed. Phytochemical contents like total polyphenol, total flavonoid and total protein were measured to find their influence on biological activities. Results: Vegetables’ juice displayed varying degrees of inhibitory potentials in mitigating NADPH dependent catalytic activity of aldose reductase in goat lens, accumulation of sorbitol in human erythrocytes under different glucose concentrations; Fenton-reaction induced oxidative damage to deoxyribose sugar, and calf thymus DNA. Substantial variations in vegetables phytochemicals content were also noticed in this study. Conclusions: Vegetables’ juice possesses potent activities in influencing polyol pathway by various mechanisms in favour of reducing development of oxidative stress independent of their inherent antioxidative properties. Juice of ivy gourd followed by green cucumber and ridge gourd were among the most potent for they displayed strong activities on various parameters analysed in this study. These vegetables’ juice may become part of mechanism-based complementary antioxidant therapy to prevent

  15. Quinone Reductase 2 Is a Catechol Quinone Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference betweenmore » quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.« less

  16. Antioxidant action of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid, an efficient aldose reductase inhibitor, in a 1,1'-diphenyl-2-picrylhydrazyl assay and in the cellular system of isolated erythrocytes exposed to tert-butyl hydroperoxide.

    PubMed

    Prnova, Marta Soltesova; Ballekova, Jana; Majekova, Magdalena; Stefek, Milan

    2015-01-01

    The subject of this study was 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (compound 1), an efficient aldose reductase inhibitor of high selectivity. The antioxidant action of 1 was investigated in greater detail by employing a 1,1'-diphenyl-2-picrylhydrazyl (DPPH) test and in the system of isolated rat erythrocytes. First, the compound was subjected to the DPPH test. Second, the overall antioxidant action of the compound was studied in the cellular system of isolated rat erythrocytes oxidatively stressed by free radicals derived from the lipophilic tert-butyl hydroperoxide. The uptake kinetics of 1 was studied and osmotic fragility of the erythrocytes was evaluated. The DPPH test revealed significant antiradical activity of 1. One molecule of 1 was found to quench 1.48 ± 0.06 DPPH radicals. In the system of isolated erythrocytes, the compound was readily taken up by the cells followed by their protection against free radical-initiated hemolysis. Osmotic fragility of the erythrocytes was not affected by 1. The results demonstrated the ability of 1 to scavenge DPPH and to protect intact erythrocytes against oxidative damage induced by peroxyl radicals. By affecting both the polyol pathway and oxidative stress, the compound represents an example of a promising agent for multi-target pharmacology of diabetic complications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyota, Eduardo; Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP; Sousa, Sylvia Morais de

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automatedmore » molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.« less

  18. Base catalysed isomerisation of aldoses of the arabino and lyxo series in the presence of aluminate.

    PubMed

    Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve

    2002-04-30

    Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.

  19. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes

    PubMed Central

    Spite, Matthew; Baba, Shahid P.; Ahmed, Yonis; Barski, Oleg A.; Nijhawan, Kanchan; Petrash, J. Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-01-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone (‘core’ aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte–endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C16:0-20:4 phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C16:0-20:4 phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are

  20. Antioxidant potential of fungal metabolite nigerloxin during eye lens abnormalities in galactose-fed rats.

    PubMed

    Suresha, Bharathinagar S; Srinivasan, Krishnapura

    2013-10-01

    The role of osmotic and oxidative stress has been strongly implicated in the pathogenesis of cataract. Nigerloxin, a fungal metabolite, has been shown to possess aldose reductase inhibition and improved antioxidant defense system in lens of diabetic rats. In the present study, the beneficial influence of nigerloxin was investigated in galactose-induced cataract in experimental animals. Cataract was induced in Wistar rats by feeding 30% galactose in diet. Groups of galactose-fed rats were orally administered with nigerloxin (25 and 100 mg/kg body weight/day) for 24 days. Lens aldose reductase activity was increased significantly in galactose-fed animals. Lens lipid peroxides and advanced glycation end products were also significantly increased. Antioxidant molecule - reduced glutathione, total thiols and activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were decreased in the lens of galactose-fed animals. Oral administration of nigerloxin once a day for 24 days at a dose of 100 mg/kg body weight, significantly decreased lens lipid peroxides and advanced glycation end products in galactose-fed rats. Lens aldose reductase activity was reduced and lens antioxidant molecules and antioxidant enzyme activities were elevated significantly by nigerloxin administration. The results suggest that alteration in polyol pathway and antioxidant defense system were countered by nigerloxin in the lens of galactose-fed animals, suggesting the potential of nigerloxin in ameliorating the development of galactose-induced cataract in experimental animals.

  1. Ascorbate synthesis pathway, dual role of ascorbate in bone homeostasis

    USDA-ARS?s Scientific Manuscript database

    Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of D-glucuronate to L-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) m...

  2. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2014-07-01

    The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes. Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ∼6 weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers

  3. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    PubMed

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  4. Izumoring: a novel and complete strategy for bioproduction of rare sugars.

    PubMed

    Granström, Tom Birger; Takata, Goro; Tokuda, Masaaki; Izumori, Ken

    2004-01-01

    Starch, whey or hemicellulosic waste can be used as a raw material for the industrial production of rare sugars. D-glucose from starch, whey and hemicellulose, D-galactose from whey, and D-xylose from hemicellulose are the main starting monosaccharides for production of rare sugars. We can produce all monosaccharides; tetroses, pentoses and hexoses, from these raw materials. This is achieved by using D-tagatose 3-epimerase, aldose isomerase, aldose reductase, and oxidoreductase enzymes or whole cells as biocatalysts. Bioproduction strategies for all rare sugars are illustrated using ring form structures given the name Izumoring.

  5. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  6. Fructose synthesis and transport at the uterine-placental interface of pigs: cell-specific localization of SLC2A5, SLC2A8, and components of the polyol pathway

    USDA-ARS?s Scientific Manuscript database

    The fetal fluids and uterine flushings of pigs contain higher concentrations of fructose than glucose, but fructose is not detected in maternal blood. Fructose can be synthesized from glucose via enzymes of the polyol pathway, aldose reductase (AKR1B1) and sorbitol dehydrogenase (SORD), transported ...

  7. Synthesis and biological evaluation of novel gigantol derivatives as potential agents in prevention of diabetic cataract

    USDA-ARS?s Scientific Manuscript database

    As a continuation of our efforts directed towards the development of natural anti-diabetic cataract agents, gigantol was isolated from Herba dendrobii and was found to inhibit both aldose reductase (AR) and inducible nitric oxide synthase (iNOS) activity, which play a significant role in the develop...

  8. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome

    PubMed Central

    Lanaspa, Miguel A; Ishimoto, Takuji; Li, Nanxing; Cicerchi, Christina; Orlicky, David J.; Ruzicky, Philip; Rivard, Christopher; Inaba, Shinichiro; Roncal-Jimenez, Carlos A.; Bales, Elise S.; Diggle, Christine P.; Asipu, Aruna; Petrash, J. Mark; Kosugi, Tomoki; Maruyama, Shoichi; Sanchez-Lozada, Laura G.; McManaman, James L.; Bonthron, David T; Sautin, Yuri Y.; Johnson, Richard J.

    2013-01-01

    Carbohydrates with high glycemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations glucose are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously-produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase deficient mice were protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism whereby glucose promotes the development of metabolic syndrome. PMID:24022321

  9. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation*

    PubMed Central

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-01-01

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. PMID:25998127

  10. HPLC-based lipophilicity of pyrrolyl-acetic acid ARIs: Relationships with biological activity.

    PubMed

    Chrysanthakopoulos, Marios; Nicolaou, Ioannis; Demopoulos, Vassilis J; Tsantili-Kakoulidou, Anna

    2010-01-01

    Reversed phase HPLC was used to assess the lipophilicity of a series pyrrolyl-acetic acid derivatives with aldose reductase inhibitory activity. The pH conditions were adjusted at 3.0 to investigate the behavior of the neutral species and at pH 7.4, at which the ionized form predominates, using phosphate and MOPS buffer. Retention was monitored in absence and in presence of different amounts of n-octanol in the mobile phase in order to explore the chromatographic conditions which best reproduce the octanol-water partition or distribution coefficients. The effect of n-octanol in retention was systematically studied and its role in lipophilicity assessment was evaluated. Nevertheless rather moderate regression equations were obtained, which deviated significantly from the ideal 1:1 correlation. No significant effect of buffer was observed. The appropriateness of retention factors to be used in correlation with aldose reductase inhibitory activity was further evaluated and compared to the efficiency of the corresponding octanol-water logP values.

  11. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  12. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  13. INTERPLAY OF SORBITOL PATHWAY OF GLUCOSE METABOLISM, 12/15-LIPOXYGENASE, AND MITOGEN-ACTIVATED PROTEIN KINASES IN THE PATHOGENESIS OF DIABETIC PERIPHERAL NEUROPATHY

    PubMed Central

    Stavniichuk, Roman; Shevalye, Hanna; Hirooka, Hiroko; Nadler, Jerry L.; Obrosova, Irina G.

    2012-01-01

    The interactions among multiple pathogenetic mechanisms of diabetic peripheral neuropathy largely remain unexplored. Increased activity of aldose reductase, the first enzyme of the sorbitol pathway, leads to accumulation of cytosolic Ca++, essentially required for 12/15-lipoxygenase activation. The latter, in turn, causes oxidative-nitrosative stress, an important trigger of MAPK phosphorylation. This study therefore evaluated the interplay of aldose reductase, 12/15-lipoxygenase, and MAPKs in diabetic peripheral neuropathy. In experiment 1, male control and streptozotocin-diabetic mice were maintained with or without the aldose reductase inhibitor fidarestat, 16 mg kg−1 d−1, for 12 weeks. In experiment 2, male control and streptozotocin-diabetic wild-type (C57Bl6/J) and 12/15-lipoxygenase-deficient mice were used. Fidarestat treatment did not affect diabetes-induced increase in glucose concentrations, but normalized sorbitol and fructose concentrations (enzymatic spectrofluorometric assays) as well as 12(S) hydroxyeicosatetraenoic concentration (ELISA), a measure of 12/15-lipoxygenase activity, in the sciatic nerve and spinal cord. 12/15-lipoxygenase expression in these two tissues (Western blot analysis) as well as dorsal root ganglia (immunohistochemistry) was similarly elevated in untreated and fidarestat-treated diabetic mice. 12/15-lipoxygenase gene deficiency prevented diabetesassociated p38 MAPK and ERK, but not SAPK/JNK, activation in the sciatic nerve (Western blot analysis) and all three MAPK activation in the dorsal root ganglia (immunohistochemistry). In contrast, spinal cord p38 MAPK, ERK, and SAPK/JNK were similarly activated in diabetic wild-type and 12/15-lipoxygenase−/− mice. These findings identify the nature and tissue specificity of interactions among three major mechanisms of diabetic peripheral neuropathy, and suggest that combination treatments, rather than monotherapies, can sometimes be an optimal choice for its management. PMID

  14. Increased sorbitol levels in the hypertrophic ligamentum flavum of diabetic patients with lumbar spinal canal stenosis.

    PubMed

    Luo, Jiaquan; Huang, Lu; Chen, Zhuo; Zeng, Zhaoxun; Miyamoto, Takeshi; Wu, Hao; Zhang, Zhongzu; Pan, Zhimin; Fujita, Nobuyuki; Hikata, Tomohiro; Iwanami, Akio; Tsuji, Takashi; Ishii, Ken; Nakamura, Masaya; Matsumoto, Morio; Watanabe, Kota; Cao, Kai

    2017-05-01

    The pathomechanism of the ligamentum flavum (LF) hypertrophy in diabetic patients with lumbar spinal canal stenosis (LSCS) remains unclear. A cross-sectional study was undertaken to investigate the mechanism of LF hypertrophy in these patients. Twenty-four diabetic and 20 normoglycemic patients with LSCS were enrolled in the study. The structure of the LF in the study subjects was evaluated using histological and immunohistochemical methods, and the levels of sorbitol, pro-inflammatory cytokines, and the fibrogenic factor, TGF-β1, in the LF were analyzed. In vitro experiments were performed using NIH3T3 fibroblasts to evaluate the effect of high-glucose conditions and an aldose reductase inhibitor on the cellular production of sorbitol, pro-inflammatory factors, and TGF-β1. We found that the LF of diabetic patients exhibited significantly higher levels of sorbitol and pro-inflammatory cytokines, TGF-β1 and of CD68-positive staining than that of the normoglycemic subjects. The diabetic LF was significantly thicker than that of the controls, and showed evidence of degeneration. The high glucose-cultured fibroblasts exhibited significantly higher levels of sorbitol, pro-inflammatory factors, and TGF-β1 compared to the low glucose-cultured cells, and these levels were dose-dependently reduced by treatment with the aldose reductase inhibitor. Taken together, our data suggests that increased sorbitol levels in the LF of diabetic patients results in increased production of pro-inflammatory and fibrogenic factor, which contribute to LF hypertrophy, and could increase the susceptibility of diabetic patients to LSCS. Furthermore, aldose reductase inhibition effectively reduced the levels of sorbitol and sorbitol-induced pro-inflammatory factor expression in high glucose-cultured fibroblasts. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1058-1066, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  16. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  17. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  18. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  19. Polyol pathway, 2,3-diphosphoglycerate in erythrocytes and diabetic neuropathy in rats.

    PubMed

    Nakamura, J; Koh, N; Sakakibara, F; Hamada, Y; Wakao, T; Hara, T; Mori, K; Nakashima, E; Naruse, K; Hotta, N

    1995-12-27

    The relationship between the 2,3-diphosphoglycerate concentration in red blood cells as a biological indicator of tissue hypoxia and diabetic neuropathy, and the effect of a potent aldose reductase inhibitor, (2S,4S)-6-fluoro-2'5'-dioxospiro [chroman-4,4'-imidazolidine]-2-carboxamide (SNK-860), on both were investigated in streptozotocin-induced diabetic rats. Diabetic rats demonstrated significantly delayed motor nerve conduction velocity and reduced sciatic nerve blood flow. Altered biochemical features in the sciatic nerves, including a marked accumulation of sorbitol and fructose, myo-inositol depletion and decreased Na+/K(+)-ATPase activity were also detected in diabetic rats. These defects were accompanied by a decrease in the red blood cell 2,3-diphosphoglycerate concentration. Treatment with SNK-860 partially or completely ameliorated these abnormalities. These observations suggest that a decrease in the red blood cell 2,3-diphosphoglycerate concentration is one of the factors contributing to tissue hypoxia, which results in diabetic neuropathy, and that this decrease is mediated through an aldose reductase inhibitor-sensitive pathway.

  20. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation.

    PubMed

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-07-10

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver

    PubMed Central

    Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard

    2009-01-01

    The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666

  2. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Treesearch

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  3. Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors

    PubMed Central

    Verma, Sant Kumar

    2017-01-01

    Aldose reductase (ALR2) inhibition is the most legitimate approach for the management of diabetic complications. The limited triumph in the drug development against ALR2 is mainly because of its close structural similarity with the other members of aldo-keto reductase (AKR) superfamily viz. ALR1, AKR1B10; and lipophilicity problem i.e. poor diffusion of synthetic aldose reductase inhibitors (ARIs) to target tissues. The literature evidenced that naturally occurring curcumin demonstrates relatively specific and non-competitive inhibition towards human recombinant ALR2 over ALR1 and AKR1B10; however β-diketone moiety of curcumin is a specific substrate for liver AKRs and accountable for it’s rapid in vivo metabolism. In the present study, structure based comprehensive modelling studies were used to map the pharmacophoric features/spatial fingerprints of curcumin analogues responsible for their ALR2 specificity along with potency on a data set of synthetic curcumin analogues and naturally occurring curcuminoids. The data set molecules were also screened for drug-likeness or ADME parameters, and the screening data strongly support that curcumin analogues could be proposed as a good drug candidate for the development of ALR2 inhibitors with improved pharmacokinetic profile compared to curcuminoids due to the absence of β-diketone moiety in their structural framework. PMID:28399135

  4. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

    PubMed

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-02-24

    Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

  5. S-nitrosoglutathione reductase in human lung cancer.

    PubMed

    Marozkina, Nadzeya V; Wei, Christina; Yemen, Sean; Wallrabe, Horst; Nagji, Alykhan S; Liu, Lei; Morozkina, Tatiana; Jones, David R; Gaston, Benjamin

    2012-01-01

    S-Nitrosoglutathione (GSNO) reductase regulates cell signaling pathways relevant to asthma and protects cells from nitrosative stress. Recent evidence suggests that this enzyme may prevent human hepatocellular carcinoma arising in the setting of chronic hepatitis. We hypothesized that GSNO reductase may also protect the lung against potentially carcinogenic reactions associated with nitrosative stress. We report that wild-type Ras is S-nitrosylated and activated by nitrosative stress and that it is denitrosylated by GSNO reductase. In human lung cancer, the activity and expression of GSNO reductase are decreased. Further, the distribution of the enzyme (including its colocalization with wild-type Ras) is abnormal. We conclude that decreased activity of GSNO reductase could leave the human lung vulnerable to the oncogenic effects of nitrosative stress, as is the case in the liver. This potential should be considered when developing therapies that inhibit pulmonary GSNO reductase to treat asthma and other conditions.

  6. A Chemical Investigation of the Leaves of Morus alba L.

    PubMed

    Chen, Xiao-Yan; Zhang, Ting; Wang, Xin; Hamann, Mark T; Kang, Jie; Yu, De-Quan; Chen, Ruo-Yun

    2018-04-26

    The leaves of Morus alba L. are an important herbal medicine in Asia. The systematic isolation of the metabolites of the leaves of Morus alba L. was achieved using a combination of liquid chromatography techniques. The structures were elucidated by spectroscopic data analysis and the absolute configuration was determined based on electronic circular dichroism (ECD) spectroscopic data and hydrolysis experiments. Their biological activity was evaluated using different biological assays, such as the assessment of their capacity to inhibit the aldose reductase enzyme; the determination of their cytotoxic activity and the evaluation of their neuroprotective effects against the deprivation of serum or against the presence of nicouline. Chemical investigation of the leaves of Morus alba L. resulted in four new structures 1 ⁻ 4 and a known molecule 5 . Compounds 2 and 5 inhibited aldose reductase with IC 50 values of 4.33 μM and 6.0 μM compared with the potent AR inhibitor epalrestat (IC 50 1.88 × 10 −3 μM). Pretreatment with compound 3 decreased PC12 cell apoptosis subsequent serum deprivation condition and pretreatment with compound 5 decreased nicouline-induced PC12 cell apoptosis as compared with control cells ( p < 0.001).

  7. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    DOE PAGES

    Wei, Yifeng; Li, Bin; Prakash, Divya; ...

    2015-11-04

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less

  8. Aldo-Keto Reductases 1B in Endocrinology and Metabolism

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers. PMID:22876234

  9. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyanagi, Takashi

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less

  10. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  11. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  12. The enzymes with benzil reductase activity conserved from bacteria to mammals.

    PubMed

    Maruyama, Reiji; Nishizawa, Mikio; Itoi, Yasushi; Ito, Seiji; Inoue, Masami

    2002-03-28

    The diketone compound, benzil is reduced to (S)-benzoin with living Bacillus cereus cells. Recently, we isolated a gene responsible for benzil reduction, and Escherichia coli cells in which this gene was overexpressed transformed benzil to (S)-benzoin. Although this benzil reductase showed high identity to the short-chain dehydrogenase/reductase (SDR) family, enzymological features were unknown. Here, we demonstrated that many B. cereus strains had benzil reductase activity in vivo, and that the benzil reductases shared 94-100% amino acid identities. Recombinant B. cereus benzil reductase produced optically pure (S)-benzoin with NADPH in vitro, and the ketone group distal to a benzene ring was asymmetrically reduced. B. cereus benzil reductase showed 31% amino acid identity to the yeast open reading frame YIR036C protein and 28-30% to mammalian sepiapterin reductases, sharing the seven residues consensus for the SDR family. We isolated the genes encoding yeast YIR036C protein and gerbil sepiapterin reductase, and both recombinant proteins also reduced benzil to (S)-benzoin in vitro. Green fluorescent protein-tagged B. cereus benzil reductase distributed in the bipolar cytoplasm in B. cereus cells. Asymmetric reduction with B. cereus benzil reductase, yeast YIR036C protein and gerbil sepiapterin reductase will be utilized to produce important chiral compounds.

  13. Modeled structure of trypanothione reductase of Leishmania infantum.

    PubMed

    Singh, Bishal K; Sarkar, Nandini; Jagannadham, M V; Dubey, Vikash K

    2008-06-30

    Trypanothione reductase is an important target enzyme for structure-based drug design against Leishmania. We used homology modeling to construct a three-dimensional structure of the trypanothione reductase (TR) of Leishmania infantum. The structure shows acceptable Ramachandran statistics and a remarkably different active site from glutathione reductase(GR). Thus, a specific inhibitor against TR can be designed without interfering with host (human) GR activity.

  14. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, C.; Sempéré, R.

    2003-04-01

    Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in

  15. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  16. Canopy and seasonal profiles of nitrate reductase in soybeans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.E.; Hageman, R.H.

    1972-01-01

    Nitrate reductase activity of soybeans (Glycine max L. Merr.) was evaluated in soil plots and outdoor hydroponic gravel culture systems throughout the growing season. Nitrate reductase profiles within the plant canopy were also established. Mean activity per gram fresh weight per hour of the entire plant canopy was highest in the seedling stage while total activity (activity per gram fresh weight per hour times the total leaf weight) reached a maximum when plants were in the full bloom to midpod fill stage. Nitrate reductase activity per gram fresh weight per hour was highest in the uppermost leaf just prior tomore » full expansion and declined with leaf positions lower in the canopy. Total nitrate reductase activity per leaf was also highest in the uppermost fully expanded leaf during early growth stages. Maximum total activity shifted to leaf positions lower in the plant canopy with later growth stages. Nitrate reductase activity of soybeans grown in hydroponic systems was significantly higher than activity of adjacent soil grown plants at later growth stages, which suggested that under normal field conditions the potential for nitrate utilization may not be realized. Nitrate reductase activity per gram fresh weight per hour and nitrate content were positively correlated over the growing season with plants grown in either soil or solution culture. Computations based upon the nitrate reductase assay of plants grown in hydroponics indicated that from 1.7 to 1.8 grams N could have been supplied to the plant via the nitrate reductase process. 11 references, 9 figures, 3 tables.« less

  17. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  18. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  19. Structural and biochemical characterization of cinnamoyl-coa reductases

    USDA-ARS?s Scientific Manuscript database

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  20. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats.

    PubMed

    García-Arroyo, Fernando E; Tapia, Edilia; Blas-Marron, Mónica G; Gonzaga, Guillermo; Silverio, Octaviano; Cristóbal, Magdalena; Osorio, Horacio; Arellano-Buendía, Abraham S; Zazueta, Cecilia; Aparicio-Trejo, Omar Emiliano; Reyes-García, Juan G; Pedraza-Chaverri, José; Soto, Virgilia; Roncal-Jiménez, Carlos; Johnson, Richard J; Sánchez-Lozada, Laura G

    2017-01-01

    Recurrent dehydration and heat stress cause chronic kidney damage in experimental animals. The injury is exacerbated by rehydration with fructose-containing beverages. Fructose may amplify dehydration-induced injury by directly stimulating vasopressin release and also by acting as a substrate for the aldose reductase-fructokinase pathway, as both of these systems are active during dehydration. The role of vasopressin in heat stress associated injury has not to date been explored. Here we show that the amplification of renal damage mediated by fructose in thermal dehydration is mediated by vasopressin. Fructose rehydration markedly enhanced vasopressin (copeptin) levels and activation of the aldose reductase-fructokinase pathway in the kidney. Moreover, the amplification of the renal functional changes (decreased creatinine clearance and tubular injury with systemic inflammation, renal oxidative stress, and mitochondrial dysfunction) were prevented by the blockade of V1a and V2 vasopressin receptors with conivaptan. On the other hand, there are also other operative mechanisms when water is used as rehydration fluid that produce milder renal damage that is not fully corrected by vasopressin blockade. Therefore, we clearly showed evidence of the cross-talk between fructose, even at small doses, and vasopressin that interact to amplify the renal damage induced by dehydration. These data may be relevant for heat stress nephropathy as well as for other renal pathologies due to the current generalized consumption of fructose and deficient hydration habits.

  1. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; hide

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  2. Resolution and partial characterization of two aldehyde reductases of mammalian liver.

    PubMed

    Tulsiani, D R; Touster

    1977-04-25

    Investigation of NADP-dependent aldehyde reductase activity in mouse liver led to the finding that two distinct reductases are separable by DE52 ion exchange chromatography. Aldehyde reductase I (AR I) appears in the effluent, while aldehyde reductase II (AR II) is eluted with a salt gradient. By several procedures AR II was purified over 1100-fold from liver supernatant fraction, but AR I could be pruified only 107-fold because of its instability. The two enzymes are different in regard to pH optimum, substrate specificity, response to inhibitors, and reactivity with antibody to AR II. While both enzymes utilize aromatic aldehydes well, only AR II ACTS ON D-glucuronate, indicating that it is the aldyhyde reductase recently reported to be identical to NADP-L-gulonate dehydrogenase. The presence of two NADP-linked aldehyde reductases in liver has apparently not heretofore been reported.

  3. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  4. Heme inhibition of ferrisiderophore reductase in Bacillus subtilis.

    PubMed

    Lodge, J S; Gaines, C G; Arceneaux, J E; Byers, B R

    1982-11-01

    Heme was a noncompetitive inhibitor (apparent K(i) and K'(i) = 0.043 mM) of a ferrisiderophore reductase purified from Bacillus subtilis; protoporphyrin IX had no effect. The cellular level of heme may partly regulate the function of this reductase to yield a controlled flow of iron into metabolism.

  5. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  6. Evidence that steroid 5alpha-reductase isozyme genes are differentially methylated in human lymphocytes.

    PubMed

    Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A

    2002-03-01

    The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.

  7. Isolation of Assimilatory- and Dissimilatory-Type Sulfite Reductases from Desulfovibrio vulgaris

    PubMed Central

    Lee, Jin-Po; LeGall, Jean; Peck, Harry D.

    1973-01-01

    Bisulfite reductase (desulfoviridin) and an assimilatory sulfite reductase have been purified from extracts of Desulfovibrio vulgaris. The bisulfite reductase has absorption maxima at 628, 580, 408, 390, and 279 nm, and a molecular weight of 226,000 by sedimentation equilibrium, and was judged to be free of other proteins by disk electrophoresis and ultracentrifugation. On gels, purified bisulfite reductase exhibited two green bands which coincided with activity and protein. The enzyme appears to be a tetramer but was shown to have two different types of subunits having molecular weights of 42,000 and 50,000. The chromophore did not form an alkaline ferrohemochromogen, was not reduced with dithionite or borohydride, and did not form a spectrally visible complex with CO. The assimilatory sulfite reductase has absorption maxima at 590, 545, 405 and 275 nm and a molecular weight of 26,800, and appears to consist of a single polypeptide chain as it is not dissociated into subunits by sodium dodecyl sulfate. By disk electrophoresis, purified sulfite reductase exhibited a single greenish-brown band which coincided with activity and protein. The sole product of the reduction was sulfide, and the chromophore was reduced by borohydride in the presence of sulfite. Carbon monoxide reacted with the reduced chromophore but it did not form a typical pyridine ferrohemochromogen. Thiosulfate, trithionate, and tetrathionate were not reduced by either enzyme preparation. In the presence of 8 M urea, the spectrum of bisulfite reductase resembles that of the sulfite reductase, thus suggesting a chemical relationship between the two chromophores. Images PMID:4725615

  8. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  9. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  10. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also bemore » used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.« less

  11. Respiratory arsenate reductase as a bidirectional enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richey, Christine; Chovanec, Peter; Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function asmore » a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.« less

  12. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis.

    PubMed

    Tchobanov, Iavor; Gal, Laurent; Guilloux-Benatier, Michèle; Remize, Fabienne; Nardi, Tiziana; Guzzo, Jean; Serpaggi, Virginie; Alexandre, Hervé

    2008-07-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. The reasons are the production of ethylphenols that lead to an unpleasant taint described as 'phenolic odour'. Despite its economic importance, Brettanomyces has remained poorly studied at the metabolic level. The origin of the ethylphenol results from the conversion of vinylphenols in ethylphenol by Brettanomyces hydroxycinnamate decarboxylase. However, no information is available on the vinylphenol reductase responsible for the conversion of vinylphenols in ethylphenols. In this study, a vinylphenol reductase was partially purified from Brettanomyces bruxellensis that was active towards 4-vinylguaiacol and 4-vinylphenol only among the substrates tested. First, a vinylphenol reductase activity assay was designed that allowed us to show that the enzyme was NADH dependent. The vinylphenol reductase was purified 152-fold with a recovery yield of 1.77%. The apparent K(m) and V(max) values for the hydrolysis of 4-vinylguaiacol were, respectively, 0.14 mM and 1900 U mg(-1). The optimal pH and temperature for vinylphenol reductase were pH 5-6 and 30 degrees C, respectively. The molecular weight of the enzyme was 26 kDa. Trypsic digest of the protein was performed and the peptides were sequenced, which allowed us to identify in Brettanomyces genome an ORF coding for a 210 amino acid protein.

  13. A Novel Arsenate Reductase from the Arsenic Hyperaccumulating Fern Pteris vittata1

    PubMed Central

    Ellis, Danielle R.; Gumaelius, Luke; Indriolo, Emily; Pickering, Ingrid J.; Banks, Jo Ann; Salt, David E.

    2006-01-01

    Pteris vittata sporophytes hyperaccumulate arsenic to 1% to 2% of their dry weight. Like the sporophyte, the gametophyte was found to reduce arsenate [As(V)] to arsenite [As(III)] and store arsenic as free As(III). Here, we report the isolation of an arsenate reductase gene (PvACR2) from gametophytes that can suppress the arsenate sensitivity and arsenic hyperaccumulation phenotypes of yeast (Saccharomyces cerevisiae) lacking the arsenate reductase gene ScACR2. Recombinant PvACR2 protein has in vitro arsenate reductase activity similar to ScACR2. While PvACR2 and ScACR2 have sequence similarities to the CDC25 protein tyrosine phosphatases, they lack phosphatase activity. In contrast, Arath;CDC25, an Arabidopsis (Arabidopsis thaliana) homolog of PvACR2 was found to have both arsenate reductase and phosphatase activities. To our knowledge, PvACR2 is the first reported plant arsenate reductase that lacks phosphatase activity. CDC25 protein tyrosine phosphatases and arsenate reductases have a conserved HCX5R motif that defines the active site. PvACR2 is unique in that the arginine of this motif, previously shown to be essential for phosphatase and reductase activity, is replaced with a serine. Steady-state levels of PvACR2 expression in gametophytes were found to be similar in the absence and presence of arsenate, while total arsenate reductase activity in P. vittata gametophytes was found to be constitutive and unaffected by arsenate, consistent with other known metal hyperaccumulation mechanisms in plants. The unusual active site of PvACR2 and the arsenate reductase activities of cell-free extracts correlate with the ability of P. vittata to hyperaccumulate arsenite, suggesting that PvACR2 may play an important role in this process. PMID:16766666

  14. Isolation and expression of a Bacillus cereus gene encoding benzil reductase.

    PubMed

    Maruyama, R; Nishizawa, M; Itoi, Y; Ito, S; Inoue, M

    2001-12-20

    Benzil was reduced stereospecifically to (S)-benzoin by Bacillus cereus strain Tim-r01. To isolate the gene responsible for asymmetric reduction, we constructed a library consisting of Escherichia coli clones that harbored plasmids expressing Bacillus cereus genes. The library was screened using the halo formation assay, and one clone showed benzil reduction to (S)-benzoin. Thus, this clone seemed to carry a plasmid encoding a Bacillus cereus benzil reductase. The deduced amino acid sequence had marked homologies to the Bacillus subtilis yueD protein (41% identity), the yeast open reading frame YIR036C protein (31%), and the mammalian sepiapterin reductases (28% to 30%), suggesting that benzil reductase is a novel short-chain de-hydrogenases/ reductase. Copyright 2001 John Wiley & Sons, Inc.

  15. [Membrane lipids and electron transfer. Effects of four detergents on NADH-ferricyanide reductase and NADH-cytochrome c reductase activities of potato tuber microsomes].

    PubMed

    Jolliot, A; Mazliak, P

    1977-10-17

    The NADH-ferricyanure reductase activity of Potato microsomes is stimulated by non ionic detergents (Triton X100 and Tween80) and is partially inhibited by ionic detergents (sodium-cholate and deoxycholate). All these four detergents progressively decreased the NADH-cytochrome c reductase in the following order: sodium deoxycholate greater than Triton X100 greater than sodium cholate greater than Tween80.

  16. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  17. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  18. Relative adrenal insufficiency in mice deficient in 5α-reductase 1

    PubMed Central

    Livingstone, Dawn E W; Di Rollo, Emma M; Yang, Chenjing; Codrington, Lucy E; Mathews, John A; Kara, Madina; Hughes, Katherine A; Kenyon, Christopher J; Walker, Brian R; Andrew, Ruth

    2014-01-01

    Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as ‘relative adrenal insufficiency’. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic–pituitary–adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause ‘relative adrenal insufficiency’ in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease. PMID:24872577

  19. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases

    PubMed Central

    Friesen, Jon A; Rodwell, Victor W

    2004-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the conversion of HMG-CoA to mevalonate, a four-electron oxidoreduction that is the rate-limiting step in the synthesis of cholesterol and other isoprenoids. The enzyme is found in eukaryotes and prokaryotes; and phylogenetic analysis has revealed two classes of HMG-CoA reductase, the Class I enzymes of eukaryotes and some archaea and the Class II enzymes of eubacteria and certain other archaea. Three-dimensional structures of the catalytic domain of HMG-CoA reductases from humans and from the bacterium Pseudomonas mevalonii, in conjunction with site-directed mutagenesis studies, have revealed details of the mechanism of catalysis. The reaction catalyzed by human HMG-CoA reductase is a target for anti-hypercholesterolemic drugs (statins), which are intended to lower cholesterol levels in serum. Eukaryotic forms of the enzyme are anchored to the endoplasmic reticulum, whereas the prokaryotic enzymes are soluble. Probably because of its critical role in cellular cholesterol homeostasis, mammalian HMG-CoA reductase is extensively regulated at the transcriptional, translational, and post-translational levels. PMID:15535874

  20. 1-Ene-steroid reductase of Mycobacterium sp. NRRL B-3805.

    PubMed

    Goren, T; Harnik, M; Rimon, S; Aharonowitz, Y

    1983-12-01

    The microbial enzymatic reduction of 1,4-androstadiene-3,17-dione (ADD) to 4-androstene-3,17-dione (AD), testosterone and 1-dehydrotestosterone (DHT) is described. Two reducing activities observed in washed cell suspensions and cell free extracts of Mycobacterium sp. NRRL B-3805 were found to account for these bioconversions. One was a 1-ene-steroid reductase and the other a 17-keto steroid reductase. The first reducing activity was found to appear in the soluble cell fraction whereas the latter could be precipitated by centrifugation. Maximum 1-ene-steroid reductase specific activity was achieved during the exponential growth phase of the organism and significantly increased upon induction with ADD. The 1-ene-steroid reductase was partially purified (30-fold) by ammonium sulfate fractionation, gel-filtration and ion-exchange chromatography, and was eluted from a Sephacryl S-300 column with an Mr = 115,000. The 1-ene-steroid reductase activity was NADPH-dependent and had specificity towards steroid compounds containing C-1,2 double bond with an apparent Km for ADD of 2.2 X 10(-5) M. The reverse reaction catalyzing C-1,2 dehydrogenation could not be detected in our preparations. The results suggest that in Mycobacterium sp NRRL B-3805 and B-3683 the steroid C-1,2 dehydrogenation and 1-ene reduction are two separable activities.

  1. Genome sequence analysis of predicted polyprenol reductase gene from mangrove plant kandelia obovata

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sagami, H.; Baba, S.; Oku, H.

    2018-03-01

    It has been previously reported that dolichols but not polyprenols were predominated in mangrove leaves and roots. Therefore, the occurrence of larger amounts of dolichol in leaves of mangrove plants implies that polyprenol reductase is responsible for the conversion of polyprenol to dolichol may be active in mangrove leaves. Here we report the early assessment of probably polyprenol reductase gene from genome sequence of mangrove plant Kandelia obovata. The functional assignment of the gene was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI using Blastx. The degree of sequence identity between DNA sequence and known polyprenol reductase was confirmed using the Blastx probability E-value, total score, and identity. The genome sequence data resulted in three partial sequences, termed c23157 (700 bp), c23901 (960 bp), and c24171 (531 bp). The c23157 gene showed the highest similarity (61%) to predicted polyprenol reductase 2- like from Gossypium raimondii with E-value 2e-100. The second gene was c23901 to exhibit high similarity (78%) to the steroid 5-alpha-reductase Det2 from J. curcas with E-value 2e-140. Furthermore, the c24171 gene depicted highest similarity (79%) to the polyprenol reductase 2 isoform X1 from Jatropha curcas with E- value 7e-21.The present study suggested that the c23157, c23901, and c24171, genes may encode predicted polyprenol reductase. The c23157, c23901, c24171 are therefore the new type of predicted polyprenol reductase from K. obovata.

  2. Ammonification in Bacillus subtilis Utilizing Dissimilatory Nitrite Reductase Is Dependent on resDE

    PubMed Central

    Hoffmann, Tamara; Frankenberg, Nicole; Marino, Marco; Jahn, Dieter

    1998-01-01

    During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation. PMID:9422613

  3. Purification and Characterization of Ferredoxin-Nicotinamide Adenine Dinucleotide Phosphate Reductase from a Nitrogen-Fixing Bacterium

    PubMed Central

    Yoch, Duane C.

    1973-01-01

    Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP+ reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP+ reductase in the photochemical reduction of NADP+ by blue-green algal particles. The ferredoxin-NADP+ reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP+ was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD+ transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (Km = 5.0 × 10−3M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase. PMID:4147648

  4. Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.

    2018-03-01

    The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.

  5. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  6. Characterization of 5α-reductase activity and isoenzymes in human abdominal adipose tissues.

    PubMed

    Fouad Mansour, Mohamed; Pelletier, Mélissa; Tchernof, André

    2016-07-01

    The substrate for the generation of 5α-dihydrotestosterone (DHT) is either androstenedione (4-dione) which is first converted to androstanedione and then to DHT through 17-oxoreductase activity, or testosterone, which is directly converted to DHT. Three 5α-reductase isoenzymes have been characterized and designated as types 1, 2 and 3 (SRD5A1, 2 and 3). To define the predominant source of local DHT production in human adipose tissues, identify 5α-reductase isoenzymes and test their impact on preadipocyte differentiation. Cultures of omental (OM) and subcutaneous (SC) preadipocytes were treated for 0, 6 or 24h with 30nM (14)C-4-dione or (14)C-testosterone, with and without 500nM 5α-reductase inhibitors 17-N,N-diethylcarbamoyl-4-methyl-4-aza-5-androstan-3-one (4-MA) or finasteride. Protein level and mRNA abundance of 5α-reductase isoenzymes/transcripts were examined in whole SC and OM adipose tissue. HEK-293 cells stably transfected with 5α-reductase type 1, 2 or 3 were used to test 5α-reductase inhibitors. We also assessed the impact of 5α-reductase inhibitors on preadipocyte differentiation. Over 24h, DHT formation from 4-dione increased gradually (p<0.05) and was significantly higher compared to that generated from testosterone (p<0.001). DHT formation from both 4-dione and testosterone was blocked by both 5α-reductase inhibitors. In whole adipose tissue from both fat compartments, SRD5A3 was the most highly expressed isoenzyme followed by SRD5A1 (p<0.001). SRD5A2 was not expressed. In HEK-293 cells, 4-MA and finasteride inhibited activity of 5α-reductases types 2 and 3 but not type 1. In preadipocyte cultures where differentiation was inhibited by 4-dione (p<0.05, n=7) or testosterone (p<0.05, n=5), the inhibitors 4-MA and finasteride abolished these effects. Although 4-dione is the main source of DHT in human preadipocytes, production of this steroid by 5α-reductase isoenzymes mediates the inhibitory effect of both 4-dione and testosterone on

  7. Rehydration with soft drink-like beverages exacerbates dehydration and worsens dehydration-associated renal injury.

    PubMed

    García-Arroyo, Fernando E; Cristóbal, Magdalena; Arellano-Buendía, Abraham S; Osorio, Horacio; Tapia, Edilia; Soto, Virgilia; Madero, Magdalena; Lanaspa, Miguel A; Roncal-Jiménez, Carlos; Bankir, Lise; Johnson, Richard J; Sánchez-Lozada, Laura-Gabriela

    2016-07-01

    Recurrent dehydration, such as commonly occurs with manual labor in tropical environments, has been recently shown to result in chronic kidney injury, likely through the effects of hyperosmolarity to activate both vasopressin and aldose reductase-fructokinase pathways. The observation that the latter pathway can be directly engaged by simple sugars (glucose and fructose) leads to the hypothesis that soft drinks (which contain these sugars) might worsen rather than benefit dehydration associated kidney disease. Recurrent dehydration was induced in rats by exposure to heat (36°C) for 1 h/24 h followed by access for 2 h to plain water (W), a 11% fructose-glucose solution (FG, same composition as typical soft drinks), or water sweetened with noncaloric stevia (ST). After 4 wk plasma and urine samples were collected, and kidneys were examined for oxidative stress, inflammation, and injury. Recurrent heat-induced dehydration with ad libitum water repletion resulted in plasma and urinary hyperosmolarity with stimulation of the vasopressin (copeptin) levels and resulted in mild tubular injury and renal oxidative stress. Rehydration with 11% FG solution, despite larger total fluid intake, resulted in greater dehydration (higher osmolarity and copeptin levels) and worse renal injury, with activation of aldose reductase and fructokinase, whereas rehydration with stevia water had opposite effects. In animals that are dehydrated, rehydration acutely with soft drinks worsens dehydration and exacerbates dehydration associated renal damage. These studies emphasize the danger of drinking soft drink-like beverages as an attempt to rehydrate following dehydration. Copyright © 2016 the American Physiological Society.

  8. New pharmacologic approaches to treating diabetic retinopathy.

    PubMed

    Ryan, Gina J

    2007-09-01

    The goal of treatment of diabetic retinopathy, limitations of laser photocoagulation, endpoints used in clinical studies of diabetic retinopathy treatments, and the mechanism of action, efficacy, and safety of several new and emerging therapies targeting the biochemical pathways that link chronic hyperglycemia with microvascular damage in patients with diabetic retinopathy are discussed. Improving or preserving vision is the primary goal of treatment for diabetic retinopathy. Limitations of laser photocoagulation include a lack of efficacy in some cases, discomfort from the procedure, the need for repeated treatment, and a risk of retinal damage and scarring. Visual acuity, quality of life, and macular thickness are used as endpoints in clinical studies of diabetic retinopathy treatments. Microvascular damage in patients with chronic hyperglycemia is mediated by interrelated pathways involving aldose reductase, advanced glycation end products, protein kinase C (PKC), and vascular endothelial growth factor (VEGF). Oral aldose reductase inhibitors have been studied with some success only in patients with diabetic peripheral neuropathy. The oral PKC inhibitor midostaurin and oral selective PKC beta inhibitor ruboxistaurin appear promising for improving or maintaining visual acuity, with gastrointestinal complaints the most commonly reported adverse effects. Intra-vitreal injection of corticosteroids or VEGF inhibitors is associated with short-lived improvement in or maintenance of visual acuity, a need for repeated injection, and a risk of local adverse effects. A variety of promising new therapies for diabetic retinopathy targeting the biochemical pathways that cause microvascular damage are under investigation. Additional clinical research is needed to determine the role of these new therapies in treating diabetic retinopathy.

  9. Transition metals and polyol pathway in the development of diabetic neuropathy in rats.

    PubMed

    Nakamura, Jiro; Hamada, Yoji; Chaya, Sadao; Nakashima, Eitaro; Naruse, Keiko; Kato, Koichi; Yasuda, Yutaka; Kamiya, Hideki; Sakakibara, Fumihiko; Koh, Naoki; Hotta, Nigishi

    2002-01-01

    The transition metal-catalyzed reaction is a major source of oxygen free radicals, which play an important role in vascular dysfunction leading to ischemia in diabetic tissues. The inhibition of polyol pathway hyperactivity has been reported to ameliorate neurovascular abnormalities in diabetic rats and has been proposed to improve the oxygen free radical scavenging capacity. The present study was conducted to compare the effect of a transition metal chelating agent, trientine (TRI), on diabetic neuropathy with that of an aldose reductase inhibitor, NZ-314 (NZ). Diabetic rats were divided into three groups: (1). untreated, (2). TRI-treated, and (3). NZ-treated. TRI (20 mg/kg) or NZ (100 mg/kg) was administered by gavage or chow containing NZ, respectively, for 8 weeks. Motor nerve conduction velocity (MNCV), coefficient of variation of the R - R interval on electrocardiogram (CVr-r), sciatic nerve blood flow (SNBF), platelet aggregation activities, and serum concentrations of malondialdehyde were measured. Untreated diabetic rats showed delayed MNCV, decreased CV(R-R), and reduced SNBF compared to normal rats. TRI or NZ completely prevented these deficits. Platelet hyperaggregation activities in diabetic rats were prevented by NZ, but not by TRI. Increased concentrations of malondialdehyde in diabetic rats were partially but significantly ameliorated by either TRI or NZ. These observations suggest that increased free radical formation through the transition metal-catalyzed reaction plays an important role in the development of diabetic neuropathy and that the preventive effect of an aldose reductase inhibitor on diabetic neuropathy may also be mediated by decreasing oxygen free radicals. Copyright 2002 John Wiley & Sons, Ltd.

  10. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  11. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    PubMed

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  12. Medium-chain dehydrogenase/reductase and aldo-keto reductase scavenge reactive carbonyls in Synechocystis sp. PCC 6803.

    PubMed

    Shimakawa, Ginga; Kohara, Ayaka; Miyake, Chikahiro

    2018-03-01

    Reactive carbonyls (RCs), which are inevitably produced during respiratory and photosynthetic metabolism, have the potential to cause oxidative damage to photosynthetic organisms. Previously, we proposed a scavenging model for RCs in the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). In the current study, we constructed mutants deficient in the enzymes medium-chain dehydrogenase/reductase (ΔMDR) and aldo-keto reductase (ΔAKR) to investigate their contributions to RC scavenging in vivo. We found that treatment with the lipid-derived RC acrolein causes growth inhibition and promotes greater protein carbonylation in ΔMDR, compared with the wild-type and ΔAKR. In both ΔMDR and ΔAKR, photosynthesis is severely inhibited in the presence of acrolein. These results suggest that these enzymes function as part of the scavenging systems for RCs in S. 6803 in vivo. © 2018 Federation of European Biochemical Societies.

  13. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1987-01-01

    In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812

  14. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  15. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation 1

    PubMed Central

    Laliberté, Gilles; Hellebust, Johan A.

    1989-01-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent Km values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments. PMID:16667157

  16. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  17. Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties.

    PubMed

    Pugin, Benoit; Cornejo, Fabián A; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M; Vargas-Pérez, Joaquín I; Arenas, Felipe A; Vásquez, Claudio C

    2014-11-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Glutathione Reductase-Mediated Synthesis of Tellurium-Containing Nanostructures Exhibiting Antibacterial Properties

    PubMed Central

    Pugin, Benoit; Cornejo, Fabián A.; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M.; Vargas-Pérez, Joaquín I.; Arenas, Felipe A.

    2014-01-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000

  19. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism.

    PubMed

    Dräger, Birgit

    2006-02-01

    Two stereospecific oxidoreductases constitute a branch point in tropane alkaloid metabolism. Products of tropane metabolism are the alkaloids hyoscyamine, scopolamine, cocaine, and polyhydroxylated nortropane alkaloids, the calystegines. Both tropinone reductases reduce the precursor tropinone to yield either tropine or pseudotropine. In Solanaceae, tropine is incorporated into hyoscyamine and scopolamine; pseudotropine is the first specific metabolite on the way to the calystegines. Isolation, cloning and heterologous expression of both tropinone reductases enabled kinetic characterisation, protein crystallisation, and structure elucidation. Stereospecificity of reduction is achieved by binding tropinone in the respective enzyme active centre in opposite orientation. Immunolocalisation of both enzyme proteins in cultured roots revealed a tissue-specific protein accumulation. Metabolite flux through both arms of the tropane alkaloid pathway appears to be regulated by the activity of both enzymes and by their access to the precursor tropinone. Both tropinone reductases are NADPH-dependent short-chain dehydrogenases with amino acid sequence similarity of more than 50% suggesting their descent from a common ancestor. Putative tropinone reductase sequences annotated in plant genomes other that Solanaceae await functional characterisation.

  20. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  1. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    USDA-ARS?s Scientific Manuscript database

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  2. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  3. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase.

    PubMed

    Schumacher, Marc M; Elsabrouty, Rania; Seemann, Joachim; Jo, Youngah; DeBose-Boyd, Russell A

    2015-03-05

    Schnyder corneal dystrophy (SCD) is an autosomal dominant disorder in humans characterized by abnormal accumulation of cholesterol in the cornea. SCD-associated mutations have been identified in the gene encoding UBIAD1, a prenyltransferase that synthesizes vitamin K2. Here, we show that sterols stimulate binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase, which is subject to sterol-accelerated, endoplasmic reticulum (ER)-associated degradation augmented by the nonsterol isoprenoid geranylgeraniol through an unknown mechanism. Geranylgeraniol inhibits binding of UBIAD1 to reductase, allowing its degradation and promoting transport of UBIAD1 from the ER to the Golgi. CRISPR-CAS9-mediated knockout of UBIAD1 relieves the geranylgeraniol requirement for reductase degradation. SCD-associated mutations in UBIAD1 block its displacement from reductase in the presence of geranylgeraniol, thereby preventing degradation of reductase. The current results identify UBIAD1 as the elusive target of geranylgeraniol in reductase degradation, the inhibition of which may contribute to accumulation of cholesterol in SCD.

  4. Iodate Reduction by Shewanella oneidensis Does Not Involve Nitrate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok, Jung Kee; Toporek, Yael J.; Shin, Hyun-Dong

    Microbial iodate (IO 3 -) reduction is a major component of the iodine biogeochemical reaction network and is the basis of alternative strategies for remediation of iodine-contaminated environments. The molecular mechanism of microbial IO 3 - reduction, however, is not well understood. In microorganisms displaying IO 3 - and nitrate (NO 3 -) reduction activities, NO 3 - reductase is postulated to reduce IO 3 - as alternate electron acceptor. In the present study, whole genome analyses of 25 NO 3 --reducing Shewanella strains identified various combinations of genes encoding one assimilatory (cytoplasmic Nas) and three dissimilatory (membrane-associated Nar andmore » periplasmic Napα and Napβ) NO 3 - reductases. S. oneidensis was the only Shewanella strain whose genome encoded a single NO 3 - reductase (Napβ). Terminal electron acceptor competition experiments in S. oneidensis batch cultures amended with both NO 3 - and IO 3 - demonstrated that neither NO 3 - nor IO 3 - reduction activities were competitively inhibited by the presence of the competing electron acceptor. The lack of involvement of S. oneidensis Napβ in IO 3 - reduction was confirmed via phenotypic analysis of an in-frame gene deletion mutant lacking napβΑ (encoding the NO 3 --reducing NapβA catalytic subunit). S. oneidensis ΔnapβA was unable to reduce NO 3 -, yet reduced IO 3 - at rates higher than the wild-type strain. Thus, NapβA is required for dissimilatory NO 3 - reduction by S. oneidensis, while neither the assimilatory (Nas) nor dissimilatory (Napα, Napβ, and Nar) NO 3 - reductases are required for IO 3 - reduction. These findings oppose the traditional view that NO 3 - reductase reduces IO 3 - as alternate electron acceptor and indicate that S. oneidensis reduces IO 3 - via an as yet undiscovered enzymatic mechanism.« less

  5. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    PubMed

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Association study of sorbitol dehydrogenase -888G>C polymorphism with type 2 diabetic retinopathy in Caucasian-Brazilians.

    PubMed

    Ferreira, Fábio Netto; Crispim, Daisy; Canani, Luís Henrique; Gross, Jorge Luiz; dos Santos, Kátia Gonçalves

    2013-10-01

    Diabetic retinopathy (DR) is a common chronic complication of diabetes and remains the leading cause of blindness in working-aged people. Hyperglycemia increases glucose flux through the polyol pathway, in which aldose reductase converts glucose into intracellular sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase (SDH). The accelerated polyol pathway triggers a cascade of events leading to retinal vascular endothelial dysfunction and the eventual development of DR. Polymorphisms in the gene encoding aldose reductase have been consistently associated with DR. However, only two studies have analyzed the relationship between polymorphisms in the gene encoding SDH (SORD) and DR. In this case-control study, we investigated whether the -888G > C polymorphism (rs3759890) in the SORD gene is associated with the presence or severity of DR in 446 Caucasian-Brazilians with type 2 diabetes (241 subjects with and 205 subjects without DR). The -888G > C polymorphism was also examined in 105 healthy Caucasian blood donors, and the genotyping of this polymorphism was carried out by real-time PCR. The genotype and allele frequencies of the -888G > C polymorphism in patients with type 2 diabetes were similar to those of blood donors (G allele frequency = 0.16 in both groups of subjects). Similarly, the genotype and allele frequencies in patients with DR or the proliferative form of DR were similar to those of patients without this complication (P > 0.05 for all comparisons). Thus, our findings suggest that the -888G > C polymorphism in the SORD gene is not involved in the pathogenesis of DR in type 2 diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. Regulation by multiple mechanisms.

    PubMed

    Ram, P A; Waxman, D J

    1992-02-15

    The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major

  8. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  9. Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures.

    PubMed

    Richter, Ute; Rothe, Grit; Fabian, Anne-Katrin; Rahfeld, Bettina; Dräger, Birgit

    2005-02-01

    The medicinally applied tropane alkaloids hyoscyamine and scopolamine are produced in Atropa belladonna L. and in a small number of other Solanaceae. Calystegines are nortropane alkaloids that derive from a branching point in the tropane alkaloid biosynthetic pathway. In A. belladonna root cultures, calystegine molar concentration is 2-fold higher than that of hyoscyamine and scopolamine. In this study, two tropinone reductases forming a branching point in the tropane alkaloid biosynthesis were overexpressed in A. belladonna. Root culture lines with strong overexpression of the transcripts contained more enzyme activity of the respective reductase and enhanced enzyme products, tropine or pseudotropine. High pseudotropine led to an increased accumulation of calystegines in the roots. Strong expression of the tropine-forming reductase was accompanied by 3-fold more hyoscyamine and 5-fold more scopolamine compared with control roots, and calystegine levels were decreased by 30-90% of control. In some of the transformed root cultures, an increase of total tropane alkaloids was observed. Thus, transformation with cDNA of tropinone reductases successfully altered the ratio of tropine-derived alkaloids versus pseudotropine-derived alkaloids.

  10. Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    French, Christopher E.; Nicklin, Stephen; Bruce, Neil C.

    1998-01-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water. PMID:9687442

  11. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase

    PubMed Central

    Schumacher, Marc M; Elsabrouty, Rania; Seemann, Joachim; Jo, Youngah; DeBose-Boyd, Russell A

    2015-01-01

    Schnyder corneal dystrophy (SCD) is an autosomal dominant disorder in humans characterized by abnormal accumulation of cholesterol in the cornea. SCD-associated mutations have been identified in the gene encoding UBIAD1, a prenyltransferase that synthesizes vitamin K2. Here, we show that sterols stimulate binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase, which is subject to sterol-accelerated, endoplasmic reticulum (ER)-associated degradation augmented by the nonsterol isoprenoid geranylgeraniol through an unknown mechanism. Geranylgeraniol inhibits binding of UBIAD1 to reductase, allowing its degradation and promoting transport of UBIAD1 from the ER to the Golgi. CRISPR-CAS9-mediated knockout of UBIAD1 relieves the geranylgeraniol requirement for reductase degradation. SCD-associated mutations in UBIAD1 block its displacement from reductase in the presence of geranylgeraniol, thereby preventing degradation of reductase. The current results identify UBIAD1 as the elusive target of geranylgeraniol in reductase degradation, the inhibition of which may contribute to accumulation of cholesterol in SCD. DOI: http://dx.doi.org/10.7554/eLife.05560.001 PMID:25742604

  12. Advances in pharmacological strategies for the prevention of cataract development

    PubMed Central

    Gupta, S K; Selvan, V Kalai; Agrawal, S S; Saxena, Rohit

    2009-01-01

    Cataractous-opacification of the lens is one of the leading causes of blindness in India. The situation can be managed by surgical removal of the cataractous lens. Various pharmacological strategies have been proposed for the prevention and treatment of cataract. Information on possible benefits of putative anticataract agents comes from a variety of approaches, ranging from laboratory experiments, both in vitro and in vivo, to epidemiological studies in patients. This review deals with the various mechanisms, and possible pharmacological interventions for the prevention of cataract. The article also reviews research on potential anticataractous agents, including aldose reductase inhibitors, glutathione boosters, antiglycating agents, vitamins and various drugs from indigenous sources. PMID:19384010

  13. Ribonucleotide reductase activity is regulated by proliferating cell nuclear antigen (PCNA)

    PubMed Central

    Salguero, Israel; Guarino, Estrella; Shepherd, Marianne; Deegan, Tom; Havens, Courtney G.; MacNeill, Stuart A.; Walter, Johannes C.; Kearsey, Stephen E.

    2014-01-01

    Summary Synthesis of dNTPs is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimising the mutation rate [3-7], and this is achieved by tight regulation of ribonucleotide reductase [2, 8, 9]. In fission yeast, ribonucleotide reductase is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow up-regulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4Cdt2 ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 levels fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor PCNA, complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and ribonucleotide reductase regulation. PMID:22464192

  14. Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101.

    PubMed Central

    Bilous, P T; Weiner, J H

    1985-01-01

    Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene. PMID:3888958

  15. NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells.

    PubMed

    Takahashi, Takayuki; Okuno, Masaaki; Okamoto, Tadashi; Kishi, Takeo

    2008-01-01

    We purified an NADPH-dependent coenzyme Q reductase (NADPH-CoQ reductase) in rat liver cytosol and compared its enzymatic properties with those of the other CoQ10 reductases such as NADPH: quinone acceptor oxidoreductase 1 (NQO1), lipoamide dehydrogenase, thioredoxine reductase and glutathione reductase. NADPH-CoQ reductase was the only enzyme that preferred NADPH to NADH as an electron donor and was also different from the other CoQ10 reductases in the sensitivities to its inhibitors and stimulators. Especially, Zn2+ was the most powerful inhibitor for NADPH-CoQ reductase, but CoQ10 reduction by the other CoQ10 reductases could not be inhibited by Zn2+. Furthermore, the reduction of the CoQ9 incorporated into HeLa cells was also inhibited by Zn2+ in the presence of pyrithione, a zinc ionophore. Moreover, NQO1 gene silencing in HeLa cells by transfection of a small interfering RNA resulted in lowering of both the NQO1 protein level and the NQO1 activity by about 75%. However, this transfection did not affect the NADPH-CoQ reductase activity and the reduction of CoQ9 incorporated into the cells. These results suggest that the NADPH-CoQ reductase located in cytosol may be the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells.

  16. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia colimore » expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.« less

  17. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    PubMed

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  18. Constitutive non-inducible expression of the Arabidopsis thaliana Nia 2 gene in two nitrate reductase mutants of Nicotiana plumbaginifolia.

    PubMed

    Kaye, C; Crawford, N M; Malmberg, R L

    1997-04-01

    We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.

  19. Nitrogen fixation in transposon mutants from Bradyrhizobium japonicum USDA 110 impaired in nitrate reductase.

    PubMed

    Camacho, María; Burgos, Araceli; Chamber-Pérez, Manuel A

    2003-04-01

    Tn5 transposon mutagenesis was carried out in Bradyrhizobium japonicum strain USDA 110 to produce defective mutants. From over one thousand clones expressing low levels of nitrate reductase activity as free-living bacteria, approximately five percent had significantly different ratios of nodulation, N2 fixation or nitrate reductase activity compared to the wild strain when determined in bacteroids from soybean nodules. Tn5 insertions were checked previously and mutants were arranged into four different groups. Only one of these groups, designated AN, was less effective at N2 fixation than the wild strain, suggesting a mutation in a domain shared by nitrogenase and NR. The remaining groups of insertions successfully nodulated and were as effective at N2 fixation as the wild strain, but showed diminished ability to reduce nitrate both in nodules and in the isolated bacteroids when assayed in vitro with NADH or methyl viologen as electron donors. PCR amplification demonstrated that Tn5 insertions took place in different genes on each mutant group and the type of mutant (CC) expressing almost no nitrate reductase activity under all treatments seemed to possess transposable elements in two genes. Induction of nitrate reductase activity by nitrate was observed only in those clones expressing a low constitutive activity (AN and AE). Nitrate reductase activity in bacteroids along nodule growth decreased in all groups including the ineffective AN group, whose nodulation was highly inhibited by nitrate at 5 mmol/L N. Host-cultivar interaction seemed to influence the regulation of nitrate reductase activity in bacteroids. Total or partial repression of nitrate reductase activity in bacteroids unaffected by N2 fixation (CC, AJ and AE groups) improved nodule resistance to nitrate and N yields of shoots over those of the wild strain. These observations may suggest that some of the energy supplied to bacteroids was wasted by its constitutive NRA.

  20. The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced "Turbo" Ferric Chelate Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and Isolated Plasma Membrane Fractions in Sugar Beet).

    PubMed Central

    Susin, S.; Abadia, A.; Gonzalez-Reyes, J. A.; Lucena, J. J.; Abadia, J.

    1996-01-01

    The characteristics of the Fe reduction mechanisms induced by Fe deficiency have been studied in intact plants of Beta vulgaris and in purified plasma membrane vesicles from the same plants. In Fe-deficient plants the in vivo Fe(III)-ethylenediaminetetraacetic complex [Fe(III)-EDTA] reductase activity increased over the control values 10 to 20 times when assayed at a pH of 6.0 or below ("turbo" reductase) but increased only 2 to 4 times when assayed at a pH of 6.5 or above. The Fe(III)-EDTA reductase activity of root plasma membrane preparations increased 2 and 3.5 times over the controls, irrespective of the assay pH. The Km for Fe(III)-EDTA of the in vivo ferric chelate reductase in Fe-deficient plants was approximately 510 and 240 [mu]M in the pH ranges 4.5 to 6.0 and 6.5 to 8.0, respectively. The Km for Fe(III)-EDTA of the ferric chelate reductase in intact control plants and in plasma membrane preparations isolated from Fe-deficient and control plants was approximately 200 to 240 [mu]M. Therefore, the turbo ferric chelate reductase activity of Fe-deficient plants at low pH appears to be different from the constitutive ferric chelate reductase. PMID:12226175

  1. The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced "Turbo" Ferric Chelate Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and Isolated Plasma Membrane Fractions in Sugar Beet).

    PubMed

    Susin, S.; Abadia, A.; Gonzalez-Reyes, J. A.; Lucena, J. J.; Abadia, J.

    1996-01-01

    The characteristics of the Fe reduction mechanisms induced by Fe deficiency have been studied in intact plants of Beta vulgaris and in purified plasma membrane vesicles from the same plants. In Fe-deficient plants the in vivo Fe(III)-ethylenediaminetetraacetic complex [Fe(III)-EDTA] reductase activity increased over the control values 10 to 20 times when assayed at a pH of 6.0 or below ("turbo" reductase) but increased only 2 to 4 times when assayed at a pH of 6.5 or above. The Fe(III)-EDTA reductase activity of root plasma membrane preparations increased 2 and 3.5 times over the controls, irrespective of the assay pH. The Km for Fe(III)-EDTA of the in vivo ferric chelate reductase in Fe-deficient plants was approximately 510 and 240 [mu]M in the pH ranges 4.5 to 6.0 and 6.5 to 8.0, respectively. The Km for Fe(III)-EDTA of the ferric chelate reductase in intact control plants and in plasma membrane preparations isolated from Fe-deficient and control plants was approximately 200 to 240 [mu]M. Therefore, the turbo ferric chelate reductase activity of Fe-deficient plants at low pH appears to be different from the constitutive ferric chelate reductase.

  2. Cytidine 5'-diphosphate reductase activity in phytohemagglutinin stimulated human lymphocytes.

    PubMed Central

    Tyrsted, G; Gamulin, V

    1979-01-01

    The optimal conditions and the effect of deoxyribonucleoside triphosphates were determined for CDP reductase activity in PHA-stimulated lymphocytes. The enzymatic reaction showed an absolute requirement for ATP. In the absence of ATP, only dATP showed a minor stimulation of the reduction of CDP to dCDP. During transformation the CDP reductase activity reached a maximum at the same time as the four deoxyribonucleoside triphosphate pools, corresponding to mid S-phase at about 50 h after PHA addition. The DNA polymerase activity reached a maximum at 57 h. PMID:424294

  3. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  4. Pseudomonas stutzeri N2O reductase contains CuA-type sites.

    PubMed Central

    Scott, R A; Zumft, W G; Coyle, C L; Dooley, D M

    1989-01-01

    N2O reductase (N2O----N2) is the terminal enzyme in the energy-conserving denitrification pathway of soil and marine denitrifying bacteria. The protein is composed of two identical subunits and contains eight copper ions per enzyme molecule. The magnetic circular dichroism spectrum of resting (oxidized) N2O reductase is strikingly similar to the magnetic circular dichroism spectrum of the CuA site in mammalian cytochrome c oxidase [Greenwood, C., Hull, B. C., Barber, D., Eglinton, D. G. & Thomson, A. J. (1983) Biochem. J. 215, 303-316] and is unlike the magnetic circular dichroism spectra of all other biological copper chromophores obtained to date. Sulfur (or chlorine) scatterers are required to fit the copper extended x-ray absorption fine structure data of both the oxidized and reduced forms of N2O reductase. Satisfactory fits require a Cu-N or Cu-O [denoted Cu-(N, O)] interaction at 2.0 A, a Cu-(S, Cl) interaction at 2.3 A and an additional Cu(S, Cl) interaction at approximately 2.6 A (oxidized) or approximately 2.7 A (reduced). Approximately eight sulfur ions (per eight copper ions) at approximately 2.3 A are required to fit the extended x-ray absorption fine structure data for both the oxidized and reduced N2O reductase. The 2.3-A Cu-(S, Cl) distance is nearly identical to that previously determined for the CuA site in cytochrome c oxidase. A 2.6-2.7 A Cu-(S, Cl) interaction is also present in resting and fully reduced cytochrome c oxidase. Comparison of the N2O reductase sequence, determined by translating the structural NosZ gene, with cytochrome c oxidase subunit II sequences from several sources indicates that a Gly-Xaa-Xaa-Xaa-Xaa-Xaa-Cys-Ser-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-His stretch is highly conserved. This sequence contains three of the probable ligands (two cysteines and one histidine) in a CuA-type site. Collectively these data establish that Pseudomonas stutzeri N2O reductase contains CuA-type sites. PMID:2542963

  5. Regulation of 5alpha-reductase isoforms by oxytocin in the rat ventral prostate.

    PubMed

    Assinder, S J; Johnson, C; King, K; Nicholson, H D

    2004-12-01

    Oxytocin (OT) is present in the male reproductive tract, where it is known to modulate contractility, cell growth, and steroidogenesis. Little is known about how OT regulates these processes. This study describes the localization of OT receptor in the rat ventral prostate and investigates if OT regulates gene expression and/or activity of 5alpha-reductase isoforms I and II. The ventral prostates of adult male Wistar rats were collected following daily sc administration of saline (control), OT, a specific OT antagonist or both OT plus antagonist for 3 d. Expression of the OT receptor was identified in the ventral prostate by RT-PCR and Western blot, and confirmed to be a single active binding site by radioreceptor assay. Immunohistochemistry localized the receptor to the epithelium of prostatic acini and to the stromal tissue. Real-time RT-PCR determined that OT treatment significantly reduced expression of 5alpha-reductase I but significantly increased 5alpha-reductase II expression in the ventral prostate. Activity of both isoforms of 5alpha-reductase was significantly increased by OT, resulting in increased concentration of prostatic dihydrotestosterone. In conclusion, OT is involved in regulating conversion of testosterone to the biologically active dihydrotestosterone in the rat ventral prostate. It does so by differential regulation of 5alpha-reductase isoforms I and II.

  6. The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans.

    PubMed Central

    Alefounder, P R; Ferguson, S J

    1980-01-01

    1. A method is described for preparing spheroplasts from Paracoccus denitrificans that are substantially depleted of dissimilatory nitrate reductase (cytochrome cd) activity. Treatment of cells with lysozyme + EDTA together with a mild osmotic shock, followed by centrifugation, yielded a pellet of spheroplasts and a supernatant that contained d-type cytochrome. The spheroplasts were judged to have retained an intact plasma membrane on the basis that less than 1% of the activity of a cytoplasmic marker protein, malate dehydrogenase, was released from the spheroplasts. In addition to a low activity towards added nitrite, the suspension of spheroplasts accumulated the nitrite that was produced by respiratory chain-linked reduction of nitrate. It is concluded that nitrate reduction occurs at the periplasmic side of the plasma membrane irrespective of whether nitrite is generated by nitrate reduction or is added exogenously. 2. Further evidence for the integrity of the spheroplasts was that nitrate reduction was inhibited by O2, and that chlorate was reduced at a markedly lower rate than nitrate. These data are taken as evidence for an intact plasma membrane because it was shown that cells acquire the capability to reduce nitrate under aerobic conditions after addition of low amounts of Triton X-100 which, with the same titre, also overcame the permeability barrier to chlorate reduction by intact cells. The close relationship between the appearance of chlorate reduction and the loss of the inhibitory effect of O2 on nitrate reduction also suggests that the later feature of nitrate respiration is due to a control on the accessibility of nitrate to its reductase rather than on the flow of electrons to nitrate reductase. PMID:7197918

  7. Regulation of succinate-ubiquinone reductase and fumarate reductase activities in human complex II by phosphorylation of its flavoprotein subunit.

    PubMed

    Tomitsuka, Eriko; Kita, Kiyoshi; Esumi, Hiroyasu

    2009-01-01

    Complex II (succinate-ubiquinone reductase; SQR) is a mitochondrial respiratory chain enzyme that is directly involved in the TCA cycle. Complex II exerts a reverse reaction, fumarate reductase (FRD) activity, in various species such as bacteria, parasitic helminths and shellfish, but the existence of FRD activity in humans has not been previously reported. Here, we describe the detection of FRD activity in human cancer cells. The activity level was low, but distinct, and it increased significantly when the cells were cultured under hypoxic and glucose-deprived conditions. Treatment with phosphatase caused the dephosphorylation of flavoprotein subunit (Fp) with a concomitant increase in SQR activity, whereas FRD activity decreased. On the other hand, treatment with protein kinase caused an increase in FRD activity and a decrease in SQR activity. These data suggest that modification of the Fp subunit regulates both the SQR and FRD activities of complex II and that the phosphorylation of Fp might be important for maintaining mitochondrial energy metabolism within the tumor microenvironment.

  8. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  10. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  11. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  12. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  13. Direct cloning of the trxB gene that encodes thioredoxin reductase.

    PubMed Central

    Russel, M; Model, P

    1985-01-01

    A strain was constructed which contains mutations in the genes encoding thioredoxin (trxA) and thioredoxin reductase (trxB) such that filamentous phage f1 cannot grow. The complementation of either mutation with its wild-type allele permits phage growth. We used this strain to select f1 phage which contain a cloned trxB gene. The location of the gene on the cloned fragment was determined, and its protein product was identified. Plasmid subclones that contain this gene overproduce thioredoxin reductase. Images PMID:2989245

  14. Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori

    PubMed Central

    Ciufo, Leonora F.; Murray, Patricia A.; Thompson, Anu; Rigden, Daniel J.; Rees, Huw H.

    2011-01-01

    Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction. Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation. PMID:21738635

  15. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review

    PubMed Central

    Hirshburg, Jason M.; Kelsey, Petra A.; Therrien, Chelsea A.; Gavino, A. Carlo; Reichenberg, Jason S.

    2016-01-01

    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment. PMID:27672412

  16. Absorbance and light scattering of lenses organ cultured with glucose.

    PubMed

    Alghamdi, Ali Hendi Sahmi; Mohamed, Hasabelrasoul; Sledge, Samiyyah M; Borchman, Douglas

    2018-06-06

    Purpose/Aim: Diabetes is one of the major factors related to cataract. Our aim was to determine if the attenuation of light through glucose treated lenses was due to light scattering from structural changes or absorbance from metabolic changes. Human and rat lenses were cultured in a medium with and without 55 mM glucose for a period of five days. Absorbance and light scattering were measured using a ultraviolet spectrometer. Aldose reductase and catalase activity, RAGE, and glutathione were measured using classical assays. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes. Glucose treatment caused three absorbance band to appear at 484, 540 to 644 and 657 nm in both the rat and human lens. The optimum time point for equilibration of human lenses was found to be between 2 and 3 days in organ culture. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. Since the levels of glutathione, catalase and aldose reductase were reduced in glucose treated rat lenses compared with untreated lenses, glucose may have caused oxidative stress on the rat lens. The absorbance and light scattering of glucose treated lenses in organ culture were quantitated for the first time which could be important for future studies designed to test the efficacy of agents to ameliorate the opacity. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes and not absorbance from metabolic changes. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. The lens model employed could be used to study the efficacy of agents that potentially ameliorate lens opacity.

  17. Regulation of schistosome egg production by HMG CoA reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivomore » were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.« less

  18. Nitrate Reductase Activity and Polyribosomal Content of Corn (Zea mays L.) Having Low Leaf Water Potentials 1

    PubMed Central

    Morilla, Camila A.; Boyer, J. S.; Hageman, R. H.

    1973-01-01

    Desiccation of 8- to 13-day-old seedlings, achieved by withholding nutrient solution from the vermiculite root medium, caused a reduction in nitrate reductase activity of the leaf tissue. Activity declined when leaf water potentials decreased below −2 bars and was 25% of the control at a leaf water potential of −13 bars. Experiments were conducted to determine whether the decrease in nitrate reductase activity was due to reduced levels of nitrate in the tissue, direct inactivation of the enzyme by low leaf water potentials, or to changes in rates of synthesis or decay of the enzyme. Although tissue nitrate content decreased with the onset of desiccation, it did not continue to decline with tissue desiccation and loss of enzyme activity. Nitrate reductase activity recovered when the plants were rewatered with nitrate-free medium, suggesting that the nitrate in the plant was adequate for high nitrate reductase activity. The rate of decay of nitrate reductase activity from desiccated tissue was essentially identical to that of the control, in vivo or in vitro, regardless of the rapidity of desiccation of the tissue. Direct inactivation of the enzyme by the low water potentials was not detected. Polyribosomal content of the tissue declined with the decrease in water potential, prior to the decline in nitrate reductase activity. Changes in ribosomal profiles occurred during desiccation, regardless of whether the tissue had been excised or not and whether desiccation was rapid or slow. Reduction in polyribosomal content did not appear to be associated with changes in ribonuclease activity. Nitrate reductase activity and the polyribosomal content of the tissue recovered upon rewatering, following the recovery in water potential. The increase in polyribosomal content preceded the increase in nitrate reductase activity. Recovery of enzyme activity was prevented by cycloheximide. Based on these results, it appears that nitrate reductase activity was affected primarily by

  19. A Bioinformatics Classifier and Database for Heme-Copper Oxygen Reductases

    PubMed Central

    Sousa, Filipa L.; Alves, Renato J.; Pereira-Leal, José B.; Teixeira, Miguel; Pereira, Manuela M.

    2011-01-01

    Background Heme-copper oxygen reductases (HCOs) are the last enzymatic complexes of most aerobic respiratory chains, reducing dioxygen to water and translocating up to four protons across the inner mitochondrial membrane (eukaryotes) or cytoplasmatic membrane (prokaryotes). The number of completely sequenced genomes is expanding exponentially, and concomitantly, the number and taxonomic distribution of HCO sequences. These enzymes were initially classified into three different types being this classification recently challenged. Methodology We reanalyzed the classification scheme and developed a new bioinformatics classifier for the HCO and Nitric oxide reductases (NOR), which we benchmark against a manually derived gold standard sequence set. It is able to classify any given sequence of subunit I from HCO and NOR with a global recall and precision both of 99.8%. We use this tool to classify this protein family in 552 completely sequenced genomes. Conclusions We concluded that the new and broader data set supports three functional and evolutionary groups of HCOs. Homology between NORs and HCOs is shown and NORs closest relationship with C Type HCOs demonstrated. We established and made available a classification web tool and an integrated Heme-Copper Oxygen reductase and NOR protein database (www.evocell.org/hco). PMID:21559461

  20. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    PubMed Central

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  1. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells.

    PubMed

    Sakai, Chika; Tomitsuka, Eriko; Esumi, Hiroyasu; Harada, Shigeharu; Kita, Kiyoshi

    2012-05-01

    Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Purification and Thermal Dependence of Glutathione Reductase from Two Forage Legume Species 1

    PubMed Central

    Kidambi, Saranga P.; Mahan, James R.; Matches, Arthur G.

    1990-01-01

    Alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) are forage legumes that differ in their responses to high and low temperature stresses. Thermal limitations on the function of glutathione reductase (EC 1.6.4.2) could adversely affect the ability of the plant to cope with adverse temperatures. Our objectives were to (a) purify glutathione reductase from `Cimarron' alfalfa and `PI 212241' sainfoin and (b) investigate the intraspecies variation in the thermal dependency of glutathione reductase from each of three cultivars of alfalfa and two cultivars and an introduction of sainfoin. Glutathione reductase was purified 1222-and 1948-fold to a specific activity of 281 and 273 units per milligram of protein, from one species each of alfalfa and sainfoin, respectively. The relative molecular mass of the protein was approximately 140 kilodaltons with subunits of 57 and 37 kilodaltons under denaturing conditions. The activation energies were approximately 50 kilojoules per mole for both species. Over a 5 to 45°C temperature gradient, large variation among species and genotypes within species was found for: (a) the minimum apparent Michaelis constant (0.6-2.1 micromoles of NADPH), (b) the temperature at which the minimum apparent Michaelis constant was observed (10-25°C), and (c) the thermal kinetic windows (6-19°C width). Future studies will focus on relating the thermal dependence of the Michaelis constant of the glutathione reductases and plant growth rates and forage quality of these species throughout the growing season. PMID:16667283

  3. Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.

    PubMed

    Xia, Xiao-Le; Cong, Shan; Weng, Xiao-Rong; Chen, Jin-Hua; Wang, Jing-Fang; Chou, Kuo-Chen

    2013-11-01

    Xylose is one of the most abundant carbohydrates in nature, and widely used to produce bioethanol via fermentation in industry. Xylulose can produce two key enzymes: xylose reductase and xylitol dehydrogenase. Owing to the disparate cofactor specificities of xylose reductase and xylitol dehydrogenase, intracellular redox imbalance is detected during the xylose fermentation, resulting in low ethanol yields. To overcome this barrier, a common strategy is applied to artificially modify the cofactor specificity of xylose reductase. In this study, we utilized molecular simulation approaches to construct a 3D (three-dimensional) structural model for the NADP-dependent Pichia stipitis xylose reductase (PsXR). Based on the 3D model, the favourable binding modes for both cofactors NAD and NADP were obtained using the flexible docking procedure and molecular dynamics simulation. Structural analysis of the favourable binding modes showed that the cofactor binding site of PsXR was composed of 3 major components: a hydrophilic pocket, a hydrophobic pocket as well as a linker channel between the aforementioned two pockets. The hydrophilic pocket could recognize the nicotinamide moiety of the cofactors by hydrogen bonding networks, while the hydrophobic pocket functioned to position the adenine moiety of the cofactors by hydrophobic and Π-Π stacking interactions. The linker channel contained some key residues for ligand-binding; their mutation could have impact to the specificity of PsXR. Finally, it was found that any of the two single mutations, K21A and K270N, might reverse the cofactor specificity of PsXR from major NADP- to NADdependent, which was further confirmed by the additional experiments. Our findings may provide useful insights into the cofactor specificity of PsXR, stimulating new strategies for better designing xylose reductase and improving ethanol production in industry.

  4. Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory

    NASA Astrophysics Data System (ADS)

    Suydam, Ian T.; Snow, Christopher D.; Pande, Vijay S.; Boxer, Steven G.

    2006-07-01

    The electric fields produced in folded proteins influence nearly every aspect of protein function. We present a vibrational spectroscopy technique that measures changes in electric field at a specific site of a protein as shifts in frequency (Stark shifts) of a calibrated nitrile vibration. A nitrile-containing inhibitor is used to deliver a unique probe vibration to the active site of human aldose reductase, and the response of the nitrile stretch frequency is measured for a series of mutations in the enzyme active site. These shifts yield quantitative information on electric fields that can be directly compared with electrostatics calculations. We show that extensive molecular dynamics simulations and ensemble averaging are required to reproduce the observed changes in field.

  5. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintzpeter, Jan, E-mail: hintzpeter@toxi.uni-kiel.de; Seliger, Jan Moritz; Hofman, Jakub

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones,more » in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC{sub 50}- and K{sub i}-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin

  6. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    PubMed

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  7. FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.

    PubMed

    Ono, S; Hirano, H

    1984-04-01

    We studied the FAD-induced in vitro stimulation of lenticular glutathione reductase in riboflavin-deficient rats. The stimulatory effect of FAD on lenticular glutathione reductase in rats fed a B2-deficient diet for 4 weeks was remarkably higher than in paired control rats fed a B2-supplemented basal diet and control rats had ad libitum access to a B2-supplemented basal diet. The in vitro FAD stimulation effect on rat lenticular glutathione reductase represents a sensitive indicator of the B2 deficient status.

  8. Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose†

    PubMed Central

    Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc

    2017-01-01

    To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen–HPTS (4,4′-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH4) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4–25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H2O2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4′-o-BBV–HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc. PMID:29130464

  9. Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose.

    PubMed

    Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc; Singaram, Bakthan

    2017-11-22

    To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH 4 ) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H 2 O 2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.

  10. Studies on Marek's Disease Virus Encoded Ribonucleotide Reductase

    USDA-ARS?s Scientific Manuscript database

    Ribonucleotide reductase (RR) is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleotides in prokaryotic and eukaryotic cells. The enzyme consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme. Herpesviruses express a functional R...

  11. Deep-Sea Bacterium Shewanella piezotolerans WP3 Has Two Dimethyl Sulfoxide Reductases in Distinct Subcellular Locations

    PubMed Central

    Xiong, Lei; Jian, Huahua

    2017-01-01

    ABSTRACT Dimethyl sulfoxide (DMSO) acts as a substantial sink for dimethyl sulfide (DMS) in deep waters and is therefore considered a potential electron acceptor supporting abyssal ecosystems. Shewanella piezotolerans WP3 was isolated from west Pacific deep-sea sediments, and two functional DMSO respiratory subsystems are essential for maximum growth of WP3 under in situ conditions (4°C/20 MPa). However, the relationship between these two subsystems and the electron transport pathway underlying DMSO reduction by WP3 remain unknown. In this study, both DMSO reductases (type I and type VI) in WP3 were found to be functionally independent despite their close evolutionary relationship. Moreover, immunogold labeling of DMSO reductase subunits revealed that the type I DMSO reductase was localized on the outer leaflet of the outer membrane, whereas the type VI DMSO reductase was located within the periplasmic space. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, served as a preferential electron transport protein for the type I and type VI DMSO reductases, in which type VI accepted electrons from CymA in a DmsE- and DmsF-independent manner. Based on these results, we proposed a core electron transport model of DMSO reduction in the deep-sea bacterium S. piezotolerans WP3. These results collectively suggest that the possession of two sets of DMSO reductases with distinct subcellular localizations may be an adaptive strategy for WP3 to achieve maximum DMSO utilization in deep-sea environments. IMPORTANCE As the dominant methylated sulfur compound in deep oceanic water, dimethyl sulfoxide (DMSO) has been suggested to play an important role in the marine biogeochemical cycle of the volatile anti-greenhouse gas dimethyl sulfide (DMS). Two sets of DMSO respiratory systems in the deep-sea bacterium Shewanella piezotolerans WP3 have previously been identified to mediate DMSO reduction under in situ conditions (4°C/20 MPa). Here, we report that the two DMSO

  12. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    PubMed

    Windahl, Sara H; Andersson, Niklas; Börjesson, Anna E; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05) and cortical bone mineral content (-15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  13. Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice

    PubMed Central

    Windahl, Sara H.; Andersson, Niklas; Börjesson, Anna E.; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K.; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels. PMID:21731732

  14. Isolation and characterization of a cDNA from Cuphea lanceolata encoding a beta-ketoacyl-ACP reductase.

    PubMed

    Klein, B; Pawlowski, K; Höricke-Grandpierre, C; Schell, J; Töpfer, R

    1992-05-01

    A cDNA encoding beta-ketoacyl-ACP reductase (EC 1.1.1.100), an integral part of the fatty acid synthase type II, was cloned from Cuphea lanceolata. This cDNA of 1276 bp codes for a polypeptide of 320 amino acids with 63 N-terminal residues presumably representing a transit peptide and 257 residues corresponding to the mature protein of 27 kDa. The encoded protein shows strong homology with the amino-terminal sequence and two tryptic peptides from avocado mesocarp beta-ketoacyl-ACP reductase, and its total amino acid composition is highly similar to those of the beta-ketoacyl-ACP reductases of avocado and spinach. Amino acid sequence homologies to polyketide synthase, beta-ketoreductases and short-chain alcohol dehydrogenases are discussed. An engineered fusion protein lacking most of the transit peptide, which was produced in Escherichia coli, was isolated and proved to possess beta-ketoacyl-ACP reductase activity. Hybridization studies revealed that in C. lanceolata beta-ketoacyl-ACP reductase is encoded by a small family of at least two genes and that members of this family are expressed in roots, leaves, flowers and seeds.

  15. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    PubMed

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  16. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist

    DTIC Science & Technology

    2013-10-01

    Novel Bifunctional Aldo -Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist” PRINCIPAL INVESTIGATOR: ADEGOKE ADENIJI, Ph.D...therapeutic benefit relative to targeting either mechanism alone. Aldo -keto reductase 1C3 (AKR1C3) is highly upregulated in APC and is localized within...therapy of Abi with MDV3100 has been proposed as a way to reduce resistance. 14, 15 Aldo -keto reductase IC3 (AKR1C3, type 5 17β hydroxysteroid

  17. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase.

    PubMed

    Liew, Li Phing; Lim, Zun Yi; Cohen, Matan; Kong, Ziqing; Marjavaara, Lisette; Chabes, Andrei; Bell, Stephen D

    2016-11-01

    In many organisms, hydroxyurea (HU) inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  19. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium.

    PubMed

    De, Supriyo; Perkins, Michael; Dutta, Sisir K

    2006-07-31

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity.

  20. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  1. Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis.

    PubMed

    Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S

    2001-12-01

    Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.

  2. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure

    PubMed Central

    Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets. PMID:27904805

  3. [Establishment of an in vitro screening model for steroid 5 alpha-reductase inhibitors with the microplate reader].

    PubMed

    Wu, Jian-Hui; Sun, Zu-Yue

    2013-06-01

    To establish an in vitro screening model for steroid 5 alpha-reductase inhibitors using the microplate reader. Steroid 5 alpha-reductase was obtained from the liver of female rats, an in vitro screening model for steroid 5 alpha-reductase inhibitors established using the 96-well plate and microplate reader after determination of the enzymatic activity, and the reliability of the model verified with the known 5 alpha-reductase inhibitors epristeride and finasteride. Added to the 96-well plate were the final concentrations of testosterone (0-40 micromol/L), NADPH (22 micromol/L), epristeride (0-60 nmol/L) or finasteride (0-60 nmol/ L) and steroid 5 alpha-reductase (20 microl), the total volume of each well adjusted to 200 microl with Tris-Hcl buffer. The 96-well plate was placed in the microplate reader, mixed and incubated at 37 degrees C, followed by detection of the A340nm value at 0 and 10 min and analysis of the data. The Km value of steroid 5 alpha-reductase was 3.794 micromol/L, with a Vmax of 0.271 micromol/(L. min). The Ki of epristeride was 148.2 nmol/L, with an IC50 of 31.5 nmol/L, and the enzymatic reaction kinetic curve suggested that epristeride was an uncompetitive enzyme inhibitor. The Ki of finasteride was 158. 8 nmol/L, with an IC50 of 13.6 nmol/L. The enzymatic reaction kinetic curve showed that both epristeride and finasteride were competitive enzyme inhibitors, similar to those reported in the published literature. A screening model was successfully established, which could rapidly and effectively screen steroid 5 alpha-reductase inhibitors in vitro.

  4. Evidence for an Inactivating System of Nitrate Reductase in Hordeum vulgare L. during Darkness That Requires Protein Synthesis 1

    PubMed Central

    Travis, R. L.; Jordan, W. R.; Huffaker, R. C.

    1969-01-01

    The disappearance of nitrate reductase activity in leaves of Hordeum vulgare L. during darkness was inhibited by cycloheximide, actinomycin D, and low temperature. Thus, protein synthesis was probably required for the disappearance of nitrate reductase in the dark. Since chloramphenicol did not affect the rate of loss of activity, the degradation or inactivation apparently required protein synthesis by the cytoplasmic ribosomal system. Consistent with this observation, nitrate reductase is also reportedly located in the cytoplasm. Thus, the amount of nitrate reductase activity present in leaves of barley may be controlled by a balance between activating and inactivating systems. PMID:16657182

  5. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    PubMed

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to

  6. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    PubMed

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  7. Characterization and localization of progesterone 5 alpha-reductase from cell cultures of foxglove (Digitalis lanata EHRH).

    PubMed Central

    Wendroth, S; Seitz, H U

    1990-01-01

    Progesterone 5 alpha-reductase, which catalyses the reduction of progesterone to 5 alpha-pregnane-3,20-dione, was isolated and characterized from cell cultures of Digitalis lanata (foxglove). Optimum enzyme activity was observed at pH 7.0, and the enzyme had an apparent Km value of 30 microM for its substrate progesterone. The enzyme needs NADPH as reductant, which could not be replaced by NADH. For NADPH, the apparent Km value is 130 microM. The optimum temperature was 40 degrees C; at temperatures below 45 degrees C, the product 5 alpha-pregnane-3,20-dione was reduced by a second reaction to 5 alpha-pregnan-3 beta-ol-20-one. Progesterone 5 alpha-reductase activity was not dependent on bivalent cations. In the presence of EDTA, 0.1 mM-Mn2+ had no influence on enzyme activity, whereas 0.1 mM-Ca2+, -Co2+ and -Zn2+ decreased progesterone 5 alpha-reductase activity. Only 0.1 mM-Mg2+ was slightly stimulatory. EDTA and thiol reagents such as dithiothreitol stimulate progesterone 5 alpha-reductase activity. By means of linear sucrose gradient fractionation of the cellular membranes, progesterone 5 alpha-reductase was found to be located in the endoplasmic reticulum. PMID:2106876

  8. The diheme cytochrome c4 from Vibrio cholerae is a natural electron donor to the respiratory cbb3 oxygen reductase

    PubMed Central

    Chang, Hsin-Yang; Ahn, Young; Pace, Laura A.; Lin, Myat T.; Lin, Yun-Hui; Gennis, Robert B.

    2010-01-01

    The respiratory chain of Vibrio cholerae contains three bd-type quinol oxygen reductases as well as one cbb3 oxygen reductase. The cbb3 oxygen reductase has been previously isolated and characterized, however the natural mobile electron donor(s) which shuttles electrons between the bc1 complex and the cbb3 oxygen reductase is not known. The most likely candidates are the diheme cytochrome c4 and mono-heme cytochrome c5, which have been previously shown to be present in the periplasm of aerobically grown cultures of V. cholerae. Both cytochromes c4 and c5 from V. cholerae have been cloned and expressed heterologously in E. coli. It is shown that reduced cytochrome c4 is a substrate for the purified cbb3 oxygen reductase and can support steady state oxygen reductase activity of at least 300 e−1/s. In contrast, reduced cytochrome c5 is not a good substrate for the cbb3 oxygen reductase. Surprisingly, the dependence of the oxygen reductase activity on the concentration of cytochrome c4 does not exhibit saturation. Global spectroscopic analysis of the time course of the oxidation of cytochrome c4 indicates that the apparent lack of saturation is due to the strong dependence of KM and Vmax on the concentration of oxidized cytochrome c4. Whether this is an artifact of the in vitro assay or has physiological significance remains unknown. Cyclic voltammetry was used to determine that the midpoint potentials of the two hemes in cytochrome c4 are 240 mV and 340 mV (vs SHE), similar to the electrochemical properties of other c4-type cytochromes. Genomic analysis shows a strong correlation between the presence of a c4-type cytochrome and a cbb3 oxygen reductase within the β- and γ- proteobacterial clades, suggesting that cytochrome c4 is the likely natural electron donor to the cbb3 oxygen reductases within these organisms. These would include the β-proteobacteria Neisseria meningitidis and Neisseria gonnorhoeae, in which the cbb3 oxygen reductases are the only terminal

  9. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    PubMed Central

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  10. Synthesis and biological evaluation of new piplartine analogues as potent aldose reductase inhibitors (ARIs)

    PubMed Central

    Ramasubba Rao, Vidadala; Muthenna, Puppala; Shankaraiah, Gundeti; Akileshwari, Chandrasekhar; Hari Babu, Kothapalli; Suresh, Ganji; Suresh Babu, Katragadda; Chandra Kumar, Rotte Sateesh; Rajendra Prasad, Kothakonda; Ashok Yadav, Potharaju; Petrash, J. Mark; Bhanuprakash Reddy, Geereddy; Madhusudana Rao, Janaswamy

    2013-01-01

    As a continuation of our efforts directed towards the development of anti-diabetic agents from natural sources, piplartine was isolated from Piper chaba, and was found to inhibit recombinant human ALR2 with an IC50 of 160 µM. To improve the efficacy, a series of analogues have been synthesized by modification of the styryl/aromatic and heterocyclic ring functionalities of this natural product lead. All the derivatives were tested for their ALR2 inhibitory activity, and results indicated that adducts 3c, 3e and 2j prepared by the Michael addition of piplartine with indole derivatives displayed potent ARI activity, while the other compounds displayed varying degrees of inhibition. The active compounds were also capable of preventing sorbitol accumulation in human red blood cells. PMID:23124161

  11. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase

    PubMed Central

    2013-01-01

    Background The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. Results To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Conclusion Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo. PMID:24308601

  12. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  13. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes.

    PubMed

    Grissa, Ibtissem; Bidard, Frédérique; Grognet, Pierre; Grossetete, Sandrine; Silar, Philippe

    2010-09-01

    Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. DNA from uncultured organisms as a source of 2,5-diketo-L-gluconic acid reductases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eschenfeldt, W. H.; Stols, L.; Rosenbaum, H.

    2001-09-01

    Total DNA of a population of uncultured organisms was extracted from soil samples, and by using PCR methods, the genes encoding two different 2,5-diketo-D-gluconic acid reductases (DKGRs) were recovered. Degenerate PCR primers based on published sequence information gave internal gene fragments homologous to known DKGRs. Nested primers specific for the internal fragments were combined with random primers to amplify flanking gene fragments from the environmental DNA, and two hypothetical full-length genes were predicted from the combined sequences. Based on these predictions, specific primers were used to amplify the two complete genes in single PCRs. These genes were cloned and expressedmore » in Escherichia coli. The purified gene products catalyzed the reduction of 2,5-diketo-D-gluconic acid to 2-keto-L-gulonic acid. Compared to previously described DKGRs isolated from Corynebacterium spp., these environmental reductases possessed some valuable properties. Both exhibited greater than 20-fold-higher k{sub cat}/K{sub m} values than those previously determined, primarily as a result of better binding of substrate. The K{sub m} values for the two new reductases were 57 and 67 {mu}M, versus 2 and 13 mM for the Corynebacterium enzymes. Both environmental DKGRs accepted NADH as well as NADPH as a cosubstrate; other DKGRs and most related aldo-keto reductases use only NADPH. In addition, one of the new reductases was more thermostable than known DKGRs.« less

  15. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    PubMed

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  17. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  18. Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism

    PubMed Central

    Rižner, Tea Lanišnik; Penning, Trevor M.

    2013-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ4-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. PMID:24189185

  19. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  20. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  1. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    PubMed

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  2. OXIDATIVE STRESS, INFLAMMATION AND CARCINOGENESIS ARE CONTROLLED THROUGH THE PENTOSE PHOSPHATE PATHWAY BY TRANSALDOLASE

    PubMed Central

    Perl, Andras; Hanczko, Robert; Telarico, Tiffany; Oaks, Zachary; Landas, Steve

    2011-01-01

    Metabolism of glucose through the pentose phosphate pathway (PPP) influences the development of diverse pathologies. Hemolytic anemia due to deficiency of PPP enzyme glucose 6-phosphate dehydrogenase is the most common genetic disease in humans. Recently, inactivation of another PPP enzyme, transaldolase (TAL), has been implicated in male infertility and fatty liver progressing to steatohepatitis and cancer. Hepatocarcinogenesis was associated with activation of aldose reductase and redox-sensitive transcription factors and prevented by N-acetylcysteine. Here, we discuss how alternative formulations of the PPP with and without TAL reflect cell type-specific metabolic control of oxidative stress, a critical source of inflammation and carcinogenesis. Ongoing studies of TAL deficiency will identify new molecular targets for diagnosis and treatment in clinical practice. PMID:21376665

  3. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway.

    PubMed

    Yan, Liang-Jun

    2018-03-01

    In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD + , leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD + redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.

  4. Trichomonas vaginalis Flavin Reductase 1 and its Role in Metronidazole Resistance

    PubMed Central

    Leitsch, David; Janssen, Brian D.; Kolarich, Daniel; Johnson, Patricia J.; Duchêne, Michael

    2015-01-01

    Summary The enzyme flavin reductase 1 (FR1) from Trichomonas vaginalis, formerly known as NADPH oxidase, was isolated and identified. Flavin reductase is part of the antioxidative defense in T. vaginalis and indirectly reduces molecular oxygen to hydrogen peroxide via free flavins. Importantly, a reduced or absent flavin reductase activity has been reported in metronidazole-resistant T. vaginalis, resulting in elevated intracellular oxygen levels and futile cycling of metronidazole. Interestingly, FR1 has no close homologue in any other sequenced genome, but seven full-length and three truncated isoforms exist in the T. vaginalis genome. However, out of these, only FR1 has an affinity for flavins, i.e. FMN, FAD, and riboflavin, which is high enough to be of physiological relevance. Although there are no relevant changes in the gene sequence or any alterations of the predicted FR1-mRNA structure in any of the strains studied, FR1 is not expressed in highly metronidazole-resistant strains. Transfection of a metronidazole-resistant clinical isolate (B7268), which does not express any detectable amounts of FR, with a plasmid bearing a functional FR1 gene nearly completely restored metronidazole sensitivity. Our results indicate that FR1 has a significant role in the emergence of metronidazole resistance in T. vaginalis. PMID:24256032

  5. The Impact of 5α-Reductase Inhibitor Use for Male Pattern Hair Loss on Men's Health.

    PubMed

    Said, Mohammed A; Mehta, Akanksha

    2018-06-16

    Male pattern hair loss, mediated by dihydrotestosterone, is a common hair loss disorder, affecting over 50% of men over the age of 50. The 5-α reductase inhibitors, finasteride and dutasteride, are Food and Drug Administration-approved drugs for the treatment of this disorder. Several recent studies have reported adverse sexual and spermatogenic events among young men using 5-α reductase inhibitors, such as erectile dysfunction, decreased ejaculate volume, decreased libido, and infertility. In this review, we summarize and analyze the literature regarding the efficacy and safety of these medications, with an overall focus on men's health. Finasteride for the treatment of male pattern hair loss was considered safe according to many previous clinical trials. However, these trials have been recently criticized for inadequate safety reporting. Comprehensive review of the current literature reveals that there is a disproportionately high number of men with 5-α reductase inhibitor-associated sexual dysfunction and infertility. Although uncommon, the use of 5-α reductase inhibitors is associated with serious and persistent sexual and reproductive side effects, such as erectile dysfunction, decreased ejaculate volume, decreased libido, and infertility.

  6. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beierlein, J.; Frey, K; Bolstad, D

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structuremore » of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.« less

  7. Decrease of Nitrate Reductase Activity in Spinach Leaves during a Light-Dark Transition 1

    PubMed Central

    Riens, Burgi; Heldt, Hans Walter

    1992-01-01

    In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3− assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells. PMID:16668679

  8. The oxidation of apomorphine and other catechol compounds by horseradish peroxidase: relevance to the measurement of dihydropteridine reductase activity.

    PubMed

    Milstien, S; Kaufman, S

    1987-03-19

    It has been reported by Shen et al. (Shen, R.-S., Smith, R.V., Davis, P.J. and Abell, C.W. (1984) J. Biol. Chem. 259, 8894-9000) that apomorphine and dopamine are potent, non-competitive inhibitors of quinonoid dihydropteridine reductase. In this paper we show that apomorphine, dopamine and other catechol-containing compounds are oxidized rapidly to quinones by the horseradish peroxidase-H2O2 system which is used to generate the quinonoid dihydropterin substrate. These quinones react non-enzymatically with reduced pyridine nucleotides, depleting the other substrate of dihydropteridine reductase. When true initial rates of dihydropteridine reductase-dependent reduction of quinonoid dihydropterins are measured, neither apomorphine nor any other catechol-containing compound that has been tested has been found to inhibit dihydropteridine reductase.

  9. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    PubMed

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  10. Antioxidant and quinone reductase-inducing constituents of black chokeberry (Aronia melanocarpa) fruits.

    PubMed

    Li, Jie; Deng, Ye; Yuan, Chunhua; Pan, Li; Chai, Heebyung; Keller, William J; Kinghorn, A Douglas

    2012-11-21

    Using in vitro hydroxyl radical-scavenging and quinone reductase-inducing assays, bioactivity-guided fractionation of an ethyl acetate-soluble extract of the fruits of the botanical dietary supplement, black chokeberry (Aronia melanocarpa), led to the isolation of 27 compounds, including a new depside, ethyl 2-[(3,4-dihydroxybenzoyloxy)-4,6-dihydroxyphenyl] acetate (1), along with 26 known compounds (2-27). The structures of the isolated compounds were identified by analysis of their physical and spectroscopic data ([α](D), NMR, IR, UV, and MS). Altogether, 17 compounds (1-4, 9, 15-17, and 19-27) showed significant antioxidant activity in the hydroxyl radical-scavenging assay, with hyperin (24, ED(50) = 0.17 μM) being the most potent. The new compound (1, ED(50) = 0.44 μM) also exhibited potent antioxidant activity in this assay. Three constituents of black chokeberry fruits doubled quinone reductase activity at concentrations <20 μM, namely, protocatechuic acid [9, concentration required to double quinone reductase activity (CD) = 4.3 μM], neochlorogenic acid methyl ester (22, CD = 6.7 μM), and quercetin (23, CD = 3.1 μM).

  11. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    PubMed

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  12. Co-Expression of Monodehydroascorbate Reductase and Dehydroascorbate Reductase from Brassica rapa Effectively Confers Tolerance to Freezing-Induced Oxidative Stress

    PubMed Central

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-01-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing. PMID:24170089

  13. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.

    PubMed

    Rižner, Tea Lanišnik; Penning, Trevor M

    2014-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

    PubMed Central

    Ding, Bo; Gibbs, Peter E. M.; Brookes, Paul S.; Maines, Mahin D.

    2011-01-01

    HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca2-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of β-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ≥96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC281 and KYCCSRK296, respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.—Ding, B., Gibbs, P. E. M., Brookes, P. S., Maines, M. D. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival; a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

  15. Methionine sulfoxide reductase A protects hepatocytes against acetaminophen-induced toxicity via regulation of thioredoxin reductase 1 expression.

    PubMed

    Singh, Mahendra Pratap; Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young

    2017-06-03

    Thioredoxin reductase 1 (TXNRD1) is associated with susceptibility to acetaminophen (APAP)-induced liver damage. Methionine sulfoxide reductase A (MsrA) is an antioxidant and protein repair enzyme that specifically catalyzes the reduction of methionine S-sulfoxide residues. We have previously shown that MsrA deficiency exacerbates acute liver injury induced by APAP. In this study, we used primary hepatocytes to investigate the underlying mechanism of the protective effect of MsrA against APAP-induced hepatotoxicity. MsrA gene-deleted (MsrA -/- ) hepatocytes showed higher susceptibility to APAP-induced cytotoxicity than wild-type (MsrA +/+ ) cells, consistent with our previous in vivo results. MsrA deficiency increased APAP-induced glutathione depletion and reactive oxygen species production. APAP treatment increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ hepatocytes. Basal TXNRD1 levels were significantly higher in MsrA -/- than in MsrA +/+ hepatocytes, while TXNRD1 depletion in both MsrA -/- and MsrA +/+ cells resulted in increased resistance to APAP-induced cytotoxicity. In addition, APAP treatment significantly increased TXNRD1 expression in MsrA -/- hepatocytes, while no significant change was observed in MsrA +/+ cells. Overexpression of MsrA reduced APAP-induced cytotoxicity and TXNRD1 expression levels in APAP-treated MsrA -/- hepatocytes. Collectively, our results suggest that MsrA protects hepatocytes from APAP-induced cytotoxicity through the modulation of TXNRD1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Expression, purification and molecular structure modeling of thioredoxin (Trx) and thioredoxin reductase (TrxR) from Acidithiobacillus ferrooxidans.

    PubMed

    Wang, Yiping; Zhang, Xiaojian; Liu, Qing; Ai, Chenbing; Mo, Hongyu; Zeng, Jia

    2009-07-01

    The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, which plays several key roles in maintaining the redox environment of the cell. In Acidithiobacillus ferrooxidans, thioredoxin system may play important functions in the activity regulation of periplasmic proteins and energy metabolism. Here, we cloned thioredoxin (trx) and thioredoxin reductase (trxR) genes from Acidithiobacillus ferrooxidans, and expressed the genes in Escherichia coli. His-Trx and His-TrxR were purified to homogeneity with one-step Ni-NTA affinity column chromatography. Site-directed mutagenesis results confirmed that Cys33, Cys36 of thioredoxin, and Cys142, Cys145 of thioredoxin reductase were active-site residues.

  17. Phenotypic Restoration by Molybdate of Nitrate Reductase Activity in chlD Mutants of Escherichia coli

    PubMed Central

    Glaser, J. H.; DeMoss, J. A.

    1971-01-01

    ChlD mutants of Escherichia coli are pleiotropic, lacking formate-nitrate reductase activity as well as formate-hydrogenlyase activity. Whole-chain formate-nitrate reductase activity, assayed with formate as the electron donor and measuring the amount of nitrite produced, was restored to wild-type levels in the mutants by addition of 10−4m molybdate to the growth medium. Under these conditions, the activity of each of the components of the membrane-bound nitrate reductase chain increased after molybdate supplementation. In the absence of nitrate, the activities of the formate-hydrogenlyase system were also restored by molybdate. Strains deleted for the chlD gene responded in a similar way to molybdate supplementation. The concentration of molybdenum in the chlD mutant cells did not differ significantly from that in the wild-type cells at either low or high concentrations of molybdate in the medium. However, the distribution of molybdenum between the soluble protein and membrane fractions differed significantly from wild type. We conclude that the chlD gene product cannot be a structural component of the formate-hydrogenlyase pathway or the formate-nitrate reductase pathway, but that it must have an indirect role in processing molybdate to a form necessary for both electron transport systems. PMID:4942767

  18. Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts.

    PubMed

    Kaiser, Heike; Richter, Ute; Keiner, Ronald; Brabant, Anja; Hause, Bettina; Dräger, Birgit

    2006-12-01

    Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed in E. coli. One reductase formed pseudotropine, the other formed tropine and showed kinetic properties typical for tropine-forming tropinone reductases (TRI) involved in hyoscyamine formation. Hyoscyamine and tropine are not found in S. tuberosum plants. Potatoes contain calystegines as the only products of the tropane alkaloid pathway. Polyclonal antibodies raised against both enzymes were purified to exclude cross reactions and were used for Western-blot analysis and immunolocalisation. The TRI (EC 1.1.1.206) was detected in protein extracts of tuber tissues, but mostly in levels too low to be localised in individual cells. The function of this enzyme in potato that does not form hyoscyamine is not clear. The pseudotropine-forming tropinone reductase (EC 1.1.1.236) was detected in potato roots, stolons, and tuber sprouts. Cortex cells of root and stolon contained the protein; additional strong immuno-labelling was located in phloem parenchyma. In tuber spouts, however, the protein was detected in companion cells.

  19. Subcellular localization of the five members of the human steroid 5α-reductase family.

    PubMed

    Scaglione, Antonella; Montemiglio, Linda Celeste; Parisi, Giacomo; Asteriti, Italia Anna; Bruni, Renato; Cerutti, Gabriele; Testi, Claudia; Savino, Carmelinda; Mancia, Filippo; Lavia, Patrizia; Vallone, Beatrice

    2017-06-01

    In humans the steroid 5alpha-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in lipidic substrates: Δ 4 -3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum localization. We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates.

  20. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity.

    PubMed

    Grant, Anne W; Steel, Gavin; Waugh, Hugh; Ellis, Elizabeth M

    2003-01-21

    A novel aldo-keto reductase (AKR) from Escherichia coli has been cloned, expressed and purified. This protein, YghZ, is distantly related (<40%) to mammalian aflatoxin dialdehyde reductases of the aldo-keto reductase AKR7 family and to potassium channel beta-subunits in the AKR6 family. The enzyme has been placed in a new AKR family (AKR14), with the designation AKR14A1. Sequences encoding putative homologues of this enzyme exist in many other bacteria. The enzyme can reduce several aldehyde and diketone substrates, including the toxic metabolite methylglyoxal. The K(m) for the model substrate 4-nitrobenzaldehyde is 1.06 mM and for the endogenous dicarbonyl methylglyoxal it is 3.4 mM. Overexpression of the recombinant enzyme in E. coli leads to increased resistance to methylglyoxal. It is possible that this enzyme plays a role in the metabolism of methylglyoxal, and can influence its levels in vivo.

  1. Inhibition of human anthracycline reductases by emodin - A possible remedy for anthracycline resistance.

    PubMed

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A mutant of barley lacking NADH-hydroxypyruvate reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, R.; Lea, P.

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used tomore » show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.« less

  3. Intact Plastids Are Required for Nitrate- and Light-Induced Accumulation of Nitrate Reductase Activity and mRNA in Squash Cotyledons 1

    PubMed Central

    Oelmüller, Rolf; Briggs, Winslow R.

    1990-01-01

    Induction of nitrate reductase activity and mRNA by nitrate and light is prevented if chloroplasts are destroyed by photooxidation in norflurazon-treated squash (Cucurbita maxima L.) cotyledons. The enzyme activity and mRNA can be induced if norflurazon-treated squash seedlings are kept in low-intensity red light, which minimizes photodamage to the plastids. It is concluded that induction of nitrate reductase activity and nitrate reductase mRNA requires intact plastids. If squash seedlings grown in low-intensity red light are transferred to photooxidative white light, nitrate reductase activity accumulates during the first 12 hours after the shift and declines thereafter. Thus photodamage to the plastids and the disappearance of nitrate reductase activity and mRNA are events separable in time, and disappearance of the enzyme activity is a consequence of the damage to the plastids. Images Figure 1 Figure 3 Figure 4 PMID:16667294

  4. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  5. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  6. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase

  7. Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration.

    PubMed

    Bardon, Clément; Poly, Franck; Piola, Florence; Pancton, Muriel; Comte, Gilles; Meiffren, Guillaume; Haichar, Feth el Zahar

    2016-05-01

    Recently, it has been shown that procyanidins from Fallopia spp. inhibit bacterial denitrification, a phenomenon called biological denitrification inhibition (BDI). However, the mechanisms involved in such a process remain unknown. Here, we investigate the mechanisms of BDI involving procyanidins, using the model strain Pseudomonas brassicacearum NFM 421. The aerobic and anaerobic (denitrification) respiration, cell permeability and cell viability of P. brassicacearum were determined as a function of procyanidin concentration. The effect of procyanidins on the bacterial membrane was observed using transmission electronic microscopy. Bacterial growth, denitrification, NO3- and NO2-reductase activity, and the expression of subunits of NO3- (encoded by the gene narG) and NO2-reductase (encoded by the gene nirS) under NO3 or NO2 were measured with and without procyanidins. Procyanidins inhibited the denitrification process without affecting aerobic respiration at low concentrations. Procyanidins also disturbed cell membranes without affecting cell viability. They specifically inhibited NO3- but not NO2-reductase.Pseudomonas brassicacearum responded to procyanidins by over-expression of the membrane-bound NO3-reductase subunit (encoded by the gene narG). Our results suggest that procyanidins can specifically inhibit membrane-bound NO3-reductase inducing enzymatic conformational changes through membrane disturbance and that P. brassicacearum responds by over-expressing membrane-bound NO3-reductase. Our results lead the way to a better understanding of BDI. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Biphasic Kinetic Behavior of Nitrate Reductase from Heterocystous, Nitrogen-Fixing Cyanobacteria 1

    PubMed Central

    Martin-Nieto, José; Flores, Enrique; Herrero, Antonia

    1992-01-01

    Nitrate reductase activity from filamentous, heterocyst-forming cyanobacteria showed a biphasic kinetic behavior with respect to nitrate as the variable substrate. Two kinetic components were detected, the first showing a higher affinity for nitrate (Km, 0.05-0.25 mm) and a lower catalytic activity and the second showing a lower affinity for nitrate (Km, 5-25 mm) and a higher (3- to 5-fold) catalytic activity. In contrast, among unicellular cyanobacteria, most representatives studied exhibited a monophasic, Michaelis-Menten kinetic pattern for nitrate reductase activity. Biphasic kinetics remained unchanged with the use of different assay conditions (i.e. cell disruption or permeabilization, two different electron donors) or throughout partial purification of the enzyme. PMID:16652939

  9. Structural and Biochemical Characterization of Cinnamoyl-CoA Reductases1

    PubMed Central

    Walker, Alexander M.

    2017-01-01

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species. PMID:27956488

  10. Effect of Ammonium and Nitrate on Ferric Chelate Reductase and Nitrate Reductase in Vaccinium Species

    PubMed Central

    POONNACHIT, U.; DARNELL, R.

    2004-01-01

    • Background and Aims Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate‐containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. • Methods Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. • Key Results Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron‐deficient conditions, compared with the same species grown under iron‐sufficient conditions or with V. arboreum grown under either iron condition. • Conclusions. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum. PMID:14980973

  11. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    PubMed

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  12. Mercury-resistance and mercuric reductase activity in Chromobacterium, Erwinia, and Bacillus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevors, J.T.

    1987-06-01

    Mercury resistant bacteria have been the most extensively studied of all the metal-tolerant bacteria. Mercury resistance is usually mediated by two distinctly different enzymes encoded by plasmids. Mercuric reductase reduces Hg/sup 2 +/ to metallic mercury (Hg/sup 0/). Organomercurial lyases have a molecular weight of 20,000 to 40,000, are composed of 1 or 2 subunits and require the presence of thiol. Plasmic-encoded Hg/sup 2 +/ resistance and mercuric reductase activity have not been detected in many species of bacteria. A Chromobacterium, Erwinia and Bacillus species isolated from environmental samples were capable of growth in the presence of 50 ..mu..M HgCl/submore » 2/. Cell-free extracts of the 3 organisms exhibited mercuric reductase activity that oxidized NADPH in the presence of HgCl/sub 2/. Negligible oxidation of NADPH was observed in the absence of HgCl/sub 2/. The Chromobacterium sp. did not contain any plasmid DNA. This would suggest that Hg/sup 2 +/ resistance was carried on the chromosome in Chromobacterium. A single 3 Mdal plasmid in the Bacillus sp. was refractory to curing. The Erwinia sp. contained 3 plasmids which were also refractory to curing. The location of the resistance genes is unknown in the Bacillus and Erwinia isolates.« less

  13. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster.

    PubMed

    Sgraja, Tanja; Ulschmid, Julia; Becker, Katja; Schneuwly, Stephan; Klebe, Gerhard; Reuter, Klaus; Heine, Andreas

    2004-10-01

    In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.

  14. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  15. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats

    PubMed Central

    Abdul Nasir, Nurul Alimah; Agarwal, Renu; Sheikh Abdul Kadir, Siti Hamimah; Vasudevan, Sushil; Tripathy, Minaketan; Iezhitsa, Igor; Mohammad Daher, Aqil; Ibrahim, Mohd Ikraam; Mohd Ismail, Nafeeza

    2017-01-01

    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase

  16. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats.

    PubMed

    Abdul Nasir, Nurul Alimah; Agarwal, Renu; Sheikh Abdul Kadir, Siti Hamimah; Vasudevan, Sushil; Tripathy, Minaketan; Iezhitsa, Igor; Mohammad Daher, Aqil; Ibrahim, Mohd Ikraam; Mohd Ismail, Nafeeza

    2017-01-01

    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase

  17. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.

    PubMed

    Means, A L; Farnham, P J

    1990-02-01

    We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).

  18. Nitrate reductase-formate dehydrogenase couple involved in the fungal denitrification by Fusarium oxysporum.

    PubMed

    Uchimura, Hiromasa; Enjoji, Hitoshi; Seki, Takafumi; Taguchi, Ayako; Takaya, Naoki; Shoun, Hirofumi

    2002-04-01

    Dissimilatory nitrate reductase (Nar) was solubilized and partially purified from the large particle (mitochondrial) fraction of the denitrifying fungus Fusarium oxysporum and characterized. Many lines of evidence showed that the membrane-bound Nar is distinct from the soluble, assimilatory nitrate reductase. Further, the spectral and other properties of the fungal Nar were similar to those of dissimilatory Nars of Escherichia coli and denitrifying bacteria, which are comprised of a molybdoprotein, a cytochrome b, and an iron-sulfur protein. Formate-nitrate oxidoreductase activity was also detected in the mitochondrial fraction, which was shown to arise from the coupling of formate dehydrogenase (Fdh), Nar, and a ubiquinone/ubiquinol pool. This is the first report of the occurrence in a eukaryote of Fdh that is associated with the respiratory chain. The coupling with Fdh showed that the fungal Nar system is more similar to that involved in the nitrate respiration by Escherichia coli than that in the bacterial denitrifying system. Analyses of the mutant species of F. oxysporum that were defective in Nar and/or assimilatory nitrate reductase conclusively showed that Nar is essential for the fungal denitrification.

  19. Atomic Structure of Salutaridine Reductase from the Opium Poppy (Papaver somniferum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, Yasuhiro; Kutchan, Toni M.; Smith, Thomas J.

    The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of {approx}1.9 {angstrom} in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large 'flap'-like domain (residuesmore » 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.« less

  20. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N.; Luque, Francisco; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement

  1. Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syn-9,10-dioxabimane.

    PubMed Central

    Vogel, F; Lumper, L

    1983-01-01

    The kinetics of thiol-group alkylation in NADPH-cytochrome P-450 reductase during its inactivation by monobromobimane has been studied using the fluorimetric determination of S-bimane-L-cysteine by high-performance liquid chromatography. Loss of activity during the reaction of NADPH-cytochrome P-450 reductase with monobromobimane is caused by the alkylation of one single critical cysteine residue, which can be protected against thiol-specific reagents by NADP(H). The chemical stability of the bimane group allows the digestion of bimane-labelled NADPH-cytochrome P-450 reductase by CNBr. The critical cysteine residue could be located in a CNBr-cleaved peptide purified to homogeneity with Mr 10 500 +/- 1 000 and valine as N-terminus. Images Fig. 2. PMID:6414464

  2. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae.

    PubMed

    Sumiya, Nobuko; Kawase, Yasuko; Hayakawa, Jumpei; Matsuda, Mami; Nakamura, Mami; Era, Atsuko; Tanaka, Kan; Kondo, Akihiko; Hasunuma, Tomohisa; Imamura, Sousuke; Miyagishima, Shin-ya

    2015-10-01

    Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Androgenic correlates of genetic variation in the gene encoding 5alpha-reductase type 1.

    PubMed

    Ellis, Justine A; Panagiotopoulos, Sianna; Akdeniz, Aysel; Jerums, George; Harrap, Stephen B

    2005-01-01

    Androgens determine male secondary sexual characteristics and influence a variety of metabolic pathways. Circulating levels of androgens are highly heritable; however, the genes involved are largely unknown. The 5alpha-reductase enzymes types 1 and 2 responsible for converting testosterone to the more potent androgen dihydrotestosterone are encoded by the SRD5A1 and SRD5A2 genes, respectively. We performed indirect genetic association studies of SRD5A1 and SRD5A2 and the dihydrotestosterone/testosterone ratio that reflects the activity of 5alpha-reductase in 57 males with type 2 diabetes. We found evidence of significant association between a single nucleotide polymorphism in SRD5A1 and the dihydrotestosterone/testosterone ratio (median 0.10, interquartile range 0.08 vs. median 0.06, interquartile range 0.04, P = 0.009). The polymorphism was not associated with any diabetic phenotypes. These results suggest that functional genetic variants might exist in or around SRD5A1 that affect the activity of the 5alpha-reductase enzyme type 1 and influence androgen levels.

  4. Therapeutic Modalities in Diabetic Nephropathy: Future Approaches*

    PubMed Central

    Reeves, William Brian; Rawal, Bishal B.; Abdel-Rahman, Emaad M.; Awad, Alaa S.

    2012-01-01

    Diabetes mellitus is the leading cause of end stage renal disease and is responsible for more than 40% of all cases in the United States. Several therapeutic interventions for the treatment of diabetic nephropathy have been developed and implemented over the past few decades with some degree of success. However, the renal protection provided by these therapeutic modalities is incomplete. More effective approaches are therefore urgently needed. Recently, several novel therapeutic strategies have been explored in treating DN patients including Islet cell transplant, Aldose reductase inhibitors, Sulodexide (GAC), Protein Kinase C (PKC) inhibitors, Connective tissue growth factor (CTGF) inhibitors, Transforming growth factor-beta (TGF-β) inhibitors and bardoxolone. The benefits and risks of these agents are still under investigation. This review aims to summarize the utility of these novel therapeutic approaches. PMID:23293752

  5. Six New Polyketide Decalin Compounds from Mangrove Endophytic Fungus Penicillium aurantiogriseum 328#

    PubMed Central

    Ma, Yanhong; Li, Jing; Huang, Meixiang; Liu, Lan; Wang, Jun; Lin, Yongcheng

    2015-01-01

    Six new compounds with polyketide decalin ring, peaurantiogriseols A–F (1–6), along with two known compounds, aspermytin A (7), 1-propanone,3-hydroxy-1-(1,2,4a,5,6,7,8,8a-octahydro-2,5-dihydroxy-1,2,6-trimethyl-1-naphthalenyl) (8), were isolated from the fermentation products of mangrove endophytic fungus Penicillium aurantiogriseum 328#. Their structures were elucidated based on their structure analysis. The absolute configurations of compounds 1 and 2 were determined by 1H NMR analysis of their Mosher esters; the absolute configurations of 3–6 were determined by using theoretical calculations of electronic circular dichroism (ECD). Compounds 1–8 showed low inhibitory activity against human aldose reductase, no activity of inducing neurite outgrowth, nor antimicrobial activity. PMID:26473887

  6. Natural Inhibitors of HMG-CoA Reductase-An Insilico Approach Through Molecular Docking and Simulation Studies.

    PubMed

    Suganya, Subramanian; Nandagopal, Balaji; Anbarasu, Anand

    2017-01-01

    Plant products have always been considered for many important metabolic disorders due to its abundant medicinal properties. Alarming adverse effects of overuse of statins has been reported for patients with dyslipidemia. This study was aimed to identify compounds with potent anti-dyslipidemic property from selected plants and analyze them for their efficiency in binding with HMG-CoA reductase, a key enzyme in lipid metabolism. The docking studies indicate rutin as the best compound that can inhibit HMG-CoA reductase as it had strong binding affinity to the enzyme. The molecular dynamics simulation studies confirmed the stability of the HMG-CoA reductase-rutin complex. RMSD, RMSF, Rg, H-bond results indicated that the HMG-CoA reductase-rutin complex is highly stable. Presently, statins are not preferred for individuals with pre-existing liver disease. Our study identified rutin as a promising lead compound which could be further developed into an anti-dyslipidemic molecule. Our results will be a good starting point for future experimental and clinical studies and if the results from such studies match international standards plant derived rutin might emerge as a good alternative to statins. J. Cell. Biochem. 118: 52-57, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    PubMed Central

    Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan

    2012-01-01

    Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598

  8. Influence of rete testis fluid deprivation on the kinetic parameters of goat epididymal 5 alpha-reductase.

    PubMed

    Kelce, W R; Lubis, A M; Braun, W F; Youngquist, R S; Ganjam, V K

    1990-01-01

    A surgical technique to cannulate the rete testis of the goat was utilized to examine the effects of rete testis fluid (RTF) deprivation on the enzymatic activity of epididymal 5 alpha-reductase. Kinetic techniques were used to determine whether the regional enzymatic effect of RTF deprivation is to decrease the apparent number of 5 alpha-reductase active sites or the catalytic activity of each active site within the epididymal epithelium. Paired comparisons of (Vmax)app and (Km)app values between control and RTF-deprived epididymides indicated that RTF deprivation affected the value of (Vmax)app with no apparent change in the values of (Km)app in caput, corpus, and cauda epididymal regions. We conclude that RTF deprivation in the goat epididymis for 7 days results in a decreased number of apparent 5 alpha-reductase active sites within the epididymal epithelium.

  9. Guinea-pig liver testosterone 17 beta-dehydrogenase (NADP+) and aldehyde reductase exhibit benzene dihydrodiol dehydrogenase activity.

    PubMed Central

    Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H

    1985-01-01

    We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661

  10. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    PubMed Central

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-­quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P41212, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%. PMID:19478454

  11. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    PubMed

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Nitrate reductase activity of Staphylococcus carnosus affecting the color formation in cured raw ham.

    PubMed

    Bosse Née Danz, Ramona; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2016-07-01

    The influence of the nitrate reductase activity of two Staphylococcus carnosus strains used as starter cultures on the formation of nitrate, nitrite and color pigments in cured raw ham was investigated. In this context, microbiological, chemical and multivariate image analyses were carried out on cured raw hams, which were injected with different brines containing either nitrite or nitrate, with or without the S. carnosus starter cultures. During processing and storage, the viable counts of staphylococci remained constant at 6.5logcfu/g in the hams inoculated with starter cultures, while the background microbiota of the hams processed without the starter cultures developed after 14days. Those cured hams inoculated with S. carnosus LTH 7036 (high nitrate reductase activity) showed the highest decrease in nitrate and high nitrite concentrations in the end product, but were still in the range of the legal European level. The hams cured with nitrate and without starter culture or with the other strain, S. carnosus LTH 3838 (low nitrate reductase activity) showed higher residual nitrate levels and a lower nitrite content in the end product. The multivariate image analysis identified spatial and temporal differences in the meat pigment profiles of the differently cured hams. The cured hams inoculated with S. carnosus LTH 3838 showed an uncured core due to a delay in pigment formation. Therefore, the selection of starter cultures based on their nitrate reductase activity is a key point in the formation of curing compounds and color pigments in cured raw ham manufacture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An Electron-bifurcating Caffeyl-CoA Reductase*

    PubMed Central

    Bertsch, Johannes; Parthasarathy, Anutthaman; Buckel, Wolfgang; Müller, Volker

    2013-01-01

    A low potential electron carrier ferredoxin (E0′ ≈ −500 mV) is used to fuel the only bioenergetic coupling site, a sodium-motive ferredoxin:NAD+ oxidoreductase (Rnf) in the acetogenic bacterium Acetobacterium woodii. Because ferredoxin reduction with physiological electron donors is highly endergonic, it must be coupled to an exergonic reaction. One candidate is NADH-dependent caffeyl-CoA reduction. We have purified a complex from A. woodii that contains a caffeyl-CoA reductase and an electron transfer flavoprotein. The enzyme contains three subunits encoded by the carCDE genes and is predicted to have, in addition to FAD, two [4Fe-4S] clusters as cofactor, which is consistent with the experimental determination of 4 mol of FAD, 9 mol of iron, and 9 mol of acid-labile sulfur. The enzyme complex catalyzed caffeyl-CoA-dependent oxidation of reduced methyl viologen. With NADH as donor, it catalyzed caffeyl-CoA reduction, but this reaction was highly stimulated by the addition of ferredoxin. Spectroscopic analyses revealed that ferredoxin and caffeyl-CoA were reduced simultaneously, and a stoichiometry of 1.3:1 was determined. Apparently, the caffeyl-CoA reductase-Etf complex of A. woodii uses the novel mechanism of flavin-dependent electron bifurcation to drive the endergonic ferredoxin reduction with NADH as reductant by coupling it to the exergonic NADH-dependent reduction of caffeyl-CoA. PMID:23479729

  14. Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity[S

    PubMed Central

    Yu, Yu-Hsiang; Chang, Yi-Cheng; Su, Tseng-Hsiung; Nong, Jiun-Yi; Li, Chao-Chin; Chuang, Lee-Ming

    2013-01-01

    Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders. PMID:23821743

  15. Metabolism of the Synthetic Progestogen Norethynodrel by Human Ketosteroid Reductases of the Aldo-Keto Reductase Superfamily

    PubMed Central

    Jin, Yi; Duan, Ling; Chen, Mo; Penning, Trevor M; Kloosterboer, Helenius J.

    2012-01-01

    Human ketosteroid reductases of the aldo-keto reductase (AKR) superfamily, i.e. AKR1C1-4, are implicated in the biotransformation of synthetic steroid hormones. Norethynodrel (NOR, 17α-ethynyl-17β-hydroxy-estra-5(10)-en-3-one), the progestin component of the first marketed oral contraceptive, is known to undergo rapid and extensive metabolism to 3α- and 3β-hydroxy metabolites. The ability of the four human AKR1C enzymes to catalyze the metabolism of NOR has now been characterized. AKR1C1 and AKR1C2 almost exclusively converted NOR to 3β-hydroxy NOR, while AKR1C3 gave 3β-hydroxy NOR as the main product and AKR1C4 predominantly formed 3α-hydroxy NOR. Individual AKR1C enzymes also displayed distinct kinetic properties in the reaction of NOR. In contrast, norethindrone (NET), the Δ4-isomer of NOR and the most commonly used synthetic progestin, was not a substrate for the AKR1C enzymes. NOR is also structurally identical to the hormone replacement therapeutic tibolone (TIB), except TIB has a methyl group at the 7α-position. Product profiles and kinetic parameters for the reduction of NOR catalyzed by each individual AKR1C isoform were identical to those for the reduction of TIB catalyzed by the respective isoform. These data suggest that the presence of the 7α-methyl group has a minimal effect on the stereochemical outcome of the reaction and kinetic behavior of each enzyme. Results indicate a role of AKR1C in the hepatic and peripheral metabolism of NOR to 3α- and 3β-hydroxy NOR and provide insights into the differential pharmacological properties of NOR, NET and TIB. PMID:22210085

  16. Polymorphisms in the methylene tetrahydrofolate reductase and methionine synthase reductase genes and their correlation with unexplained recurrent spontaneous abortion susceptibility.

    PubMed

    Zhu, L

    2015-07-28

    We aimed to explore the correlation between unexplained recurrent spontaneous abortion and polymorphisms in the methylene tetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) genes. A case control study was conducted in 118 patients with unexplained recurrent spontaneous abortion (abortion group) and 174 healthy women (control group). The genetic material was extracted from the oral mucosal epithelial cells obtained from all subjects. The samples were subjected to fluorescence quantitative PCR to detect the single nucleotide polymorphisms (SNPs) in the MTHFR (C677T and A1298C) and MTRR (A66G) gene loci. The distribution frequency (18/118, 15.3%) of the MTHFR 677TT genotype was significantly higher in the abortion group (χ2 = 11.006, P = 0.004) than in the control group (2/174, 1.1%); on the other hand, the distribution frequency of the MTHFR A1298C genotype did not significantly differ between the abortion and control groups (χ(2) = 0.441, P = 0.507). The distribution frequency of the MTRR A66G genotype was also significantly higher in the abortion group (14/118, 11.9%; χ(2) = 10.503, P = 0.005) than in the control group (8/174, 4.6%). The MTHFR C677T and MTRR A66G polymorphisms are significantly correlated with the occurrence of spontaneous abortion.

  17. Crystallization of mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor flutolanil

    PubMed Central

    Osanai, Arihiro; Harada, Shigeharu; Sakamoto, Kimitoshi; Shimizu, Hironari; Inaoka, Daniel Ken; Kita, Kiyoshi

    2009-01-01

    In adult Ascaris suum (roundworm) mitochondrial membrane-bound complex II acts as a rhodoquinol-fumarate reductase, which is the reverse reaction to that of mammalian complex II (succinate-ubiquinone reductase). The adult A. suum rhodoquinol-fumarate reductase was crystallized in the presence of octaethyleneglycol monododecyl ether and n-dodecyl-β-d-maltopyranoside in a 3:2 weight ratio. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 123.75, b = 129.08, c = 221.12 Å, and diffracted to 2.8 Å resolution using synchrotron radiation. The presence of two molecules in the asymmetric unit (120 kDa × 2) gives a crystal volume per protein mass (V M) of 3.6 Å3 Da−1. PMID:19724139

  18. Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichomonas vaginalis

    PubMed Central

    Leitsch, David; Drinić, Mirjana; Kolarich, Daniel; Duchêne, Michael

    2012-01-01

    The microaerophilic parasite Trichomonas vaginalis is a causative agent of painful vaginitis or urethritis, termed trichomoniasis, and can also cause preterm delivery or stillbirth. Treatment of trichomoniasis is almost exclusively based on the nitroimidazole drugs metronidazole and tinidazole. Metronidazole resistance in T. vaginalis does occur and is often associated with treatment failure. In most cases, metronidazole-resistant isolates remain susceptible to tinidazole, but cross resistance between the two closely related drugs can be a problem. In this study we measured activities of thioredoxin reductase and flavin reductase in four metronidazole-susceptible and five metronidazole-resistant isolates. These enzyme activities had been previously found to be downregulated in T. vaginalis with high-level metronidazole resistance induced in the laboratory. Further, we aimed at identifying factors causing metronidazole resistance and compared the protein expression profiles of all nine isolates by application of two-dimensional gel electrophoresis (2DE). Thioredoxin reductase activity was nearly equal in all strains assayed but flavin reductase activity was clearly down-regulated, or even absent, in metronidazole-resistant strains. Since flavin reductase has been shown to reduce oxygen to hydrogen peroxide, its down-regulation could significantly contribute to the impairment of oxygen scavenging as reported by others for metronidazole-resistant strains. Analysis by 2DE revealed down-regulation of alcohol dehydrogenase 1 (ADH1) in strains with reduced sensitivity to metronidazole, an enzyme that could be involved in detoxification of intracellular acetaldehyde. PMID:22449940

  19. Purification, Characterization, and Overexpression of Flavin Reductase Involved in Dibenzothiophene Desulfurization by Rhodococcus erythropolis D-1

    PubMed Central

    Matsubara, Toshiyuki; Ohshiro, Takashi; Nishina, Yoshihiro; Izumi, Yoshikazu

    2001-01-01

    The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain. PMID:11229908

  20. Two Tropinone Reductases with Distinct Stereospecificities from Cultured Roots of Hyoscyamus niger1

    PubMed Central

    Hashimoto, Takashi; Nakajima, Keiji; Ongena, Godelieve; Yamada, Yasuyuki

    1992-01-01

    Tropinone is an alkamine intermediate at the branch point of biosynthetic pathways leading to various tropane alkaloids. Two stereospecifically distinct NADPH-dependent oxidoreductases, TR-I and TR-II, which, respectively, reduce tropinone to 3α-hydroxytropane (tropine) and 3β-hydroxytropane (ψ-tropine), were detected mainly in the root of tropane alkaloid-producing plants but not in nonproducing cultured root. Both reductases were purified to near homogeneity from cultured root of Hyoscyamus niger and characterized. The TR-I reaction was reversible, whereas the TR-II reaction was essentially irreversible, reduction of the ketone being highly favored over oxidation of the alcohol ψ-tropine. Marked differences were found between the two reductase in their affinities for tropinone substrate and in the effects of amino acid modification reagents. Some differences in substrate specificity were apparent. For example, N-propyl-4-piperidone was reduced by TR-II but not by TR-I. Conversely, 3-quinuclidinone and 8-thiabicyclo[3,2,1]octane-3-one were accepted as substrates by TR-I but hardly at all by TR-II. Both enzymes were shown to be class B oxidoreductases, which transfer the pro-S hydrogen of NAD(P)H to their substrates. Possible roles of these tropinone reductases in alkaloid biosynthesis are discussed. Images Figure 6 PMID:16653065

  1. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    PubMed

    Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.

  2. Effect of a novel steroid (PM-9) on the inhibition of 5alpha-reductase present in Penicillium crustosum broths.

    PubMed

    Flores, Eugenio; Cabeza, Marisa; Quiroz, Alexandra; Bratoeff, Eugene; García, Genoveva; Ramírez, Elena

    2003-03-01

    The conversion of testosterone (T) to 5alpha-dihydrotestosterone (DHT) has been demonstrated in Penicillium crustosum broth obtained from fermented pistachios, lemons and corn tortillas. Furthermore, the presence of 5alpha-reductase enzyme, which is responsible for this conversion, has been established by electrophoretical techniques in these cultures.5alpha-Reductase enzyme is also present in animal and human androgen-dependent tissues as well as in prostate and seminal vesicles. The increase of the conversion of T to DHT in prostate gland, has been related to some illnesses such as benign prostate hyperplasia and prostate cancer. Furthermore, treatment with 5alpha-reductase inhibitors such as finasteride reduces the prostate growth. These data have stimulated research for the synthesis of new molecules with antiandrogenic activity, whose biological effect needs to be demonstrated. The purpose of this study is to determine the inhibition pattern of 5alpha-reductase in P. crustosum by finasteride and the new steroidal compound PM-9. K(m) and V(max) values for T, were determined in the broths by Lineweaver-Burk plots using different testosterone concentrations. The inhibition pattern of finasteride and PM-9 was also determined by Lineweaver-Burk using different concentrations of T and inhibitors. Results show that finasteride and PM-9 inhibit 5alpha-reductase present in the broth in a competitive manner.

  3. Carboxylic acid reductase enzymes (CARs).

    PubMed

    Winkler, Margit

    2018-04-01

    Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of delta(1)-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidativemore » stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.« less

  5. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidativemore » stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.« less

  6. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean

    PubMed Central

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity. PMID:26635848

  7. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    PubMed

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  8. Association study of methylenetetrahydrofolate reductase C677T mutation with cerebral venous thrombosis in an Iranian population.

    PubMed

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad S

    2015-12-01

    There are limited data on the role of methylenetetrahydrofolate reductase C677T polymorphism and hyperhomocysteinemia as risk factors for cerebral venous thrombosis in Iranian population. We examined a possible association between fasting plasma homocysteine levels, methylenetetrahydrofolate reductase C677T polymorphism, and cerebral venous thrombosis in 50 patients with a diagnosis of cerebral venous thrombosis (20-63 years old) and 75 healthy controls (18-65 years old). Genotyping of the methylenetetrahydrofolate reductase C677T gene polymorphism was performed by PCR-restriction fragment length polymorphism analysis, and homocysteine levels were measured by enzyme immunoassay. Fasting plasma homocysteine levels were significantly higher in cerebral venous thrombosis patients than in controls (P = 0.015). Moreover, plasma homocysteine levels were significantly higher in methylenetetrahydrofolate reductase 677TT genotype compared to 677CT and 677CC genotypes in both cerebral venous thrombosis patients (P = 0.01) and controls (P = 0.03). Neither 677CT heterozygote genotype [odds ratio (OR) 1.35, 95% confidence interval (CI) 0.64-2.84, P = 0.556] nor 677TT homozygote genotype (OR 1.73, 95% CI 0.32-9.21, P = 0.833) was significantly associated with cerebral venous thrombosis. Additionally, no significant differences in the frequency of 677T allele between cerebral venous thrombosis patients and controls were identified (OR 1.31, 95% CI 0.69-2.50, P = 0.512). In conclusion, our study demonstrated that elevated plasma homocysteine levels are significant risk factors for cerebral venous thrombosis. Also, methylenetetrahydrofolate reductase 677TT genotype is not linked with cerebral venous thrombosis, but is a determinant of elevated plasma homocysteine levels.

  9. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    PubMed

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  10. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice

    PubMed Central

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-01-01

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications. PMID:26446494

  11. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice.

    PubMed

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-10-08

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications.

  12. Streptococcus sanguinis Class Ib Ribonucleotide Reductase

    PubMed Central

    Makhlynets, Olga; Boal, Amie K.; Rhodes, DeLacy V.; Kitten, Todd; Rosenzweig, Amy C.; Stubbe, JoAnne

    2014-01-01

    Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with FeII and O2 can self-assemble a diferric-tyrosyl radical (FeIII2-Y•) cofactor (1.2 Y•/β2) and with the help of NrdI can assemble a MnIII2-Y• cofactor (0.9 Y•/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and MnII2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μm) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR. PMID:24381172

  13. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia.

    PubMed

    Baskaran, Gunasekaran; Salvamani, Shamala; Ahmad, Siti Aqlima; Shaharuddin, Noor Azmi; Pattiram, Parveen Devi; Shukor, Mohd Yunus

    2015-01-01

    The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl), 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and α-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases.

  14. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia

    PubMed Central

    Baskaran, Gunasekaran; Salvamani, Shamala; Ahmad, Siti Aqlima; Shaharuddin, Noor Azmi; Pattiram, Parveen Devi; Shukor, Mohd Yunus

    2015-01-01

    The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl), 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and α-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases. PMID:25609924

  15. Differential Effect of Irradiance and Nutrient Nitrate on the Relationship of in Vivo and in Vitro Nitrate Reductase Assay in Chlorophyllous Tissues 1

    PubMed Central

    Jones, Richard Wyn; Sheard, Robert W.

    1977-01-01

    Growth at increasing continuous irradiance (at high nutrient nitrate) and nutrient nitrate concentrations (at high continuous irradiance) furnished increases in the in vivo and in vitro nitrate reductase activities of corn (Zea mays L.), field peas (Pisum arvense L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and globe amaranth (Gomphrena globosa L.) leaves and of marrow (Cucurbita pepo L.) cotyledons. Ratios of in vivo to in vitro activity declined exponentially in all species with increasing nitrate reductase levels promoted by nutrient nitrate. The ratios were more nearly independent of nitrate reductase levels generated by adjusting the irradiance; major exceptions were marrow and wheat at low (1.5 klux and less) irradiances and peas throughout the irradiance range, where decreases in the ratio were accompanied by increases in in situ nitrate concentration. The ratio also increased at the highest irradiance (39.2 klux) in wheat and barley, associated with a decline of in vitro nitrate reductase. These differences in response to irradiance and nutrient nitrate indicate that the in vivo assay does not provide a simple measure of nitrate reductase but rather yields a more composite measure of nitrate reduction, possibly related both to nitrate reductase level and to the supply of reductant for in vivo activity. PMID:16659888

  16. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    PubMed

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  17. The ferredoxin-thioredoxin reductase variable subunit gene from Anacystis nidulans.

    PubMed

    Szekeres, M; Droux, M; Buchanan, B B

    1991-03-01

    The ferredoxin-thioredoxin reductase variable subunit gene of Anacystis nidulans was cloned, and its nucleotide sequence was determined. A single-copy 219-bp open reading frame encoded a protein of 73 amino acid residues, with a calculated Mr of 8,400. The monocistronic transcripts were represented in a 400-base and a less abundant 300-base mRNA form.

  18. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  19. X-ray crystal structure of GarR-tartronate semialdehyde reductase from Salmonella typhimurium.

    PubMed

    Osipiuk, J; Zhou, M; Moy, S; Collart, F; Joachimiak, A

    2009-09-01

    Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related beta-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determined by the single-wavelength anomalous diffraction method and refined to 1.65 A resolution. The active site of the enzyme contains L-tartrate which most likely mimics a position of a glycerate which is a product of the enzyme reaction. The analysis of the TSR structure shows also a putative NADPH binding site in the enzyme.

  20. 1,8-Dihydroxynaphthalene (DHN)-Melanin Biosynthesis Inhibitors Increase Erythritol Production in Torula corallina, and DHN-Melanin Inhibits Erythrose Reductase

    PubMed Central

    Lee, Jung-Kul; Jung, Hyung-Moo; Kim, Sang-Yong

    2003-01-01

    The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina. PMID:12788746

  1. The NosX and NirX Proteins of Paracoccus denitrificans Are Functional Homologues: Their Role in Maturation of Nitrous Oxide Reductase

    PubMed Central

    Saunders, Neil F. W.; Hornberg, Jorrit J.; Reijnders, Willem N. M.; Westerhoff, Hans V.; de Vries, Simon; van Spanning, Rob J. M.

    2000-01-01

    The nos (nitrous oxide reductase) operon of Paracoccus denitrificans contains a nosX gene homologous to those found in the nos operons of other denitrifiers. NosX is also homologous to NirX, which is so far unique to P. denitrificans. Single mutations of these genes did not result in any apparent phenotype, but a double nosX nirX mutant was unable to reduce nitrous oxide. Promoter-lacZ assays and immunoblotting against nitrous oxide reductase showed that the defect was not due to failure of expression of nosZ, the structural gene for nitrous oxide reductase. Electron paramagnetic resonance spectroscopy showed that nitrous oxide reductase in cells of the double mutant lacked the CuA center. A twin-arginine motif in both NosX and NirX suggests that the NosX proteins are exported to the periplasm via the TAT translocon. PMID:10960107

  2. Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B.

    PubMed

    Takahashi, Shusuke; Furuya, Toshiki; Ishii, Yoshitaka; Kino, Kuniki; Kirimura, Kohtaro

    2009-01-01

    Bacillus subtilis WU-S2B is a thermophilic dibenzothiophene (DBT)-desulfurizing bacterium and produces a flavin reductase (Frb) that couples with DBT and DBT sulfone monooxygenases. The recombinant Frb was purified from Escherichia coli cells expressing the frb gene and was characterized. The purified Frb exhibited high stability over wide temperature and pH ranges of 20-55 degrees C and 2-12, respectively. Frb contained FMN and exhibited both flavin reductase and nitroreductase activities.

  3. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase

    PubMed Central

    Trigoso, Yvonne D.; Evans, Russell C.; Karsten, William E.; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040

  4. Diagnostic value of succinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion.

    PubMed

    Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R

    2002-02-01

    Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome

  5. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities.

    PubMed

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne; Tjener, Karsten; Stahnke, Louise H; Møller, Jens K S

    2008-04-01

    Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour was followed by L(∗)a(∗)b measurements and the content of nitrosylmyoglobin (MbFe(II)NO) quantified by electron spin resonance (ESR). MbFe(II)NO was rapidly formed in sausages with added nitrite independent of the presence of nitrite reducing bacteria, whereas the rate of MbFe(II)NO formation in sausages with added nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation by autofluorescence and hexanal content, respectively. No significant direct effect of the Staphylococcus addition was observed, however, there was a clear correspondence between high initial amount of MbFe(II)NO in the different sausages and the colour stability during storage. Autofluorescence data correlated well with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial for ensuring optimal colour formation during initial fermentation stages.

  6. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.

    PubMed

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter

    2015-06-01

    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  7. Identification and Characterization of the Missing Pyrimidine Reductase in the Plant Riboflavin Biosynthesis Pathway1[W][OA

    PubMed Central

    Hasnain, Ghulam; Frelin, Océane; Roje, Sanja; Ellens, Kenneth W.; Ali, Kashif; Guan, Jiahn-Chou; Garrett, Timothy J.; de Crécy-Lagard, Valérie; Gregory, Jesse F.; McCarty, Donald R.; Hanson, Andrew D.

    2013-01-01

    Riboflavin (vitamin B2) is the precursor of the flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide. In Escherichia coli and other bacteria, sequential deamination and reduction steps in riboflavin biosynthesis are catalyzed by RibD, a bifunctional protein with distinct pyrimidine deaminase and reductase domains. Plants have two diverged RibD homologs, PyrD and PyrR; PyrR proteins have an extra carboxyl-terminal domain (COG3236) of unknown function. Arabidopsis (Arabidopsis thaliana) PyrD (encoded by At4g20960) is known to be a monofunctional pyrimidine deaminase, but no pyrimidine reductase has been identified. Bioinformatic analyses indicated that plant PyrR proteins have a catalytically competent reductase domain but lack essential zinc-binding residues in the deaminase domain, and that the Arabidopsis PyrR gene (At3g47390) is coexpressed with riboflavin synthesis genes. These observations imply that PyrR is a pyrimidine reductase without deaminase activity. Consistent with this inference, Arabidopsis or maize (Zea mays) PyrR (At3g47390 or GRMZM2G090068) restored riboflavin prototrophy to an E. coli ribD deletant strain when coexpressed with the corresponding PyrD protein (At4g20960 or GRMZM2G320099) but not when expressed alone; the COG3236 domain was unnecessary for complementing activity. Furthermore, recombinant maize PyrR mediated NAD(P)H-dependent pyrimidine reduction in vitro. Import assays with pea (Pisum sativum) chloroplasts showed that PyrR and PyrD are taken up and proteolytically processed. Ablation of the maize PyrR gene caused early seed lethality. These data argue that PyrR is the missing plant pyrimidine reductase, that it is plastid localized, and that it is essential. The role of the COG3236 domain remains mysterious; no evidence was obtained for the possibility that it catalyzes the dephosphorylation that follows pyrimidine reduction. PMID:23150645

  8. Isolation and Characterization of a Soluble NADPH-Dependent Fe(III) Reductase from Geobacter sulfurreducens

    PubMed Central

    Kaufmann, Franz; Lovley, Derek R.

    2001-01-01

    NADPH is an intermediate in the oxidation of organic compounds coupled to Fe(III) reduction in Geobacter species, but Fe(III) reduction with NADPH as the electron donor has not been studied in these organisms. Crude extracts of Geobacter sulfurreducens catalyzed the NADPH-dependent reduction of Fe(III)-nitrilotriacetic acid (NTA). The responsible enzyme, which was recovered in the soluble protein fraction, was purified to apparent homogeneity in a four-step procedure. Its specific activity for Fe(III) reduction was 65 μmol · min−1 · mg−1. The soluble Fe(III) reductase was specific for NADPH and did not utilize NADH as an electron donor. Although the enzyme reduced several forms of Fe(III), Fe(III)-NTA was the preferred electron acceptor. The protein possessed methyl viologen:NADP+ oxidoreductase activity and catalyzed the reduction of NADP+ with reduced methyl viologen as electron donor at a rate of 385 U/mg. The enzyme consisted of two subunits with molecular masses of 87 and 78 kDa and had a native molecular mass of 320 kDa, as determined by gel filtration. The purified enzyme contained 28.9 mol of Fe, 17.4 mol of acid-labile sulfur, and 0.7 mol of flavin adenine dinucleotide per mol of protein. The genes encoding the two subunits were identified in the complete sequence of the G. sulfurreducens genome from the N-terminal amino acid sequences derived from the subunits of the purified protein. The sequences of the two subunits had about 30% amino acid identity to the respective subunits of the formate dehydrogenase from Moorella thermoacetica, but the soluble Fe(III) reductase did not possess formate dehydrogenase activity. This soluble Fe(III) reductase differs significantly from previously characterized dissimilatory and assimilatory Fe(III) reductases in its molecular composition and cofactor content. PMID:11443080

  9. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  10. Molecular rationale delineating the role of lycopene as a potent HMG-CoA reductase inhibitor: in vitro and in silico study.

    PubMed

    Alvi, Sahir Sultan; Iqbal, Danish; Ahmad, Saheem; Khan, M Salman

    2016-09-01

    This study initially aimed to depict the molecular rationale evolving the role of lycopene in inhibiting the enzymatic activity of β-hydroxy-β-methylglutaryl-CoA (HMG-CoA) reductase via in vitro and in silico analysis. Our results illustrated that lycopene exhibited strong HMG-CoA reductase inhibitory activity (IC50 value of 36 ng/ml) quite better than pravastatin (IC50 = 42 ng/ml) and strong DPPH free radical scavenging activity (IC50 value = 4.57 ± 0.23 μg/ml) as compared to ascorbic acid (IC50 value = 9.82 ± 0.42 μg/ml). Moreover, the Ki value of lycopene (36 ng/ml) depicted via Dixon plot was well concurred with an IC50 value of 36 ± 1.8 ng/ml. Moreover, molecular informatics study showed that lycopene exhibited binding energy of -5.62 kcal/mol indicating high affinity for HMG-CoA reductase than HMG-CoA (ΔG: -5.34 kcal/mol). Thus, in silico data clearly demonstrate and support the in vitro results that lycopene competitively inhibit HMG-CoA reductase activity by binding at the hydrophobic portion of HMG-CoA reductase.

  11. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c.

    PubMed

    Samhan-Arias, Alejandro K; Fortalezas, Sofia; Cordas, Cristina M; Moura, Isabel; Moura, José J G; Gutierrez-Merino, Carlos

    2018-05-01

    In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b 5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b 5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b 5 reductase was measured. Complex formation between both proteins suggests that cytochrome b 5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b 5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. The ferredoxin-thioredoxin reductase variable subunit gene from Anacystis nidulans.

    PubMed Central

    Szekeres, M; Droux, M; Buchanan, B B

    1991-01-01

    The ferredoxin-thioredoxin reductase variable subunit gene of Anacystis nidulans was cloned, and its nucleotide sequence was determined. A single-copy 219-bp open reading frame encoded a protein of 73 amino acid residues, with a calculated Mr of 8,400. The monocistronic transcripts were represented in a 400-base and a less abundant 300-base mRNA form. Images PMID:1705544

  13. Ultra-high-resolution X-ray structure of proteins.

    PubMed

    Lecomte, C; Guillot, B; Muzet, N; Pichon-Pesme, V; Jelsch, C

    2004-04-01

    The constant advances in synchrotron radiation sources and crystallogenesis methods and the impulse of structural genomics projects have brought biocrystallography to a context favorable to subatomic resolution protein and nucleic acid structures. Thus, as soon as such precision can be frequently obtained, the amount of information available in the precise electron density should also be easily and naturally exploited, similarly to the field of small molecule charge density studies. Indeed, the use of a nonspherical model for the atomic electron density in the refinement of subatomic resolution protein structures allows the experimental description of their electrostatic properties. Some methods we have developed and implemented in our multipolar refinement program MoPro for this purpose are presented. Examples of successful applications to several subatomic resolution protein structures, including the 0.66 angstrom resolution human aldose reductase, are described.

  14. Identification of an anti-MRSA dihydrofolate reductase inhibitor from a diversity-oriented synthesis.

    PubMed

    Wyatt, Emma E; Galloway, Warren R J D; Thomas, Gemma L; Welch, Martin; Loiseleur, Olivier; Plowright, Alleyn T; Spring, David R

    2008-10-28

    The screening of a diversity-oriented synthesis library followed by structure-activity relationship investigations have led to the discovery of an anti-MRSA agent which operates as an inhibitor of Staphylococcus aureus dihydrofolate reductase.

  15. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.

    PubMed

    Salusjärvi, Laura; Kaunisto, Sanna; Holmström, Sami; Vehkomäki, Maija-Leena; Koivuranta, Kari; Pitkänen, Juha-Pekka; Ruohonen, Laura

    2013-12-01

    Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.

  16. Purification and Characterization of (Per)Chlorate Reductase from the Chlorate-Respiring Strain GR-1

    PubMed Central

    Kengen, Servé W. M.; Rikken, Geoffrey B.; Hagen, Wilfred R.; van Ginkel, Cees G.; Stams, Alfons J. M.

    1999-01-01

    Strain GR-1 is one of several recently isolated bacterial species that are able to respire by using chlorate or perchlorate as the terminal electron acceptor. The organism performs a complete reduction of chlorate or perchlorate to chloride and oxygen, with the intermediate formation of chlorite. This study describes the purification and characterization of the key enzyme of the reductive pathway, the chlorate and perchlorate reductase. A single enzyme was found to catalyze both the chlorate- and perchlorate-reducing activity. The oxygen-sensitive enzyme was located in the periplasm and had an apparent molecular mass of 420 kDa, with subunits of 95 and 40 kDa in an α3β3 composition. Metal analysis showed the presence of 11 mol of iron, 1 mol of molybdenum, and 1 mol of selenium per mol of heterodimer. In accordance, quantitative electron paramagnetic resonance spectroscopy showed the presence of one [3Fe-4S] cluster and two [4Fe-4S] clusters. Furthermore, two different signals were ascribed to Mo(V). The Kmvalues for perchlorate and chlorate were 27 and <5 μM, respectively. Besides perchlorate and chlorate, nitrate, iodate, and bromate were also reduced at considerable rates. The resemblance of the enzyme to nitrate reductases, formate dehydrogenases, and selenate reductase is discussed. PMID:10542172

  17. Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin.

    PubMed

    Russell, Thomas R; Demeler, Borries; Tu, Shiao-Chun

    2004-02-17

    The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.

  18. X-Ray crystal structure of GarR—tartronate semialdehyde reductase from Salmonella typhimurium

    PubMed Central

    Osipiuk, J.; Zhou, M.; Moy, S.; Collart, F.

    2009-01-01

    Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related β-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determined by the single-wavelength anomalous diffraction method and refined to 1.65 Å resolution. The active site of the enzyme contains L-tartrate which most likely mimics a position of a glycerate which is a product of the enzyme reaction. The analysis of the TSR structure shows also a putative NADPH binding site in the enzyme. PMID:19184529

  19. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.

    PubMed

    Stenmark, Pål; Moche, Martin; Gurmu, Daniel; Nordlund, Pär

    2007-10-12

    We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.

  20. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystalmore » structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.« less

  1. Retrospective approach to methylenetetrahydrofolate reductase mutations in children.

    PubMed

    Özer, Işıl; Özçetin, Mustafa; Karaer, Hatice; Kurt, Semiha G; Şahin, Şemsettin

    2011-07-01

    Methylenetetrahydrofolate reductase reduces methyltetrahydrofolate, a cosubstrate in the remethylation of homocysteine, from methylenetetrahydrofolate. Congenital defects, hematologic tumors, and intrauterine growth retardation can occur during childhood. This study evaluated clinical and laboratory treatment approaches in children diagnosed with methylenetetrahydrofolate reductase mutations. Our group included 23 boys and 14 girls, aged 103.4 ± 70.8 months S.D. Clinical findings of patients and homocysteine, vitamin B12, folate, hemogram, electroencephalography, cranial magnetic resonance imaging, and echocardiography data were evaluated in terms of treatment approach. Our patients' findings included vitamin B12 at 400.4 ± 224.6 pg/mL S.D. (normal range, 300-700 pg/mL), folate at 10.1 ± 4.5 ng/mL S.D. (normal range, 1.8-9 ng/mL), and homocysteine at 8.4 ± 4.7 μmol/L S.D. (normal range, 5.5-17 μmol/L). Eighty-eight percent of patients demonstrated clinical findings. In comparisons involving categorical variables between groups, χ(2) tests were used. No relationship was evident between mutation type, laboratory data, and clinical severity. All mothers who had MTHFR mutations and had babies with sacral dimples had taken folate supplements during pregnancy. To avoid the risk of neural tube defects, pregnant women with a MTHFR mutation may require higher than normally recommended doses of folic acid supplementation for optimum health. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. 5β-Reduced Steroids and Human Δ4-3-Ketosteroid 5β-Reductase (AKR1D1)

    PubMed Central

    Chen, Mo; Penning, Trevor M.

    2014-01-01

    5β-Reduced steroids are non-planar steroids that have 90° bend in their structure to create an A/B cis-ring junction. This novel property is required for bile-acids to act as emulsifiers, but in addition 5β-reduced steroids have remarkable physiology and may act as potent tocolytic agents, endogenous cardiac glycosides, neurosteroids, and can act as ligands for orphan and membrane bound receptors. In humans there is only a single 5β-reductase gene AKR1D1, which encodes Δ4-3-ketosteroid-5β-reductase (AKR1D1). This enzyme is a member of the aldoketo reductase superfamily, but possesses an altered catalytic tetrad, in which Glu120 replaces the conserved His residue. This predominant liver enzyme generates all 5β-dihydrosteroids in the C19–C27 steroid series. Mutations exist in the AKR1D1 gene, which result in loss of protein stability and are causative in bile-acid deficiency. PMID:24513054

  3. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens

    PubMed Central

    Vázquez-Torres, Andrés; Bäumler, Andreas

    2016-01-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4+, but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome coxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and –negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528

  4. A 1,536-Well-Based Kinetic HTS Assay for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase

    PubMed Central

    Lea, Wendy A.; Jadhav, Ajit; Rai, Ganesha; Sayed, Ahmed A.; Cass, Cynthia L.; Inglese, James; Williams, David L.; Austin, Christopher P.

    2008-01-01

    Abstract Schistosomiasis is a major neglected tropical disease that currently affects over 200 million people and leads to over 200,000 annual deaths. Schistosoma mansoni parasites survive in humans in part because of a set of antioxidant enzymes that continuously degrade reactive oxygen species produced by the host. A principal component of this defense system has been recently identified as thioredoxin glutathione reductase (TGR), a parasite-specific enzyme that combines the functions of two human counterparts, glutathione reductase and thioredoxin reductase, and as such this enzyme presents an attractive new target for anti-schistosomiasis drug development. Herein, we present the development of a highly miniaturized and robust screening assay for TGR. The 5-μl final volume assay is based on the Ellman reagent [5,5′-dithiobis(2-nitrobenzoic acid) (DTNB)] and utilizes a high-speed absorbance kinetic read to minimize the effect of dust, absorbance interference, and meniscus variation. This assay is further applicable to the testing of other redox enzymes that utilize DTNB as a model substrate. PMID:18665782

  5. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  6. Carbonyl reductase of dog liver: purification, properties, and kinetic mechanism.

    PubMed

    Hara, A; Nakayama, T; Deyashiki, Y; Kariya, K; Sawada, H

    1986-01-01

    A carbonyl reductase has been extracted into 0.5 M KCl from dog liver and purified to apparent homogeneity by a three-step procedure consisting of chromatography on CM-Sephadex, Matrex green A, and Sephadex G-100 in high-ionic-strength buffers. The enzyme is a dimer composed of two identical subunits of molecular weight 27,000. The pH optimum is 5.5 and the isoelectric point of the enzyme is 9.3. The enzyme reduces aromatic ketones and aldehydes; the aromatic ketones with adjacent medium alkyl chains are the best substrates. Quinones, ketosteroids, prostaglandins, and aliphatic carbonyl compounds are poor or inactive substrates for the enzyme. As a cofactor the enzyme utilizes NADPH, the pro-S hydrogen atom of which is transferred to the substrate. Two moles of NADPH bind to one mole of the enzyme molecule, causing a blue shift and enhancement of the cofactor fluorescence. The reductase reaction is reversible and the equilibrium constant determined at pH 7.0 is 12.8. Steady-state kinetic measurements in both directions suggest that the reaction proceeds through a di-iso ordered bi-bi mechanism.

  7. Characterization of Emodin as a Therapeutic Agent for Diabetic Cataract.

    PubMed

    Chang, Kun-Che; Li, Linfeng; Sanborn, Theresa M; Shieh, Biehuoy; Lenhart, Patricia; Ammar, David; LaBarbera, Daniel V; Petrash, J Mark

    2016-05-27

    Aldose reductase (AR) in the lens plays an important role in the pathogenesis of diabetic cataract (DC) by contributing to osmotic and oxidative stress associated with accelerated glucose metabolism through the polyol pathway. Therefore, inhibition of AR in the lens may hold the key to prevent DC formation. Emodin, a bioactive compound isolated from plants, has been implicated as a therapy for diabetes. However, its inhibitory activity against AR remains unclear. Our results showed that emodin has good selectively inhibitory activity against AR (IC50 = 2.69 ± 0.90 μM) but not other aldo-keto reductases and is stable at 37 °C for at least 7 days. Enzyme kinetic studies demonstrated an uncompetitive inhibition against AR with a corresponding inhibition constant of 2.113 ± 0.095 μM. In in vivo studies, oral administration of emodin reduced the incidence and severity of morphological markers of cataract in lenses of AR transgenic mice. Computational modeling of the AR-NADP(+)-emodin ternary complex indicated that the 3-hydroxy group of emodin plays an essential role by interacting with Ser302 through hydrogen bonding in the specificity pocket of AR. All the findings above provide encouraging evidence for emodin as a potential therapeutic agent to prevent cataract in diabetic patients.

  8. Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin.

    PubMed

    Duncan, Robin E; El-Sohemy, Ahmed; Archer, Michael C

    2005-06-28

    We investigated the regulation of HMG-CoA reductase in MCF-7 human breast cancer cells by genistein, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). All three compounds down-regulated reductase activity, primarily through post-transcriptional effects. In mevastatin-treated cells, only genistein and DHA abrogated the induction of reductase activity caused by this competitive inhibitor. Diets rich in soy isoflavones and fish oils, therefore, may exert anti-cancer effects through the inhibition of mevalonate synthesis in the breast. Genistein and DHA, in particular, may augment the efficacy of statins, increasing the potential for use of these drugs in adjuvant therapy for breast cancer.

  9. Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity

    PubMed Central

    Kumar, Nitin; Astegno, Alessandra; Chen, Jian; Giorgetti, Alejandro; Dominici, Paola

    2016-01-01

    It is well-established that plant hemoglobins (Hbs) are involved in nitric oxide (NO) metabolism via NO dioxygenase and/or nitrite reductase activity. The ferrous-deoxy Arabidopsis Hb1 and Hb2 (AHb1 and AHb2) have been shown to reduce nitrite to NO under hypoxia. Here, to test the hypothesis that a six- to five-coordinate heme iron transition might mediate the control of the nitrite reduction rate, we examined distal pocket mutants of AHb1 and AHb2 for nitrite reductase activity, NO production and spectroscopic features. Absorption spectra of AHbs distal histidine mutants showed that AHb1 mutant (H69L) is a stable pentacoordinate high-spin species in both ferrous and ferric states, whereas heme iron in AHb2 mutant (H66L) is hexacoordinated low-spin with Lys69 as the sixth ligand. The bimolecular rate constants for nitrite reduction to NO were 13.3 ± 0.40, 7.3 ± 0.5, 10.6 ± 0.8 and 171.90 ± 9.00 M−1·s−1 for AHb1, AHb2, AHb1 H69L and AHb2 H66L, respectively, at pH 7.4 and 25 °C. Consistent with the reductase activity, the amount of NO detected by chemiluminescence was significantly higher in the AHb2 H66L mutant. Our data indicate that nitrite reductase activity is determined not only by heme coordination, but also by a unique distal heme pocket in each AHb. PMID:27136534

  10. The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain.

    PubMed Central

    Braun, H P; Emmermann, M; Kruft, V; Schmitz, U K

    1992-01-01

    The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Images PMID:1324169

  11. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of humanmore » QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.« less

  12. Ebselen: A thioredoxin reductase-dependent catalyst for {alpha}-tocopherol quinone reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Jianguo; Zhong Liangwei; Zhao Rong

    2005-09-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if {alpha}-tocopherol quinone (TQ), a product of {alpha}-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity,more » while the product of reduction of TQ, {alpha}-tocopherolhydroquinone (TQH{sub 2}), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo.« less

  13. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    PubMed Central

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453

  14. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    PubMed

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  15. The 30 kDa protein co-purified with chick liver glutathione S-transferases is a carbonyl reductase.

    PubMed

    Tsai, S P; Wang, L Y; Yeh, H I; Tam, M F

    1996-02-08

    An unidentified 30 kDa protein was co-purified with chick liver glutathione S-transferases from S-hexylglutathione affinity column. The protein was isolated to apparent homogeneity with chromatofocusing. The molecular mass of the protein was determined to be 30 277 +/- 3 dalton by mass spectrometry. The protein was digested with Achromobacter proteinase I. Amino-acid sequence analyses of the resulting peptides show a high degree of identity with those of human carbonyl reductase. The protein is active with menadione as substrate. Thus, it is identified as chick liver carbonyl reductase.

  16. Unexpected ethical dilemmas in sex assignment in 46,XY DSD due to 5-alpha reductase type 2 deficiency.

    PubMed

    Byers, Heather M; Mohnach, Lauren H; Fechner, Patricia Y; Chen, Ming; Thomas, Inas H; Ramsdell, Linda A; Shnorhavorian, Margarett; McCauley, Elizabeth A; Amies Oelschlager, Anne-Marie E; Park, John M; Sandberg, David E; Adam, Margaret P; Keegan, Catherine E

    2017-06-01

    Sex assignment at birth remains one of the most clinically challenging and controversial topics in 46,XY disorders of sexual development (DSD). This is particularly challenging in deficiency of 5-alpha reductase type 2 given that external genitalia are typically undervirilized at birth but typically virilize at puberty to a variable degree. Historically, most individuals with 5-alpha reductase deficiency were raised females. However, reports that over half of patients who underwent a virilizing puberty adopted an adult male gender identity have challenged this practice. Consensus guidelines on assignment of sex of rearing at birth are equivocal or favor male assignment in the most virilized cases. While a male sex of rearing assignment may avoid lifelong hormonal therapy and/or allow the potential for fertility, female sex assignment may be more consistent with external anatomy in the most severely undervirilized cases. Herein, we describe five patients with 46,XY DSD due 5-alpha-reductase type 2 deficiency, all with a severe phenotype. An inter-disciplinary DSD medical team at one of two academic centers evaluated each patient. This case series illustrates the complicated decision-making process of assignment of sex of rearing at birth in 5-alpha reductase type 2 deficiency and the challenges that arise when the interests of the child, parental wishes, recommendations of the medical team, and state law collide. © 2017 Wiley Periodicals, Inc.

  17. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  18. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs.

    PubMed

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

  19. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed Central

    Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899

  20. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.

    PubMed

    Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A

    2010-10-05

    Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in

  1. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  2. Fatty acyl-CoA reductases of birds

    PubMed Central

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  3. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    PubMed

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in murine epidermis. Modulation of enzyme content and activation state by barrier requirements.

    PubMed Central

    Proksch, E; Elias, P M; Feingold, K R

    1990-01-01

    Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state. Images PMID:2312730

  5. Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea

    DOE PAGES

    Fu, Xian; Adams, Zachary; Liu, Rui; ...

    2017-09-05

    Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less

  6. Crystallization and preliminary crystallographic analysis of selenomethionine-labelled progesterone 5β-reductase from Digitalis lanata Ehrh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egerer-Sieber, Claudia; Herl, Vanessa; Müller-Uri, Frieder

    2006-03-01

    Progesterone 5β-reductase is the first stereospecific enzyme in the pathway for the synthesis of cardenolides. To elucidate the structural mechanism of this reaction, we crystallized the selenomethionine-labelled enzyme from D. lanata and report the preliminary analysis of a MAD data set collected from these crystals. Progesterone 5β-reductase (5β-POR) catalyzes the reduction of progesterone to 5β-pregnane-3,20-dione and is the first stereospecific enzyme in the putative biosynthetic pathway of Digitalis cardenolides. Selenomethionine-derivatized 5β-POR from D. lanata was successfully overproduced and crystallized. The crystals belong to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 71.73, c = 186.64 Å. A MADmore » data set collected at 2.7 Å resolution allowed the identification of six out of eight possible Se-atom positions. A first inspection of the MAD-phased electron-density map shows that 5β-POR is a Rossmann-type reductase and the quality of the map is such that it is anticipated that a complete atomic model of 5β-POR will readily be built.« less

  7. Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Xian; Adams, Zachary; Liu, Rui

    Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less

  8. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    PubMed Central

    Azzouni, Faris; Godoy, Alejandro; Li, Yun; Mohler, James

    2012-01-01

    Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family. PMID:22235201

  9. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1).

    PubMed

    Chen, Mo; Penning, Trevor M

    2014-05-01

    5β-Reduced steroids are non-planar steroids that have a 90° bend in their structure to create an A/B cis-ring junction. This novel property is required for bile-acids to act as emulsifiers, but in addition 5β-reduced steroids have remarkable physiology and may act as potent tocolytic agents, endogenous cardiac glycosides, neurosteroids, and can act as ligands for orphan and membrane bound receptors. In humans there is only a single 5β-reductase gene AKR1D1, which encodes Δ(4)-3-ketosteroid-5β-reductase (AKR1D1). This enzyme is a member of the aldo-keto reductase superfamily, but possesses an altered catalytic tetrad, in which Glu120 replaces the conserved His residue. This predominant liver enzyme generates all 5β-dihydrosteroids in the C19-C27 steroid series. Mutations exist in the AKR1D1 gene, which result in loss of protein stability and are causative in bile-acid deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1.

    PubMed

    Chen, Wei; Tuladhar, Anupama; Rolle, Shantelle; Lai, Yanhao; Rodriguez Del Rey, Freddy; Zavala, Cristian E; Liu, Yuan; Rein, Kathleen S

    2017-08-15

    Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, β-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, β-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Lung glutathione reductase induction in aging catalase-depleted frogs correlates with early survival throughout the life span.

    PubMed

    Perez-Campo, R; Lopez-Torres, M; Rojas, C; Cadenas, S; Barja de Quiroga, G

    1993-02-01

    A comprehensive experimental study on free radical-related parameters was performed in the lung throughout the life span of 220 initially young or old frogs. No age related differences were found transversely or longitudinally for lung superoxide dismutase, catalase, Se-dependent and -independent glutathione peroxidases, glutathione reductase, GSH, GSSG, or GSSG/GSH ratio. Continuous catalase depletion with aminotriazole led to glutathione reductase induction in the lung after 14.5 months of experimentation. This was accompanied by a great increase in survival rate of treated animals in relation to controls (especially in the old group). After 26.5 months of experimentation, glutathione reductase induction was lost and GSSG/GSH values tended to increase. This was followed by a 3-month long period of acute decrease in survival rate of treated animals. It is suggested that a high antioxidant/prooxidant balance is of protective value against causes of early death and can possibly be used in the future (when appropriately controlled) to increase the number of healthy years of the normal life span.

  12. Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng

    USDA-ARS?s Scientific Manuscript database

    The antioxidant and quinone reductase (QR) inducing activities of American, Asian, and Siberian ginseng have been reported using various plant materials, solvents, and assays. To directly establish their comparative bioactivity, the effects of extracts obtained from acidified methanol (MeOH), a gas...

  13. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  14. Ribonucleotide reductase in melanoma tissue. EPR detection in human amelanotic melanoma and quenching of the tyrosine radical by 4-hydroxyanisole.

    PubMed

    Lassmanm, G; Liermann, B; Arnold, W; Schwabe, K

    1991-01-01

    The characteristic EPR doublet of tyrosine radicals of the growth-regulating enzyme ribonucleotide reductase was detected in human melanoma tissue grown in nude mice. This was possible through the use of an amelanotic melanoma that does not exhibit disturbing EPR signals from melanin. The content of tyrosine radicals is higher in young tumor tissues than in older ones. The clinically applied antimelanotic drug, 4-hydroxyanisole, inhibits ribonucleotide reductase in Ehrlich ascites tumor cells as demonstrated by a pronounced quenching of tyrosine radicals (IC50 = 5 microM). In amelanotic melanoma tissue tyrosine radicals of the enzyme are also quenched by 4-hydroxyanisole in concentrations down to 50 microM. Thus, the inactivation of ribonucleotide reductase, which provides deoxyribonucleotides for DNA synthesis, may be a hitherto unexpected mechanism for the antitumor action of 4-hydroxyanisole.

  15. Docking into Mycobacterium tuberculosis Thioredoxin Reductase Protein Yields Pyrazolone Lead Molecules for Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Sweeney, Noreena L.; Lipker, Lauren; Hanson, Alicia M.; Bohl, Chris J.; Engel, Katie E.; Kalous, Kelsey S.; Stemper, Mary E.; Sem, Daniel S.; Schwan, William R.

    2017-01-01

    The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus. Initially, the project was focused on discovering small molecules that may have antibacterial properties targeting the Mycobacterium tuberculosis thioredoxin reductase. This led to the discovery of a pyrazolone scaffold-containing compound series that showed bactericidal capability against S. aureus strains, including drug-resistant clinical isolates. The findings support continued development of the pyrazolone compounds as potential anti-S. aureus antibiotics. PMID:28134858

  16. In vitro and in silico studies of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitory activity of the cowpea Gln-Asp-Phe peptide.

    PubMed

    Silva, Mariana Barros de Cerqueira E; Souza, Caio Alexandre da Cruz; Philadelpho, Biane Oliveira; Cunha, Mariana Mota Novais da; Batista, Fabiana Pacheco Reis; Silva, Jaff Ribeiro da; Druzian, Janice Izabel; Castilho, Marcelo Santos; Cilli, Eduardo Maffud; Ferreira, Ederlan S

    2018-09-01

    Previous studies have shown that cowpea protein positively interferes with cholesterol metabolism. In this study, we evaluated the ability of the fraction containing peptides of <3 kDa, as well as that of the Gln-Asp-Phe (QDF) peptide, derived from cowpea β-vignin protein, to inhibit HMG-CoA reductase activity. We established isolation and chromatography procedures to effectively obtain the protein with a purity above 95%. In silico predictions were performed to identify peptide sequences capable of interacting with HMG-CoA reductase. In vitro experiments showed that the fraction containing peptides of <3 kDa displayed inhibition of HMG-CoA reductase activity. The tripeptide QDF inhibits HMG-CoA reductase (IC 50  = 12.8 μM) in a dose-dependent manner. Furthermore, in silico studies revealed the binding profile of the QDF peptide and hinted at the molecular interactions that are responsible for its activity. Therefore, this study shows, for the first time, a peptide from cowpea β-vignin protein that inhibits HMG-CoA reductase and the chemical modifications that should be investigated to evaluate its binding profile. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin

    PubMed Central

    Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.

    2009-01-01

    Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797

  18. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    PubMed

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  19. Towards a mechanistic and physiological understanding of a ferredoxin disulfide reductase from the domains Archaea and Bacteria.

    PubMed

    Prakash, Divya; Walters, Karim A; Martinie, Ryan J; McCarver, Addison C; Kumar, Adepu K; Lessner, Daniel J; Krebs, Carsten; Golbeck, John H; Ferry, James G

    2018-05-02

    Disulfide reductases reduce other proteins and are critically important for cellular redox signaling and homeostasis. Methanosarcina acetivorans is a methane-producing microbe from the domain Archaea that produces a ferredoxin:disulfide reductase (FDR) for which the crystal structure has been reported, yet its biochemical mechanism and physiological substrates are unknown. FDR and the extensively characterized plant-type ferredoxin:thioredoxin reductase (FTR) belong to a distinct class of disulfide reductases that contain a unique active-site [4Fe-4S] cluster. The results reported here support a mechanism for FDR similar to that reported for FTR with notable exceptions. Unlike FTR, FDR contains a rubredoxin [1Fe-0S] center postulated to mediate electron transfer from ferredoxin to the active-site [4Fe-4S] cluster.  UV-Vis, EPR and Mӧssbauer spectroscopic data indicated that two-electron reduction of the active-site disulfide in FDR involves a one-electron-reduced [4Fe-4S]1+ intermediate previously hypothesized for FTR. Our results support a role for an active-site tyrosine in FDR that occupies the equivalent position of an essential histidine in the active-site of FTR. Of note, one of seven Trxs encoded in the genome (Trx5) and methanoredoxin, a glutaredoxin-like enzyme from M. acetivorans, were reduced by FDR advancing the physiological understanding of FDRs role in the redox metabolism of methanoarchaea. Finally, bioinformatics analyses show FDR homologs are widespread in diverse microbes from the domain Bacteria. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3

    USGS Publications Warehouse

    Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.

    1997-01-01

    The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.

  1. Positive correlation between decreased cellular uptake, NADPH-glutathione reductase activity and adriamycin resistance in Ehrlich ascites tumor lines.

    PubMed

    Scheulen, M E; Hoensch, H; Kappus, H; Seeber, S; Schmidt, C G

    1987-01-01

    From a wild type strain of Ehrlich ascites tumor (EATWT) sublines resistant to daunorubicin (EATDNM), etoposide (EATETO), and cisplatinum (EATCIS) have been developed in vivo. Increase in survival and cure rate caused by adriamycin (doxorubicin) have been determined in female NMRI mice which were inoculated i.p. with EAT cells. Adriamycin concentrations causing 50% inhibition of 3H-thymidine (ICT) and 3H-uridine incorporation (ICU) and intracellular adriamycin steady-state concentrations (SSC) were measured in vitro. Adriamycin resistance increased and SSC decreased in the following sequence: EATWT - EATCIS - EATDNM - EATETO. When ICT and ICU were corrected for intracellular adriamycin concentrations in consideration of the different SSC (ICTc, ICUc), ICTc and ICUc still varied up to the 3.2 fold in EATCIS, EATDNM and EATETO in comparison to EATWT. Thus, in addition to different SSC other factors must be responsible for adriamycin resistance. Therefore, enzymes which may play a role in the cytotoxicity related to adriamycin metabolism (NADPH-cytochrome P-450 reductase, NADPH-glutathione reductase, NADP-glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase) were measured. In contrast to the other parameters determined, NADPH-glutathione reductase was significantly (p less than 0.01) increased up to the 3.2 fold parallel to adriamycin resistance as determined by increase in life span, cure rate, ICTc, and ICUc, respectively. It is concluded that high activities of NADPH-glutathione reductase may contribute to an increase in adriamycin resistance of malignant tumors.

  2. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy.

    PubMed Central

    Rubin, H; Salem, J S; Li, L S; Yang, F D; Mama, S; Wang, Z M; Fisher, A; Hamann, C S; Cooperman, B S

    1993-01-01

    Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415692

  3. Evidence for a Ustilago maydis steroid 5alpha-reductase by functional expression in Arabidopsis det2-1 mutants.

    PubMed

    Basse, Christoph W; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-06-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5alpha-steroid reductases. Udh1 differs from those of known 5alpha-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5alpha-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5alpha-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins.

  4. Chloroquine Binding Reveals Flavin Redox Switch Function of Quinone Reductase 2*

    PubMed Central

    Leung, Kevin K. K.; Shilton, Brian H.

    2013-01-01

    Quinone reductase 2 (NQO2) is an FAD-linked enzyme and the only known human target of two antimalarial drugs, primaquine (PQ) and chloroquine (CQ). The structural differences between oxidized and reduced NQO2 and the structural basis for inhibition by PQ and CQ were investigated by x-ray crystallography. Structures of oxidized NQO2 in complex with PQ and CQ were solved at 1.4 Å resolution. CQ binds preferentially to reduced NQO2, and upon reduction of NQO2-CQ crystals, the space group changed from P212121 to P21, with 1-Å decreases in all three unit cell dimensions. The change in crystal packing originated in the negative charge and 4–5º bend in the reduced isoalloxazine ring of FAD, which resulted in a new mode of CQ binding and closure of a flexible loop (Phe126–Leu136) over the active site. This first structure of a reduced quinone reductase shows that reduction of the FAD cofactor and binding of a specific inhibitor lead to global changes in NQO2 structure and is consistent with a functional role for NQO2 as a flavin redox switch. PMID:23471972

  5. Effect of Ranirestat on Sensory and Motor Nerve Function in Japanese Patients with Diabetic Polyneuropathy: A Randomized Double-Blind Placebo-Controlled Study

    PubMed Central

    Satoh, Jo; Kohara, Nobuo; Sekiguchi, Kenji; Yamaguchi, Yasuyuki

    2016-01-01

    We conducted a 26-week oral-administration study of ranirestat (an aldose reductase inhibitor) at a once-daily dose of 20 mg to evaluate its efficacy and safety in Japanese patients with diabetic polyneuropathy (DPN). The primary endpoint was summed change in sensory nerve conduction velocity (NCV) for the bilateral sural and proximal median sensory nerves. The sensory NCV was significantly (P = 0.006) improved by ranirestat. On clinical symptoms evaluated with the use of modified Toronto Clinical Neuropathy Score (mTCNS), obvious efficacy was not found in total score. However, improvement in the sensory test domain of the mTCNS was significant (P = 0.037) in a subgroup of patients diagnosed with neuropathy according to the TCNS severity classification. No clinically significant effects on safety parameters including hepatic and renal functions were observed. Our results indicate that ranirestat is effective on DPN (Japic CTI-121994). PMID:26881251

  6. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism.

    PubMed

    Lanaspa, Miguel A; Kuwabara, Masanari; Andres-Hernando, Ana; Li, Nancy; Cicerchi, Christina; Jensen, Thomas; Orlicky, David J; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Nakagawa, Takahiko; Rodriguez-Iturbe, Bernardo; MacLean, Paul S; Johnson, Richard J

    2018-03-20

    Dietary guidelines for obesity typically focus on three food groups (carbohydrates, fat, and protein) and caloric restriction. Intake of noncaloric nutrients, such as salt, are rarely discussed. However, recently high salt intake has been reported to predict the development of obesity and insulin resistance. The mechanism for this effect is unknown. Here we show that high intake of salt activates the aldose reductase-fructokinase pathway in the liver and hypothalamus, leading to endogenous fructose production with the development of leptin resistance and hyperphagia that cause obesity, insulin resistance, and fatty liver. A high-salt diet was also found to predict the development of diabetes and nonalcoholic fatty liver disease in a healthy population. These studies provide insights into the pathogenesis of obesity and diabetes and raise the potential for reduction in salt intake as an additional interventional approach for reducing the risk for developing obesity and metabolic syndrome.

  7. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.

    PubMed

    Romaní, Aloia; Pereira, Filipa; Johansson, Björn; Domingues, Lucília

    2015-03-01

    In this work, Saccharomyces cerevisiae strains PE-2 and CAT-1, commonly used in the Brazilian fuel ethanol industry, were engineered for xylose fermentation, where the first fermented xylose faster than the latter, but also produced considerable amounts of xylitol. An engineered PE-2 strain (MEC1121) efficiently consumed xylose in presence of inhibitors both in synthetic and corn-cob hydrolysates. Interestingly, the S. cerevisiae MEC1121 consumed xylose and glucose simultaneously, while a CEN.PK based strain consumed glucose and xylose sequentially. Deletion of the aldose reductase GRE3 lowered xylitol production to undetectable levels and increased xylose consumption rate which led to higher final ethanol concentrations. Fermentation of corn-cob hydrolysate using this strain, MEC1133, resulted in an ethanol yield of 0.47 g/g of total sugars which is 92% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The endogenous adrenodoxin reductase-like flavoprotein arh1 supports heterologous cytochrome P450-dependent substrate conversions in Schizosaccharomyces pombe.

    PubMed

    Ewen, Kerstin M; Schiffler, Burkhard; Uhlmann-Schiffler, Heike; Bernhardt, Rita; Hannemann, Frank

    2008-05-01

    Mitochondrial cytochromes P450 are essential for biosynthesis of steroid hormones, vitamin D and bile acids. In mammals, the electrons needed for these reactions are provided via adrenodoxin and adrenodoxin reductase (AdR). Recently, Schizosaccharomyces pombe was introduced as a new host for the functional expression of human mitochondrial steroid hydroxylases without the coexpression of their natural redox partners. This fact qualifies S. pombe for the biotechnological production of steroids and for application as inhibitor test organism of heterologously expressed cytochromes P450. In this paper, we present evidence that the S. pombe ferredoxin reductase, arh1, and ferredoxin, etp1fd provide mammalian class I cytochromes P450 with reduction equivalents. The recombinant reductase showed an unusual weak binding of flavin adenine dinucleotide (FAD), which was mastered by modifying the FAD-binding region by site-directed mutagenesis yielding a stable holoprotein. The modified reductase arh1_A18G displayed spectroscopic characteristics similar to AdR and was shown to be capable of accepting electrons with no evident preference for NADH or NADPH, respectively. Arh1_A18G can substitute for AdR by interacting not only with its natural redox partner etp1fd but also with the mammalian homolog adrenodoxin. Cytochrome P450-dependent substrate conversion with all combinations of the mammalian and yeast redox proteins was evaluated in a reconstituted system.

  9. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity.

    PubMed

    Toogood, Helen S; Fryszkowska, Anna; Hulley, Martyn; Sakuma, Michiyo; Mansell, David; Stephens, Gill M; Gardiner, John M; Scrutton, Nigel S

    2011-03-21

    We have conducted a site-specific saturation mutagenesis study of H181 and H184 of flavoprotein pentaerythritol tetranitrate reductase (PETN reductase) to probe the role of these residues in substrate binding and catalysis with a variety of α,β-unsaturated alkenes. Single mutations at these residues were sufficient to dramatically increase the enantiopurity of products formed by reduction of 2-phenyl-1-nitropropene. In addition, many mutants exhibited a switch in reactivity to predominantly catalyse nitro reduction, as opposed to CC reduction. These mutants showed an enhancement in a minor side reaction and formed 2-phenylpropanal oxime from 2-phenyl-1-nitropropene. The multiple binding conformations of hydroxy substituted nitro-olefins in PETN reductase were examined by using both structural and catalytic techniques. These compounds were found to bind in both active and inhibitory complexes; this highlights the plasticity of the active site and the ability of the H181/H184 couple to coordinate with multiple functional groups. These properties demonstrate the potential to use PETN reductase as a scaffold in the development of industrially useful biocatalysts. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thioredoxin Glutathione Reductase as a Novel Drug Target: Evidence from Schistosoma japonicum

    PubMed Central

    Xie, ShuYing; Qian, ChunYan; Wang, Jie; Zhang, Wei; Yin, XuRen; Hua, ZiChun; Yu, ChuanXin

    2012-01-01

    Background Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia. Methods and Findings After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice. Conclusions Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum. PMID:22384025

  11. Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi; Kim, David D.; Nelson, Ornella D.

    2015-10-08

    Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation.We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fee4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain andmore » investigated their iron reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fee4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the ironereductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have.« less

  12. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    PubMed

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  13. Evaluation of potent inhibitors of dihydrofolate reductase in a culture model for growth of Pneumocystis carinii.

    PubMed

    Bartlett, M S; Shaw, M; Navaran, P; Smith, J W; Queener, S F

    1995-11-01

    Many antifolates are known to inhibit dihydrofolate reductase from murine Pneumocystis carinii, with 50% inhibitory concentrations (IC50s) ranging from 10(-4) to 10(-11) M. The relationship of the potency against isolated enzyme to the potency against intact murine P. carinii cells was explored with 17 compounds that had proven selectivity for or potency against P. carinii dihydrofolate reductase. Pyrimethamine and one analog were inhibitory to P. carinii in culture at concentrations two to seven times the IC50s for the enzyme, suggesting that the compounds may enter P. carinii cells in culture. Methotrexate was a potent inhibitor of P. carinii dihydrofolate reductase, but the concentrations effective in culture were more than 1,000-fold higher than IC50s for the enzyme, since P. carinii lacks an uptake system for methotrexate. Analogs of methotrexate in which chlorine, bromine, or iodine was added to the phenyl ring had improved potency against the isolated enzyme but were markedly less effective in culture; polyglutamation also lowered the activity in culture but improved activity against the enzyme. Substitution of a naphthyl group for the phenyl group of methotrexate produced a compound with improved activity against the enzyme (IC50, 0.00019 microM) and excellent activity in culture (IC50, 0.1 microM). One trimetrexate analog in which an aspartate or a chlorine replaced two of the methoxy groups of trimetrexate was much more potent and was much more selective toward P. carinii dihydrofolate reductase than trimetrexate; this analog was also as active as trimetrexate in culture. These studies suggest that modifications of antifolate structures can be made that facilitate activity against intact organisms while maintaining the high degrees of potency and the selectivities of the agents can be made.

  14. Differential Operation of Dual Protochlorophyllide Reductases for Chlorophyll Biosynthesis in Response to Environmental Oxygen Levels in the Cyanobacterium Leptolyngbya boryana1

    PubMed Central

    Yamazaki, Shoji; Nomata, Jiro; Fujita, Yuichi

    2006-01-01

    Most oxygenic phototrophs, including cyanobacteria, have two structurally unrelated protochlorophyllide (Pchlide) reductases in the penultimate step of chlorophyll biosynthesis. One is light-dependent Pchlide reductase (LPOR) and the other is dark-operative Pchlide reductase (DPOR), a nitrogenase-like enzyme assumed to be sensitive to oxygen. Very few studies have been conducted on how oxygen-sensitive DPOR operates in oxygenic phototrophic cells. Here, we report that anaerobic conditions are required for DPOR to compensate for the loss of LPOR in cyanobacterial cells. An LPOR-lacking mutant of the cyanobacterium Leptolyngbya boryana (formerly Plectonema boryanum) failed to grow in high light conditions and this phenotype was overcome by cultivating it under anaerobic conditions (2% CO2/N2). The critical oxygen level enabling the mutant to grow in high light was determined to be 3% (v/v). Oxygen-sensitive Pchlide reduction activity was successfully detected as DPOR activity in cell-free extracts of anaerobically grown mutants, whereas activity was undetectable in the wild type. The content of two DPOR subunits, ChlL and ChlN, was significantly increased in mutant cells compared with wild type. This suggests that the increase in subunits stimulates the DPOR activity that is protected efficiently from oxygen by anaerobic environments, resulting in complementation of the loss of LPOR. These results provide important concepts for understanding how dual Pchlide reductases operate differentially in oxygenic photosynthetic cells grown under natural environments where oxygen levels undergo dynamic changes. The evolutionary implications of the coexistence of two Pchlide reductases are discussed. PMID:17028153

  15. Functional expression and characterization of recombinant NADPH-P450 reductase from Malassezia globosa.

    PubMed

    Lee, Hwayoun; Park, Hyoung-Goo; Lim, Young-Ran; Lee, Im-Soon; Kim, Beom Joon; Seong, Cheul-Hun; Chun, Young-Jin; Kim, Donghak

    2012-01-01

    Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7- ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa.

  16. Thermal Dependence of the Apparent Km of Glutathione Reductases from Three Plant Species

    PubMed Central

    Mahan, James R.; Burke, John J.; Orzech, Karen A.

    1990-01-01

    The thermal dependencies of the apparent Km of the glutathione reductases from spinach (Spinacia oleracea L.) corn (Zea mays L.), and cucumber (Cucumis sativus L.) were determined. The apparent Km of the enzymes were found to vary up to 9-fold between 12.5 and 45°C. Values of the apparent Km in excess of 200% of the observed minimum are suggested to be detrimental to the normal function of the enzyme. We propose the term “thermal kinetic window” to describe to the range of temperatures over which the apparent Km of the glutathione reductase is within 200% of its minimum and suggest that it may be a useful indicator of the limits of thermal stress for a given species. The thermal kinetic windows determined in this study are: <16°C for spinach, 23 to 32°C for corn, and 35 to 41°C for cucumber. PMID:16667543

  17. Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase.

    PubMed

    Dooley, D M; Moog, R S; Liu, M Y; Payne, W J; LeGall, J

    1988-10-15

    Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.

  18. Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae).

    PubMed

    Ji, Long; Yuan, Yonglei; Ma, Zhongjun; Chen, Zhe; Gan, Lishe; Ma, Xiaoqiong; Huang, Dongsheng

    2013-09-01

    In the present study, it was demonstrated that the dichloromethane extract of Physalis pubescens L. (DEPP) had weak potential quinone reductase (QR) inducing activity, but an UPLC-ESI-MS method with glutathione (GSH) as the substrate revealed that the DEPP had electrophiles (with an α,β-unsaturated ketone moiety). These electrophiles could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, four withanolides, including three new compounds physapubescin B (2), physapubescin C (3), physapubescin D (4), together with one known steroidal compound physapubescin (1) were isolated. Structures of these compounds were determined by spectroscopic analysis and that of physapubescin C (3) was confirmed by a combination of molecular modeling and quantum chemical DFT-GIAO calculations. Evaluation of the QR inducing activities of all withanolides indicated potent activities of compounds 1 and 2, which had a common α,β-unsaturated ketone moiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Molecular cloning and characterization of Fasciola gigantica thioredoxin-glutathione reductase.

    PubMed

    Changklungmoa, Narin; Kueakhai, Pornanan; Sangpairoj, Kant; Chaichanasak, Pannigan; Jaikua, Wipaphorn; Riengrojpitak, Suda; Sobhon, Prasert; Chaithirayanon, Kulathida

    2015-06-01

    The Fasciola gigantica thioredoxin-glutathione reductase (FgTGR) gene is a fusion between thioredoxin reductase (TR) and a glutaredoxin (Grx) gene. FgTGR was cloned by polymerase chain reaction (PCR) from adult complementary DNA (cDNA), and its sequences showed two isoforms, i.e., the cytosolic and mitochondrial FgTGR. Cytosolic FgTGR (cytFgTGR) was composed of 2370 bp, and its peptide had no signal sequence and hence was not a secreted protein. Mitochondrial FgTGR (mitFgTGR) was composed of 2506 bp with a signal peptide of 43 amino acids; therefore, it was a secreted protein. The putative cytFgTGR and mitFgTGR peptides comprised of 598 and 641 amino acids, respectively, with a molecular weight of 65.8 kDa for cytFgTGR and mitFgTGR, with a conserved sequence (CPYC) of TR, and ACUG and CVNVGC of Grx domains. The recombinant FgTGR (rFgTGR) was expressed in Escherichia coli BL21 (DE3) and used for production for a polyclonal antibody in rabbits (anti-rFgTGR). The FgTGR protein expression, estimated by indirect ELISA using the rabbit anti-rFgTGR as probe, showed high levels of expression in eggs, and 2- and 4-week-old juveniles and adults. The rFgTGR exhibited specific activities in the 5,5'-dithiobis (2-nitro-benzoic acid) (DTNB) reductase assay for TR activity and in β-hydroxyethul disulfide (HED) for Grx activity. When analyzed by immunoblotting and immunohistochemistry, rabbit anti-rFgTGR reacted with natural FgTGR at a molecular weight of 66 kDa from eggs, whole body fraction (WB) of metacercariae, NEJ, 2- and 4-week-old juveniles and adults, and the tegumental antigen (TA) of adult. The FgTGR protein was expressed at high levels in the tegument of 2- and 4-week-old juveniles. The FgTGR may be one of the major factors acting against oxidative stresses that can damage the parasite; hence, it could be considered as a novel vaccine or a drug target.

  20. Likely gains in life expectancy of patients with coronary artery disease treated with HMG-CoA reductase inhibitors, as predicted by a decision analysis model.

    PubMed

    Kellett, J

    1997-07-01

    To estimate the likely gains in life expectancy of patients with coronary artery disease treated with HMG-CoA reductase inhibitors based on published reports and the results of the 4S and the West of Scotland Study. Decision analysis. Four likely scenarios of the effect of treatment with HMG-CoA reductase inhibitors on the life expectancy of medically and surgically managed coronary artery disease were modelled. Regardless of the scenario, treatment with HMG-CoA reductase inhibitors was estimated to provide a gain in life expectancy for medically managed patients of all ages with coronary artery disease, ranging from 4.6 to 10.1 quality adjusted life years (QALYs) for a 40 year old with three vessel disease (depending on the scenario assumed), to 0.2 QALYs for a 80 year old with two vessel disease. These gains were always greater than those predicted after bypass alone. If the use of HMG-CoA reductase inhibitors produces the same reduction in cardiac mortality after bypass as it does in medically managed patients it will increase the benefits of operation except for patients with two vessel disease over 70 years of age. Conversely, if HMG-CoA reductase inhibitors do not influence the course of coronary artery disease after bypass, the benefits of operation over medical treatment with HMG-CoA reductase inhibitors are either reduced or lost completely, ranging from a loss of -5.6 QALYs for a 40 year old with two vessel disease to a gain of 1.5 QALYs for 55 to 60 year old patients with left main stem disease. Although their effect on the progression of coronary artery disease after bypass must be defined, it is probable that HMG-CoA reductase inhibitors will produce considerable gains in life expectancy for patients with coronary artery disease.

  1. Presence of the 5,10-methylenetetrahydrofolate reductase C677T mutation in Puerto Rican patients with neural tube defects.

    PubMed

    García-Fragoso, Lourdes; García-García, Inés; de la Vega, Alberto; Renta, Jessicca; Cadilla, Carmen L

    2002-01-01

    Folic acid supplementation can reduce the incidence of neural tube defects. The first reported genetic risk factor for neural tube defects is a C677T mutation in the 5,10-methylenetetrahydrofolate reductase gene, resulting in decreased activity of the enzyme. We examined the enzyme mutation role of methylenetetrahydrofolate reductase in the etiology of neural tube defects in our population. The study group consisted of 204 Puerto Rican individuals including 37 pregnant females with a prenatal diagnosis of neural tube defects in their fetuses, 31 newborns, 36 fathers, and 100 healthy adults. The prevalence of the C677T mutation was examined. Homozygosity for the alanine to valine substitution (TT) was observed in 9% of the controls and 19% of the mothers with children with neural tube defects. Our results indicate that the presence of the T allele at the methylenetetrahydrofolate reductase 677 position may increase the risk of giving birth to an infant with a neural tube defect.

  2. Molecular Diagnosis of 5α-Reductase Type II Deficiency in Brazilian Siblings with 46,XY Disorder of Sex Development

    PubMed Central

    de Calais, Flávia Leme; Soardi, Fernanda Caroline; Petroli, Reginaldo José; Lusa, Ana Letícia Gori; de Paiva e Silva, Roberto Benedito; Maciel-Guerra, Andréa Trevas; Guerra-Júnior, Gil; de Mello, Maricilda Palandi

    2011-01-01

    The steroid 5α-reductase type II enzyme catalyzes the conversion of testosterone (T) to dihydrotestosterone (DHT), and its deficiency leads to undervirilization in 46,XY individuals, due to an impairment of this conversion in genital tissues. Molecular analysis in the steroid 5α-reductase type II gene (SRD5A2) was performed in two 46,XY female siblings. SRD5A2 gene sequencing revealed that the patients were homozygous for p.Gln126Arg missense mutation, which results from the CGA > CAA nucleotide substitution. The molecular result confirmed clinical diagnosis of 46,XY disorder of sex development (DSD) for the older sister and directed the investigation to other family members. Studies on SRD5A2 protein structure showed severe changes at NADPH binding region indicating that structural modeling analysis can be useful to evaluate the deleterious role of a mutation as causing 5α-reductase type II enzyme deficiency. PMID:22272144

  3. Passive regeneration of glutathione: glutathione reductase regulation in the freeze-tolerant North American wood frog, Rana sylvatica.

    PubMed

    Dawson, Neal J; Storey, Kenneth B

    2017-09-01

    Wood frogs inhabit a broad range across North America, extending from the southern tip of the Appalachian Mountains to the northern boreal forest. Remarkably, they can survive the winter in a frozen state, where as much as 70% of their body water is converted into ice. Whilst in the frozen state, their hearts cease to pump blood, causing their cells to experience ischemia, which can dramatically increase the production of reactive oxygen species within the cell. To overcome this, wood frogs have elevated levels of glutathione, a primary antioxidant. We examined the regulation of glutathione reductase, the enzyme involved in recycling glutathione, in both the frozen and unfrozen (control) state. Glutathione reductase activity from both the control and frozen state showed a dramatic reduction in substrate specificity ( K m ) for oxidized glutathione (50%) when measured in the presence of glucose (300 mmol l -1 ) and a increase (157%) when measured in the presence of levels of urea (75 mmol l -1 ) encountered in the frozen state. However, when we tested the synergistic effect of urea and glucose simultaneously, we observed a substantial reduction in the K m for oxidized glutathione (43%) to a value similar to that with glucose alone. In fact, we found no observable differences in the kinetic and structural properties of glutathione reductase between the two states. Therefore, a significant increase in the affinity for oxidized glutathione in the presence of endogenous levels of glucose suggests that increased glutathione recycling may occur as a result of passive regulation of glutathione reductase by rising levels of glucose during freezing. © 2017. Published by The Company of Biologists Ltd.

  4. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    PubMed

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  5. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    PubMed

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  6. Functional properties and structural characterization of rice δ 1-pyrroline-5-carboxylate reductase

    DOE PAGES

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; ...

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice ( Oryza sativa L.) for δ 1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was ablemore » to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP + were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP + ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  7. Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH.

    PubMed

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2013-11-01

    Conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 is a member of the aldo-keto reductase (AKR) superfamily and reduces ketopantoyl lactone to d-pantoyl lactone in a NADPH-dependent and stereospecific manner. We determined the crystal structure of CPR-C1.NADPH complex at 2.20 Å resolution. CPR-C1 adopted a triose-phosphate isomerase (TIM) barrel fold at the core of the structure in which Thr25 and Lys26 of the GXGTX motif bind uniquely to the adenosine 2'-phosphate group of NADPH. This finding provides a novel structural basis for NADPH binding of the AKR superfamily. Copyright © 2013 Wiley Periodicals, Inc.

  8. Stimulatory effect of insulin on 5alpha-reductase type 1 (SRD5A1) expression through an Akt-dependent pathway in ovarian granulosa cells.

    PubMed

    Kayampilly, Pradeep P; Wanamaker, Brett L; Stewart, James A; Wagner, Carrie L; Menon, K M J

    2010-10-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P<0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P<0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation.

  9. Stimulatory Effect of Insulin on 5α-Reductase Type 1 (SRD5A1) Expression through an Akt-Dependent Pathway in Ovarian Granulosa Cells

    PubMed Central

    Kayampilly, Pradeep P.; Wanamaker, Brett L.; Stewart, James A.; Wagner, Carrie L.; Menon, K. M. J.

    2010-01-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P < 0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P < 0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation. PMID:20810561

  10. Novel thioredoxin-related transmembrane protein TMX4 has reductase activity.

    PubMed

    Sugiura, Yoshimi; Araki, Kazutaka; Iemura, Shun-ichiro; Natsume, Tohru; Hoseki, Jun; Nagata, Kazuhiro

    2010-03-05

    In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (-171.5 mV; 30 degrees C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.

  11. Modeling O₂-dependent effects of nitrite reductase activity in blood and tissue on coupled NO and O₂ transport around arterioles.

    PubMed

    Buerk, Donald G; Barbee, Kenneth A; Jaron, Dov

    2011-01-01

    Recent evidence in the literature suggests that tissues play a greater role than blood in reducing nitrite to NO under ischemic or hypoxic conditions. Our previous mathematical model for coupled NO and O(2) transport around an arteriole, modified to include superoxide generation from dysfunctional endothelium, was developed further to include nitrite reductase activity in blood and tissue. Steady-state radial and axial NO and pO(2) profiles in the arteriole and surrounding tissue were simulated for different blood flow rates and arterial blood pO(2) values. The resulting computer simulations demonstrate that nitrite reductase activity in blood is not a very effective mechanism for conserving NO due to the strong scavenging of NO by hemoglobin. In contrast, nitrite reductase activity in tissue is much more effective in increasing NO bioavailability in the vascular wall and contributes progressively more NO as tissue hypoxia becomes more severe.

  12. Holo Structure and Steady State Kinetics of the Thiazolinyl Imine Reductases for Siderophore Biosynthesis

    PubMed Central

    Meneely, Kathleen M.; Ronnebaum, Trey A.; Riley, Andrew P.; Prisinzano, Thomas E.; Lamb, Audrey L.

    2016-01-01

    Thiazolinyl imine reductases catalyze the NADPH-dependent reduction of a thiazoline to a thiazolidine, a required step in the formation of the siderophores yersiniabactin (Yersinia spp.) and pyochelin (Pseudomonas aeruginosa). These stand-alone nonribosomal peptide tailoring domains are structural homologues of sugar oxidoreductases. Two closed structures of the thiazolinyl imine reductase from Yersinia enterocolitica (Irp3) are presented here: an NADP+-bound structure to 1.45 Å resolution and a holo structure to 1.28 Å resolution with NADP+ and a substrate analogue bound. Michaelis—Menten kinetics were measured using the same substrate analogue and the homologue from P. aeruginosa, PchG. The data presented here support the hypothesis that tyrosine 128 is the likely general acid residue for catalysis and also highlight the phosphopantetheine tunnel for tethering of the substrate to the nonribosomal peptide synthetase module during assembly line biosynthesis of the siderophore. PMID:27601130

  13. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    PubMed Central

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  14. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2'-azido-2'-deoxynucleoside diphosphates.

    PubMed

    Sjöberg, B M; Gräslund, A; Eckstein, F

    1983-07-10

    The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.

  15. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    PubMed

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  16. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less

  17. Identification of a Noroxomaritidine Reductase with Amaryllidaceae Alkaloid Biosynthesis Related Activities*

    PubMed Central

    Kilgore, Matthew B.; Holland, Cynthia K.; Jez, Joseph M.; Kutchan, Toni M.

    2016-01-01

    Amaryllidaceae alkaloids are a large group of plant natural products with over 300 documented structures and diverse biological activities. Several groups of Amaryllidaceae alkaloids including the hemanthamine- and crinine-type alkaloids show promise as anticancer agents. Two reduction reactions are required for the production of these compounds: the reduction of norcraugsodine to norbelladine and the reduction of noroxomaritidine to normaritidine, with the enantiomer of noroxomaritidine dictating whether the derivatives will be the crinine-type or hemanthamine-type. It is also possible for the carbon-carbon double bond of noroxomaritidine to be reduced, forming the precursor for maritinamine or elwesine depending on the enantiomer reduced to an oxomaritinamine product. In this study, a short chain alcohol dehydrogenase/reductase that co-expresses with the previously discovered norbelladine 4′-O-methyltransferase from Narcissus sp. and Galanthus spp. was cloned and expressed in Escherichia coli. Biochemical analyses and x-ray crystallography indicates that this protein functions as a noroxomaritidine reductase that forms oxomaritinamine from noroxomaritidine through a carbon-carbon double bond reduction. The enzyme also reduces norcraugsodine to norbelladine with a 400-fold lower specific activity. These studies identify a missing step in the biosynthesis of this pharmacologically important class of plant natural products. PMID:27252378

  18. Pharmacogenetics of aldo-keto reductase 1C (AKR1C) enzymes.

    PubMed

    Alshogran, Osama Y

    2017-10-01

    Genetic variation in metabolizing enzymes contributes to variable drug response and disease risk. Aldo-keto reductase type 1C (AKR1C) comprises a sub-family of reductase enzymes that play critical roles in the biotransformation of various drug substrates and endogenous compounds such as steroids. Several single nucleotide polymorphisms have been reported among AKR1C encoding genes, which may affect the functional expression of the enzymes. Areas covered: This review highlights and comprehensively discusses previous pharmacogenetic reports that have examined genetic variations in AKR1C and their association with disease development, drug disposition, and therapeutic outcomes. The article also provides information about the effect of AKR1C genetic variants on enzyme function in vitro. Expert opinion: The current evidence that links the effect of AKR1C gene polymorphisms to disease progression and development is inconsistent and needs further validation, despite of the tremendous knowledge available. Information about association of AKR1C genetic variants and drug efficacy, safety, and pharmacokinetics is limited, thus, future studies that advance our understanding about these relationships and their clinical relevance are needed. It is imperative to achieve consistent findings before the potential translation and adoption of AKR1C genetic variants in clinical practice.

  19. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L)

    PubMed Central

    Vasconcelos, Marta W.; Clemente, Thomas E.; Grusak, Michael A.

    2014-01-01

    Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and

  20. Purification of a NAD(P) reductase-like protein from the thermogenic appendix of the Sauromatum guttatum inflorescence.

    PubMed

    Skubatz, Hanna; Howald, William N

    2013-03-01

    A NAD(P) reductase-like protein with a molecular mass of 34.146 ± 34 Da was purified to homogeneity from the appendix of the inflorescence of the Sauromatum guttatum. On-line liquid chromatography/electrospray ionization-mass spectrometry was used to isolate and quantify the protein. For the identification of the protein, liquid chromatography/electrospray ionization-tandem mass spectrometry analysis of tryptic digests of the protein was carried out. The acquired mass spectra were used for database searching, which led to the identification of a single tryptic peptide. The 12 amino acid tryptic peptide (FLPSEFGNDVDR) was found to be identical to amino acid residues at the positions 108-120 of isoflavone reductase in the Arabidopsis genome. A BLAST search identified this sequence region as unique and specific to a class of NAD(P)-dependent reductases involved in phenylpropanoid biosynthesis. Edman degradation revealed that the protein was N-terminally blocked. The amount of the protein (termed RL, NAD(P) reductase-like protein) increased 60-fold from D-4 (4 days before inflorescence-opening, designated as D-day) to D-Day, and declined the following day, when heat-production ceased. When salicylic acid, the endogenous trigger of heat-production in the Sauromatum appendix, was applied to premature appendices, a fivefold decrease in the amount of RL was detected in the treated section relative to the non-treated section. About 40 % of RL was found in the cytoplasm. Another 30 % was detected in Percoll-purified mitochondria and the rest, about 30 % was associated with a low speed centrifugation pellet due to nuclei and amyloplast localization. RL was also found in other thermogenic plants and detected in Arabidopsis leaves. The function of RL in thermogenic and non-thermogenic plants requires further investigation.

  1. Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases in vitro.

    PubMed

    Stapelfeld, Claudia; Maser, Edmund

    2017-10-01

    Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11β-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11β-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 μM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer. Copyright © 2017 Elsevier B

  2. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases.

    PubMed

    Tulloch, Lindsay B; Martini, Viviane P; Iulek, Jorge; Huggan, Judith K; Lee, Jeong Hwan; Gibson, Colin L; Smith, Terry K; Suckling, Colin J; Hunter, William N

    2010-01-14

    Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.

  3. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.

    PubMed

    Menon, Binuraj R K; Latham, Jonathan; Dunstan, Mark S; Brandenburger, Eileen; Klemstein, Ulrike; Leys, David; Karthikeyan, Chinnan; Greaney, Michael F; Shepherd, Sarah A; Micklefield, Jason

    2016-10-04

    Flavin-dependent halogenase (Fl-Hal) enzymes have been shown to halogenate a range of synthetic as well as natural aromatic compounds. The exquisite regioselectively of Fl-Hal enzymes can provide halogenated building blocks which are inaccessible using standard halogenation chemistries. Consequently, Fl-Hal are potentially useful biocatalysts for the chemoenzymatic synthesis of pharmaceuticals and other valuable products, which are derived from haloaromatic precursors. However, the application of Fl-Hal enzymes, in vitro, has been hampered by their poor catalytic activity and lack of stability. To overcome these issues, we identified a thermophilic tryptophan halogenase (Th-Hal), which has significantly improved catalytic activity and stability, compared with other Fl-Hal characterised to date. When used in combination with a thermostable flavin reductase, Th-Hal can efficiently halogenate a number of aromatic substrates. X-ray crystal structures of Th-Hal, and the reductase partner (Th-Fre), provide insights into the factors that contribute to enzyme stability, which could guide the discovery and engineering of more robust and productive halogenase biocatalysts.

  4. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis.

    PubMed

    Siméone, Roxane; Constant, Patricia; Guilhot, Christophe; Daffé, Mamadou; Chalut, Christian

    2007-07-01

    Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.

  5. The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii.

    PubMed Central

    Sridhar Prasad, G.; Kresge, N.; Muhlberg, A. B.; Shaw, A.; Jung, Y. S.; Burgess, B. K.; Stout, C. D.

    1998-01-01

    NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN

  6. Expression, purification and enzymatic characterization of Brugia malayi dihydrofolate reductase.

    PubMed

    Perez-Abraham, Romy; Sanchez, Karla Garabiles; Alfonso, Melany; Gubler, Ueli; Siekierka, John J; Goodey, Nina M

    2016-12-01

    Brugia malayi (B. malayi) is one of the three causative agents of lymphatic filariasis, a neglected parasitic disease. Current literature suggests that dihydrofolate reductase is a potential drug target for the elimination of B. malayi. Here we report the recombinant expression and purification of a ∼20 kDa B. malayi dihydrofolate reductase (BmDHFR). A His6-tagged construct was expressed in E. coli and purified by affinity chromatography to yield active and homogeneous enzyme for steady-state kinetic characterization and inhibition studies. The catalytic activity kcat was found to be 1.4 ± 0.1 s(-1), the Michaelis Menten constant KM for dihydrofolate 14.7 ± 3.6 μM, and the equilibrium dissociation constant KD for NADPH 25 ± 24 nM. For BmDHFR, IC50 values for a six DHFR inhibitors were determined to be 3.1 ± 0.2 nM for methotrexate, 32 ± 22 μM for trimethoprim, 109 ± 34 μM for pyrimethamine, 154 ± 46 μM for 2,4-diaminoquinazoline, 771 ± 44 μM for cycloguanil, and >20,000 μM for 2,4-diaminopyrimidine. Our findings suggest that antifolate compounds can serve as inhibitors of BmDHFR. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay.

    PubMed

    Su, Bao-Ning; Jung Park, Eun; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Fong, Harry H S; Pezzuto, John M; Kinghorn, A Douglas

    2003-06-01

    Activity-guided fractionation of an EtOAc-soluble extract of the leaves of Muntingia calabura collected in Peru, using an in vitro quinone reductase induction assay with cultured Hepa 1c1c7 (mouse hepatoma) cells, resulted in the isolation of a flavanone with an unsubstituted B-ring, (2R,3R)-7-methoxy-3,5,8-trihydroxyflavanone (5), as well as 24 known compounds, which were mainly flavanones and flavones. The structure including absolute stereochemistry of compound 5 was determined by spectroscopic (HRMS, 1D and 2D NMR, and CD spectra) methods. Of the isolates obtained, in addition to 5, (2S)-5-hydroxy-7-methoxyflavanone, 2',4'-dihydroxychalcone, 4,2',4'-trihydroxychalcone, 7-hydroxyisoflavone and 7,3',4'-trimethoxyisoflavone were found to induce quinone reductase activity.

  8. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  9. Screening In Vitro Targets Related to Diabetes in Herbal Extracts from Peru: Identification of Active Compounds in Hypericum laricifolium Juss. by Offline High-Performance Liquid Chromatography

    PubMed Central

    Guillen Quispe, Yanymee N.; Hwang, Seung Hwan; Wang, Zhiqiang

    2017-01-01

    This study investigates in vitro targets related to diabetes in 30 herbal extracts from Peru, for the first time, using α-glucosidase, aldose reductase (AR) inhibitory assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assays. Among the 30 herbal extracts, Hypericum laricifolium Juss. (HL) was the herb which showed more than 50% inhibition in all assays, presenting 97.2 ± 2.0%, 56.9 ± 5.6%, 81.9 ± 2.5%, and 58.8 ± 4.6% inhibition for the α-glucosidase, AR, DPPH, and ABTS assays, respectively. Finally, six bioactive compounds, namely, protocatechuic acid, chlorogenic acid, caffeic acid, kaempferol 3-O-glucuronide, quercetin, and kaempferol were identified in HL by offline high-performance liquid chromatography (HPLC). Quercetin exhibited the strongest inhibition in all enzyme assays and the strongest antioxidant activity. The results suggest that HL shows great potential for the complementary treatment of diabetes and its complications. PMID:29186785

  10. Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats.

    PubMed

    Fouad, Amr A; Alwadani, Fahad

    2015-11-01

    The possible protective effect of thymoquinone against eye lens changes in diabetic rats was investigated. Following diabetes induction by a single injection of streptozotocin (45 mg/kg, i.p.), thymoquinone was administered in three different doses (20, 40, and 80 mg/kg/day, p.o.) for 12 weeks. Thymoquinone significantly and dose-dependently attenuated the hypoinsulinemia and hyperglycemia in diabetic rats. Also, thymoquinone (particularly 40 and 80 mg/kg) significantly decreased the elevations of malondialdehyde, nitric oxide, tumor necrosis factor-α, glycated proteins, aldose reductase activity, sorbitol level, and caspase-3 activity in the lens tissues of diabetic rats. In addition, thymoquinone (particularly 40 and 80 mg/kg) significantly ameliorated the diabetes-induced reductions of glutathione peroxidase, superoxide dismutase, and catalase activities, and total and soluble protein contents in the lens tissues. It was concluded that thymoquinone significantly protected the lens tissue against changes induced by diabetes in rats through its antioxidant, anti-inflammatory, and antidiabetic effects. Copyright © 2015. Published by Elsevier B.V.

  11. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Zhao, Liting; Pu, Lingling; Wei, Jingyu; Li, Jinghua; Wu, Jianquan; Xin, Zhonghao; Gao, Weina; Guo, Changjiang

    2016-05-13

    Propolis contains a variety of bioactive components and possesses many biological properties. This study was designed to evaluate potential effects of Brazilian green propolis on glucose metabolism and antioxidant function in patients with type 2 diabetes mellitus (T2DM). In the 18-week randomized controlled study, enrolled patients with T2DM were randomly assigned to Brazilian green propolis group (900 mg/day) (n = 32) and control group (n = 33). At the end of the study, no significant difference was found in serum glucose, glycosylated hemoglobin, insulin, aldose reductase or adiponectin between the two groups. However, serum GSH and total polyphenols were significantly increased, and serum carbonyls and lactate dehydrogenase activity were significantly reduced in the Brazilian green propolis group. Serum TNF-α was significantly decreased, whereas serum IL-1β and IL-6 were significantly increased in the Brazilian green propolis group. It is concluded that Brazilian green propolis is effective in improving antioxidant function in T2DM patients.

  12. Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants.

    PubMed

    Cascaes, Márcia Moraes; Guilhon, Giselle Maria Skelding Pinheiro; de Aguiar Andrade, Eloisa Helena; das Graças Bichara Zoghbi, Maria; da Silva Santos, Lourivaldo

    2015-10-09

    Myrcia is one of the largest genera of the economically important family Myrtaceae. Some of the species are used in folk medicine, such as a group known as "pedra-hume-caá" or "pedra-ume-caá" or "insulina vegetal" (insulin plant) that it is used for the treatment of diabetes. The species are an important source of essential oils, and most of the chemical studies on Myrcia describe the chemical composition of the essential oils, in which mono- and sesquiterpenes are predominant. The non-volatile compounds isolated from Myrcia are usually flavonoids, tannins, acetophenone derivatives and triterpenes. Anti-inflammatory, antinociceptive, antioxidant, antimicrobial activities have been described to Myrcia essential oils, while hypoglycemic, anti-hemorrhagic and antioxidant activities were attributed to the extracts. Flavonoid glucosides and acetophenone derivatives showed aldose reductase and α-glucosidase inhibition, and could explain the traditional use of Myrcia species to treat diabetes. Antimicrobial and anti-inflammatory are some of the activities observed for other isolated compounds from Myrcia.

  13. Structural and biochemical analyses of YvgN and YtbE from Bacillus subtilis

    PubMed Central

    Lei, Jian; Zhou, Yan-Feng; Li, Lan-Fen; Su, Xiao-Dong

    2009-01-01

    Bacillus subtilis is one of the most studied gram-positive bacteria. In this work, YvgN and YtbE from B. subtilis, assigned as AKR5G1 and AKR5G2 of aldo-keto reductase (AKR) superfamily. AKR catalyzes the NADPH-dependent reduction of aldehyde or aldose substrates to alcohols. YvgN and YtbE were studied by crystallographic and enzymatic analyses. The apo structures of these proteins were determined by molecular replacement, and the structure of holoenzyme YvgN with NADPH was also solved, revealing the conformational changes upon cofactor binding. Our biochemical data suggest both YvgN and YtbE have preferential specificity for derivatives of benzaldehyde, such as nitryl or halogen group substitution at the 2 or 4 positions. These proteins also showed broad catalytic activity on many standard substrates of AKR, such as glyoxal, dihydroxyacetone, and DL-glyceraldehyde, suggesting a possible role in bacterial detoxification. PMID:19585557

  14. Screening In Vitro Targets Related to Diabetes in Herbal Extracts from Peru: Identification of Active Compounds in Hypericum laricifolium Juss. by Offline High-Performance Liquid Chromatography.

    PubMed

    Quispe, Yanymee N. Guillen; Hwang, Seung Hwan; Wang, Zhiqiang; Zuo, Guanglei; Lim, Soon Sung

    2017-11-24

    This study investigates in vitro targets related to diabetes in 30 herbal extracts from Peru, for the first time, using α-glucosidase, aldose reductase (AR) inhibitory assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assays. Among the 30 herbal extracts, Hypericum laricifolium Juss. (HL) was the herb which showed more than 50% inhibition in all assays, presenting 97.2 ± 2.0%, 56.9 ± 5.6%, 81.9 ± 2.5%, and 58.8 ± 4.6% inhibition for the α-glucosidase, AR, DPPH, and ABTS assays, respectively. Finally, six bioactive compounds, namely, protocatechuic acid, chlorogenic acid, caffeic acid, kaempferol 3- O -glucuronide, quercetin, and kaempferol were identified in HL by offline high-performance liquid chromatography (HPLC). Quercetin exhibited the strongest inhibition in all enzyme assays and the strongest antioxidant activity. The results suggest that HL shows great potential for the complementary treatment of diabetes and its complications.

  15. Thermal stress and diabetic complications

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Fujisawa, Hiroyuki; Agishi, Yuko

    1995-06-01

    Activities of erythrocyte aldose reductase were compared in 34 normal subjects, 45 diabetic patients, and nine young men following immersion in water at 25, 39, and 42° C. Mean basal enzyme activity was 1.11 (SEM 0.12) U/g Hb and 2.07 (SEM 0.14) U/g Hb in normal controls and diabetic patients, respectively ( P<0.0001). Activities of the enzyme showed a good correlation with hemaglobin A1 (HbA1) concentrations ( P<0.01) but not with fasting plasma glucose concentrations. After immersion at 42° C for 10 min, enzyme activity was increased by 37.6% ( P<0.01); however, the activity decreased by 52.2% ( P<0.005) after immersion for 10 min at 39° C and by 47.0% ( P<0.05) at 25° C. These changes suggest that heat stress might aggravate diabetic complications, and body exposure to hot environmental conditions is not recommended for diabetic patients.

  16. Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.

    PubMed

    Lothrop, Adam P; Snider, Gregg W; Ruggles, Erik L; Patel, Amar S; Lees, Watson J; Hondal, Robert J

    2014-02-04

    Mammalian thioredoxin reductase (TR) is a pyridine nucleotide disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys) in the redox-active tetrapeptide Gly-Cys-Sec-Gly motif to catalyze thiol/disulfide exchange reactions. Sec can accelerate the rate of these exchange reactions (i) by being a better nucleophile than Cys, (ii) by being a better electrophile than Cys, (iii) by being a better leaving group than Cys, or (iv) by using a combination of all three of these factors, being more chemically reactive than Cys. The role of the selenolate as a nucleophile in the reaction mechanism was recently demonstrated by creating a mutant of human thioredoxin reductase-1 in which the Cys497-Sec498 dyad of the C-terminal redox center was mutated to either a Ser497-Cys498 dyad or a Cys497-Ser498 dyad. Both mutant enzymes were incubated with human thioredoxin (Trx) to determine which mutant formed a mixed disulfide bond complex. Only the mutant containing the Ser497-Cys498 dyad formed a complex, and this structure has been determined by X-ray crystallography [Fritz-Wolf, K., Kehr, S., Stumpf, M., Rahlfs, S., and Becker, K. (2011) Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat. Commun. 2, 383]. This experimental observation most likely means that the selenolate is the nucleophile initially attacking the disulfide bond of Trx because a complex resulted only when Cys was present in the second position of the dyad. As a nucleophile, the selenolate of Sec helps to accelerate the rate of this exchange reaction relative to Cys in the Sec → Cys mutant enzyme. Another thiol/disulfide exchange reaction that occurs in the enzymatic cycle of the enzyme is the transfer of electrons from the thiolate of the interchange Cys residue of the N-terminal redox center to the eight-membered selenosulfide ring of the C-terminal redox center. The selenium atom of the selenosulfide could

  17. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  18. Structure of a short-chain dehydrogenase/reductase from Bacillus anthracis

    PubMed Central

    Hou, Jing; Wojciechowska, Kamila; Zheng, Heping; Chruszcz, Maksymilian; Cooper, David R.; Cymborowski, Marcin; Skarina, Tatiana; Gordon, Elena; Luo, Haibin; Savchenko, Alexei; Minor, Wladek

    2012-01-01

    The crystal structure of a short-chain dehydrogenase/reductase from Bacillus anthracis strain ‘Ames Ancestor’ complexed with NADP has been determined and refined to 1.87 Å resolution. The structure of the enzyme consists of a Rossmann fold composed of seven parallel β-strands sandwiched by three α-­helices on each side. An NADP molecule from an endogenous source is bound in the conserved binding pocket in the syn conformation. The loop region responsible for binding another substrate forms two perpendicular short helices connected by a sharp turn. PMID:22684058

  19. Purification and properties of dihydrofolate reductase from cultured mammalian cells

    PubMed Central

    Gauldie, Jack; Marshall, Lyse; Hillcoat, Brian L.

    1973-01-01

    Dihydrofolate reductase was purified quickly and simply from small quantities of cultured mammalian cells by affinity chromatography. On gel electrophoresis of the purified enzyme, multiple bands of activity resulted from enzyme–buffer interaction at low but not high buffer concentration. A Ferguson plot (Ferguson, 1964) showed that this heterogeneity was due to a charge difference with no alteration in the size of the enzyme. Stimulation of enzyme activity by KCl, urea and p-hydroxymercuribenzoate, and inhibition by methotrexate and trimethoprim, showed only minor differences between the various enzymes. PMID:4723779

  20. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    PubMed

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  1. The regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity, cholesterol esterification and the expression of low-density lipoprotein receptors in cultured monocyte-derived macrophages.

    PubMed Central

    Knight, B L; Patel, D D; Soutar, A K

    1983-01-01

    Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the

  2. Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum.

    PubMed

    Venkatesan, Santhosh Kannan; Shukla, Anil Kumar; Dubey, Vikash Kumar

    2010-10-01

    Visceral leishmaniasis, most lethal form of Leishmaniasis, is caused by Leishmania infantum in the Old world. Current therapeutics for the disease is associated with a risk of high toxicity and development of drug resistant strains. Thiol-redox metabolism involving trypanothione and trypanothione reductase, key for survival of Leishmania, is a validated target for rational drug design. Recently published structure of trypanothione reductase (TryR) from L. infantum, in oxidized and reduced form along with Sb(III), provides vital clues on active site of the enzyme. In continuation with our attempts to identify potent inhibitors of TryR, we have modeled binding modes of selected tricyclic compounds and quinone derivatives, using AutoDock4. Here, we report a unique binding mode for quinone derivatives and 9-aminoacridine derivatives, at the FAD binding domain. A conserved hydrogen bonding pattern was observed in all these compounds with residues Thr335, Lys60, His461. With the fact that these residues aid in the orientation of FAD towards the active site forming the core of the FAD binding domain, designing selective and potent compounds that could replace FAD in vivo during the synthesis of Trypanothione reductase can be deployed as an effective strategy in designing new drugs towards Leishmaniasis. We also report the binding of Phenothiazine and 9-aminoacridine derivatives at the Z site of the protein. The biological significance and possible mode of inhibition by quinone derivatives, which binds to FAD binding domain, along with other compounds are discussed. (c) 2010 Wiley Periodicals, Inc.

  3. The Role of Large-Scale Motions in Catalysis by Dihydrofolate Reductase

    PubMed Central

    2011-01-01

    Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that factors that affect large-scale (i.e., long-range, but not necessarily large amplitude) protein motions have no effect on the kinetic isotope effect on hydride transfer or its temperature dependence, although the rates of the catalyzed reaction are affected. Hydrogen/deuterium exchange studies by NMR-spectroscopy show that MpDHFR is a more flexible enzyme than EcDHFR. NMR experiments with EcDHFR in the presence of cosolvents suggest differences in the conformational ensemble of the enzyme. The fact that enzymes from different environmental niches and with different flexibilities display the same behavior of the kinetic isotope effect on hydride transfer strongly suggests that, while protein motions are important to generate the reaction ready conformation, an optimal conformation with the correct electrostatics and geometry for the reaction to occur, they do not influence the nature of the chemical step itself; large-scale motions do not couple directly to hydride transfer proper in DHFR. PMID:22060818

  4. Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase

    PubMed Central

    Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael

    2013-01-01

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774

  5. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.

    PubMed

    Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael

    2013-04-05

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.

  6. Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf.

    PubMed

    Kushwaha, Amit K; Sangwan, Neelam S; Tripathi, Sandhya; Sangwan, Rajender S

    2013-03-10

    Tropinone reductases (TRs) are small proteins belonging to the SDR (short chain dehydrogenase/reductase) family of enzymes. TR-I and TR-II catalyze the conversion of tropinone into tropane alcohols (tropine and pseudotropine, respectively). The steps are intermediary enroute to biosynthesis of tropane esters of medicinal importance, hyoscyamine/scopolamine, and calystegins, respectively. Biosynthesis of tropane alkaloids has been proposed to occur in roots. However, in the present report, a tropine forming tropinone reductase (TR-I) cDNA was isolated from the aerial tissue (leaf) of a medicinal plant, Withania coagulans. The ORF was deduced to encode a polypeptide of 29.34 kDa. The complete cDNA (WcTRI) was expressed in E. coli and the recombinant His-tagged protein was purified for functional characterization. The enzyme had a narrow pH range of substantial activity with maxima at 6.6. Relatively superior thermostability of the enzyme (30% retention of activity at 60 °C) was catalytic novelty in consonance with the desert area restricted habitat of the plant. The in vitro reaction kinetics predominantly favoured the forward reaction. The enzyme had wide substrate specificity but did not cover the substrates of other well-known plant SDR related to menthol metabolism. To our knowledge, this pertains to be the first report on any gene and enzyme of secondary metabolism from the commercially and medicinally important vegetable rennet species. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. [Effect of UV-radiation on the level of ascorbic acid, SH-groups, and activity of glutathione reductase in the eye lens].

    PubMed

    Byshneva, L N; Senchuk, V V

    2002-01-01

    The effect of UV radiation in vitro on the level of ascorbate, SH-groups and glutathione reductase activity in the soluble fraction of bovine eye lens was studied. UV-Irradiation increased NADPH-oxidoreductase activity, the level of ascorbate oxidation and decreased the content of SH-groups and activity of glutathione reductase. Significant activation of the NADPH-oxidoreductase activity in the presence of ascorbate and Cu2+ was observed after UV-irradiation. It is suggested that ascorbate may play an important role in the UV-induced lens pathology.

  8. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance.

    PubMed

    Leitsch, David; Kolarich, Daniel; Binder, Marina; Stadlmann, Johannes; Altmann, Friedrich; Duchêne, Michael

    2009-04-01

    Infections with the microaerophilic parasite Trichomonas vaginalis are treated with the 5-nitroimidazole drug metronidazole, which is also in use against Entamoeba histolytica, Giardia intestinalis and microaerophilic/anaerobic bacteria. Here we report that in T. vaginalis the flavin enzyme thioredoxin reductase displays nitroreductase activity with nitroimidazoles, including metronidazole, and with the nitrofuran drug furazolidone. Reactive metabolites of metronidazole and other nitroimidazoles form covalent adducts with several proteins that are known or assumed to be associated with thioredoxin-mediated redox regulation, including thioredoxin reductase itself, ribonucleotide reductase, thioredoxin peroxidase and cytosolic malate dehydrogenase. Disulphide reducing activity of thioredoxin reductase was greatly diminished in extracts of metronidazole-treated cells and intracellular non-protein thiol levels were sharply decreased. We generated a highly metronidazole-resistant cell line that displayed only minimal thioredoxin reductase activity, not due to diminished expression of the enzyme but due to the lack of its FAD cofactor. Reduction of free flavins, readily observed in metronidazole-susceptible cells, was also absent in the resistant cells. On the other hand, iron-depleted T. vaginalis cells, expressing only minimal amounts of PFOR and hydrogenosomal malate dehydrogenase, remained fully susceptible to metronidazole. Thus, taken together, our data suggest a flavin-based mechanism of metronidazole activation and thereby challenge the current model of hydrogenosomal activation of nitroimidazole drugs.

  9. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    PubMed

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. Copyright © 2015 John Wiley & Sons, Ltd.

  11. High dose androgen therapy in male pseudohermaphroditism due to 5 alpha-reductase deficiency and disorders of the androgen receptor.

    PubMed

    Price, P; Wass, J A; Griffin, J E; Leshin, M; Savage, M O; Large, D M; Bu'Lock, D E; Anderson, D C; Wilson, J D; Besser, G M

    1984-10-01

    We describe the clinical and biochemical features of six men with male pseudohermaphroditism due to androgen resistance. Each of the subjects had male-gender behavior but incomplete virilization. The underlying defects in androgen metabolism were defined by studies of the 5 alpha-reductase enzyme and the androgen receptor in fibroblasts cultured from biopsies of genital skin. Four of the six have 5 alpha-reductase deficiency, and two have defects of the androgen receptor (the Reifenstein syndrome). The responses of these men to androgen treatment were assessed by monitoring nitrogen balance, plasma luteinizing hormone (LH) values, and clinical parameters of virilization including penile growth, potency and ejaculatory volume, muscle bulk, and growth of body and facial hair. In all of the subjects with 5 alpha-reductase deficiency and one man with the Reifenstein syndrome significant response occurred, as evidence by nitrogen retention, lowered plasma LH levels, and improved virilization, with doses of parenteral testosterone esters that raised plasma testosterone levels above the normal male range and brought plasma dihydrotestosterone levels into the normal male range. The subject who did not respond with clinical virilization nevertheless showed nitrogen retention in response to acute testosterone administration. This patient had a profound deficiency of the androgen receptor, whereas the man with a receptor defect who did respond clinically to therapy had normal amounts of a qualitatively abnormal receptor. We conclude that high dose androgen therapy may be of benefit in improving virilization, self-image, and sexual performance in subjects with 5 alpha-reductase deficiency who have male-gender behavior and in some subjects with defects of the androgen receptor.

  12. Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

    PubMed

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Nagai, Takahiro; Kitamura, Nahoko; Urano, Nobuyuki; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone.

  13. Sortase A-mediated crosslinked short-chain dehydrogenases/reductases as novel biocatalysts with improved thermostability and catalytic efficiency.

    PubMed

    Li, Kunpeng; Zhang, Rongzhen; Xu, Yan; Wu, Zhimeng; Li, Jing; Zhou, Xiaotian; Jiang, Jiawei; Liu, Haiyan; Xiao, Rong

    2017-06-08

    (S)-carbonyl reductase II (SCRII) from Candida parapsilosis is a short-chain alcohol dehydrogenase/reductase. It catalyses the conversion of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with low efficiency. Sortase was reported as a molecular "stapler" for site-specific protein conjugation to strengthen or add protein functionality. Here, we describe Staphylococcus aureus sortase A-mediated crosslinking of SCRII to produce stable catalysts for efficient biotransformation. Via a native N-terminal glycine and an added GGGGSLPETGG peptide at C-terminus of SCRII, SCRII subunits were conjugated by sortase A to form crosslinked SCRII, mainly dimers and trimers. The crosslinked SCRII showed over 6-fold and 4-fold increases, respectively, in activity and k cat /K m values toward 2-hydroxyacetophenone compared with wild-type SCRII. Moreover, crosslinked SCRII was much more thermostable with its denaturation temperature (T m ) increased to 60 °C. Biotransformation result showed that crosslinked SCRII gave a product optical purity of 100% and a yield of >99.9% within 3 h, a 16-fold decrease in transformation duration with respect to Escherichia coli/pET-SCRII. Sortase A-catalysed ligation also obviously improved T m s and product yields of eight other short-chain alcohol dehydrogenases/reductases. This work demonstrates a generic technology to improve enzyme function and thermostability through sortase A-mediated crosslinking of oxidoreductases.

  14. Thiazolidine peracetates: carbohydrate derivatives that readily assign cis-, trans-2,3- monosaccharides by GC/MS analysis

    USDA-ARS?s Scientific Manuscript database

    A novel group of carbohydrate derivatives is described that uniquely assign cis/trans-2,3 aldose stereoisomers at low nanomolar concentrations. Aldopentoses or aldohexoses, or component aldoses from hydrolysis of polysaccharides or oligosaccharides, react with cysteamine in pyridine to give quantita...

  15. Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of α,β-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    Toogood, Helen S.; Fryszkowska, Anna; Hare, Victoria; Fisher, Karl; Roujeinikova, Anna; Leys, David; Gardiner, John M.; Stephens, Gill M.; Scrutton, Nigel S.

    2009-01-01

    Biocatalytic reduction of α- or β-alkyl-β-arylnitroalkenes provides a convenient and efficient method to prepare chiral substituted nitroalkanes. Pentaerythritol tetranitrate reductase (PETN reductase) from Enterobacter cloacae st. PB2 catalyses the reduction of nitroolefins such as 1-nitrocyclohexene (1) with steady state and rapid reaction kinetics comparable to other old yellow enzyme homologues. Furthermore, it reduces 2-aryl-1-nitropropenes (4a-d) to their equivalent (S)-nitropropanes 9a-d. The enzyme shows a preference for the (Z)-isomer of substrates 4a-d, providing almost pure enantiomeric products 9a-d (ees up to > 99%) in quantitative yield, whereas the respective (E)-isomers are reduced with lower enantioselectivity (63-89% ee) and lower product yields. 1-Aryl-2-nitropropenes (5a, b) are also reduced efficiently, but the products (R)-10 have lower optical purities. The structure of the enzyme complex with 1-nitrocyclohexene (1) was determined by X-ray crystallography, revealing two substrate-binding modes, with only one compatible with hydride transfer. Models of nitropropenes 4 and 5 in the active site of PETN reductase predicted that the enantioselectivity of the reaction was dependent on the orientation of binding of the (E)- and (Z)-substrates. This work provides a structural basis for understanding the mechanism of asymmetric bioreduction of nitroalkenes by PETN reductase. PMID:20396603

  16. H2O2 Production in Species of the Lactobacillus acidophilus Group: a Central Role for a Novel NADH-Dependent Flavin Reductase

    PubMed Central

    Hertzberger, Rosanne; Arents, Jos; Dekker, Henk L.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel

    2014-01-01

    Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii. PMID:24487531

  17. Dissecting the role of NtrC and RpoN in the expression of assimilatory nitrate and nitrite reductases in Bradyrhizobium diazoefficiens.

    PubMed

    López, María F; Cabrera, Juan J; Salas, Ana; Delgado, María J; López-García, Silvina L

    2017-04-01

    Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ 54 , was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.

  18. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    PubMed

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus niger FT-0554.

    PubMed

    Ui, H; Shiomi, K; Yamaguchi, Y; Masuma, R; Nagamitsu, T; Takano, D; Sunazuka, T; Namikoshi, M; Omura, S

    2001-03-01

    A novel compound, nafuredin, was isolated as an inhibitor of anaerobic electron transport (NADH-fumarate reductase). It was obtained from culture broth of Aspergillus niger FT-0554 isolated from a marine sponge. The structure was elucidated as an epoxy-delta-lactone with an attached methylated olefinic side chain on the basis of spectral analysis.

  20. Nuclear inelastic scattering at the diiron center of ribonucleotide reductase from Escherichia coli

    NASA Astrophysics Data System (ADS)

    Marx, J.; Srinivas, V.; Faus, I.; Auerbach, H.; Scherthan, L.; Jenni, K.; Chumakov, A. I.; Rüffer, R.; Högbom, M.; Haumann, M.; Schünemann, V.

    2017-11-01

    The enzyme ribonucleotide reductase R2 catalyzes an important step in the synthesis of the building blocks of DNA, and harbors a dinuclear iron center required for activity. Not only the iron valence states but also the protonation of the iron ligands govern the enzymatic activity of the enzyme. We have performed Nuclear Inelastic Scattering (NIS) experiments on the 57Fe reconstituted ribonucleotide reductase R2 subunit from Escherichia coli ( Ec R2a). Accompanying Mössbauer spectroscopic investigations show that the partial density of vibrational states (pDOS) of the 57Fe reconstituted Ec R2a sample contained contributions from both 57Fe- Ec R2a protein as well as unspecifically bound 57Fe. Subtraction of a featureless pDOS as obtained from protein-coated iron oxide particles allowed modeling of the contribution of non-specifically bound iron and thus the pDOS of 57Fe- Ec R2a could be obtained. Quantum-mechanics/molecular-mechanics (QM/MM) calculations of the whole 57Fe- Ec R2a protein with variations of the cofactor protonation were performed in order to assign characteristic bands to their corresponding molecular vibrational modes.

  1. Biallelic mutations in the ferredoxin reductase gene cause novel mitochondriopathy with optic atrophy

    PubMed Central

    Peng, Yanyan; Shinde, Deepali N; Valencia, C Alexander; Mo, Jun-Song; Rosenfeld, Jill; Truitt Cho, Megan; Chamberlin, Adam; Li, Zhuo; Liu, Jie; Gui, Baoheng; Brockhage, Rachel; Basinger, Alice; Alvarez-Leon, Brenda; Heydemann, Peter; Magoulas, Pilar L; Lewis, Andrea M; Scaglia, Fernando; Gril, Solange; Chong, Shuk Ching; Bower, Matthew; Monaghan, Kristin G; Willaert, Rebecca; Plona, Maria-Renee; Dineen, Rich; Milan, Francisca; Hoganson, George; Helbig, Katherine L; Keller-Ramey, Jennifer; Harris, Belinda; Anderson, Laura C; Green, Torrian; Sukoff Rizzo, Stacey J; Kaylor, Julie; Chen, Jiani; Guan, Min-Xin; Sellars, Elizabeth; Sparagana, Steven P; Gibson, James B; Reinholdt, Laura G; Tang, Sha; Huang, Taosheng

    2017-01-01

    Abstract Iron–sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe–S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. PMID:29040572

  2. The use of ene adducts to study and engineer enoyl-thioester reductases.

    PubMed

    Rosenthal, Raoul G; Vögeli, Bastian; Quade, Nick; Capitani, Guido; Kiefer, Patrick; Vorholt, Julia A; Ebert, Marc-Olivier; Erb, Tobias J

    2015-06-01

    An improved understanding of enzymes' catalytic proficiency and stereoselectivity would further enable applications in chemistry, biocatalysis and industrial biotechnology. We use a chemical probe to dissect individual catalytic steps of enoyl-thioester reductases (Etrs), validating an active site tyrosine as the cryptic proton donor and explaining how it had eluded definitive identification. This information enabled the rational redesign of Etr, yielding mutants that create products with inverted stereochemistry at wild type-like turnover frequency.

  3. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria.

    PubMed

    Ranji, Parmida; Rauthan, Manish; Pitot, Christophe; Pilon, Marc

    2014-01-01

    HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368) mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.

  4. Sequential Actions of the AAA-ATPase Valosin-containing Protein (VCP)/p97 and the Proteasome 19 S Regulatory Particle in Sterol-accelerated, Endoplasmic Reticulum (ER)-associated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase*

    PubMed Central

    Morris, Lindsey L.; Hartman, Isamu Z.; Jun, Dong-Jae; Seemann, Joachim; DeBose-Boyd, Russell A.

    2014-01-01

    Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates. PMID:24860107

  5. Investigation of the Plausibility of 5-Alpha-Reductase Inhibitor Syndrome

    PubMed Central

    Fertig, Raymond; Shapiro, Jerry; Bergfeld, Wilma; Tosti, Antonella

    2017-01-01

    Postfinasteride syndrome (PFS) is a term recently coined to characterize a constellation of reported undesirable side effects described in postmarketing reports and small uncontrolled studies that developed during or after stopping finasteride treatment, and persisted after drug discontinuation. Symptoms included decreased libido, erectile dysfunction, sexual anhedonia, decreased sperm count, gynecomastia, skin changes, cognitive impairment, fatigue, anxiety, depression, and suicidal ideation. The aim of this study is to review the existing medical literature for evidence-based research of permanent sexual dysfunction and mood changes during treatment with 5-alpha-reductase inhibitors including finasteride and dutasteride. PMID:28232919

  6. Biological evaluation of some uracil derivatives as potent glutathione reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Güney, Murat; Ekinci, Deniz; Ćavdar, Huseyin; Şentürk, Murat; Zilbeyaz, Kani

    2016-04-01

    Discovery of glutathione reductase (GR) inhibitors has become very popular recently due to antimalarial and anticancer activities. In this study, GR inhibitory capacities of some uracil derivatives (UDCs) (1-4) were reported. Some commercially available molecules (5-6) were also tested for comparison reasons. The novel UDCs were obtained in high yields using simple chemical procedures and exhibited much potent inhibitory activities against GR at low nanomolar concentrations with IC50 values ranging from 2.68 to 166.6 nM as compared with well-known agents.

  7. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    PubMed

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Identification and in vitro characterization of a Marek’s disease virus encoded ribonucleotide reductase

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR), a key regulatory enzyme in the DNA synthesis pathway. The gene coding for the RR of MDV is located in the unique long (UL) region of the genome. The large subunit is encoded by UL39 (RR1) and is predicted to comprise 860 amino acid...

  9. Lifestyle determinants of 5alpha-reductase metabolites in older African-American, white, and Asian-American men.

    PubMed

    Wu, A H; Whittemore, A S; Kolonel, L N; Stanczyk, F Z; John, E M; Gallagher, R P; West, D W

    2001-05-01

    Men with higher endogenous 5alpha-reductase activity may have higher prostate cancer risk. This hypothesis raises two questions: (a) Could racial differences in 5alpha-reductase activity explain the observed racial differences in prostate cancer risk? and (b) Could a man reduce his activity level by modifying his lifestyle? To address these questions, we measured two hormonal indices of 5alpha-reductase activity [serum levels of androstane-3alpha-17beta-diol glucuronide (3alpha-diol G) and androsterone glucuronide (AG)] in healthy, older African-American, white, and Asian-American men, who are at high, intermediate, and low prostate cancer risk, respectively. We also examined associations between these metabolite levels and such lifestyle characteristics as body size and physical activity as well as select aspects of medical history and family history of prostate cancer. Men included in this cross-sectional analysis (n = 1054) had served as control subjects in a population-based case-control study of prostate cancer we conducted in California, Hawaii, and Vancouver, Canada and provided information on certain personal attributes and donated blood between March 1990 and March 1992. In this study, concentrations of 3alpha-diol G declined significantly with age and increased significantly with body mass index. Mean levels of 3alpha-diol G, adjusted for age and body mass index, were 6.1 ng/ml in African-Americans, 6.9 ng/ml in whites and 4.8 ng/ml in Asian-Americans. These differences were statistically significant (African-Americans versus whites: P < 0.01; whites versus Asian-Americans: P < 0.001). Concentrations of AG decreased significantly with age, but only in whites, and were unrelated to any of the reported personal attributes. Mean levels of AG, adjusted for age, were 44.1 ng/ml in African-Americans, 44.9 ng/ml in whites, and 37.5 ng/ml in Asian-Americans (Asian-Americans versus whites, P < 0.001). In conclusion, older African-American and white men have

  10. Inhibition of 5α-reductase alters pregnane metabolism in the late pregnant mare.

    PubMed

    Wynn, Michelle A A; Ball, Barry A; Legacki, Erin; Conley, Alan; Loux, Shavahn; May, John; Esteller-Vico, Alejandro; Stanley, Scott; Scoggin, Kirsten; Squires, Edward; Troedsson, Mats

    2018-03-01

    In the latter half of gestation in the mare, progesterone concentrations decline to near undetectable levels while other 5α-reduced pregnanes are elevated. Of these, 5α-dihydroprogesterone and allopregnanolone have been reported to have important roles in either pregnancy maintenance or fetal quiescence. During this time, the placenta is necessary for pregnane metabolism, with the enzyme 5α-reductase being required for the conversion of progesterone to 5α-dihydroprogesterone. The objectives of this study were to assess the effects of a 5α-reductase inhibitor, dutasteride on pregnane metabolism (pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3β,20α-diol and allopregnanolone), to determine circulating dutasteride concentrations and to assess effects of dutasteride treatment on gestational parameters. Pregnant mares ( n  = 5) received dutasteride (0.01 mg/kg/day, IM) and control mares ( n  = 4) received vehicle alone from 300 to 320 days of gestation or until parturition. Concentrations of dutasteride, pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3β,20α-diol, and allopregnanolone were evaluated via liquid chromatography-tandem mass spectrometry. Samples were analyzed as both days post treatment and as days prepartum. No significant treatment effects were detected in pregnenolone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3β,20α-diol or allopregnanolone for either analysis; however, progesterone concentrations were increased ( P  < 0.05) sixfold in dutasteride-treated mares compared to control mares. Dutasteride concentrations increased in the treated mares, with a significant correlation ( P  < 0.05) between dutasteride concentrations and pregnenolone or progesterone concentrations. Gestational length and neonatal outcomes were not significantly altered in dutasteride-treated mares. Although 5

  11. Use of a Simple, Colorimetric Assay to Demonstrate Conditions for Induction of Nitrate Reductase in Plants.

    ERIC Educational Resources Information Center

    Harley, Suzanne M.

    1993-01-01

    Nitrate assimilation by plants provides an excellent system for demonstrating control of gene expression in a eukaryotic organism. Describes an assay method that allows students to complete experiments designed around the measurement of nitrate reductase within a three-hour laboratory experiment. (PR)

  12. Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies

    USDA-ARS?s Scientific Manuscript database

    Few prospective studies have examined the associations between blood levels of folate, in conjunction with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, and colorectal cancer. We evaluated the associations between plasma folate, MTHFR C677T, and A1298C, and colorectal cancer in three la...

  13. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    PubMed

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  14. Thiazolidine peracetates: Novel carbohydrate derivatives that assign cis-2,3- from trans-2,3- monosaccharides by GC/MS analysis

    USDA-ARS?s Scientific Manuscript database

    A new type of carbohydrate derivative is described that is suitable for analysis by GC/MS. Reaction of free aldoses (pentoses or hexoses), or the component aldoses arising from acid hydrolysis of polysaccharides or oligosaccharides, with excess cysteamine hydrochloride in pyridine, results in the qu...

  15. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    PubMed

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [The effects of combination therapy with 5-reductase inhibitor and -blocker on the prognosis of BPH].

    PubMed

    Neimark, A I; Davydov, A V; Aliev, R T

    2018-05-01

    Benign prostatic hyperplasia (BPH) is a polyethological disease of elderly and old men. The symptomatic pharmacological treatment of BPH involves the use of drugs that reduce either the dynamic component of obstruction or the size of the prostate (a mechanical component of obstruction). 5-reductase inhibitors (5-ARI) and -blockers are considered first-line therapy in the management of prostate adenoma. To investigate the efficacy of combination therapy with Fokusin and Penester in BPH patients. The study is based on the analysis of medical records of 67 BPH patients aged over 50 years. All patients included in the study were randomized to 3 groups and had comparable age, sex, clinical manifestations and severity of the disease. Group 1 comprised 21 patients (mean age 63.8+/-9.7 years), who received a 5-reductase inhibitor (5-ARI) Pentester (Sanofi, France) 5 mg once daily. Group 2 included 22 patients (mean age 65.2+/-7.8 years), who received an -blocker Fokusin (Sanofi, France) 0.4 mg once a day. Group 3 comprised 24 patients (mean age 64.2+/-8.6 years) who received combination therapy with 5-reductase inhibitor (5-ARI) (Penester 5 mg once daily) and blocker (Fokusin 0.4 mg once daily). The study findings showed that in comparison with monotherapy, the concurrent administration of Fokusin and Penester was more effective in reducing the clinical manifestations of BPH, slowing the growth of adenomatous tissue thus reducing the size of the enlarged prostate. Combination therapy with Fokusin and Penester can be recommended to improve the treatment results of BPH patients.

  17. Pharmacokinetic Interactions between Nelfinavir and 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors Atorvastatin and Simvastatin

    PubMed Central

    Hsyu, Poe-Hirr; Schultz-Smith, Melissa D.; Lillibridge, James H.; Lewis, Ronald H.; Kerr, Bradley M.

    2001-01-01

    3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors are effective agents in lowering cholesterol and triglycerides and are being used by human immunodeficiency virus-positive patients to treat the lipid elevation that may be associated with antiretroviral therapy. Many HMG-CoA reductase inhibitors and protease inhibitors are metabolized by the same cytochrome P450 enzyme 3A4 (CYP3A4). In addition, many protease inhibitors are potent inhibitors of CYP3A4. Therefore, coadministration of these two classes of drugs may cause significant drug interactions. This open-label, multiple-dose study was performed to determine the interactions between nelfinavir, a protease inhibitor, and two HMG-CoA reductase inhibitors, atorvastatin and simvastatin, in healthy volunteers. Thirty-two healthy subjects received either atorvastatin calcium (10 mg once a day) or simvastatin (20 mg once a day) for the first 14 days of the study. Nelfinavir (1,250 mg twice a day) was added on days 15 to 28. Pharmacokinetic assessment was performed on days 14 and 28. The study drugs were well tolerated. Nelfinavir increased the steady-state area under the plasma concentration-time curve during one dosing period (AUCτ) of atorvastatin 74% and the maximum concentration (Cmax) of atorvastatin 122% and increased the AUCτ of simvastatin 505% and the Cmax of simvastatin 517%. Neither atorvastatin nor simvastatin appeared to alter the pharmacokinetics of nelfinavir. It is recommended that coadministration of simvastatin with nelfinavir should be avoided, whereas atorvastatin should be used with nelfinavir with caution. PMID:11709322

  18. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N

    2015-01-01

    Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics.

    PubMed

    Martin, Hans-Jörg; Breyer-Pfaff, Ursula; Wsol, Vladimir; Venz, Simone; Block, Simone; Maser, Edmund

    2006-03-01

    Members of the aldo-keto reductase (AKR) superfamily have a broad substrate specificity in catalyzing the reduction of carbonyl group-containing xenobiotics. In the present investigation, a member of the aldose reductase subfamily, AKR1B10, was purified from human liver cytosol. This is the first time AKR1B10 has been purified in its native form. AKR1B10 showed a molecular mass of 35 kDa upon gel filtration and SDS-polyacrylamide gel electrophoresis. Kinetic parameters for the NADPH-dependent reduction of the antiemetic 5-HT3 receptor antagonist dolasetron, the antitumor drugs daunorubicin and oracin, and the carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) to the corresponding alcohols have been determined by HPLC. Km values ranged between 0.06 mM for dolasetron and 1.1 mM for daunorubicin. Enzymatic efficiencies calculated as kcat/Km were more than 100 mM-1 min-1 for dolasetron and 1.3, 0.43, and 0.47 mM-1 min-1 for daunorubicin, oracin, and NNK, respectively. Thus, AKR1B10 is one of the most significant reductases in the activation of dolasetron. In addition to its reducing activity, AKR1B10 catalyzed the NADP+-dependent oxidation of the secondary alcohol (S)-1-indanol to 1-indanone with high enzymatic efficiency (kcat/Km=112 mM-1 min-1). The gene encoding AKR1B10 was cloned from a human liver cDNA library and the recombinant enzyme was purified. Kinetic studies revealed lower activity of the recombinant compared with the native form. Immunoblot studies indicated large interindividual variations in the expression of AKR1B10 in human liver. Since carbonyl reduction of xenobiotics often leads to their inactivation, AKR1B10 may play a role in the occurrence of chemoresistance of tumors toward carbonyl group-bearing cytostatic drugs.

  20. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE) for 5α-reductase isoform II inhibition using a cell-free in vitro test system.

    PubMed

    Pais, Pilar; Villar, Agustí; Rull, Santiago

    2016-01-01

    The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen - 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive - some have shown significant results, and others have not - possibly the result of varying bioactivities of the SPEs used in the studies. To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%-75% inhibition of 5α-reductase type II. SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride