Science.gov

Sample records for aldrich syndrome protein

  1. Mutations of the Wiskott-Aldrich Syndrome Protein affect protein expression and dictate the clinical phenotypes.

    PubMed

    Ochs, Hans D

    2009-01-01

    Mutations of the Wiskott-Aldrich Syndrome Protein (WASP) are responsible for classic Wiskott-Aldrich Syndrome (WAS), X-linked thrombocytopenia (XLT), and in rare instances congenital X-linked neutropenia (XLN). WASP is a regulator of actin polymerization in hematopoietic cells with well-defined functional domains that are involved in cell signaling and cell locomotion, immune synapse formation, and apoptosis. Mutations of WASP are located throughout the gene and either inhibit or disregulate normal WASP function. Analysis of a large patient population demonstrates a strong phenotype-genotype correlation. Classic WAS occurs when WASP is absent, XLT when mutated WASP is expressed and XLN when missense mutations occur in the Cdc42-binding site. However, because there are exceptions to this rule it is difficult to predict the long-term prognosis of a given affected boy solely based on the analysis of WASP expression.

  2. [Wiskott-Aldrich syndrome].

    PubMed

    Román Jiménez, María Guadalupe; Yamazaki Nakashimada, Marco Antonio; Blancas Galicia, Lizbeth

    2010-01-01

    The Wiskott-Aldrich syndrome is a primary immunodeficiency characterized by congenital microthrombocytopenia, eczema and recurrent infections. This paper reports the case of a 3-year-6-month male patient, whose maternal uncle died at the age of 3 months due to fulminant sepsis from a pulmonary infection. The patient was a product of the first pregnancy, he was born at 27 weeks' gestation and weighed 1,400 g. As a neonate he was hospitalized during the first 2 months of life because of a low gastrointestinal bleeding, thrombocytopenia and severe infections. In the next 4 months and before coming to our hospital the infant was hospitalized 54 times. On admission he presented disseminated dermatosis, enlarged neck lymph nodes and psychomotor retardation. Laboratory studies revealed hemoglobin 8.1 g/dL, platelets 31,000/uL, mean platelet volume 5.6 fL, IgM 39.3 mg/dL, IgA 67 mg/dL, IgG 1,380 mg/dL. On several occasions he received globular packages and platelet concentrates. The infusion of immunoglobulin G was started every 21 days. Bone marrow transplantation was delayed due to the complications that merited 13 hospitalizations and severe thrombocytopenia, low gastrointestinal bleeding, septic arthritis, infectious gastroenteritis, chronic suppurative otitis media and severe folliculitis. At the age of 4 years BMT of cord was performed, and 26 days after transplantation he presented septic shock and died. The prognosis of bone marrow transplantation in Wiskott-Aldrich syndrome and in other primary immunodeficiencies depends on the promptness of its performance at early stages in life. It is important that the first contact physicians be aware of the primary immunodeficiency signs and symptoms.

  3. Wiskott-Aldrich syndrome proteins in the nucleus: aWASH with possibilities.

    PubMed

    Verboon, Jeffrey M; Sugumar, Bina; Parkhurst, Susan M

    2015-01-01

    Actin and proteins that regulate its dynamics or interactions have well-established roles in the cytoplasm where they function as key components of the cytoskeleton to control diverse processes, including cellular infrastructure, cellular motility, cell signaling, and vesicle transport. Recent work has also uncovered roles for actin and its regulatory proteins in the nucleus, primarily in mechanisms governing gene expression. The Wiskott Aldrich Syndrome (WAS) family of proteins, comprising the WASP/N-WASP, SCAR/WAVE, WHAMM/JMY/WHAMY, and WASH subfamilies, function in the cytoplasm where they activate the Arp2/3 complex to form branched actin filaments. WAS proteins are present in the nucleus and have been implicated as transcriptional regulators. We found that Drosophila Wash, in addition to transcriptional effects, is involved in global nuclear architecture. Here we summarize the regulation and function of nuclear WAS proteins, and highlight how our work with Wash expands the possibilities for the functions of these proteins in the nucleus.

  4. A Hydrophobic Pocket in the Active Site of Glycolytic Aldolase Mediates Interactions with Wiskott-Aldrich Syndrome Protein

    SciTech Connect

    St-Jean,M.; Izard, T.; Sygusch, J.

    2007-01-01

    Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C-terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, 4-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds about the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues, Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C-terminus with its active site, and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure a novel naphthol phosphate-based inhibitor of aldolase was identified and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics.

  5. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans.

    PubMed

    Hoshi, Hiro-Omi; Zheng, Lu; Ohta, Akinori; Horiuchi, Hiroyuki

    2016-09-01

    Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.

  6. Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation

    PubMed Central

    Guenin-Macé, Laure; Veyron-Churlet, Romain; Thoulouze, Maria-Isabel; Romet-Lemonne, Guillaume; Hong, Hui; Leadlay, Peter F.; Danckaert, Anne; Ruf, Marie-Thérèse; Mostowy, Serge; Zurzolo, Chiara; Bousso, Philippe; Chrétien, Fabrice; Carlier, Marie-France; Demangel, Caroline

    2013-01-01

    Mycolactone is a diffusible lipid secreted by the human pathogen Mycobacterium ulcerans, which induces the formation of open skin lesions referred to as Buruli ulcers. Here, we show that mycolactone operates by hijacking the Wiskott-Aldrich syndrome protein (WASP) family of actin-nucleating factors. By disrupting WASP autoinhibition, mycolactone leads to uncontrolled activation of ARP2/3-mediated assembly of actin in the cytoplasm. In epithelial cells, mycolactone-induced stimulation of ARP2/3 concentrated in the perinuclear region, resulting in defective cell adhesion and directional migration. In vivo injection of mycolactone into mouse ears consistently altered the junctional organization and stratification of keratinocytes, leading to epidermal thinning, followed by rupture. This degradation process was efficiently suppressed by coadministration of the N-WASP inhibitor wiskostatin. These results elucidate the molecular basis of mycolactone activity and provide a mechanism for Buruli ulcer pathogenesis. Our findings should allow for the rationale design of competitive inhibitors of mycolactone binding to N-WASP, with anti–Buruli ulcer therapeutic potential. PMID:23549080

  7. [Wiskott-Aldrich Syndrome: An updated review].

    PubMed

    Blancas-Galicia, Lizbeth; Escamilla-Quiroz, Cecilia; Yamazaki-Nakashimada, Marco Antonio

    2011-01-01

    The Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency and is inherited in an X-linked pattern. Affected patients have mutations in the gene encoding Wiskott-Aldrich syndrome protein (WASP), a key regulator of signaling and reorganization of the cytoskeleton in hematopoietic cells. Mutations in WASP gene lead to a wide clinical spectrum ranging from thrombocytopenia, immunodeficiency, eczema and high susceptibility to tumor development and manifestations such as skin infections, suppurative otitis and pneumonia. Clinical symptoms start around the age of 6 months. Incidence of this disease is 1-10/millions of births. The laboratory tests show low platelet count and small size, but definitive diagnosis can only be confirmed by the demonstration of mutations in WASP gene. Treatment of WAS is based on antimicrobial therapy, prophylactic use of intravenous gamma globulin and bone marrow transplantation. Life expectancy in treated individuals is around 20 years but without treatment is 3.5 years.

  8. [Wiskott-Aldrich syndrome. A report of a new mutation].

    PubMed

    Guillén-Rocha, Nelva; López-Rocha, Eunice; Danielian, Silvia; Segura-Méndez, Nora; López-González, Lucina; Lugo-Reyes, Saúl Oswaldo

    2014-01-01

    Wiskott-Aldrich syndrome was first reported clinically in 1937, and in 1954 the classic triad was identified: eccema, recurrent infections and thrombocytopenia with an X-linked transmission. Its incidence is estimated at 1 to 10 in one million live births per year. Wiskott Aldrich syndrome is caused by mutations in a gene in the short arm of chromosome X that encodes the Wiskott-Aldrich syndrome protein (WASp), which identification and sequencing was first performed in 1994, and since then about 300 mutations have been reported. This paper describes the case of a boy with Wiskott-Aldrich syndrome, with clinical and genetic diagnosis, with a considerable diagnostic delay attributable to an atypical presentation misdiagnosed as immune thrombocytopenia.

  9. Biochemical Activities of the Wiskott-Aldrich Syndrome Homology Region 2 Domains of Sarcomere Length Short (SALS) Protein.

    PubMed

    Tóth, Mónika Ágnes; Majoros, Andrea Kinga; Vig, Andrea Teréz; Migh, Ede; Nyitrai, Miklós; Mihály, József; Bugyi, Beáta

    2016-01-08

    Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.

  10. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri.

    PubMed Central

    Suzuki, T; Miki, H; Takenawa, T; Sasakawa, C

    1998-01-01

    Shigella, the causative agent of bacillary dysentery, is capable of directing its own movement in the cytoplasm of infected epithelial cells. The bacterial surface protein VirG recruits host components mediating actin polymerization, which is thought to serve as the propulsive force. Here, we show that neural Wiskott-Aldrich syndrome protein (N-WASP), which is a critical target for filopodium formation downstream of Cdc42, is required for assembly of the actin tail generated by intracellular S.flexneri. N-WASP accumulates at the front of the actin tail and is capable of interacting with VirG in vitro and in vivo, a phenomenon that is not observed in intracellular Listeria monocytogenes. The verprolin-homology region in N-WASP was required for binding to the glycine-rich repeats domain of VirG, an essential domain for recruitment of F-actin on intracellular S.flexneri. Overexpression of a dominant-negative N-WASP mutant greatly inhibited formation of the actin tail by intracellular S.flexneri. Furthermore, depletion of N-WASP from Xenopus egg extracts shut off Shigella actin tail assembly, and this was restored upon addition of N-WASP protein, suggesting that N-WASP is a critical host factor for the assembly of the actin tail by intracellular Shigella. PMID:9582270

  11. Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function

    PubMed Central

    Dahlberg, Carin; Baptista, Marisa; Moran, Christopher J.; Detre, Cynthia; Keszei, Marton; Eston, Michelle A.; Alt, Frederick W.; Terhorst, Cox; Notarangelo, Luigi D.

    2012-01-01

    The Wiskott-Aldrich syndrome protein (WASP) is a key cytoskeletal regulator of hematopoietic cells. Although WASP-knockout (WKO) mice have aberrant B-cell cytoskeletal responses, B-cell development is relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homolog of WASP, may serve some redundant functions with WASP in B cells. In the present study, we generated mice lacking WASP and N-WASP in B cells (conditional double knockout [cDKO] B cells) and show that cDKO mice had decreased numbers of follicular and marginal zone B cells in the spleen. Receptor-induced activation of cDKO B cells led to normal proliferation but a marked reduction of spreading compared with wild-type and WKO B cells. Whereas WKO B cells showed decreased migration in vitro and homing in vivo compared with wild-type cells, cDKO B cells showed an even more pronounced decrease in the migratory response in vivo. After injection of 2,4,6-trinitrophenol (TNP)–Ficoll, cDKO B cells had reduced antigen uptake in the splenic marginal zone. Despite high basal serum IgM, cDKO mice mounted a reduced immune response to the T cell–independent antigen TNP-Ficoll and to the T cell–dependent antigen TNP–keyhole limpet hemocyanin. Our results reveal that the combined activity of WASP and N-WASP is required for peripheral B-cell development and function. PMID:22411869

  12. Systemic autoimmunity and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syndrome protein

    PubMed Central

    Nikolov, Nikolay P.; Shimizu, Masaki; Cleland, Sophia; Bailey, Daniel; Aoki, Joseph; Strom, Ted; Schwartzberg, Pamela L.; Candotti, Fabio

    2010-01-01

    Autoimmunity is a surprisingly common complication of primary immunodeficiencies, yet the molecular mechanisms underlying this clinical observation are not well understood. One widely known example is provided by Wiskott-Aldrich syndrome (WAS), an X-linked primary immunodeficiency disorder caused by mutations in the gene encoding the WAS protein (WASp) with a high incidence of autoimmunity in affected patients. WASp deficiency affects T-cell antigen receptor (TCR) signaling and T-cell cytokine production, but its role in TCR-induced apoptosis, one of the mechanisms of peripheral immunologic tolerance, has not been investigated. We find that WASp-deficient mice produce autoantibodies and develop proliferative glomerulonephritis with immune complex deposition as they age. We also find that CD4+ T lymphocytes from WASp-deficient mice undergo reduced apoptosis after restimulation through the TCR. While Fas-induced cell death is normal, WASp deficiency affects TCR-induced secretion of Fas ligand (FasL) and other components of secretory granules by CD4+ T cells. These results describe a novel role of WASp in regulating TCR-induced apoptosis and FasL secretion and suggest that WASp-deficient mice provide a good model for the study of autoimmune manifestations of WAS and the development of more specific therapies for these complications. PMID:20457871

  13. Platelet actin nodules are podosome-like structures dependent on Wiskott–Aldrich syndrome protein and ARP2/3 complex

    PubMed Central

    Poulter, Natalie S.; Pollitt, Alice Y.; Davies, Amy; Malinova, Dessislava; Nash, Gerard B.; Hannon, Mike J.; Pikramenou, Zoe; Rappoport, Joshua Z.; Hartwig, John H.; Owen, Dylan M.; Thrasher, Adrian J.; Watson, Stephen P.; Thomas, Steven G.

    2015-01-01

    The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott–Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp−/− mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet–platelet interaction and their absence contributes to the bleeding diathesis of Wiskott–Aldrich syndrome. PMID:26028144

  14. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex.

    PubMed Central

    Millard, Thomas H; Sharp, Stewart J; Machesky, Laura M

    2004-01-01

    The assembly of a branched network of actin filaments provides the mechanical propulsion that drives a range of dynamic cellular processes, including cell motility. The Arp2/3 complex is a crucial component of such filament networks. Arp2/3 nucleates new actin filaments while bound to existing filaments, thus creating a branched network. In recent years, a number of proteins that activate the filament nucleation activity of Arp2/3 have been identified, most notably the WASP (Wiskott-Aldrich syndrome protein) family. WASP-family proteins activate the Arp2/3 complex, and consequently stimulate actin assembly, in response to extracellular signals. Structural studies have provided a significant refinement in our understanding of the molecular detail of how the Arp2/3 complex nucleates actin filaments. There has also been much progress towards an understanding of the complicated signalling processes that regulate WASP-family proteins. In addition, the use of gene disruption in a number of organisms has led to new insights into the specific functions of individual WASP-family members. The present review will discuss the Arp2/3 complex and its regulators, in particular the WASP-family proteins. Emphasis will be placed on recent developments in the field that have furthered our understanding of actin dynamics and cell motility. PMID:15040784

  15. Deletion of Wiskott–Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells

    PubMed Central

    Baptista, Marisa A. P.; Keszei, Marton; Oliveira, Mariana; Sunahara, Karen K. S.; Andersson, John; Dahlberg, Carin I. M.; Worth, Austen J.; Liedén, Agne; Kuo, I-Chun; Wallin, Robert P. A.; Snapper, Scott B.; Eidsmo, Liv; Scheynius, Annika; Karlsson, Mikael C. I.; Bouma, Gerben; Burns, Siobhan O.; Forsell, Mattias N. E.; Thrasher, Adrian J.; Nylén, Susanne; Westerberg, Lisa S.

    2016-01-01

    Wiskott–Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8+ T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNγ-producing CD8+ T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8+ T cells at the expense of CD4+ T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8+ T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells. PMID:27425374

  16. Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells.

    PubMed Central

    She, H Y; Rockow, S; Tang, J; Nishimura, R; Skolnik, E Y; Chen, M; Margolis, B; Li, W

    1997-01-01

    Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton. Images PMID:9307968

  17. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses

    NASA Astrophysics Data System (ADS)

    Orange, Jordan S.; Ramesh, Narayanaswamy; Remold-O'Donnell, Eileen; Sasahara, Yoji; Koopman, Louise; Byrne, Michael; Bonilla, Francisco A.; Rosen, Fred S.; Geha, Raif S.; Strominger, Jack L.

    2002-08-01

    The Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disorder caused by a mutation in WAS protein (WASp) that results in defective actin polymerization. Although the function of many hematopoietic cells requires WASp, the specific expression and function of this molecule in natural killer (NK) cells is unknown. Here, we report that WAS patients have increased percentages of peripheral blood NK cells and that fresh enriched NK cells from two patients with a WASp mutation have defective cytolytic function. In normal NK cells, WASp was expressed and localized to the activating immunologic synapse (IS) with filamentous actin (F-actin). Perforin also localized to the NK cell-activating IS but at a lesser frequency than F-actin and WASp. The accumulation of F-actin and WASp at the activating IS was decreased significantly in NK cells that had been treated with the inhibitor of actin polymerization, cytochalasin D. NK cells from WAS patients lacked expression of WASp and accumulated F-actin at the activating IS infrequently. Thus, WASp has an important function in NK cells. In patients with WASp mutations, the resulting NK cell defects are likely to contribute to their disease.

  18. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott–Aldrich syndrome protein

    PubMed Central

    Leung, Daisy W.; Rosen, Michael K.

    2005-01-01

    The GTP/GDP nucleotide switch in Ras superfamily GTPases generally involves differential affinity toward downstream effectors, with the GTP-bound state having a higher affinity for effector than the GDP-bound state. We have developed a quantitative model of allosteric regulation of the Wiskott–Aldrich syndrome protein (WASP) by the Rho GTPase Cdc42 to better understand how GTPase binding is coupled to effector activation. The model accurately predicts WASP affinity for Cdc42, activity toward Arp2/3 complex, and activation by Cdc42 as functions of a two-state allosteric equilibrium in WASP. The ratio of GTPase affinities for the inactive and active states of WASP is appreciably larger for Cdc42–GTP than for Cdc42–GDP. The greater ability to distinguish between the two states of WASP makes Cdc42–GTP a full WASP agonist, whereas Cdc42–GDP is only a partial agonist. Thus, the nucleotide switch controls not only the affinity of Cdc42 for its effector but also the efficiency of coupling between the Cdc42-binding and allosteric equilibria in WASP. This effect can ensure high fidelity and specificity in Cdc42 signaling in crowded membrane environments. PMID:15821030

  19. Autoimmunity in Wiskott–Aldrich Syndrome: An Unsolved Enigma

    PubMed Central

    Catucci, Marco; Castiello, Maria Carmina; Pala, Francesca; Bosticardo, Marita; Villa, Anna

    2012-01-01

    Wiskott–Aldrich Syndrome (WAS) is a severe X-linked Primary Immunodeficiency that affects 1–10 out of 1 million male individuals. WAS is caused by mutations in the WAS Protein (WASP) expressing gene that leads to the absent or reduced expression of the protein. WASP is a cytoplasmic protein that regulates the formation of actin filaments in hematopoietic cells. WASP deficiency causes many immune cell defects both in humans and in the WAS murine model, the Was−/− mouse. Both cellular and humoral immune defects in WAS patients contribute to the onset of severe clinical manifestations, in particular microthrombocytopenia, eczema, recurrent infections, and a high susceptibility to develop autoimmunity and malignancies. Autoimmune diseases affect from 22 to 72% of WAS patients and the most common manifestation is autoimmune hemolytic anemia, followed by vasculitis, arthritis, neutropenia, inflammatory bowel disease, and IgA nephropathy. Many groups have widely explored immune cell functionality in WAS partially explaining how cellular defects may lead to pathology. However, the mechanisms underlying the occurrence of autoimmune manifestations have not been clearly described yet. In the present review, we report the most recent progresses in the study of immune cell function in WAS that have started to unveil the mechanisms contributing to autoimmune complications in WAS patients. PMID:22826711

  20. The mouse homolog of the Wiskott-Aldrich syndrome protein (WASP) gene is highly conserved and maps near the scurfy (sf) mutation on the X chromosome

    SciTech Connect

    Derry, J.M.J.; Wiedemann, P.; Wang, Y.; Kerns, J.A.; Lemahieu, V.; Francke, U.

    1995-09-20

    The mouse WASP gene, the homolog of the gene mutation in Wiskott-Aldrich syndrome, has been isolated and sequenced. The predicted amino acid sequence is 86% identical to human WASP sequence. A distinct feature of the mouse gene is an expanded polymorphic GGA trinucleotide repeat that codes for polyglycine and varies from 15 to 17 triplets in Mus musculus strains. The genomic structure of the mouse gene closely resembles the human with respect to exon-intron positions and intron lengths. The mouse WASP gene is expressed as an {approx}2.4-kb mRNA in thymus and spleen. Chromosomal mapping in an interspecific M. musculus/M. spretus backcross placed in the WASP locus near the centromere of the mouse X chromosome, inseparable form Gata1, Tcfe3, and scurfy (sf). This localization makes WASP a candidate for involvement in scurfy, a T cell-mediated fatal lymphoreticular disease of mice that has previously been proposed as a mouse homolog of Wiskott-Aldrich syndrome. Northern analysis of sf tissue samples indicated the presence of a consequence of lymphocytic infiltration, but no abnormalities in the amount or size of mRNA present. 34 refs., 5 figs.

  1. Genetics Home Reference: Wiskott-Aldrich syndrome

    MedlinePlus

    ... Syndrome: a model for defective actin reorganization, cell trafficking and synapse formation. Curr Opin Immunol. 2003 Oct; ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of ...

  2. Development of hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome.

    PubMed

    Boztug, Kaan; Dewey, Ricardo A; Klein, Christoph

    2006-10-01

    Wiskott-Aldrich syndrome (WAS) is a complex primary immunodeficiency disorder associated with microthrombocytopenia, autoinnmunity and susceptibility to malignant lymphoma. At the molecular level, this rare disorder is caused by mutations in the gene encoding the Wiskott-Aldrich syndrome protein (WASP). WASP is a cytosolic adaptor protein mediating the rearrangement of the actin cytoskeleton upon surface receptor signaling. Allogenic hematopoietic stem cell (HSC) transplantation represents a curative approach but remains problematic in light of severe risks and side effects. Recently, HSC gene therapy has emerged as an alternative treatment option. Cumulative preclinical data obtained from WASP-deficient murine models and human cells indicate a marked improvement of the impaired cellular and immunological phenotypes associated with WASP deficiency. The first clinical trial is currently being conducted to assess the feasibility, toxicity, and potential therapeutic benefit of transplanting autologous WASP-reconstituted hematopoietic stem cells.

  3. Molecular characterization of two Malaysian patients with Wiskott-Aldrich syndrome.

    PubMed

    Baharin, Mohd Farid; Kader Ibrahim, Sabeera Begum; Yap, Song Hong; Abdul Manaf, Aina Mariana; Mat Ripen, Adiratna; Dhaliwal, Jasbir Singh

    2015-08-01

    The Wiskott-Aldrich Syndrome (WAS) is an X-linked immunodeficiency condition characterized by microthrombocytopenia, eczema and recurrent infections. It is caused by mutations in the Wiskott-Aldrich Syndrome protein (WASP) gene. We investigated two Malay boys who presented with congenital thrombocytopenia, eczema and recurrent infections. Here we report two cases of WASP mutation in Malaysia from two unrelated families. One had a novel missense mutation in exon 1 while the other had a nonsense mutation in exon 2. Both patients succumbed to diseaserelated complications. A differential diagnosis of WAS should be considered in any male child who present with early onset thrombocytopenia, especially when this is associated with eczema and recurrent infections.

  4. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo

    PubMed Central

    Kritikou, Joanna S.; Dahlberg, Carin I. M.; Baptista, Marisa A. P.; Wagner, Arnika K.; Banerjee, Pinaki P.; Gwalani, Lavesh Amar; Poli, Cecilia; Panda, Sudeepta K.; Kärre, Klas; Kaech, Susan M.; Wermeling, Fredrik; Andersson, John; Orange, Jordan S.; Brauner, Hanna; Westerberg, Lisa S.

    2016-01-01

    To kill target cells, natural killer (NK) cells organize signaling from activating and inhibitory receptors to form a lytic synapse. Wiskott-Aldrich syndrome (WAS) patients have loss-of-function mutations in the actin regulator WASp and suffer from immunodeficiency with increased risk to develop lymphoreticular malignancies. NK cells from WAS patients fail to form lytic synapses, however, the functional outcome in vivo remains unknown. Here, we show that WASp KO NK cells had decreased capacity to degranulate and produce IFNγ upon NKp46 stimulation and this was associated with reduced capacity to kill MHC class I-deficient hematopoietic grafts. Pre-treatment of WASp KO NK cells with IL-2 ex vivo restored degranulation, IFNγ production, and killing of MHC class I negative hematopoietic grafts. Moreover, WASp KO mice controlled growth of A20 lymphoma cells that naturally produced IL-2. WASp KO NK cells showed increased expression of DNAM-1, LAG-3, and KLRG1, all receptors associated with cellular exhaustion and NK cell memory. NK cells isolated from WAS patient spleen cells showed increased expression of DNAM-1 and had low to negative expression of CD56, a phenotype associated with NK cells exhaustion. Finally, in a cohort of neuroblastoma patients we identified a strong correlation between WASp, IL-2, and patient survival. PMID:27477778

  5. One-step surgical approach of a thoracic aortic aneurysm in Wiskott-Aldrich syndrome.

    PubMed

    Bernabeu, Eduardo; Josa, Miguel; Nomdedeu, Benet; Ramírez, José; García-Valentín, Antonio; Mestres, Carlos A; Mulet, Jaime

    2007-04-01

    Wiskott-Aldrich syndrome is a primary immunodeficiency characterized by infections, thrombocytopenia, and eczema. We present a 33-year-old man with this syndrome who underwent a one-stage ascending aorta, aortic arch and descending aortic aneurysm repair under moderate hypothermia and continuous visceral and cerebral perfusion. Histologic examination showed the presence of an aortitis with granulomatous inflammatory response and multinucleated cells.

  6. Stem-Cell Gene Therapy for the Wiskott–Aldrich Syndrome

    PubMed Central

    Boztug, Kaan; Schmidt, Manfred; Schwarzer, Adrian; Banerjee, Pinaki P.; Díez, Inés Avedillo; Dewey, Ricardo A.; Böhm, Marie; Nowrouzi, Ali; Ball, Claudia R.; Glimm, Hanno; Naundorf, Sonja; Kühlcke, Klaus; Blasczyk, Rainer; Kondratenko, Irina; Maródi, László; Orange, Jordan S.; von Kalle, Christof; Klein, Christoph

    2010-01-01

    SUMMARY The Wiskott–Aldrich syndrome (WAS) is an X-linked recessive primary immunodeficiency disorder associated with thrombocytopenia, eczema, and autoimmunity. We treated two patients who had this disorder with a transfusion of autologous, genetically modified hematopoietic stem cells (HSC). We found sustained expression of WAS protein expression in HSC, lymphoid and myeloid cells, and platelets after gene therapy. T and B cells, natural killer (NK) cells, and monocytes were functionally corrected. After treatment, the patients’ clinical condition markedly improved, with resolution of hemorrhagic diathesis, eczema, autoimmunity, and predisposition to severe infection. Comprehensive insertion-site analysis showed vector integration that targeted multiple genes controlling growth and immunologic responses in a persistently polyclonal hematopoiesis. (Funded by Deutsche Forschungsgemeinschaft and others; German Clinical Trials Register number, DRKS00000330.) PMID:21067383

  7. Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome

    PubMed Central

    Zhang, Xuan; Dai, Rongxin; Li, Wenyan; Zhao, Hongyi; Zhang, Yongjie; Zhou, Lina; Du, Hongqiang; Luo, Guangjin; Wu, Junfeng; Niu, Linlin; An, Yunfei; Zhang, Zhiyong; Ding, Yuan; Song, Wenxia; Liu, Chaohong

    2016-01-01

    Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific regulator of actin nucleation. Wiskott-Aldrich syndrome (WAS) patients show immunodeficiencies, most of which have been attributed to defective T-cell functions. T follicular helper (Tfh) cells are the major CD4+ T-cell subset with specialized B-cell helper capabilities. Aberrant Tfh cells activities are involved in immunopathologies such as autoimmunity, immunodeficiencies, and lymphomas. We found that in WAS patients, the number of circulating Tfh cells was significantly reduced due to reduced proliferation and increased apoptosis, and Tfh cells were Th2 and Th17 polarized. The expression of inducible costimulator (ICOS) in circulating Tfh cells was higher in WAS patients than in controls. BCL6 expression was decreased in total CD4+ T and Tfh cells of WAS patients. Mirroring the results in patients, the frequency of Tfh cells in WAS knockout (KO) mice was decreased, as was the frequency of BCL6+ Tfh cells, but the frequency of ICOS+ Tfh cells was increased. Using WAS chimera mice, we found that the number of ICOS+ Tfh cells was decreased in WAS chimera mice, indicating that the increase in ICOS+ Tfh cells in WAS KO mice was cell extrinsic. The data from in vivo CD4+ naive T-cell adoptive transfer mice as well as in vitro coculture of naive B and Tfh cells showed that the defective function of WASp-deficient Tfh cells was T-cell intrinsic. Consistent findings in both WAS patients and WAS KO mice suggested an essential role for WASp in the development and memory response of Tfh cells and that WASp deficiency causes a deficient differentiation defect in Tfh cells by downregulating the transcription level of BCL6. PMID:27170596

  8. Immunoglobulins and transient paraproteins in sera of patients with the Wiskott-Aldrich syndrome: a follow-up study.

    PubMed Central

    Radl, J; Dooren, L H; Morell, A; Skvaril, F; Vossen, J M; Uittenbogaart, C H

    1976-01-01

    Immunoglobulin levels of individual classes and IgG subclasses and the occurrence of homogeneous immunoglobulins--paraproteins--were studied longitudinally in the sera of three patients with the Wiskott-Aldrich syndrome; Common findings in all three patients were great variations in the immunoglobulin levels, restricted heterogeneity of the immunoglobulins, the frequent appearance of transient homogeneous immunoglobulins and the presence of serum antibodies against bovine milk proteins. A partial and selective deficiency involving mainly the T immune system is postulated as an explanation for these findings. Images Fig. 2 Fig. 3 Fig. 4 PMID:954233

  9. Systemic vasculitis and aneurysm formation in the Wiskott-Aldrich syndrome.

    PubMed Central

    McCluggage, W G; Armstrong, D J; Maxwell, R J; Ellis, P K; McCluskey, D R

    1999-01-01

    A 24 year old male who suffered from the Wiskott-Aldrich syndrome developed intra-abdominal bleeding on two occasions. Radiological investigations showed aneurysmal dilatation of branches of the hepatic and superior mesenteric arteries. The second abdominal bleed necessitated laparotomy and the bleeding was localised to the kidneys. Right nephrectomy was performed and histological examination showed a necrotising vasculitis, mainly involving medium and small sized renal blood vessels. Steroids, immunosuppressive treatment, and control of blood pressure resulted in resolution of the vasculitic process and prevented further haemorrhage. Vasculitis and aneurysm formation are rarely described complications of Wiskott-Aldrich syndrome and may account for the life threatening haemorrhage which occurs in this condition. Images PMID:10560364

  10. Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity.

    PubMed

    Braun, Christian Jörg; Boztug, Kaan; Paruzynski, Anna; Witzel, Maximilian; Schwarzer, Adrian; Rothe, Michael; Modlich, Ute; Beier, Rita; Göhring, Gudrun; Steinemann, Doris; Fronza, Raffaele; Ball, Claudia Regina; Haemmerle, Reinhard; Naundorf, Sonja; Kühlcke, Klaus; Rose, Martina; Fraser, Chris; Mathias, Liesl; Ferrari, Rudolf; Abboud, Miguel R; Al-Herz, Waleed; Kondratenko, Irina; Maródi, László; Glimm, Hanno; Schlegelberger, Brigitte; Schambach, Axel; Albert, Michael Heinrich; Schmidt, Manfred; von Kalle, Christof; Klein, Christoph

    2014-03-12

    Wiskott-Aldrich syndrome (WAS) is characterized by microthrombocytopenia, immunodeficiency, autoimmunity, and susceptibility to malignancies. In our hematopoietic stem cell gene therapy (GT) trial using a γ-retroviral vector, 9 of 10 patients showed sustained engraftment and correction of WAS protein (WASP) expression in lymphoid and myeloid cells and platelets. GT resulted in partial or complete resolution of immunodeficiency, autoimmunity, and bleeding diathesis. Analysis of retroviral insertion sites revealed >140,000 unambiguous integration sites and a polyclonal pattern of hematopoiesis in all patients early after GT. Seven patients developed acute leukemia [one acute myeloid leukemia (AML), four T cell acute lymphoblastic leukemia (T-ALL), and two primary T-ALL with secondary AML associated with a dominant clone with vector integration at the LMO2 (six T-ALL), MDS1 (two AML), or MN1 (one AML) locus]. Cytogenetic analysis revealed additional genetic alterations such as chromosomal translocations. This study shows that hematopoietic stem cell GT for WAS is feasible and effective, but the use of γ-retroviral vectors is associated with a substantial risk of leukemogenesis.

  11. Wasp, the Drosophila Wiskott-Aldrich Syndrome Gene Homologue, Is Required for Cell Fate Decisions Mediated by Notch Signaling

    PubMed Central

    Ben-Yaacov, Sari; Le Borgne, Roland; Abramson, Irit; Schweisguth, Francois; Schejter, Eyal D.

    2001-01-01

    Wiskott-Aldrich syndrome proteins, encoded by the Wiskott-Aldrich syndrome gene family, bridge signal transduction pathways and the microfilament-based cytoskeleton. Mutations in the Drosophila homologue, Wasp (Wsp), reveal an essential requirement for this gene in implementation of cell fate decisions during adult and embryonic sensory organ development. Phenotypic analysis of Wsp mutant animals demonstrates a bias towards neuronal differentiation, at the expense of other cell types, resulting from improper execution of the program of asymmetric cell divisions which underlie sensory organ development. Generation of two similar daughter cells after division of the sensory organ precursor cell constitutes a prominent defect in the Wsp sensory organ lineage. The asymmetric segregation of key elements such as Numb is unaffected during this division, despite the misassignment of cell fates. The requirement for Wsp extends to additional cell fate decisions in lineages of the embryonic central nervous system and mesoderm. The nature of the Wsp mutant phenotypes, coupled with genetic interaction studies, identifies an essential role for Wsp in lineage decisions mediated by the Notch signaling pathway. PMID:11149916

  12. Disorders of regulatory T cell function in patients with the Wiskott-Aldrich syndrome.

    PubMed Central

    Zabay, J M; Fontán, G; Campos, A; García-Rodriguez, M C; Pascual-Salcedo, D; Bootello, A; de la Concha, E G

    1984-01-01

    Three patients with the Wiskott-Aldrich syndrome were studied. One of them had no past history of relevant infections. The other two presented different degrees of humoral and cellular immunodeficiency and their T cells in vitro showed a defect in regulatory activity of Ig production in PWM stimulated cultures. This defect was not observed in the third patient. All three had normal numbers of B cells, producing normal amounts of Ig in vitro when co-cultured with normal T cells. It is suggested that the immunoregulatory T cell abnormality might play an important role in the pathogenesis of the humoral immunodeficiency. PMID:6609033

  13. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome.

    PubMed Central

    Lyon, M F; Peters, J; Glenister, P H; Ball, S; Wright, E

    1990-01-01

    The X chromosome-linked scurfy (sf) mutant of the mouse is recognized by the scaliness of the skin from which the name is derived and results in death of affected males at about 3-4 weeks of age. Consideration of known man-mouse homologies of the X chromosome prompted hematological studies, which have shown that the blood is highly abnormal. The platelet and erythrocyte counts are both reduced and become progressively lower relative to normal as the disease progresses. There is gastrointestinal bleeding, and most animals appear to die of severe anemia. By contrast, the leukocyte count is consistently raised. Some animals showed signs of infection but it is not yet clear whether there is immunodeficiency. Other features include the scaly skin and apparently reduced lateral growth of the skin, conjunctivitis, and diarrhea in some animals. The mutant resembles Wiskott-Aldrich syndrome in man, which is characterized by thrombocytopenia, eczema, diarrhea, and immunodeficiency. The loci of the human and mouse genes lie in homologous segments of the X chromosome, although apparently in somewhat different positions relative to other gene loci. Scurfy differs from Wiskott-Aldrich syndrome in that scurfy males are consistently hypogonadal. Images PMID:2320565

  14. Molecular characterization of sialophorin (CD43), the lymphocyte surface sialoglycoprotein defective in Wiskott-Aldrich syndrome.

    PubMed Central

    Shelley, C S; Remold-O'Donnell, E; Davis, A E; Bruns, G A; Rosen, F S; Carroll, M C; Whitehead, A S

    1989-01-01

    Sialophorin (CD43) of leukocytes and platelets is a surface sialoglycoprotein that is phenotypically defective on lymphocytes of patients with the X chromosome-linked immunodeficiency Wiskott-Aldrich syndrome. Previous studies with monoclonal antibodies indicate that sialophorin is a component of a T-lymphocyte activation pathway. Here we describe the cDNA cloning and derived amino acid sequence of human sialophorin. The sequence predicts an integral membrane polypeptide with an N-terminal hydrophobic signal region followed by a mucin-like 235-residue extracellular region with a uniform distribution of 46 serine, 47 threonine, and 24 proline residues. This is followed by a 23-residue transmembrane region and a 123-residue C-terminal intracellular region. These latter regions have been highly conserved during evolution; the intracellular region contains a number of potential phosphorylation sites that might mediate transduction of activation signals. The chromosomal location of the sialophorin gene was determined and the implications of this assignment for the pathogenesis of the Wiskott-Aldrich syndrome are discussed. Images PMID:2784859

  15. A risk factor analysis of outcomes after unrelated cord blood transplantation for children with Wiskott-Aldrich syndrome.

    PubMed

    Shekhovtsova, Zhanna; Bonfim, Carmem; Ruggeri, Annalisa; Nichele, Samantha; Page, Kristin; AlSeraihy, Amal; Barriga, Francisco; de Toledo Codina, José Sánchez; Veys, Paul; Boelens, Jaap Jan; Mellgren, Karin; Bittencourt, Henrique; O' Brien, Tracey; Shaw, Peter J; Chybicka, Alicja; Volt, Fernanda; Giannotti, Federica; Gluckman, Eliane; Kurtzberg, Joanne; Gennery, Andrew R; Rocha, Vanderson

    2017-03-02

    Wiskott-Aldrich syndrome is a severe X-linked recessive immune deficiency disorder. A scoring system of Wiskott-Aldrich syndrome severity (0.5-5) distinguishes 2 phenotypes: X-linked thrombocytopenia and classic Wiskott-Aldrich syndrome. Hematopoietic cell transplantation is curative for Wiskott-Aldrich syndrome, however the use of unrelated umbilical cord blood transplantation has seldom been described. We analyzed umbilical cord blood transplantation outcomes for 90 patients. Median age at umbilical cord blood transplantation was 1.5 years. Patients were classified according to clinical scores (2 (23%), 3 (30%), 4 (23%) and 5 (19%)). Most patients received HLA mismatched umbilical cord blood transplantation and myeloablative conditioning with anti-thymocyte globulin. Cumulative incidence of neutrophil recovery at day-60 was 89% and day-100 acute graft-versus-host disease grade II-IV was 38%; use of methotrexate for graft-versus- host disease prophylaxis delayed engraftment (p=0.02), but decreased acute graft-versus-host disease (p=0.03). At 5-year, overall survival and event-free survival were 75% and 70%, respectively. Estimated 5 year- event-free survival was 83%, 73% and 55% for patients with clinical score 2, 4-5 and 3, respectively. In multivariate analysis, age<2years at umbilical cord blood transplantation and clinical phenotype X-linked thrombocytopenia were associated with improved event-free survival. Overall survival tended to be improved after 2007 (p=0.09). In conclusion, umbilical cord blood transplantation is a good alternative option for young children with Wiskott-Aldrich syndrome lacking an HLA identical stem cell donor.

  16. Wiskott–Aldrich syndrome: review and report of a large family

    PubMed Central

    Stiehm, E. R.; McIntosh, R. M.

    1967-01-01

    Wiskott–Aldrich syndrome is a sex-linked recessive antibody-deficiency syndrome characterized by thrombocytopenia, eczema and increased susceptibility to infection. All forms of therapy are notably unsuccessful and these patients succumb in the first decade. Three cases of this syndrome are presented from a large family in which nine male infants have succumbed with manifestations of this disease. Two of the infants died at ages 10 months and 4 years respectively. A third child is alive at age 2. Serial quantitative immune globulin studies performed in two cases demonstrated markedly elevated γA, decreased γM and normal γG; levels of γM were initially normal but fell progressively as γA levels increased. The low levels of γM are probably a factor in their low or absent isoagglutinins, poor response to injected antigens, and increased susceptibility to infection; elevated γA levels may indicate immunologic unresponsiveness and/or a compensatory mechanism for the defect in γM synthesis. In two of these patients prolonged trials (17 and 23 months) of periodic plasma infusions (15 ml/kg at 6-week intervals), accompanied by γ-globulin injections (0·1 ml/kg) were undertaken. Although no remarkable effects on the platelets or their resistance to infection was noted, we feel that some benefit might have accrued and that further trails are indicated. PMID:4166240

  17. Outcome following Gene Therapy in Patients with Severe Wiskott-Aldrich Syndrome

    PubMed Central

    Abina, Salima Hacein-Bey; Gaspar, H. Bobby; Blondeau, Johanna; Caccavelli, Laure; Charrier, Sabine; Buckland, Karen; Picard, Capucine; Six, Emmanuelle; Himoudi, Nourredine; Gilmour, Kimberly; McNicol, Anne-Marie; Hara, Havinder; Xu-Bayford, Jinhua; Rivat, Christine; Touzot, Fabien; Mavilio, Fulvio; Lim, Annick; Treluyer, Jean-Marc; Héritier, Sébastien; Lefrere, Francois; Magalon, Jeremy; Pengue-Koyi, Isabelle; Honnet, Géraldine; Blanche, Stéphane; Sherman, Eric A.; Male, Frances; Berry, Charles; Malani, Nirav; Bushman, Frederic D.; Fischer, Alain; Thrasher, Adrian J.; Galy, Anne; Cavazzana, Marina

    2016-01-01

    Importance Wiskott-Aldrich syndrome (WAS) is a rare primary immunodeficiency associated with severe microthrombocytopenia. Partially HLA-matched allogeneic hematopoietic stem cell (HSC) transplantation is associated with significant co-morbidity. Objective To assess the outcome and safety of autologous HSC gene therapy in WAS. Design Gene-corrected autologous HSC were infused in 7 consecutive WAS patients (age range: 0.8 to 15.5 years, mean 7 years) following myeloablative conditioning. Setting and participants: Patients with severe WAS lacking HLA-matched related or unrelated HSC donors were treated between December 2010 and January 2014. The follow up of patients in this intermediate analysis ranged from 9 to 42 months. Intervention A single infusion of gene-modified CD34+ cells with an advanced lentiviral vector. Main Outcome(s) and Measure(s) Primary outcomes were improvement at 24 months in eczema, the frequency and severity of infections, bleeding tendency, autoimmunity and reduction in disease-related days of hospitalization. Secondary outcomes were improvement in immunological and haematological parameters, and evidence for safety through vector integration analysis. Results Six out of the 7 patients were alive at the time of last follow-up (mean and median follow-up time: 28 and 27 months respectively) and showed sustained clinical benefit. One patient died 7 months after treatment from pre-existing drug- resistant herpes virus infections. Eczema and susceptibility to infections resolved in all 6 patients. Autoimmunity improved in 5/5 patients. No severe bleeding episodes were recorded after treatment, and at last follow up 6/6 patients were free from blood product support and thrombopoietic agonists. Hospitalization days were reduced from 25 days (median) in the 2 years pretreatment to 0 days (median) in the 2 years post treatment. All 6 surviving patients exhibited high-level, stable engraftment of functionally corrected lymphoid cells. The degree of

  18. [Persistent thrombocytopenia in a child: morphological examination of blood platelets established the diagnosis of Wiskott-Aldrich syndrome].

    PubMed

    Latger-Cannard, V; Lacroix, F; Devignes, J; Salignac, S; Bensoussan, D; Salmon, A; Mansuy, L; Bordigoni, P; Lecompte, T

    2008-01-01

    Thrombocytopenia frequently occurs in laboratory practice. The present work illustrates, through the presentation of a case report of Wiskott-Aldrich syndrome, the difficulties encountered to identify and characterize thrombocytopenia. The clinicobiological validation of a low platelet count involves both the biologist, who must assume the validation of numeration while mentioning the morphological characteristics of the platelets and other blood cells, as well as the physician who has to interpret these data according to the clinical context.

  19. Dendritic cell functional improvement in a preclinical model of lentiviral-mediated gene therapy for Wiskott-Aldrich syndrome.

    PubMed

    Catucci, M; Prete, F; Bosticardo, M; Castiello, M C; Draghici, E; Locci, M; Roncarolo, M G; Aiuti, A; Benvenuti, F; Villa, A

    2012-12-01

    Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency caused by the defective expression of the WAS protein (WASP) in hematopoietic cells. It has been shown that dendritic cells (DCs) are functionally impaired in WAS patients and was(-/-) mice. We have previously demonstrated the efficacy and safety of a murine model of WAS gene therapy (GT), using stem cells transduced with a lentiviral vector (LV). The aim of this study was to investigate whether GT can correct DC defects in was(-/-) mice. As DCs expressing WASP were detected in the secondary lymphoid organs of the treated mice, we tested the in vitro and in vivo function of bone marrow-derived DCs (BMDCs). The BMDCs showed efficient in vitro uptake of latex beads and Salmonella typhimurium. When BMDCs from the treated mice (GT BMDCs) and the was(-/-) mice were injected into wild-type hosts, we found a higher number of cells that had migrated to the draining lymph nodes compared with mice injected with was(-/-) BMDCs. Finally, we found that ovalbumin (OVA)-pulsed GT BMDCs or vaccination of GT mice with anti-DEC205 OVA fusion protein can efficiently induce antigen-specific T-cell activation in vivo. These findings show that WAS GT significantly improves DC function, thus adding new evidence of the preclinical efficacy of LV-mediated WAS GT.

  20. Linkage of the Wiskott-Aldrich syndrome with polymorphic DNA sequences from the human X chromosome

    SciTech Connect

    Peacocke, M.; Siminovitch, K.A.

    1987-05-01

    The Wiskott-Aldrich syndrome (WAS) is one of several human immunodeficiency diseases inherited as an X-linked trait. The location of WAS on the X chromosome is unknown. The authors have studied 10 kindreds segregating for WAS for linkage with cloned, polymorphic DNA markers and have demonstrated significant linkage between WAS and two loci, DXS14 and DXS7, that map to the proximal short arm of the X chromosome. Maximal logarithm of odds (lod scores) for WAS-DXS14 and WAS-DWS7 were 4.29 (at 0 = 0.03) and 4.12 (at 0 = 0.00), respectively. Linkage data between WAS and six markers loci indicate the order of the loci to be (DXYS1-DXS1)-WAS-DXS14-DXS7-(DXS84-OTC). These results suggest that the WAS locus lies within the pericentric region of the X chromosome and provide an initial step toward identifying the WAS gene and improving the genetic counselling WAS families.

  1. Early deficit of lymphocytes in Wiskott–Aldrich syndrome: possible role of WASP in human lymphocyte maturation

    PubMed Central

    PARK, J Y; KOB, M; PRODEUS, A P; ROSEN, F S; SHCHERBINA, A; REMOLD-O'DONNELL, E

    2004-01-01

    Wiskott–Aldrich syndrome (WAS) is an X-linked platelet/immunodeficiency disease. The affected gene encodes WASP, a multidomain protein that regulates cytoskeletal assembly in blood cells. Patients have recurring infections, and their lymphocytes exhibit deficient proliferative responses in vitro. We report an evaluation of peripheral blood lymphocytes of 27 WAS patients, aged one month to 55 years. Whereas NK cells were normal, a significant deficit of T and B lymphocytes was observed. The number of lymphocytes was already decreased in infant patients, suggesting deficient output. Both CD4 and CD8 T lymphocytes were affected; the decrease was most pronounced for naïve T cells. Naïve CD4 lymphocytes of patients showed normal expression of Bcl-2, and Ki-67, and normal survival in vitro, suggesting that their in vivo survival and proliferation are normal. The collective data suggest that the patients’ lymphocyte deficit results from deficient output, likely due to abnormal lymphocyte maturation in the thymus and bone marrow. We propose that WASP plays an important role not only in the function of mature T lymphocytes, but also in the maturation of human T and B lymphocytes and that impaired lymphocyte maturation is central to the aetiology of WAS immunodeficiency. PMID:15030520

  2. Wiskott-Aldrich syndrome in a girl caused by heterozygous WASP mutation and extremely skewed X-chromosome inactivation: a novel association with maternal uniparental isodisomy 6.

    PubMed

    Takimoto, Tomohito; Takada, Hidetoshi; Ishimura, Masataka; Kirino, Makiko; Hata, Kenichiro; Ohara, Osamu; Morio, Tomohiro; Hara, Toshiro

    2015-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked disease characterized by microthrombocytopenia, eczema and immune deficiency, caused primarily by mutations in the WASP (Wiskott-Aldrich syndrome protein) gene. Female carriers are usually asymptomatic because of the preferential activation of the normal, nonmutated X-chromosome in their hematopoietic cells. We report our observations of a female child with WAS, who displayed symptoms of congenital thrombocytopenia. DNA sequencing analysis of the WASP gene revealed a heterozygous nonsense mutation in exon 10. The expressions of WASP and normal WASP mRNA were defective. We found preferential inactivation of the X-chromosome on which wild-type WASP was located. Single-nucleotide polymorphism microarray testing and the analysis of the polymorphic variable number of tandem repeat regions revealed maternal uniparental isodisomy of chromosome 6 (UPD6). Our results underscore the importance of WASP evaluation in females with congenital thrombocytopenia and suggest that UPD6 might be related to the pathophysiology of nonrandom X-chromosome inactivation.

  3. Identification of another actin-related protein (Arp) 2/3 complex binding site in neural Wiskott-Aldrich syndrome protein (N-WASP) that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP.

    PubMed

    Suetsugu, S; Miki, H; Takenawa, T

    2001-08-31

    Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.

  4. Two sisters with clinical diagnosis of Wiskott-Aldrich Syndrome: Is the condition in the family autosomal recessive?

    SciTech Connect

    Kondoh, T.; Hayashi, K.; Matsumoto, T.

    1995-10-09

    We report two sisters in a family representing manifestations of Wiskott-Aldrich syndrome (WAS), an X-linked immunodeficiency disorder. An elder sister had suffered from recurrent infections, small thrombocytopenic petechiae, purpura, and eczema for 7 years. The younger sister had the same manifestations as the elder sister`s for a 2-year period, and died of intracranial bleeding at age 2 years. All the laboratory data of the two patients were compatible with WAS, although they were females. Sialophorin analysis with the selective radioactive labeling method of this protein revealed that in the elder sister a 115-KD band that should be specific for sialophorin was reduced in quantity, and instead an additional 135-KD fragment was present as a main band. Polymerase chain reaction (PCR) analysis of the sialophorin gene and single-strand conformation polymorphism (SSCP) analysis of the PCR product demonstrated that there were no detectable size-change nor electrophoretic mobility change in the DNA from both patients. The results indicated that their sialophorin gene structure might be normal. Studies on the mother-daughter transmission of X chromosome using a pERT84-MaeIII polymorphic marker mapped at Xp21 and HPRT gene polymorphism at Xq26 suggested that each sister had inherited a different X chromosome from the mother. Two explanations are plausible for the occurrence of the WAS in our patients: the WAS in the patients is attributable to an autosomal gene mutation which may regulate the sialophorin gene expression through the WAS gene, or, alternatively, the condition in this family is an autosomal recessive disorder separated etiologically from the X-linked WAS. 17 refs., 6 figs., 1 tab.

  5. Altered O-glycan synthesis in lymphocytes from patients with Wiskott- Aldrich syndrome

    PubMed Central

    1991-01-01

    The only molecular defect reported for the X-linked immunodeficiency Wiskott-Aldrich syndrome (WAS) is the abnormal electrophoretic behavior of the major T lymphocyte sialoglycoprotein CD43. Since the 70 to 80 O- linked carbohydrate chains of CD43 are known to influence markedly its electrophoretic mobility, we analyzed the structure and the biosynthesis of O-glycans of CD43 in lymphocytes from patients with WAS. Immunofluorescence analysis with the carbohydrate dependent anti- CD43 antibody T305 revealed that in 10 out of the 12 WAS patients tested increased numbers of T lymphocytes carry on CD43 an epitope which on normal lymphocytes is expressed only after activation. Other activation antigens were absent from WAS lymphocytes. Western blots of WAS cell lysates displayed a high molecular mass form of CD43 which reacted with the T305 antibody and which could be found on in vivo activated lymphocytes but was absent from normal unstimulated lymphocytes. To examine the O-glycan structures, carbohydrate labeled CD43 was immunoprecipitated and the released oligosaccharides identified. WAS lymphocyte CD43 was found to carry predominantly the branched structure NeuNAc alpha 2----3Gal beta 1----3 (NeuNAc alpha 2--- -3Gal beta 1----4G1cNAc beta 1----6) GalNAcOH whereas normal lymphocytes carry the structure NeuNAc alpha 2----3Gal beta 1----3 (NeuNAc alpha 2----6) GalNAcOH. Only after activation NeuNAc alpha 2---- 3Gal beta 1----3 (NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6) GalNAcOH becomes the principal oligosaccharide on CD43 from normal lymphocytes. Analyzing the six glycosyltransferases involved in the biosynthesis of these O-glycan structures it was found that in WAS lymphocytes high levels of beta 1----6 N-acetyl-glucosaminyl transferase are responsible for the expression of NeuNAc alpha 2---- 3Gal beta 1----3 (NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6) GalNAcOH on CD43. The gene responsible for WAS has not yet been identified but the results

  6. The UDP-galactose translocator gene is mapped to band Xp11. 23-p11. 22 containing the Wiskott-Aldrich Syndrome Locus

    SciTech Connect

    Hara, Takahiko; Hoshino, Masato; Aoki, Kazuhisa; Ayusawa, Dai; Kawakita, Masao ); Yamauchi, Masatake; Takahashi, Ei-ichi )

    1993-11-01

    The authors have cloned a segment of the human gene encoding UDP-galactose translocator by genetic complementation of its defective mutant in mouse FM3A cells. Chromosome mapping using fluorescent in situ hybridization revealed that the cloned gene hybridized to the Xp11.23-11.23 region of the X chromosome. This region is shared by the locus of Wiskott-Aldrich syndrome, an X-linked recessive immunodeficiency disorder, characterized by defective sugar chains on cell surface components. Genetic and phenotypic similarities suggest a possible link between UDP-galactose translocator and the Wiskott-Aldrich syndrome (WAS).

  7. Nuclear Role of WASp in the Pathogenesis of Dysregulated TH1 Immunity in Human Wiskott-Aldrich Syndrome

    PubMed Central

    Taylor, Matthew D.; Sadhukhan, Sanjoy; Kottangada, Ponnappa; Ramgopal, Archana; Sarkar, Koustav; D’Silva, Sheryl; Selvakumar, Annamalai; Candotti, Fabio; Vyas, Yatin M.

    2010-01-01

    The clinical symptomatology in the X-linked Wiskott-Aldrich syndrome (WAS), a combined immunodeficiency and autoimmune disease resulting from WAS protein (WASp) deficiency, reflects the underlying coexistence of an impaired T helper 1 (TH1) immunity alongside intact TH2 immunity. This suggests a role for WASp in patterning TH subtype immunity, yet the molecular basis for the TH1-TH2 imbalance in human WAS is unknown. We have discovered a nuclear role for WASp in the transcriptional regulation of the TH1 regulator gene TBX21 at the chromatin level. In primary TH1-differentiating cells, a fraction of WASp is found in the nucleus, where it is recruited to the proximal promoter locus of the TBX21 gene, but not to the core promoter of GATA3 (a TH2 regulator gene) or RORc (a TH17 regulator gene). Genome-wide mapping demonstrates association of WASp in vivo with the gene-regulatory network that orchestrates TH1 cell fate choice in the human TH cell genome. Functionally, nuclear WASp associates with H3K4 trimethyltransferase [RBBP5 (retinoblastoma-binding protein 5)] and H3K9/H3K36 tridemethylase [JMJD2A (Jumonji domain-containing protein 2A)] proteins, and their enzymatic activity in vitro and in vivo is required for achieving transcription-permissive chromatin dynamics at the TBX21 proximal promoter in primary differentiating TH1 cells. During TH1 differentiation, the loss of WASp accompanies decreased enrichment of RBBP5 and, in a subset of WAS patients, also of filamentous actin at the TBX21 proximal promoter locus. Accordingly, human WASp-deficient TH cells, from natural mutation or RNA interference–mediated depletion, demonstrate repressed TBX21 promoter dynamics when driven under TH1-differentiating conditions. These chromatin derangements accompany deficient T-BET messenger RNA and protein expression and impaired TH1 function, defects that are ameliorated by reintroducing WASp. Our findings reveal a previously unappreciated role of WASp in the epigenetic control

  8. Narrowing the candidate interval of the Wiskott-Aldrich syndrome by a proximal recombination event detected by linkage analysis and X inactivation study

    SciTech Connect

    Schindelhaur, D.; Bader, I.; Golla, A.

    1994-09-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency combined with thrombocytopenia in which the molecular defect is still unknown. Initial linkage data placed the WAS gene between TIMP and the marker DXS255 in Xp11.23 to Xp11.22. As no recombination was detected between the disease locus closely linked to DXS255 and the marker loci OATL1, SYP and TFE3, the position of WAS relative to these polymorphic loci could not yet be determined. In this study, further segregation analysis has been performed using additional (CA)n repeats DXS1367, DXS6616 and DXS1126. While DXS1367 and DXS6616 could be mapped adjacent to OATL1, location of DXS1126 between OATL1 and TFE3 is demonstrated. In a WAS pedigree of three generations (4 affected males, 10 obligate female carriers, 7 non-carriers) we observed a recombination event between the disease and the locus TIMP, DXSS1367, and DXS6616 in a patient manifesting WAS and the daughter of his female cousin. The carrier status of the female relative was confirmed or excluded by X inactivation analysis. No recombination was detected by the marker DXS6616 containing the zinc finger genes ZNF21 and ZNF81 as a candidate region of the Wiskott-Aldrich syndrome and narrows the boundaries to an interval bracketed by DXS6616 and DXS255. In addition, the current results identify the DXS1367 probe as a useful diagnostic marker for indirect genotype analysis of the Wiskott-Aldrich syndrome.

  9. Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome.

    PubMed

    Toscano, Miguel G; Anderson, Per; Muñoz, Pilar; Lucena, Gema; Cobo, Marién; Benabdellah, Karim; Gregory, Philip D; Holmes, Michael C; Martin, Francisco

    2013-03-01

    Mutations in the WAS gene cause Wiskott-Aldrich syndrome (WAS), which is characterized by eczema, immunodeficiency and microthrombocytopenia. Although the role of WASP in lymphocytes and myeloid cells is well characterized, its role on megakaryocyte (MK) development is poorly understood. In order to develop a human cellular model that mimics the megakaryocytic-derived defects observed in WAS patients we used K562 cells, a well-known model for study of megakaryocytic development. We knocked out the WAS gene in K562 cells using a zinc-finger nuclease (ZFN) pair targeting the WAS intron 1 and a homologous donor DNA that disrupted WASP expression. Knockout of WASP on K562 cells (K562WASKO cells) resulted in several megakaryocytic-related defects such as morphological alterations, lower expression of CD41, lower increments in F-actin polymerization upon stimulation, reduced CD43 expression and increased phosphatidylserine exposure. All these defects have been previously described either in WAS-knockout mice or in WAS patients, validating K562WASKO as a cell model for WAS. However, K562WASPKO cells showed also increased basal F-actin and adhesion, increased expression of CD61 and reduced expression of TGFβ and Factor VIII, defects that have never been described before for WAS-deficient cells. Interestingly, these phenotypic alterations correlate with different roles for WASP in megakaryocytic differentiation. All phenotypic alterations observed in K562WASKO cells were alleviated upon expression of WAS following lentiviral transduction, confirming the role of WASP in these phenotypes. In summary, in this work we have validated a human cellular model, K562WASPKO, that mimics the megakaryocytic-related defects found in WAS-knockout mice and have found evidences for a role of WASP as regulator of megakaryocytic differentiation. We propose the use of K562WASPKO cells as a tool to study the molecular mechanisms involved in the megakaryocytic-related defects observed in WAS

  10. Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome

    PubMed Central

    Toscano, Miguel G.; Anderson, Per; Muñoz, Pilar; Lucena, Gema; Cobo, Marién; Benabdellah, Karim; Gregory, Philip D.; Holmes, Michael C.; Martin, Francisco

    2013-01-01

    SUMMARY Mutations in the WAS gene cause Wiskott-Aldrich syndrome (WAS), which is characterized by eczema, immunodeficiency and microthrombocytopenia. Although the role of WASP in lymphocytes and myeloid cells is well characterized, its role on megakaryocyte (MK) development is poorly understood. In order to develop a human cellular model that mimics the megakaryocytic-derived defects observed in WAS patients we used K562 cells, a well-known model for study of megakaryocytic development. We knocked out the WAS gene in K562 cells using a zinc-finger nuclease (ZFN) pair targeting the WAS intron 1 and a homologous donor DNA that disrupted WASP expression. Knockout of WASP on K562 cells (K562WASKO cells) resulted in several megakaryocytic-related defects such as morphological alterations, lower expression of CD41ɑ, lower increments in F-actin polymerization upon stimulation, reduced CD43 expression and increased phosphatidylserine exposure. All these defects have been previously described either in WAS-knockout mice or in WAS patients, validating K562WASKO as a cell model for WAS. However, K562WASPKO cells showed also increased basal F-actin and adhesion, increased expression of CD61 and reduced expression of TGFβ and Factor VIII, defects that have never been described before for WAS-deficient cells. Interestingly, these phenotypic alterations correlate with different roles for WASP in megakaryocytic differentiation. All phenotypic alterations observed in K562WASKO cells were alleviated upon expression of WAS following lentiviral transduction, confirming the role of WASP in these phenotypes. In summary, in this work we have validated a human cellular model, K562WASPKO, that mimics the megakaryocytic-related defects found in WAS-knockout mice and have found evidences for a role of WASP as regulator of megakaryocytic differentiation. We propose the use of K562WASPKO cells as a tool to study the molecular mechanisms involved in the megakaryocytic-related defects observed

  11. Wiskott-Aldrich Syndrome (WAS)

    MedlinePlus

    ... Council Conflict of Interest Statement Advisory and Peer Review Committees Careers & Training Career & Training Opportunities Fellowships, Internships, & Training Clinical Training Programs Allergy and Immunology Training Program Infectious Diseases Fellowship Program Current NIH ...

  12. Bone marrow transplantation in a child with Wiskott-Aldrich syndrome latently infected with acyclovir-resistant (ACV(r)) herpes simplex virus type 1: emergence of foscarnet-resistant virus originating from the ACV(r) virus.

    PubMed

    Saijo, Masayuki; Yasuda, Yukiharu; Yabe, Hiromasa; Kato, Shunichi; Suzutani, Tatsuo; De Clercq, Erik; Niikura, Masahiro; Maeda, Akihiko; Kurane, Ichiro; Morikawa, Shigeru

    2002-09-01

    A human leukocyte antigen (HLA)-matched unrelated bone marrow transplantation (BMT) was performed in a 13-year-old patient with the congenital immunodeficiency syndrome, Wiskott-Aldrich syndrome. The patient had a history of acyclovir (ACV)-resistant (ACV(r)) herpes simplex virus type 1 (HSV-1) infections prior to BMT. After BMT, the skin lesions caused by HSV-1 relapsed on the face and genito-anal areas. Ganciclovir (GCV) therapy was initiated, but the mucocutaneous lesions worsened. An HSV-1 isolate recovered from the lesions during this episode was resistant to both ACV and GCV. The ACV(r) isolate was confirmed to have the same mutation in the viral thymidine kinase (TK) gene as that of the previously isolated ACV(r) isolates from the patient. After treatment switch to foscarnet (PFA), there was a satisfactory remission but not a complete recovery. Although the mucocutaneous lesions improved, a PFA-resistant (PFA(r)) HSV-1 was isolated 1 month after the start of PFA therapy. The PFA(r) HSV-1 isolate coded for the same mutation in the viral TK gene as the ACV(r) HSV-1 isolates. Furthermore, the PFA(r) isolate also expressed a mutated viral DNA polymerase (DNA pol) with an amino acid (Gly) substitution for Val at position 715. This is the first report on the clinical course of a BMT-associated ACV(r) HSV-1 infection that subsequently developed resistance to foscarnet as well.

  13. Q & A with Ed Tech Leaders: Interview with Clark Aldrich

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Fulgham, Susan M.

    2016-01-01

    Clark Aldrich is the founder and Managing Partner of Clark Aldrich Designs, and is known as a global education visionary, industry analyst, and speaker. In this interview, he responds to questions about his ideas, his work, and his theories.

  14. Rediscovering Thomas Bailey Aldrich's "The Story of a Bad Boy."

    ERIC Educational Resources Information Center

    West, Mark I.

    1998-01-01

    Discusses Thomas Bailey Aldrich's "The Story of a Bad Boy" (written in 1868), one of the first children's books in the United States to introduce realism to children's literature. Describes the book's appealing qualities, and Aldrich's life and career. Lists classic elements of the book, and suggests six activities for stimulating…

  15. [Soluble brain proteins in autosomal trisomy syndromes].

    PubMed

    Mikhneva, L M; Baryshevskaia, V D

    1981-01-01

    The authors examined the soluble proteins of the brain frontal lobes in the newborn with trisomias of the 13th, 18th, and 21st chromosomes (Down's, Patau's, and Edwards' syndromes). The examinations were carried out on autopsy material (the post-mortem period not exceeding 24 hours) by the method of disc electrophoresis in polyacrylamide gel. The brain tissue was taken from 17 newborn infants with Down's syndrome; 9 infants with Patau's syndrome; and 7 infants with Edwards' syndrome. For the control the brain of 21 newborn infants without defects of the CNS development (the death cause being analogous) was taken. In all the syndromes studied diversely directed but relatively specific shifts were revealed on the proteinograms. It was the albumin section which appeared to be the most sensitive to the chromosomal pathology: in cases of Down's and Patau's syndromes the protein content in it was reduced, whereas in cases of Edwards' syndrome it was increased. In the latter syndrome the relative amount of neuronines S-5 and S-6, and in Patau's syndrome the amount of neuronine S-6 were lowered, this lowering being statistically significantly. In all the trisomias a tendency to a diminution of the zone of the acidic neurospecific cerebral proteins was noted. This is, possibly, due to the lower level of the CNS functional activity in chromosomal pathologies.

  16. Long-term observation of herpes simplex virus type 1 (HSV-1) infection in a child with Wiskott-Aldrich syndrome and a possible reactivation mechanism for thymidine kinase-negative HSV-1 in humans.

    PubMed

    Shiota, Tomoyuki; Kurane, Ichiro; Morikawa, Shigeru; Saijo, Masayuki

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) infections in a child with congenital immunodeficiency syndrome were observed over a 10-year period. The child suffered from recurrent and severe HSV-1 mucocutaneous infections. He frequently suffered from acyclovir (ACV)-resistant (ACV(r)) HSV-1 infection in the later phase of his life, especially after the episode of ACV(r) HSV-1 infection. Virological analyses on the HSV-1 isolates recovered from this patient revealed that all the ACV(r) HSV-1 isolates were thymidine kinase (TK)-negative (TK(-)) due to a single cytosine (C) deletion within the 4-C residues (positions 1061 to 1064) in the TK gene, indicating that the recurrent TK(-)/ACV(r) HSV-1 infections throughout the patient's life were due to the identical ACV(r) HSV-1 strain. Furthermore, it was found that the ACV-sensitive (ACV(s)) isolate recovered from the skin lesions that appeared between the episodes of ACV(r) infection at the ages of 8 and 9 contained ACV(r) HSV-1 with the same mutation in the TK gene. These results indicate that, although TK activity is required for reactivation of TK(+)/ACV(s) HSV-1 from latency and TK(-)/ACV(r) HSV-1 is unable to reactivate from latency, the TK(-)/ACV(r) HSV-1 strain isolated herein reactivated in this patient, possibly by using the TK activity induced by the latently co-infected TK(+)/ACV(s) HSV-1.

  17. Sneddon syndrome associated with Protein S deficiency.

    PubMed

    Sayin, Refah; Bilgili, Serap Gunes; Karadag, Ayse Serap; Tombul, Temel

    2012-01-01

    Sneddon syndrome (SS) is rare, arterio-occlusive disorder characterized by generalized livedo racemosa of the skin and various central nervous symptoms due to occlusion of medium-sized arteries of unknown. Seizure, cognitive impairment, hypertension, and history of repetitive miscarriages are the other symptoms seen in this disease. Livedo racemosa involves persisting irreversible skin lesions red or blue in color with irregular margins. Usually, SS occurs in women of childbearing age. Protein S deficiency is an inherited or acquired disorder associated with an increased risk of thrombosis. We present a 33-year-old woman with SS with diffuse livedo racemosa, recurrent cerebrovascular diseases, migraine-type headache, sinus vein thrombosis, and protein S deficiency. Protein S deficiency and with Sneddon syndrome rarely encountered in the literature.

  18. 78 FR 64020 - Manufacturer of Controlled Substances; Notice of Registration; Sigma Aldrich Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Enforcement Administration Manufacturer of Controlled Substances; Notice of Registration; Sigma Aldrich... registered as a bulk manufacturer of the following basic classes of controlled substances: Drug Schedule...., to manufacture the listed basic classes of controlled substances is consistent with the...

  19. 78 FR 12102 - Manufacturer of Controlled Substances; Notice of Application; Sigma Aldrich Research Biochemicals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Sigma Aldrich... Administration (DEA) to be registered as a bulk manufacturer of the following classes of controlled...

  20. 77 FR 60145 - Manufacturer of Controlled Substances; Notice of Application; Sigma Aldrich Research Biochemicals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Sigma Aldrich..., Natick, Massachusetts 01760- 2447, made application by letter to the Drug Enforcement Administration...

  1. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton.

    PubMed

    Takenawa, Tadaomi; Suetsugu, Shiro

    2007-01-01

    Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are scaffolds that link upstream signals to the activation of the ARP2/3 complex, leading to a burst of actin polymerization. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular trafficking and pathogen infection. Large families of membrane-binding proteins were recently found to interact with WASP and WAVE family proteins, therefore providing a new layer of membrane-dependent regulation of actin polymerization.

  2. Hemiconvulsion, hemiplegia, epilepsy syndrome and inherited protein S deficiency.

    PubMed

    Mondal, R K; Chakravorty, D; Das, S

    2006-02-01

    A nine-year-old Nepalese girl developed hemiconvulsion, hemiplegia, epilepsy syndrome (HHE syndrome) after an episode of right-sided focal status epilepticus following acute gastroenteritis. She had left middle cerebral artery (MCA) territory infracts due to inherited protein S deficiency.

  3. The mitochondrial genome of Elodia flavipalpis Aldrich (Diptera: Tachinidae) and the evolutionary timescale of Tachinid flies.

    PubMed

    Zhao, Zhe; Su, Tian-Juan; Chesters, Douglas; Wang, Shi-di; Ho, Simon Y W; Zhu, Chao-Dong; Chen, Xiao-Lin; Zhang, Chun-Tian

    2013-01-01

    Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural enemies of the leaf-roller moths (Tortricidae), which are major pests of various fruit trees. The 14,932-bp mitochondrial genome was typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. However, its control region is only 105 bp in length, which is the shortest found so far in flies. In order to estimate dipteran evolutionary relationships, we conducted a phylogenetic analysis of 58 mitochondrial genomes from 23 families. Maximum-likelihood and Bayesian methods supported the monophyly of both Tachinidae and superfamily Oestroidea. Within the subsection Calyptratae, Muscidae was inferred as the sister group to Oestroidea. Within Oestroidea, Calliphoridae and Sarcophagidae formed a sister clade to Oestridae and Tachinidae. Using a Bayesian relaxed clock calibrated with fossil data, we estimated that Tachinidae originated in the middle Eocene.

  4. The Mitochondrial Genome of Elodia flavipalpis Aldrich (Diptera: Tachinidae) and the Evolutionary Timescale of Tachinid Flies

    PubMed Central

    Zhao, Zhe; Su, Tian-juan; Chesters, Douglas; Wang, Shi-di; Ho, Simon Y. W.; Zhu, Chao-dong; Chen, Xiao-lin; Zhang, Chun-tian

    2013-01-01

    Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural enemies of the leaf-roller moths (Tortricidae), which are major pests of various fruit trees. The 14,932-bp mitochondrial genome was typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. However, its control region is only 105 bp in length, which is the shortest found so far in flies. In order to estimate dipteran evolutionary relationships, we conducted a phylogenetic analysis of 58 mitochondrial genomes from 23 families. Maximum-likelihood and Bayesian methods supported the monophyly of both Tachinidae and superfamily Oestroidea. Within the subsection Calyptratae, Muscidae was inferred as the sister group to Oestroidea. Within Oestroidea, Calliphoridae and Sarcophagidae formed a sister clade to Oestridae and Tachinidae. Using a Bayesian relaxed clock calibrated with fossil data, we estimated that Tachinidae originated in the middle Eocene. PMID:23626734

  5. Analysis of peripheral amyloid precursor protein in Angelman Syndrome.

    PubMed

    Erickson, Craig A; Wink, Logan K; Baindu, Bayon; Ray, Balmiki; Schaefer, Tori L; Pedapati, Ernest V; Lahiri, Debomoy K

    2016-09-01

    Angelman Syndrome is a rare neurodevelopmental disorder associated with significant developmental and communication delays, high risk for epilepsy, motor dysfunction, and a characteristic behavioral profile. While Angelman Syndrome is known to be associated with the loss of maternal expression of the ubiquitin-protein ligase E3A gene, the molecular sequelae of this loss remain to be fully understood. Amyloid precursor protein (APP) is involved in neuronal development and APP dysregulation has been implicated in the pathophysiology of other developmental disorders including fragile X syndrome and idiopathic autism. APP dysregulation has been noted in preclinical model of chromosome 15q13 duplication, a disorder whose genetic abnormality results in duplication of the region that is epigenetically silenced in Angelman Syndrome. In this duplication model, APP levels have been shown to be significantly reduced leading to the hypothesis that enhanced ubiquitin-protein ligase E3A expression may be associated with this phenomena. We tested the hypothesis that ubiquitin-protein ligase E3A regulates APP protein levels by comparing peripheral APP and APP derivative levels in humans with Angelman Syndrome to those with neurotypical development. We report that APP total, APP alpha (sAPPα) and A Beta 40 and 42 are elevated in the plasma of humans with Angelman Syndrome compared to neurotypical matched human samples. Additionally, we found that elevations in APP total and sAPPα correlated positively with peripheral brain derived neurotrophic factor levels previously reported in this same patient cohort. Our pilot report on APP protein levels in Angelman Syndrome warrants additional exploration and may provide a molecular target of treatment for the disorder. © 2016 Wiley Periodicals, Inc.

  6. 77 FR 67675 - Importer of Controlled Substances, Notice of Registration, SA INTL GMBH C/O., Sigma Aldrich Co...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... Enforcement Administration Importer of Controlled Substances, Notice of Registration, SA INTL GMBH C/O., Sigma..., 2012, 77 FR 50162, SA INTL GMBH C/O., Sigma Aldrich Co., LLC., 3500 Dekalb Street, St. Louis, Missouri... C/O., Sigma Aldrich Co. LLC., to import the basic classes of controlled substances is...

  7. 78 FR 39339 - Importer of Controlled Substances; Notice of Registration; SA INTL GMBH C/O., Sigma Aldrich Co., LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Substances; Notice of Registration; SA INTL GMBH C/O., Sigma Aldrich Co., LLC By Notice dated March 20, 2013, and published in the Federal Register on March 28, 2013, 78 FR 19015, SA INTL GMBH C/O., Sigma Aldrich... the factors in 21 U.S.C. 823(a) and 952(a), and determined that the registration of SA INTL GMBH...

  8. Single-Molecule Study of Protein-Protein Interaction Dynamics in a Cell Signaling System

    SciTech Connect

    Tan, Xin; Nalbant, Perihan; Toutchkine, Alexei; Hu, Dehong; Vorpagel, Erich R.; Hahn, Klaus M.; Lu, H. Peter

    2004-01-01

    We report a study on protein-protein noncovalent interactions in an intracellular signaling protein complex, using single-molecule spectroscopy and molecular dynamics (MD) simulations. A Wiskott-Aldrich Syndrome Protein (WASP) fragment that binds only the activated intracellular signaling protein Cdc42 was labeled with a novel solvatochromic dye and used to probe hydrophobic interactions significant to Cdc42/WASP recognition. The study shows static and dynamic inhomogeneous conformational fluctuations of the protein complex that involve bound and loosely bound states. A two-coupled, two-state Markovian kinetic model is proposed for the conformational dynamics. Finally, the MD simulations explore the origin of these conformational states and associated conformational fluctuations in this protein-protein interaction system.

  9. Chromosomal protein HMG-14 is overexpressed in Down syndrome

    SciTech Connect

    Pash, J.; Bustin, M. ); Smithgall, T. )

    1991-03-01

    The physical phenotype of Down syndrome, one of the most prevalent genetic disorders, results from an extra copy of regions q22.1 to q22.3 of chromosome 21 in cells of affected individuals. The gene coding for chromosomal protein HMG-14 is among the limited number of genes, coding for known functions, which has been mapped to this region of chromosome 21. Here the authors report a gene dosage effect on the expression of HMG-14 in both cultured cells and brain tissue samples obtained from Down syndrome patients. The putative role of HMG-14 in the structure of active chromatin raises the possibility that elevated levels of this protein may be a contributing factor in the etiology of Down syndrome.

  10. The Design of Advanced Learning Engines: An Interview with Clark Aldrich

    ERIC Educational Resources Information Center

    Foreman, Joel; Aldrich, Clark

    2005-01-01

    This article presents an interview with Clark Aldrich, whose expertise as an "e-learning guru" (one of three identified by "Fortune" magazine in November 2000) rests on substantial foundations: his service as the Gartner Group research director who initiated and developed the firm's e-learning coverage, his leadership of the world class team that…

  11. Pathways and functions of the Werner syndrome protein.

    PubMed

    Lee, Jae Wan; Harrigan, Jeanine; Opresko, Patricia L; Bohr, Vilhelm A

    2005-01-01

    Mutations in human WRN (also known as RECQ3) gene give rise to a rare autosomal recessive genetic disorder, Werner syndrome (WS). WS is a premature aging disease characterized by predisposition to cancer and early onset of symptoms related to normal aging including osteoporosis, ocular cataracts, graying and loss of hair, diabetes mellitus, arteriosclerosis, and atherosclerosis. This review focuses on the functional role of Werner protein (WRN) in guarding the genetic stability of cells, particularly by playing an integral role in the base excision repair, and at the telomere ends. Furthermore, in-depth biochemical investigations have significantly advanced our understanding of WRN protein regarding its binding partners and the site of protein-protein interaction. The mapping analysis of protein interaction sites in WRN for most of its binding partners have revealed a common site of protein-protein interaction in the RecQ conserved (RQC) region of WRN.

  12. Loss of protein association causes cardiolipin degradation in Barth syndrome

    PubMed Central

    Xu, Yang; Phoon, Colin K.L.; Berno, Bob; D’Souza, Kenneth; Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A.; Epand, Richard M.; Ren, Mindong; Schlame, Michael

    2016-01-01

    Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but in Barth syndrome, where this association is compromised, cardiolipin becomes unstable, which causes the accumulation of monolyso-cardiolipin. PMID:27348092

  13. Fragile X syndrome: From protein function to therapy.

    PubMed

    Bagni, Claudia; Oostra, Ben A

    2013-11-01

    Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.

  14. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation.

    PubMed

    Valacchi, Giuseppe; Pecorelli, Alessandra; Cervellati, Carlo; Hayek, Joussef

    2017-01-05

    In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients.‬‬‬.

  15. Differential diagnosis of food protein-induced enterocolitis syndrome

    PubMed Central

    Fiocchi, Alessandro; Claps, Alessia; Dahdah, Lamia; Brindisi, Giulia; Dionisi-Vici, Carlo; Martelli, Alberto

    2014-01-01

    Purpose of review To assess all the possible differential diagnosis of food protein-induced enterocolitis syndrome (FPIES), both in acute and chronic presentation, reviewing the data reported in published studies. Recent findings There is an increase of reported cases of FPIES in recent years. As the disease presents with nonspecific symptoms, it can be misunderstood in many ways. The differential diagnosis includes, in acute presentations, the following: sepsis, other infectious diseases, acute gastrointestinal episodes, surgical emergencies, food allergies. In its chronic forms, FPIES may mimic malabsorption syndromes, metabolic disorders, primary immunodeficiencies, neurological conditions, coagulation defects, and other types of non-IgE-mediated food allergy. Summary A thorough clinical evaluation, including symptoms, signs, and laboratory findings, is necessary to lead the clinicians toward the diagnosis of FPIES. The major reason for delayed diagnosis appears to be the lack of knowledge of the disease. PMID:24739227

  16. Plasma proteins in children with trichuris dysentery syndrome.

    PubMed Central

    Cooper, E S; Ramdath, D D; Whyte-Alleng, C; Howell, S; Serjeant, B E

    1997-01-01

    AIMS: To determine whether in Trichuris trichiura dysentery there is (1) evidence of a systemic inflammatory response, (2) evidence that the plasma protein disturbance has special characteristics compared with uninfected children in the endemic environment. METHODS: Three groups of children (age 1.6 to 11.4 years) were studied: 53 cases of trichuris dysentery syndrome (TDS), 16 cases of chronic non-secretory diarrhoea not infected with the parasite ("disease controls", DC), and 20 asymptomatic, parasite-free primary schoolchildren (normal controls, NC). C reactive protein, alpha 1 antitrypsin, caeruloplasmin, albumin, total globulin, fibrinogen, fibronectin, ferritin, and transferrin were measured on a single occasion for each. The study was thus a cross sectional descriptive survey for group comparison. Plasma viscosity was measured on admission for TDS and DC and repeated after six weeks and six months for TDS. RESULTS: Plasma C reactive protein, alpha 1 antitrypsin, total globulin, fibronectin, and viscosity were significantly higher in TDS than in NC. DC children also had acute phase protein elevations (C reactive protein, caeruloplasmin, viscosity). However, the increase in caeruloplasmin was specific to the DC group while an increase in fibronectin was specific to the TDS group. Serial measurement of viscosity in TDS showed a modest but significant fall during the six months following treatment. CONCLUSIONS: There is an acute phase response in intense trichuriasis and a specific elevation of plasma fibronectin. Plasma viscosity remains abnormally high six months after treatment, although lower than at diagnosis. Images PMID:9155675

  17. [A new case of food protein-induced enterocolitis syndrome].

    PubMed

    Chaabane, M; Bidat, E; Chevallier, B

    2010-05-01

    We report a case of food protein-induced enterocolitis syndrome (FPIES) with milk whose signs of milk intolerance began in the 1st days of life, consisting in minor and nonspecific symptoms. The 3 foods in question were cow's milk, soja, and wheat. The diagnosis of FPIES was suspected at the age of 9 months, after 3 hospitalizations for vomiting, sometimes associated with lethargy and hypotension, which occurred around 2h after cow's milk ingestion. Symptoms were not associated with positive specific IgE and cutaneous tests. Signs then occurred with soja and wheat. Because of the late diagnosis, 3 anaphylactic shock episodes occurred. FPIES is an uncommon cell-mediated food allergy reaction. This syndrome is characterized by gastrointestinal symptoms, especially severe vomiting, sometimes associated with anaphylactic shock. Usually signs occur 2h after ingestion. These reactions begin early, in the 1st months of life, and regress by the age of 3 years in 38-100% of cases depending on the responsible food. They are usually induced by cow's milk and soy proteins. Diagnosis is difficult and delayed because of nonspecific symptoms. Oral food challenge is the only examination that confirms the diagnosis. Treatment involves the exclusion of the specific food involved. Severe reactions require treatment of shock and adjunction of corticosteroids.

  18. Metabolic syndrome and C-reactive protein in bank employees

    PubMed Central

    Cattafesta, Monica; Bissoli, Nazaré Souza; Salaroli, Luciane Bresciani

    2016-01-01

    Background The ultrasensitive C-reactive protein (us-CRP) is used for the diagnosis of cardiovascular disease, but it is not well described as a marker for the diagnosis of metabolic syndrome (MS). Methods An observational and transversal study of bank employees evaluated anthropometric, hemodynamic, and biochemical data. CRP values were determined using commercial kits from Roche Diagnostics Ltd, and MS criteria were analyzed according to National Cholesterol Education Program’s – Adult Treatment Panel III (NCEP/ATP III). Results A total of 88 individuals had MS, and 77.3% (n=68) of these showed alterations of us-CRP (P=0.0001, confidence interval [CI] 0.11–0.34). Individuals with MS had higher mean values of us-CRP in global measures (P=0.0001) and stratified by sex (P=0.004) than individuals without the syndrome. This marker exhibited significant differences with varying criteria for MS, such as waist circumference (P=0.0001), triglycerides (P=0.002), and diastolic blood pressure (P=0.007), and the highest levels of us-CRP were found in individuals with more MS criteria. Conclusion us-CRP was strongly associated with the presence of MS and MS criteria in this group of workers. us-CRP is a useful and effective marker for identifying the development of MS and may be used as a reference in routine care. PMID:27274294

  19. Food protein-induced enterocolitis syndrome, from practice to theory.

    PubMed

    Miceli Sopo, Stefano; Greco, Monica; Monaco, Serena; Tripodi, Salvatore; Calvani, Mauro

    2013-08-01

    Food protein-induced enterocolitis syndrome (FPIES) is an allergic disease, probably non-IgE-mediated, with expression predominantly in the GI tract. The most characteristic symptom is repeated, debilitating vomiting. It occurs 2-6 h after ingestion of culprit food and is usually accompanied by pallor and lethargy. There may be diarrhea, and in 10-20% of cases, severe hypotension. These symptoms resolve completely within a few hours. The food most frequently involved is cow's milk, followed by rice, but many other foods may be involved. The prognosis is generally good in a few years. In this review the authors try to cope, with the help of some case histories, with the practical clinical aspects of FPIES. The authors also try to provide a management approach based on current knowledge, and finally, to point out the aspects of FPIES that are still controversial.

  20. Immunopathophysiology of food protein-induced enterocolitis syndrome.

    PubMed

    Berin, M Cecilia

    2015-05-01

    There is increasing recognition of the non-IgE-mediated gastrointestinal food allergy known as food protein-induced enterocolitis syndrome (FPIES), with several recent publications summarizing the clinical experience with FPIES in the United States, the United Kingdom, Europe, and Australia. Our understanding of the mechanisms linking food exposure to typical symptoms of vomiting, hypotension, and diarrhea has lagged far behind our understanding of the immune mechanisms of IgE-mediated food allergy. The goal of this overview is to summarize and critique the current state of knowledge of the immunology of FPIES and to identify major gaps in our knowledge that need to be addressed to make significant gains in developing therapies and prevention strategies for FPIES.

  1. 77 FR 47106 - Manufacturer of Controlled Substances; Notice of Application; SA INTL GMBH C/O., Sigma Aldrich Co...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; SA INTL GMBH C/O... on May 2, 2012, SA INTL GMBH C/O., Sigma Aldrich Co. LLC., 3500 Dekalb Street, St. Louis,...

  2. 77 FR 50162 - Importer of Controlled Substances; Notice of Application; SA INTL GMBH C/O., Sigma Aldrich Co., LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of Application; SA INTL GMBH C/O., Sigma Aldrich Co., LLC Correction In notice document 2012-19191 appearing on pages 47106-47108 in the issue...

  3. 78 FR 19015 - Importer of Controlled Substances; Notice of Application; SA INTL GMBH C/O., Sigma Aldrich Co. LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Enforcement Administration Importer of Controlled Substances; Notice of Application; SA INTL GMBH C/O., Sigma... February 1, 2013, SA INTL GMBH C/O., Sigma Aldrich Co. LLC., 3500 Dekalb Street, St. Louis, Missouri 63118... (21 U.S.C. 952(a)(2)(B)) may, in the circumstances set forth in 21 U.S.C. 958(i), file comments...

  4. Aberrant protein expression in cerebral cortex of fetus with Down syndrome.

    PubMed

    Engidawork, E; Gulesserian, T; Fountoulakis, M; Lubec, G

    2003-01-01

    Down syndrome is the most common birth defect associated with mental retardation. Identifying proteins that are aberrantly expressed therefore helps to understand how chromosomal imbalance leads to subnormal intelligence in Down syndrome. In the present study, we generated a fetal brain map with the use of an analytical method based on two-dimensional electrophoresis coupled with mass spectrometry and searched the proteome for differential protein expression. Among 49 proteins analyzed in seven control and nine Down syndrome fetuses, we found 11 proteins that have been deregulated in cerebral cortex of fetal Down syndrome. While double-strand break repair protein rad 21 homologue, eukaryotic translation initiation factor 3 subunit 5, mixed lineage leukemia septin-like fusion protein-B and heat shock protein 75 were increased; beta-amyloid precursor-like protein 1, tropomyosin 4-anaplastic lymphoma kinase fusion oncoprotein type 2, Nck adaptor protein 2, Src homology domain growth factor receptor bound 2-like endophilin B2, beta tubulin, septin 7 and hematopoietic stem/progenitor cells 140 were decreased. The current data suggest that misexpression of proteins that have functions ranging from signaling to cellular structural organization could contribute to or reflect brain dysgenesis in Down syndrome.

  5. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    PubMed

    Singhmar, Pooja; Kumar, Arun

    2011-01-01

    Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  6. Angelman Syndrome Protein UBE3A Interacts with Primary Microcephaly Protein ASPM, Localizes to Centrosomes and Regulates Chromosome Segregation

    PubMed Central

    Singhmar, Pooja; Kumar, Arun

    2011-01-01

    Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome. PMID:21633703

  7. Yellow nail syndrome: does protein leakage play a role?

    PubMed

    D'Alessandro, A; Muzi, G; Monaco, A; Filiberto, S; Barboni, A; Abbritti, G

    2001-01-01

    Yellow nail syndrome is characterized by primary lymphoedema, recurrent pleural effusion and yellow discoloration of the nails. Although mechanical lymphatic obstruction is assumed to be the underlying pathology, it cannot explain the common finding of high albumin concentration in the pleural space. This paper describes a case of yellow nail syndrome presenting with the classical triad of lymphoedema, recurrent pleural effusion and yellow discoloration of the nails, associated with persistent hypoalbuminaemia and increased enteric loss of albumin. Based on the findings in this case and those in the literature, it is speculated that increased microvascular permeability may contribute to the pathogenesis of this syndrome.

  8. Low levels of protein Z are associated with HELLP syndrome and its severity.

    PubMed

    Kaygusuz, Isik; Firatli-Tuglular, Tulin; Toptas, Tayfur; Ugurel, Vedat; Demir, Muzaffer

    2011-04-01

    Protein Z (PZ) was found to be associated with pregnancy complications. There are no data implying an association between hemolysis (H), elevated liver enzymes (EL), and low platelet counts (LP) (HELLP) syndrome and changes in plasma levels of PZ. The aim of this study is to investigate whether HELLP syndrome is associated with plasma concentrations of PZ. Protein Z levels in 29 women with HELLP syndrome were compared with 29 healthy, nulliparous and 25 normal pregnant women. The median PZ levels in patients with HELLP syndrome were found to be significantly lower than those of pregnant women. No significant difference was found between HELLP and healthy groups. Protein Z levels correlated with platelet counts, lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) levels in patients with HELLP syndrome. Median PZ level was higher in partial HELLP than in complete HELLP. We calculated 1330 ng/mL as a cutoff value for PZ level to discriminate HELLP syndrome from normal pregnancy. Low PZ levels are associated with the pathobiology of HELLP syndrome.

  9. Age-dependent changes in cuticular hydrocarbons of larvae in Aldrichina grahami (Aldrich) (Diptera: Calliphoridae).

    PubMed

    Xu, Hong; Ye, Gong-Yin; Xu, Ying; Hu, Cui; Zhu, Guang-Hui

    2014-09-01

    Necrophagous flies, comprising the first wave of insects present in a cadaver, provide a great potential for more accurate determination of the late postmortem interval (PMI) based on their age. Cuticular hydrocarbons (CHs) are a promising age indicator in some insect species, especially for the larvae of necrophagous flies. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to characterize the age-dependent, quantitative changes in CHs of larval Aldrichina grahami (Aldrich) (Diptera: Calliphoridae) at 24°C. The majority of low-molecular-weight alkanes (≤C25) and almost all of the alkenes decreased in abundance with larval development. By contrast, the abundance of high-molecular-weight alkanes of chain length greater than C25 gradually increased with age. For several peaks, including peak 28 (pentacosene a), peak 31 (n-C25), peak 43 (n-C27) and peak 68 (n-C31), a highly significant correlation was found between peak ratio (n-C29 divided by each chromatographic peak) and chronological age of the larvae. A mathematical model, derived from multivariate linear regression analysis, was developed for determining age of the larvae based on age-dependent changes in CHs. The estimated larval age based on the CHs had a good linear correlation with the chronological age (R(2)>0.9). These results indicate that CHs has a great potential for determining the age of fly larvae, and concomitantly for the PMI in forensic investigation.

  10. Polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes (POEMS syndrome): a paraneoplastic syndrome

    PubMed Central

    Kumar, Sunil; Sharma, Shruti

    2015-01-01

    POEMS syndrome (Crow–Fukase syndrome) is a rare paraneoplastic disorder. It is characterized by peripheral neuropathy, elevated vascular endothelial growth factors (VEGFs), monoclonal gammopathy, sclerotic bone lesions and Castleman disease. Other important clinical features are organomegaly, edema, ascites, papilledema, endocrinopathy, skin changes and thrombocytosis. A high index of suspicion, a detailed clinical history and examination followed by appropriate laboratory investigations like VEGF level, radiological skeletal survey and bone marrow biopsy are required to diagnose POEMS syndrome. We report a case of POEMS syndrome who presented with insidious onset, progressive sensorimotor polyneuropathy, pedal edema, ascites, hepatomegaly, skin changes and hypothyroidism. X-ray of the pelvis showed osteosclerotic lesions. Immunoelectrophoresis using the immunofixation method revealed lambda chain monoclonal gammopathy. The patient was given radiotherapy, followed by a combination therapy of melphalan and dexamethasone. We emphasize the importance of recognizing a challenging diagnosis of a rare disease, which is shown to be treatment responsive. PMID:26634133

  11. BAR domain proteins regulate Rho GTPase signaling

    PubMed Central

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis. PMID:25483303

  12. Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation.

    PubMed

    Burns, S; Thrasher, A J; Blundell, M P; Machesky, L; Jones, G E

    2001-08-15

    The cellular mechanisms that configure the cytoskeleton during migration of dendritic cells (DCs) are poorly understood. Immature DCs assemble specialized adhesion structures known as podosomes at their leading edge; these are associated with the localized recruitment of the Wiskott-Aldrich Syndrome protein (WASp) and the actin organizing actin-related protein 2/3 complex. In immature DCs lacking WASp, podosomes are absent, residual dysmorphic lamellipodia and filopodia are nonpolarized, and migration is severely compromised. Microinjection studies indicate that podosome assembly and polarization require concerted action of Cdc42, Rac, and Rho, thereby providing a link between sequential protrusive and adhesive activity. Formation of podosomes is restricted to cells with an immature phenotype, indicating a specific role for these structures during the early migratory phase. (Blood. 2001;98:1142-1149)

  13. Serum Protein KNG1, APOC3, and PON1 as Potential Biomarkers for Yin-Deficiency-Heat Syndrome

    PubMed Central

    Liu, Changming; Mao, Liangen; Ping, Zepeng; Jiang, Tingting; Wang, Chong; Chen, Zhongliang; Li, Zhongjie

    2016-01-01

    Yin-deficiency-heat (YDH) syndrome is a concept in Traditional Chinese Medicine (TCM) for describing subhealth status. However, there are few efficient diagnostic methods available for confirming YDH syndrome. To explore the novel method for diagnosing YDH syndrome, we applied iTRAQ to observe the serum protein profiles in YDH syndrome rats and confirmed protein levels by ELISA. A total of 92 differentially expressed proteins (63 upregulated proteins and 29 downregulated proteins), which were mainly involved in complement and coagulation cascades and glucose metabolism pathway, were identified by the proteomic experiments. Kininogen 1 (KNG1) was significantly increased (p < 0.0001), while apolipoprotein C-III (APOC3, p < 0.005) and paraoxonase 1 (PON1, p < 0.001) were significantly decreased in the serum of YDH syndrome rats. The combination of KNG1, APOC3, and PON1 constituted a diagnostic model with 100.0% sensitivity and 85.0% specificity. The results indicated that KNG1, APOC3, and PON1 may act as potential biomarkers for diagnosing YDH syndrome. KNG1 may regulate cytokines and chemokines release in YDH syndrome, and the low levels of PON1 and APOC3 may increase oxidative stress and lipolysis in YDH syndrome, respectively. Our work provides a novel method for YDH syndrome diagnosis and also provides valuable experimental basis to understand the molecular mechanism of YDH syndrome. PMID:27843478

  14. Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL.

    PubMed

    Pirruccello, Michelle; De Camilli, Pietro

    2012-04-01

    The precise regulation of phosphoinositide lipids in cellular membranes is crucial for cellular survival and function. Inositol 5-phosphatases have been implicated in a variety of disorders, including various cancers, obesity, type 2 diabetes, neurodegenerative diseases and rare genetic conditions. Despite the obvious impact on human health, relatively little structural and biochemical information is available for this family. Here, we review recent structural and mechanistic work on the 5-phosphatases with a focus on OCRL, whose loss of function results in oculocerebrorenal syndrome of Lowe and Dent 2 disease. Studies of OCRL emphasize how the actions of 5-phosphatases rely on both intrinsic and extrinsic membrane recognition properties for full catalytic function. Additionally, structural analysis of missense mutations in the catalytic domain of OCRL provides insight into the phenotypic heterogeneity observed in Lowe syndrome and Dent disease.

  15. Hypoimmunoglobulinemia and protein C deficiency in a girl with Jacobsen syndrome: a case report.

    PubMed

    Sinawat, Suthasinee; Kitkhuandee, Amnat; Auvichayapat, Narong; Auvichayapat, Paradee; Yospaiboon, Yosanan; Sinawat, Supat

    2013-07-01

    Jacobsen syndrome is a rare contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. The typical clinical manifestations include physical growth retardation, mental retardation,facial dysmorphisms, congenital heart disease, thrombocytopenia, or pancytopenia. A Thai-Australian girl was born with multiple abnormalities. Typical features and her karyotype, 46, XX, del(ll) (q23-qter), confirmed Jacobson syndrome. She had many uncommon findings including upslanting palpebral fissures, tortuousity of retinal vessels and hypogammaglobulinemia. In addition, this case also presented with protein C deficiency, which has not been reported previously in Jacobsen syndrome. The patient was treated with phototherapy, intravenous antibiotic injection, and platelet transfusion in neonatal period. Cranioplasty was performed for prevention of the increased intracranial pressure at three months of age. Surgical correction for strabismus was in the treatment plan.

  16. Normal protein composition of synapses in Ts65Dn mice, a mouse model of Down syndrome

    PubMed Central

    Fernandez, Fabian; Trinidad, Jonathan C.; Blank, Martina; Feng, Dong-Dong; Burlingame, Alma L.; Garner, Craig C.

    2009-01-01

    Down syndrome is the most prevalent form of intellectual disability caused by the triplication of ~ 230 genes on chromosome 21. Recent data in Ts65Dn mice, the foremost mouse model of Down syndrome, strongly suggest that cognitive impairment in individuals with Down syndrome is a consequence of reduced synaptic plasticity due to chronic over-inhibition. It remains unclear however whether changes in plasticity are tied to global molecular changes at synapses, or are due to regional changes in the functional properties of synaptic circuits. One interesting framework for evaluating the activity state of the Down syndrome brain comes from in vitro studies showing that chronic pharmacological silencing of neuronal excitability orchestrates stereotyped changes in the protein composition of synaptic junctions. In the present study, we use proteomic strategies to evaluate whether synapses from the Ts65Dn cerebrum carry signatures characteristic of inactive cortical neurons. Our data reveal that synaptic junctions do not exhibit overt alterations in protein composition. Only modest changes in the levels of synaptic proteins and in their phosphorylation are observed. This suggests that subtle changes in the functional properties of specific synaptic circuits rather than large-scale homeostatic shifts in the expression of synaptic molecules contribute to cognitive impairment in people with Down syndrome. PMID:19453946

  17. Morvan's syndrome with anti contactin associated protein like 2 – voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion

    PubMed Central

    Sharma, Anjani Kumar; Kaur, Manminder; Paul, Madhuparna

    2016-01-01

    Morvan's syndrome is a rare autoimmune disorder characterized by triad of peripheral nerve hyperexcitability, autonomic dysfunction, and central nervous system symptoms. Antibodies against contactin-associated protein-like 2 (CASPR2), a subtype of voltage-gated potassium channel (VGKC) complex, are found in a significant proportion of patients with Morvan's syndrome and are thought to play a key role in peripheral as well as central clinical manifestations. We report a patient of Morvan's syndrome with positive CASPR2–anti-VGKC antibody having syndrome of inappropriate antidiuretic hormone as a cause of persistent hyponatremia. PMID:27695240

  18. Morvan's syndrome with anti contactin associated protein like 2 - voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion.

    PubMed

    Sharma, Anjani Kumar; Kaur, Manminder; Paul, Madhuparna

    2016-01-01

    Morvan's syndrome is a rare autoimmune disorder characterized by triad of peripheral nerve hyperexcitability, autonomic dysfunction, and central nervous system symptoms. Antibodies against contactin-associated protein-like 2 (CASPR2), a subtype of voltage-gated potassium channel (VGKC) complex, are found in a significant proportion of patients with Morvan's syndrome and are thought to play a key role in peripheral as well as central clinical manifestations. We report a patient of Morvan's syndrome with positive CASPR2-anti-VGKC antibody having syndrome of inappropriate antidiuretic hormone as a cause of persistent hyponatremia.

  19. The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism

    SciTech Connect

    Savchenko, A; Krogan, Nevan; Cort, John R.; Evdokimova, Elena; Lew, Jocelyne M.; Yee, Adelinda; Sanchez-Pulido, Luis; Andrade, Miguel; Bochkarev, Alexey; Watson, James D.; Kennedy, Michael A.; Greenblatt, Jack; Hughes, Timothy; Arrowsmith, Cheryl H.; Rommens, Johanna M.; Edwards, Aled M.

    2005-05-13

    A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold.

  20. Proteolytic processing of Porcine Reproductive and Respiratory Syndrome Virus nsp2 replicase protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One critical step in porcine reproductive and respiratory syndrome virus (PRRSV) replication is the proteolytic processing of the ORF1 polyprotein (replicase). The replicase polyprotein is generally believed to be processed to generate at least 12 smaller nonstructural proteins (nsps) involved in r...

  1. Proteolytic Products of the Porcine Reproductive and Respiratory Syndrome Virus Nsp2 Replicase Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nsp2 replicase protein of porcine reproductive and respiratory syndrome virus (PRRSV) was recently demonstrated to be processed from its precursor by the PL2 protease at or near the G1196|G1197 dipeptide in transfected CHO cells. Here, the proteolytic cleavage of PRRSV nsp2 was further investiga...

  2. Posttranslational Protein Modification in the Salivary Glands of Sjögren's Syndrome Patients.

    PubMed

    Herrera-Esparza, Rafael; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Badillo-Soto, Martha Adriana; Torres-Del-Muro, Felipe; Bollain-Y-Goytia, Juan José; Pacheco-Tovar, Deyanira; Avalos-Díaz, Esperanza

    2013-01-01

    The present study investigated posttranslational reactions in the salivary glands of patients with Sjögren's syndrome. We analysed the biopsies of primary Sjögren's patients using immunohistochemistry and a tag-purified anticyclic citrullinated protein (CCP) antibody to detect citrullinated peptides, and the presence of peptidylarginine deiminase 2 (PAD2) was assessed simultaneously. The present work demonstrated the weak presence of the PAD2 enzyme in some normal salivary glands, although PAD2 expression was increased considerably in Sjögren's patients. The presence of citrullinated proteins was also detected in the salivary tissues of Sjögren's patients, which strongly supports the in situ posttranslational modification of proteins in this setting. Furthermore, the mutual expression of CCP and PAD2 suggests that this posttranslational modification is enzyme dependent. In conclusion, patients with Sjögren's syndrome expressed the catalytic machinery to produce posttranslational reactions that may result in autoantigen triggering.

  3. Profiling Proteins in the Hypothalamus and Hippocampus of a Rat Model of Premenstrual Syndrome Irritability.

    PubMed

    Qiao, Mingqi; Sun, Peng; Wang, Yang; Wei, Sheng; Wei, Xia; Song, Chunhong; Wang, Fushun; Wu, Jibiao

    2017-01-01

    Premenstrual syndrome (PMS) refers to several physical and mental symptoms (such as irritability) commonly encountered in clinical gynaecology. The incidence of PMS has been increasing, attracting greater attention from medical fields. However, PMS pathogenesis remains unclear. This study employed two-dimensional gel electrophoresis (2DE) for proteomic map analysis of the hypothalamus and hippocampus of rat models of premenstrual syndrome (PMS) irritability. Matrix-assisted laser desorption/ionisation time of flight mass spectroscopy (MALDI-TOF-MS) was used to identify proteins possibly related with PMS irritability. Baixiangdan, a traditional Chinese medicine effective against PMS irritability, was used in the rat model to study putative target proteins of this medicine. The hypothalamus and hippocampus of each group modelling PMS displayed the following features: decreased expression of Ulip2, tubulin beta chain 15, α actin, and interleukin 1 receptor accessory protein; increased expression of kappa-B motif-binding phosphoprotein; decreased expression of hydrolase at the end of ubiquitin carboxy, albumin, and aldolase protein; and increased expression of M2 pyruvate kinase, panthenol-cytochrome C reductase core protein I, and calcium-binding protein. Contrasting with previous studies, the current study identified new proteins related to PMS irritability. Our findings contribute to understanding the pathogenesis of PMS irritability and could provide a reference point for further studies.

  4. Profiling Proteins in the Hypothalamus and Hippocampus of a Rat Model of Premenstrual Syndrome Irritability

    PubMed Central

    Wei, Sheng; Wei, Xia; Wu, Jibiao

    2017-01-01

    Premenstrual syndrome (PMS) refers to several physical and mental symptoms (such as irritability) commonly encountered in clinical gynaecology. The incidence of PMS has been increasing, attracting greater attention from medical fields. However, PMS pathogenesis remains unclear. This study employed two-dimensional gel electrophoresis (2DE) for proteomic map analysis of the hypothalamus and hippocampus of rat models of premenstrual syndrome (PMS) irritability. Matrix-assisted laser desorption/ionisation time of flight mass spectroscopy (MALDI-TOF-MS) was used to identify proteins possibly related with PMS irritability. Baixiangdan, a traditional Chinese medicine effective against PMS irritability, was used in the rat model to study putative target proteins of this medicine. The hypothalamus and hippocampus of each group modelling PMS displayed the following features: decreased expression of Ulip2, tubulin beta chain 15, α actin, and interleukin 1 receptor accessory protein; increased expression of kappa-B motif-binding phosphoprotein; decreased expression of hydrolase at the end of ubiquitin carboxy, albumin, and aldolase protein; and increased expression of M2 pyruvate kinase, panthenol-cytochrome C reductase core protein I, and calcium-binding protein. Contrasting with previous studies, the current study identified new proteins related to PMS irritability. Our findings contribute to understanding the pathogenesis of PMS irritability and could provide a reference point for further studies. PMID:28255462

  5. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring

    PubMed Central

    Jahan-Mihan, Alireza; Rodriguez, Judith; Christie, Catherine; Sadeghi, Marjan; Zerbe, Tara

    2015-01-01

    The prevalence of metabolic syndrome and obesity has been increasing. Pre-natal environment has been suggested as a factor influencing the risk of metabolic syndrome in adulthood. Both observational and experimental studies showed that maternal diet is a major modifier of the development of regulatory systems in the offspring in utero and post-natally. Both protein content and source in maternal diet influence pre- and early post-natal development. High and low protein dams’ diets have detrimental effect on body weight, blood pressure191 and metabolic and intake regulatory systems in the offspring. Moreover, the role of the source of protein in a nutritionally adequate maternal diet in programming of food intake regulatory system, body weight, glucose metabolism and blood pressure in offspring is studied. However, underlying mechanisms are still elusive. The purpose of this review is to examine the current literature related to the role of proteins in maternal diets in development of characteristics of the metabolic syndrome in offspring. PMID:26561832

  6. The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate

    PubMed Central

    Wei, Qing; Zhang, Yingyi; Schouteden, Clementine; Zhang, Yuxia; Zhang, Qing; Dong, Jinhong; Wonesch, Veronika; Ling, Kun; Dammermann, Alexander; Hu, Jinghua

    2016-01-01

    Transition fibres (TFs), together with the transition zone (TZ), are basal ciliary structures thought to be crucial for cilium biogenesis and function by acting as a ciliary gate to regulate selective protein entry and exit. Here we demonstrate that the centriolar and basal body protein HYLS-1, the C. elegans orthologue of hydrolethalus syndrome protein 1, is required for TF formation, TZ organization and ciliary gating. Loss of HYLS-1 compromises the docking and entry of intraflagellar transport (IFT) particles, ciliary gating for both membrane and soluble proteins, and axoneme assembly. Additional depletion of the TF component DYF-19 in hyls-1 mutants further exacerbates TZ anomalies and completely abrogates ciliogenesis. Our data support an important role for HYLS-1 and TFs in establishment of the ciliary gate and underline the importance of selective protein entry for cilia assembly. PMID:27534274

  7. Multiple proteins of White spot syndrome virus involved in recognition of beta-integrin.

    PubMed

    Zhang, Jing-Yan; Liu, Qing-Hui; Huang, Jie

    2014-06-01

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that beta-integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of beta-integrin with structure proteins of WSSV and motifs involved in WSSV infection was examined. The results showed that envelope proteins VP26, VP31, VP37, VP90 and nucleocapsid protein VP136 interacted with LvInt. RGD-, YGL- and LDV-related peptide functioned as motifs of WSSV proteins binding with beta-integrin. The beta-integrin ligand of RGDT had better blocking effect compared with that of YGL- and LDV-related peptides. In vivo assay indicated that RGD-, LDV- and YGL-related peptides could partially block WSSV infection. These data collectively indicate that multiple proteins were involved in recognition of beta-integrin. Identification of proteins in WSSV that are associated with beta-integrin will assist development of new agents for effective control of the white spot syndrome.

  8. CEP152 is a genome maintenance protein disrupted in Seckel syndrome.

    PubMed

    Kalay, Ersan; Yigit, Gökhan; Aslan, Yakup; Brown, Karen E; Pohl, Esther; Bicknell, Louise S; Kayserili, Hülya; Li, Yun; Tüysüz, Beyhan; Nürnberg, Gudrun; Kiess, Wieland; Koegl, Manfred; Baessmann, Ingelore; Buruk, Kurtulus; Toraman, Bayram; Kayipmaz, Saadettin; Kul, Sibel; Ikbal, Mevlit; Turner, Daniel J; Taylor, Martin S; Aerts, Jan; Scott, Carol; Milstein, Karen; Dollfus, Helene; Wieczorek, Dagmar; Brunner, Han G; Hurles, Matthew; Jackson, Andrew P; Rauch, Anita; Nürnberg, Peter; Karagüzel, Ahmet; Wollnik, Bernd

    2011-01-01

    Functional impairment of DNA damage response pathways leads to increased genomic instability. Here we describe the centrosomal protein CEP152 as a new regulator of genomic integrity and cellular response to DNA damage. Using homozygosity mapping and exome sequencing, we identified CEP152 mutations in Seckel syndrome and showed that impaired CEP152 function leads to accumulation of genomic defects resulting from replicative stress through enhanced activation of ATM signaling and increased H2AX phosphorylation.

  9. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    SciTech Connect

    Lee, Changhee; Yoo, Dongwan . E-mail: dyoo@uoguelph.ca

    2006-11-10

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-{delta}E-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-{delta}E virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-{delta}E virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm.

  10. Structure of the RecQ C-terminal domain of human Bloom syndrome protein.

    PubMed

    Kim, Sun-Yong; Hakoshima, Toshio; Kitano, Ken

    2013-11-21

    Bloom syndrome is a rare genetic disorder characterized by genomic instability and cancer predisposition. The disease is caused by mutations of the Bloom syndrome protein (BLM). Here we report the crystal structure of a RecQ C-terminal (RQC) domain from human BLM. The structure reveals three novel features of BLM RQC which distinguish it from the previous structures of the Werner syndrome protein (WRN) and RECQ1. First, BLM RQC lacks an aromatic residue at the tip of the β-wing, a key element of the RecQ-family helicases used for DNA-strand separation. Second, a BLM-specific insertion between the N-terminal helices exhibits a looping-out structure that extends at right angles to the β-wing. Deletion mutagenesis of this insertion interfered with binding to Holliday junction. Third, the C-terminal region of BLM RQC adopts an extended structure running along the domain surface, which may facilitate the spatial positioning of an HRDC domain in the full-length protein.

  11. Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome.

    PubMed Central

    Smoyer, W E; Gupta, A; Mundel, P; Ballew, J D; Welsh, M J

    1996-01-01

    Although nephrotic syndrome is a very common kidney disease, little is known about the molecular changes occurring within glomerular capillary loops during development of disease. The characteristic histologic change is retraction (effacement) of the distal "foot" processes of glomerular epithelial cells (GEC) which surround the capillary loops. The GEC foot processes are an essential part of the kidney's filtration barrier, and their structure is regulated primarily by actin microfilaments, cytoskeletal proteins present in high concentrations in foot processes. Actin polymerization has been reported to be regulated via phosphorylation of the low molecular weight heat shock protein, hsp27. We localized hsp27 within normal rat GECs using immunofluorescence and immunoelectron microscopy. Induction of nephrotic syndrome and GEC foot process effacement using the puromycin aminonucleoside rat model resulted in significant increases in: (a) renal cortical hsp27 mRNA expression (826 +/- 233%, x +/- SEM, P < 0.01 vs. control); (b) glomerular hsp27 protein expression (87 +/- 2%, P < 0.001 vs. control); and (c) glomerular hsp27 phosphorylation (101 +/- 32%, P < 0.05 vs. control). These findings support the hypothesis that hsp27, by regulating GEC foot process actin polymerization, may be important in maintaining normal foot process structure, and regulating pathophysiologic GEC cytoskeletal changes during development of nephrotic syndrome. PMID:8675679

  12. Protein profiles in Tc1 mice implicate novel pathway perturbations in the Down syndrome brain.

    PubMed

    Ahmed, Md Mahiuddin; Dhanasekaran, A Ranjitha; Tong, Suhong; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Gardiner, Katheleen J

    2013-05-01

    Tc1 mouse model of Down syndrome (DS) is functionally trisomic for ∼120 human chromosome 21 (HSA21) classical protein-coding genes. Tc1 mice display features relevant to the DS phenotype, including abnormalities in learning and memory and synaptic plasticity. To determine the molecular basis for the phenotypic features, the levels of 90 phosphorylation-specific and phosphorylation-independent proteins were measured by Reverse Phase Protein Arrays in hippocampus and cortex, and 64 in cerebellum, of Tc1 mice and littermate controls. Abnormal levels of proteins involved in MAP kinase, mTOR, GSK3B and neuregulin signaling were identified in trisomic mice. In addition, altered correlations among the levels of N-methyl-D-aspartate (NMDA) receptor subunits and the HSA21 proteins amyloid beta (A4) precursor protein (APP) and TIAM1, and between immediate early gene (IEG) proteins and the HSA21 protein superoxide dismutase-1 (SOD1) were found in the hippocampus of Tc1 mice, suggesting altered stoichiometry among these sets of functionally interacting proteins. Protein abnormalities in Tc1 mice were compared with the results of a similar analysis of Ts65Dn mice, a DS mouse model that is trisomic for orthologs of 50 genes trisomic in the Tc1 plus an additional 38 HSA21 orthologs. While there are similarities, abnormalities unique to the Tc1 include increased levels of the S100B calcium-binding protein, mTOR proteins RAPTOR and P70S6, the AMP-kinase catalytic subunit AMPKA, the IEG proteins FBJ murine osteosarcoma viral oncogene homolog (CFOS) and activity-regulated cytoskeleton-associated protein (ARC), and the neuregulin 1 receptor ERBB4. These data identify novel perturbations, relevant to neurological function and to some seen in Alzheimer's disease, that may occur in the DS brain, potentially contributing to phenotypic features and influencing drug responses.

  13. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus.

    PubMed

    Wissink, E H J; Kroese, M V; van Wijk, H A R; Rijsewijk, F A M; Meulenberg, J J M; Rottier, P J M

    2005-10-01

    Virions of porcine reproductive and respiratory syndrome virus (PRRSV) contain six membrane proteins: the major proteins GP5 and M and the minor proteins GP2a, E, GP3, and GP4. Here, we studied the envelope protein requirements for PRRSV particle formation and infectivity using full-length cDNA clones in which the genes encoding the membrane proteins were disrupted by site-directed mutagenesis. By transfection of RNAs transcribed from these cDNAs into BHK-21 cells and analysis of the culture medium using ultracentrifugation, radioimmunoprecipitation, and real-time reverse transcription-PCR, we observed that the production of viral particles is dependent on both major envelope proteins; no particles were released when either the GP5 or the M protein was absent. In contrast, particle production was not dependent on the minor envelope proteins. Remarkably, in the absence of any one of the latter proteins, the incorporation of all other minor envelope proteins was affected, indicating that these proteins interact with each other and are assembled into virions as a multimeric complex. Independent evidence for such complexes was obtained by coexpression of the minor envelope proteins in BHK-21 cells using a Semliki Forest virus expression system. By analyzing the maturation of their N-linked oligosaccharides, we found that the glycoproteins were each retained in the endoplasmic reticulum unless expressed together, in which case they were collectively transported through the Golgi complex to the plasma membrane and were even detected in the extracellular medium. As the PRRSV particles lacking the minor envelope proteins are not infectious, we hypothesize that the virion surface structures formed by these proteins function in viral entry by mediating receptor binding and/or virus-cell fusion.

  14. Expression, purification and crystallization of a novel nonstructural protein VP9 from white spot syndrome virus

    SciTech Connect

    Liu, Yang; Sivaraman, J.; Hew, Choy L.

    2006-08-01

    The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. Native protein was purified and crystallized by vapour diffusion. The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. To facilitate purification, a cleavable His{sub 6} tag was introduced at the N-terminus. The native protein was purified and crystallized by vapour diffusion against mother liquor containing 2 M sodium acetate, 100 mM MES pH 6.3, 25 mM cadmium sulfate and 3% glycerol. Crystals were obtained within 7 d and diffracted to 2.2 Å; they belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.13, b = 78.21, c = 78.98 Å and four molecules in the asymmetric unit. The selenomethionine-labelled protein produced isomorphous crystals that diffracted to approximately 3.3 Å.

  15. Characterization and interactome study of white spot syndrome virus envelope protein VP11.

    PubMed

    Liu, Wang-Jing; Shiung, Hui-Jui; Lo, Chu-Fang; Leu, Jiann-Horng; Lai, Ying-Jang; Lee, Tai-Lin; Huang, Wei-Tung; Kou, Guang-Hsiung; Chang, Yun-Shiang

    2014-01-01

    White spot syndrome virus (WSSV) is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570), and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.

  16. Construction and application of a protein interaction map for white spot syndrome virus (WSSV).

    PubMed

    Sangsuriya, Pakkakul; Huang, Jiun-Yan; Chu, Yu-Fei; Phiwsaiya, Kornsunee; Leekitcharoenphon, Pimlapas; Meemetta, Watcharachai; Senapin, Saengchan; Huang, Wei-Pang; Withyachumnarnkul, Boonsirm; Flegel, Timothy W; Lo, Chu-Fang

    2014-01-01

    White spot syndrome virus (WSSV) is currently the most serious global threat for cultured shrimp production. Although its large, double-stranded DNA genome has been completely characterized, most putative protein functions remain obscure. To provide more informative knowledge about this virus, a proteomic-scale network of WSSV-WSSV protein interactions was carried out using a comprehensive yeast two-hybrid analysis. An array of yeast transformants containing each WSSV open reading frame fused with GAL4 DNA binding domain and GAL4 activation domain was constructed yielding 187 bait and 182 prey constructs, respectively. On screening of ∼28,000 pairwise combinations, 710 interactions were obtained from 143 baits. An independent coimmunoprecipitation assay (co-IP) was performed to validate the selected protein interaction pairs identified from the yeast two-hybrid approach. The program Cytoscape was employed to create a WSSV protein-protein interaction (PPI) network. The topology of the WSSV PPI network was based on the Barabási-Albert model and consisted of a scale-free network that resembled other established viral protein interaction networks. Using the RNA interference approach, knocking down either of two candidate hub proteins gave shrimp more protection against WSSV than knocking down a nonhub gene. The WSSV protein interaction map established in this study provides novel guidance for further studies on shrimp viral pathogenesis, host-viral protein interaction and potential targets for therapeutic and preventative antiviral strategies in shrimp aquaculture.

  17. DNA condensates organized by the capsid protein VP15 in White Spot Syndrome Virus.

    PubMed

    Liu, Yingjie; Wu, Jinlu; Chen, Hu; Hew, Choy Leong; Yan, Jie

    2010-12-20

    The White Spot Syndrome Virus (WSSV) has a large circular double-stranded DNA genome of around 300kb and it replicates in the nucleus of the host cells. The machinery of how the viral DNA is packaged has been remained unclear. VP15, a highly basic protein, is one of the major capsid proteins found in the virus. Previously, it was shown to be a DNA binding protein and was hypothesized to participate in the viral DNA packaging process. Using Atomic Force Microscopy imaging, we show that the viral DNA is associated with a (or more) capsid proteins. The organized viral DNA qualitatively resembles the conformations of VP15 induced DNA condensates in vitro. Furthermore, single-DNA manipulation experiments revealed that VP15 is able to condense single DNA against forces of a few pico Newtons. Our results suggest that VP15 may aid in the viral DNA packaging process by directly condensing DNA.

  18. Transformation of 2,4,6-trimethylphenol and furfuryl alcohol, photosensitised by Aldrich humic acids subject to different filtration procedures.

    PubMed

    Minella, Marco; Merlo, Maria Paola; Maurino, Valter; Minero, Claudio; Vione, Davide

    2013-01-01

    Suspended particles in a system made up of Aldrich humic acids (HAs) in water account for about 13% of the total HA mass, 10-11% of the organic carbon and 9-11% of radiation extinction in the UVA region. Extinction would be made up of radiation scattering (less than one third) and absorption (over two thirds). The contribution of particles to the degradation rates of trimethylphenol and furfuryl alcohol (FFA) (probes of triplet states and (1)O(2), respectively) was lower than 10% and possibly negligible. The results indicate that triplet states and (1)O(2) occurring in the solution bulk are mostly produced by the dissolved HA fraction. Experimental data would not exclude production of (1)O(2) in particle hydrophobic cores, unavailable for reaction with FFA. However, the limited to negligible particle fluorescence places an upper limit to particle core photoactivity.

  19. Identification of defects in the fibrillin gene and protein in individuals with the Marfan syndrome and related disorders.

    PubMed Central

    Milewicz, D M

    1994-01-01

    The Marfan syndrome is an autosomal dominant disorder with pleiotropic manifestations that involve the cardiovascular, ocular, and skeletal systems. Through a number of investigational approaches, the gene encoding for fibrillin, the FBN1 gene on chromosome 15, has been identified as the defective gene causing the Marfan syndrome. Fibrillin is the large glycoprotein with a repetitive domain structure and is a major protein component of microfibrils, a fibrillar system closely associated with elastin in connective tissue. Mutational analysis of defects in the FBN1 gene in patients with the Marfan syndrome has revealed that most mutations are private or unique in an affected individual or family. Analysis of fibrillin protein or gene defects in individuals with related phenotypes has revealed that a perinatal lethal syndrome, termed neonatal Marfan syndrome, is due to FBN1 gene mutations. In addition, fibroblast cell strains from a subset of patients with idiopathic scoliosis have fibrillin protein defects. Last, fibroblasts from calves affected with bovine Marfan syndrome display defects in the fibrillin protein. These studies have wide-ranging implications in the diagnosis, treatment, and prevention of Marfan syndrome and related disorders. Images PMID:8180508

  20. Protein-Based Classifier to Predict Conversion from Clinically Isolated Syndrome to Multiple Sclerosis.

    PubMed

    Borràs, Eva; Cantó, Ester; Choi, Meena; Maria Villar, Luisa; Álvarez-Cermeño, José Carlos; Chiva, Cristina; Montalban, Xavier; Vitek, Olga; Comabella, Manuel; Sabidó, Eduard

    2016-01-01

    Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome, but not all patients with this syndrome develop multiple sclerosis over time, and currently, there is no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop clinically defined multiple sclerosis. Here, we took advantage of the capabilities of targeted mass spectrometry to establish a diagnostic molecular classifier with high sensitivity and specificity able to differentiate between clinically isolated syndrome patients with a high and a low risk of developing multiple sclerosis. Based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase in cerebrospinal fluid, we built a statistical model able to assign to each patient a precise probability of conversion to clinically defined multiple sclerosis. Our results are of special relevance for patients affected by multiple sclerosis as early treatment can prevent brain damage and slow down the disease progression.

  1. Protein-Based Classifier to Predict Conversion from Clinically Isolated Syndrome to Multiple Sclerosis*

    PubMed Central

    Borràs, Eva; Cantó, Ester; Choi, Meena; Maria Villar, Luisa; Álvarez-Cermeño, José Carlos; Chiva, Cristina; Montalban, Xavier; Vitek, Olga; Comabella, Manuel; Sabidó, Eduard

    2016-01-01

    Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome, but not all patients with this syndrome develop multiple sclerosis over time, and currently, there is no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop clinically defined multiple sclerosis. Here, we took advantage of the capabilities of targeted mass spectrometry to establish a diagnostic molecular classifier with high sensitivity and specificity able to differentiate between clinically isolated syndrome patients with a high and a low risk of developing multiple sclerosis. Based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase in cerebrospinal fluid, we built a statistical model able to assign to each patient a precise probability of conversion to clinically defined multiple sclerosis. Our results are of special relevance for patients affected by multiple sclerosis as early treatment can prevent brain damage and slow down the disease progression. PMID:26552840

  2. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome.

    PubMed

    Nieto-Torres, Jose L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2015-11-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1β driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein-lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1β overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism.

  3. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    PubMed

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1.

  4. Strumpellin and Spartin, Hereditary Spastic Paraplegia Proteins, are Binding Partners

    PubMed Central

    Zhao, Jiali; Hedera, Peter

    2015-01-01

    Hereditary spastic paraplegia (HSP) is one of the most heterogeneous neurodegenerative diseases with more than 50 identified genes causing a relatively stereotypical phenotypic presentation. Recent studies of HSP pathogenesis have suggested the existence of shared biochemical pathways that are crucial for axonal maintenance and degeneration. We explored possible interactions of several proteins associated with this condition. Here we report interactions of endogenous and overexpressed strumpellin with another HSP-associated protein, spartin. This biochemical interaction does not appear to be a part of the Wiskott–Aldrich syndrome protein and Scar homologue (WASH) complex because spartin is not co-immunoprecipitated with WASH1 protein. The spartin–strumpellin association does not require the presence of the microtubule interacting and trafficking domain of spartin. Over-expression of mutant forms of strumpellin with the introduced HSP-causing mutations does not alter the colocalization of these two proteins. Knockdown of strumpellin in cultured cortical rat neurons interferes with development of neuronal branching and results in reduced expression of endogenous spartin. Proteosomal inhibition stabilized the levels of spartin and WASH1 proteins, supporting increased spartin degradation in the absence of strumpellin. PMID:25987849

  5. Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A.

    PubMed

    Ruderman, Neil B; Saha, Asish K

    2006-02-01

    The metabolic syndrome can be defined as a state of metabolic dysregulation characterized by insulin resistance, central obesity, and a predisposition to type 2 diabetes, dyslipidemia, premature atherosclerosis, and other diseases. An increasing body of evidence has linked the metabolic syndrome to abnormalities in lipid metabolism that ultimately lead to cellular dysfunction. We review here the hypothesis that, in many instances, the cause of these lipid abnormalities could be a dysregulation of the adenosine monophosphate-activated protein kinase (AMPK)/malonyl coenzyme A (CoA) fuel-sensing and signaling mechanism. Such dysregulation could be reflected by isolated increases in malonyl CoA or by concurrent changes in malonyl CoA and AMPK, both of which would alter intracellular fatty acid partitioning. The possibility is also raised that pharmacological agents and other factors that activate AMPK and/or decrease malonyl CoA could be therapeutic targets.

  6. The role of white spot syndrome virus (WSSV) VP466 protein in shrimp antiviral phagocytosis.

    PubMed

    Ye, Ting; Zong, Rongrong; Zhang, Xiaobo

    2012-08-01

    Widespread evidence indicates that the structural proteins of virus play very important roles in virus-host interactions. However, the effect of viral proteins on host immunity has not been addressed. Our previous studies revealed that the host shrimp Rab6 (termed as PjRab previously), tropomyosin, β-actin and the white spot syndrome virus (WSSV) envelope protein VP466 formed a complex. In this study, the VP466 protein was shown to be able to bind host Rab6 protein and increase its GTPase activity in vivo and vitro. Thus, VP466 could function as a GTPase-activating protein (GAP) of Rab6. In the VP466-Rab-actin pathway, the increase of the Rab6 activity induced rearrangements of the actin cytoskeleton, resulting in the formation of actin stress fibers which promoted the phagocytosis against virus. Therefore our findings revealed that a viral protein could be employed by host to initiate the host immunity, representing a novel molecular mechanism in the virus-host interaction. Our study would help to better understand the molecular events in immune response against virus infection in invertebrates.

  7. Expression, purification and crystallization of a novel nonstructural protein VP9 from white spot syndrome virus.

    SciTech Connect

    Liu,Y.; Sivaraman, J.; Hew, C.

    2006-01-01

    The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. To facilitate purification, a cleavable His{sub 6} tag was introduced at the N-terminus. The native protein was purified and crystallized by vapor diffusion against mother liquor containing 2 M sodium acetate, 100 mM MES pH 6.3, 25 mM cadmium sulfate and 3% glycerol. Crystals were obtained within 7 d and diffracted to 2.2 Angstroms; they belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.13, b = 78.21, c = 78.98 Angstroms and four molecules in the asymmetric unit. The selenomethionine-labeled protein produced isomorphous crystals that diffracted to approximately 3.3 Angstroms.

  8. Envelope Proteins of White Spot Syndrome Virus (WSSV) Interact with Litopenaeus vannamei Peritrophin-Like Protein (LvPT).

    PubMed

    Xie, Shijun; Zhang, Xiaojun; Zhang, Jiquan; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp cultures. The interactions between viral proteins and their receptors on the surface of cells in a frontier target tissue are crucial for triggering an infection. In this study, a yeast two-hybrid (Y2H) library was constructed using cDNA obtained from the stomach and gut of Litopenaeus vannamei, to ascertain the role of envelope proteins in WSSV infection. For this purpose, VP37 was used as the bait in the Y2H library screening. Forty positive clones were detected after screening. The positive clones were analyzed and discriminated, and two clones belonging to the peritrophin family were subsequently confirmed as genuine positive clones. Sequence analysis revealed that both clones could be considered as the same gene, LV-peritrophin (LvPT). Co-immunoprecipitation confirmed the interaction between LvPT and VP37. Further studies in the Y2H system revealed that LvPT could also interact with other WSSV envelope proteins such as VP32, VP38A, VP39B, and VP41A. The distribution of LvPT in tissues revealed that LvPT was mainly expressed in the stomach than in other tissues. In addition, LvPT was found to be a secretory protein, and its chitin-binding ability was also confirmed.

  9. The Troyer syndrome (SPG20) protein spartin interacts with Eps15

    SciTech Connect

    Bakowska, Joanna C.; Jenkins, Russell; Pendleton, James; Blackstone, Craig . E-mail: blackstc@ninds.nih.gov

    2005-09-09

    The hereditary spastic paraplegias comprise a group of inherited neurological disorders in which the primary manifestation is spastic weakness of the lower extremities. Troyer syndrome is an autosomal recessive form of spastic paraplegia caused by a frameshift mutation in the spartin (SPG20) gene. Currently, neither the localization nor the functions of the spartin protein are known. In this study, we generated anti-spartin antibodies and found that spartin is both cytosolic and membrane-associated. Using a yeast two-hybrid approach, we screened an adult human brain library for binding partners of spartin. We identified Eps15, a protein known to be involved in endocytosis and the control of cell proliferation. This interaction was confirmed by fusion protein 'pull-down' experiments as well as a cellular redistribution assay. Our results suggest that spartin might be involved in endocytosis, vesicle trafficking, or mitogenic activity, and that impairment in one of these processes may underlie the long axonopathy in patients with Troyer syndrome.

  10. Increased fasting plasma acylation-stimulating protein concentrations in nephrotic syndrome.

    PubMed

    Ozata, Metin; Oktenli, Cagatay; Gulec, Mustafa; Ozgurtas, Taner; Bulucu, Fatih; Caglar, Kayser; Bingol, Necati; Vural, Abdulgaffar; Ozdemir, I Caglayan

    2002-02-01

    Acylation-stimulating protein (ASP) is an adipocyte-derived protein that has recently been suggested to play an important role in the regulation of lipoprotein metabolism and triglyceride (TG) storage. ASP also appears to have a role in the regulation of energy balance. In addition to its role as a hormonal regulator of body weight and energy expenditure, leptin is now implicated as a regulatory molecule in lipid metabolism. However, little is known about the alterations in fasting plasma ASP and leptin concentrations in the nephrotic syndrome. As hyperlipidemia is one of the most striking manifestations of the nephrotic syndrome, we have investigated fasting plasma ASP and leptin levels and their relation to lipid levels in this syndrome. Twenty-five patients with untreated nephrotic syndrome and 25 age-, sex-, and body mass index-matched healthy controls were included in the study. Fasting plasma lipoproteins, TG, total cholesterol, lipoprotein(a), apolipoprotein AI (apoAI), apoB, urinary protein, plasma albumin, third component of complement (C3), ASP, and leptin levels were measured in both groups. Total cholesterol, TG, low and very low density lipoproteins, lipoprotein(a), apoB, and urinary protein levels were increased in the patient group, whereas plasma albumin, high density lipoprotein cholesterol, and apoAI levels were decreased compared with those in the control group (P < 0.001). Plasma ASP levels were significantly higher in the patient group compared with the control subjects (133.72 +/- 65.14 vs. 29.93 +/- 12.68 nmol/liter; P < 0.001), whereas leptin (2.69 +/- 2.06 vs. 3.99 +/- 2.99 ng/ml; P = 0.118) and C3 (1.01 +/- 0.25 vs. 1.06 +/- 0.23 g/liter; P = 0.662) levels were not significantly different between the two groups. Plasma leptin levels were correlated with body mass index in both nephrotic patients (r(s) = 0.86; P < 0.001) and controls (r(s) = 0.98; P < 0.001), but were not correlated with the other parameters. Fasting ASP concentrations

  11. Severe acute respiratory syndrome (SARS) S protein production in plants: Development of recombinant vaccine

    PubMed Central

    Pogrebnyak, Natalia; Golovkin, Maxim; Andrianov, Vyacheslav; Spitsin, Sergei; Smirnov, Yuriy; Egolf, Richard; Koprowski, Hilary

    2005-01-01

    In view of a recent spread of severe acute respiratory syndrome (SARS), there is a high demand for production of a vaccine to prevent this disease. Recent studies indicate that SARS-coronavirus (CoV) spike protein (S protein) and its truncated fragments are considered the best candidates for generation of the recombinant vaccine. Toward the development of a safe, effective, and inexpensive vaccine candidate, we have expressed the N-terminal fragment of SARS-CoV S protein (S1) in tomato and low-nicotine tobacco plants. Incorporation of the S1 fragment into plant genomes as well as its transcription was confirmed by PCR and RT-PCR analyses. High levels of expression of recombinant S1 protein were observed in several transgenic lines by Western blot analysis using specific antibodies. Plant-derived antigen was evaluated to induce the systemic and mucosal immune responses in mice. Mice showed significantly increased levels of SARS-CoV-specific IgA after oral ingestion of tomato fruits expressing S1 protein. Sera of mice parenterally primed with tobacco-derived S1 protein revealed the presence of SARS-CoV-specific IgG as detected by Western blot and ELISA analysis. PMID:15956182

  12. Molecular pathogenesis of Spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins

    PubMed Central

    Bin, Bum-Ho; Hojyo, Shintaro; Hosaka, Toshiaki; Bhin, Jinhyuk; Kano, Hiroki; Miyai, Tomohiro; Ikeda, Mariko; Kimura-Someya, Tomomi; Shirouzu, Mikako; Cho, Eun-Gyung; Fukue, Kazuhisa; Kambe, Taiho; Ohashi, Wakana; Kim, Kyu-Han; Seo, Juyeon; Choi, Dong-Hwa; Nam, Yeon-Ju; Hwang, Daehee; Fukunaka, Ayako; Fujitani, Yoshio; Yokoyama, Shigeyuki; Superti-Furga, Andrea; Ikegawa, Shiro; Lee, Tae Ryong; Fukada, Toshiyuki

    2014-01-01

    The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13G64D, in which Gly at amino acid position 64 is replaced by Asp, and ZIP13ΔFLA, which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13G64D and ZIP13ΔFLA protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS. PMID:25007800

  13. MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function

    PubMed Central

    Grill, Christine; Bergsteinsdóttir, Kristín; Ögmundsdóttir, Margrét H.; Pogenberg, Vivian; Schepsky, Alexander; Wilmanns, Matthias; Pingault, Veronique; Steingrímsson, Eiríkur

    2013-01-01

    The basic-helix–loop–helix-leucine zipper (bHLHZip) protein MITF (microphthalmia-associated transcription factor) is a master regulator of melanocyte development. Mutations in the MITF have been found in patients with the dominantly inherited hypopigmentation and deafness syndromes Waardenburg syndrome type 2A (WS2A) and Tietz syndrome (TS). Additionally, both somatic and germline mutations have been found in MITF in melanoma patients. Here, we characterize the DNA-binding and transcription activation properties of 24 MITF mutations found in WS2A, TS and melanoma patients. We show that most of the WS2A and TS mutations fail to bind DNA and activate expression from melanocyte-specific promoters. Some of the mutations, especially R203K and S298P, exhibit normal activity and may represent neutral variants. Mutations found in melanomas showed normal DNA-binding and minor variations in transcription activation properties; some showed increased potential to form colonies. Our results provide molecular insights into how mutations in a single gene can lead to such different phenotypes. PMID:23787126

  14. 5'-adenosine monophosphate-activated protein kinase and the metabolic syndrome.

    PubMed

    Mor, Vijay; Unnikrishnan, M K

    2011-09-01

    Lifestyle changes such as physical inactivity combined with calorie-rich, low-fibre diets have triggered an explosive surge in metabolic syndrome, outlined as a cluster of heart attack risk factors such as insulin resistance, raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. By acting as a master-switch of energy homeostasis and associated pathophysiological phenomena, 5'-adenosine monophosphate-activated protein kinase (AMPK) appears to orchestrate the adaptive physiology of energy deficit, suggesting that the sedentary modern human could be suffering from chronic suboptimal AMPK activation. Addressing individual targets with potent ligands with high specificity may be inappropriate (it has not yielded any molecule superior to the sixty year old metformin) because this strategy cannot address a cluster of interrelated pathologies. However, spices, dietary supplements and nutraceuticals attenuate the multiple symptoms of metabolic syndrome in a collective and perhaps more holistic fashion with fewer adverse events. Natural selection could have favoured races that developed a taste for spices and dietary supplements, most of which are not only antioxidants but also activators of AMPK. The review will outline the various biochemical mechanisms and pathophysiological consequences of AMPK activation involving the cluster of symptoms that embrace metabolic syndrome and beyond. Recent advances that integrate energy homeostasis with a number of overarching metabolic pathways and physiological phenomena, including inflammatory conditions, cell growth and development, malignancy, life span, and even extending into environmental millieu, as in obesity mediated by gut microflora and others will also be outlined.

  15. Crystal Structure of Major Envelope Protein VP24 from White Spot Syndrome Virus

    PubMed Central

    Sun, Lifang; Su, Yintao; Zhao, Yanhe; Fu, Zheng-qing; Wu, Yunkun

    2016-01-01

    White spot syndrome virus (WSSV) is one of the major and most serious pathogen in the shrimp industry. As one of the most abundant envelope protein, VP24 acts as a core protein interacting with other structure proteins and plays an important role in virus assembly and infection. Here, we have presented the crystal structure of VP24 from WSSV. In the structure, VP24 consists of a nine-stranded β–barrel fold with mostly antiparallel β-strands, and the loops extending out the β–barrel at both N-terminus and C-terminus, which is distinct to those of the other two major envelope proteins VP28 and VP26. Structural comparison of VP24 with VP26 and VP28 reveals opposite electrostatic surface potential properties of them. These structural differences could provide insight into their differential functional mechanisms and roles for virus assembly and infection. Moreover, the structure reveals a trimeric assembly, suggesting a likely natural conformation of VP24 in viral envelope. Therefore, in addition to confirming the evolutionary relationship among the three abundant envelope proteins of WSSV, our structural studies also facilitate a better understanding of the molecular mechanism underlying special roles of VP24 in WSSV assembly and infection. PMID:27572278

  16. Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4.

    PubMed

    Xu, Xiaohua; Liu, Yilun

    2009-03-04

    Human RECQ helicases have been linked to distinct clinical diseases with increased cancer rates and premature ageing. All RECQ proteins, except RECQ4, have been shown to be functional helicases. Mutations in RECQ4 lead to Rothmund-Thomson syndrome (RTS), and mouse models reveal that the conserved helicase motifs are required for avoidance of RTS. Furthermore, the amino (N) terminus of RECQ4 shares homology with yeast DNA replication initiation factor, Sld2, and is vital for embryonic development. Here, in contrast to previous reports, we show that RECQ4 exhibits DNA helicase activity. Importantly, two distinct regions of the protein, the conserved helicase motifs and the Sld2-like N-terminal domain, each independently promote ATP-dependent DNA unwinding. Taken together, our data provide the first biochemical clues underlying the molecular function of RECQ4 in DNA replication and genome maintenance.

  17. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics

    PubMed Central

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients’ saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects (p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity. PMID:28326926

  18. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    PubMed

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  19. Solution structure of the RecQ C-terminal domain of human Bloom syndrome protein.

    PubMed

    Park, Chin-Ju; Ko, Junsang; Ryu, Kyoung-Seok; Choi, Byong-Seok

    2014-02-01

    RecQ C-terminal (RQC) domain is known as the main DNA binding module of RecQ helicases such as Bloom syndrome protein (BLM) and Werner syndrome protein (WRN) that recognizes various DNA structures. Even though BLM is able to resolve various DNA structures similarly to WRN, BLM has different binding preferences for DNA substrates from WRN. In this study, we determined the solution structure of the RQC domain of human BLM. The structure shares the common winged-helix motif with other RQC domains. However, half of the N-terminal has unstructured regions (α1-α2 loop and α3 region), and the aromatic side chain on the top of the β-hairpin, which is important for DNA duplex strand separation in other RQC domains, is substituted with a negatively charged residue (D1165) followed by the polar residue (Q1166). The structurally distinctive features of the RQC domain of human BLM suggest that the DNA binding modes of the BLM RQC domain may be different from those of other RQC domains.

  20. Fractionation of Suwannee River fulvic acid and aldrich humic acid on alpha-Al2O3: spectroscopic evidence.

    PubMed

    Claret, Francis; Schäfer, Thorsten; Brevet, Julien; Reiller, Pascal E

    2008-12-01

    Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on alpha-Al2O3 at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the nonsorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of alpha-Al2O3, seems to indicate a higher fractionation for PAHA. C(1s) near-edge X-ray absorption fine structure spectroscopy (NEXAFS) confirmed this trend and points to a decrease in phenolic moieties in the supernatant and to an eventual increase in phenolic moieties on the surface. Time-resolved luminescence spectroscopy (TRLS) of Eu(III) as luminescent probe showed a decrease in the ratio between the (5)D0-->(7)F2 and (5)D0-->(7)F1 transitions for the fractionated organic matter (OM) that is thought to be associated with a lower energy transfer from the OM to Eu(III) due to the loss of polar aromatics. These modifications in the supernatant are a hint for the modification of sorbed humic extracts on the surface.

  1. Influence of Aldrich humic acid and metal precipitates on survivorship of mayflies (Atalophlebia spp.) to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-03-01

    Humic substances (HS) have been shown to decrease the toxicity of environmental stressors, but knowledge of their ability to influence the toxicity of multiple stressors such as metal mixtures and low pH associated with acid mine drainage (AMD) is still limited. The present study investigated the ability of HS to decrease toxicity of AMD to mayflies (Atalophlebia spp.). The AMD was collected from the Mount Morgan (Mount Morgan, Queensland, Australia) open pit. Mayflies were exposed to concentrations of AMD at 0%, 1%, 2%, 3%, and 4% in the presence of 0 mg/L, 10 mg/L, and 20 mg/L Aldrich humic acid (AHA). A U-shaped response was noted in all AHA treatments, with higher rates of mortality recorded in the 2% and 3% dilutions compared with 4%. This result was linked with increased precipitates in the lower concentrations. A follow-up trial showed significantly higher concentrations of precipitates in the 2% and 3% AMD dilutions in the 0 mg/L AHA treatment and higher precipitates in the 2% AMD, 10 mg/L and 20 mg/L AHA, treatments. Humic substances were shown to significantly increase survival of mayflies exposed to AMD by up to 50% in the 20 mg/L AHA treatment. Humic substances may have led to increased survival after AMD exposure through its ability to influence animal physiology and complex heavy metals. These results are valuable in understanding the ability of HS to influence the toxicity of multiple stressors.

  2. Fractionation of Suwannee River Fulvic Acid and Aldrich Humic Acid on α-Al2O3: Spectroscopic Evidence

    SciTech Connect

    Claret, F.; Schäfer, T; Brevet, J; Reiller, P

    2008-01-01

    Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on a-Al2O3 at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the nonsorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of a-Al2O3, seems to indicate a higher fractionation for PAHA. C(1s) near-edge X-ray absorption fine structure spectroscopy (NEXAFS) confirmed this trend and points to a decrease in phenolic moieties in the supernatant and to an eventual increase in phenolic moieties on the surface. Time-resolved luminescence spectroscopy (TRLS) of Eu(III) as luminescent probe showed a decrease in the ratio between the 5D0?7F2 and 5D0?7F1 transitions for the fractionated organic matter (OM) that is thought to be associated with a lower energy transfer from the OM to Eu(III) due to the loss of polar aromatics. These modifications in the supernatant are a hint for the modification of sorbed humic extracts on the surface.

  3. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    PubMed Central

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  4. Elements that Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome

    PubMed Central

    Iyama, Teruaki; Wilson, David M.

    2015-01-01

    Cockayne syndrome (CS) is a premature aging disorder characterized by developmental defects, multisystem progressive degeneration, and sensitivity to ultraviolet light. CS is divided into two primary complementation groups, A and B, with the CSA and CSB proteins presumably functioning in DNA repair and transcription. Using laser microirradiation and confocal microscopy, we characterized the nature and regulation of the CS protein response to oxidative DNA damage, double-strand breaks (DSBs), angelicin monoadducts, and trioxsalen interstrand crosslinks (ICLs). Our data indicate that CSB recruitment is influenced by the type of DNA damage, and is most rapid and robust as follows: ICLs > DSBs > monoadducts > oxidative lesions. Transcription inhibition reduced accumulation of CSB at sites of monoadducts and ICLs, but did not affect recruitment to (although slightly affected retention at) oxidative damage. Inhibition of histone deacetylation altered the dynamics of CSB assembly, suggesting a role for chromatin status in the response to DNA damage, whereas the proteasome inhibitor MG132 had no effect. The C-terminus of CSB, and in particular its ubiquitin-binding domain, were critical to recruitment, while the N-terminus and a functional ATPase domain played a minor role at best in facilitating protein accumulation. Although the absence of CSA had no effect on CSB recruitment, CSA itself localized at sites of ICLs, DSBs and monoadducts, but not oxidative lesions. Our results reveal molecular components of the CS protein response and point to a major involvement of complex lesions in the pathology of CS. PMID:26616585

  5. Lipid and protein oxidation in female patients with chronic fatigue syndrome

    PubMed Central

    Tomic, Slavica; Brkic, Snezana; Mikic, Aleksandra Novakov

    2012-01-01

    Introduction Chronic fatigue syndrome (CFS) is a widely recognized problem, characterized by prolonged, debilitating fatigue and a characteristic group of accompanying symptoms, that occurs four times more frequently in women than in men. The aim of the study was to determine the existence of oxidative stress and its possible consequences in female patients with CFS. Material and methods Twenty-four women aged 15-45 who fulfilled the diagnostic criteria for CFS with no comorbidities were recruited and were age matched to a control group of 19 healthy women. After conducting the routine laboratory tests, levels of the lipid oxidation product malondialdehyde (MDA) and protein oxidation protein carbonyl (CO) were determined. Results The CFS group had higher levels of triglycerides (p = 0.03), MDA (p = 0.03) and CO (p = 0.002) and lower levels of HDL cholesterol (p = 0.001) than the control group. There were no significant differences in the levels of total protein, total cholesterol or LDL cholesterol. Conclusions The CFS group had an unfavorable lipid profile and signs of oxidative stress induced damage to lipids and proteins. These results might be indicative of early proatherogenic processes in this group of patients who are otherwise at low risk for atherosclerosis. Antioxidant treatment and life style changes are indicated for women with CFS, as well as closer observation in order to assess the degree of atherosclerosis. PMID:23185200

  6. Envelope protein VP24 from White spot syndrome virus: expression, purification and crystallization.

    PubMed

    Sun, Lifang; Wu, Yunkun

    2016-08-01

    White spot syndrome virus (WSSV) is a major shrimp pathogen known to infect penaeid shrimp and other crustaceans. VP24 is one of the major envelope proteins of WSSV. In order to facilitate purification, crystallization and structure determination, the predicted N-terminal transmembrane region of approximately 26 amino acids was truncated from VP24 and several mutants were prepared to increase the proportion of selenomethionine (SeMet) residues for subsequent structural determination using the SAD method. Truncated VP24, its mutants and the corresponding SeMet-labelled proteins were purified, and the native and SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of VP24 were obtained using a reservoir consisting of 0.1 M Tris-HCl pH 8.5, 2.75 M ammonium acetate with a drop volume ratio of two parts protein solution to one part reservoir solution. Notably, ATP was added as a critical additive to the drop with a final concentration of 10 mM. Crystals of SeMet-labelled VP24 mutant diffracted to 3.0 Å resolution and those of the native diffracted to 2.4 Å resolution; the crystals belonged to space group I213, with unit-cell parameters a = b = c = 140 Å.

  7. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

    PubMed Central

    Puffenberger, Erik G.; Baple, Emma; Harding, Brian; Crino, Peter; Fogo, Agnes B.; Wenger, Olivia; Xin, Baozhong; Koehler, Alanna E.; McGlincy, Madeleine H.; Provencher, Margaret M.; Smith, Jeffrey D.; Tran, Linh; Al Turki, Saeed; Chioza, Barry A.; Cross, Harold; Harlalka, Gaurav V.; Hurles, Matthew E.; Maroofian, Reza; Heaps, Adam D.; Morton, Mary C.; Stempak, Lisa; Hildebrandt, Friedhelm; Sadowski, Carolin E.; Zaritsky, Joshua; Campellone, Kenneth; Morton, D. Holmes; Wang, Heng; Crosby, Andrew; Strauss, Kevin A.

    2015-01-01

    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology. PMID:26070982

  8. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    SciTech Connect

    Tang, Xuhua; Hew, Choy Leong

    2007-07-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.

  9. Temporal shift in methyl-CpG binding protein 2 expression in a mouse model of Rett syndrome.

    PubMed

    Metcalf, B M; Mullaney, B C; Johnston, M V; Blue, M E

    2006-01-01

    Rett syndrome is an X-linked neurodevelopmental disorder caused by mutations in methyl-CpG binding protein 2. Females with identical mutations in the methyl-CpG binding protein 2 gene can display varying severity of symptoms, suggesting that other factors such as X-chromosome inactivation affect phenotypic expression in Rett syndrome. Although X-chromosome inactivation is random and balanced in the blood and brain of the majority of girls with classic Rett syndrome, skewing in the ratio of expression of the mutant methyl-CpG binding protein 2-X to the wildtype-X affects the severity of symptoms. In this study, the pattern of immunostaining for methyl-CpG binding protein 2 was compared with that of neuronal nuclei specific protein, a pan-neuronal marker, to assess X-chromosome inactivation in a Rett syndrome mouse model. The number of cortical neurons and cortical volume were assessed by unbiased stereological measurements in younger adult (7-9 week old) wildtype (wildtype/methyl-CpG binding protein 2+/+), female heterozygous (heterozygous/methyl-CpG binding protein 2+/-), and null (methyl-CpG binding protein 2-/y) male mice and in older adult (24-95 week old) wildtype and heterozygous mice. The results showed that the number of neuronal nuclei specific protein-positive cells and cortical volume did not differ by genotype or age. However, younger adult heterozygous mice had significantly fewer methyl-CpG binding protein 2 cells and the pattern of methyl-CpG binding protein 2 staining was less distinct than in younger adult wildtype mice. However, in older adult heterozygous mice, the number and pattern of methyl-CpG binding protein 2-expressing neurons were similar to the wildtype. The ratio of methyl-CpG binding protein 2 to neuronal nuclei specific protein-stained neurons, a potential measure of X-chromosome inactivation, was close to 50% in the younger adult heterozygous mice, but nearly 70% in the older adult heterozygous mice. These results suggest that X

  10. Porcine Reproductive and Respiratory Syndrome Virus Replicase - Isoforms of Nonstructural Protein 2 and Interaction with Heat Shock 70kDa Protein 5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nsp2 replicase protein of porcine reproductive and respiratory syndrome virus (PRRSV), when expressed independently, was recently demonstrated to be processed from its precursor by the PL2 protease at or near the G**1196|G**1197 dipeptide in transfected CHO cells. The proteolytic cleavage of nsp...

  11. The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients

    PubMed Central

    Palacio, J R; Iborra, A; Ulcova-Gallova, Z; Badia, R; Martínez, P

    2006-01-01

    Polycystic ovary syndrome (PCOS) affects 5–10% of women of reproductive age. Free radicals, as a product of oxidative stress, impair cells and tissue properties related to human fertility. These free radicals, together with the oxidized molecules, may have a cytotoxic or deleterious effects on sperm and oocytes, on early embryo development or on the endometrium. Aldehyde-modified proteins are highly immunogenic and circulating autoantibodies to new epitopes, such as malondialdehyde (MDA), may affect the reproductive system. Autoantibodies or elevated reactive oxygen species (ROS) in serum are often associated with inflammatory response. The purpose of this work is to investigate whether PCOS women show increased levels of oxidized proteins (protein–MDA) and anti-endometrial antibodies (AEA) in their sera, compared with control patients, and to determine whether AEA specificity is related to oxidized protein derivatives. Sera from 31 women [10 patients with PCOS (PCOS group) and 21 women with male factor of infertility (control group)] were chosen from patients attending for infertility. Anti-endometrial antibodies were determined by enzyme-linked immunosorbent assay (ELISA) with an endometrial cell line (RL-95). Antibodies against MDA modified human serum albumin (HSA–MDA) were also determined by ELISA. Oxidized proteins (protein–MDA) in serum were determined by a colorimetric assay. Patients with PCOS have significantly higher levels of AEA and anti-HSA–MDA, as well as oxidized proteins (protein–MDA) in serum than control patients. For the first time, we describe an autoimmune response in PCOS patients, in terms of AEA. The evidence of protein–MDA in the serum of these patients, together with the increased antibody reactivity to MDA-modified proteins (HSA–MDA) in vitro, supports the conclusion that oxidative stress may be one of the important causes for abnormal endometrial environment with poor embryo receptivity in PCOS patients. PMID:16634794

  12. Effects of Dairy Protein and Fat on the Metabolic Syndrome and Type 2 Diabetes

    PubMed Central

    Bjørnshave, Ann; Hermansen, Kjeld

    2014-01-01

    The incidence of the metabolic syndrome (MetS) and type 2 diabetes (T2D) is increasing worldwide. Evidence supports a negative relationship between the consumption of dairy products and risk of MetS and T2D. Dairy proteins are known to have a directly beneficial effect on hypertension, dyslipidemia, and hyperglycemia, but a detailed understanding of the underlying mechanisms is missing. It has been confirmed by observations that the insulinotropic effect of dairy proteins is associated with the amino acid composition; in particular branched-chain amino acids (BCAA) seem to be of vital importance. Dairy protein-derived peptides may also contribute to the insulinotropic effect via dipeptidyl peptidase-4 (DPP-4) inhibitory activity, and may lower the blood pressure (BP). The lipid metabolism may be improved by whey protein (WP), which acts to reduce the postprandial triglyceride (TG) response. The effect of dairy fat is much more controversial because of the potentially harmful effect exerted by saturated fatty acid (SFA) on metabolic health. Recent observations suggest less adverse effects of SFA on metabolic health than previous assumed. However, little is known about dairy lipid fractions belonging to the groups of monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and phospholipids (PL). Dairy fat seems to act differently depending on the dairy product and the composition of macronutrients in the meal. Therefore, for a better understanding of the mechanisms behind the dairy protein and fat effect on MetS, we suggest that more human studies should be carried out to clarify the interactions of dairy protein and fat with macronutrients in the meal and other dairy components, such as micronutrients and microorganisms from fermented products. PMID:25396403

  13. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages

    PubMed Central

    Starnes, Taylor W.; Bennin, David A.; Bing, Xinyu; Eickhoff, Jens C.; Grahf, Daniel C.; Bellak, Jason M.; Seroogy, Christine M.; Ferguson, Polly J.

    2014-01-01

    PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease. PMID:24421327

  14. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages.

    PubMed

    Starnes, Taylor W; Bennin, David A; Bing, Xinyu; Eickhoff, Jens C; Grahf, Daniel C; Bellak, Jason M; Seroogy, Christine M; Ferguson, Polly J; Huttenlocher, Anna

    2014-04-24

    PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease.

  15. Fragile X Mental Retardation Syndrome: Structure of the KH1-KH2 Domains of Fragile X Mental Retardation Protein

    SciTech Connect

    Valverde,R.; Poznyakova, I.; Kajander, T.; Venkatraman, J.; Regan, L.

    2007-01-01

    Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence of Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.

  16. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly.

    PubMed

    Coon, Brian G; Hernandez, Victor; Madhivanan, Kayalvizhi; Mukherjee, Debarati; Hanna, Claudia B; Barinaga-Rementeria Ramirez, Irene; Lowe, Martin; Beales, Philip L; Aguilar, R Claudio

    2012-04-15

    Lowe syndrome (LS) is a devastating, X-linked genetic disease characterized by the presence of congenital cataracts, profound learning disabilities and renal dysfunction. Unfortunately, children affected with LS often die early of health complications including renal failure. Although this syndrome was first described in the early 1950s and the affected gene, OCRL1, was identified more than 17 years ago, the mechanism by which Ocrl1 defects lead to LS's symptoms remains unknown. Here we show that LS display characteristics of a ciliopathy. Specifically, we found that patients' cells have defects in the assembly of primary cilia and this phenotype was reproduced in cell lines by knock-down of Ocrl1. Importantly, this defect could be rescued by re-introduction of WT Ocrl1 in both patient and Ocrl1 knock-down cells. In addition, a zebrafish animal model of LS exhibited cilia defects and multiple morphological and anatomical abnormalities typically seen in ciliopathies. Mechanistically, we show that Ocrl1 is involved in protein trafficking to the primary cilia in an Rab8-and IPIP27/Ses-dependent manner. Taking into consideration the relevance of the signaling pathways hosted by the primary cilium, our results suggest hitherto unrecognized mechanisms by which Ocrl1 deficiency may contribute to the phenotypic characteristics of LS. This conceptual change in our understanding of the disease etiology may provide an alternative avenue for the development of therapies.

  17. Promoter methylation of yes-associated protein (YAP1) gene in polycystic ovary syndrome

    PubMed Central

    Jiang, Li-Le; Xie, Juan-Ke; Cui, Jin-Quan; Wei, Duo; Yin, Bao-Li; Zhang, Ya-Nan; Chen, Yuan-Hui; Han, Xiao; Wang, Qian; Zhang, Cui-Lian

    2017-01-01

    Abstract Background: DNA methylation modification has been proved to influence the phenotype of polycystic ovary syndrome (PCOS). Genome-wide association studies (GWAS) demonstrate that yes-associated protein (YAP1) genetic sites are associated with PCOS. The study aims to detect the methylation status of YAP1 promoter in ovary granulosa cells (GCs) of PCOS patients and explore novel therapeutic targets for PCOS. Methods: Randomized controlled trial was applied and a total of 72 women were included in the study, including 36 cases of PCOS patients and 36 cases of health controls. Ovary GCs were extracted from in vitro fertilization embryo transfer. Methylation status of YAP1 promoter was detected by bisulfite sequencing PCR (BSP). Protein and mRNA expression of YAP1 were measured by western blotting and real-time quantitate PCR. Results: Overall methylation level of YAP1 promoter region from PCOS group was significantly lower than that from control group. CpG sites analysis revealed that 12 sites (−443, −431, −403, −371, −331, −120, −49, −5, +1, +9, +15, +22) were significantly hypomethylated in women with PCOS (P < 0.05). A significant upregulation of YAP1 mRNA and protein expression levels was observed. Testosterone concentration could alleviate the methylation status and demonstrate obvious dose–dependent relation. Conclusion: Our research achievements manifest that hypomethylation of YAP1 promoter promotes the YAP1 expression, which plays a key role in the pathogenesis and accelerate PCOS. PMID:28079802

  18. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology.

    PubMed

    Barone, Eugenio; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2016-11-10

    Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylationg in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as in AD, thus generating a vicious cycle that amplifies OS-induced intracellular changes. The present review describes the current literature that demonstrates the accumulation of oxidative damage in DS with a focus on the lipid peroxidation by-product, 4-hydroxy-2-nonenal (HNE). HNE reacts with proteins and can irreversibly impair their functions. We suggest that among different post-translational modifications, HNE-adducts on proteins accumulate in DS brain and play a crucial role in causing the impairment of glucose metabolism, neuronal trafficking, protein quality control and antioxidant response. We hypothesize that dysfunction of these specific pathways contribute to accelerated neurodegeneration associated with AD neuropathology.

  19. Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice

    PubMed Central

    Sullivan, Josefa M.; Badimon, Ana; Schaefer, Uwe; Ayata, Pinar; Gray, James; Chung, Chun-wa; von Schimmelmann, Melanie; Zhang, Fan; Garton, Neil; Smithers, Nicholas; Lewis, Huw; Tarakhovsky, Alexander; Prinjha, Rab K.

    2015-01-01

    Studies investigating the causes of autism spectrum disorder (ASD) point to genetic, as well as epigenetic, mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here, we identify the bromodomain and extraterminal domain–containing proteins (BETs) as epigenetic regulators of genes involved in ASD-like behaviors in mice. We found that the pharmacological suppression of BET proteins in the brain of young mice, by the novel, highly specific, brain-permeable inhibitor I-BET858 leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome. Many of the I-BET858–affected genes have been linked to ASD in humans, thus suggesting the key role of the BET-controlled gene network in the disorder. Our studies suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD. PMID:26392221

  20. CASP3 protein expression by flow cytometry in Down's syndrome subjects.

    PubMed

    Salemi, Michele; Condorelli, Rosita A; Romano, Corrado; Concetta, Barone; Romano, Carmelo; Salluzzo, Maria Grazia; Bosco, Paolo; Calogero, Aldo E

    2014-01-01

    Down's syndrome (DS), the most common chromosomal disorder, is caused by 21 trisomy and is featured by intellectual disability. Subjects with DS can develop some traits of Alzheimer disease (AD) at an earlier age than subjects without trisomy 21. Apoptosis is a programmed cell death process under both normal physiological and pathological conditions. Caspase-3 (CASP3) plays an important role in neuronal death during nervous system development and under certain pathological conditions. Furthermore, in vitro and in vivo studies report elevated expression and activation of CASP3 in models of AD. On this account, the expression of CASP3 gene was evaluated in cultures of fibroblasts of DS and normal subjects by flow cytometry. CASP3 protein was up-regulated in fibroblasts of DS. The data obtained from this study strengthen the hypothesis that the over-expression of CASP3 gene could have a role in the activation of the apoptotic pathways acting in the neurodegenerative processes in DS.

  1. Protein-energy malnutrition is frequent and precocious in children with cri du chat syndrome.

    PubMed

    Lefranc, Violaine; de Luca, Arnaud; Hankard, Régis

    2016-05-01

    Protein-energy malnutrition (PEM) is poorly reported in cri du chat syndrome (CDCS) (OMIM #123450), a genetic disease that causes developmental delay and global growth retardation. The objective was to determine the nutritional status at different ages in children with CDCS and factors associated with PEM. A questionnaire focused on growth and nutritional care was sent to 190 families. Among 36 analyzable questionnaires, growth and nutritional indices compatible with PEM occurred in 47% of patients: 19% before 6 months of age, 24% between 6-12 months and 34% after 12 months. Eight patients received enteral feeding. Speech therapy for swallowing education was performed more often in malnourished children (63% vs. 22%, P < 0.02). PEM is frequent and occurs early in this disease, requiring closed nutritional monitoring.

  2. Role of Nijmegen Breakage Syndrome Protein in Specific T-Lymphocyte Activation Pathways

    PubMed Central

    García-Pérez, Miguel Angel; Allende, Luis M.; Corell, Alfredo; Paz-Artal, Estela; Varela, Pilar; López-Goyanes, Alberto; García-Martin, Francisco; Vázquez, Rosario; Sotoca, Amalia; Arnaiz-Villena, Antonio

    2001-01-01

    Nijmegen breakage syndrome (NBS) is a genetic disorder characterized by immunodeficiency, microcephaly, and “bird-like” facies. NBS shares some clinical features with ataxia telangiectasia (AT), including increased sensitivity to ionizing radiation, increased spontaneous and induced chromosome fragility, and strong predisposition to lymphoid cancers. The mutated gene that results in NBS codes for a novel double-stranded DNA break repair protein, named nibrin. In the present work, a Spanish NBS patient was extensively characterized at the immunological and the molecular DNA levels. He showed low CD3+-cell numbers and an abnormal low CD4+ naive cell/CD4+ memory cell ratio, previously described in AT patients and also described in the present report in the NBS patient. The proliferative response of peripheral blood lymphocytes in vitro to mitogens is deficient in NBS patients, but the possible link among NBS mutations and the abnormal immune response is still unknown. PMID:11427422

  3. Phase transitions in the assembly of multivalent signalling proteins

    SciTech Connect

    Li, Pilong; Banjade, Sudeep; Cheng, Hui-Chun; Kim, Soyeon; Chen, Baoyu; Guo, Liang; Llaguno, Marc; Hollingsworth, Javoris V.; King, David S.; Banani, Salman F.; Russo, Paul S.; Jiang, Qiu-Xing; Nixon, B. Tracy; Rosen, Michael K.

    2013-04-08

    Cells are organized on length scales ranging from angstrom to micrometers. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometer-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometer-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin1, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.

  4. A Role for Alström Syndrome Protein, Alms1, in Kidney Ciliogenesis and Cellular Quiescence

    PubMed Central

    Li, Guochun; Vega, Raquel; Nelms, Keats; Gekakis, Nicholas; Goodnow, Christopher; McNamara, Peter; Wu, Hua; Hong, Nancy A; Glynne, Richard

    2007-01-01

    Premature truncation alleles in the ALMS1 gene are a frequent cause of human Alström syndrome. Alström syndrome is a rare disorder characterized by early obesity and sensory impairment, symptoms shared with other genetic diseases affecting proteins of the primary cilium. ALMS1 localizes to centrosomes and ciliary basal bodies, but truncation mutations in Alms1/ALMS1 do not preclude formation of cilia. Here, we show that in vitro knockdown of Alms1 in mice causes stunted cilia on kidney epithelial cells and prevents these cells from increasing calcium influx in response to mechanical stimuli. The stunted-cilium phenotype can be rescued with a 5′ fragment of the Alms1 cDNA, which resembles disease-associated alleles. In a mouse model of Alström syndrome, Alms1 protein can be stably expressed from the mutant allele and is required for cilia formation in primary cells. Aged mice developed specific loss of cilia from the kidney proximal tubules, which is associated with foci of apoptosis or proliferation. As renal failure is a common cause of mortality in Alström syndrome patients, we conclude that this disease should be considered as a further example of the class of renal ciliopathies: wild-type or mutant alleles of the Alström syndrome gene can support normal kidney ciliogenesis in vitro and in vivo, but mutant alleles are associated with age-dependent loss of kidney primary cilia. PMID:17206865

  5. A PTPN11 allele encoding a catalytically impaired SHP2 protein in a patient with a Noonan syndrome phenotype.

    PubMed

    Edwards, Jonathan J; Martinelli, Simone; Pannone, Luca; Lo, Ivan Fai-Man; Shi, Lisong; Edelmann, Lisa; Tartaglia, Marco; Luk, Ho-Ming; Gelb, Bruce D

    2014-09-01

    The RASopathies are a relatively common group of phenotypically similar and genetically related autosomal dominant genetic syndromes caused by missense mutations affecting genes participating in the RAS/mitogen-activated protein kinase (MAPK) pathway that include Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML, formerly LEOPARD syndrome). NS and NSML can be difficult to differentiate during infancy, but the presence of multiple lentigines, café au lait spots, and specific cardiac defects facilitate the diagnosis. Furthermore, individual PTPN11 missense mutations are highly specific to each syndrome and engender opposite biochemical alterations on the function of SHP-2, the protein product of that gene. Here, we report on a 5-year-old male with two de novo PTPN11 mutations in cis, c.1471C>T (p.Pro491Ser), and c.1492C>T (p.Arg498Trp), which are associated with NS and NSML, respectively. This boy's phenotype is intermediate between NS and NSML with facial dysmorphism, short stature, mild global developmental delay, pulmonic stenosis, and deafness but absence of café au lait spots or lentigines. The double-mutant SHP-2 was found to be catalytically impaired. This raises the question of whether clinical differences between NS and NSML can be ascribed solely to the relative SHP-2 catalytic activity.

  6. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection

    PubMed Central

    Li, Zaipeng; Han, Yali; Xu, Limei

    2015-01-01

    ABSTRACT Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186–200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186–200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms. PMID:26512091

  7. Alopecia, Neurological Defects, and Endocrinopathy Syndrome Caused by Decreased Expression of RBM28, a Nucleolar Protein Associated with Ribosome Biogenesis

    PubMed Central

    Nousbeck, Janna; Spiegel, Ronen; Ishida-Yamamoto, Akemi; Indelman, Margarita; Shani-Adir, Ayelet; Adir, Noam; Lipkin, Ehud; Bercovici, Sivan; Geiger, Dan; van Steensel, Maurice A.; Steijlen, Peter M.; Bergman, Reuven; Bindereif, Albrecht; Choder, Mordechai; Shalev, Stavit; Sprecher, Eli

    2008-01-01

    Single-gene disorders offer unique opportunities to shed light upon fundamental physiological processes in humans. We investigated an autosomal-recessive phenotype characterized by alopecia, progressive neurological defects, and endocrinopathy (ANE syndrome). By using homozygosity mapping and candidate-gene analysis, we identified a loss-of-function mutation in RBM28, encoding a nucleolar protein. RBM28 yeast ortholog, Nop4p, was previously found to regulate ribosome biogenesis. Accordingly, electron microscopy revealed marked ribosome depletion and structural abnormalities of the rough endoplasmic reticulum in patient cells, ascribing ANE syndrome to the restricted group of inherited disorders associated with ribosomal dysfunction. PMID:18439547

  8. Transactive Response DNA-Binding Protein 43 Burden in Familial Alzheimer Disease and Down Syndrome

    PubMed Central

    Lippa, Carol F.; Rosso, Andrea L.; Stutzbach, Lauren D.; Neumann, Manuela; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    Objective To assess the transactive response DNA-binding protein 43 (TDP-43) burden in familial forms of Alzheimer disease (FAD) and Down syndrome (DS) to determine whether TDP-43 inclusions are also present. Design Using standard immunohistochemical techniques, we examined brain tissue samples from 42 subjects with FAD and 14 with DS. Results We found pathological TDP-43 aggregates in 14.0% of participants (6 of 42 and 2 of 14 participants with FAD and DS, respectively). In both FAD and DS, TDP-43 immunoreactivity did not colocalize with neurofibrillary tangles. Occasionally participants with FAD or DS had TDP-43–positive neuropil threads or dots. Overall, the amygdala was most commonly affected, followed by the hippocampus, with no TDP-43 pathology in neocortical regions. A similar distribution of TDP-43 inclusions is seen in sporadic Alzheimer disease, but it differs from that seen in amyotrophic lateral sclerosis and frontotemporal dementia. Conclusions Transactive response DNA-binding protein 43 pathology occurs in FAD and DS, similar to that observed in sporadic Alzheimer disease. Thus, pathological TDP-43 may contribute the cognitive impairments in familial and sporadic forms of Alzheimer disease. PMID:20008652

  9. Severe Food Protein-Induced Enterocolitis Syndrome to Cow's Milk in Infants.

    PubMed

    Yang, Min; Geng, Lanlan; Xu, Zhaohui; Chen, Peiyu; Friesen, Craig A; Gong, Sitang; Li, Ding-You

    2015-12-22

    Cow's milk is the most common cause of food-protein-induced enterocolitis syndrome (FPIES). The aim of this study was to examine the clinical features and treatment outcomes of infants with severe FPIES to cow's milk. We reviewed all infants ≤ 12 months of age who were hospitalized and diagnosed with severe FPIES to cow's milk between 1 January 2011 and 31 August 2014 in a tertiary Children's Medical Center in China. Patients' clinical features, feeding patterns, laboratory tests, and treatment outcomes were reviewed. A total of 12 infants met the inclusion criteria. All infants presented with diarrhea, edema, and hypoalbuminemia. Other main clinical manifestations included regurgitation/vomiting, skin rashes, low-grade fever, bloody and/or mucous stools, abdominal distention, and failure to thrive. They had clinical remission with resolution of diarrhea and significant increase of serum albumin after elimination of cow's milk protein (CMP) from the diet. The majority of infants developed tolerance to the CMP challenge test after 12 months of avoidance. In conclusion, we reported the clinical experience of 12 infants with severe FPIES to cow's milk, which resulted in malnutrition, hypoproteinemia, and failure to thrive. Prompt treatment with CMP-free formula is effective and leads to clinical remission of FPIES in infants.

  10. ICP35 Is a TREX-Like Protein Identified in White Spot Syndrome Virus

    PubMed Central

    Phairoh, Panapat; Suthibatpong, Thana; Rattanarojpong, Triwit; Jongruja, Nujarin; Senapin, Saengchan; Choowongkomon, Kiattawee; Khunrae, Pongsak

    2016-01-01

    ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity. PMID:27348862

  11. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging.

    PubMed

    Frontini, Mattia; Proietti-De-Santis, Luca

    2012-02-01

    The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.

  12. The Angelman syndrome protein Ube3a is required for polarized dendrite morphogenesis in pyramidal neurons.

    PubMed

    Miao, Sheng; Chen, Renchao; Ye, Jiahao; Tan, Guo-He; Li, Shuai; Zhang, Jing; Jiang, Yong-hui; Xiong, Zhi-Qi

    2013-01-02

    Pyramidal neurons have a highly polarized dendritic morphology, characterized by one long apical dendrite and multiple short basal dendrites. They function as the primary excitatory cells of the mammalian prefrontal cortex and the corticospinal tract. However, the molecular mechanisms underlying the development of polarized dendrite morphology in pyramidal neurons remain poorly understood. Here, we report that the Angelman syndrome (AS) protein ubiquitin-protein ligase E3A (Ube3a) plays an important role in specifying the polarization of pyramidal neuron dendritic arbors in mice. shRNA-mediated downregulation of Ube3a selectively inhibited apical dendrite outgrowth and resulted in impaired dendrite polarity, which could be rescued by coexpressing mouse Ube3a isoform 2, but not isoform 1 or 3. Ube3a knockdown also disrupted the polarized distribution of the Golgi apparatus, a well established cellular mechanism for asymmetric dendritic growth in pyramidal neurons. Furthermore, downregulation of Ube3a completely blocked Reelin-induced rapid deployment of Golgi into dendrite. Consistently, we also observed selective inhibition of apical dendrite outgrowth in pyramidal neurons in a mouse model of AS. Overall, these results show that Ube3a is required for the specification of the apical dendrites and dendrite polarization in pyramidal neurons, and suggest a novel pathological mechanism for AS.

  13. Soy Protein Supplementation Reduces Clinical Indices in Type 2 Diabetes and Metabolic Syndrome

    PubMed Central

    Zhang, Yun-Bo; Chi, Mei-Hua

    2016-01-01

    Purpose Clinical trials have studied the use of soy protein for treating type 2 diabetes (T2D) and metabolic syndrome (MS). The purpose of this study was to outline evidence on the effects of soy protein supplementation on clinical indices in T2D and MS subjects by performing a meta-analysis of randomized controlled trials (RCTs). Materials and Methods We searched PubMed, EMBASE, and Cochrane databases up to March 2015 for RCTs. Pooled estimates and 95% confidence intervals (CIs) were calculated by the fixed-and-random-effects model. A total of eleven studies with eleven clinical variables met the inclusion criteria. Results The meta-analysis showed that fasting plasma glucose (FPG) [weighted mean difference (WMD), -0.207; 95% CI, -0.374 to -0.040; p=0.015], fasting serum insulin (FSI) (WMD, -0.292; 95% CI, -0.496 to -0.088; p=0.005), homeostasis model of assessment for insulin resistance index (HOMA-IR) (WMD, -0.346; 95% CI, -0.570 to -0.123; p=0.002), diastolic blood pressure (DBP) (WMD, -0.230; 95% CI, -0.441 to -0.019; p=0.033), low-density lipoprotein cholesterol (LDL-C) (WMD, -0.304; 95% CI, -0.461 to -0.148; p=0.000), total cholesterol (TC) (WMD, -0.386; 95% CI, -0.548 to -0.225; p=0.000), and C-reactive protein (CRP) (WMD, -0.510; 95% CI, -0.722 to -0.299; p=0.000) are significant reduced with soy protein supplementation, compared with a placebo control group, in T2D and MS patients. Furthermore, soy protein supplementation for longer duration (≥6 mo) significantly reduced FPG, LDL-C, and CRP, while that for a shorter duration (<6 mo) significantly reduced FSI and HOMA-IR. Conclusion Soy protein supplementation could be beneficial for FPG, FSI, HOMA-IR, DBP, LDL-C, TC, and CRP control in plasma. PMID:26996569

  14. Advanced oxidation protein products are more related to metabolic syndrome components than biomarkers of lipid peroxidation.

    PubMed

    Venturini, Danielle; Simão, Andréa Name Colado; Dichi, Isaias

    2015-09-01

    Although advanced oxidation protein products (AOPPs) have been reported as the most appropriate parameter for determination of oxidative stress in patients with metabolic syndrome (MetS), a direct comparison between protein and lipid peroxidation has not been performed yet. The aim of this study was to compare protein peroxidation with lipid peroxidation measured by 2 different methodologies (tert-butyl hydroperoxide-initiated chemiluminescence and ferrous oxidation-xylenol orange assay). The hypothesis of this study was that AOPPs would be more related to MetS than to oxidative markers of lipid peroxidation. This cross-sectional study evaluated 76 patients with MetS and 20 healthy subjects. Prooxidant-antioxidant index (PAI) assessed as AOPP/total radical-trapping antioxidant parameter ratio progressively increased (P < .05) according to the number of MetS components, whereas AOPPs and total radical-trapping antioxidant parameter increased (P < .05) when 5 components were compared with 3 components. Spearman test showed a positive correlation between AOPPs and waist circumference (r = 0.318, P < .01), fasting glucose (r = 0.250, P < .05), homeostasis model assessment insulin resistance (r = 0.043, P < .01), triacylglycerol (r = 0.713, P < .0001), highly sensitive C-reactive protein (r = 0.275, P < .05), and uric acid (r = 0.356, P < .01), whereas there was an inverse correlation with high-density lipoprotein cholesterol (r = -0.399, P < .001). Prooxidant-antioxidant index demonstrated a positive correlation with waist circumference (r = 0.386, P < .01), fasting glucose (r = 0.388, P < .01), fasting insulin (r = 0.344, P < .05), homeostasis model assessment insulin resistance (r = 0.519, P < .001), triacylglycerol (r = 0.687, P < .0001), highly sensitive C-reactive protein (r = 0.278, P < .05), and uric acid (r = 0.557, P < .0001), whereas there was an inverse correlation with high-density lipoprotein cholesterol (r = -0.480, P < .0001). In conclusion, protein

  15. Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains.

    PubMed Central

    Adinolfi, S; Bagni, C; Musco, G; Gibson, T; Mazzarella, L; Pastore, A

    1999-01-01

    FMR1 is an RNA-binding protein that is either absent or mutated in patients affected by the fragile X syndrome, the most common inherited cause of mental retardation in humans. Sequence analysis of the FMR1 protein has suggested that RNA binding is related to the presence of two K-homologous (KH) modules and an RGG box. However, no attempt has been so far made to map the RNA-binding sites along the protein sequence and to identify possible differential RNA-sequence specificity. In the present article, we describe work done to dissect FMR1 into regions with structurally and functionally distinct properties. A semirational approach was followed to identify four regions: an N-terminal stretch of 200 amino acids, the two KH regions, and a C-terminal stretch. Each region was produced as a recombinant protein, purified, and probed for its state of folding by spectroscopical techniques. Circular dichroism and NMR spectra of the N-terminus show formation of secondary structure with a strong tendency to aggregate. Of the two homologous KH motifs, only the first one is folded whereas the second remains unfolded even when it is extended both N- and C-terminally. The C-terminus is, as expected from its amino acid composition, nonglobular. Binding assays were then performed using the 4-nt homopolymers. Our results show that only the first KH domain but not the second binds to RNA, and provide the first direct evidence for RNA binding of both the N-terminal and the C-terminal regions. RNA binding for the N-terminus could not be predicted from sequence analysis because no known RNA-binding motif is identifiable in this region. Different sequence specificity was observed for the fragments: both the N-terminus of the protein and KH1 bind preferentially to poly-(rG). The C-terminal region, which contains the RGG box, is nonspecific, as it recognizes the bases with comparable affinity. We therefore conclude that FMR1 is a protein with multiple sites of interaction with RNA: sequence

  16. Eosinophil cationic protein serum levels and allergy in chronic fatigue syndrome.

    PubMed

    Conti, F; Magrini, L; Priori, R; Valesini, G; Bonini, S

    1996-02-01

    Chronic fatigue syndrome (CFS) is a syndrome of uncertain etiopathogenesis characterized by disabling fatigue associated with a variable number of somatic and/or neuropsychologic symptoms. In patients with CFS, several immunologic abnormalities can be detected, including a higher prevalance of allergy. The aim of this study was to determine whether CFS patients, well studied for their allergy profile, show signs of eosinophil activation, as detectable by the measurement in serum of eosinophil cationic protein (ECP) levels. In 35 consecutive CFS outpatients (diagnosis based on the Centers for Disease Control case definition), ECP was measured in serum by a competitive enzyme immunoassay (ECP-FEIA kit, Kabi Pharmacia Diagnostics, Uppsala, Sweden). Fourteen disease-free subjects with no history of CFS or allergy were selected as controls. ECP serum levels were significantly higher in CFS patients than in controls (18.0 +/- 11.3 micrograms/l vs 7.3 +/- 2.1 micrograms/l; P < 0.01). In the CFS population, the prevalence of RAST positivity to one or more allergens was 77%, while no control showed positive RAST. Twelve of the 14 CFS patients with increased ECP serum levels were RAST-positive. However, CFS RAST-positive patients had no significantly higher ECP serum levels than CFS RAST-negative patients (19.3 +/- 12.4 micrograms/l vs 13.6 +/- 3.7 micrograms/l; P = 0.4). This is the first report of increased serum levels of ECP in CFS. On the basis of the available data, it is discussed whether eosinophil activation has a pathogenetic role in CFS or is linked to the frequently associated allergic condition, or, finally, whether a common immunologic background may exist for both atopy and CFS.

  17. The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription

    PubMed Central

    Balajee, Adayabalam S.; Machwe, Amrita; May, Alfred; Gray, Matthew D.; Oshima, Junko; Martin, George M.; Nehlin, Jan O.; Brosh, Robert; Orren, David K.; Bohr, Vilhelm A.

    1999-01-01

    Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype

  18. Chromosomal protein HMG-14 gene maps to the Down syndrome region of human chromosome 21 and is overexpressed in mouse trisomy 16

    SciTech Connect

    Pash, J.; Popescu, N.; Matocha, M.; Rapoport, S.; Bustin, M. )

    1990-05-01

    The gene for human high-mobility-group (HMG) chromosomal protein HMG-14 is located in region 21q22.3, a region associated with the pathogenesis of Down syndrome, one of the most prevalent human birth defects. The expression of this gene is analyzed in mouse embryos that are trisomic in chromosome 16 and are considered to be an animal model for Down syndrome. RNA blot-hybridization analysis and detailed analysis of HMG-14 protein levels indicate that mouse trisomy 16 embryos have approximately 1.5 times more HMG-14 mRNA and protein than their normal littermates, suggesting a direct gene dosage effect. The HMG-14 gene may be an additional marker for the Down syndrome. Chromosomal protein HMG-14 is a nucleosomal binding protein that may confer distinct properties to the chromatin structure of transcriptionally active genes and therefore may be a contributing factor in the etiology of the syndrome.

  19. Protein expression of BACE1, BACE2 and APP in Down syndrome brains.

    PubMed

    Cheon, M S; Dierssen, M; Kim, S H; Lubec, G

    2008-08-01

    Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21. The phenotype of DS is thought to result from overexpression of a gene or genes located on the triplicated chromosome or chromosome region. Several reports have shown that the neuropathology of DS comprises developmental abnormalities and Alzheimer-like lesions such as senile plaques. A key component of senile plaques is amyloid beta-peptide which is generated from the amyloid precursor protein (APP) by sequential action of beta-secretases (BACE1 and BACE2) and gamma-secretase. While BACE1 maps to chromosome 11, APP and BACE2 are located on chromosome 21. To challenge the gene dosage effect and gain insight into the expressional relation between beta-secretases and APP in DS brain, we evaluated protein expression levels of BACE1, BACE2 and APP in fetal and adult DS brain compared to controls. In fetal brain, protein expression levels of BACE2 and APP were comparable between DS and controls. BACE1 was increased, but did not reach statistical significance. In adult brain, BACE1 and BACE2 were comparable between DS and controls, but APP was significantly increased. We conclude that APP overexpression seems to be absent during the development of DS brain up to 18-19 weeks of gestational age. However, its overexpression in adult DS brain could lead to disturbance of normal function of APP contributing to neurodegeneration. Comparable expression of BACE1 and BACE2 speaks against the hypothesis that increased beta-secretase results in (or even underlies) increased production of amyloidogenic A beta fragments. Furthermore, current data indicate that the DS phenotype cannot be fully explained by simple gene dosage effect.

  20. Proinflammatory proteins in female and male patients with primary antiphospholipid syndrome: preliminary data.

    PubMed

    Bećarević, Mirjana; Ignjatović, Svetlana

    2016-10-01

    The latest classification criteria for the diagnosis of the antiphospholipid syndrome (APS, an autoimmune disease characterized by thromboses, miscarriages and presence of antiphospholipid antibodies (Abs)) emphasized that thrombotic manifestations of APS should be without any signs of an inflammatory process. However, atherosclerosis (a chronic inflammatory response to the accumulation of lipoproteins in the walls of arteries) and APS are characterized by some similar features. We evaluated whether proinflammatory proteins were associated with the features of the primary APS (PAPS). PAPS patients without obstetric complications and with impaired lipid profile were included in the study. Antiphospholipid antibodies, TNF-alpha, and apo(a) were determined by ELISA. Complement components and hsCRP were measured by immunonephelometry. Decreased C3c was observed in female patients with increased titers of IgG anti-β2gpI (χ(2) = 3.939, P = 0.047) and in male patients with increased IgM anticardiolipin Abs (χ(2) = 4.286, P = 0.038). Pulmonary emboli were associated with interleukin (IL)-6 in male (χ(2) = 6.519, P = 0.011) and in female (χ(2) = 10.405, P = 0.001) patients. Cerebrovascular insults were associated with LDL-cholesterol (P = 0.05, 95 % CI: 1.003 - 12.739) in female and with apo(a) (P = 0.016, 95 % CI: 0.000-0.003) in male patients. Older female patients had increased LDL-cholesterol levels and frequency of myocardial infarctions. Proinflammatory proteins were associated with features of primary APS. No real gender differences in regard to proinflammatory protein levels were observed. Premenopausal state of female PAPS patients confers lower cardiovascular risk.

  1. Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus

    SciTech Connect

    Tang,X.; Hew, C.

    2007-01-01

    White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.

  2. Minichromosome maintenance protein 7 regulates phagocytosis in kuruma shrimp Marsupenaeus japonicas against white spot syndrome virus.

    PubMed

    Wang, Zhi; Zhu, Fei

    2016-08-01

    Minichromosome maintenance protein (MCM7) belongs to the MCM protein family and participates in the MCM complex by playing a role in the cell replication cycle and chromosome initiation of eukaryotes. Previously, we found that several genes, including MCM7, were over-expressed in Drosophila melanogaster after white spot syndrome virus (WSSV) infection. In this study, we aimed to further research the MCM7 of kuruma shrimp, Marsupenaeus japonicus (mjMCM7) and determine its role in the innate immune system. To this end, we cloned the entire 2307-bp mjMCM7 sequence, including a 1974-bp open reading frame (ORF) encoding a 658-aa-long protein. Real-time PCR showed that the gene was primarily expressed in the hemolymph and hepatopancreas and over-expressed in shrimp challenged with WSSV. Gene function study was carried out by knocking down the expression of MCM7 using small interference RNA (siRNA). The results revealed that β-actin, hemocyanin, prophenoloxidase (proPO) and tumor necrosis factor-α (TNF-α) were up-regulated while the cytoskeleton proteins such as myosin and Rho were significantly down-regulated at 24 h after treatment. The results indicate a possible relationship between mjMCM7 and the innate immune system, and suggest that mjMCM7 may play a role in phagocytosis. After WSSV challenge, WSSV copies and mortality count were both higher in the MCM7-siRNA-treated groups at 60 h after treatment, and the mortality count approached that of the control groups over time. The phagocytosis rate was significantly lower in the MCM7-siRNA-treated group than in the WSSV group. The findings of this study confirm that mjMCM7 positively regulates phagocytosis and plays an important role against WSSV. These results could help researchers to further understand the function of the MCM7 protein and reveal its potential role in the innate immunity of invertebrates.

  3. Marfan Syndrome

    MedlinePlus

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, blood vessels, and other organs. One of these proteins is fibrillin. A problem with the ...

  4. Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability.

    PubMed

    Sun, Lichang; Zhou, Yan; Liu, Runxia; Li, Yanhua; Gao, Fei; Wang, Xiaomin; Fan, Hongjie; Yuan, Shishan; Wei, Zuzhang; Tong, Guangzhi

    2015-02-02

    ORF5a protein was recently identified as a novel structural protein in porcine reproductive and respiratory syndrome virus (PRRSV). The ORF5a protein possesses two cysteines at positions 29 and 30 that are highly conserved among type 2 PRRSV. In this study, the significance of the ORF5a protein cysteine residues on virus replication was determined based on a type 2 PRRSV cDNA clone (pAJXM). Each cysteine was substituted by serine or glycine and the mutations were introduced into pAJXM. We found that the replacement of cysteine to glycine at position 30 was lethal for virus viability, but all serine mutant clones produced infectious progeny viruses. This data indicated that cysteine residues in the ORF5a protein were not essential for replication of type 2 PRRSV. The bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were used to study ORF5a protein interacted with other enveloped proteins. These results showed that ORF5a protein interacted non-covalently with itself and interacted with GP4 and 2b protein. The replacement of cysteine to glycine at position 30 affected the ORF5a protein interacted non-covalently with itself, which may account for the lethal phenotype of mutants carrying substitution of cysteine to glycine at position 30.

  5. A Systematic Review of the Effects of Plant Compared with Animal Protein Sources on Features of Metabolic Syndrome.

    PubMed

    Chalvon-Demersay, Tristan; Azzout-Marniche, Dalila; Arfsten, Judith; Egli, Léonie; Gaudichon, Claire; Karagounis, Leonidas G; Tomé, Daniel

    2017-03-01

    Dietary protein may play an important role in the prevention of metabolic dysfunctions. However, the way in which the protein source affects these dysfunctions has not been clearly established. The aim of the current systematic review was to compare the impact of plant- and animal-sourced dietary proteins on several features of metabolic syndrome in humans. The PubMed database was searched for both chronic and acute interventional studies, as well as observational studies, in healthy humans or those with metabolic dysfunctions, in which the impact of animal and plant protein intake was compared while using the following variables: cholesterolemia and triglyceridemia, blood pressure, glucose homeostasis, and body composition. Based on data extraction, we observed that soy protein consumption (with isoflavones), but not soy protein alone (without isoflavones) or other plant proteins (pea and lupine proteins, wheat gluten), leads to a 3% greater decrease in both total and LDL cholesterol compared with animal-sourced protein ingestion, especially in individuals with high fasting cholesterol concentrations. This observation was made when animal proteins were provided as a whole diet rather than given supplementally. Some observational studies reported an inverse association between plant protein intake and systolic and diastolic blood pressure, but this was not confirmed by intervention studies. Moreover, plant protein (wheat gluten, soy protein) intake as part of a mixed meal resulted in a lower postprandial insulin response than did whey. This systematic review provides some evidence that the intake of soy protein associated with isoflavones may prevent the onset of risk factors associated with cardiovascular disease, i.e., hypercholesterolemia and hypertension, in humans. However, we were not able to draw any further conclusions from the present work on the positive effects of plant proteins relating to glucose homeostasis and body composition.

  6. Abnormal phosphoinositide metabolism and protein phosphorylation in platelets from a patient with the grey platelet syndrome.

    PubMed

    Rendu, F; Marche, P; Hovig, T; Maclouf, J; Lebret, M; Tenza, D; Levy-Toledano, S; Caen, J P

    1987-10-01

    Washed platelets isolated from one patient suffering from the inherited grey platelet syndrome were studied during thrombin-induced activation. The agonist-induced changes in (i) morphology, (ii) typical functional cell responses, (iii) membrane phospholipid metabolism and protein phosphorylation were studied and compared with the changes obtained with normal platelets. The morphology of the platelets as visualized by electron microscopy confirmed the almost total absence of intracellular alpha-granules and marked vacuolization. During thrombin stimulation the morphological changes were clearly delayed as compared to normal platelets, the granule centralization and aggregation occurred only 15 s after thrombin addition instead of 5 s in normal platelets. After 15 s, however, even though no alpha-granules were observed, a ring-like structure occurred centrally, indicating that they are not a prerequisite for this reaction. The whole release reaction, i.e. liberation of [14C]serotonin from dense granules and beta-N-acetylglucosaminidase activity from lysosomes, and the thromboxane synthesis were delayed and remained lower than in normal platelets. No thrombin-induced phosphatidyl 4,5-bisphosphate breakdown was measurable on 32P-prelabelled platelets although [32P]phosphatidate formation occurred normally. Phosphorylation time courses of myosin light chain (P20) and of protein P43 (mol wt 43,000) markedly differed from those of controls, being less than half of the normal during the first 15 s and remaining subnormal even after complete aggregation. These results suggest that in platelets devoid of alpha-granules a deficient transmembrane signalling system is likely responsible for the impaired physiological responses.

  7. Severe Fever with Thrombocytopenia Syndrome Virus Antigen Detection Using Monoclonal Antibodies to the Nucleocapsid Protein

    PubMed Central

    Fukuma, Aiko; Fukushi, Shuetsu; Yoshikawa, Tomoki; Tani, Hideki; Taniguchi, Satoshi; Kurosu, Takeshi; Egawa, Kazutaka; Suda, Yuto; Singh, Harpal; Nomachi, Taro; Gokuden, Mutsuyo; Ando, Katsuyuki; Kida, Kouji; Kan, Miki; Kato, Nobuyuki; Yoshikawa, Akira; Kitamoto, Hiroaki; Sato, Yuko; Suzuki, Tadaki; Hasegawa, Hideki; Morikawa, Shigeru; Shimojima, Masayuki; Saijo, Masayuki

    2016-01-01

    Background Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease with a high case fatality rate, and is caused by the SFTS virus (SFTSV). SFTS is endemic to China, South Korea, and Japan. The viral RNA level in sera of patients with SFTS is known to be strongly associated with outcomes. Virological SFTS diagnosis with high sensitivity and specificity are required in disease endemic areas. Methodology/Principal Findings We generated novel monoclonal antibodies (MAbs) against the SFTSV nucleocapsid (N) protein and developed a sandwich antigen (Ag)-capture enzyme-linked immunosorbent assay (ELISA) for the detection of N protein of SFTSV using MAb and polyclonal antibody as capture and detection antibodies, respectively. The Ag-capture system was capable of detecting at least 350–1220 TCID50/100 μl/well from the culture supernatants of various SFTSV strains. The efficacy of the Ag-capture ELISA in SFTS diagnosis was evaluated using serum samples collected from patients suspected of having SFTS in Japan. All 24 serum samples (100%) containing high copy numbers of viral RNA (>105 copies/ml) showed a positive reaction in the Ag-capture ELISA, whereas 12 out of 15 serum samples (80%) containing low copy numbers of viral RNA (<105 copies/ml) showed a negative reaction in the Ag-capture ELISA. Among these Ag-capture ELISA-negative 12 samples, 9 (75%) were positive for IgG antibodies against SFTSV. Conclusions The newly developed Ag-capture ELISA is useful for SFTS diagnosis in acute phase patients with high levels of viremia. PMID:27045364

  8. EARLY SENESCENCE1 Encodes a SCAR-LIKE PROTEIN2 That Affects Water Loss in Rice1[OPEN

    PubMed Central

    Rao, Yuchun; Yang, Yaolong; Xu, Jie; Li, Xiaojing; Leng, Yujia; Dai, Liping; Huang, Lichao; Shao, Guosheng; Ren, Deyong; Hu, Jiang; Guo, Longbiao; Pan, Jianwei; Zeng, Dali

    2015-01-01

    The global problem of drought threatens agricultural production and constrains the development of sustainable agricultural practices. In plants, excessive water loss causes drought stress and induces early senescence. In this study, we isolated a rice (Oryza sativa) mutant, designated as early senescence1 (es1), which exhibits early leaf senescence. The es1-1 leaves undergo water loss at the seedling stage (as reflected by whitening of the leaf margin and wilting) and display early senescence at the three-leaf stage. We used map-based cloning to identify ES1, which encodes a SCAR-LIKE PROTEIN2, a component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous complex involved in actin polymerization and function. The es1-1 mutants exhibited significantly higher stomatal density. This resulted in excessive water loss and accelerated water flow in es1-1, also enhancing the water absorption capacity of the roots and the water transport capacity of the stems as well as promoting the in vivo enrichment of metal ions cotransported with water. The expression of ES1 is higher in the leaves and leaf sheaths than in other tissues, consistent with its role in controlling water loss from leaves. GREEN FLUORESCENT PROTEIN-ES1 fusion proteins were ubiquitously distributed in the cytoplasm of plant cells. Collectively, our data suggest that ES1 is important for regulating water loss in rice. PMID:26243619

  9. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks.

    PubMed

    Vélez-Cruz, Renier; Egly, Jean-Marc

    2013-01-01

    Cockayne syndrome (CS) is a rare genetic disorder characterized by a variety of growth and developmental defects, photosensitivity, cachectic dwarfism, hearing loss, skeletal abnormalities, progressive neurological degeneration, and premature aging. CS arises due to mutations in the CSA and CSB genes. Both gene products are required for the transcription-coupled (TC) branch of the nucleotide excision repair (NER) pathway, however, the severe phenotype of CS patients is hard to reconcile with a sole defect in TC-NER. Studies using cells from patients and mouse models have shown that the CSB protein is involved in a variety of cellular pathways and plays a major role in the cellular response to stress. CSB has been shown to regulate processes such as the transcriptional recovery after DNA damage, the p53 transcriptional response, the response to hypoxia, the response to insulin-like growth factor-1 (IGF-1), transactivation of nuclear receptors, transcription of housekeeping genes and the transcription of rDNA. Some of these processes are also affected in combined XP/CS patients. These new advances in the function(s) of CSB shed light onto the etiology of the clinical features observed in CS patients and could potentially open therapeutic avenues for these patients in the future. Moreover, the study of CS could further our knowledge of the aging process.

  10. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation.

    PubMed

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-05-12

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation.

  11. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity.

    PubMed

    Gaspar, Renato Simões; Trostchansky, Andrés; Paes, Antonio Marcus de Andrade

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.

  12. Increased non-protein bound iron in Down syndrome: contribution to lipid peroxidation and cognitive decline.

    PubMed

    Manna, Caterina; Officioso, Arbace; Trojsi, Francesca; Tedeschi, Gioacchino; Leoncini, Silvia; Signorini, Cinzia; Ciccoli, Lucia; De Felice, Claudio

    2016-12-01

    Down syndrome (DS, trisomy 21) is the leading cause of chromosomal-related intellectual disability. At an early age, adults with DS develop with the neuropathological hallmarks of Alzheimer's disease, associated with a chronic oxidative stress. To investigate if non-protein bound iron (NPBI) can contribute to building up a pro-oxidative microenvironment, we evaluated NPBI in both plasma and erythrocytes from DS and age-matched controls, together with in vivo markers of lipid peroxidation (F2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes) and in vitro reactive oxygen species (ROS) formation in erythrocytes. The serum iron panel and uric acid were also measured. Second, we explored possible correlation between NPBI, lipid peroxidation and cognitive performance. Here, we report NPBI increase in DS, which correlates with increased serum ferritin and uric acid. High levels of lipid peroxidation markers and intraerythrocyte ROS formations were also reported. Furthermore, the scores of Raven's Colored Progressive Matrices (RCPM) test, performed as a measure of current cognitive function, are inversely related to NPBI, serum uric acid, and ferritin. Likewise, ROS production, F2-isoprostanes, and F4-neuroprostanes were also inversely related to cognitive performance, whereas serum transferrin positively correlated to RCPM scores. Our data reveal that increased availability of free redox-active iron, associated with enhanced lipid peroxidation, may be involved in neurodegeneration and cognitive decline in DS. In this respect, we propose chelation therapy as a potential preventive/therapeutic tool in DS.

  13. [Case of food protein-induced enterocolitis syndrome caused by short-neck clam ingestion].

    PubMed

    Hayashi, Daisuke; Aoki, Takeshi; Shibata, Rumiko; Ichikawa, Kunio

    2010-12-01

    A 6-year-old boy was referred for evaluation because he had several vomiting episodes, from the age of 2 years, following short-neck clam ingestion. He tested negative for short-neck clam-specific IgE just before visiting our hospital, and he was not allergic to other foods or shellfish. The patient had low levels of short-neck clam-specific IgE (1.04 UA/ml), and the skin prick test was positive for short-neck clam (4 mm). The lymphocyte stimulation test was positive (5305 counts per min (cpm), stimulation index (SI) =1211%) and the patch test was positive for short-neck clam ingestion. An oral challenge test with boiled short-neck clam induced abdominal pain and vomiting 2 h after ingestion, and the patient presented with increased peripheral leukocytes after 6 h. He was therefore diagnosed with food protein-induced enterocolitis syndrome (FPIES) due to short-neck clam ingestion. To our knowledge, this is the first case report of FPIES induced by the intake of shellfish.

  14. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells.

    PubMed

    Cao, Kan; Graziotto, John J; Blair, Cecilia D; Mazzulli, Joseph R; Erdos, Michael R; Krainc, Dimitri; Collins, Francis S

    2011-06-29

    Hutchinson-Gilford progeria syndrome (HGPS) is a lethal genetic disorder characterized by premature aging. HGPS is most commonly caused by a de novo single-nucleotide substitution in the lamin A/C gene (LMNA) that partially activates a cryptic splice donor site in exon 11, producing an abnormal lamin A protein termed progerin. Accumulation of progerin in dividing cells adversely affects the integrity of the nuclear scaffold and leads to nuclear blebbing in cultured cells. Progerin is also produced in normal cells, increasing in abundance as senescence approaches. Here, we report the effect of rapamycin, a macrolide antibiotic that has been implicated in slowing cellular and organismal aging, on the cellular phenotypes of HGPS fibroblasts. Treatment with rapamycin abolished nuclear blebbing, delayed the onset of cellular senescence, and enhanced the degradation of progerin in HGPS cells. Rapamycin also decreased the formation of insoluble progerin aggregates and induced clearance through autophagic mechanisms in normal fibroblasts. Our findings suggest an additional mechanism for the beneficial effects of rapamycin on longevity and encourage the hypothesis that rapamycin treatment could provide clinical benefit for children with HGPS.

  15. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity

    PubMed Central

    Gaspar, Renato Simões

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation. PMID:28053690

  16. Mismatch repair protein immunohistochemistry: a useful population screening strategy for Lynch syndrome.

    PubMed

    Musulén, Eva; Sanz, Carolina; Muñoz-Mármol, Ana María; Ariza, Aurelio

    2014-07-01

    Lynch syndrome (LS), the most frequent form of hereditary colorectal cancer, shows a highly penetrant, autosomal dominant pattern of inheritance. Distinction of LS colorectal carcinoma instances from the much more common sporadic colorectal carcinoma cases is of paramount importance. Revised Bethesda Guidelines were developed to diagnose LS by evaluating a combination of clinical and pathologic data. The aim of the present study was to evaluate the usefulness of the pathology items included in the Revised Bethesda Guidelines. We have prospectively studied a series of 1624 consecutive colorectal carcinomas with an algorithm including immunohistochemical analysis of mismatch repair proteins and molecular study of microsatellite instability and BRAF c.1799 T > A (p.V600E) gene mutations. Patients with tumors showing LS features were referred for germline mutation analysis. By applying our algorithmic approach, we were able to identify LS features in 89 colorectal cancer patients, of whom only 27 met Revised Bethesda Guidelines pathology criteria. Of the 89 patients, 47 were then studied at the Genetic Counseling Unit, and LS was confirmed in 18, of whom 7 had not been identified by the Revised Bethesda Guidelines. Our study shows that the Revised Bethesda Guidelines failed to detect 70% of patients at risk of LS. Our algorithmic approach is a realistic and effective tool for LS identification. We strongly recommend the implementation of universal population screening for LS among all patients with newly diagnosed colorectal carcinoma.

  17. Sensitivity of Roberts Syndrome Cells to gamma radiation, mitomycin C, and protein synthesis inhibitors

    SciTech Connect

    Van Den Berg, D.J.; Francke, U. )

    1993-07-01

    Roberts syndrome (RS) is a rare autosomal recessive disorder characterized by pre- and postnatal growth retardation, limb reduction abnormalities, and craniofacial anomalies. Mitotic chromosomes from RS individuals display repulsion of heterochromatin regions or centromere splitting, leading to a railroad-track appearance of mitotic chromosomes. Abnormalities in metaphase duration, anaphase progression, nuclear morphology, and increased frequency of micronucleation have been reported in RS cells. Cells from RS heterozygotes are normal in these respects, and in vitro complementation of the defects in somatic cell hybrids has been reported. Therefore, in preparation for the isolation of cDNAs that complement the RS defect, the authors investigated various drug treatments to identify an agent that specifically involves the growth of RS cells. Based on the cytogenetic and cell biologic findings, they chose agents that increase micronucleation or inhibit protein synthesis. They found that RS cells are hypersensitive to gamma radiation, mitomycin C, G418 and hygromycin B, but not to colcemid or streptonigrin when compared to normal cells. DNA content and cell viability analysis confirmed that the sensitivity to gamma irradiation was primarily due to increased cell death.

  18. Screening for Muir-Torre syndrome using mismatch repair protein immunohistochemistry of sebaceous neoplasms.

    PubMed

    Roberts, Maegan E; Riegert-Johnson, Douglas L; Thomas, Brittany C; Thomas, Colleen S; Heckman, Michael G; Krishna, Murli; DiCaudo, David J; Bridges, Alina G; Hunt, Katherine S; Rumilla, Kandelaria M; Cappel, Mark A

    2013-06-01

    Screening for the Muir-Torre variant of Lynch Syndrome (LS) using Mismatch Repair (MMR) gene immunohistochemistry (IHC) on sebaceous neoplasms (SNs) is technically feasible. To date, research into the clinical utility of MMR IHC for this indication is limited. We conducted a retrospective chart review of 90 patients with MMR IHC completed on at least one SN from January 2005 to May 2010. SNs included were adenomas, epitheliomas, carcinomas and basal and squamous cell carcinomas with sebaceous differentiation. Of the 90 patients, 13 (14 %) had genetically confirmed or fulfilled clinical criteria for a diagnosis of MTS and 51 patients (57 %) presented with an abnormal MMR IHC result (loss of one or more MMR proteins) on at least one SN. Abnormal IHC had a sensitivity of 85 %, specificity of 48 %, positive predictive value (PPV) of 22 % and negative predictive value (NPV) of 95 % when evaluating for MTS. When personal or family history of colorectal cancer (≥2 family members with a history of colorectal cancer) was taken into consideration, ignoring IHC results, sensitivity was 92 %, specificity was 99 %, PPV was 92 % and NPV was 99 %. MMR IHC on SNs when used to screen for MTS has poor diagnostic utility. We recommend that MMR IHC not be performed routinely on SNs when the patient does not have either personal or family history of colorectal cancer.

  19. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation

    PubMed Central

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-01-01

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation. PMID:25820262

  20. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

  1. Heat shock proteins and chronic fatigue in primary Sjögren's syndrome.

    PubMed

    Bårdsen, Kjetil; Nilsen, Mari Mæland; Kvaløy, Jan Terje; Norheim, Katrine Brække; Jonsson, Grete; Omdal, Roald

    2016-04-01

    Fatigue occurs frequently in patients with cancer, neurological diseases and chronic inflammatory diseases, but the biological mechanisms that lead to and regulate fatigue are largely unknown. When the innate immune system is activated, heat shock proteins (HSPs) are produced to protect cells. Some extracellular HSPs appear to recognize cellular targets in the brain, and we hypothesize that fatigue may be generated by specific HSPs signalling through neuronal or glial cells in the central nervous system. From a cohort of patients with primary Sjögren's syndrome, 20 patients with high and 20 patients with low fatigue were selected. Fatigue was evaluated with a fatigue visual analogue scale. Plasma concentrations of HSP32, HSP60, HSP72 and HSP90α were measured and analysed to determine if there were associations with the level of fatigue. Plasma concentrations of HSP90α were significantly higher in patients with high fatigue compared with those with low fatigue, and there was a tendency to higher concentrations of HSP72 in patients with high fatigue compared with patients with low fatigue. There were no differences in concentrations of HSP32 and HSP60 between the high- and low-fatigue groups. Thus, extracellular HSPs, particularly HSP90α, may signal fatigue in chronic inflammation. This supports the hypothesis that fatigue is generated by cellular defence mechanisms.

  2. Elevated C-reactive protein levels and metabolic syndrome in the elderly

    PubMed Central

    Zuliani, Giovanni; Volpato, Stefano; Galvani, Matteo; Blè, Alessandro; Bandinelli, Stefania; Corsi, Anna Maria; Lauretani, Fulvio; Maggio, Marcello; Guralnik, Jack M.; Fellin, Renato; Ferrucci, Luigi

    2009-01-01

    Metabolic syndrome (MS) and “low grade” systemic inflammation (LGSI) are very common findings in the older population. Although MS and LGSI have been associated in adults, it is not known what is the real contribution of MS, and its single components, to LGSI in older persons, due to the potential confounding effect of comorbidity and aging. We investigated the relationship between increased C-reactive protein (CRP) plasma levels, a marker of LGSI, and MS in 1044 older (≥65 years) community dwelling Italian individuals enrolled the InChianti study. Metabolic syndrome was defined by the NCEP-ATP III-AHA/NHLBI criteria. High sensitivity CRP (hs.CRP) levels were measured by enzyme-linked immunosorbent assay, and defined as high when >3 mg/L. The overall prevalence of MS was 31%. The prevalence of high hs.CRP was 54.5% in subjects with, and 41.3% in those without MS (p < 0.001). MS was associated with high hs.CRP levels after adjustment for age, gender, and comorbidity (OR: 1.93, 95% CI: 1.46-2.55). Compared to subjects with MS and no LGSI, individuals with MS and LGSI were characterized by higher waist circumference, BMI, and HOMA score. Multivariate logistic regression analysis confirmed the association between waist circumference and high hs.CRP levels in subjects with MS (waist circumference III vs. I tertile OR: 2.60, 95% CI: 1.79-3.77) independent of age, gender, and important confounding variables including comorbidity. Additional analyses, conducted with and without dichotomization of hs.CRP levels, confirmed the central role of waist circumference in the LGSI phenomenon, independent of gender and diagnosis of MS. We conclude that in older individuals, MS is associated with LGSI, but the association is mainly supported by a strong independent correlation between waist circumference and high hs.CRP levels. In the absence of this specific MS component, it seems that the contribution of MS to LGSI would be modest at best. PMID:18845301

  3. Renoprotective and blood pressure-lowering effect of dietary soy protein via protein kinase C beta II inhibition in a rat model of metabolic syndrome.

    PubMed

    Palanisamy, Nallasamy; Viswanathan, Periyasamy; Ravichandran, Mambakkam Katchapeswaran; Anuradha, Carani Venkataraman

    2010-01-01

    We studied whether substitution of soy protein for casein can improve insulin sensitivity, lower blood pressure (BP), and inhibit protein kinase C betaII (PKCbetaII) activation in kidney in an acquired model of metabolic syndrome. Adult male rats were fed 4 different diets: (i) starch (60%) and casein (20%) (CCD), (ii) fructose (60%) and casein (20%) (FCD), (iii) fructose (60%) and soy protein (20%) (FSD), and (iv) starch (60%) and soy protein (20%) (CSD). Renal function parameters, BP, pressor mechanisms, PKCbetaII expression, oxidative stress, and renal histology were evaluated after 60 days. FCD rats displayed insulin resistance and significant changes in body weight, kidney weight, urine volume, plasma and urine electrolytes accompanied by significant changes in renal function parameters compared with CCD rats. Elevated BP, plasma angiotensin-converting enzyme (ACE) activity, renal oxidative stress, and reduced nitrite (NO) and kallikrein activity were observed. Western blot analysis revealed enhanced renal expression of membrane-associated PKCbetaII in the FCD group. Histology showed fatty infiltration and thickening of glomeruli while urinary protein profile revealed a 5-fold increase in albumin. Substitution of soy protein for casein improved insulin sensitivity, lowered BP and PKCbetaII activation and restored renal function. Antioxidant action, inhibitory effect on ACE and PKCbetaII activation, and increased availability of kinins and NO could be contributing mechanisms for the benefits of dietary soy protein.

  4. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    PubMed Central

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  5. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins.

    PubMed

    Blanchoin, L; Amann, K J; Higgs, H N; Marchand, J B; Kaiser, D A; Pollard, T D

    2000-04-27

    Most nucleated cells crawl about by extending a pseudopod that is driven by the polymerization of actin filaments in the cytoplasm behind the leading edge of the plasma membrane. These actin filaments are linked into a network by Y-branches, with the pointed end of each filament attached to the side of another filament and the rapidly growing barbed end facing forward. Because Arp2/3 complex nucleates actin polymerization and links the pointed end to the side of another filament in vitro, a dendritic nucleation model has been proposed in which Arp2/3 complex initiates filaments from the sides of older filaments. Here we report, by using a light microscopy assay, many new features of the mechanism. Branching occurs during, rather than after, nucleation by Arp2/3 complex activated by the Wiskott-Aldrich syndrome protein (WASP) or Scar protein; capping protein and profilin act synergistically with Arp2/3 complex to favour branched nucleation; phosphate release from aged actin filaments favours dissociation of Arp2/3 complex from the pointed ends of filaments; and branches created by Arp2/3 complex are relatively rigid. These properties result in the automatic assembly of the branched actin network after activation by proteins of the WASP/Scar family and favour the selective disassembly of proximal regions of the network.

  6. Endothelial cells microparticle-associated protein disulfide isomerase promotes platelet activation in metabolic syndrome

    PubMed Central

    Li, Yi-hui; Song, Dai-jun; Chen, Tong-shuai; Zhang, Wei; Zhong, Ming; Zhang, Yun; Xing, Yan-qiu; Wang, Zhi-hao

    2016-01-01

    Background Metabolic syndrome (MetS) is a common challenge in the world, and the platelet activation is enhanced in MetS patients. However, the fundamental mechanism that underlies platelet activation in MetS remains incompletely understood. Endothelial cells are damaged seriously in MetS patients, then they release more endothelial microparticles (EMPs). After all, whether the EMPs participate in platelet activation is still obscure. If they were, how did they work? Results We demonstrated that the levels of EMPs, PMPs (platelet derived microparticles) and microparticle-carried-PDI activity increased in MetS patients. IR endothelial cells released more EMPs, the EMP-PDI was more activated. EMPs can enhance the activation of CD62P, GPIIb/IIIa and platelet aggregation and this process can be partly inhibited by PDI inhibitor such as RL90 and rutin. Activated platelets stimulated by EMPs expressed more PDI on cytoplasm and released more PMPs. Materials and Methods We obtained plasma from 23 MetS patients and 8 normal healthy controls. First we built insulin resistance (IR) model of human umbilical vein endothelial cells (HUVECs), and then we separated EMPs from HUVECs culture medium and used these EMPs to stimulate platelets. Levels of microparticles, P-selectin(CD62P), Glycoprotein IIb/IIIa (GPIIb/IIIa) were detected by flow cytometry and levels of EMPs were detected by enzyme-linked immunosorbent assay (ELISA). The protein disulfide isomerase (PDI) activity was detected by insulin transhydrogenase assay. Platelet aggregation was assessed by turbidimetry. Conclusion EMPs can promote the activation of GPIIb/IIIa in platelets and platelet aggregation by the PDI which is carried on the surface of EMPs. PMID:27825126

  7. Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome.

    PubMed

    Hoadley, Kelly A; Xue, Yutong; Ling, Chen; Takata, Minoru; Wang, Weidong; Keck, James L

    2012-03-20

    The RMI subcomplex (RMI1/RMI2) functions with the BLM helicase and topoisomerase IIIα in a complex called the "dissolvasome," which separates double-Holliday junction DNA structures that can arise during DNA repair. This activity suppresses potentially harmful sister chromatid exchange (SCE) events in wild-type cells but not in cells derived from Bloom syndrome patients with inactivating BLM mutations. The RMI subcomplex also associates with FANCM, a component of the Fanconi anemia (FA) core complex that is important for repair of stalled DNA replication forks. The RMI/FANCM interface appears to help coordinate dissolvasome and FA core complex activities, but its precise role remains poorly understood. Here, we define the structure of the RMI/FANCM interface and investigate its roles in coordinating cellular DNA-repair activities. The X-ray crystal structure of the RMI core complex bound to a well-conserved peptide from FANCM shows that FANCM binds to both RMI proteins through a hydrophobic "knobs-into-holes" packing arrangement. The RMI/FANCM interface is shown to be critical for interaction between the components of the dissolvasome and the FA core complex. FANCM variants that substitute alanine for key interface residues strongly destabilize the complex in solution and lead to increased SCE levels in cells that are similar to those observed in blm- or fancm-deficient cells. This study provides a molecular view of the RMI/FANCM complex and highlights a key interface utilized in coordinating the activities of two critical eukaryotic DNA-damage repair machines.

  8. CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling.

    PubMed

    Chen, Qian; Zhu, Yong-Chuan; Yu, Jing; Miao, Sheng; Zheng, Jing; Xu, Li; Zhou, Yang; Li, Dan; Zhang, Chi; Tao, Jiong; Xiong, Zhi-Qi

    2010-09-22

    Mutations in cyclin-dependent kinase-like 5 (CDKL5), also known as serine/threonine kinase 9 (STK9), have been identified in patients with Rett syndrome (RTT) and X-linked infantile spasm. However, the function of CDKL5 in the brain remains unknown. Here, we report that CDKL5 is a critical regulator of neuronal morphogenesis. We identified a neuron-specific splicing variant of CDKL5 whose expression was markedly induced during postnatal development of the rat brain. Downregulating CDKL5 by RNA interference (RNAi) in cultured cortical neurons inhibited neurite growth and dendritic arborization, whereas overexpressing CDKL5 had opposite effects. Furthermore, knocking down CDKL5 in the rat brain by in utero electroporation resulted in delayed neuronal migration, and severely impaired dendritic arborization. In contrast to its proposed function in the nucleus, we found that CDKL5 regulated dendrite development through a cytoplasmic mechanism. In fibroblasts and in neurons, CDKL5 colocalized and formed a protein complex with Rac1, a critical regulator of actin remodeling and neuronal morphogenesis. Overexpression of Rac1 prevented the inhibition of dendrite growth caused by CDKL5 knockdown, and the growth-promoting effect of ectopically expressed CDKL5 on dendrites was abolished by coexpressing a dominant-negative form of Rac1. Moreover, CDKL5 was required for brain-derived neurotrophic factor (BDNF)-induced activation of Rac1. Together, these results demonstrate a critical role of CDKL5 in neuronal morphogenesis and identify a Rho GTPase signaling pathway which may contribute to CDKL5-related disorders.

  9. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet–Biedl syndrome

    PubMed Central

    Datta, Poppy; Allamargot, Chantal; Hudson, Joseph S.; Andersen, Emily K.; Bhattarai, Sajag; Drack, Arlene V.; Sheffield, Val C.; Seo, Seongjin

    2015-01-01

    Compartmentalization and polarized protein trafficking are essential for many cellular functions. The photoreceptor outer segment (OS) is a sensory compartment specialized for phototransduction, and it shares many features with primary cilia. As expected, mutations disrupting protein trafficking to cilia often disrupt protein trafficking to the OS and cause photoreceptor degeneration. Bardet–Biedl syndrome (BBS) is one of the ciliopathies associated with defective ciliary trafficking and photoreceptor degeneration. However, precise roles of BBS proteins in photoreceptor cells and the underlying mechanisms of photoreceptor degeneration in BBS are not well understood. Here, we show that accumulation of non-OS proteins in the OS underlies photoreceptor degeneration in BBS. Using a newly developed BBS mouse model [Leucine zipper transcription factor-like 1 (Lztfl1)/Bbs17 mutant], isolated OSs, and quantitative proteomics, we determined 138 proteins that are enriched more than threefold in BBS mutant OS. In contrast, only eight proteins showed a more than threefold reduction. We found striking accumulation of Stx3 and Stxbp1/Munc18-1 and loss of polarized localization of Prom1 within the Lztfl1 and Bbs1 mutant OS. Ultrastructural analysis revealed that large vesicles are formed in the BBS OS, disrupting the lamellar structure of the OS. Our findings suggest that accumulation (and consequent sequestration) of non-OS proteins in the OS is likely the primary cause of photoreceptor degeneration in BBS. Our data also suggest that a major function of BBS proteins in photoreceptors is to transport proteins from the OS to the cell body or to prevent entry of non-OS proteins into the OS. PMID:26216965

  10. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus.

    PubMed

    Kulkarni, Amod D; Kiron, Viswanath; Rombout, Jan H W M; Brinchmann, Monica F; Fernandes, Jorge M O; Sudheer, Naduvilamuriparampu S; Singh, Bright I S

    2014-07-01

    White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.

  11. Elevated expression of beta-site amyloid precursor protein cleaving enzyme 2 in brains of patients with Down syndrome.

    PubMed

    Motonaga, Kozo; Itoh, Masayuki; Becker, Laurence E; Goto, Yu-ichi; Takashima, Sachio

    2002-06-21

    The gene encoding the beta-site amyloid precursor protein cleaving enzyme 2 (BACE2) has been determined to be located on the long arm of chromosome 21 at 21q22.3. BACE2 cleaves the amyloid precursor protein at the beta-secretase site and is thought to contribute to amyloid beta protein production. In the present study, changes in the expression of BACE2 were investigated immunohistochemically in the frontal cortex of patients with Down syndrome (DS). The immunoreactivity for BACE2 was detected in neurofibrillary tangle-bearing neurons from the elderly DS brains with Alzheimer-type neuropathology, but were not detected in those of DS brains without Alzheimer-type neuropathology or of control brains of any age. This suggests the possibility that the elevated expression of BACE2 is involved in the Alzheimer-type neuropathology of DS.

  12. Two-Dimensional Differential Gel Electrophoresis to Identify Protein Biomarkers in Amniotic Fluid of Edwards Syndrome (Trisomy 18) Pregnancies

    PubMed Central

    Hsu, Te-Yao; Lin, Hao; Hung, Hsuan-Ning; Yang, Kuender D.; Ou, Chia-Yu; Tsai, Ching-Chang; Cheng, Hsin-Hsin; Chung, Su-Hai; Cheng, Bi-Hua; Wong, Yi-Hsun; Chou, An Kuo; Hsiao, Chang-Chun

    2016-01-01

    Background Edwards syndrome (ES) is a severe chromosomal abnormality with a prevalence of about 0.8 in 10,000 infants born alive. The aims of this study were to identify candidate proteins associated with ES pregnancies from amniotic fluid supernatant (AFS) using proteomics, and to explore the role of biological networks in the pathophysiology of ES. Methods AFS from six second trimester pregnancies with ES fetuses and six normal cases were included in this study. Fluorescence-based two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) were used for comparative proteomic analysis. The identified proteins were further validated by Western blotting and the role of biological networks was analyzed. Results Twelve protein spots were differentially expressed by more than 1.5-fold in the AFS of the ES pregnancies. MALDI-TOF/MS identified one up-regulated protein: apolipoprotein A1 (ApoA1), and four under-regulated proteins: vitamin D binding protein (VDBP), alpha-1-antitrypsin (A1AT), insulin-like growth factor-binding protein 1 (IGFBP-1), and transthyretin (TTR). Western blot and densitometric analysis of ApoA1, A1AT, IGFBP-1, and TTR confirmed the alteration of these proteins in the amniotic fluid samples. Biological network analysis revealed that the proteins of the ES AFS were involved mainly in lipid and hormone metabolism, immune response, and cardiovascular disease. Conclusions These five proteins may be involved in the pathogenesis of ES. Further studies are needed to explore. PMID:26752631

  13. Integrated microRNA and protein expression analysis reveals novel microRNA regulation of targets in fetal down syndrome

    PubMed Central

    Lin, Hua; Sui, Weiguo; Li, Wuxian; Tan, Qiupei; Chen, Jiejing; Lin, Xiuhua; Guo, Hui; Ou, Minglin; Xue, Wen; Zhang, Ruohan; Dai, Yong

    2016-01-01

    Down syndrome (DS) is caused by trisomy of human chromosome 21 and is associated with a number of deleterious phenotypes. To investigate the role of microRNA (miRNA) in the regulation of DS, high-throughput Illumina sequencing technology and isobaric tagging for relative and absolute protein quantification analysis were utilized for simultaneous expression profiling of miRNA and protein in fetuses with DS and normal fetuses. A total of 344 miRNAs were associated with DS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to investigate the proteins found to be differentially expressed. Functionally important miRNAs were determined by identifying enriched or depleted targets in the transcript and the protein expression levels were consistent with miRNA regulation. The results indicated that GRB2, TMSB10, RUVBL2, the hsa-miR-329 and hsa-miR-27b, hsa-miR-27a targets, and MAPK1, PTPN11, ACTA2 and PTK2 or other differentially expressed proteins were connected with each other directly or indirectly. Integrative analysis of miRNAs and proteins provided an expansive view of the molecular signaling pathways in DS. PMID:27666924

  14. Assay of urinary protein-bound sialic acid can differentiate steroidsensitive nephrotic syndrome from steroid-resistant cases.

    PubMed

    Gopal, Niranjan; Koner, Bidhan Chandra; Bhattacharjee, Atanu; Bhat, Vishnu

    2016-01-01

    The protein selectivity index as measured from the ratio of urinary immunoglobulin to albumin failed to differentiate between steroid-sensitive (SS) and steroid-resistant (SR) cases of nephrotic syndrome (NS). Sialic acid contributes negative charges to many plasma proteins. The negative charge is a determinant of protein excretion rate. The prognostic significance of assay of urinary excretion of protein-bound sialic acid in NS has not been evaluated. Hence, the present study was designed to evaluate whether measurement of urinary protein bound sialic acid (UPBSA) can be used as a marker to differentiate SS from SR cases of NS. The urine samples of 70 (47 SS and 23 SR) pediatric NS children were assayed for UPBSA by Aminoff's method. The levels were compared and the receiver-operator curve was drawn to determine the optimum cutoff point to differentiate among the groups before starting the therapy. The excretion of UPBSA in SR cases of NS was significantly higher than that of SS cases (P<0.05). The optimum cutoff limit for UPBSA was 2.71 μg/mg of proteins with 75% sensitivity and 75.5% specificity for differentiating SS cases from SR cases (area under the plasma- concentration time curve=0.814, P=0.009). We conclude that UPBSA can differentiate SR cases from SS cases of NS in pediatric patients and may help in predicting the response to steroid therapy.

  15. Co-interactive DNA-binding between a novel, immunophilin-like shrimp protein and VP15 nucleocapsid protein of white spot syndrome virus.

    PubMed

    Sangsuriya, Pakkakul; Senapin, Saengchan; Huang, Wei-Pang; Lo, Chu-Fang; Flegel, Timothy W

    2011-01-01

    White spot syndrome virus (WSSV) is one of the most serious pathogens of penaeid shrimp. Although its genome has been completely characterized, the functions of most of its putative proteins are not yet known. It has been suggested that the major nucleocapsid protein VP15 is involved in packaging of the WSSV genome during virion formation. However, little is known in its relationship with shrimp host cells. Using the yeast two-hybrid approach to screen a shrimp lymphoid organ (LO) cDNA library for proteins that might interact with VP15, a protein named PmFKBP46 was identified. It had high sequence similarity to a 46 kDa-immunophilin called FKBP46 from the lepidopteran Spodoptera frugiperda (the fall armyworm). The full length PmFKBP46 consisted of a 1,257-nucleotide open reading frame with a deduced amino acid sequence of 418 residues containing a putative FKBP-PPIase domain in the C-terminal region. Results from a GST pull-down assay and histological co-localization revealed that VP15 physically interacted with PmFKBP46 and that both proteins shared the same subcellular location in the nucleus. An electrophoretic mobility shift assay indicated that PmFKBP46 possessed DNA-binding activity and functionally co-interacted with VP15 in DNA binding. The overall results suggested that host PmFKBP46 might be involved in genome packaging by viral VP15 during virion assembly.

  16. [Progress in research on defective protein trafficking and functional restoration in HERG-associated long QT syndrome].

    PubMed

    Fang, Peiliang; Lian, Jiangfang

    2016-02-01

    The human ether-a-go-go related gene (HERG) encodes the α -subunit of the rapid component of the delayed rectifier K(+) channel, which is essential for the third repolarization of the action potential of human myocardial cells. Mutations of the HERG gene can cause type II hereditary long QT syndrome (LQT2), characterized by prolongation of the QT interval, abnormal T wave, torsade de pointes, syncope and sudden cardiac death. So far more than 300 HERG mutations have been identified, the majority of which can cause LQT2 due to HERG protein trafficking defect. It has been reported that certain drugs can induce acquired long QT syndrome through directly blocking the pore and/or affecting the HERG trafficking. The trafficking defects and K(+) currents can be restored with low temperature and certain drugs. However, the mechanisms underlying defective trafficking caused by HERG mutations and the inhibition/restoration of HERG trafficking by drugs are still unknown. This review summarizes the current understanding of the molecular mechanisms including HERG trafficking under physiological and pathological conditions, and the effects of drugs on the HERG trafficking, in order to provide theoretical evidence for the diagnosis and treatment of long QT syndrome.

  17. Type and amount of dietary protein in the treatment of metabolic syndrome: a randomized controlled trial12

    PubMed Central

    Hill, Alison M; Harris Jackson, Kristina A; Roussell, Michael A; West, Sheila G; Kris-Etherton, Penny M

    2015-01-01

    Background: Food-based dietary patterns emphasizing plant protein that were evaluated in the Dietary Approaches to Stop Hypertension (DASH) and OmniHeart trials are recommended for the treatment of metabolic syndrome (MetS). However, the contribution of plant protein to total protein in these diets is proportionally less than that of animal protein. Objective: This study compared 3 diets varying in type (animal compared with plant) and amount of protein on MetS criteria. Design: Sixty-two overweight adults with MetS consumed a healthy American diet for 2 wk before being randomly allocated to either a modified DASH diet rich in plant protein (18% protein, two-thirds plant sources, n = 9 males, 12 females), a modified DASH diet rich in animal protein (Beef in an Optimal Lean Diet: 18.4% protein, two-thirds animal sources, n = 9 males, 11 females), or a moderate-protein diet (Beef in an Optimal Lean Diet Plus Protein: 27% protein, two-thirds animal sources, n = 10 males, 11 females). Diets were compared across 3 phases of energy balance: 5 wk of controlled (all foods provided) weight maintenance (WM), 6 wk of controlled weight loss (minimum 500-kcal/d deficit) including exercise (WL), and 12 wk of prescribed, free-living weight loss (FL). The primary endpoint was change in MetS criteria. Results: All groups achieved ∼5% weight loss at the end of the WL phase and maintained it through FL, with no between-diet differences (WM compared with WL, FL, P < 0.0001; between diets, P = NS). All MetS criteria decreased independent of diet composition (main effect of phase, P < 0.01; between diets, P = NS). After WM, all groups had a MetS prevalence of 80–90% [healthy American diet (HAD) compared with WM, P = NS], which decreased to 50–60% after WL and was maintained through FL (HAD, WM vs WL, FL, P < 0.01). Conclusions: Weight loss was the primary modifier of MetS resolution in our study population regardless of protein source or amount. Our findings demonstrate that heart

  18. Inverse Association of Plasma IgG Antibody to Aggregatibacter actinomycetemcomitans and High C-Reactive Protein Levels in Patients with Metabolic Syndrome and Periodontitis.

    PubMed

    Thanakun, Supanee; Pornprasertsuk-Damrongsri, Suchaya; Gokyu, Misa; Kobayashi, Hiroaki; Izumi, Yuichi

    2016-01-01

    The association between clinically diagnosed periodontitis, a common chronic oral infection, and metabolic syndrome has been previously reported. The aim of this study was to investigate the association of plasma IgG levels against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia, C-reactive protein, and periodontal status with metabolic syndrome. Plasma IgG levels and C-reactive protein were measured by enzyme-linked immunosorbent assay, and salivary levels of A. actinomycetemcomitans and P. gingivalis were determined by quantitative real-time polymerase chain reaction. Among 127 individuals aged 35-76 years, 57 participants had metabolic syndrome and severe periodontitis, 25 had metabolic syndrome and an absence of severe periodontitis, 17 healthy individuals had severe periodontitis, and 28 healthy individuals were without severe periodontitis. Patients with metabolic syndrome had reduced humoral immune response to A. actinomycetemcomitans (p = 0.008), regardless of their salivary levels or periodontitis status compared with healthy participants. The IgG antibody response to P. gingivalis, regardless of their salivary levels or participants' health condition, was significantly higher in severe periodontitis patients (p<0.001). Plasma IgG titers for P. intermedia were inconsistent among metabolic syndrome or periodontal participants. Our results indicate that the presence of lower levels of IgG antibodies to A. actinomycetemcomitans (OR = 0.1; 95%CI 0.0-0.7), but not P. gingivalis, a severe periodontitis status (OR = 7.8; 95%CI 1.1-57.0), high C-reactive protein levels (OR = 9.4; 95%CI 1.0-88.2) and body mass index (OR = 3.0; 95%CI 1.7-5.2), are associated with the presence of metabolic syndrome. The role of the decreased IgG antibody response to A. actinomycetemcomitans, increased C-reactive protein levels on the association between periodontal disease and metabolic syndrome in a group of Thai patients is suggested.

  19. WASP is activated by phosphatidylinositol-4,5-bisphosphate to restrict synapse growth in a pathway parallel to bone morphogenetic protein signaling

    PubMed Central

    Habets, Ron L. P.; Slabbaert, Jan R.; Verstreken, Patrik

    2010-01-01

    Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is a membrane lipid involved in several signaling pathways. However, the role of this lipid in the regulation of synapse growth is ill-defined. Here we identify PI(4,5)P2 as a gatekeeper of neuromuscular junction (NMJ) size. We show that PI(4,5)P2 levels in neurons are critical in restricting synaptic growth by localizing and activating presynaptic Wiscott-Aldrich syndrome protein/WASP (WSP). This function of WSP is independent of bone morphogenetic protein (BMP) signaling but is dependent on Tweek, a neuronally expressed protein. Loss of PI(4,5)P2-mediated WSP activation results in increased formation of membrane-organizing extension spike protein (Moesin)-GFP patches that concentrate at sites of bouton growth. Based on pharmacological and genetic studies, Moesin patches mark polymerized actin accumulations and correlate well with NMJ size. We propose a model in which PI(4,5)P2- and WSP-mediated signaling at presynaptic termini controls actin-dependent synapse growth in a pathway at least in part in parallel to synaptic BMP signaling. PMID:20844206

  20. Succination is Increased on Select Proteins in the Brainstem of the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) Knockout Mouse, a Model of Leigh Syndrome*

    PubMed Central

    Piroli, Gerardo G.; Manuel, Allison M.; Clapper, Anna C.; Walla, Michael D.; Baatz, John E.; Palmiter, Richard D.; Quintana, Albert; Frizzell, Norma

    2016-01-01

    Elevated fumarate concentrations as a result of Krebs cycle inhibition lead to increases in protein succination, an irreversible post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). Metabolic events that reduce NADH re-oxidation can block Krebs cycle activity; therefore we hypothesized that oxidative phosphorylation deficiencies, such as those observed in some mitochondrial diseases, would also lead to increased protein succination. Using the Ndufs4 knockout (Ndufs4 KO) mouse, a model of Leigh syndrome, we demonstrate for the first time that protein succination is increased in the brainstem (BS), particularly in the vestibular nucleus. Importantly, the brainstem is the most affected region exhibiting neurodegeneration and astrocyte and microglial proliferation, and these mice typically die of respiratory failure attributed to vestibular nucleus pathology. In contrast, no increases in protein succination were observed in the skeletal muscle, corresponding with the lack of muscle pathology observed in this model. 2D SDS-PAGE followed by immunoblotting for succinated proteins and MS/MS analysis of BS proteins allowed us to identify the voltage-dependent anion channels 1 and 2 as specific targets of succination in the Ndufs4 knockout. Using targeted mass spectrometry, Cys77 and Cys48 were identified as endogenous sites of succination in voltage-dependent anion channels 2. Given the important role of voltage-dependent anion channels isoforms in the exchange of ADP/ATP between the cytosol and the mitochondria, and the already decreased capacity for ATP synthesis in the Ndufs4 KO mice, we propose that the increased protein succination observed in the BS of these animals would further decrease the already compromised mitochondrial function. These data suggest that fumarate is a novel biochemical link that may contribute to the progression of the neuropathology in this mitochondrial disease model

  1. Aase syndrome

    MedlinePlus

    ... make ribosomal proteins) This condition is similar to Diamond-Blackfan anemia, and the 2 conditions should not ... chromosome 19 is found in some people with Diamond-Blackfan anemia. The anemia in Aase syndrome is ...

  2. Surf1, Associated with Leigh Syndrome in Humans, Is a Heme-binding Protein in Bacterial Oxidase Biogenesis*

    PubMed Central

    Bundschuh, Freya A.; Hannappel, Achim; Anderka, Oliver; Ludwig, Bernd

    2009-01-01

    Biogenesis of mitochondrial cytochrome c oxidase (COX) relies on a large number of assembly factors, among them the transmembrane protein Surf1. The loss of human Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder caused by severe COX deficiency. In the bacterium Paracoccus denitrificans, two homologous proteins, Surf1c and Surf1q, were identified, which we characterize in the present study. When coexpressed in Escherichia coli together with enzymes for heme a synthesis, the bacterial Surf1 proteins bind heme a in vivo. Using redox difference spectroscopy and isothermal titration calorimetry, the binding of the heme cofactor to purified apo-Surf1c and apo-Surf1q is quantified: Each of the Paracoccus proteins binds heme a in a 1:1 stoichiometry and with Kd values in the submicromolar range. In addition, we identify a conserved histidine as a residue crucial for heme binding. Contrary to most earlier concepts, these data support a direct role of Surf1 in heme a cofactor insertion into COX subunit I by providing a protein-bound heme a pool. PMID:19625251

  3. Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins.

    PubMed

    Chen, An-Jing; Wang, Shuai; Zhao, Xiao-Fan; Yu, Xiao-Qiang; Wang, Jin-Xing

    2011-08-01

    Recent studies have shown that the ubiquitin (Ub) proteasome pathway (UPP) is closely related to immune defense. We have identified a ubiquitin-conjugating enzyme, E2, from the Chinese white shrimp, Fenneropenaeus chinensis (FcUbc). Injection of recombinant FcUbc protein (rFcUbc) reduced the mortality of shrimp infected with white spot syndrome virus (WSSV) and inhibited replication of WSSV. rFcUbc, but not a mutant FcUbc (mFcUbc), bound to WSSV RING domains (WRDs) from four potential E3 ligase proteins of WSSV in vitro. Importantly, rFcUbc could ubiquitinate the RING domains (named WRD2 and WRD3) of WSSV277 and WSSV304 proteins in vitro and the two proteins in WSSV-infected Drosophila melanogaster Schneider 2 (S2) cells. Furthermore, overexpression of FcUbc increased ubiquitination of WSSV277 and WSSV304 during WSSV infection. In summary, our study demonstrates that FcUbc from Chinese white shrimp inhibited WSSV replication and could ubiquitinate WSSV RING domain-containing proteins. This is the first report about antiviral function of Ubc E2 in shrimp.

  4. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome.

    PubMed

    Higuera, Clara; Gardiner, Katheleen J; Cios, Krzysztof J

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets.

  5. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome

    PubMed Central

    Higuera, Clara; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets. PMID:26111164

  6. Identification and characterization of a prawn white spot syndrome virus gene that encodes an envelope protein VP31

    SciTech Connect

    Li Li; Xie Xixian; Yang Feng . E-mail: mbiotech@public.xm.fj.cn

    2005-09-15

    Based on a combination of SDS-PAGE and mass spectrometry, a protein with an apparent molecular mass of 31 kDa (termed as VP31) was identified from purified shrimp white spot syndrome virus (WSSV) envelope fraction. The resulting amino acid (aa) sequence matched an open reading frame (WSV340) of the WSSV genome. This ORF contained 783 nucleotides (nt), encoding 261 aa. A fragment of WSV340 was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with a 6His-tag, and then specific antibody was raised. Western blot analysis and the immunoelectron microscope method (IEM) confirmed that VP31 was present exclusively in the viral envelope fraction. The neutralization experiment suggested that VP31 might play an important role in WSSV infectivity.

  7. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1.

    PubMed Central

    Waterham, H R; de Vries, Y; Russel, K A; Xie, W; Veenhuis, M; Cregg, J M

    1996-01-01

    We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1. PMID:8628321

  8. Evaluation of Serum Pregnancy Associated Plasma Protein-A & Plasma D-Dimer in Acute Coronary Syndrome

    PubMed Central

    Thomas, Vivian Samuel

    2016-01-01

    Introduction Acute coronary syndrome (ACS), a spectrum comprising unstable angina pectoris, ST Elevated Myocardial Infarction (STEMI) & Non ST Elevated Myocardial Infarction (NSTEMI) is the major cause of presentation in Emergency Department today. Though ECG and cardiac enzymes are used for diagnosis, they mislead the diagnosis sometimes and delay in treatment initiation. This leads us to search certain new parameters which reflect the pathophysiology of ACS. Markers of plaque stability like Pregnancy Associated Plasma Protein-A and D-Dimer, a marker of ongoing thrombosis are found to be better markers in early diagnosis. Aim To evaluate the diagnostic competence of PAPP-A and D-Dimer in acute coronary syndrome over CK-MB and to compare with the inflammatory marker High Sensitive C-Reactive Protein (hs-CRP) which is associated with atherosclerosis. Materials and Methods Fifty patients presenting with acute onset of chest pain to Emergency Department with or without ECG changes served as cases and 50 healthy people served as controls. Serum PAPP-A is measured by Enzyme Linked Immunosorbent Assay (ELISA), D-Dimer and hs-CRP by using Latex Turbidimetry method. Results A statistical significant difference of PAPP-A and D-Dimer was noted between the ACS and controls (p < 0.001) whereas CK-MB shows no much difference (p 0.09). Statistically significant positive correlation is noted between parameters. Conclusion PAPP-A marker of plaque instability and D-Dimer marker of ongoing thrombosis are raised in acute coronary syndrome and thus can be considered as one of the marker in ACS for diagnosis. PMID:26894054

  9. Electrophysiological Characteristics of the LQT2 Syndrome Mutation KCNH2-G572S and Regulation by Accessory Protein KCNE2

    PubMed Central

    Liu, Li; Tian, Jinwen; Lu, Caiyi; Chen, Xi; Fu, Yicheng; Xu, Bin; Zhu, Chao; Sun, Yanmei; Zhang, Yu; Zhao, Ying; Li, Yang

    2016-01-01

    Mutations in hERG cause long QT syndrome type 2 which is characterized by a prolonged QT interval on electrocardiogram and predisposition to life-threatening ventricular tachyarrhythmia, syncope, and sudden death. hERG-G572S induces trafficking defects of hERG channel protein from Golgi to the plasma membrane and results in a dominant negative suppression of hERG current density. As an accessory β subunit, KCNE2 promotes hERG migration from Golgi to cellular membrane. In this study, we investigated the rescue effect of KCNE2 in a G572S mutation of hERG. Transfection was performed into HEK293 cells. Patch clamp technique, western blotting analyses and confocal microscopic examination were used. Results showed that KCNE2 had a significantly enhanced effect on G572S mutation current. The increase of current was largest at KCNH2:KCNE2 of 1:3. Confocal images showed co-expressing G572S and KCNE2 could cause a substantial up-regulated membrane protein (155 kDa) expression. Expression of membrane protein accumulated markedly with increasing ratio of KCNH2:KCNE2. G572S defective mutant could be restored by both KCNE2 and lower temperature (27°C), which suggested that the lower temperature could be the favorable circumstances for the rescue function of KCNE2. In this study, we successfully set up “the action potential” on the HEK 293 cells by genetically engineered to express Kir2.1, Nav1.5, and Kv11.1, wherein on reaching over an excitation threshold by current injection. The results suggested that KCNE2 could shorten action potential duration which was prolonged by G572S. These findings described electrophysiological characteristics of the LQT2 syndrome mutation KCNH2-G572S and regulation by accessory protein KCNE2, and provided a clue about LQT2 and relative rescue mechanism. PMID:28082916

  10. A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome.

    PubMed

    Samaco, Rodney C; Fryer, John D; Ren, Jun; Fyffe, Sharyl; Chao, Hsiao-Tuan; Sun, Yaling; Greer, John J; Zoghbi, Huda Y; Neul, Jeffrey L

    2008-06-15

    Rett Syndrome, an X-linked dominant neurodevelopmental disorder characterized by regression of language and hand use, is primarily caused by mutations in methyl-CpG-binding protein 2 (MECP2). Loss of function mutations in MECP2 are also found in other neurodevelopmental disorders such as autism, Angelman-like syndrome and non-specific mental retardation. Furthermore, duplication of the MECP2 genomic region results in mental retardation with speech and social problems. The common features of human neurodevelopmental disorders caused by the loss or increase of MeCP2 function suggest that even modest alterations of MeCP2 protein levels result in neurodevelopmental problems. To determine whether a small reduction in MeCP2 level has phenotypic consequences, we characterized a conditional mouse allele of Mecp2 that expresses 50% of the wild-type level of MeCP2. Upon careful behavioral analysis, mice that harbor this allele display a spectrum of abnormalities such as learning and motor deficits, decreased anxiety, altered social behavior and nest building, decreased pain recognition and disrupted breathing patterns. These results indicate that precise control of MeCP2 is critical for normal behavior and predict that human neurodevelopmental disorders will result from a subtle reduction in MeCP2 expression.

  11. ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production

    PubMed Central

    Vieyres, Gabrielle; Welsch, Kathrin; Gerold, Gisa; Gentzsch, Juliane; Kahl, Sina; Vondran, Florian W. R.; Kaderali, Lars; Pietschmann, Thomas

    2016-01-01

    Hepatitis C virus (HCV) particles closely mimic human very-low-density lipoproteins (VLDL) to evade humoral immunity and to facilitate cell entry. However, the principles that govern HCV association with VLDL components are poorly defined. Using an siRNA screen, we identified ABHD5 (α/β hydrolase domain containing protein 5, also known as CGI-58) as a new host factor promoting both virus assembly and release. ABHD5 associated with lipid droplets and triggered their hydrolysis. Importantly, ABHD5 Chanarin-Dorfman syndrome mutants responsible for a rare lipid storage disorder in humans were mislocalised, and unable to consume lipid droplets or support HCV production. Additional ABHD5 mutagenesis revealed a novel tribasic motif that does not influence subcellular localization but determines both ABHD5 lipolytic and proviral properties. These results indicate that HCV taps into the lipid droplet triglyceride reservoir usurping ABHD5 lipase cofactor function. They also suggest that the resulting lipid flux, normally devoted to VLDL synthesis, also participates in the assembly and release of the HCV lipo-viro-particle. Altogether, our study provides the first association between the Chanarin-Dorfman syndrome protein and an infectious disease and sheds light on the hepatic manifestations of this rare genetic disorder as well as on HCV morphogenesis. PMID:27124600

  12. Occupational rhinoconjunctivitis and asthma caused by chicory and oral allergy syndrome associated with bet v 1-related protein.

    PubMed

    Pirson, F; Detry, B; Pilette, C

    2009-01-01

    We report the case of a patient working in a factory producing inulin from chicory who developed rhinoconjunctivitis and asthma to the dust of dry chicory roots and oral allergy syndrome to raw fruits and vegetables. Nonspecific bronchial hyperresponsiveness was diagnosed. A provocation test with dry chicory induced acute rhinoconjunctivitis and an immediate asthmatic response with no further clinical symptoms. Skin prick test results were positive to birch pollen and fresh/dry chicory, and negative for inulin. Specific immunoglobulin (Ig) E was > 100 kU(A)/L for rBet v 1. Specific IgE were detected by immunoblotting chicory extract with the patient's serum, but not with a control serum. The main immunoreactive band corresponded to a protein with a molecular weight of approximately 17 kDa, like Bet v 1, and this immunoreactivity was effectively inhibited by preincubating serum with purified Bet v 1. This case documents occupational rhinoconjunctivitis and asthma due to IgE sensitization to inhaled chicory allergens, including one identified for the first time as a 17-kD Bet v 1 homologous protein, with secondary oral allergy syndrome to related foods.

  13. Analysis of N- and O-Linked Protein Glycosylation in Children with Prader-Willi Syndrome

    ERIC Educational Resources Information Center

    Munce, T.; Heussler, H. S.; Bowling, F. G.

    2010-01-01

    Background: Current genotype-phenotype correlations in Prader-Willi syndrome (PWS) are struggling to give an explanation of the diversity in phenotype and there is a need to move towards a molecular understanding of PWS. A range of functions related to glycoproteins are involved in the pathophysiology of PWS and it may be that abnormal…

  14. Studies of the viral binding proteins of shrimp BP53, a receptor of white spot syndrome virus.

    PubMed

    Li, Chen; Gao, Xiao-Xiao; Huang, Jie; Liang, Yan

    2016-02-01

    The specific binding between viral attachment proteins (VAPs) of a virus and its cellular receptors on host cells mediates virus entry into host cells, which triggers subsequent viral infections. Previous studies indicate that F1 ATP synthase β subunit (named BP53), is found on the surface of shrimp cells and involved in white spot syndrome virus (WSSV) infection by functioning as a potential viral receptor. Herein, in a far-western blotting assay, three WSSV proteins with molecular weights of 28 kDa, 37 kDa, and >50 kDa were found to interact with BP53. The 28 kDa and 37 kDa proteins were identified as the envelope protein VP28 and VP37 of WSSV respectively, which could be recognized by the polyclonal antibodies. Enzyme-linked immunosorbent binding assays revealed that VP37 contributed to almost 80% of the binding capability for BP53 compared with the same amount of total WSSV protein. The relationship between BP53 and its complementary interacting protein, VP37, was visualized using a co-localization assay. Bound VP37 on the cell surface co-localized with BP53 and shared a similar subcellular location on the outer surface of shrimp cells. Pearson's correlation coefficients reached to 0.67 ± 0.05 and the Mander's overlap coefficients reached 0.70 ± 0.05, which indicated a strong relationship between the localization of BP53 and bound rVP37. This provides evidence for an interaction between BP53 and VP37 obtained at the molecular and cellular levels, supporting the hypothesis that BP53 serves as a receptor for WSSV by binding to VP37. The identification of the viral binding proteins of shrimp BP53 is helpful for better understanding the pathogenic mechanisms of WSSV to infect shrimp at the cellular level.

  15. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus.

    PubMed

    Han, Mingyuan; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan

    2017-02-18

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of 126-LQxxLxxxGL-135. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export.

  16. Protein dynamics associated with failed and rescued learning in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Ahmed, Md Mahiuddin; Dhanasekaran, A Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C S; Stasko, Melissa; Gardiner, Katheleen J

    2015-01-01

    Down syndrome (DS) is caused by an extra copy of human chromosome 21 (Hsa21). Although it is the most common genetic cause of intellectual disability (ID), there are, as yet, no effective pharmacotherapies. The Ts65Dn mouse model of DS is trisomic for orthologs of ∼55% of Hsa21 classical protein coding genes. These mice display many features relevant to those seen in DS, including deficits in learning and memory (L/M) tasks requiring a functional hippocampus. Recently, the N-methyl-D-aspartate (NMDA) receptor antagonist, memantine, was shown to rescue performance of the Ts65Dn in several L/M tasks. These studies, however, have not been accompanied by molecular analyses. In previous work, we described changes in protein expression induced in hippocampus and cortex in control mice after exposure to context fear conditioning (CFC), with and without memantine treatment. Here, we extend this analysis to Ts65Dn mice, measuring levels of 85 proteins/protein modifications, including components of MAP kinase and MTOR pathways, and subunits of NMDA receptors, in cortex and hippocampus of Ts65Dn mice after failed learning in CFC and after learning was rescued by memantine. We show that, compared with wild type littermate controls, (i) of the dynamic responses seen in control mice in normal learning, >40% also occur in Ts65Dn in failed learning or are compensated by baseline abnormalities, and thus are considered necessary but not sufficient for successful learning, and (ii) treatment with memantine does not in general normalize the initial protein levels but instead induces direct and indirect responses in approximately half the proteins measured and results in normalization of the endpoint protein levels. Together, these datasets provide a first view of the complexities associated with pharmacological rescue of learning in the Ts65Dn. Extending such studies to additional drugs and mouse models of DS will aid in identifying pharmacotherapies for effective clinical trials.

  17. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease.

    PubMed

    Di Domenico, Fabio; Pupo, Gilda; Tramutola, Antonella; Giorgi, Alessandra; Schininà, Maria Eugenia; Coccia, Raffaella; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2014-06-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.

  18. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    SciTech Connect

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.; Osorio, Fernando A.; Hiscox, Julian A.

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.

  19. Genetic variant in vitamin D-binding protein is associated with metabolic syndrome and lower 25-hydroxyvitamin D levels in polycystic ovary syndrome: A cross-sectional study.

    PubMed

    Santos, Betânia Rodrigues; Lecke, Sheila Bünecker; Spritzer, Poli Mara

    2017-01-01

    Vitamin D deficiency has been related to metabolic syndrome (MetS) in polycystic ovary syndrome (PCOS). The vitamin D-binding protein (DBP) is the main protein involved in vitamin D transport. Two single-nucleotide polymorphisms (SNPs) of the DBP gene, rs4588 and rs7041, have been associated with low circulating levels of 25-hydroxyvitamin D [25(OH)D] in various populations, but not in women with PCOS. Therefore, we determined the genotype and haplotype distribution of DBP gene polymorphisms and investigated the associations between these genetic variants and their haplotypes with PCOS, MetS, and 25(OH)D levels in women with PCOS and controls from the South of Brazil. The sample included 291 women (191 with PCOS and 100 controls). All participants were genotyped for polymorphisms rs2282679, rs4588, and rs7041. Serum 25(OH)D levels were determined in a subset of 102 participants. Women with PCOS were younger and had significantly higher body mass index, blood pressure, and insulin resistance than the control group (p<0.05). The prevalence of MetS in PCOS and controls was 26.5% and 4.8% respectively. Levels of 25(OH)D were lower in PCOS women with MetS, even after adjustment for age (p = 0.033). No associations were observed between PCOS and the polymorphisms or their haplotypes. A higher frequency of genotype TT of rs7041 was found in PCOS participants with MetS (OR: 2.21, 95%CI:1.08-4.52; p = 0.027). This same genotype was associated with lower 25(OH)D levels in both PCOS and control women (OR: 4.40, 95%CI:1.62-12.00; p = 0.002). In conclusion, these findings indicate that DBP gene polymorphisms and their haplotypes are not directly associated with PCOS. In contrast, the TT genotype of SNP rs7041 was associated with MetS in PCOS women, and with lower 25(OH)D levels in both PCOS and control groups.

  20. Genetic variant in vitamin D-binding protein is associated with metabolic syndrome and lower 25-hydroxyvitamin D levels in polycystic ovary syndrome: A cross-sectional study

    PubMed Central

    Santos, Betânia Rodrigues; Lecke, Sheila Bünecker

    2017-01-01

    Vitamin D deficiency has been related to metabolic syndrome (MetS) in polycystic ovary syndrome (PCOS). The vitamin D-binding protein (DBP) is the main protein involved in vitamin D transport. Two single-nucleotide polymorphisms (SNPs) of the DBP gene, rs4588 and rs7041, have been associated with low circulating levels of 25-hydroxyvitamin D [25(OH)D] in various populations, but not in women with PCOS. Therefore, we determined the genotype and haplotype distribution of DBP gene polymorphisms and investigated the associations between these genetic variants and their haplotypes with PCOS, MetS, and 25(OH)D levels in women with PCOS and controls from the South of Brazil. The sample included 291 women (191 with PCOS and 100 controls). All participants were genotyped for polymorphisms rs2282679, rs4588, and rs7041. Serum 25(OH)D levels were determined in a subset of 102 participants. Women with PCOS were younger and had significantly higher body mass index, blood pressure, and insulin resistance than the control group (p<0.05). The prevalence of MetS in PCOS and controls was 26.5% and 4.8% respectively. Levels of 25(OH)D were lower in PCOS women with MetS, even after adjustment for age (p = 0.033). No associations were observed between PCOS and the polymorphisms or their haplotypes. A higher frequency of genotype TT of rs7041 was found in PCOS participants with MetS (OR: 2.21, 95%CI:1.08–4.52; p = 0.027). This same genotype was associated with lower 25(OH)D levels in both PCOS and control women (OR: 4.40, 95%CI:1.62–12.00; p = 0.002). In conclusion, these findings indicate that DBP gene polymorphisms and their haplotypes are not directly associated with PCOS. In contrast, the TT genotype of SNP rs7041 was associated with MetS in PCOS women, and with lower 25(OH)D levels in both PCOS and control groups. PMID:28278285

  1. Bottom-up proteomics suggests an association between differential expression of mitochondrial proteins and chronic fatigue syndrome.

    PubMed

    Ciregia, F; Kollipara, L; Giusti, L; Zahedi, R P; Giacomelli, C; Mazzoni, M R; Giannaccini, G; Scarpellini, P; Urbani, A; Sickmann, A; Lucacchini, A; Bazzichi, L

    2016-09-27

    Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterized by unexplained fatigue not improved by rest. An area of investigation is the likely connection of CFS with defective mitochondrial function. In a previous work, we investigated the proteomic salivary profile in a couple of monozygotic twins discordant for CFS. Following this work, we analyzed mitochondrial proteins in the same couple of twins. Nano-liquid chromatography electrospray ionization mass spectrometry (nano-LC-MS) was used to study the mitochondria extracted from platelets of the twins. Subsequently, we selected three proteins that were validated using western blot analysis in a big cohort of subjects (n=45 CFS; n=45 healthy), using whole saliva (WS). The selected proteins were as follows: aconitate hydratase (ACON), ATP synthase subunit beta (ATPB) and malate dehydrogenase (MDHM). Results for ATPB and ACON confirmed their upregulation in CFS. However, the MDHM alteration was not confirmed. Thereafter, seeing the great variability of clinical features of CFS patients, we decided to analyze the expression of our proteins after splitting patients according to clinical parameters. For each marker, the values were actually higher in the group of patients who had clinical features similar to the ill twin. In conclusion, these results suggest that our potential markers could be one of the criteria to be taken into account for helping in diagnosis. Furthermore, the identification of biomarkers present in particular subgroups of CFS patients may help in shedding light upon the complex entity of CFS. Moreover, it could help in developing tailored treatments.

  2. A Novel, Stable, Estradiol-Stimulating, Osteogenic Yam Protein with Potential for the Treatment of Menopausal Syndrome

    PubMed Central

    Lok Wong, Kam; Ming Lai, Yau; Li, Ka Wan; Fai Lee, Kai; Ng, Tzi Bun; Pan Cheung, Ho; Bo Zhang, Yan; Lao, Lixing; Ngok-Shun Wong, Ricky; Chui Shaw, Pang; Ho Wong, Jack; Zhang, Zhang-Jin; Lam, Jenny Ka Wing; Wencai, YE; Wing Sze, Stephen Cho

    2015-01-01

    A novel protein, designated as DOI, isolated from the Chinese yam (Dioscorea opposita Thunb.) could be the first protein drug for the treatment of menopausal syndrome and an alternative to hormone replacement therapy (HRT), which is known to have undesirable side effects. DOI is an acid- and thermo-stable protein with a distinctive N-terminal sequence Gly-Ile-Gly-Lys-Ile-Thr-Thr-Tyr-Trp-Gly-Gln-Tyr-Ser-Asp-Glu-Pro-Ser-Leu-Thr-Glu. DOI was found to stimulate estradiol biosynthesis in rat ovarian granulosa cells; induce estradiol and progesterone secretion in 16- to 18-month-old female Sprague Dawley rats by upregulating expressions of follicle-stimulating hormone receptor and ovarian aromatase; counteract the progression of osteoporosis and augment bone mineral density; and improve cognitive functioning by upregulating protein expressions of brain-derived neurotrophic factor and TrkB receptors in the prefrontal cortex. Furthermore, DOI did not stimulate the proliferation of breast cancer and ovarian cancer cells, which suggest it could be a more efficacious and safer alternative to HRT. PMID:26160710

  3. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome.

    PubMed

    Gustin, Richard M; Bichell, Terry Jo; Bubser, Michael; Daily, Jennifer; Filonova, Irina; Mrelashvili, Davit; Deutch, Ariel Y; Colbran, Roger J; Weeber, Edwin J; Haas, Kevin F

    2010-09-01

    Angelman syndrome (AS) is a neurogenetic disorder caused by loss of maternal UBE3A expression or mutation-induced dysfunction of its protein product, the E3 ubiquitin-protein ligase, UBE3A. In humans and rodents, UBE3A/Ube3a transcript is maternally imprinted in several brain regions, but the distribution of native UBE3A/Ube3a(1) protein expression has not been comprehensively examined. To address this, we systematically evaluated Ube3a expression in the brain and peripheral tissues of wild-type (WT) and Ube3a maternal knockout mice (AS mice). Immunoblot and immunohistochemical analyses revealed a marked loss of Ube3a protein in hippocampus, hypothalamus, olfactory bulb, cerebral cortex, striatum, thalamus, midbrain, and cerebellum in AS mice relative to WT littermates. Also, Ube3a expression in heart and liver of AS mice showed greater than the predicted 50% reduction relative to WT mice. Co-localization studies showed Ube3a expression to be primarily neuronal in all brain regions and present in GABAergic interneurons as well as principal neurons. These findings suggest that neuronal function throughout the brain is compromised in AS.

  4. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein

    PubMed Central

    Tang, Maoxue; Gao, Guangping; Rueda, Carlos B.; Yu, Hang; Thibodeaux, David N.; Awano, Tomoyuki; Engelstad, Kristin M.; Sanchez-Quintero, Maria-Jose; Yang, Hong; Li, Fanghua; Li, Huapeng; Su, Qin; Shetler, Kara E.; Jones, Lynne; Seo, Ryan; McConathy, Jonathan; Hillman, Elizabeth M.; Noebels, Jeffrey L.; De Vivo, Darryl C.; Monani, Umrao R.

    2017-01-01

    Haploinsufficiency of the SLC2A1 gene and paucity of its translated product, the glucose transporter-1 (Glut1) protein, disrupt brain function and cause the neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). There is little to suggest how reduced Glut1 causes cognitive dysfunction and no optimal treatment for Glut1 DS. We used model mice to demonstrate that low Glut1 protein arrests cerebral angiogenesis, resulting in a profound diminution of the brain microvasculature without compromising the blood–brain barrier. Studies to define the temporal requirements for Glut1 reveal that pre-symptomatic, AAV9-mediated repletion of the protein averts brain microvasculature defects and prevents disease, whereas augmenting the protein late, during adulthood, is devoid of benefit. Still, treatment following symptom onset can be effective; Glut1 repletion in early-symptomatic mutants that have experienced sustained periods of low brain glucose nevertheless restores the cerebral microvasculature and ameliorates disease. Timely Glut1 repletion may thus constitute an effective treatment for Glut1 DS. PMID:28106060

  5. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2.

    PubMed

    Mathewson, Alison C; Bishop, Alexandra; Yao, Yongxiu; Kemp, Fred; Ren, Junyuan; Chen, Hongying; Xu, Xiaodong; Berkhout, Ben; van der Hoek, Lia; Jones, Ian M

    2008-11-01

    Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.

  6. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2

    PubMed Central

    Mathewson, Alison C.; Bishop, Alexandra; Yao, Yongxiu; Kemp, Fred; Ren, Junyuan; Chen, Hongying; Xu, Xiaodong; Berkhout, Ben; van der Hoek, Lia; Jones, Ian M.

    2008-01-01

    Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63. PMID:18931070

  7. C-reactive protein, haptoglobin and Pig-Major acute phase protein profiles of pigs infected experimentally by different isolates of porcine reproductive and respiratory syndrome virus.

    PubMed

    Saco, Y; Martínez-Lobo, F; Cortey, M; Pato, R; Peña, R; Segalés, J; Prieto, C; Bassols, A

    2016-02-01

    Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) is the etiologic agent of PRRS, one of the most important diseases in swine worldwide. In the present work, the effects of different PRRSV strains were tested on a piglet experimental model to study the induced acute phase response. For this purpose, pigs (n=15 for each group) were intranasally inoculated with one of five PRRSV strains (isolates EU10, 12, 17, 18 from genotype 1 and isolate JA-142 from genotype 2). The acute phase response was monitored by measuring acute phase proteins (APPs). Specifically, the serum concentration of haptoglobin (Hp), C-reactive protein (CRP) and Pig-Major Acute Protein (Pig-MAP) was determined at 0, 3, 6, 9, 12, 15, 18 and 21 days p.i. Clinical signs and growth performance were also monitored during the experiment. All animals became viremic after inoculation during the study period. The APP response was heterogeneous and dependent on the strain, being strains EU10, EU 18 and JA-142 those that induced the highest response and the strongest clinical signs. In general, Hp was the most sensitive biomarker for PRRSV infection, CRP behaved as moderate and Pig-MAP was the less responsive during the course of PRRSV experimental infection. Hp and CRP were significantly discriminatory between infected and control pigs, but not Pig-MAP.

  8. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection.

    PubMed

    Plana Duran, J; Climent, I; Sarraseca, J; Urniza, A; Cortés, E; Vela, C; Casal, J I

    1997-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a new arterivirus that has spread rapidly all around the world in the last few years. The genomic region containing open reading frames (ORFs) 2 to 7 of PRRSV Spanish isolate Olot/91 was cloned and sequenced. The genomic sequence shared 95% identity with Lelystad and Tübingen isolates and between 61-64% with the ORF7 region of the American isolates. ORFs 2 to 7 were inserted into recombinant baculoviruses downstream of the polyhedrin promoter. Only ORFs 2, 3 5 and 7 were expressed in insect cells as detected by PRRS-specific pig antisera. To analyze the immunogenicity of these proteins and their ability to confer protection, Sf9 cells infected with recombinant baculoviruses expressing ORFs 3, 5 and 7 gene products were used to immunize pregnant sows, either individually or in combination. The results obtained indicate that ORFs 3 and 5 gene products could be major candidates for the development of a vaccine against PRRS since they conferred 68.4 and 50% protection, respectively, as evaluated by the number of piglets born alive and healthy at the time of weaning. In addition, piglets born to sows immunized with ORFs 3 and 5 proteins were seronegative to PRRSV after weaning, indicating absence of viral replication. ORF7 is the most immunogenic protein of PRRSV, but the antibodies induced in sows are non-protective and may even interfere with protection.

  9. Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region.

    PubMed

    Heisterkamp, N; Mulder, M P; Langeveld, A; ten Hoeve, J; Wang, Z; Roe, B A; Groffen, J

    1995-09-20

    A high percentage of patients with DiGeorge syndrome and velo-cardio-facial syndrome have interstitial deletions on chromosome 22q11. The shortest region of overlap is currently estimated to be around 55 kb. Two segments of DNA from chromosome 22q11, located 160 kb apart, were cloned because they contained NotI restriction enzyme sites. In the current study we demonstrate that these segments are absent from chromosomes 22 carrying microdeletions of two different DiGeorge patients. Fluorescence in situ and Southern blot hybridization was further used to show that this locus is within the DiGeorge critical region. Phylogenetically conserved sequences adjacent to one human cell lines. cDNAs isolated with a probe from this segment showed it to contain the gene for teh human mitochondrial citrate transporter protein. Deletion of this gene in DiGeorge syndrome and velocardio-facial syndrome may contribute to the mental deficiency seen in the patients.

  10. The burden of comorbidity and the C-reactive protein levels in nonthyroidal illness syndrome with metabolic syndrome and atherosclerosis-related cardiovascular complications.

    PubMed

    Martocchia, Antonio; Cola, Silvia; Frugoni, Patrizia; Indiano, Ilaria; D'Urso, Rosaria; Falaschi, Paolo

    2010-04-01

    Thyroid hormones undergo significant modifications during severe illnesses, and the low T3 levels are the hallmark of nonthyoidal illness syndrome (NTIS), due to a reduced extrathyroidal conversion from T4. We examined 41 patients with NTIS by a modified cumulative illness rating scale (CIRS) and the measurement of FT3, FT4, TSH, and C-reactive protein (CRP) levels. Fifty-seven control subjects were enrolled. We observed reduced FT3 and increased FT4 levels in NTIS patients (P < 0.05). The CIRS scores (severity and comordity index) were inversely related to FT3 and positively related to FT4 levels (P < 0.05). The CRP and the FT4 concentrations were positively associated (P < 0.01). Our study showed that the reduced FT3 and increased FT4 levels were significantly related to the comorbidity and severity of systemic illnesses, probably as a result of impairment in the peripheral hormonal conversion. The CIRS scale and the CRP are useful tools for a better evaluation of these patients.

  11. CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome

    PubMed Central

    Guen, Vincent J.; Gamble, Carly; Flajolet, Marc; Unger, Sheila; Thollet, Aurélie; Ferandin, Yoan; Superti-Furga, Andrea; Cohen, Pascale A.; Meijer, Laurent; Colas, Pierre

    2013-01-01

    Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing phenocopies CDK10 silencing in increasing c-Raf and in conferring tamoxifen resistance to breast cancer cells. CDK10/cyclin M phosphorylates ETS2 in vitro, and in cells it positively controls ETS2 degradation by the proteasome. ETS2 protein levels are increased in cells derived from a STAR patient, and this increase is attributable to decreased cyclin M levels. Altogether, our results reveal an additional regulatory mechanism for ETS2, which plays key roles in cancer and development. They also shed light on the molecular mechanisms underlying STAR syndrome. PMID:24218572

  12. What Is Marfan Syndrome?

    MedlinePlus

    ... Marfan Syndrome? For More Information What Is Connective Tissue? Connective tissue supports many parts of your body. You can ... races and ethnic backgrounds. What Causes Marfan Syndrome? Connective tissue is made of many kinds of protein. One ...

  13. Results and long-term outcome in 39 patients with Wiskott-Aldrich syndrome transplanted from HLA-matched and -mismatched donors.

    PubMed

    Friedrich, Wilhelm; Schütz, Catharina; Schulz, Ansgar; Benninghoff, Ulrike; Hönig, Manfred

    2009-01-01

    In this report, we present an analysis in 39 WAS patients treated by hematopoietic stem cell transplantation (HSCT) in our center since 1983. Fifteen patients received transplants from HLA-identical unrelated donors, 15 from nonidentical parental donors, and 9 from matched siblings. The overall survival rate is 90% in patients with matched donors and 50% in patients after nonidentical transplantation, with a mean follow-up time of 11 years. Treatment failures in the latter group were mainly related to graft rejections and to GvHD and infections following repeat transplants. Long-term survivors in both patient groups remain with few exceptions free of late complications and with stable graft function and complete donor cell chimerism. Based on our findings, we recommend early and prompt treatment of each diagnosed WAS patient if an HLA-matched, related or unrelated, donor can be identified. If this is not the case, HLA-nonidentical donor transplantation represents an alternative to be considered early in patients with severe disease.

  14. Basement membrane assembly of the integrin α8β1 ligand nephronectin requires Fraser syndrome-associated proteins.

    PubMed

    Kiyozumi, Daiji; Takeichi, Makiko; Nakano, Itsuko; Sato, Yuya; Fukuda, Tomohiko; Sekiguchi, Kiyotoshi

    2012-05-28

    Dysfunction of the basement membrane protein QBRICK provokes Fraser syndrome, which results in renal dysmorphogenesis, cryptophthalmos, syndactyly, and dystrophic epidermolysis bullosa through unknown mechanisms. Here, we show that integrin α8β1 binding to basement membranes was significantly impaired in Qbrick-null mice. This impaired integrin α8β1 binding was not a direct consequence of the loss of QBRICK, which itself is a ligand of integrin α8β1, because knock-in mice with a mutation in the integrin-binding site of QBRICK developed normally and do not exhibit any defects in integrin α8β1 binding. Instead, the loss of QBRICK significantly diminished the expression of nephronectin, an integrin α8β1 ligand necessary for renal development. In vivo, nephronectin associated with QBRICK and localized at the sublamina densa region, where QBRICK was also located. Collectively, these findings indicate that QBRICK facilitates the integrin α8β1-dependent interactions of cells with basement membranes by regulating the basement membrane assembly of nephronectin and explain why renal defects occur in Fraser syndrome.

  15. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1

    PubMed Central

    Kocak, Hande; Ballew, Bari J.; Bisht, Kamlesh; Eggebeen, Rebecca; Hicks, Belynda D.; Suman, Shalabh; O’Neil, Adri; Giri, Neelam; Maillard, Ivan; Alter, Blanche P.; Keegan, Catherine E.; Nandakumar, Jayakrishnan

    2014-01-01

    Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a germline mutation in one of nine genes, the products of which are all involved in telomere biology. Using exome sequencing, we identified mutations in Adrenocortical Dysplasia Homolog (ACD) (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. The proband inherited a deletion from his father and a missense mutation from his mother, resulting in extremely short telomeres and a severe clinical phenotype. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity, while the missense mutation in the TIN2-binding region of TPP1 is not as clearly deleterious to TPP1 function. Our results emphasize the critical roles of the TEL patch in proper stem cell function and demonstrate that TPP1 is the second shelterin component (in addition to TIN2) to be implicated in DC. PMID:25233904

  16. A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2.

    PubMed

    Amr, Sami; Heisey, Cindy; Zhang, Min; Xia, Xia-Juan; Shows, Kathryn H; Ajlouni, Kamel; Pandya, Arti; Satin, Leslie S; El-Shanti, Hatem; Shiang, Rita

    2007-10-01

    A single missense mutation was identified in a novel, highly conserved zinc-finger gene, ZCD2, in three consanguineous families of Jordanian descent with Wolfram syndrome (WFS). It had been shown that these families did not have mutations in the WFS1 gene (WFS1) but were mapped to the WFS2 locus at 4q22-25. A G-->C transversion at nucleotide 109 predicts an amino acid change from glutamic acid to glutamine (E37Q). Although the amino acid is conserved and the mutation is nonsynonymous, the pathogenesis for the disorder is because the mutation also causes aberrant splicing. The mutation was found to disrupt messenger RNA splicing by eliminating exon 2, and it results in the introduction of a premature stop codon. Mutations in WFS1 have also been found to cause low-frequency nonsyndromic hearing loss, progressive hearing loss, and isolated optic atrophy associated with hearing loss. Screening of 377 probands with hearing loss did not identify mutations in the WFS2 gene. The WFS1-encoded protein, Wolframin, is known to localize to the endoplasmic reticulum and plays a role in calcium homeostasis. The ZCD2-encoded protein, ERIS (endoplasmic reticulum intermembrane small protein), is also shown to localize to the endoplasmic reticulum but does not interact directly with Wolframin. Lymphoblastoid cells from affected individuals show a significantly greater rise in intracellular calcium when stimulated with thapsigargin, compared with controls, although no difference was observed in resting concentrations of intracellular calcium.

  17. Enhancement of human DNA polymerase η activity and fidelity is dependent upon a bipartite interaction with the Werner syndrome protein.

    PubMed

    Maddukuri, Leena; Ketkar, Amit; Eddy, Sarah; Zafar, Maroof K; Griffin, Wezley C; Eoff, Robert L

    2012-12-07

    We have investigated the interaction between human DNA polymerase η (hpol η) and the Werner syndrome protein (WRN). Functional assays revealed that the WRN exonuclease and RecQ C-terminal (RQC) domains are necessary for full stimulation of hpol η-catalyzed formation of correct base pairs. We find that WRN does not stimulate hpol η-catalyzed formation of mispairs. Moreover, the exonuclease activity of WRN prevents stable mispair formation by hpol η. These results are consistent with a proofreading activity for WRN during single-nucleotide additions. ATP hydrolysis by WRN appears to attenuate stimulation of hpol η. Pre-steady-state kinetic results show that k(pol) is increased 4-fold by WRN. Finally, pulldown assays reveal a bipartite physical interaction between hpol η and WRN that is mediated by the exonuclease and RQC domains. Taken together, these results are consistent with alteration of the rate-limiting step in polymerase catalysis by direct protein-protein interactions between WRN and hpol η. In summary, WRN improves the efficiency and fidelity of hpol η to promote more effective replication of DNA.

  18. Werner syndrome protein directly binds to the AAA ATPase p97/VCP in an ATP-dependent fashion.

    PubMed

    Indig, Fred Eliezer; Partridge, Juneth Joaquin; von Kobbe, Cayetano; Aladjem, Mirit I; Latterich, Martin; Bohr, Vilhelm A

    2004-01-01

    We have previously shown that the Werner syndrome helicase, WRNp, a member of the RecQ helicase family, forms a tight molecular complex with the p97/Valosin containing protein (VCP), a member of the AAA (ATPases associated with diverse cellular activities) family of proteins. This interaction is disrupted by chemical agents that confer DNA damage, suggesting that VCP plays an important role in the signal-dependent release of WRNp from its nucleolar sequestration site. Here, we characterized the structural requirements for interactions between WRNp and VCP and for the nuclear localization of VCP. We discovered that VCP directly binds to the RQC (RecQ conserved) domain of WRNp, which is a highly conserved motif common to the RecQ helicase family. This interaction is ATP-dependent, suggesting that VCP plays a mechanistic role in releasing WRNp from the nucleolus. Immunohistochemical analysis of various VCP domains and mutated proteins expressed in vitro demonstrated that VCP may contain several hierarchical cellular localization motifs within its domain structure.

  19. Modulation of Werner syndrome protein function by a single mutation in the conserved RecQ domain.

    PubMed

    Lee, Jae Wan; Kusumoto, Rika; Doherty, Kevin M; Lin, Guang-Xin; Zeng, Wangyong; Cheng, Wen-Hsing; von Kobbe, Cayetano; Brosh, Robert M; Hu, Jin-Shan; Bohr, Vilhelm A

    2005-11-25

    Naturally occurring mutations in the human RECQ3 gene result in truncated Werner protein (WRN) and manifest as a rare premature aging disorder, Werner syndrome. Cellular and biochemical studies suggest a multifaceted role of WRN in DNA replication, DNA repair, recombination, and telomere maintenance. The RecQ C-terminal (RQC) domain of WRN was determined previously to be the major site of interaction for DNA and proteins. By using site-directed mutagenesis in the WRN RQC domain, we determined which amino acids might be playing a critical role in WRN function. A site-directed mutation at Lys-1016 significantly decreased WRN binding to fork or bubble DNA substrates. Moreover, the Lys-1016 mutation markedly reduced WRN helicase activity on fork, D-loop, and Holliday junction substrates in addition to reducing significantly the ability of WRN to stimulate FEN-1 incision activities. Thus, DNA binding mediated by the RQC domain is crucial for WRN helicase and its coordinated functions. Our nuclear magnetic resonance data on the three-dimensional structure of the wild-type RQC and Lys-1016 mutant proteins display a remarkable similarity in their structures.

  20. Genes Related to Mitochondrial Functions, Protein Degradation, and Chromatin Folding Are Differentially Expressed in Lymphomonocytes of Rett Syndrome Patients

    PubMed Central

    Leoni, Guido; Cervellati, Franco; Canali, Raffaella; Cortelazzo, Alessio; De Felice, Claudio; Ciccoli, Lucia; Hayek, Joussef

    2013-01-01

    Rett syndrome (RTT) is mainly caused by mutations in the X-linked methyl-CpG binding protein (MeCP2) gene. By binding to methylated promoters on CpG islands, MeCP2 protein is able to modulate several genes and important cellular pathways. Therefore, mutations in MeCP2 can seriously affect the cellular phenotype. Today, the pathways that MeCP2 mutations are able to affect in RTT are not clear yet. The aim of our study was to investigate the gene expression profiles in peripheral blood lymphomonocytes (PBMC) isolated from RTT patients to try to evidence new genes and new pathways that are involved in RTT pathophysiology. LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses on microarray data from 12 RTT patients and 7 control subjects identified 482 genes modulated in RTT, of which 430 were upregulated and 52 were downregulated. Functional clustering of a total of 146 genes in RTT identified key biological pathways related to mitochondrial function and organization, cellular ubiquitination and proteosome degradation, RNA processing, and chromatin folding. Our microarray data reveal an overexpression of genes involved in ATP synthesis suggesting altered energy requirement that parallels with increased activities of protein degradation. In conclusion, these findings suggest that mitochondrial-ATP-proteasome functions are likely to be involved in RTT clinical features. PMID:24453408

  1. Deleted in malignant brain tumors 1 protein is a potential biomarker of acute respiratory distress syndrome induced by pneumonia.

    PubMed

    Ren, Shan; Chen, Xia; Jiang, Li; Zhu, Bo; Jiang, Qi; Xi, Xiuming

    2016-09-23

    Acute respiratory distress syndrome (ARDS) is associated with high mortality and morbidity. Early diagnosis and risk stratification in patients with ARDS should improve prognosis. Unfortunately, no clinical biomarkers are available for use in early diagnosis. Quantitative proteomics is a powerful tool for biomarker discovery in cancer, autoimmune diseases, and ARDS. Here, we employed isobaric tags for relative and absolute quantitation (iTRAQ) technology to identify potential biomarkers for early ARDS diagnosis and predict the risk for increased disease severity induced by pneumonia. We collected the bronchoalveolar lavage fluid (BALF) and plasma from ARDS patients with differing degrees of ARDS severity. We identified 338 proteins dysregulated in ARDS through iTRAQ, 18 of which showed significant differences with at least 1.5-fold differential expression in patients with mild or severe ARDS. Differential plasma expression of pulmonary surfactant associated protein A, apolipoprotein A1, and deleted in malignant brain tumors 1 protein (DMBT1) was verified in plasma samples. Our results indicate that DMBT1 can potentially serve as a biomarker for early ARDS diagnosis and disease severity assessment.

  2. Antigenic and immunogenic properties of truncated VP28 protein of white spot syndrome virus in Procambarus clarkii.

    PubMed

    Du, Hua-Hua; Hou, Chong-Lin; Wu, Xiao-Guo; Xie, Rong-hui; Wang, Yi-Zhen

    2013-01-01

    Previous studies identify VP28 envelope protein of white spot syndrome virus (WSSV) as its main antigenic protein. Although implicated in viral infectivity, its functional role remains unclear. In the current study, we described the production of polyclonal antibodies to recombinant truncated VP28 proteins including deleted N-terminal (rVP28ΔN), C-terminal (rVP28ΔC) and middle (rVP28ΔM). In antigenicity assays, antibodies developed from VP28 truncations lacking the N-terminal or middle regions showed significantly lowered neutralization of WSSV in crayfish, Procambarus clarkii. Further immunogenicity analysis showed reduced relative percent survival (RPS) in crayfish vaccinating with these truncations before challenge with WSSV. These results indicated that N-terminal (residues 1-27) and middle region (residues 35-95) were essential to maintain the neutralizing linear epitopes of VP28 and responsible in eliciting immune response. Thus, it is most likely that these regions are exposed on VP28, and will be useful for rational design of effective vaccines targeting VP28 of WSSV.

  3. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin.

    PubMed

    Weil, Dominique; El-Amraoui, Aziz; Masmoudi, Saber; Mustapha, Mirna; Kikkawa, Yoshiaki; Lainé, Sophie; Delmaghani, Sedigheh; Adato, Avital; Nadifi, Sellama; Zina, Zeineb Ben; Hamel, Christian; Gal, Andreas; Ayadi, Hammadi; Yonekawa, Hiromichi; Petit, Christine

    2003-03-01

    Usher syndrome type I (USH1) is the most frequent cause of hereditary deaf-blindness in humans. Seven genetic loci (USH1A-G) have been implicated in this disease to date, and four of the corresponding genes have been identified: USH1B, C, D and F. We carried out fine mapping of USH1G (chromosome 17q24-25), restricting the location of this gene to an interval of 2.6 Mb and then screened genes present within this interval for mutations. The genes screened included the orthologue of the Sans gene, which is defective in the Jackson shaker deaf mutant and maps to the syntenic region in mice. In two consanguineous USH1G-affected families, we detected two different frameshift mutations in the SANS gene. Two brothers from a German family affected with USH1G were found to be compound heterozygotes for a frameshift and a missense mutation. These results demonstrate that SANS underlies USH1G. The SANS protein contains three ankyrin domains and a sterile alpha motif, and its C-terminal tripeptide presents a class I PDZ-binding motif. We showed, by means of co-transfection experiments, that SANS associates with harmonin, a PDZ domain-containing protein responsible for USH1C. In Jackson shaker mice the hair bundles, the mechanoreceptive structures of inner ear sensory cells, are disorganized. Based on the known interaction between USH1B (myosin VIIa), USH1C (harmonin) and USH1D (cadherin 23) proteins and the results obtained in this study, we suggest that a functional network formed by the USH1B, C, D and G proteins is responsible for the correct cohesion of the hair bundle.

  4. Prohibitin Interacts with Envelope Proteins of White Spot Syndrome Virus and Prevents Infection in the Red Swamp Crayfish, Procambarus clarkii

    PubMed Central

    Lan, Jiang-Feng; Li, Xin-Cang; Sun, Jie-Jie; Gong, Jing; Wang, Xian-Wei; Shi, Xiu-Zhen; Shi, Li-Jie; Weng, Yu-Ding; Zhao, Xiao-Fan

    2013-01-01

    Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses, cell proliferation, and immune regulation. However, the function of PHBs in crustacean immunity remains largely unknown. In the present study, we identified a PHB in Procambarus clarkii red swamp crayfish, which was designated PcPHB1. PcPHB1 was widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge at the mRNA level and the protein level. These observations prompted us to investigate the role of PcPHB1 in the crayfish antiviral response. Recombinant PcPHB1 (rPcPHB1) significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. The quantity of WSSV in PcPHB1 knockdown crayfish was increased compared with that in the controls. The effects of RNA silencing were rescued by rPcPHB1 reinjection. We further confirmed the interaction of PcPHB1 with the WSSV envelope proteins VP28, VP26, and VP24 using pulldown and far-Western overlay assays. Finally, we observed that the colloidal gold-labeled PcPHB1 was located on the outer surface of the WSSV, which suggests that PcPHB1 specifically binds to the envelope proteins of WSSV. VP28, VP26, and VP24 are structural envelope proteins and are essential for attachment and entry into crayfish cells. Therefore, PcPHB1 exerts its anti-WSSV effect by binding to VP28, VP26, and VP24, preventing viral infection. This study is the first report on the antiviral function of PHB in the innate immune system of crustaceans. PMID:24049173

  5. Prohibitin Interacts with envelope proteins of white spot syndrome virus and prevents infection in the red swamp crayfish, Procambarus clarkii.

    PubMed

    Lan, Jiang-Feng; Li, Xin-Cang; Sun, Jie-Jie; Gong, Jing; Wang, Xian-Wei; Shi, Xiu-Zhen; Shi, Li-Jie; Weng, Yu-Ding; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-12-01

    Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses, cell proliferation, and immune regulation. However, the function of PHBs in crustacean immunity remains largely unknown. In the present study, we identified a PHB in Procambarus clarkii red swamp crayfish, which was designated PcPHB1. PcPHB1 was widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge at the mRNA level and the protein level. These observations prompted us to investigate the role of PcPHB1 in the crayfish antiviral response. Recombinant PcPHB1 (rPcPHB1) significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. The quantity of WSSV in PcPHB1 knockdown crayfish was increased compared with that in the controls. The effects of RNA silencing were rescued by rPcPHB1 reinjection. We further confirmed the interaction of PcPHB1 with the WSSV envelope proteins VP28, VP26, and VP24 using pulldown and far-Western overlay assays. Finally, we observed that the colloidal gold-labeled PcPHB1 was located on the outer surface of the WSSV, which suggests that PcPHB1 specifically binds to the envelope proteins of WSSV. VP28, VP26, and VP24 are structural envelope proteins and are essential for attachment and entry into crayfish cells. Therefore, PcPHB1 exerts its anti-WSSV effect by binding to VP28, VP26, and VP24, preventing viral infection. This study is the first report on the antiviral function of PHB in the innate immune system of crustaceans.

  6. Biotin deficiency and fatty liver and kidney syndrome in chicks given purified diets containing different fat and protein levels.

    PubMed

    Whitehead, C C; Bannister, D W; Evans, A J; Siller, W G; Wight, P A

    1976-01-01

    1. The occurence of biotin deficiency and fatty liver and kidney syndrome (FLKS) in chicks was studied using a 2x2x2x2 factorial-design experiment in which the variables were dietary biotin, fat and protein, and starvation. 2. The severity of biotin deficiency, using growth retardation and severity of dermal lesions as criteria, was least when the low-biotin diet also contained low levels of fat and protein. Addition of fat or protein increased the severity of the deficiency. Tissue fatty acid composition was affected by biotin deficiency only in those birds given the low-protein, low-fat diet. The main change was an increase in the ratio, 16:1 fatty acids :18:0 fatty acids. Plasma glucose and free fatty acid levels in non-fasted birds were unaffected by the dietary variables. 3. Mortality from FLKS with the diet containing low biotin, fat and protein levels was 52% at 28d, but was reduced or eliminated when the dietary level of any of these ingredients was increased. 4. Starvation considerably increased the incidnece of FLKS in the period immediately after fasting, and also affected plasma glucose and free fatty acid concentrations. Liver fatty acid composition, indicated an increase in the proportion of 18:0 at the expense of 16:1 and concentrations increased in proportion, at the expense of 18:0. 5. The relationship between biotin deficiency and FLKS, and a possible mechanism for the induction of FLKS by starvation are discussed.

  7. Identification of the interaction domains of white spot syndrome virus envelope proteins VP28 and VP24.

    PubMed

    Li, Zaipeng; Chen, Weiyu; Xu, Limei; Li, Fang; Yang, Feng

    2015-03-16

    VP28 and VP24 are two major envelope proteins of white spot syndrome virus (WSSV). The direct interaction between VP28 and VP24 has been described in previous studies. In this study, we confirmed this interaction and mapped the interaction domains of VP28 and VP24 by constructing a series of deletion mutants. By co-immunoprecipitation, two VP28-binding domains of VP24 were located at amino acid residues 46-61 and 148-160, while VP24-binding domain of VP28 was located at amino acid residues 31-45. These binding domains were further corroborated by peptide blocking assay, in which synthetic peptides spanning the binding domains were able to inhibit VP28-VP24 interaction, whereas same-size control peptides from non-binging regions did not.

  8. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63.

    PubMed

    Glowacka, Ilona; Bertram, Stephanie; Herzog, Petra; Pfefferle, Susanne; Steffen, Imke; Muench, Marcus O; Simmons, Graham; Hofmann, Heike; Kuri, Thomas; Weber, Friedemann; Eichler, Jutta; Drosten, Christian; Pöhlmann, Stefan

    2010-01-01

    The human coronaviruses (CoVs) severe acute respiratory syndrome (SARS)-CoV and NL63 employ angiotensin-converting enzyme 2 (ACE2) for cell entry. It was shown that recombinant SARS-CoV spike protein (SARS-S) downregulates ACE2 expression and thereby promotes lung injury. Whether NL63-S exerts a similar activity is yet unknown. We found that recombinant SARS-S bound to ACE2 and induced ACE2 shedding with higher efficiency than NL63-S. Shedding most likely accounted for the previously observed ACE2 downregulation but was dispensable for viral replication. Finally, SARS-CoV but not NL63 replicated efficiently in ACE2-positive Vero cells and reduced ACE2 expression, indicating robust receptor interference in the context of SARS-CoV but not NL63 infection.

  9. Sorption of Aldrich humic acid onto hematite: insights into fractionation phenomena by electrospray ionization with quadrupole time-of-flight mass spectrometry.

    PubMed

    Reiller, Pascal; Amekraz, Badia; Moulin, Christophe

    2006-04-01

    Sorption induced fractionation of purified Aldrich humic acid (PAHA) on hematite is studied through the modification of electrospray ionization (ESI) quadrupole time-of-flight (QToF) mass spectra of supernatants from retention experiments. The ESI mass spectra show an increase of the "mean molecular masses" of the molecules that constitutes humic aggregates. The low molecular weight fraction (LMWF; m/z < or = 600 Da) is preferentially sorbed compared to two other fractions. The resolution provided by ESI-QToF mass spectrometer in the low-mass range provided evidence of further fractionation induced by sorption within the LMWF. Among the two latter fractions, the high molecular weight fraction (HMWF; m/z approximately 1700 Da) seems to be more prone to sorption compared to the intermediate molecular weight fraction (IMWF; m/z approximately 900 Da). The IMWF seems to be more hydrophilic as it should be richer in O, N, and alkyl C from the proportion of even mass, and poorer in aromatic structures from mass defect analysis in ESI mass spectra.

  10. Arabidopsis-derived shrimp viral-binding protein, PmRab7 can protect white spot syndrome virus infection in shrimp.

    PubMed

    Thagun, Chonprakun; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Narangajavana, Jarunya; Sojikul, Punchapat

    2012-09-15

    White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection.

  11. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein.

    PubMed

    von Kobbe, Cayetano; Harrigan, Jeanine A; Schreiber, Valérie; Stiegler, Patrick; Piotrowski, Jason; Dawut, Lale; Bohr, Vilhelm A

    2004-01-01

    Werner syndrome (WS) is a genetic premature aging disorder in which patients appear much older than their chronological age. The gene mutated in WS encodes a nuclear protein (WRN) which possesses 3'-5' exonuclease and ATPase-dependent 3'-5' helicase activities. The genomic instability associated with WS cells and the biochemical characteristics of WRN suggest that WRN plays a role in DNA metabolic pathways such as transcription, replication, recombination and repair. Recently we have identified poly(ADP-ribose) polymerase-1 (PARP-1) as a new WRN interacting protein. In this paper, we further mapped the interacting domains. We found that PARP-1 bound to the N-terminus of WRN and to the C-terminus containing the RecQ-conserved (RQC) domain. WRN bound to the N-terminus of PARP-1 containing DNA binding and BRCA1 C-terminal (BRCT) domains. We show that unmodified PARP-1 inhibited both WRN exonuclease and helicase activities, and to our knowledge is the only known WRN protein partner that inactivates both of the WRN's catalytic activities suggesting a biologically significant regulation. Moreover, this dual inhibition seems to be specific for PARP-1, as PARP-2 did not affect WRN helicase activity and only slightly inhibited WRN exonuclease activity. The differential effect of PARP-1 and PARP-2 on WRN catalytic activity was not due to differences in affinity for WRN or the DNA substrate. Finally, we demonstrate that the inhibition of WRN by PARP-1 was influenced by the poly(ADP-ribosyl)ation state of PARP-1. The biological relevance of the specific modulation of WRN catalytic activities by PARP-1 are discussed in the context of pathways in which these proteins may function together, namely in the repair of DNA strand breaks.

  12. Bottom-up proteomics suggests an association between differential expression of mitochondrial proteins and chronic fatigue syndrome

    PubMed Central

    Ciregia, F; Kollipara, L; Giusti, L; Zahedi, R P; Giacomelli, C; Mazzoni, M R; Giannaccini, G; Scarpellini, P; Urbani, A; Sickmann, A; Lucacchini, A; Bazzichi, L

    2016-01-01

    Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterized by unexplained fatigue not improved by rest. An area of investigation is the likely connection of CFS with defective mitochondrial function. In a previous work, we investigated the proteomic salivary profile in a couple of monozygotic twins discordant for CFS. Following this work, we analyzed mitochondrial proteins in the same couple of twins. Nano-liquid chromatography electrospray ionization mass spectrometry (nano-LC-MS) was used to study the mitochondria extracted from platelets of the twins. Subsequently, we selected three proteins that were validated using western blot analysis in a big cohort of subjects (n=45 CFS; n=45 healthy), using whole saliva (WS). The selected proteins were as follows: aconitate hydratase (ACON), ATP synthase subunit beta (ATPB) and malate dehydrogenase (MDHM). Results for ATPB and ACON confirmed their upregulation in CFS. However, the MDHM alteration was not confirmed. Thereafter, seeing the great variability of clinical features of CFS patients, we decided to analyze the expression of our proteins after splitting patients according to clinical parameters. For each marker, the values were actually higher in the group of patients who had clinical features similar to the ill twin. In conclusion, these results suggest that our potential markers could be one of the criteria to be taken into account for helping in diagnosis. Furthermore, the identification of biomarkers present in particular subgroups of CFS patients may help in shedding light upon the complex entity of CFS. Moreover, it could help in developing tailored treatments. PMID:27676445

  13. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    SciTech Connect

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L. . E-mail: showlic@ha.mc.ntu.edu.tw

    2006-05-26

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla{sub b}ind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-{gamma} stimulation of blood CD8{sup +} T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.

  14. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  15. Noonan syndrome.

    PubMed

    Roberts, Amy E; Allanson, Judith E; Tartaglia, Marco; Gelb, Bruce D

    2013-01-26

    Noonan syndrome is a genetic multisystem disorder characterised by distinctive facial features, developmental delay, learning difficulties, short stature, congenital heart disease, renal anomalies, lymphatic malformations, and bleeding difficulties. Mutations that cause Noonan syndrome alter genes encoding proteins with roles in the RAS-MAPK pathway, leading to pathway dysregulation. Management guidelines have been developed. Several clinically relevant genotype-phenotype correlations aid risk assessment and patient management. Increased understanding of the pathophysiology of the disease could help development of pharmacogenetic treatments.

  16. C1q/TNF-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) concentrations in patients with type 2 diabetes and metabolic syndrome.

    PubMed

    Choi, Kyung Mook; Hwang, Soon Young; Hong, Ho Cheol; Yang, Sae Jeong; Choi, Hae Yoon; Yoo, Hye Jin; Lee, Kwan Woo; Nam, Moon Suk; Park, Yong Soo; Woo, Jeong Taek; Kim, Young Seol; Choi, Dong Seop; Youn, Byung-Soo; Baik, Sei Hyun

    2012-11-01

    Recent studies have suggested that a novel adipokine, C1q/tumor necrosis factor-related protein-3 (CTRP-3), a paralog of adiponectin, may play an important role in the regulation of glucose metabolism and innate immunity. Pigment epithelium-derived factor (PEDF), a multifunctional protein with antioxidant and anti-inflammatory properties, is associated with insulin resistance and metabolic syndrome. We examined circulating CTRP-3 and PEDF concentrations in 345 subjects with diverse glucose tolerance statuses. Furthermore, we evaluated the involvement of CTRP-3 and PEDF with cardiometabolic risk factors including insulin resistance, high-sensitivity C-reactive protein (hsCRP), estimated glomerular filtration rate (eGFR), and brachial-ankle pulse wave velocity (baPWV). CTRP-3 concentrations were significantly higher in patients with type 2 diabetes or prediabetes than the normal glucose tolerance group, whereas PEDF levels were not different. Subjects with metabolic syndrome showed significantly higher levels of both CTRP-3 and PEDF compared with subjects without metabolic syndrome. Both CTRP-3 and PEDF were significantly associated with cardiometabolic parameters, including waist-to-hip ratio, triglycerides, HDL-cholesterol, alanine aminotransferase, eGFR, hsCRP, and baPWV. In conclusion, circulating CTRP-3 concentrations were elevated in patients with glucose metabolism dysregulation. Both CTRP-3 and PEDF concentrations were increased in subjects with metabolic syndrome and associated with various cardiometabolic risk factors.

  17. Engineered Zinc-Finger Proteins Can Compensate Genetic Haploinsufficiency by Transcriptional Activation of the Wild-Type Allele: Application to Willams-Beuren Syndrome and Supravalvular Aortic Stenosis

    PubMed Central

    Zhang, Pei; Huang, Angela; Morales-Ruiz, Manuel; Starcher, Barry C.; Huang, Yan; Sessa, William C.; Niklason, Laura E.

    2012-01-01

    Abstract Williams-Beuren syndrome (WBS) and supravalvular aortic stenosis (SVAS) are genetic syndromes marked by the propensity to develop severe vascular stenoses. Vascular lesions in both syndromes are caused by haploinsufficiency of the elastin gene. We used these distinct genetic syndromes as models to evaluate the feasibility of using engineered zinc-finger protein transcription factors (ZFPs) to achieve compensatory expression of haploinsufficient genes by inducing augmented expression from the remaining wild-type allele. For complex genes with multiple splice variants, this approach could have distinct advantages over cDNA-based gene replacement strategies. Targeting the elastin gene, we show that transcriptional activation by engineered ZFPs can induce compensatory expression from the wild-type allele in the setting of classic WBS and SVAS genetic mutations, increase elastin expression in wild-type cells, induce expression of the major elastin splice variants, and recapitulate their natural stoichiometry. Further, we establish that transcriptional activation of the mutant allele in SVAS does not overcome nonsense-mediated decay, and thus ZFP-mediated transcriptional activation is not likely to induce production of a mutant protein, a crucial consideration. Finally, we show in bioengineered blood vessels that ZFP-mediated induction of elastin expression is capable of stimulating functional elastogenesis. Haploinsufficiency is a common mechanism of genetic disease. These findings have significant implications for WBS and SVAS, and establish that haploinsufficiency can be overcome by targeted transcriptional activation without inducing protein expression from the mutant allele. PMID:22891920

  18. Inflammation in mice ectopically expressing human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome-associated PSTPIP1 A230T mutant proteins.

    PubMed

    Wang, Donghai; Höing, Susanne; Patterson, Heide Christine; Ahmad, Umtul M; Rathinam, Vijay A K; Rajewsky, Klaus; Fitzgerald, Katherine A; Golenbock, Douglas T

    2013-02-15

    Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne Syndrome (PAPA syndrome) is an autoinflammatory disease caused by aberrant production of the proinflammatory cytokine interleukin-1. Mutations in the gene encoding proline serine threonine phosphatase-interacting protein-1 (PSTPIP1) have been linked to PAPA syndrome. PSTPIP1 is an adaptor protein that interacts with PYRIN, the protein encoded by the Mediterranean Fever (MEFV) gene whose mutations cause Familial Mediterranean Fever (FMF). However, the pathophysiological function of PSTPIP1 remains to be elucidated. We have generated mouse strains that either are PSTPIP1 deficient or ectopically express mutant PSTPIP1. Results from analyzing these mice suggested that PSTPIP1 is not an essential regulator of the Nlrp3, Aim2, or Nlrc4 inflammasomes. Although common features of human PAPA syndrome such as pyogenic arthritis and skin inflammation were not recapitulated in the mouse model, ectopic expression of the mutant but not the wild type PSTPIP1 in mice lead to partial embryonic lethality, growth retardation, and elevated level of circulating proinflammatory cytokines.

  19. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases.

    PubMed Central

    Miki, H; Miura, K; Takenawa, T

    1996-01-01

    Here we identify a 65 kDa protein (N-WASP) from brain that binds the SH3 domains of Ash/Grb2. The sequence is homologous to Wiskott-Aldrich syndrome protein (WASP). N-WASP has several functional motifs, such as a pleckstrin homology (PH) domain and cofilin-homologous region, through which N-WASP depolymerizes actin filaments. When overexpressed in COS 7 cells, the wild-type N-WASP causes several surface protrusions where N-WASP co-localizes with actin filaments. Epidermal growth factor (EGF) treatment induces the complex formation of EGF receptors and N-WASP, and produces microspikes. On the other hand, two mutants, C38W (a point mutation in the PH domain) and deltaVCA (deletion of the actin binding domain), localize predominantly in the nucleus and do not cause a change in the cytoskeleton, irrespective of EGF treatment. Interestingly, the C38W PH domain binds less effectively to phosphatidylinositol 4,5-bisphosphate (PIP2) than the wild-type PH domain. These results suggest the importance of the PIP2 binding ability of the PH domain and the actin binding for retention in membranes. Collectively, we conclude that N-WASP transmits signals from tyrosine kinases to cause a polarized rearrangement of cortical actin filaments dependent on PIP2. Images PMID:8895577

  20. Protein and glycoprotein abnormalities in platelets from human Chediak-Higashi syndrome: polyacrylamide gel electrophoretic study of platelets from five patients.

    PubMed

    Ledezma, E; Apitz-Castro, R

    1985-10-01

    Polyacrylamide electrophoretic analysis of proteins and Tritium-labelled glycoproteins of the platelets from five patients with Chediak-Higashi Syndrome shows the existence of marked quantitative differences when compared to normal platelets. While the glycoprotein abnormalities are solely related to the plasma membrane, some of the abnormalities detected in the Coomasie blue pattern are probably representative of defects related to the dense bodies and the alpha-granules. Some of the abnormalities found may, in part, explain the variability of aggregatory responses described in these patients, as well as the marked tendency towards desaggregation exhibited by platelets from humans with the Chediak-Higashi Syndrome.

  1. Lemierre's syndrome presenting to the ED: rapidly fatal sepsis caused by methicillin-susceptible Staphylococcus aureus Staphylococcus protein A type t044.

    PubMed

    Pitsiou, Georgia; Kachrimanidou, Melina; Papa, Anna; Kioumis, Ioannis; Paspala, Asimina; Boutou, Afroditi; Vlachou, Stamatina; Tsorlini, Eleni; Argyropoulou-Pataka, Paraskevi

    2013-01-01

    We describe the case of a fatal septic illness in a previously healthy young man caused by community-acquired methicillin-susceptible Staphylococcus aureus of Staphylococcus protein A (spa) type t044. The patient developed a devastating Lemierre-like syndrome with extensive thrombosis of inferior vena cava and iliac veins with multiple metastatic septic emboli of the lungs. He presented to the emergency department with rapidly progressing sepsis followed by multiple organ dysfunction syndrome. Recognition of such virulent community-acquired strains is of great importance because they could prove to be emerging pathogens for life-threatening diseases.

  2. An immediate-early protein of white spot syndrome virus modulates the phosphorylation of focal adhesion kinase of shrimp.

    PubMed

    Lu, Huasong; Ruan, Lingwei; Xu, Xun

    2011-10-25

    WSSV interacts with integrin during infection of shrimps and modulate the focal adhesion kinase which is known as a regulator of several downstream signaling pathways. Viral protein kinases are thought to be important for virus infection by regulating the host signaling pathways. WSV083 is an immediate-early gene of white spot syndrome virus that contains a Ser/Thr protein kinase domain. So, does WSSV modulate FAK phosphorylation via the WSV083 molecule? In this study, co-transfection of WSV083 and MjFAK genes proceeded in insect cells revealed that the MjFAK phosphorylation and cell adhesion activity could be inhibited by the expression of WSV083. Kinase domain mutants of WSV083 lost its ability of inhibiting FAK phosphorylation. Moreover, silencing of FAK gene through RNAi accelerated the shrimp death rate upon WSSV challenge. These results demonstrate for the first time that modulation of FAK phosphorylation by WSV083 plays a critical role in the pathogenesis of WSSV infection.

  3. High Serum Adipocyte Fatty Acid Binding Protein Is Associated with Metabolic Syndrome in Patients with Type 2 Diabetes

    PubMed Central

    Li, Jer-Chuan; Wu, Du-An; Hou, Jia-Sian; Subeq, Yi-Maun; Chen, Hsin-Dean

    2016-01-01

    Adipocyte fatty acid binding protein (A-FABP) is a key mediator of obesity-related metabolic syndrome (MetS). The aim of this study was to evaluate the relationship between A-FABP concentration and MetS in type 2 diabetes mellitus (DM) patients. Fasting blood samples were obtained from 165 type 2 DM volunteers. MetS and its components were defined using diagnostic criteria from the International Diabetes Federation. Among 165 DM patients, 113 patients (68.5%) had MetS. Diabetic persons who had MetS had significantly higher A-FABP levels (P < 0.001) than those without MetS. Female DM persons had higher A-FABP level than man (P < 0.001). No statistically significant differences in A-FABP levels were found in use of statin, fibrate, or antidiabetic drugs. Multivariate forward stepwise linear regression analysis revealed that body fat mass (P < 0.001), logarithmically transformed creatinine (log-creatinine; P < 0.001), female DM patients (P < 0.001), and logarithmically transformed high sensitive C-reactive protein (log-hs-CRP; P = 0.013) were positively correlated, while albumin (P = 0.004) and glomerular filtration rate (GFR; P = 0.043) were negatively correlated with serum A-FABP levels in type 2 DM patients. In this study, higher serum A-FABP level was positively associated with MetS in type 2 DM patients. PMID:28042581

  4. Structural Basis of Neutralization by a Human Anti-severe Acute Respiratory Syndrome Spike Protein Antibody,80R.

    SciTech Connect

    Hwang,W.; Lin, Y.; Santelli, E.; Sui, J.; Jaroszewski, L.; Stec, B.; Farzan, M.; Marasco, W.; Liddington, R.

    2006-01-01

    Severe acute respiratory syndrome (SARS) is a newly emerged infectious disease that caused pandemic spread in 2003. The etiological agent of SARS is a novel coronavirus (SARS-CoV). The coronaviral surface spike protein S is a type I transmembrane glycoprotein that mediates initial host binding via the cell surface receptor angiotensin-converting enzyme 2 (ACE2), as well as the subsequent membrane fusion events required for cell entry. Here we report the crystal structure of the S1 receptor binding domain (RBD) in complex with a neutralizing antibody, 80R, at 2.3 {angstrom} resolution, as well as the structure of the uncomplexed S1 RBD at 2.2 {angstrom} resolution. We show that the 80R-binding epitope on the S1 RBD overlaps very closely with the ACE2-binding site, providing a rationale for the strong binding and broad neutralizing ability of the antibody. We provide a structural basis for the differential effects of certain mutations in the spike protein on 80R versus ACE2 binding, including escape mutants, which should facilitate the design of immunotherapeutics to treat a future SARS outbreak. We further show that the RBD of S1 forms dimers via an extensive interface that is disrupted in receptor- and antibody-bound crystal structures, and we propose a role for the dimer in virus stability and infectivity.

  5. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin.

    PubMed

    Otto, Edgar A; Loeys, Bart; Khanna, Hemant; Hellemans, Jan; Sudbrak, Ralf; Fan, Shuling; Muerb, Ulla; O'Toole, John F; Helou, Juliana; Attanasio, Massimo; Utsch, Boris; Sayer, John A; Lillo, Concepcion; Jimeno, David; Coucke, Paul; De Paepe, Anne; Reinhardt, Richard; Klages, Sven; Tsuda, Motoyuki; Kawakami, Isao; Kusakabe, Takehiro; Omran, Heymut; Imm, Anita; Tippens, Melissa; Raymond, Pamela A; Hill, Jo; Beales, Phil; He, Shirley; Kispert, Andreas; Margolis, Benjamin; Williams, David S; Swaroop, Anand; Hildebrandt, Friedhelm

    2005-03-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.

  6. Prediction of Pan-Specific B-Cell Epitopes From Nucleocapsid Protein of Hantaviruses Causing Hantavirus Cardiopulmonary Syndrome.

    PubMed

    Kalaiselvan, Sagadevan; Sankar, Sathish; Ramamurthy, Mageshbabu; Ghosh, Asit Ranjan; Nandagopal, Balaji; Sridharan, Gopalan

    2017-01-20

    Hantaviruses are emerging viral pathogens that causes hantavirus cardiopulmonary syndrome (HCPS) in the Americas, a severe, sometimes fatal, respiratory disease in humans with a case fatality rate of ≥50%. IgM and IgG-based serological detection methods are the most common approaches used for laboratory diagnosis of hantaviruses. Such emerging viral pathogens emphasizes the need for improved rapid diagnostic devices and vaccines incorporating pan-specific epitopes of genotypes. We predicted linear B-cell epitopes for hantaviruses that are specific to genotypes causing HCPS in humans using in silico prediction servers. We modeled the Andes and Sin Nombre hantavirus nucleocapsid protein to locate the identified epitopes. Based on the mean percent prediction probability score, epitope IMASKSVGS/TAEEKLKKKSAF was identified as the best candidate B-cell epitope specific for hantaviruses causing HCPS. Promiscuous epitopes were identified in the C-terminal of the protein. Our study for the first time has reported pan-specific B-cell epitopes for developing immunoassays in the detection of antibodies to hantaviruses causing HCPS. Identification of epitopes with pan-specific recognition of all genotypes causing HCPS could be valuable for the development of immunodiagnositic tools toward pan-detection of hantavirus antibodies in ELISA. J. Cell. Biochem. 9999: 1-5, 2017. © 2017 Wiley Periodicals, Inc.

  7. Structural Genomics of the Severe Acute Respiratory Syndrome Coronavirus: Nuclear Magnetic Resonance Structure of the Protein nsP7

    PubMed Central

    Peti, Wolfgang; Johnson, Margaret A.; Herrmann, Torsten; Neuman, Benjamin W.; Buchmeier, Michael J.; Nelson, Mike; Joseph, Jeremiah; Page, Rebecca; Stevens, Raymond C.; Kuhn, Peter; Wüthrich, Kurt

    2005-01-01

    Here, we report the three-dimensional structure of severe acute respiratory syndrome coronavirus (SARS-CoV) nsP7, a component of the SARS-CoV replicase polyprotein. The coronavirus replicase carries out regulatory tasks involved in the maintenance, transcription, and replication of the coronavirus genome. nsP7 was found to assume a compact architecture in solution, which is comprised primarily of helical secondary structures. Three helices (α2 to α4) form a flat up-down-up antiparallel α-helix sheet. The N-terminal segment of residues 1 to 22, containing two turns of α-helix and one turn of 310-helix, is packed across the surface of α2 and α3 in the helix sheet, with the α-helical region oriented at a 60° angle relative to α2 and α3. The surface charge distribution is pronouncedly asymmetrical, with the flat surface of the helical sheet showing a large negatively charged region adjacent to a large hydrophobic patch and the opposite side containing a positively charged groove that extends along the helix α1. Each of these three areas is thus implicated as a potential site for protein-protein interactions. PMID:16188992

  8. Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome.

    PubMed

    Zeier, Z; Kumar, A; Bodhinathan, K; Feller, J A; Foster, T C; Bloom, D C

    2009-09-01

    Fragile X syndrome (FXS) is caused by a mutation that silences the fragile X mental retardation gene (FMR1), which encodes the fragile X mental retardation protein (FMRP). To determine whether FMRP replacement can rescue phenotypic deficits in a fmr1-knockout (KO) mouse model of FXS, we constructed an adeno-associated virus-based viral vector that expresses the major central nervous system (CNS) isoform of FMRP. Using this vector, we tested whether FMRP replacement could rescue the fmr1-KO phenotype of enhanced long-term depression (LTD), a form of synaptic plasticity that may be linked to cognitive impairments associated with FXS. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synaptic contacts in hippocampal slices from wild-type (WT) and fmr1-KO mice in the presence of AP-5 and anisomycin. Paired-pulse low-frequency stimulation (PP-LFS)-induced LTD is enhanced in slices obtained from fmr1 KO compared with WT mice. Analyses of hippocampal synaptic function in fmr1-KO mice that received hippocampal injections of vector showed that the PP-LFS-induced LTD was restored to WT levels. These results indicate that expression of the major CNS isoform of FMRP alone is sufficient to rescue this phenotype and suggest that post-developmental protein replacement may have the potential to improve cognitive function in FXS.

  9. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV) in Shrimp.

    PubMed

    Ananphongmanee, Vorawit; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Boonchird, Chuenchit

    2015-01-01

    Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral

  10. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV) in Shrimp

    PubMed Central

    Ananphongmanee, Vorawit; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Boonchird, Chuenchit

    2015-01-01

    Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral

  11. Abnormal Expression of Urea Transporter Protein in a Rat Model of Hepatorenal Syndrome Induced by Succinylated Gelatin

    PubMed Central

    Song, Weiping; Qi, Xiaolong; Zhang, Wenhui; Zhao, C Yingying; Cao, Yan; Wang, Fei; Yang, Changqing

    2015-01-01

    Background Hepatorenal syndrome (HRS) is a serious complication of advanced chronic liver disease. Abdominal compartment syndrome (ACS) occurs with dysfunction of multiple organs when abdominal pressure increases. Here, we report on a novel model of ACS with ascites and a model of HRS in rats to observe the urea transporter protein (UT) expression in the 2 models. Material/Methods A liver cirrhosis model was induced by CCl4. After changes of liver histopathology were observed, rats were injected intraperitoneally with succinylated gelatin to establish a model of ACS and HRS. Then, changes in BUN, Cr, and renal histopathology were detected. Moreover, the UT in ACS and HRS were also quantified. Results The surfaces of liver in the cirrhotic group became coarse, with visible small nodules and became yellow and greasy. The normal structure of the hepatic lobules were destroyed, and hyperplasia of fibrotic tissue and pseudo-lobe was observed. The levels of BUN and Cr were significantly increased in rats suffering from ACS and HRS, respectively, compared to their control groups. In addition, the mRNA levels of UT-A2 and UT-A3 decreased in rats with HRS compared to cirrhotic rats. However, there was no significant difference between the mRNA levels of UT-A2, UT-A3, and UT-B in rats with ACS vs. normal rats. Conclusions It is feasible to model ACS in rats by injecting succinylated gelatin into the abdominal cavity. Increasing the intra-abdominal pressure by succinylated gelatin is also a novel approach for modeling HRS in cirrhotic rats. Compared with control rats, there is an abnormal mRNA expression of UT in ACS rats and HRS rats. PMID:26414230

  12. Structural and Functional Insights into the Human Börjeson-Forssman-Lehmann Syndrome-associated Protein PHF6*

    PubMed Central

    Liu, Zhonghua; Li, Fudong; Ruan, Ke; Zhang, Jiahai; Mei, Yide; Wu, Jihui; Shi, Yunyu

    2014-01-01

    The plant homeodomain finger 6 (PHF6) was originally identified as the gene mutated in the X-linked mental retardation disorder Börjeson-Forssman-Lehmann syndrome. Mutations in the PHF6 gene have also been associated with T-cell acute lymphoblastic leukemia and acute myeloid leukemia. Approximately half of the disease-associated mutations are distributed in the second conserved extended plant homeodomain (ePHD2) of PHF6, indicating the functional importance of the ePHD2 domain. Here, we report the high resolution crystal structure of the ePHD2 domain of PHF6, which contains an N-terminal pre-PHD (C2HC zinc finger), a long linker, and an atypical PHD finger. PHF6-ePHD2 appears to fold as a novel integrated structural module. Structural analysis of PHF6-ePHD2 reveals pathological implication of PHF6 gene mutations in Börjeson-Forssman-Lehmann syndrome, T-cell acute lymphoblastic leukemia, and acute myeloid leukemia. The binding experiments show that PHF6-ePHD2 can bind dsDNA but not histones. We also demonstrate PHF6 protein directly interacts with the nucleosome remodeling and deacetylation complex component RBBP4. Via this interaction, PHF6 exerts its transcriptional repression activity. Taken together, these data support the hypothesis that PHF6 may function as a transcriptional repressor using its ePHD domains binding to the promoter region of its repressed gene, and this process was regulated by the nucleosome remodeling and deacetylation complex that was recruited to the genomic target site by NoLS region of PHF6. PMID:24554700

  13. Transcript Analysis of White spot syndrome virus Latency and Phagocytosis Activating Protein Genes in Infected Shrimp (Penaeus monodon).

    PubMed

    Shekhar, M S; Dillikumar, M; Vinaya Kumar, K; Gopikrishna, G; Rajesh, S; Kiruthika, J; Ponniah, A G

    2012-12-01

    Viral latency has been recently observed to be associated with White spot syndrome virus (WSSV) infection in shrimp. In the present study, shrimp samples (Penaeus monodon) surviving WSSV infection were examined for presence of WSSV in latent phase. Virus latency was observed in shrimp which were either experimentally challenged with WSSV and survived the infection or those which survived the natural infection. Three viral transcripts (ORFs 427, 151, 366) associated with latency were analyzed by real-time PCR. The shrimp surviving the natural WSSV infection on estimation with RT-PCR were found to have low grade of WSSV infection (less than 56 copies of WSSV). All the shrimp samples were RT-PCR negative for structural protein genes of WSSV, VP24 and VP28, indicating that these samples were harboring latent phase virus. RT-PCR of all the shrimp samples which survived WSSV infection revealed amplification of phagocytosis activating protein (PAP) gene (435 bp) with higher gene expression levels in experimentally challenged shrimp when compared to naturally infected shrimp. The expression of PAP in WSSV infected shrimp samples indicates its possible role in host response for resistance against WSSV infection. PAP was cloned and expressed as recombinant protein for protection studies. Shrimp were injected with three doses (5, 15 and 20 μg g(-1) body weight) of recombinant PAP. Relative percent survival of 10 % was observed in shrimp immunized with the dose of 15 μg g(-1) body weight of recombinant PAP. The expression of both WSSV latency associated and PAP genes obtained from shrimp surviving the WSSV infection, indicates the possible role of these genes in host-pathogen interaction.

  14. Angelman Syndrome Protein Ube3a Regulates Synaptic Growth and Endocytosis by Inhibiting BMP Signaling in Drosophila

    PubMed Central

    Kaur, Kuldeep; Zhu, Yong-chuan; Zhao, Hui; Wang, Qifu; Jin, Shan; Zhao, Guoli; Xiong, Zhi-Qi; Zhang, Yong Q.

    2016-01-01

    Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders. PMID:27232889

  15. Metabolic and Phenotypic Differences between Mice Producing a Werner Syndrome Helicase Mutant Protein and Wrn Null Mice

    PubMed Central

    Aumailley, Lucie; Garand, Chantal; Dubois, Marie Julie; Johnson, F. Brad; Marette, André; Lebel, Michel

    2015-01-01

    Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter mean life span. In contrast, mice lacking the entire Wrn protein (i.e. Wrn null mice) do not exhibit a premature aging phenotype. In this study, we used a targeted mass spectrometry-based metabolomic approach to identify serum metabolites that are differentially altered in young Wrn helicase mutant and Wrn null mice. An antibody-based quantification of 43 serum cytokines and markers of cardiovascular disease risk complemented this study. We found that Wrn helicase mutants exhibited elevated and decreased levels, respectively, of the anti-inflammatory cytokine IL-10 and the pro-inflammatory cytokine IL-18. Wrn helicase mutants also exhibited an increase in serum hydroxyproline and plasminogen activator inhibitor-1, markers of extracellular matrix remodeling of the vascular system and inflammation in aging. We also observed an abnormal increase in the ratio of very long chain to short chain lysophosphatidylcholines in the Wrn helicase mutants underlying a peroxisome perturbation in these mice. Remarkably, the Wrn mutant helicase protein was mislocalized to the endoplasmic reticulum and the peroxisomal fractions in liver tissues. Additional analyses with mouse embryonic fibroblasts indicated a severe defect of the autophagy flux in cells derived from Wrn helicase mutants compared to wild type and Wrn null animals. These results indicate that the deleterious effects of the helicase-deficient Wrn protein are mediated by the dysfunction of several cellular organelles. PMID:26447695

  16. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor {beta} in HEK293 cells

    SciTech Connect

    Song, Hae Jin; Park, Joongkyu; Seo, Su Ryeon; Kim, Jongsun; Paik, Seung R.; Chung, Kwang Chul

    2008-11-21

    Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor {beta}, (PPAR{beta}). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPAR{beta} in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPAR{beta}. Furthermore, PPAR{beta} also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2.

  17. A Mutation in SNAP29, Coding for a SNARE Protein Involved in Intracellular Trafficking, Causes a Novel Neurocutaneous Syndrome Characterized by Cerebral Dysgenesis, Neuropathy, Ichthyosis, and Palmoplantar Keratoderma

    PubMed Central

    Sprecher, Eli; Ishida-Yamamoto, Akemi; Mizrahi-Koren, Mordechai; Rapaport, Debora; Goldsher, Dorit; Indelman, Margarita; Topaz, Orit; Chefetz, Ilana; Keren, Hanni; O’Brien, Timothy J.; Bercovich, Dani; Shalev, Stavit; Geiger, Dan; Bergman, Reuven; Horowitz, Mia; Mandel, Hanna

    2005-01-01

    Neurocutaneous syndromes represent a vast, largely heterogeneous group of disorders characterized by neurological and dermatological manifestations, reflecting the common embryonic origin of epidermal and neural tissues. In the present report, we describe a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK syndrome). Using homozygosity mapping in two large families, we localized the disease gene to 22q11.2 and identified, in all patients, a 1-bp deletion in SNAP29, which codes for a SNARE protein involved in vesicle fusion. SNAP29 expression was decreased in the skin of the patients, resulting in abnormal maturation of lamellar granules and, as a consequence, in mislocation of epidermal lipids and proteases. These data underscore the importance of vesicle trafficking regulatory mechanisms for proper neuroectodermal differentiation. PMID:15968592

  18. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    PubMed Central

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  19. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  20. [Point mutations of genes encoding proteins involvedin RNA splicing in patients with myelodysplastic syndromes].

    PubMed

    Barańska, Marta; Czerwińska-Rybak, Joanna; Gil, Lidia; Komarnicki, Mieczysław

    2015-01-01

    The myelodysplastic syndromes (MDS) constitute heterogeneous group of clonal disorders, characterized by ineffective hematopoiesis, peripheral cytopenia and increased risk of acute myeloid leukemia development. Molecular mechanisms behind MDS have not been fully explained, however recent studies based on new technologies confirmed that epigenetic abnormalities and somatic mutation in the spliceasome machinery are crucial in pathogenesis of these diseases. Abnormal mRNA splicing (excision of intronic sequences from mRNA) has been found in over half of all MDS patients and resulted in accumulation of cytogenetical and molecular changes. The biological impact of splicing factor genes mutations has been evaluated only in a limited extend and current studies concentrate on analysis of MDS transcriptome. Molecular characteristic of classical and alternative splicing is presented in the paper, according to current knowledge. We review the most prominent findings from recent years concerning mutation in the spliceasome machinery with respect to MDS phenotype and disease prognosis. Perspectives in applying of novel diagnostic and therapeutic possibilities for myelodysplasia, based on spliceosome mutations identification are also presented.

  1. Taq1B Polymorphism of Cholesteryl Ester Transfer Protein (CETP) and Its Effects on the Serum Lipid Levels in Metabolic Syndrome Patients.

    PubMed

    Maroufi, Nazila Fathi; Farzaneh, Khadijeh; Alibabrdel, Mahdi; Zarei, Leila; Cheraghi, Omid; Soltani, Sina; Montazersaheb, Soheila; Akbarzadeh, Maryam; Nouri, Mohammad

    2016-12-01

    The metabolic syndrome (MetS) is one of the most important risk factors for type 2 diabetes and cardiovascular disease. This syndrome is characterized by abdominal obesity, hypertension, insulin resistance, and dyslipidemia. The plasma origin of Cholesteryl ester transfer protein (CETP) is responsible for transferring cholesterol esters from high-density lipoprotein particles to apolipoprotein B containing lipoproteins compartment. We conducted this study to investigate the association between CETP gene Taq1B (rs708272) polymorphism in the metabolic syndrome among Iranian subjects. A sample size of 200 patients diagnosed with MetS together with 200 healthy donors as control were enrolled in this study. The investigation of polymorphism was performed by the use of polymerase chain reaction and restriction fragment length polymorphism analysis. To determine the relationship between polymorphism and lipid profile, we measured lipids and CETP concentration in metabolic syndrome and control subjects. Genotype distribution and allelic frequencies of polymorphism were determined and compared in both groups. Our findings showed that all clinical and biochemical characteristics in patients differed from the control group. The results showed that genotype and allele frequency of the Taq1B polymorphism was not significantly different between two groups. Instinctively, CETP was significantly higher in metabolic syndrome (1.64 ± 0.32 µg/ml) than in control (1.53 ± 0.34 µg/ml). A low level of CETP was found in blood of B2B2 typified genotype. In spite of Taq1B polymorphism on ester transfer protein concentration, no direct correlation was found between this polymorphism and metabolic syndrome.

  2. Ovarian metastasis from uveal melanoma with MLH1/PMS2 protein loss in a patient with germline MLH1 mutated Lynch syndrome: consequence or coincidence?

    PubMed

    Lobo, João; Pinto, Carla; Freitas, Micaela; Pinheiro, Manuela; Vizcaino, Rámon; Oliva, Esther; Teixeira, Manuel R; Jerónimo, Carmen; Bartosch, Carla

    2017-03-01

    Currently, uveal melanoma is not considered within the Lynch syndrome tumor spectrum. However, there are studies suggesting a contribution of microsatellite instability in sporadic uveal melanoma tumorigenesis. We report a 45-year-old woman who was referred for genetic counseling due to a family history of Lynch syndrome caused by a MLH1 mutation. She originally underwent enucleation of the right eye secondary to a uveal spindle cell melanoma diagnosed at age 25. The tumor recurred 22 years later presenting as an ovarian metastasis and concurrently a microscopic endometrial endometrioid carcinoma, grade 1/3 was diagnosed. Subsequent studies highlighted that the uveal melanoma showed high microsatellite instability and loss of MLH1 and PMS2 protein expression, with no MLH1 promoter methylation or BRAF mutation. Additionally, a GNAQ mutation was found. We conclude that our patient's uveal melanoma is most likely related to MLH1 germline mutation and thus Lynch syndrome related. To the best of our knowledge, this is the first report of uveal melanoma showing MLH1/PMS2 protein loss in the context of Lynch syndrome.

  3. Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region.

    PubMed

    Goldmuntz, E; Wang, Z; Roe, B A; Budarf, M L

    1996-04-15

    DiGeorge syndrome (DGS) and velocardiofacial syndrome have been shown to be associated with microdeletions of chromosomal regions 22q11. More recently, patients with conotruncal anomaly face syndrome and some nonsyndromic patients with isolated forms of conotruncal cardiac defects have been found to have 22q11 microdeletions as well. The commonly deleted region, called the DiGeorge chromosomal region (DGCR), spans approximately 1.2 Mb and is estimated to contain at least 30 genes. We report a computational approach for gene identification that makes use of large-scale sequencing of cosmids from a contig spanning the DGCR. Using this methodology, we have mapped the human homolog of a rodent citrate transport protein to the DGCR. We have isolated a partial cDNA containing the complete open reading frame and have determined the genomic structure by comparing the genomic sequence from the cosmid to the sequence of the cDNA clone. Whether the citrate transport protein can be implicated in the biological etiology of DGS or other 22q11 microdeletion syndromes remains to be defined.

  4. Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region

    SciTech Connect

    Goldmuntz, E.; Budarf, M.L.; Wang, Zhili; Roe, B.A.

    1996-04-15

    DiGeorge syndrome (DGS) and velocardiofacial syndrome have been shown to be associated with microdeletions of chromosomal region 22q11. More recently, patients with conotruncal anomaly face syndrome and some nonsyndromic patients with isolated forms of conotruncal cardiac defects have been found to have 22q11 microdeletions as well. The commonly deleted region, called the DiGeorge chromosomal region (DGCR), spans approximately 1.2 mb and is estimated to contain at least 30 genes. We report a computational approach for gene identification that makes use of large-scale sequencing of cosmids from a contig spanning the DGCR. Using this methodology, we have mapped the human homolog of a rodent citrate transport protein to the DGCR. We have isolated a partial cDNA containing the complete open reading frame and have determined the genomic structure by comparing the genomic sequence from the cosmid to the sequence of the cDNA clone. Whether the citrate transport protein can be implicated in the biological etiology of DGS or other 22q11 microdeletion syndromes remains to be defined. 36 refs., 3 figs., 1 tab.

  5. Ribosomal protein insufficiency and the minute syndrome in Drosophila: a dose-response relationship.

    PubMed Central

    Saebøe-Larssen, S; Lyamouri, M; Merriam, J; Oksvold, M P; Lambertsson, A

    1998-01-01

    Minutes comprise > 50 phenotypically similar mutations scattered throughout the genome of Drosophila, many of which are identified as mutations in ribosomal protein (rp) genes. Common traits of the Minute phenotype are short and thin bristles, slow development, and recessive lethality. By mobilizing a P element inserted in the 5' UTR of M(3)95A, the gene encoding ribosomal protein S3 (RPS3), we have generated two homozygous viable heteroalleles that are partial revertants with respect to the Minute phenotype. Molecular characterization revealed both alleles to be imprecise excisions, leaving 40 and 110 bp, respectively, at the P-element insertion site. The weaker allele (40 bp insert) is associated with a approximately 15% decrease in RPS3 mRNA abundance and displays a moderate Minute phenotype. In the stronger allele (110 bp insert) RPS3 mRNA levels are reduced by approximately 60%, resulting in an extreme Minute phenotype that includes many morphological abnormalities as well as sterility in both males and females due to disruption of early gametogenesis. The results show that there is a correlation between reduced RPS3 mRNA levels and the severity of the Minute phenotype, in which faulty differentiation of somatic tissues and arrest of gametogenesis represent the extreme case. That heteroalleles in M(3)95A can mimic the phenotypic variations that exist between different Minute/rp-gene mutations strongly suggests that all phenotypes primarily are caused by reductions in maximum protein synthesis rates, but that the sensitivity for reduced levels of the individual rp-gene products is different. PMID:9539436

  6. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

    PubMed

    Chong, Jessica X; Caputo, Viviana; Phelps, Ian G; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T; Ishak, Gisele E; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J; Ortiz-Gonzalez, Xilma R; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-04-07

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.

  7. Glucokinase Regulatory Protein Genetic Variant Interacts with Omega-3 PUFA to Influence Insulin Resistance and Inflammation in Metabolic Syndrome

    PubMed Central

    Garcia-Rios, Antonio; Mc Monagle, Jolene; Gulseth, Hanne L.; Ordovas, Jose M.; Shaw, Danielle I.; Karlström, Brita; Kiec-Wilk, Beata; Blaak, Ellen E.; Helal, Olfa; Malczewska-Malec, Małgorzata; Defoort, Catherine; Risérus, Ulf; Saris, Wim H. M.; Lovegrove, Julie A.; Drevon, Christian A.; Roche, Helen M.; Lopez-Miranda, Jose

    2011-01-01

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals. Trial Registration ClinicalTrials.gov NCT00429195 PMID:21674002

  8. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.

    PubMed

    Roth, Braden M; Ishimaru, Daniella; Hennig, Mirko

    2013-09-13

    MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins.

  9. Inflammation increases plasma angiopoietin-like protein 4 in patients with the metabolic syndrome and type 2 diabetes

    PubMed Central

    Tjeerdema, Nathanja; Georgiadi, Anastasia; Jonker, Jacqueline T; van Glabbeek, Marjolijn; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; Smit, Johannes W A; Kersten, Sander; Rensen, Patrick C N

    2014-01-01

    Background Angiopoietin-like protein 4 (ANGPTL4) inhibits lipoprotein lipase and associates with dyslipidemia. The expression of ANGPTL4 is regulated by free fatty acids (FFA) that activate lipid-sensing peroxisome proliferator-activated receptors (PPARs), but FFA can also activate pattern recognition receptors including Toll-like receptor 4 (TLR4) in macrophages. Objective To assess whether systemic low-grade inflammation is a determinant for plasma ANGPTL4 levels in patients with the metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM). Design We studied 335 male participants: healthy controls (Controls), patients with the MetS without inflammation (MetS−I) and with low-grade inflammation (MetS+I), and patients with T2DM. All patients without diabetes included in the present study were initially matched for waist circumference. In plasma, ANGPTL4, C reactive protein (CRP) and metabolic parameters were determined. Underlying mechanisms were examined using human macrophages in vitro. Results As compared with Controls, plasma ANGPTL4 levels were increased in patients with MetS−I, MetS+I, and T2DM. Furthermore, ANGPTL4 was increased in T2DM compared with MetS−I. In fact, plasma CRP correlated positively with plasma ANGPTL4. In vitro studies showed that TLR 3/4 activation largely increased the expression and release of ANGPTL4 by macrophages. Conclusions Plasma ANGPTL4 levels in humans are predicted by CRP, a marker of inflammation, and ANGPTL4 expression by macrophages is increased by inflammatory stimuli. PMID:25512873

  10. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy

    PubMed Central

    Chong, Jessica X.; Caputo, Viviana; Phelps, Ian G.; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C.; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T.; Ishak, Gisele E.; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J.; Ortiz-Gonzalez, Xilma R.; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-01-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126∗] and c.1363A>T [p.Lys455∗]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume. PMID:27040692

  11. MSH-2 and MLH-1 Protein Expression in Muir Torre Syndrome-Related and Sporadic Sebaceous Neoplasms

    PubMed Central

    Morales-Burgos, Adisbeth; Sánchez, Jorge L.; Figueroa, Luz D.; De Jesús-Monge, Wilfredo E.; Cruz-Correa, Marcia R.; González-Keelan, Carmen; Nazario, Cruz María

    2009-01-01

    Background Muir-Torre Syndrome (MTS) is a rare autosomal-dominant disorder characterized by the predisposition to both sebaceous neoplasm and internal malignancies. MTS-associated sebaceous neoplasms reveal mutations in DNA mismatch repair (MMR) genes and microsatellite instability. A significant part of MTS patients represents a phenotypic variant, the hereditary nonpolyposis colorectal cancer (HNPCC). A strong correlation between microsatellite instability and immunostaining has been demonstrated. The early recognition of sebaceous neoplasm as part of MTS, and their differentiation from sporadic sebaceous neoplasm may have an important application in a clinical setting. The absence of MLH-1 or MSH-2 expression by immunostaining identifies tumors with mismatch repair deficiency. Objectives Our aim is to determine whether an immunohistochemical approach, targeting DNA repair proteins MSH-2 and MLH-1 in MTS-related sebaceous neoplasm and their sporadic counterparts, can be used for their identification. Methods We examined 15 sebaceous neoplasms (including 6 internal malignancy- associated sebaceous neoplasms and 8 sporadic sebaceous neoplasms) from 11 patients for the expression of MSH-2 and MLH-1 by immunohistochemistry. Results Four of 5 internal malignancy-associated sebaceous neoplasms showed loss of expression of MSH-2 or MLH-1. Correlation of the immunostaining pattern of the sebaceous neoplasms and the patients’ positive history of colon carcinoma was 80%. Seven of 8 sporadic sebaceous neoplasms showed a positive expression of MSH-2 and MLH-1. The prevalence for loss of expression of MMR proteins in sebaceous neoplasms was 38.5%. MMR immunostaining had 87.5% specificity and 80% sensitivity. Limitations This study is limited by a small sample size, and by bias selection due to the use of non nationwide data-base as the resource of cases. Conclusions Our findings demonstrate that immunohistochemical testing for internal malignancy-associated sebaceous

  12. Occupational protein contact dermatitis from spices in a butcher: a new presentation of the mugwort-spice syndrome.

    PubMed

    Anliker, Mark David; Borelli, Siegfried; Wüthrich, Brunello

    2002-02-01

    Protein contact dermatitis to meat is well known in butchers; spices are another source of potential contact allergy and usually are not recognized. We present a first case of contact-dermatitis to spice mix in a 39-year-old-butcher. The patient underwent skin prick testing (SPT) with standard allergens (ALK) and different meat and spice extracts (Stallergènes), scratch-patch testing with spice mix containing glutamate, paprika and other spices. Specific serum-IgE was measured with CAP-FEIA. SPT only showed an immediate-type sensitization to mugwort (+ +), as well as different spices (paprika +, curry +, cumin +) and camomile (+ + +). Scratch-patch tests were negative for different meat, but strongly positive for spice mix (+ + +) after 30 min (wheal and flare) and (+ +) after 48 h (infiltration and vesiculation). Two healthy controls were tested negative for spice mix used from that patient (scratch-patch). Specific IgE was slightly elevated for paprika 0.47 kU/L (CAP class 1), anise 0.43 kU/L, curry 0.36 kU/L and mugwort 3.83 kU/L. Sx1 atopy-multiscreen was 3.8 kU/L due to a sensitization to mugwort alone. The tests performed demonstrate an IgE-mediated contact allergy to spices but also a delayed type allergy to spice mix as a manifestation of the mugwort-spice syndrome in this individual. When testing for occupational dermatitis in butchers, protein contact allergy to spices must also be taken into consideration.

  13. The arginine finger of the Bloom syndrome protein: its structural organization and its role in energy coupling

    PubMed Central

    Ren, Hua; Dou, Shuo-Xing; Rigolet, Pascal; Yang, Ye; Wang, Peng-Ye; Amor-Gueret, Mounira; Xi, Xu Guang

    2007-01-01

    RecQ family helicases are essential in maintaining chromosomal DNA stability and integrity. Despite extensive studies, the mechanisms of these enzymes are still poorly understood. Crystal structures of many helicases reveal a highly conserved arginine residue located near the γ-phosphate of ATP. This residue is widely recognized as an arginine finger, and may sense ATP binding and hydrolysis, and transmit conformational changes. We investigated the existence and role of the arginine finger in the Bloom syndrome protein (BLM), a RecQ family helicase, in ATP hydrolysis and energy coupling. Our studies by combination of structural modelling, site-directed mutagenesis and biochemical and biophysical approaches, demonstrate that mutations of residues interacting with the γ-phosphate of ATP or surrounding the ATP-binding sites result in severe impairment in the ATPase activity of BLM. These mutations also impair BLM's DNA-unwinding activities, but do not affect its ATP and DNA-binding abilities. These data allow us to identify R982 as the residue that functions as a BLM arginine finger. Our findings further indicate how the arginine finger is precisely positioned by the conserved motifs with respect to the γ-phosphate. PMID:17766252

  14. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1.

    PubMed

    Das, Aditi; Boldogh, Istvan; Lee, Jae Wan; Harrigan, Jeanine A; Hegde, Muralidhar L; Piotrowski, Jason; de Souza Pinto, Nadja; Ramos, William; Greenberg, Marc M; Hazra, Tapas K; Mitra, Sankar; Bohr, Vilhelm A

    2007-09-07

    The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early damage-sensing step of base excision repair. WRN stimulates NEIL1 in excision of oxidative lesions from bubble DNA substrates. The binary interaction between NEIL1 and WRN (K(D) = 60 nM) involves C-terminal residues 288-349 of NEIL1 and the RecQ C-terminal (RQC) region of WRN, and is independent of the helicase activity WRN. Exposure to oxidative stress enhances the NEIL-WRN association concomitant with their strong nuclear co-localization. WRN-depleted cells accumulate some prototypical oxidized bases (e.g. 8-oxoguanine, FapyG, and FapyA) indicating a physiological function of WRN in oxidative damage repair in mammalian genomes. Interestingly, WRN deficiency does not have an additive effect on in vivo damage accumulation in NEIL1 knockdown cells suggesting that WRN participates in the same repair pathway as NEIL1.

  15. Loss-of-function of the protein kinase C δ (PKCδ) causes a B-cell lymphoproliferative syndrome in humans.

    PubMed

    Kuehn, Hye Sun; Niemela, Julie E; Rangel-Santos, Andreia; Zhang, Mingchang; Pittaluga, Stefania; Stoddard, Jennifer L; Hussey, Ashleigh A; Evbuomwan, Moses O; Priel, Debra A Long; Kuhns, Douglas B; Park, C Lucy; Fleisher, Thomas A; Uzel, Gulbu; Oliveira, João B

    2013-04-18

    Defective lymphocyte apoptosis results in chronic lymphadenopathy and/or splenomegaly associated with autoimmune phenomena. The prototype for human apoptosis disorders is the autoimmune lymphoproliferative syndrome (ALPS), which is caused by mutations in the FAS apoptotic pathway. Recently, patients with an ALPS-like disease called RAS-associated autoimmune leukoproliferative disorder, in which somatic mutations in NRAS or KRAS are found, also were described. Despite this progress, many patients with ALPS-like disease remain undefined genetically. We identified a homozygous, loss-of-function mutation in PRKCD (PKCδ) in a patient who presented with chronic lymphadenopathy, splenomegaly, autoantibodies, elevated immunoglobulins and natural killer dysfunction associated with chronic, low-grade Epstein-Barr virus infection. This mutation markedly decreased protein expression and resulted in ex vivo B-cell hyperproliferation, a phenotype similar to that of the PKCδ knockout mouse. Lymph nodes showed intense follicular hyperplasia, also mirroring the mouse model. Immunophenotyping of circulating lymphocytes demonstrated expansion of CD5+CD20+ B cells. Knockdown of PKCδ in normal mononuclear cells recapitulated the B-cell hyperproliferative phenotype in vitro. Reconstitution of PKCδ in patient-derived EBV-transformed B-cell lines partially restored phorbol-12-myristate-13-acetate-induced cell death. In summary, homozygous PRKCD mutation results in B-cell hyperproliferation and defective apoptosis with consequent lymphocyte accumulation and autoantibody production in humans, and disrupts natural killer cell function.

  16. Top3β is an RNA topoisomerase that works with Fragile X syndrome protein to promote synapse formation

    PubMed Central

    Xu, Dongyi; Shen, Weiping; Guo, Rong; Xue, Yutong; Peng, Wei; Sima, Jian; Yang, Jay; Sharov, Alexei; Srikantan, Subramanya; Yang, Jiandong; Fox, David; Qian, Yong; Martindale, Jennifer L.; Piao, Yulan; Machamer, James; Joshi, Samit R.; Mohanty, Subhasis; Shaw, Albert C.; Lloyd, Thomas E.; Brown, Grant W.; Ko, Minoru S.H.; Gorospe, Myriam; Zou, Sige; Wang, Weidong

    2013-01-01

    Topoisomerases are crucial to solve DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein deficient in Fragile X syndrome and known to regulate translation of mRNAs important for neuronal function and autism. Notably, the FMRP-Top3β interaction is abolished by a disease-associated FMRP mutation, suggesting that Top3β may contribute to pathogenesis of mental disorders. Top3β binds multiple mRNAs encoded by genes with neuronal functions related to schizophrenia and autism. Expression of one such gene, ptk2/FAK, is reduced in neuromuscular junctions of Top3β mutant flies. Synapse formation is defective in Top3β mutant flies and mice, as observed in FMRP mutant animals. Our findings suggest that Top3β acts as an RNA topoisomerase and works with FMRP to promote expression of mRNAs critical for neurodevelopment and mental health. PMID:23912945

  17. A Novel SMAD4 Mutation Causing Severe Juvenile Polyposis Syndrome with Protein Losing Enteropathy, Immunodeficiency, and Hereditary Haemorrhagic Telangiectasia

    PubMed Central

    Johansson, Joel; Sahin, Christofer; Pestoff, Rebecka; Ignatova, Simone; Forsberg, Pia; Edsjö, Anders; Ekstedt, Mattias; Stenmark Askmalm, Marie

    2015-01-01

    Juvenile polyposis syndrome (JPS) is a rare genetic disorder characterized by juvenile polyps of the gastrointestinal tract. We present a new pathogenic mutation of the SMAD4 gene and illustrate the need for a multidisciplinary health care approach to facilitate the correct diagnosis. The patient, a 47-year-old Caucasian woman, was diagnosed with anaemia at the age of 12. During the following 30 years, she developed numerous gastrointestinal polyps. The patient underwent several operations, and suffered chronic abdominal pain, malnutrition, and multiple infections. Screening of the SMAD4 gene revealed a novel, disease-causing mutation. In 2012, the patient suffered hypoalbuminemia and a large polyp in the small bowel was found. Gamma globulin was given but the patient responded with fever and influenza-like symptoms and refused more treatment. The patient underwent surgery in 2014 and made an uneventful recovery. At follow-up two months later albumin was 38 g/L and IgG was 6.9 g/L. Accurate diagnosis is essential for medical care. For patients with complex symptomatology, often with rare diseases, this is best provided by multidisciplinary teams including representatives from clinical genetics. Patients with a SMAD4 mutation should be followed up both for JPS and haemorrhagic hereditary telangiectasia and may develop protein loosing enteropathy and immunodeficiency. PMID:25705527

  18. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    PubMed

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-03-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders.

  19. Loss-of-function of the protein kinase C δ (PKCδ) causes a B-cell lymphoproliferative syndrome in humans

    PubMed Central

    Kuehn, Hye Sun; Niemela, Julie E.; Rangel-Santos, Andreia; Zhang, Mingchang; Pittaluga, Stefania; Stoddard, Jennifer L.; Hussey, Ashleigh A.; Evbuomwan, Moses O.; Priel, Debra A. Long; Kuhns, Douglas B.; Park, C. Lucy; Fleisher, Thomas A.; Uzel, Gulbu

    2013-01-01

    Defective lymphocyte apoptosis results in chronic lymphadenopathy and/or splenomegaly associated with autoimmune phenomena. The prototype for human apoptosis disorders is the autoimmune lymphoproliferative syndrome (ALPS), which is caused by mutations in the FAS apoptotic pathway. Recently, patients with an ALPS-like disease called RAS-associated autoimmune leukoproliferative disorder, in which somatic mutations in NRAS or KRAS are found, also were described. Despite this progress, many patients with ALPS-like disease remain undefined genetically. We identified a homozygous, loss-of-function mutation in PRKCD (PKCδ) in a patient who presented with chronic lymphadenopathy, splenomegaly, autoantibodies, elevated immunoglobulins and natural killer dysfunction associated with chronic, low-grade Epstein-Barr virus infection. This mutation markedly decreased protein expression and resulted in ex vivo B-cell hyperproliferation, a phenotype similar to that of the PKCδ knockout mouse. Lymph nodes showed intense follicular hyperplasia, also mirroring the mouse model. Immunophenotyping of circulating lymphocytes demonstrated expansion of CD5+CD20+ B cells. Knockdown of PKCδ in normal mononuclear cells recapitulated the B-cell hyperproliferative phenotype in vitro. Reconstitution of PKCδ in patient-derived EBV-transformed B-cell lines partially restored phorbol-12-myristate-13-acetate–induced cell death. In summary, homozygous PRKCD mutation results in B-cell hyperproliferation and defective apoptosis with consequent lymphocyte accumulation and autoantibody production in humans, and disrupts natural killer cell function. PMID:23430113

  20. A Protein Kinase C phosphorylation motif in GLUT1 affects glucose transport and is mutated in GLUT1 deficiency syndrome

    PubMed Central

    Lee, Eunice E.; Ma, Jing; Sacharidou, Anastasia; Mi, Wentao; Salato, Valerie K.; Nguyen, Nam; Jiang, Youxing; Pascual, Juan M.; North, Paula E.; Shaul, Philip W.; Mettlen, Marcel; Wang, Richard C.

    2015-01-01

    Summary Protein Kinase C has been implicated in the phosphorylation of the erythrocyte/brain glucose transporter, GLUT1, without a clear understanding of the site(s) of phosphorylation and the possible effects on glucose transport. Through in-vitro kinase assays, mass spectrometry, and phosphospecific antibodies, we identify Serine 226 in GLUT1 as a PKC phosphorylation site. Phosphorylation of S226 is required for the rapid increase in glucose uptake and enhanced cell surface localization of GLUT1 induced by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Endogenous GLUT1 is phosphorylated on S226 in primary endothelial cells in response to TPA or VEGF. Several naturally-occurring, pathogenic mutations that cause GLUT1 deficiency syndrome disrupt this PKC phosphomotif, impair the phosphorylation of S226 in vitro, and block TPA-mediated increases in glucose uptake. We demonstrate that the phosphorylation of GLUT1 on S226 regulates glucose transport and propose that this modification is important in the physiological regulation of glucose transport. PMID:25982116

  1. A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome.

    PubMed

    Lee, Eunice E; Ma, Jing; Sacharidou, Anastasia; Mi, Wentao; Salato, Valerie K; Nguyen, Nam; Jiang, Youxing; Pascual, Juan M; North, Paula E; Shaul, Philip W; Mettlen, Marcel; Wang, Richard C

    2015-06-04

    Protein kinase C has been implicated in the phosphorylation of the erythrocyte/brain glucose transporter, GLUT1, without a clear understanding of the site(s) of phosphorylation and the possible effects on glucose transport. Through in vitro kinase assays, mass spectrometry, and phosphospecific antibodies, we identify serine 226 in GLUT1 as a PKC phosphorylation site. Phosphorylation of S226 is required for the rapid increase in glucose uptake and enhanced cell surface localization of GLUT1 induced by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Endogenous GLUT1 is phosphorylated on S226 in primary endothelial cells in response to TPA or VEGF. Several naturally occurring, pathogenic mutations that cause GLUT1 deficiency syndrome disrupt this PKC phosphomotif, impair the phosphorylation of S226 in vitro, and block TPA-mediated increases in glucose uptake. We demonstrate that the phosphorylation of GLUT1 on S226 regulates glucose transport and propose that this modification is important in the physiological regulation of glucose transport.

  2. Structural Insights into Immune Recognition of the Severe Acute Respiratory Syndrome Coronavirus S Protein Receptor Binding Domain

    SciTech Connect

    Pak, J.; Sharon, C; Satkunarajah, M; Thierry, C; Cameron, C; Kelvin, D; Seetharaman, J; Cochrane, A; Plummer, F; et. al.

    2009-01-01

    The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.

  3. Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2.

    PubMed

    Edwards, Deanna N; Orren, David K; Machwe, Amrita

    2014-07-01

    Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS. Furthermore, TRF2, a protein essential for telomere protection, interacts with WRN and influences its basic helicase and exonuclease activities. However, these studies provided little insight into WRN's specific function at telomeres. Here, we explored the possibility that WRN and TRF2 cooperate during telomeric recombination processes. Our results indicate that TRF2, through its interactions with both WRN and telomeric DNA, stimulates WRN-mediated strand exchange specifically between telomeric substrates; TRF2's basic domain is particularly important for this stimulation. Although TRF1 binds telomeric DNA with similar affinity, it has minimal effects on WRN-mediated strand exchange of telomeric DNA. Moreover, TRF2 is displaced from telomeric DNA by WRN, independent of its ATPase and helicase activities. Together, these results suggest that TRF2 and WRN act coordinately during telomeric recombination processes, consistent with certain telomeric abnormalities associated with alteration of WRN function.

  4. A single amino acid deletion in the matrix protein of porcine reproductive and respiratory syndrome virus confers resistance to a polyclonal swine antibody with broadly neutralizing activity.

    PubMed

    Trible, Benjamin R; Popescu, Luca N; Monday, Nicholas; Calvert, Jay G; Rowland, Raymond R R

    2015-06-01

    Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection.

  5. Autoinflammatory syndromes.

    PubMed

    Galeazzi, M; Gasbarrini, G; Ghirardello, A; Grandemange, S; Hoffman, H M; Manna, R; Podswiadek, M; Punzi, L; Sebastiani, G D; Touitou, I; Doria, A

    2006-01-01

    The autoinflammatory disorders are a new and expanding classification of inflammatory diseases characterized by recurrent episodes of systemic inflammation in the absence of pathogens, autoantibodies or antigen specific T cells. These disorders are caused by primary dysfunction of the innate immune system, without evidence of adaptive immune dysregulation. Innate immune abnormalities include aberrant responses to pathogen associated molecular patterns (PAMPs) like lipopolysaccharide and peptidoglycan, prominent neutrophilia in blood and tissues, and dysregulation of inflammatory cytokines (IL-1beta, TNF-alpha) or their receptors. The autoinflammatory diseases comprise both hereditary (Familial Mediterranean Fever, FMF; Mevalonate Kinase Deficiency, MKD; TNF Receptor Associated Periodic Syndrome, TRAPS; Cryopyrin Associated Periodic Syndrome, CAPS; Blau syndrome; Pyogenic sterile Arthritis, Pyoderma gangrenosum and Acne syndrome, PAPA; Chronic Recurrent Multifocal Osteomyelitis, CRMO) and multifactorial (Crohn's and Behçet's diseases) disorders. Mutations responsible for FMF, TRAPS, CAPS, PAPA are in proteins involved in modulation of inflammation and apoptosis.

  6. Lysozyme-Mediated Formation of Protein-Silica Nano-Composites for Biosensing Applications (Postprint)

    DTIC Science & Technology

    2009-05-05

    reagents Lysozyme (from hen egg white ), tetramethyl orthosilicate (TMOS) and tetraethyl orthosilicate (TEOS) were purchased from Sigma–Aldrich (St. Louis...AFRL-RX-TY-TP-2009-4611 LYSOZYME -MEDIATED FORMATION OF PROTEIN-SILICA NANO-COMPOSITES FOR BIOSENSING APPLICATIONS (POSTPRINT) Madhumati...Include area code) 15-MAR-2009 Journal Article - POSTPRINT 01-MAR-2008 -- 01-MAR-2009 Lysozyme -Mediated Formation of Protein–Silica Nano-Composites for

  7. Comparison of protein expression profiles of the hepatopancreas in Fenneropenaeus chinensis challenged with heat-inactivated Vibrio anguillarum and white spot syndrome virus.

    PubMed

    Jiang, Hao; Li, Fuhua; Zhang, Jiquan; Zhang, Jinkang; Huang, Bingxin; Yu, Yang; Xiang, Jianhai

    2014-02-01

    Fenneropenaeus chinensis (Chinese shrimp) culture industry, like other Penaeidae culture, has been seriously affected by the shrimp diseases caused by bacteria and virus. To better understand the mechanism of immune response of shrimp to different pathogens, proteome research approach was utilized in this study. Firstly, the soluble hepatopancreas protein samples in adult Chinese shrimp among control, heat-inactivated Vibrio-challenged and white spot syndrome virus-infected groups were separated by 2-DE (pH range, 4-7; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and pH range, 3-10; tricine-SDS-PAGE). Then the differentially expressed protein spots (≥1.5-fold or ≤0.67-fold averagely of controls) were analyzed by LC-ESI-MS/MS. Using Mascot online database searching algorithm and SEQUEST searching program, 48 and 49 differentially expressed protein spots were successfully identified in response to Vibrio and white spot syndrome virus infection, respectively. Based on these results, we discussed the mechanism of immune response of the shrimp and shed light on the differences between immune response of shrimp toward Vibrio and white spot syndrome virus. This study also set a basis for further analyses of some key genes in immune response of Chinese shrimp.

  8. Monocyte Chemoattractant Protein-1 (MCP-1) as a Potential Therapeutic Target and a Noninvasive Biomarker of Liver Fibrosis Associated With Transient Myeloproliferative Disorder in Down Syndrome.

    PubMed

    Kobayashi, Kenichiro; Yoshioka, Takako; Miyauchi, Jun; Nakazawa, Atsuko; Yamazaki, Shigeaki; Ono, Hiromi; Tatsuno, Michiko; Iijima, Kenta; Takahashi, Chiaki; Okada, Yoko; Teranishi, Kenji; Matsunaga, Takaaki; Matsushima, Chieko; Inagaki, Mayo; Suehiro, Minoru; Suehiro, Saori; Nishitani, Masahiko; Kubota, Hirohito; Iio, Jun; Nishida, Yoshinobu; Katayama, Tetsuo; Takada, Narito; Watanabe, Kentaro; Yamamoto, Tetsuro; Yasumizu, Ryoji; Matsuoka, Kentaro; Ohki, Kentaro; Kiyokawa, Nobutaka; Maihara, Toshiro; Usami, Ikuya

    2017-03-06

    Liver fibrosis is one of the common complications of transient myeloproliferative disorder (TMD) in Down syndrome (DS), but the exact molecular pathogenesis is largely unknown. We herein report a neonate of DS with liver fibrosis associated with TMD, in which we performed the serial profibrogenic cytokines analyses. We found the active monocyte chemoattractant protein-1 expression in the affected liver tissue and also found that both serum and urinary monocyte chemoattractant protein-1 concentrations are noninvasive biomarkers of liver fibrosis. We also showed a prospective of the future anticytokine therapy with herbal medicine for the liver fibrosis associated with TMD in DS.

  9. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    SciTech Connect

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. )

    1988-11-01

    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  10. Elevated serum interferon γ-induced protein 10 kDa is associated with TAFRO syndrome.

    PubMed

    Iwaki, Noriko; Gion, Yuka; Kondo, Eisei; Kawano, Mitsuhiro; Masunari, Taro; Moro, Hiroshi; Nikkuni, Koji; Takai, Kazue; Hagihara, Masao; Hashimoto, Yuko; Yokota, Kenji; Okamoto, Masataka; Nakao, Shinji; Yoshino, Tadashi; Sato, Yasuharu

    2017-02-13

    Multicentric Castleman disease (MCD) is a heterogeneous lymphoproliferative disorder. It is characterized by inflammatory symptoms, and interleukin (IL)-6 contributes to the disease pathogenesis. Human herpesvirus 8 (HHV-8) often drives hypercytokinemia in MCD, although the etiology of HHV-8-negative MCD is idiopathic (iMCD). A distinct subtype of iMCD that shares a constellation of clinical features including thrombocytopenia (T), anasarca (A), fever (F), reticulin fibrosis (R), and organomegaly (O) has been reported as TAFRO-iMCD, however the differences in cytokine profiles between TAFRO-iMCD and iMCD have not been established. We retrospectively compared levels of serum interferon γ-induced protein 10 kDa (IP-10), platelet-derived growth factor (PDGF)-AA, interleukin (IL)-10, and other cytokines between 11 cases of TAFRO-iMCD, 6 cases of plasma cell type iMCD, and 21 healthy controls. During flare-ups, patients with TAFRO-iMCD had significantly higher serum IP-10 and tended to have lower PDGF-AA levels than the other 2 groups. In addition, serum IL-10, IL-23, and vascular endothelial growth factor-A were elevated in both TAFRO-iMCD and iMCD. Elevated serum IP-10 is associated with inflammatory diseases including infectious diseases. There was a strong correlation between high serum IP-10 and the presence of TAFRO-iMCD, suggesting that IP-10 might be involved in the pathogenesis of TAFRO-iMCD.

  11. The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation.

    PubMed

    Iwase, Shohei; Ono, Shoichiro

    2016-12-01

    Cyclase-associated protein (CAP) is a conserved actin-regulatory protein that functions together with actin depolymerizing factor (ADF)/cofilin to enhance actin filament dynamics. CAP has multiple functional domains, and the function to regulate actin monomers is carried out by its C-terminal half containing a Wiskott-Aldrich Syndrome protein homology 2 (WH2) domain, a CAP and X-linked retinitis pigmentosa 2 (CARP) domain, and a dimerization motif. WH2 and CARP are implicated in binding to actin monomers and important for enhancing filament turnover. However, the role of the dimerization motif is unknown. Here, we investigated the function of the dimerization motif of CAS-2, a CAP isoform in the nematode Caenorhabditis elegans, in actin monomer regulation. CAS-2 promotes ATP-dependent recycling of ADF/cofilin-bound actin monomers for polymerization by enhancing exchange of actin-bound nucleotides. The C-terminal half of CAS-2 (CAS-2C) has nearly as strong activity as full-length CAS-2. Maltose-binding protein (MBP)-tagged CAS-2C is a dimer. However, MBP-CAS-2C with a truncation of either one or two C-terminal β-strands is monomeric. Truncations of the dimerization motif in MBP-CAS-2C nearly completely abolish its activity to sequester actin monomers from polymerization and enhance nucleotide exchange on actin monomers. As a result, these CAS-2C variants, also in the context of full-length CAS-2, fail to compete with ADF/cofilin to release actin monomers for polymerization. CAS-2C variants lacking the dimerization motif exhibit enhanced binding to actin filaments, which is mediated by WH2. Taken together, these results suggest that the evolutionarily conserved dimerization motif of CAP is essential for its C-terminal region to exert the actin monomer-specific regulatory function.

  12. Elevated serum interferon γ-induced protein 10 kDa is associated with TAFRO syndrome

    PubMed Central

    Iwaki, Noriko; Gion, Yuka; Kondo, Eisei; Kawano, Mitsuhiro; Masunari, Taro; Moro, Hiroshi; Nikkuni, Koji; Takai, Kazue; Hagihara, Masao; Hashimoto, Yuko; Yokota, Kenji; Okamoto, Masataka; Nakao, Shinji; Yoshino, Tadashi; Sato, Yasuharu

    2017-01-01

    Multicentric Castleman disease (MCD) is a heterogeneous lymphoproliferative disorder. It is characterized by inflammatory symptoms, and interleukin (IL)-6 contributes to the disease pathogenesis. Human herpesvirus 8 (HHV-8) often drives hypercytokinemia in MCD, although the etiology of HHV-8-negative MCD is idiopathic (iMCD). A distinct subtype of iMCD that shares a constellation of clinical features including thrombocytopenia (T), anasarca (A), fever (F), reticulin fibrosis (R), and organomegaly (O) has been reported as TAFRO-iMCD, however the differences in cytokine profiles between TAFRO-iMCD and iMCD have not been established. We retrospectively compared levels of serum interferon γ-induced protein 10 kDa (IP-10), platelet-derived growth factor (PDGF)-AA, interleukin (IL)-10, and other cytokines between 11 cases of TAFRO-iMCD, 6 cases of plasma cell type iMCD, and 21 healthy controls. During flare-ups, patients with TAFRO-iMCD had significantly higher serum IP-10 and tended to have lower PDGF-AA levels than the other 2 groups. In addition, serum IL-10, IL-23, and vascular endothelial growth factor-A were elevated in both TAFRO-iMCD and iMCD. Elevated serum IP-10 is associated with inflammatory diseases including infectious diseases. There was a strong correlation between high serum IP-10 and the presence of TAFRO-iMCD, suggesting that IP-10 might be involved in the pathogenesis of TAFRO-iMCD. PMID:28205564

  13. Neuroacanthocytosis syndromes.

    PubMed

    Jung, Hans H; Danek, Adrian; Walker, Ruth H

    2011-10-25

    Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis and progressive degeneration of the basal ganglia. NA syndromes are exceptionally rare with an estimated prevalence of less than 1 to 5 per 1'000'000 inhabitants for each disorder. The core NA syndromes include autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome which have a Huntington's disease-like phenotype consisting of a choreatic movement disorder, psychiatric manifestations and cognitive decline, and additional multi-system features including myopathy and axonal neuropathy. In addition, cardiomyopathy may occur in McLeod syndrome. Acanthocytes are also found in a proportion of patients with autosomal dominant Huntington's disease-like 2, autosomal recessive pantothenate kinase-associated neurodegeneration and several inherited disorders of lipoprotein metabolism, namely abetalipoproteinemia (Bassen-Kornzweig syndrome) and hypobetalipoproteinemia leading to vitamin E malabsorption. The latter disorders are characterized by a peripheral neuropathy and sensory ataxia due to dorsal column degeneration, but movement disorders and cognitive impairment are not present. NA syndromes are caused by disease-specific genetic mutations. The mechanism by which these mutations cause neurodegeneration is not known. The association of the acanthocytic membrane abnormality with selective degeneration of the basal ganglia, however, suggests a common pathogenetic pathway. Laboratory tests include blood smears to detect acanthocytosis and determination of serum creatine kinase. Cerebral magnetic resonance imaging may demonstrate striatal atrophy. Kell and Kx blood group antigens are reduced or absent in McLeod syndrome. Western blot for chorein demonstrates absence of this protein in red blood cells of chorea-acanthocytosis patients. Specific genetic testing is possible in all NA syndromes. Differential diagnoses

  14. Regulatory function of a malleable protein matrix as a novel fermented whey product on features defining the metabolic syndrome.

    PubMed

    Beaulieu, J; Millette, E; Trottier, E; Précourt, L-P; Dupont, C; Lemieux, P

    2010-06-01

    Previously, we reported that a malleable protein matrix (MPM), composed of whey fermented by a proprietary Lactobacillus kefiranofaciens strain, has immunomodulatory and anti-inflammatory properties. MPM consumption leads to a considerable reduction in the cytokine and chemokine production (tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6), thus lowering chronic inflammation or metaflammation. Inhibition of metaflammation should provide positive impact, particularly in the context of dyslipidemia, insulin resistance, and hypertension. In this study, we investigated whether short-term MPM supplementation ameliorates those features of metabolic syndrome (MetS). The ability of MPM to potentially regulate triglyceride level, cholesterol level, blood glucose level, and hypertension was evaluated in different animal models. MPM lowers triglyceride level by 37% (P < .05) in a poloxamer 407 dyslipidemia-induced rat model. It also reduces total cholesterol by 18% (P < .05) and low-density lipoprotein-cholesterol level by 32% (P < .05) and raises high-density lipoprotein-cholesterol level by 17% (P < .01) in Syrian Golden hamsters fed a high fat/high cholesterol diet for 2 weeks. MPM reestablishes the fasting glucose insulin ratio index to normal levels (P = .07) in this latter model and lowers the plasma glucose level area under the curve (-10%, P = .09) in fructose-fed rats after 2 weeks of treatment. In spontaneously hypertensive rats, MPM-treated animals showed a reduction of SBP by at least 13% (P < .05) for 4 weeks. Results from this study suggest that MPM is a functional ingredient with beneficial effects on lipid metabolism, blood glucose control, and hypertension that might contribute to the management of MetS and thus reducing the risk of cardiovascular diseases.

  15. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels

    PubMed Central

    Xiong, Lan; Catoire, Hélène; Dion, Patrick; Gaspar, Claudia; Lafrenière, Ronald G.; Girard, Simon L.; Levchenko, Anastasia; Rivière, Jean-Baptiste; Fiori, Laura; St-Onge, Judith; Bachand, Isabelle; Thibodeau, Pascale; Allen, Richard; Earley, Christopher; Turecki, Gustavo; Montplaisir, Jacques; Rouleau, Guy A.

    2009-01-01

    Restless legs syndrome (RLS) is a common neurological disorder characterized by an irresistible urge to move the legs at night, which is often accompanied by unpleasant sensations. A recent genomewide association study identified an association between RLS and intronic markers from the MEIS1 gene. Comparative genomic analysis indicates that MEIS1 is the only gene encompassed in this evolutionarily conserved chromosomal segment, i.e. a conservation synteny block, from mammals to fish. We carried out a series of experiments to delineate the role of MEIS1 in RLS pathogenesis and the underlying genetic mechanism. We sequenced all 13 MEIS1 exons and their splice junctions in 285 RLS probands with confirmed clinical diagnosis and did not identify any causative coding or exon–intron junction mutations. We found no evidence of structural variation or disease-associated haplotype differential splicing. However, sequencing of conserved regions of MEIS1 introns 8 and 9 identified a novel single nucleotide polymorphism (C13B_2) significantly associated with RLS (allelic association, P = 1.81E−07). We detected a significant decrease in MEIS1 mRNA expression by quantitative real-time polymerase chain reaction in lymphoblastoid cell lines (LCLs) and brain tissues from RLS patients homozygous for the intronic RLS risk haplotype, compared with those homozygous for the non-risk haplotype. Finally, we found significantly decreased MEIS1 protein levels in the same batch of LCLs and brain tissues from the homozygous carriers of the risk haplotype, compared with the homozygous non-carriers. Therefore, these data suggest that reduced expression of the MEIS1 gene, possibly through intronic cis-regulatory element(s), predisposes to RLS. PMID:19126776

  16. THE WERNER AND BLOOM SYNDROME PROTEINS HELP RESOLVE REPLICATION BLOCKAGE BY CONVERTING (REGRESSED) HOLLIDAY JUNCTIONS TO FUNCTIONAL REPLICATION FORKS

    PubMed Central

    Machwe, Amrita; Karale, Rajashree; Xu, Xioahua; Liu, Yilun; Orren, David K.

    2011-01-01

    Cells cope with blockage of replication fork progression in a manner so that DNA synthesis can be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and postulated to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examined the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction is optimal in low MgCl2, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells. PMID:21736299

  17. Abnormal amounts of intracellular calcium regulatory proteins in SHRSP.Z-Lepr(fa)/IzmDmcr rats with metabolic syndrome and cardiac dysfunction.

    PubMed

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Wakuda, Hirokazu; Nakamura, Kazuki; Kunitomo, Masaru; Shinozuka, Kazumasa

    2013-02-01

    Metabolic syndrome is known to increase the risk of abnormal cardiac structure and function, which are considered to contribute to increased incidence of cardiovascular disease and mortality. We previously demonstrated that ventricular hypertrophy and diastolic dysfunction occur in SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP fatty) rats with metabolic syndrome. The aim of this study was to investigate the possible mechanisms underlying abnormal heart function in SHRSP fatty rats. The amount of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a, phospholamban (PLB) protein, and Ser(16)-phosphorylated PLB was decreased in cardiomyocytes from SHRSP fatty rats compared with those from control Wistar-Kyoto rats at 18 weeks of age, and the PLB-to-SERCA2a ratio was increased. Left ventricular developed pressure was unchanged, and coronary flow rate and maximum rate of left ventricular pressure decline (-dP/dt) was decreased in SHRSP fatty rats. Treatment with telmisartan reversed the abnormalities of PLB amount, coronary flow rate, and -dP/dt in SHRSP fatty rats. These results indicate that abnormal amounts of intracellular Ca(2+) regulatory proteins in cardiomyocytes, leading to reduced intracellular Ca(2+) reuptake into the sarcoplasmic reticulum, may play a role in the diastolic dysfunction in SHRSP fatty rats and that these effects are partially related to decreased coronary circulation. Telmisartan may be beneficial in protecting against disturbances in cardiac function associated with metabolic syndrome.

  18. Interaction between Kazal serine proteinase inhibitor SPIPm2 and viral protein WSV477 reduces the replication of white spot syndrome virus.

    PubMed

    Ponprateep, Sirikwan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien

    2013-09-01

    White spot syndrome (WSS) is a viral disease caused by white spot syndrome virus (WSSV) which leads to severe mortality in cultured penaeid shrimp. In response to WSSV infection in Penaeus monodon, a Kazal serine proteinase inhibitor SPIPm2, normally stored in the granules of granular and semi-granular hemocytes is up-regulated and found to deter the viral replication. By using yeast two-hybrid screening, we have identified a viral target protein, namely WSV477. Instead of being a proteinase, the WSV477 was reported to be a Cys2/Cys2-type zinc finger regulatory protein having ATP/GTP-binding activity. In vitro pull down assay confirmed the protein-protein interaction between rSPIPm2 and rWSV477. Confocal laser scanning microscopy demonstrated that the SPIPm2 and WSV477 were co-localized in the cytoplasm of shrimp hemocytes. Using RNA interference, the silencing of WSV477 resulted in down-regulated of viral late gene VP28, the same result obtained with SPIPm2. In this instance, the SPIPm2 does not function as proteinase inhibitor but inhibit the regulatory function of WSV477.

  19. The dopamine transporter protein gene (SLC6A3): Primary linage mapping and linkage studies in Tourette syndrome

    SciTech Connect

    Gelernter, J.; Kruger, S.D.; Pakstis, A.J. |

    1995-12-10

    The dopamine transporter, the molecule responsible for presynaptic reuptake of dopamine and a major site of action of psychostimulant drugs, including cocaine, is encoded by locus SLC6A3 (alias DAT1). The protein`s actions and DAT`s specific localization to dopaminergic neurons make it a candidate gene for several psychiatric illnesses. SLC6A3 has been mapped to distal chromosome 5p, using physical methods. Genetic linkage methods were used to place SLC6A3 in the genetic linkage map. Four extended pedigrees (one of which overlaps with CEPH) were typed. Linkage with Tourette syndrome (TS) was also examined. SLC6A3 showed close linkage with several markers previously mapped to distal chromosome 5p, including D5S11 (Z{sub max} = 16.0, {theta}{sub M} = {theta}{sub F} = 0.03, results from four families) and D5S678 (Z{sub max} = 7.84, {theta}{sub M} = {theta}{sub F} = 0, results from two families). Observed crossovers established that SLC6A3 is a distal marker close to D5S10 and D5S678, but these three distal markers could not be ordered. Linkage between TS and SLC6A3 could be excluded independently in two branches of a large kindred segregating TS; the lod score in a third family was also negative, but not significant. Cumulative results show a lod score of -6.2 at {theta} = 0 and of -3.9 at {theta} = 0.05 (dominant model, narrow disease definition). SLC6A3 thus maps to distal chromosome 5p by linkage analysis, in agreement with previous physical mapping data. A mutation at SLC6A3 is not causative for TS in the two large families that generated significant negative lod scores (if the parameters of our analyses were correct) and is unlikely to be causative in the family that generated a negative lod score that did not reach significance. These results do not exclude a role for the dopamine transporter in influencing risk for TS in combination with other loci. 23 refs., 1 fig., 2 tabs.

  20. A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome.

    PubMed

    Tovar, Armando R; Murguía, Fernanda; Cruz, Cristino; Hernández-Pando, Rogelio; Aguilar-Salinas, Carlos A; Pedraza-Chaverri, José; Correa-Rotter, Ricardo; Torres, Nimbe

    2002-09-01

    Nephrotic syndrome (NS) is characterized by the presence of proteinuria and hyperlipidemia. However, ingestion of soy protein has a hypolipidemic effect. The present study was designed to determine whether the ingestion of a 20% soy protein diet regulates the expression of hepatic sterol regulatory element binding protein (SREBP)-1, fatty acid synthase (FAS), malic enzyme, beta-hydroxy-beta-methylglutaryl-CoA (HMG-CoA) reductase (r) and synthase (s), and LDL receptor (r), and to assess whether soy protein improves lipid and renal abnormalities in rats with chronic NS. Male Wistar rats were injected with vehicle or with puromycin aminonucleoside to induce NS and were fed either 20% casein or soy protein diets for 64 d. NS rats fed 20% soy protein had improved creatinine clearance and reduced proteinuria, hypercholesterolemia, hypertriglyceridemia, as well as VLDL-triglycerides and LDL cholesterol compared with NS rats fed the 20% casein diet. In addition, the soy protein diet decreased the incidence of glomerular sclerosis, and proinflammatory cytokines in kidney. Ingestion of the soy protein diet by control rats reduced the gene expression of SREBP-1, malic enzyme, FAS and increased HMG-CoAr, HMG-CoAs and LDLr. However, NS rats fed either casein or soy protein diets had low insulin concentrations with reductions in SREBP-1, FAS and malic enzyme expression compared with control rats fed the casein diet. NS rats fed the soy diet also had lower HMG-CoAr and LDLr mRNA levels than NS rats fed casein. In conclusion, the beneficial effects of soy protein on lipid metabolism are modulated in part by SREBP-1. However, in NS rats, the benefit may be through a direct effect of this protein on kidney rather than mediated by changes in expression of hepatic lipid metabolism genes.

  1. Two new anti-apoptotic proteins of white spot syndrome virus that bind to an effector caspase (PmCasp) of the giant tiger shrimp Penaeus (Penaeus) monodon.

    PubMed

    Lertwimol, Tareerat; Sangsuriya, Pakkakul; Phiwsaiya, Kornsunee; Senapin, Saengchan; Phongdara, Amornrat; Boonchird, Chuenchit; Flegel, Timothy W

    2014-05-01

    White spot syndrome virus proteins WSSV134 and WSSV322 have been shown to bind with the p20 domain (residues 55-214) of Penaeus monodon caspase (PmCasp) protein through yeast two-hybrid screening. Binding was confirmed for the p20 domain and the full-length caspase by co-immunoprecipitation. WSSV134 is also known as the WSSV structural protein VP36A, but no function or conserved domains have been ascribed to WSSV322. Discovery of the caspase binding activity of these two proteins led to an investigation of their possible anti-apoptotic roles. Full-length PmCasp was confirmed to be an effector caspase by inducing apoptosis in transfected Sf-9 cells as assessed by DAPI staining. Using the same cell model, comparison of cells co-transfected with PmCasp and either WSSV134 or WSSV322 revealed that both of the binding proteins had anti-apoptotic activity. However, using the same Sf-9 protocol with anti-apoptosis protein-1 (AAP-1; also called WSSV449) previously shown to bind and inactivate a different effector caspase from P. monodon (Pm caspase) did not block apoptosis induced by PmCasp. The results revealed diversity in effector caspases and their viral protein inhibitors in P. monodon.

  2. Spatial cognitive deficits in an animal model of Wernicke-Korsakoff syndrome are related to changes in thalamic VDAC protein concentrations.

    PubMed

    Bueno, K O; de Souza Resende, L; Ribeiro, A F; Dos Santos, D M; Gonçalves, E C; Vigil, F A B; de Oliveira Silva, I F; Ferreira, L F; de Castro Pimenta, A M; Ribeiro, A M

    2015-05-21

    Proteomic profiles of the thalamus and the correlation between the rats' performance on a spatial learning task and differential protein expression were assessed in the thiamine deficiency (TD) rat model of Wernicke-Korsakoff syndrome. Two-dimensional gel-electrophoresis detected 320 spots and a significant increase or decrease in seven proteins. Four proteins were correlated to rat behavioral performance in the Morris Water Maze. One of the four proteins was identified by mass spectrometry as Voltage-Dependent Anion Channels (VDACs). The association of VDAC is evident in trials in which the rats' performance was worst, in which the VDAC protein was reduced, as confirmed by Western blot. No difference was observed on the mRNA of Vdac genes, indicating that the decreased VDAC expression may be related to a post-transcriptional process. The results show that TD neurodegeneration involves changes in thalamic proteins and suggest that VDAC protein activity might play an important role in an initial stage of the spatial learning process.

  3. Rice protein-induced enterocolitis syndrome with transient specific IgE to boiled rice but not to retort-processed rice.

    PubMed

    Yasutomi, Motoko; Kosaka, Takuya; Kawakita, Akiko; Hayashi, Hisako; Okazaki, Shintaro; Murai, Hiroki; Miyagawa, Kazuhiko; Mayumi, Mitsufumi; Ohshima, Yusei

    2014-02-01

    Described herein is the case of an 8-month-old girl with atypical food protein-induced enterocolitis syndrome due to rice. She presented with vomiting and poor general activity 2 h after ingestion of boiled rice. Oral food challenge test using high-pressure retort-processed rice was negative, but re-exposure to boiled rice elicited gastrointestinal symptoms. On western blot analysis the patient's serum was found to contain IgE bound to crude protein extracts from rice seed or boiled rice, but not from retort-processed rice. The major protein bands were not detected in the electrophoresed gel of retort-processed rice extracts, suggesting decomposition by high-temperature and high-pressure processing. Oral food challenge for diagnosing rice allergy should be performed with boiled rice to avoid a false negative. Additionally, some patients with rice allergy might be able to ingest retort-processed rice as a substitute for boiled rice.

  4. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Membrane modification of host subcellular compartments is critical to the replication of many RNA viruses. Enveloped viruses additionally require the ability to requisition cellular membranes during egress for the development of infectious progeny. Porcine reproductive and respiratory syndrome virus...

  5. Antigenic characterization of severe acute respiratory syndrome-coronavirus nucleocapsid protein expressed in insect cells: The effect of phosphorylation on immunoreactivity and specificity.

    PubMed

    Shin, Gu-Choul; Chung, Yoon-Seok; Kim, In-Soo; Cho, Hae-Wol; Kang, Chun

    2007-07-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is involved in the pathological reaction to SARS and is a key antigen for the development of a sensitive diagnostic assay. However, the antigenic properties of this N protein are largely unknown. To facilitate the studies on the function and antigenicity of the SARS-CoV N protein, 6x histidine-tagged recombinant SARS-CoV N (rSARS-N) with a molecular mass of 46 and 48kDa was successfully produced using the recombinant baculovirus system in insect cells. The rSARS-N expressed in insect cells (BrSARS-N) showed remarkably higher specificity and immunoreactivity than rSARS-N expressed in E. coli (ErSARS-N). Most of all, BrSARS-N proteins were expressed as a highly phosphorylated form with a molecular mass of 48kDa, but ErSARS-N was a nonphosphorylated protein. In further analysis to determine the correlation between the phosphorylation and the antigenicity of SARS-N protein, dephosphorylated SARS-N protein treated with protein phosphatase 1 (PP1) remarkably enhanced the cross-reactivity against SARS negative serum and considerably reduced immunoreactivity with SARS-N mAb. These results suggest that the phosphorylation plays an important role in the immunoreactivity and specificity of SARS-N protein. Therefore, the BrSARS-N protein may be useful for the development of highly sensitive and specific assays to determine SARS infection and for further research of SARS-N pathology.

  6. Crystal Structures of Major Envelope Proteins VP26 and VP28 from White Spot Syndrome Virus Shed Light on Their Evolutionary Relationship

    SciTech Connect

    Tang,X.; Wu, J.; Sivaraman, J.; Hew, C.

    2007-01-01

    White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 {angstrom}, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt {beta}-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core {beta}-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.

  7. NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein

    PubMed Central

    Haba, Noam Y.; Gross, Renana; Novacek, Jiri; Shaked, Hadassa; Zidek, Lukas; Barda-Saad, Mira; Chill, Jordan H.

    2013-01-01

    WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIPC, a C-terminal domain fragment of WIP that includes residues 407–503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIPC and the high occurrence (25%) of proline residues, we employed 5D-NMR13C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, 15N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446–456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468–478. The 13C-detected approach allows chemical-shift assignment in the WIPC polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIPC. Thus, we conclude that the disordered WIPC fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function. PMID:23870269

  8. Mutations in the heat-shock protein A9 (HSPA9) gene cause the EVEN-PLUS syndrome of congenital malformations and skeletal dysplasia

    PubMed Central

    Royer-Bertrand, Beryl; Castillo-Taucher, Silvia; Moreno-Salinas, Rodrigo; Cho, Tae-Joon; Chae, Jong-Hee; Choi, Murim; Kim, Ok-Hwa; Dikoglu, Esra; Campos-Xavier, Belinda; Girardi, Enrico; Superti-Furga, Giulio; Bonafé, Luisa; Rivolta, Carlo; Unger, Sheila; Superti-Furga, Andrea

    2015-01-01

    We and others have reported mutations in LONP1, a gene coding for a mitochondrial chaperone and protease, as the cause of the human CODAS (cerebral, ocular, dental, auricular and skeletal) syndrome (MIM 600373). Here, we delineate a similar but distinct condition that shares the epiphyseal, vertebral and ocular changes of CODAS but also included severe microtia, nasal hypoplasia, and other malformations, and for which we propose the name of EVEN-PLUS syndrome for epiphyseal, vertebral, ear, nose, plus associated findings. In three individuals from two families, no mutation in LONP1 was found; instead, we found biallelic mutations in HSPA9, the gene that codes for mHSP70/mortalin, another highly conserved mitochondrial chaperone protein essential in mitochondrial protein import, folding, and degradation. The functional relationship between LONP1 and HSPA9 in mitochondrial protein chaperoning and the overlapping phenotypes of CODAS and EVEN-PLUS delineate a family of “mitochondrial chaperonopathies” and point to an unexplored role of mitochondrial chaperones in human embryonic morphogenesis. PMID:26598328

  9. Apolipoprotein C-I Levels Are Associated with the Urinary Protein/Urinary Creatinine Ratio in Pediatric Idiopathic Steroid-Sensitive Nephrotic Syndrome: A Case Control Study

    PubMed Central

    Kanai, Takahiro; Ito, Takane; Saito, Takashi; Aoyagi, Jun; Betsui, Hiroyuki; Yamagata, Takanori

    2017-01-01

    Humoral factors may cause idiopathic steroid-sensitive nephrotic syndrome (ISSNS). In the present study, we analyzed serum proteins using mass spectrometry (MS) to identify proteins associated with the pathophysiology of pediatric ISSNS. We collected serial serum samples from 33 children during each ISSNS phase; Phase A1 is the acute phase prior to steroid treatment (STx), Phase A2 represents the remission period with STx, and Phase A3 represents the remission period after completion of STx. Children with normal urinalyses (Group B) and children with a nephrotic syndrome other than ISSNS (Group C) served as controls. No significant differences in urinary protein/urinary creatinine (UP/UCr) ratios were observed between the children with phase A1 ISSNS and Group C. We used surface-enhanced laser desorption/ionization time of flight MS for sample analysis. Four ion peaks with a mass-to-charge ratio (m/z) of 6,444, 6,626, 8,695, and 8,915 were significantly elevated during ISSNS Phase A1 compared to Phase A2, Phase A3, and Group C. The intensity of an m/z of 6,626 significantly correlated with the UP/UCr ratio and an m/z of 6,626 was identified as apolipoprotein C-I (Apo C-I). Apo C-I levels correlate with the UP/UCr ratio in pediatric ISSNS. Our findings provide new insights into the pathophysiology of ISSNS. PMID:28250989

  10. Lynch Syndrome from a surgeon perspective: retrospective study of clinical impact of mismatch repair protein expression analysis in colorectal cancer patients less than 50 years old

    PubMed Central

    2014-01-01

    Background In clinical practice, unexpected diagnosis of colorectal cancer in young patients requires prompt surgery, thus genetic testing for Lynch Syndrome is frequently missed, and clinical management may result incorrect. Methods Patients younger than 50 years old undergoing colorectal resection for cancer in the period 1994-2007 were identified (Group A, 49 cases), and compared to a group of randomly selected patients more than 50 (Group B, 85 cases). In 31 group A patients, immunohistochemical expression analysis of MLH1, MSH2 and MSH6 was performed; personal and familial history of patients with defective MMR proteins expression was further investigated, searching for synchronous and metachronous tumors in probands and their families. Results Fifty-one percent of patients did not express one or more MMR proteins (MMR-) and should be considered Lynch Syndrome carriers (16 patients, group A1); while only 31.2% of them were positive for Amsterdam criteria, 50% had almost another tumor, 37.5% had another colorectal tumor and 68% had relatives with colorectal tumor. This group of patients, compared with A2 group (< 50 years old, MMR+) and B group, showed typical characteristics of HNPCC, such as proximal location, mucinous histotype, poor differentiation, high stage and shorter survival. Conclusions The present study confirms that preoperative knowledge of MMR proteins expression in colorectal cancer patients would allow correct staging, more extended colonic resection, specific follow-up and familial screening. PMID:24533633

  11. Interaction between a Domain of the Negative Regulator of the Ras-ERK Pathway, SPRED1 Protein, and the GTPase-activating Protein-related Domain of Neurofibromin Is Implicated in Legius Syndrome and Neurofibromatosis Type 1*♦

    PubMed Central

    Hirata, Yasuko; Brems, Hilde; Suzuki, Mayu; Kanamori, Mitsuhiro; Okada, Masahiro; Morita, Rimpei; Llano-Rivas, Isabel; Ose, Toyoyuki; Messiaen, Ludwine; Legius, Eric; Yoshimura, Akihiko

    2016-01-01

    Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120GAP. Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome. PMID:26635368

  12. Molecular docking and simulation studies of 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 against VP26 and VP28 proteins of white spot syndrome virus.

    PubMed

    Sudharsana, S; Rajashekar Reddy, C B; Dinesh, S; Rajasekhara Reddy, S; Mohanapriya, A; Itami, T; Sudhakaran, R

    2016-10-01

    White spot syndrome virus (WSSV), an aquatic virus infecting shrimps and other crustaceans, is widely distributed in Asian subcontinents including India. The infection has led to a serious economic loss in shrimp farming. The WSSV genome is approximately 300 kb and codes for several proteins mediating the infection. The envelope proteins VP26 and VP28 play a major role in infection process and also in the interaction with the host cells. A comprehensive study on the viral proteins leading to the development of safe and potent antiviral therapeutic is of adverse need. The novel synthesized compound 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 is proved to have potent antiviral activity against WSSV. The compound antiviral activity is validated in freshwater crabs (Paratelphusa hydrodomous). An in silico molecular docking and simulation analysis of the envelope proteins VP26 and VP28 with the ligand 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 are carried out. The docking analysis reveals that the polar amino acids in the pore region of the envelope proteins were involved in the ligand binding. The influence of the ligand binding on the proteins is validated by the molecular dynamics and simulation study. These in silico approaches together demonstrate the ligand's efficiency in preventing the trimers from exhibiting their physiological function.

  13. Chromosome 21-derived MicroRNAs Provide an Etiological Basis for Aberrant Protein Expression in Human Down Syndrome Brains*

    PubMed Central

    Kuhn, Donald E.; Nuovo, Gerard J.; Terry, Alvin V.; Martin, Mickey M.; Malana, Geraldine E.; Sansom, Sarah E.; Pleister, Adam P.; Beck, Wayne D.; Head, Elizabeth; Feldman, David S.; Elton, Terry S.

    2010-01-01

    Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. Bioinformatic annotation has established that human chromosome 21 (Hsa21) harbors five microRNA (miRNAs) genes: miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. Our laboratory recently demonstrated that Hsa21-derived miRNAs are overexpressed in DS brain and heart specimens. The aim of this study was to identify important Hsa21-derived miRNA/mRNA target pairs that may play a role, in part, in mediating the DS phenotype. We demonstrate by luciferase/target mRNA 3′-untranslated region reporter assays, and gain- and loss-of-function experiments that miR-155 and -802 can regulate the expression of the predicted mRNA target, the methyl-CpG-binding protein (MeCP2). We also demonstrate that MeCP2 is underexpressed in DS brain specimens isolated from either humans or mice. We further demonstrate that, as a consequence of attenuated MeCP2 expression, transcriptionally activated and silenced MeCP2 target genes, CREB1/Creb1 and MEF2C/Mef2c, are also aberrantly expressed in these DS brain specimens. Finally, in vivo silencing of endogenous miR-155 or -802, by antagomir intra-ventricular injection, resulted in the normalization of MeCP2 and MeCP2 target gene expression. Taken together, these results suggest that improper repression of MeCP2, secondary to trisomic overexpression of Hsa21-derived miRNAs, may contribute, in part, to the abnormalities in the neurochemistry observed in the brains of DS individuals. Finally these results suggest that selective inactivation of Hsa21-derived miRNAs may provide a novel therapeutic tool in the treatment of DS. PMID:19897480

  14. Sex Differences in High Sensitivity C-Reactive Protein in Subjects with Risk Factors of Metabolic Syndrome

    PubMed Central

    Garcia, Vinicius Pacheco; Rocha, Helena Naly Miguens; Sales, Allan Robson Kluser; Rocha, Natália Galito; da Nóbrega, Antonio Claudio Lucas

    2016-01-01

    Background Metabolic syndrome (MetS) is associated with a higher risk of all-cause mortality. High-sensitivity C-reactive protein (hsCRP) is a prototypic marker of inflammation usually increased in MetS. Women with MetS-related diseases present higher hsCRP levels than men with MetS-related diseases, suggesting sex differences in inflammatory markers. However, it is unclear whether serum hsCRP levels are already increased in men and/or women with MetS risk factors and without overt diseases or under pharmacological treatment. Objective To determine the impact of the number of MetS risk factors on serum hsCRP levels in women and men. Methods One hundred and eighteen subjects (70 men and 48 women; 36 ± 1 years) were divided into four groups according to the number of MetS risk factors: healthy group (CT; no risk factors), MetS ≤ 2, MetS = 3, and MetS ≥ 4. Blood was drawn after 12 hours of fasting for measurement of biochemical variables and hsCRP levels, which were determined by immunoturbidimetric assay. Results The groups with MetS risk factors presented higher serum hsCRP levels when compared with the CT group (p < 0.02). There were no differences in hsCRP levels among groups with MetS risk factors (p > 0.05). The best linear regression model to explain the association between MetS risk factors and hsCRP levels included waist circumference and HDL cholesterol (r = 0.40, p < 0.01). Women with MetS risk factors presented higher hsCRP levels when compared with men (psex < 0.01). Conclusions Despite the absence of overt diseases and pharmacological treatment, subjects with MetS risk factors already presented increased hsCRP levels, which were significantly higher in women than men at similar conditions. PMID:27027366

  15. Surfactant Protein A and B Gene Polymorphisms and Risk of Respiratory Distress Syndrome in Late-Preterm Neonates

    PubMed Central

    Tsitoura, Maria-Eleni I.; Stavrou, Eleana F.; Maraziotis, Ioannis A.; Sarafidis, Kosmas; Athanassiadou, Aglaia; Dimitriou, Gabriel

    2016-01-01

    Background and Objectives Newborns delivered late-preterm (between 340/7 and 366/7 weeks of gestation) are at increased risk of respiratory distress syndrome (RDS). Polymorphisms within the surfactant protein (SP) A and B gene have been shown to predispose to RDS in preterm neonates. The aim of this study was to investigate whether specific SP-A and/or SP-B genetic variants are also associated with RDS in infants born late-preterm. Methods This prospective cross-sectional study included 56 late-preterm infants with and 60 without RDS. Specific SP-A1/SP-A2 haplotypes and SP-B Ile131Thr polymorphic alleles were determined in blood specimens using polymerase-chain-reaction and DNA sequencing. Results The SP-A1 6A4 and the SP-A2 1A5 haplotypes were significantly overrepresented in newborns with RDS compared to controls (OR 2.86, 95%CI 1.20–6.83 and OR 4.68, 95%CI 1.28–17.1, respectively). The distribution of the SP-B Ile131Thr genotypes was similar between the two late-preterm groups. Overall, the SP-A1 6A4 or/and SP-A2 1A5 haplotype was present in 20 newborns with RDS (35.7%), resulting in a 4.2-fold (1.60–11.0) higher probability of RDS in carriers. Multivariable regression analysis revealed that the effect of SP-A1 6A4 and SP-A2 1A5 haplotypes was preserved when adjusting for known risk or protective factors, such as male gender, smaller gestational age, smaller weight, complications of pregnancy, and administration of antenatal corticosteroids. Conclusions Specific SP-A genetic variants may influence the susceptibility to RDS in late-preterm infants, independently of the effect of other perinatal factors. PMID:27835691

  16. Association of a high normalized protein catabolic rate and low serum albumin level with carpal tunnel syndrome in hemodialysis patients

    PubMed Central

    Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Yen, Tzung-Hai; Lin, Jui-Hsiang; Lee, Meng

    2016-01-01

    Abstract Carpal tunnel syndrome (CTS) is the most common mononeuropathy in patients with end-stage renal disease (ESRD). The association between chronic inflammation and CTS in hemodialysis (HD) patients has rarely been investigated. HD patients with a high normalized protein catabolic rate (nPCR) and low serum albumin level likely have adequate nutrition and inflammation. In this study, we assume that a low serum albumin level and high nPCR is associated with CTS in HD patients. We recruited 866 maintenance hemodialysis (MHD) patients and divided them into 4 groups according to their nPCR and serum albumin levels: (1) nPCR <1.2 g/kg/d and serum albumin level <4 g/dL; (2) nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL; (3) nPCR <1.2 g/kg/d and serum albumin level ≥4 g/dL; and (4) nPCR ≥1.2 g/kg/d and serum albumin level ≥4 g/dL. After adjustment for related variables, HD duration and nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL were positively correlated with CTS. By calculating the area under the receiver-operating characteristic curve, we calculated that the nPCR and HD duration cut-off points for obtaining the most favorable Youden index were 1.29 g/kg/d and 7.5 years, respectively. Advance multivariate logistic regression analysis revealed that in MHD patients, nPCR ≥1.29 g/kg/d and serum albumin <4 g/dL, and also HD duration >7.5 years were associated with CTS. A high nPCR and low serum albumin level, which likely reflect adequate nutrition and inflammation, were associated with CTS in MHD patients. PMID:27368039

  17. Autodisplay of the La/SSB protein on LPS-free E. coli for the diagnosis of Sjögren's syndrome.

    PubMed

    Yoo, Gu; Dilkaute, Carina; Bong, Ji-Hong; Song, Hyun-Woo; Lee, Misu; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2017-05-01

    The objective of this study was to present an immunoassay for the diagnosis of Sjögren's syndrome based on the autodisplayed La/SSB protein on the outer membrane of intact E. coli (strain UT-5600) and LPS-free E. coli (ClearColi™). As the first step, an autodisplay vector (pCK002) was transfected into intact E. coli and LPS-free E. coli for comparison of efficiency of autdisplay of La/SSB. The maximal level of La/SSB expression was estimated to be similar for LPS-free E. coli and intact E. coli at different optimal induction periods. Intact E. coli was found to grow twofold faster than LPS-free E. coli, and the maximal level of expression for LPS-free E. coli was obtained with a longer induction period. When the zeta potential was measured, both intact E. coli and LPS-free E. coli showed negative values, and the autodisplay of negatively charged La/SSB protein (pI<7) on the outer membrane of intact E. coli and LPS-free E. coli resulted in a slight change in zeta potential values. E. coli with autodisplayed La/SSB protein was used for an immunoassay of anti-La/SSB antibodies for the diagnosis of Sjögren's syndrome. The surface of E. coli with the autodisplayed antigen was modified with rabbit serum and papain to prevent false positive signals because of nonspecific binding of unrelated antibodies from human serum. LPS-free E. coli with autodisplayed La/SSB protein yielded sensitivity and selectivity of 81.6% and 78.6%, respectively. The Bland-Altman test showed that the immunoassays based on LPS-free E. coli and intact E. coli with autodisplayed La/SSB protein were statistically equivalent to a clinical immunoassay for detection of anti-La/SSB antibodies (confidence coefficient 95%).

  18. Ca(2+)/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome.

    PubMed

    Steinkellner, Thomas; Yang, Jae-Won; Montgomery, Therese R; Chen, Wei-Qiang; Winkler, Marie-Therese; Sucic, Sonja; Lubec, Gert; Freissmuth, Michael; Elgersma, Ype; Sitte, Harald H; Kudlacek, Oliver

    2012-08-24

    The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.

  19. Trafficking of androgen receptor mutants fused to green fluorescent protein: a new investigation of partial androgen insensitivity syndrome.

    PubMed

    Georget, V; Térouanne, B; Lumbroso, S; Nicolas, J C; Sultan, C

    1998-10-01

    The naturally occurring mutations of the androgen receptor (AR), detected in patients with androgen insensitivity syndrome (AIS), are currently analyzed by in vitro assays. Unfortunately, these assays do not always permit the demonstration of a direct relationship between the in vitro activity of the receptor and the severity of the phenotype (in particular, for mutations detected in patients with partial AIS). We recently studied the trafficking of wild-type AR, fused to the green fluorescent protein (GFP) in living cells. In the present study, we applied this method for the analysis of AR mutants to find out whether it could be a complementary method of investigation of AIS. After construction of the GFP-AR mutant fusion proteins, the androgen-binding characteristics, nuclear transfer capacities, and transcriptional activities were evaluated. The nuclear transfer was quantified in the presence of various concentrations of dihydrotestosterone (DHT). We studied two mutants associated with partial AIS: G743V and R840C. The androgen-binding characteristics of both mutants were affected, in comparison with normal AR. Although the affinities were similar, the dissociation rate of GFP-AR-G743V was twice that of GFP-AR-R840C. In transcriptional assay, both mutants were active only at high concentrations of androgen. The nuclear trafficking of the mutants was evaluated by two parameters: 1) the rate of nuclear transfer; and 2) the maximal amount of receptors imported into the nucleus. At 10(-6) mol/L DHT, the GFP-AR mutants entered into the nucleus in a fashion similar to that of GFP-AR-wt. At 10(-7) mol/L DHT, the rate and maximal degree of nuclear import were both reduced, even more, for GFP-AR-G743V. The difference between mutants was more pronounced at 10(-9) mol/L DHT, because GFP-AR-G743V entered into the nucleus with even slower kinetics. Though the androgen-binding affinity and transcriptional activity assays did not reveal major differences between mutants, the

  20. Single-Nucleotide Mutations in FMR1 Reveal Novel Functions and Regulatory Mechanisms of the Fragile X Syndrome Protein FMRP

    PubMed Central

    Suhl, Joshua A.; Warren, Stephen T.

    2015-01-01

    Fragile X syndrome is a monogenic disorder and a common cause of intellectual disability. Despite nearly 25 years of research on FMR1, the gene underlying the syndrome, very few pathological mutations other than the typical CGG-repeat expansion have been reported. This is in contrast to other X-linked, monogenic, intellectual disability disorders, such as Rett syndrome, where many point mutations have been validated as causative of the disorder. As technology has improved and significantly driven down the cost of sequencing, allowing for whole genes to be sequenced with relative ease, in-depth sequencing studies on FMR1 have recently been performed. These studies have led to the identification of novel variants in FMR1, where some of which have been functionally evaluated and are likely pathogenic. In this review, we discuss recently identified FMR1 variants, the ways these novel variants cause dysfunction, and how they reveal new regulatory mechanisms and functionalities of the gene. PMID:26819560

  1. Mutations in the SPARC-Related Modular Calcium-Binding Protein 1 Gene, SMOC1, Cause Waardenburg Anophthalmia Syndrome

    PubMed Central

    Abouzeid, Hana; Boisset, Gaëlle; Favez, Tatiana; Youssef, Mohamed; Marzouk, Iman; Shakankiry, Nihal; Bayoumi, Nader; Descombes, Patrick; Agosti, Céline; Munier, Francis L.; Schorderet, Daniel F.

    2011-01-01

    Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites. PMID:21194680

  2. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

    PubMed

    Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang

    2015-04-01

    By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp.

  3. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    PubMed Central

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  4. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    PubMed

    Goetz, Sarah C; Bangs, Fiona; Barrington, Chloe L; Katsanis, Nicholas; Anderson, Kathryn V

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  5. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome.

    PubMed

    Pignatelli, Marco; Piccinin, Sonia; Molinaro, Gemma; Di Menna, Luisa; Riozzi, Barbara; Cannella, Milena; Motolese, Marta; Vetere, Gisella; Catania, Maria Vincenza; Battaglia, Giuseppe; Nicoletti, Ferdinando; Nisticò, Robert; Bruno, Valeria

    2014-03-26

    Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.

  6. The 15N and 46R Residues of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Enhance Regulatory T Lymphocytes Proliferation

    PubMed Central

    Bai, Juan; Li, Yufeng; Zhang, Qiaoya; Jiang, Ping

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) negatively modulates host immune responses, resulting in persistent infection and immunosuppression. PRRSV infection increases the number of PRRSV-specific regulatory T lymphocytes (Tregs) in infected pigs. However, the target antigens for Tregs proliferation in PRRSV infection have not been fully understood. In this study, we demonstrated that the highly pathogenic PRRSV (HP-PRRSV) induced more CD4+CD25+Foxp3+ Tregs than classical PRRSV (C-PRRSV) strain. Of the recombinant GP5, M and N proteins of HP-PRRSV expressed in baculovirus expression systems, only N protein induced Tregs proliferation. The Tregs assays showed that three amino-acid regions, 15–21, 42–48 and 88–94, in N protein played an important role in induction of Tregs proliferation with synthetic peptides covering the whole length of N protein. By using reverse genetic methods, it was firstly found that the 15N and 46R residues in PRRSV N protein were critical for induction of Tregs proliferation. The phenotype of induced Tregs closely resembled that of transforming-growth-factor-β-secreting T helper 3 Tregs in swine. These data should be useful for understanding the mechanism of immunity to PRRSV and development of infection control strategies in the future. PMID:26397116

  7. Identification of a Novel Nonstructural Protein, VP9, from White Spot Syndrome Virus: Its Structure Reveals a Ferredoxin Fold with Specific Metal Binding Sites

    SciTech Connect

    Liu,Y.; Wu, J.; Song, J.; Sivaraman, J.; Hew, C.

    2006-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP9, a full-length protein of WSSV, encoded by open reading frame wsv230, was identified for the first time in the infected Penaeus monodon shrimp tissues, gill, and stomach as a novel, nonstructural protein by Western blotting, mass spectrometry, and immunoelectron microscopy. Real-time reverse transcription-PCR demonstrated that the transcription of VP9 started from the early to the late stage of WSSV infection as a major mRNA species. The structure of full-length VP9 was determined by both X-ray and nuclear magnetic resonance (NMR) techniques. It is the first structure to be reported for WSSV proteins. The crystal structure of VP9 revealed a ferredoxin fold with divalent metal ion binding sites. Cadmium sulfate was found to be essential for crystallization. The Cd2+ ions were bound between the monomer interfaces of the homodimer. Various divalent metal ions have been titrated against VP9, and their interactions were analyzed using NMR spectroscopy. The titration data indicated that VP9 binds with both Zn2+ and Cd2+. VP9 adopts a similar fold as the DNA binding domain of the papillomavirus E2 protein. Based on our present investigations, we hypothesize that VP9 might be involved in the transcriptional regulation of WSSV, a function similar to that of the E2 protein during papillomavirus infection of the host cells.

  8. PmTBC1D20, a Rab GTPase-activating protein from the black tiger shrimp, Penaeus monodon, is involved in white spot syndrome virus infection.

    PubMed

    Yingvilasprasert, Wanchart; Supungul, Premruethai; Tassanakajon, Anchalee

    2014-02-01

    TBC (TRE2/BUB2/CDC16) domain proteins contain an ≈ 200-amino-acid motif and function as Rab GTPase-activating proteins that are required for regulating the activity of Rab proteins, and so, in turn, endocytic membrane trafficking in cells. TBC domain family member 20 (TBC1D20) has recently been reported to mediate Hepatitis C virus replication. Herein, PmTBC1D20 identified from the black tiger shrimp, Penaeus monodon, was characterized and evaluated for its role in white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of PmTBC1D20 contains 2003 bp with a predicted 1443 bp open reading frame encoding a deduced 480 amino acid protein. Its transcript levels were significantly up-regulated at 24 and 48 h by ≈ 2.3- and 2.1-fold, respectively, after systemic infection with WSSV. In addition, depletion of PmTBC1D20 transcript in shrimps by double stranded RNA interference led to a decrease in the level of transcripts of three WSSV genes (VP28, ie1 and wsv477). This suggests the importance of PmTBC1D20 in WSSV infection. This is the first report of TBC1D20 in a crustacean and reveals the possible mechanism used by WSSV to modulate the activity of the host protein, PmTBC1D20, for its benefit in viral trafficking and replication.

  9. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome.

    PubMed

    Wang, Yuexia; Ostlund, Cecilia; Worman, Howard J

    2010-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphological abnormalities, which are reversed by inhibitors of protein farnesylation. In addition, treatment with protein farnesyltransferase inhibitors improves whole animal phenotypes in mouse models of HGPS. However, improvement in nuclear morphology in tissues after treatment of animals has not been demonstrated. We therefore treated transgenic mice that express progerin in epidermis with the protein farnesyltransferase inhibitor FTI-276 or a combination of pravastatin and zoledronate to determine if they reversed nuclear morphological abnormalities in tissue. Immunofluorescence microscopy and "blinded" electron microscopic analysis demonstrated that systemic administration of FTI-276 or pravastatin plus zoledronate significantly improved nuclear morphological abnormalities in keratinocytes of transgenic mice. These results show that pharmacological blockade of protein prenylation reverses nuclear morphological abnormalities that occur in HGPS in vivo. They further suggest that skin biopsy may be useful to determine if protein farnesylation inhibitors are exerting effects in subjects with HGPS in clinical trials.

  10. The Fras1/Frem family of extracellular matrix proteins: structure, function, and association with Fraser syndrome and the mouse bleb phenotype.

    PubMed

    Petrou, Petros; Makrygiannis, Apostolos K; Chalepakis, Georges

    2008-01-01

    Fras1 and the structurally related proteins Frem1, Frem2, and Frem3, comprise a novel family of extracellular matrix proteins, which localize in a similar fashion underneath the lamina densa of epithelial basement membranes. They are involved in the structural adhesion of the skin epithelium to its underlying mesenchyme. Deficiency in the individual murine Fras1/Frem genes gives rise to the bleb phenotype, which is equivalent to the human hereditary disorder Fraser syndrome, characterized by cryptophthalmos (hidden eyes), embryonic skin blistering, renal agenesis, and syndactyly. Recent studies revealed a functional cooperation between the Fras1/Frem gene products, in which Fras1, Frem1 and Frem2 are simultaneously stabilized at the lowermost region of the basement membrane by forming a macromolecular ternary complex. Loss of any of these proteins results in the collapse of the protein assembly, thus providing a molecular explanation for the highly similar phenotypic defects displayed by the respective mutant mice. Here, we summarize the current knowledge regarding the structure, function, and interplay between the proteins of the Fras1/Frem family and further propose a possible scenario for the evolution of the corresponding genes.

  11. Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10.

    PubMed

    Lee, So Young; Ramirez, Juanma; Franco, Maribel; Lectez, Benoît; Gonzalez, Monika; Barrio, Rosa; Mayor, Ugo

    2014-07-01

    Ubiquitination, the covalent attachment of ubiquitin to a target protein, regulates most cellular processes and is involved in several neurological disorders. In particular, Angelman syndrome and one of the most common genomic forms of autism, dup15q, are caused respectively by lack of or excess of UBE3A, a ubiquitin E3 ligase. Its Drosophila orthologue, Ube3a, is also active during brain development. We have now devised a protocol to screen for substrates of this particular ubiquitin ligase. In a neuronal cell system, we find direct ubiquitination by Ube3a of three proteasome-related proteins Rpn10, Uch-L5, and CG8209, as well as of the ribosomal protein Rps10b. Only one of these, Rpn10, is targeted for degradation upon ubiquitination by Ube3a, indicating that degradation might not be the only effect of Ube3a on its substrates. Furthermore, we report the genetic interaction in vivo between Ube3a and the C-terminal part of Rpn10. Overexpression of these proteins leads to an enhanced accumulation of ubiquitinated proteins, further supporting the biochemical evidence of interaction obtained in neuronal cells.

  12. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world

    PubMed Central

    Egloff, Marie-Pierre; Ferron, François; Campanacci, Valérie; Longhi, Sonia; Rancurel, Corinne; Dutartre, Hélène; Snijder, Eric J.; Gorbalenya, Alexander E.; Cambillau, Christian; Canard, Bruno

    2004-01-01

    The recently identified etiological agent of the severe acute respiratory syndrome (SARS) belongs to Coronaviridae (CoV), a family of viruses replicating by a poorly understood mechanism. Here, we report the crystal structure at 2.7-Å resolution of nsp9, a hitherto uncharacterized subunit of the SARS-CoV replicative polyproteins. We show that SARS-CoV nsp9 is a single-stranded RNA-binding protein displaying a previously unreported, oligosaccharide/oligonucleotide fold-like fold. The presence of this type of protein has not been detected in the replicative complexes of RNA viruses, and its presence may reflect the unique and complex CoV viral replication/transcription machinery. PMID:15007178

  13. The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2

    SciTech Connect

    Kimura, Toshiyuki; Arakawa, Yoshiki; Inazawa, Johji

    1997-03-31

    Smith-Magenis syndrome (SAIS) is caused by a microdeletion of 17p11.2 and comprises developmental and growth delay, facial abnormalities, unusual behavior and sleep problems. This phenotype may be due to haploinsufficiency of several contiguous genes. The human brain finger protein gene (ZNF179), a member of the RING finger protein family, has been isolated and mapped to l7p11.2. FISH analyses of metaphase or interphase chromosomes of 6 patients with SMS show that ZNF179 was deleted in one of the 2 homologs (17p11.2), indicating a possible association of the defect of this gene with the pathogenesis of SMS. Furthermore, using a prophase FISH ordering system, we sublocalized ZNF179 proximally to LLGL which lies on the critical region for SMS. 27 refs., 2 figs.

  14. Expression profile of key immune-related genes in Penaeus monodon juveniles after oral administration of recombinant envelope protein VP28 of white spot syndrome virus.

    PubMed

    Thomas, Ancy; Sudheer, Naduvilamuriparampu Saidumuhammed; Kiron, Viswanath; Bright Singh, Issac S; Narayanan, Rangarajan Badri

    2016-07-01

    White spot syndrome virus (WSSV) is the most catastrophic pathogen the shrimp industry has ever encountered. VP28, the abundant envelope protein of WSSV was expressed in bacteria, the purified protein administered orally to Penaeus monodon juveniles and its immune modulatory effects examined. The results indicated significant up-regulation of caspase, penaeidin, crustin, astakine, syntenin, PmRACK, Rab7, STAT and C-type lectin in animals orally administered with this antigen. This revealed the immune modulations in shrimps followed by oral administration of rVP28P which resulted in the reduced transcription of viral gene vp28 and delay in mortality after WSSV challenge. The study suggests the potential of rVP28P to elicit a non-specific immune stimulation in shrimps.

  15. Novel β-Barrel Fold in the Nuclear Magnetic Resonance Structure of the Replicase Nonstructural Protein 1 from the Severe Acute Respiratory Syndrome Coronavirus▿

    PubMed Central

    Almeida, Marcius S.; Johnson, Margaret A.; Herrmann, Torsten; Geralt, Michael; Wüthrich, Kurt

    2007-01-01

    The nonstructural protein 1 (nsp1) of the severe acute respiratory syndrome coronavirus has 179 residues and is the N-terminal cleavage product of the viral replicase polyprotein that mediates RNA replication and processing. The specific function of nsp1 is not known. Here we report the nuclear magnetic resonance structure of the nsp1 segment from residue 13 to 128, which represents a novel α/β-fold formed by a mixed parallel/antiparallel six-stranded β-barrel, an α-helix covering one opening of the barrel, and a 310-helix alongside the barrel. We further characterized the full-length 179-residue protein and show that the polypeptide segments of residues 1 to 12 and 129 to 179 are flexibly disordered. The structure is analyzed in a search for possible correlations with the recently reported activity of nsp1 in the degradation of mRNA. PMID:17202208

  16. Genetics Home Reference: Tietz syndrome

    MedlinePlus

    ... examination; it is unclear whether the changes affect vision. Related Information ... E. MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein ...

  17. The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: a randomised placebo-controlled trial.

    PubMed

    Gouni-Berthold, Ioanna; Schulte, Dominik M; Krone, Wilhelm; Lapointe, Jean-François; Lemieux, Pierre; Predel, Hans-Georg; Berthold, Heiner K

    2012-06-01

    Animal and human studies suggest that a malleable protein matrix (MPM) from whey decreases plasma lipid concentrations and may positively influence other components of the metabolic syndrome such as glucose metabolism and blood pressure (BP). The primary objective of this double-blind, multi-centre trial was to investigate the effects of a low-fat yoghurt supplemented with whey MPM on fasting TAG concentrations in patients with the metabolic syndrome. A total of 197 patients were randomised to receive MPM or a matching placebo yoghurt identical in protein content (15 g/d). Patients were treated during 3 months with two daily servings of 150 g yoghurt each to compare changes from baseline in efficacy variables. MPM treatment resulted in a significantly larger reduction of TAG concentrations in comparison to placebo (relative change -16%, P=0·004). The difference was even more pronounced in subjects with elevated fasting TAG (≥200 mg/dl) at baseline (-18%, P=0·005). The relative treatment difference in fasting plasma glucose was -7·1 mg/dl (P=0·089). This effect was also more pronounced in subjects with impaired fasting glucose at baseline (-11 mg/dl, P=0·03). In patients with hypertension, the relative treatment difference in systolic BP reached -5·9 mmHg (P=0·054). The relative treatment difference in body weight was -1·7 kg (P=0·015). The most common adverse events were gastrointestinal in nature. Conclusions from the present study are that consumption of a low-fat yoghurt supplemented with whey MPM twice a day over 3 months significantly reduces fasting TAG concentrations in patients with the metabolic syndrome and improves multiple other cardiovascular risk factors.

  18. Combined extractives of red yeast rice, bitter gourd, chlorella, soy protein, and licorice improve total cholesterol, low-density lipoprotein cholesterol, and triglyceride in subjects with metabolic syndrome.

    PubMed

    Lee, I-Te; Lee, Wen-Jane; Tsai, Ching-Min; Su, Ih-Jen; Yen, Hsien-Tung; Sheu, Wayne H-H

    2012-02-01

    In this study, we aimed to examine the effects of a plant-extractive compound on lipid profiles in subjects with metabolic syndrome. We hypothesized that extractives from red yeast rice, bitter gourd, chlorella, soy protein, and licorice have synergistic benefits on cholesterol and metabolic syndrome. In this double-blinded study, adult subjects with metabolic syndrome were randomized to receive a plant-extractive compound or a placebo treatment for 12 weeks. Both total cholesterol (5.4 ± 0.8 to 4.4 ± 0.6 mmol/L, P < .001) and low-density lipoprotein cholesterol (3.4 ± 0.7 to 2.7 ± 0.5 mmol/L, P < .001) were significantly reduced after treatment with the plant extractives, and the magnitudes of reduction were significantly greater than in the placebo group (-1.0 ± 0.6 vs 0.0 ± 0.6mmol/L, P < .001; -0.7 ± 0.6 vs 0.0 ± 0.6 mmol/L, P < .001). The reduction in the fasting triglycerides level was significantly greater in the plant-extractive group than in the placebo group (-0.5 ± 0.8 vs -0.2 ± 1.0 mmol/L, P = .039). There was also a significantly greater reduction in the proportion of subjects with hypertensive criteria in the plant-extractive group than in the placebo group (P = .040). In conclusion, the plant extractives from red yeast rice, bitter gourd, chlorella, soy protein, and licorice were effective in reducing total and low-density lipoprotein cholesterol. The plant extractives also showed potential for reducing triglyceride and normalizing blood pressure.

  19. Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPα and C/EBPβ mRNAs.

    PubMed

    In, Kyungmin; Zaini, Mohamad A; Müller, Christine; Warren, Alan J; von Lindern, Marieke; Calkhoven, Cornelis F

    2016-05-19

    Mutations in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene cause Shwachman-Diamond Syndrome (SDS), a rare congenital disease characterized by bone marrow failure with neutropenia, exocrine pancreatic dysfunction and skeletal abnormalities. The SBDS protein is important for ribosome maturation and therefore SDS belongs to the ribosomopathies. It is unknown, however, if loss of SBDS functionality affects the translation of specific mRNAs and whether this could play a role in the development of the clinical features of SDS. Here, we report that translation of the C/EBPα and -β mRNAs, that are indispensible regulators of granulocytic differentiation, is altered by SBDS mutations or knockdown. We show that SBDS function is specifically required for efficient translation re-initiation into the protein isoforms C/EBPα-p30 and C/EBPβ-LIP, which is controlled by a single cis-regulatory upstream open reading frame (uORF) in the 5' untranslated regions (5' UTRs) of both mRNAs. Furthermore, we show that as a consequence of the C/EBPα and -β deregulation the expression of MYC is decreased with associated reduction in proliferation, suggesting that failure of progenitor proliferation contributes to the haematological phenotype of SDS. Therefore, our study provides the first indication that disturbance of specific translation by loss of SBDS function may contribute to the development of the SDS phenotype.

  20. Impaired Homocysteine Transmethylation and Protein-Methyltransferase Activity Reduce Expression of Selenoprotein P: Implications for Obesity and Metabolic Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity causes Metabolic Syndrome and Type-II Diabetes, disrupting hepatic function, methionine (Met)/homocysteine (Hcy) transmethylation and methyltransferase (PRMT) activities. Selenoprotein P (SEPP1), exported from the liver, is the predominate form of plasma selenium (Se) and the physiological S...

  1. Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3

    PubMed Central

    Lui, Pak-Yin; Wong, Lok-Yin Roy; Fung, Cheuk-Lai; Siu, Kam-Leung; Yeung, Man-Lung; Yuen, Kit-San; Chan, Chi-Ping; Woo, Patrick Chiu-Yat; Yuen, Kwok-Yung; Jin, Dong-Yan

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3–TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response. PMID:27094905

  2. Platelets of the Wistar Furth rat have reduced levels of alpha-granule proteins. An animal model resembling gray platelet syndrome.

    PubMed Central

    Jackson, C W; Hutson, N K; Steward, S A; Saito, N; Cramer, E M

    1991-01-01

    Rats of the Wistar Furth (WF) strain have hereditary macrothrombocytopenia (large mean platelet volume [MPV] with increased platelet size heterogeneity and reduced platelet count). Ultrastructural studies suggest that this anomaly results from erratic subdivision of megakaryocyte cytoplasm into platelets. In this study, we have examined protein profiles of platelets of WF rats for biochemical abnormalities associated with this anomaly. Marked decreases in protein bands with an Mr of 185, 57, 53, 16, 13, and 8 kd were observed in one-dimensional reduced SDS-PAGE gels in WF platelets compared with platelets of Wistar, Long Evans, and Sprague-Dawley rats. These proteins were released into the supernatant when washed platelets were treated with thrombin suggesting that they were alpha-granule proteins. These abnormalities were not present in offspring of crosses between Wistar Furth and Wistar rats; however, they were present in platelets of offspring with large MPV derived from backcrosses of (WF X Wistar) F1 males to WF females, but not in backcross offspring with normal platelet size. Immunoblotting confirmed decreased levels of thrombospondin, fibrinogen, and platelet factor 4 in WF platelets. Electron microscopic examination revealed that platelet alpha granules were usually smaller in Wistar Furth than in Wistar rats. In addition, immunogold electron microscopy demonstrated that the surface connected canalicular system of the large Wistar Furth platelets, contained dense material composed of alpha-granule proteins, not present in Wistar platelets. From these results, we conclude that the Wistar Furth rat platelet phenotype of large mean platelet volume and decreased levels of alpha-granule proteins represents an animal model resembling gray platelet syndrome. The autosomal recessive pattern of inheritance of the large MPV phenotype and platelet alpha-granule protein deficiencies suggests that a component common to both formation of platelet alpha granules, and

  3. [Syndromes 2. Pfeiffer syndrome].

    PubMed

    Freihofer, H P

    1998-07-01

    Acrocephalosyndactylias are syndromes characterized by abnormalities of the head (craniosynostosis), the face (hypertelorism, retromaxillism), hands and feet (cutaneous or bony syndactyly). Inheritance is autosomal dominant, but spontaneous cases are described also. The group is divided into several syndromes with varying penetrance and expressivity. As an example of an acrocephalosyndactylia is the Pfeiffer syndrome presented.

  4. The immunogenicity of DNA constructs co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus conjugated by GPGP linker in pigs.

    PubMed

    Chia, Min-Yuan; Hsiao, Shih-Hsuan; Chan, Hui-Ting; Do, Yi-Yin; Huang, Pung-Ling; Chang, Hui-Wen; Tsai, Yi-Chieh; Lin, Chun-Ming; Pang, Victor Fei; Jeng, Chian-Ren

    2010-12-15

    The heterodimer of glycoprotein 5 (GP5) and non-glycosylated matrix protein (M) is the leading target for the development of new generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) infection. It has been demonstrated that DNA vaccine co-expressing GP5 and M proteins as a fusion protein aroused better immunogenicity than that expressing GP5 or M alone, but it was no better than the DNA vaccine co-expressing GP5 and M proteins with two different promoters. Altered natural conformation of the co-expressed GP5 and M fusion protein was considered as the major cause. Glycine-proline-glycine-proline (GPGP) linker can minimize the conformational changes in tertiary structure and provide flexibility of the peptide chain. The objective of this study was to evaluate whether the immunogenicity of DNA constructs co-expressing GP5 and M proteins linked by GPGP could be enhanced in pigs. Three recombinant DNA constructs expressing GP5/M fusion protein without GPGP linker (pcDNA-56), GP5/M fusion protein conjugated by GPGP linker (pcDNA-5L6), and M/GP5 fusion protein conjugated by GPGP linker (pcDNA-6L5) were established. Sixteen PRRSV-free pigs were randomly assigned to four groups and inoculated intramuscularly with 3 consecutive doses of 500 μg of empty vector pcDNA3.1, pcDNA-56, pcDNA-5L6 or pcDNA-6L5 each at a 2-week interval followed by challenge with 5 × 10(5) TCID(50) PRRSV at 3 weeks after the final inoculation. All pcDNA-56-, pcDNA-5L6-, and pcDNA-6L5- but not pcDNA-3.1-inoculated pigs developed neutralizing antibodies (NAs) 3 weeks after the final inoculation and a gradual increase in NA titers after PRRSV challenge, indicating that pigs inoculated with these DNA constructs could establish a sufficient immune memory. The pcDNA-5L6- and pcDNA-6L5-inoculated pigs displayed lower level and shorter period of viremia and lower tissue viral load following PRRSV challenge than did the pcDNA-56-inoculated pigs. The strategy of co

  5. High-Sensitivity C-Reactive Protein is Related to Central Obesity and the Number of Metabolic Syndrome Components in Jamaican Young Adults

    PubMed Central

    Bennett, Nadia R.; Ferguson, Trevor S.; Bennett, Franklyn I.; Tulloch-Reid, Marshall K.; Younger-Coleman, Novie O. M.; Jackson, Maria D.; Samms-Vaughan, Maureen E.; Wilks, Rainford J.

    2014-01-01

    Background: High-sensitivity C-reactive protein (hsCRP) has been shown to predict cardiovascular disease (CVD) endpoints and is associated with CVD risk factors and the metabolic syndrome. This study evaluated the association between hsCRP and CVD risk factors among Afro-Caribbean young adults in Jamaica. Methods: We conducted a cross-sectional analysis of data from the Jamaica 1986 Birth Cohort Study. Data were collected between 2005 and 2007 when participants were 18–20 years old. All participants completed an interviewer administered questionnaire and had anthropometric and blood pressure (BP) measurements performed. Fasting blood samples were collected for measurement of glucose, lipids, and hsCRP. Logistic regression models were used to identify factors independently associated with high hsCRP. Results: Analyses included 342 men and 404 women with mean age 18.8 ± 0.6 years. Approximately 15% of the participants had high risk hsCRP (>3 mg/L), with a higher prevalence among women (20 vs. 9%; p < 0.001). The prevalence of elevated hsCRP increased with body mass index category, high waist circumference (WC), high triglycerides, low high density lipoprotein, and lower parental education among women, but only for high WC and lower parental education among men. In logistic regression models controlling for sex and parental education, high WC was associated with significantly higher odds of high hsCRP (OR 7.8, 95% CI 4.8–12.9, p < 0.001). In a similar model, high hsCRP was also associated with the number of metabolic syndrome components. Compared to participants with no metabolic syndrome component, having one metabolic syndrome component was associated with a twofold higher odds of high hsCRP (OR 2.2, 95% CI 1.3–3.8, p = 0.005), while having three components was associated with a 14-fold higher odds of high hsCRP (OR 13.5, 95% CI 2.4–76.0, p < 0.001). Conclusion: High hsCRP is common among Jamaican young adults and is strongly

  6. PmVRP15, a novel viral responsive protein from the black tiger shrimp, Penaeus monodon, promoted white spot syndrome virus replication.

    PubMed

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.

  7. The non-structural protein Nsp2TF of porcine reproductive and respiratory syndrome virus down-regulates the expression of Swine Leukocyte Antigen class I.

    PubMed

    Cao, Qian M; Subramaniam, Sakthivel; Ni, Yan-Yan; Cao, Dianjun; Meng, Xiang-Jin

    2016-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is arguably the most economically-important global swine pathogen. Here we demonstrated that PRRSV down-regulates Swine Leukocyte Antigen class I (SLA-I) expression in porcine alveolar macrophages, PK15-CD163 cells and monocyte-derived dendritic cells. To identify the viral protein(s) involved in SLA-I down-regulation, we tested all 22 PRRSV structural and non-structural proteins and identified that Nsp1α and Nsp2TF, and GP3 significantly down-regulated SLA-I expression with Nsp2TF showing the greatest effect. We further generated a panel of mutant viruses in which the Nsp2TF protein synthesis was abolished, and found that the two mutants with disrupted -2 ribosomal frameshifting elements and additional stop codons in the TF domain were unable to down-regulate SLA-I expression. Additionally we demonstrated that the last 68 amino acids of TF domain in Nsp2TF are critical for this function. Collectively, the results indicate a novel function of Nsp2TF in negative modulation of SLA-I expression.

  8. Elemental Analysis of Whole and Protein Separated Blood Serum of Patients with Systemic Lupus Erythematosus and Sjögren's Syndrome.

    PubMed

    Tóth, Csilla Noémi; Baranyai, Edina; Csípő, István; Tarr, Tünde; Zeher, Margit; Posta, József; Fábián, István

    2017-01-26

    Systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS) are systemic autoimmune diseases with complex symptoms and pathogenesis that are still not completely understood. Several studies showed that the trace element homeostasis and also the levels of antioxidant plasma proteins are changed in autoimmune disorders; however, these results are controversial. In this study, the potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), and iron (Fe) concentrations of the serum and proteins-immunoglobulin G (IgG), transferrin (Trf), albumin (Alb), and ceruloplasmin (Cp)-separated from serum samples by affinity chromatography were determined in patients with SLE and SS. Ca and K levels were found to be decreased in the case of both disorders compared to the control group, and the competitive antagonism of Cu and Zn was also observed: elevated Cu concentration together with a lower Zn concentration was measured in the sera of patients with autoimmune diseases. After fractionation, the trace element concentration of protein containing fractions altered to that of the control group. In case of the autoimmune disorders, the highest Cu concentration was determined in the Alb-containing protein fractions while the Zn level decreased in the Alb and increased in the Cp as well as in the IgG- and Trf-containing fractions compared to the healthy samples. Changes have also been found in the level and distribution of K and Ca.

  9. Long-term effects of insulin-like growth factor (IGF)-I on serum IGF-I, IGF-binding protein-3 and acid labile subunit in Laron syndrome patients with normal growth hormone binding protein.

    PubMed

    Kanety, H; Silbergeld, A; Klinger, B; Karasik, A; Baxter, R C; Laron, Z

    1997-12-01

    A minority of patients with Laron syndrome have normal serum GH binding protein (GHBP), indicating that the defect is elsewhere than in the extracellular domain of the GH receptor. We have evaluated the effect of long-term IGF-I treatment on serum IGF-binding protein (IGFBP)-3 and the acid-labile subunit (ALS) in three sibling with Laron syndrome caused by a GH post-receptor defect and with normal GHBP. The children (a boy aged 3 years, a girl aged 4 years and a boy aged 10 years) were treated by daily s.c. injection of IGF-I in a dose of 150 micrograms/kg. IGFBP-3 was measured by RIA and Western ligand blotting, ALS by RIA. Based values of IGFBP-3 and ALS were low. During IGF-I treatment, the IGFBP-3 concentrations in the girl gradually increased, whereas in the boys there was a 60% decrease during the first week, followed by gradual increase towards baseline. The ALS concentrations followed a similar pattern. We conclude that IGF-I treatment induces and initial suppression and then an increase in the IGFBP-3 and ALS concentrations, confirming data from animal experiments that IGFBP-3 synthesis is not solely under GH control. The differences in responsiveness between the female and male siblings may reflect genetic differences, or lower circulating concentrations of IGF-I in the boys compared with the girl.

  10. Marfan Syndrome (For Teens)

    MedlinePlus

    ... in 1896. Marfan syndrome affects the body's connective tissue. Connective tissue is found everywhere in the body. Think ... special type of protein that's found in connective tissue. Weakened connective tissue can lead to problems in many parts ...

  11. A Novel Mutation in the Pyrin Domain of the NOD-like Receptor Family Pyrin Domain Containing Protein 3 in Muckle-Wells Syndrome

    PubMed Central

    Hu, Jian; Zhu, Yun; Zhang, Jian-Zhong; Zhang, Rong-Guang; Li, Hou-Min

    2017-01-01

    Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease. CAPS is associated with gain-of-function missense mutations in NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), the gene encoding NLRP3. Moreover, most mutations leading to MWS occurred in exon 3 of NLRP3 gene. Here, we reported a novel mutation occurred in exon 1 of NLRP3 gene in an MWS patient and attempted to explore the pathogenic mechanism. Methods: Genetic sequence analysis of NLRP3 was performed in an MWS patient who presented with periodic fever, arthralgia, and multiform skin lesions. NLRP3 was also analyzed in this patient's parents and 50 healthy individuals. Clinical examinations including X-ray examination, skin biopsy, bone marrow aspiration smear, and blood test of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum levels of IL-1β, immunoglobulin E (IgE), antineutrophil cytoplasmic antibodies, antinuclear antibodies, and extractable nuclear antigen were also analyzed. The protein structure of mutant NLRP3 inflammasome was calculated by SWISS-MODEL software. Proteins of wild type and mutant components of NLRP3 inflammasome were expressed and purified, and the interaction abilities between these proteins were tested by surface plasmon resonance (SPR) assay. Results: X-ray examination showed no abnormality in the patient's knees. Laboratory tests indicated an elevation of CRP (233.24 mg/L) and ESR (67 mm/h) when the patient had fever. Serum IL-1β increased to 24.37 pg/ml, and serum IgE was higher than 2500.00 IU/ml. Other blood tests were

  12. HELLP Syndrome.

    PubMed

    Sandvoß, Mareike; Potthast, Arne Björn; von Versen-Höynck, Frauke; Das, Anibh Martin

    2017-04-01

    The hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome is frequently observed in mothers whose offspring have long-chain fatty acid oxidation defects. We previously found that fatty acid oxidation is compromised not only in these inborn errors of metabolism but also in human umbilical vein endothelial cells (HUVECs) from all pregnancies complicated by the HELLP syndrome. Sirtuins are oxidized nicotinamide adenine dinucleotide (NAD(+))dependent deacetylases linked to the metabolic status of the cell. SIRT 4 is known to have regulatory functions in fatty acid oxidation. The HELLP syndrome is often associated with short-term hypoxia. We studied sirtuins (SIRT 1, SIRT 3, and SIRT 4) in HUVECs from pregnancies complicated by the HELLP syndrome and uncomplicated pregnancies exposed to hypoxia (n = 7 controls, 7 HELLP; 0, 10, 60, or 120 minutes of 2% O2). Protein levels of SIRT 4 were significantly higher in HUVECs from HELLP compared to control after 60 and 120 minutes of hypoxia. The NAD(+) levels increased in a time-dependent manner.

  13. [Use of an amino-acid-based formula in the treatment of cow's milk protein allergy and multiple food allergy syndrome].

    PubMed

    Kanny, G; Moneret-Vautrin, D A; Flabbee, J; Hatahet, R; Virion, J M; Morisset, M; Guenard, L

    2002-03-01

    Food allergy to cow's milk proteins (APLV) is frequently found in young infants. Treatment is by starting an elimination diet. Different substitution products have been proposed: soya milk, partial hydrolysate of the proteins of lactoserum, powdered casein hydrolysate, hydrolysed soya and pork collagen. Allergic reactions to soya milk, hydrolysates of lactoserum proteins, powdered casein hydrolysates and hydrolysates of soya have been described. The study that we present evaluates the effect on the natural development of these allergies of a formula based on amino-acids (Neocate) in 26 patients who presented a syndrome of multiple allergies one of which was a food allergy to milk. Twenty-five of them had a severe atopic dermatitis, isolated (14 cases), or associated with gastro-intestinal troubles (6) break in the growth curve (5), anaphylactic reactions (2), one asthma (1). One child had a chronic diarrhoea associated with a weight plateau. Evaluation 2 or 3 months later showed a significant improvement of the atopic dermatitis. Return of the stature-weight growth was noted in 4 children from 5, the check in one was reported as due to a initially unrecognised allergy to gluten. The recovery of the APLV was shown by double-blind oral provocation test in 20/23 children between 11 and 37 months (22 +/- 9). Duration of administration of Neonate was between 6 to 19 months (12 + 5) months. This study confirmed the beneficial effect of the amino-acid formula on weight gain, gastro-intestinal troubles and development of atopic dermatitis. The level of recovery of APLV of 86% at the age of 2 years is better than that reported in the syndrome of multiple food allergies of 22%. The influence of this diet on the development of other food allergies remains to be evaluated.

  14. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  15. Hermansky-Pudlak Syndrome Protein Complexes Associate with Phosphatidylinositol 4-Kinase Type II α in Neuronal and Non-neuronal Cells*

    PubMed Central

    Salazar, Gloria; Zlatic, Stephanie; Craige, Branch; Peden, Andrew A.; Pohl, Jan; Faundez, Victor

    2009-01-01

    The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II α (PI4KIIα). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 (Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19,1415 -142618256276). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIα inclusion into AP-3 complexes. BLOC-1, PI4KIIα, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIα, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIα with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIα along the endocytic route. PMID:19010779

  16. The Alström Syndrome Protein, ALMS1, Interacts with α-Actinin and Components of the Endosome Recycling Pathway

    PubMed Central

    Collin, Gayle B.; Marshall, Jan D.; King, Benjamin L.; Milan, Gabriella; Maffei, Pietro; Jagger, Daniel J.; Naggert, Jürgen K.

    2012-01-01

    Alström syndrome (ALMS) is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H) screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32) of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A) have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS. PMID:22693585

  17. A Novel Kleefstra Syndrome-associated Variant That Affects the Conserved TPLX Motif within the Ankyrin Repeat of EHMT1 Leads to Abnormal Protein Folding*

    PubMed Central

    Blackburn, Patrick R.; Tischer, Alexander; Zimmermann, Michael T.; Kemppainen, Jennifer L.; Sastry, Sujatha; Knight Johnson, Amy E.; Cousin, Margot A.; Boczek, Nicole J.; Oliver, Gavin; Misra, Vinod K.; Gavrilova, Ralitza H.; Lomberk, Gwen; Auton, Matthew; Urrutia, Raul; Klee, Eric W.

    2017-01-01

    Kleefstra syndrome (KS) (Mendelian Inheritance in Man (MIM) no. 610253), also known as 9q34 deletion syndrome, is an autosomal dominant disorder caused by haploinsufficiency of euchromatic histone methyltransferase-1 (EHMT1). The clinical phenotype of KS includes moderate to severe intellectual disability with absent speech, hypotonia, brachycephaly, congenital heart defects, and dysmorphic facial features with hypertelorism, synophrys, macroglossia, protruding tongue, and prognathism. Only a few cases of de novo missense mutations in EHMT1 giving rise to KS have been described. However, some EHMT1 variants have been described in individuals presenting with autism spectrum disorder or mild intellectual disability, suggesting that the phenotypic spectrum resulting from EHMT1 alterations may be quite broad. In this report, we describe two unrelated patients with complex medical histories consistent with KS in whom next generation sequencing identified the same novel c.2426C>T (p.P809L) missense variant in EHMT1. To examine the functional significance of this novel variant, we performed molecular dynamics simulations of the wild type and p.P809L variant, which predicted that the latter would have a propensity to misfold, leading to abnormal histone mark binding. Recombinant EHMT1 p.P809L was also studied using far UV circular dichroism spectroscopy and intrinsic protein fluorescence. These functional studies confirmed the model-based hypotheses and provided evidence for protein misfolding and aberrant target recognition as the underlying pathogenic mechanism for this novel KS-associated variant. This is the first report to suggest that missense variants in EHMT1 that lead to protein misfolding and disrupted histone mark binding can lead to KS. PMID:28057753

  18. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling.

    PubMed

    Matthews, Krystal L; Coleman, Christopher M; van der Meer, Yvonne; Snijder, Eric J; Frieman, Matthew B

    2014-04-01

    The recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV), a betacoronavirus, is associated with severe pneumonia and renal failure. The environmental origin of MERS-CoV is as yet unknown; however, its genome sequence is closely related to those of two bat coronaviruses, named BtCoV-HKU4 and BtCoV-HKU5, which were derived from Chinese bat samples. A hallmark of highly pathogenic respiratory viruses is their ability to evade the innate immune response of the host. CoV accessory proteins, for example those from severe acute respiratory syndrome CoV (SARS-CoV), have been shown to block innate antiviral signalling pathways. MERS-CoV, similar to SARS-CoV, has been shown to inhibit type I IFN induction in a variety of cell types in vitro. We therefore hypothesized that MERS-CoV and the phylogenetically related BtCoV-HKU4 and BtCoV-HKU5 may encode proteins with similar capabilities. In this study, we have demonstrated that the ORF4b-encoded accessory protein (p4b) of MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 may indeed facilitate innate immune evasion by inhibiting the type I IFN and NF-κB signalling pathways. We also analysed the subcellular localization of p4b from MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 and demonstrated that all are localized to the nucleus.

  19. Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae.

    PubMed

    Zhang, Jisi; Khan, Muhammad Ramzan; Tian, Ying; Li, Zhichao; Riss, Simone; He, Chaoying

    2012-10-01

    The inflated calyx syndrome (ICS) is a post-floral novelty within Solanaceae. Previous work has shown that MPF2-like MADS-box genes have been recruited for the development and evolution of ICS through heterotopic expression from vegetative to floral organs. ICS seems to be a plesiomorphic trait in Physaleae, but it has been secondarily lost in some lineages during evolution. We hypothesized that molecular and functional divergences of MPF2-like proteins might play a role in the loss of ICS. In this study we analyzed the phylogeny, selection and various functions of MPF2-like proteins with respect to the evolution of ICS. Directional selection of MPF2-like orthologs toward evolution of ICS was detected. While auto-activation capacity between proteins varies in yeast, MPF2-like interaction with floral MADS-domain proteins is robustly detected, hence substantiating their integration into the floral developmental programs. Dimerization with A- (MPF3) and E-function (PFSEP1/3) proteins seems to be essential for ICS development within Solanaceae. Moreover, the occurrence of the enlarged sepals, reminiscent of ICS, and MPF2-like interactions with these specific partners were observed in transgenic Arabidopsis. The interaction spectrum relevant to ICS seems to be plesiomorphic, reinforcing the plesiomorphy of this trait. The inability of some MPF2-like to interact with either the A-function or any of the E-function partners characterized is correlated with the loss of ICS in the lineages that showed a MPF2-like expression in the calyx. Our findings suggest that, after recruitment of MPF2-like genes for floral development, diversification in their coding region due to directional selection leads to a modification of the MADS-domain protein interacting spectrum, which might serve as a constraint for the evolution of ICS within Solanaceae.

  20. SUMO-conjugating enzyme E2 UBC9 mediates viral immediate-early protein SUMOylation in crayfish to facilitate reproduction of white spot syndrome virus.

    PubMed

    Chen, An-Jing; Gao, Lu; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-01-01

    Successful viruses have evolved superior strategies to escape host defenses or exploit host biological pathways. Most of the viral immediate-early (ie) genes are essential for viral infection and depend solely on host proteins; however, the molecular mechanisms are poorly understood. In this study, we focused on the modification of viral IE proteins by the crayfish small ubiquitin-related modifier (SUMO) and investigated the role of SUMOylation during the viral life cycle. SUMO and SUMO ubiquitin-conjugating enzyme 9 (UBC9) involved in SUMOylation were identified in red swamp crayfish (Procambarus clarkii). Both SUMO and UBC9 were upregulated in crayfish challenged with white spot syndrome virus (WSSV). Replication of WSSV genes increased in crayfish injected with recombinant SUMO or UBC9, but injection of mutant SUMO or UBC9 protein had no effect. Subsequently, we analyzed the mechanism by which crayfish SUMOylation facilitates WSSV replication. Crayfish UBC9 bound to all three WSSV IE proteins tested, and one of these IE proteins (WSV051) was covalently modified by SUMO in vitro. The expression of viral ie genes was affected and that of late genes was significantly inhibited in UBC9-silenced or SUMO-silenced crayfish, and the inhibition effect was rescued by injection of recombinant SUMO or UBC9. The results of this study demonstrate that viral IE proteins can be modified by crayfish SUMOylation, prompt the expression of viral genes, and ultimately benefit WSSV replication. Understanding of the mechanisms by which viruses exploit host components will greatly improve our knowledge of the virus-host "arms race" and contribute to the development of novel methods against virulent viruses.

  1. SUMO-Conjugating Enzyme E2 UBC9 Mediates Viral Immediate-Early Protein SUMOylation in Crayfish To Facilitate Reproduction of White Spot Syndrome Virus

    PubMed Central

    Chen, An-Jing; Gao, Lu; Wang, Xian-Wei; Zhao, Xiao-Fan

    2013-01-01

    Successful viruses have evolved superior strategies to escape host defenses or exploit host biological pathways. Most of the viral immediate-early (ie) genes are essential for viral infection and depend solely on host proteins; however, the molecular mechanisms are poorly understood. In this study, we focused on the modification of viral IE proteins by the crayfish small ubiquitin-related modifier (SUMO) and investigated the role of SUMOylation during the viral life cycle. SUMO and SUMO ubiquitin-conjugating enzyme 9 (UBC9) involved in SUMOylation were identified in red swamp crayfish (Procambarus clarkii). Both SUMO and UBC9 were upregulated in crayfish challenged with white spot syndrome virus (WSSV). Replication of WSSV genes increased in crayfish injected with recombinant SUMO or UBC9, but injection of mutant SUMO or UBC9 protein had no effect. Subsequently, we analyzed the mechanism by which crayfish SUMOylation facilitates WSSV replication. Crayfish UBC9 bound to all three WSSV IE proteins tested, and one of these IE proteins (WSV051) was covalently modified by SUMO in vitro. The expression of viral ie genes was affected and that of late genes was significantly inhibited in UBC9-silenced or SUMO-silenced crayfish, and the inhibition effect was rescued by injection of recombinant SUMO or UBC9. The results of this study demonstrate that viral IE proteins can be modified by crayfish SUMOylation, prompt the expression of viral genes, and ultimately benefit WSSV replication. Understanding of the mechanisms by which viruses exploit host components will greatly improve our knowledge of the virus-host “arms race” and contribute to the development of novel methods against virulent viruses. PMID:23097446

  2. Expression Profile of Penaeus monodon Ubiquitin Conjugating Enzyme (PmUbc) at Protein Level in White spot syndrome virus Challenged Shrimp.

    PubMed

    Keezhedath, Jeena; Kurcheti, Pani Prasad; Pathan, Mujahid Khan; Babu, Gireesh P; Tripathi, Gayatri; Sudhagar, Arun; Rao, Srinivas P

    2013-06-01

    White spot syndrome virus (WSSV) is one of the major pathogens in shrimp aquaculture. Four proteins of WSSV are predicted to encode a RING H2 domain, which in presence of ubiquitin conjugating enzyme (E2) in shrimps can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, expression profile of Penaeus monodon Ubiquitin conjugating enzyme (PmUbc) was studied at protein level in WSSV challenged shrimp. A time point analysis of the expression of PmUbc was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge in P. monodon. Recombinant PmUbc (rPmUbc) was produced in prokaryotic expression vector, BL21 (DE3) pLys S. The PmUbc expression pattern was studied by ELISA with rPmUbc antibodies raised in rabbit. A significant increase in PmUbc expression at 24 h post infection (hpi) was observed followed by a decline till 72 hpi. Since the up-regulation and a tremendous decline of PmUbc protein expression was observed at 24 and in 72 hpi respectively in ELISA, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. Many findings have shown that viral infection can up-regulate expression of ubiquitin and that the ubiquitin system plays a key role in the course of viral infection. The present study reveals the expression patterns of PmUbc at protein level in WSSV infected P. monodon. However, further studies are to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this major culprit in shrimp culture industry.

  3. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    PubMed

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage.

  4. Total protein

    MedlinePlus

    ... 2016:chap 215. Read More Agammaglobulinemia Albumin - blood (serum) test Amino acids Antibody Burns Chronic Congenital nephrotic syndrome Fibrinogen blood test Glomerulonephritis Hemoglobin Liver disease Malabsorption Multiple myeloma Polycythemia vera Protein in diet ...

  5. GNB1L, a gene deleted in the critical region for DiGeorge syndrome on 22q11, encodes a G-protein beta-subunit-like polypeptide.

    PubMed

    Gong, L; Liu, M; Jen, J; Yeh, E T

    2000-11-15

    CATCH 22 syndromes, which include DiGeorge syndrome and Velocardiofacial syndrome, are the most common cause of congenital heart disease which involve microdeletion of 22q11. Using a strategy including EST searching, PCR amplification and 5'-RACE, we have cloned a 1487 bp cDNA fragment from human heart cDNA library. The cloned GNB1L cDNA encodes a G-protein beta-subunit-like polypeptide, and the GNB1L gene is located in the critical region for DiGeorge syndrome. A comparison of GNB1L cDNA sequence with corresponding genomic DNA sequence revealed that this gene consists of seven exons and spans an approximately 60 kb genomic region. Northern blot analysis revealed GNB1L is highly expressed in the heart.

  6. Moebius Syndrome

    MedlinePlus

    ... children with Moebius syndrome have some degree of autism. There are four recognized categories of Moebius syndrome: ... children with Moebius syndrome have some degree of autism. There are four recognized categories of Moebius syndrome: ...

  7. The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells

    PubMed Central

    Bailey, Arnold D.; Gray, Lucas T.; Pavelitz, Thomas; Newman, John C.; Horibata, Katsuyoshi; Tanaka, Kiyoji; Weiner, Alan M.

    2012-01-01

    Cockayne syndrome is a segmental progeria most often caused by mutations in the CSB gene encoding a SWI/SNF-like ATPase required for transcription-coupled DNA repair (TCR). Over 43 Mya before marmosets diverged from humans, a piggyBac3 (PGBD3) transposable element integrated into intron 5 of the CSB gene. As a result, primate CSB genes now generate both CSB protein and a conserved CSB-PGBD3 fusion protein in which the first 5 exons of CSB are alternatively spliced to the PGBD3 transposase. Using a host cell reactivation assay, we show that the fusion protein inhibits TCR of oxidative damage but facilitates TCR of UV damage. We also show by microarray analysis that expression of the fusion protein alone in CSB-null UV-sensitive syndrome (UVSS) cells induces an interferon-like response that resembles both the innate antiviral response and the prolonged interferon response normally maintained by unphosphorylated STAT1 (U-STAT1); moreover, as might be expected based on conservation of the fusion protein, this potentially cytotoxic interferon-like response is largely reversed by coexpression of functional CSB protein. Interestingly, expression of CSB and the CSB-PGBD3 fusion protein together, but neither alone, upregulates the insulin growth factor binding protein IGFBP5 and downregulates IGFBP7, suggesting that the fusion protein may also confer a metabolic advantage, perhaps in the presence of DNA damage. Finally, we show that the fusion protein binds in vitro to members of a dispersed family of 900 internally deleted piggyBac elements known as MER85s, providing a potential mechanism by which the fusion protein could exert widespread effects on gene expression. Our data suggest that the CSB-PGBD3 fusion protein is important in both health and disease, and could play a role in Cockayne syndrome. PMID:22483866

  8. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  9. Genetics Home Reference: Christianson syndrome

    MedlinePlus

    ... to the correct location in the cell (protein trafficking). Mutations in the SLC9A6 gene typically lead to ... Christianson syndrome . Some studies have shown that protein trafficking by endosomes is important for learning and memory, ...

  10. Genetics Home Reference: Costeff syndrome

    MedlinePlus

    ... The OPA3 protein is found in structures called mitochondria , which are the energy-producing centers of cells. ... protein is involved in regulating the shape of mitochondria. OPA3 gene mutations that result in Costeff syndrome ...

  11. Whey protein supplementation does not affect exercise training-induced changes in body composition and indices of metabolic syndrome in middle-aged overweight and obese adults.

    PubMed

    Weinheimer, Eileen M; Conley, Travis B; Kobza, Vanessa M; Sands, Laura P; Lim, Eunjung; Janle, Elsa M; Campbell, Wayne W

    2012-08-01

    Little is known about the effects of different quantities of whey protein on exercise training-induced changes in body composition and indices of metabolic syndrome in middle-aged overweight and obese adults. Therefore, we examined the effects of consuming 0.8-MJ supplements with 0 (n = 126), 10 (n = 112), 20 (n = 44), or 30 (n = 45) g whey protein twice daily in conjunction with resistance (2 d/wk) and aerobic (1 d/wk) exercise training in a double-blind, randomized, placebo-controlled, community-based 9-mo study in men (n = 117) and women (n = 210); (age: 48 ± 7.9 y; BMI: 30.0 ± 2.8 kg/m(2)). Whey protein supplementation did not influence any of the following outcomes, some of which were affected by training. Among all participants, strength increased by 15 ± 12% (P < 0.001) and maximal oxygen uptake capacity (VO(2)max) increased by 9 ± 15% (P < 0.001). Body weight was unchanged (0.1 ± 3.7 kg, P = 0.80), lean body mass increased by 1.9 ± 2.8% (0.95 ± 1.3 kg, P < 0.001), and fat mass decreased by 2.6 ± 9.4% (-0.86 ± 3.1 kg, P = 0.001). Oral-glucose-tolerance testing showed that plasma glucose AUC was unchanged (-18.0 ± 170 mmol/L·  3 h, P = 0.16), insulin AUC decreased by 2.6 ± 32% (-7.5 ± 29 nmol/L·  3 h, P = 0.01), and HOMA-IR (0.2 ± 2.0, P = 0.81) and the insulin sensitivity index (0.3 ± 3.0, P = 0.63) were unchanged. Plasma concentrations of TG; total, LDL, and HDL cholesterol; C-reactive protein; plasminogen activator inhibitor-1; blood pressure; and waist circumference were unchanged. Whey protein supplementation did not affect exercise training-induced responses in body composition and indices of metabolic syndrome in middle-aged overweight and obese adults who maintained body weight.

  12. Citrus psorosis virus coat protein-derived hairpin construct confers stable transgenic resistance in citrus against psorosis A and B syndromes.

    PubMed

    De Francesco, A; Costa, N; García, M L

    2017-04-01

    Citrus psorosis virus (CPsV) is the causal agent of psorosis, a serious and widespread citrus disease. Two syndromes of psorosis, PsA and PsB, have been described. PsB is the most aggressive and rampant form. Previously, we obtained Pineapple sweet orange plants transformed with a hairpin construct derived from the CPsV coat protein gene (ihpCP). Some of these plants were resistant to CPsV 90-1-1, a PsA isolate homologous to the transgene. In this study, we found that expression of the ihpCP transgene and siRNA production in lines ihpCP-10 and -15 were stable with time and propagation. In particular, line ihpCP-15 has been resistant for more than 2 years, even after re-inoculation. The ihpCP plants were also resistant against a heterologous CPsV isolate that causes severe PsB syndrome. Line ihpCP-15 manifested complete resistance while line ihpCP-10 was tolerant to the virus, although with variable behaviour, showing delay and attenuation in PsB symptoms. These lines are promising for a biotech product aimed at eradicating psorosis.

  13. Localization of the human mitochondrial citrate transporter protein gene to chromosome 22q11 in the DiGeorge syndrome critical region

    SciTech Connect

    Heisterkamp, N.; Hoeve, J.T.; Groffen, J.

    1995-09-20

    A high percentage of patients with DiGeorge syndrome and velo-cardio-facial syndrome have interstitial deletions on chromosome 22q11. The shortest region of overlap is currently estimated to be around 500 kb. Two segments of DNA from chromosome 22q11, located 160 kb apart, were cloned because they contained NotI restriction enzyme sites. In the current study we demonstrate that these segments are absent from chromosomes 22 carrying microdeletions of two different DiGeorge patients. Fluorescence in situ and Southern blot hybridization was further used to show that this locus is within the DiGeorge critical region. Phylogenetically conserved sequences adjacent to one of the two NotI sites hybridized to mRNAs in different human cell lines. cDNAs isolated with a probe from this segment showed it to contain the gene for the human mitochondrial citrate transporter protein. Deletion of this gene in DiGeorge may contribute to the mental deficiency seen in the patients. 35 refs., 5 figs.

  14. White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein.

    PubMed

    Ran, Xiaozhuo; Bian, Xiaofang; Ji, Yongchang; Yan, Xiumin; Yang, Feng; Li, Fang

    2013-12-01

    DNA viruses often target cellular proteins to modulate host cell cycles and facilitate viral genome replication. However, whether proliferation of white spot syndrome virus (WSSV) requires regulation of the host cell cycle remains unclear. In the present study, we show that two WSSV paralogs, IE1 and WSV056, can interact with Litopenaeus vannamei retinoblastoma (Rb)-like protein (lv-RBL) through the conserved LxCxE motif. Further investigation revealed that IE1 and WSV056 could also bind to Drosophila retinoblastoma family protein 1 (RBF1) in a manner similar to how they bind to lv-RBL. Using the Drosophila RBF-E2F pathway as a model system, we demonstrated that both IE1 and WSV056 could sequester RBF1 from Drosophila E2F transcription factor 1 (E2F1) and subsequently activate E2F1 to stimulate the G1/S transition. Our findings provide the first evidence that WSSV may regulate cell cycle progression by targeting the Rb-E2F pathway.

  15. Structural Organization of the WD repeat protein-encoding gene HIRA in the DiGeorge syndrome critical region of human chromosome 22.

    PubMed

    Lorain, S; Demczuk, S; Lamour, V; Toth, S; Aurias, A; Roe, B A; Lipinski, M

    1996-01-01

    The human gene HIRA lies within the smallest critical region for the DiGeorge syndrome (DGS), a haploinsufficiency developmental disorder associated with instertitial deletions in most patients in a juxtacentromeric region of chromosome 22. The HIRA protein sequence can be aligned over its entire length with Hir1 and Hir2, two yeast proteins with a regulatory function in chromatin assembly. The HIRA transcription unit was found to spread over approximately 100 kb of the DGS critical region. The human transcript is encoded from 25 exons between 59 and 861 bp in size. Domains of highest conservation with Hir1 and Hir2 are encoded from exons 1-11 and 13-25, respectively. The amino- and carboxy-terminal regions of homology are separated from each other by a domain unique to HIRA that is encoded from a single exon. Seven WD repeats are conserved between yeast and man in the amino-terminal region of the HIR proteins. Individual repeats were found to be encoded from one, two, or three exons of the HIRA gene. End sequences have been obtained for all 24 introns, opening the way to PCR amplification of the entire coding sequence starting from genomic DNA. Point mutations can also be sought in 16 of the 24 introns that are readily PCR-amplifiable.

  16. The role of p38 mitogen-activated protein kinase in serum-induced leukemia inhibitory factor secretion by bone marrow stromal cells from pediatric myelodysplastic syndromes.

    PubMed

    da Costa, Simone V; Roela, Rosimeire A; Junqueira, Mara Souza; Arantes, Camila; Brentani, M Mitzi

    2010-04-01

    Stromal cells from pediatric myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) associated with MDS (MDS-AML) present high expression of leukemia inhibitor factor (LIF). We demonstrated using mitogen-activated protein kinase (MAPK) inhibitors that in stromal cells from pediatric MDS and MDS-AML, p38MAPK was critical in serum-induced secretion of LIF. The serum induction of phosphorylated p38MAPK form was observed only in stromal cells from healthy children, whereas in MDS and MDS-AML basal levels were maintained suggesting constitutive p38MAPK activation. Our study suggested the possible importance in pediatric MDS of p38MAPK signaling pathway which may be a future therapeutic target.

  17. Diffuse neuronal perikaryal amyloid precursor protein immunoreactivity in an ovine model of non-accidental head injury (the shaken baby syndrome).

    PubMed

    Finnie, John W; Manavis, Jim; Blumbergs, Peter C

    2010-02-01

    Non-accidental head injury ("shaken baby syndrome") is a major cause of death and disability in infants and young children, but it is uncertain whether shaking alone is sufficient to cause brain damage or an additional head impact is required. Accordingly, we used manual shaking in an ovine model in an attempt to answer this question since lambs have a relatively large gyrencephalic brain and weak neck muscles resembling a human infant. Neuronal perikaryal and axonal reactions were quantified 6 hours after shaking using amyloid precursor protein (APP) immunohistochemistry. Neuronal perikaryal APP was widely distributed in the brain and spinal cord, the first time such a diffuse neuronal stress response after shaking has been demonstrated, but axonal immunoreactivity was minimal and largely confined to the rostral cervical spinal cord at the site of maximal loading. No ischaemic-hypoxic damage was found in haematoxylin and eosin-stained sections.

  18. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q)

    PubMed Central

    Saft, Leonie; Karimi, Mohsen; Ghaderi, Mehran; Matolcsy, András; Mufti, Ghulam J.; Kulasekararaj, Austin; Göhring, Gudrun; Giagounidis, Aristoteles; Selleslag, Dominik; Muus, Petra; Sanz, Guillermo; Mittelman, Moshe; Bowen, David; Porwit, Anna; Fu, Tommy; Backstrom, Jay; Fenaux, Pierre; MacBeth, Kyle J.; Hellström-Lindberg, Eva

    2014-01-01

    Del(5q) myelodysplastic syndromes defined by the International Prognostic Scoring System as low- or intermediate-1-risk (lower-risk) are considered to have an indolent course; however, recent data have identified a subgroup of these patients with more aggressive disease and poorer outcomes. Using deep sequencing technology, we previously demonstrated that 18% of patients with lower-risk del(5q) myelodysplastic syndromes carry TP53 mutated subclones rendering them at higher risk of progression. In this study, bone marrow biopsies from 85 patients treated with lenalidomide in the MDS-004 clinical trial were retrospectively assessed for p53 expression by immunohistochemistry in association with outcome. Strong p53 expression in ≥1% of bone marrow progenitor cells, observed in 35% (30 of 85) of patients, was significantly associated with higher acute myeloid leukemia risk (P=0.0006), shorter overall survival (P=0.0175), and a lower cytogenetic response rate (P=0.009), but not with achievement or duration of 26-week transfusion independence response. In a multivariate analysis, p53-positive immunohistochemistry was the strongest independent predictor of transformation to acute myeloid leukemia (P=0.0035). Pyrosequencing analysis of laser-microdissected cells with strong p53 expression confirmed the TP53 mutation, whereas cells with moderate expression predominantly had wild-type p53. This study validates p53 immunohistochemistry as a strong and clinically useful predictive tool in patients with lower-risk del(5q) myelodysplastic syndromes. This study was based on data from the MDS 004 trial (clinicaltrials.gov identifier: NCT00179621). PMID:24682512

  19. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  20. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  1. Comparative measurement of cell-mediated immune responses of swine to the M and N proteins of porcine reproductive and respiratory syndrome virus.

    PubMed

    Jeong, Hyun-Jeong; Song, Young-Jo; Lee, Sang-Won; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Ha, Gun-Woo; Oh, Jin-Sik; Oh, Youn-Kyoung; Choi, In-Soo

    2010-04-01

    The principal objectives of this study were to develop autologous antigen-presenting cells (APCs) and to characterize the antigen-specific T-cell responses to the M and N proteins of porcine reproductive and respiratory syndrome virus (PRRSV) by using those APCs in outbred pigs. The orf6 and orf7 genes fused with porcine granulocyte-macrophage colony-stimulating factor (GM-CSF) were cloned into the mammalian expression vector to generate two plasmid DNAs, namely, pcDNA3.1-GM-CSF-PRRSV-M and pcDNA3.1-GM-CSF-PRRSV-N. Three of six pigs in two groups were repeatedly immunized with either plasmid DNA construct, and four pigs were used as controls. The recombinant M and N proteins fused with the protein transduction domain (PTD) of the human immunodeficiency virus type 1 transactivator of transcription protein were employed to generate major histocompatibility complex-matched autologous APCs from each pig. The levels of T-cell proliferation and gamma interferon (IFN-gamma) synthesis were compared between pigs immunized with the two plasmid DNAs after stimulation of the peripheral blood mononuclear cells (PBMCs) of each pig with the autologous antigen-presenting dendritic cells and PBMCs. Higher levels of T-cell proliferation and IFN-gamma synthesis were identified in PBMCs isolated from the pigs immunized with pcDNA3.1-GM-CSF-PRRSV-M than in those isolated from the pigs immunized with pcDNA3.1-GM-CSF-PRRSV-N. By way of contrast, serum antibodies were detected only in pigs immunized with pcDNA3.1-GM-CSF-PRRSV-N. However, no T-cell response or antibody production was detected in the control pigs. These results suggest that the M protein of PRRSV is a more potent T cell-stimulating antigen than the N protein. Nevertheless, it should be emphasized that the N protein substantially induces both cellular and humoral immune responses. The newly developed protocol for generating self APCs may prove effective in further efforts to characterize additional PRRSV proteins involved in

  2. Comparison of high protein and high fiber weight-loss diets in women with risk factors for the metabolic syndrome: a randomized trial

    PubMed Central

    2011-01-01

    Background Studies have suggested that moderately high protein diets may be more appropriate than conventional low-fat high carbohydrate diets for individuals at risk of developing the metabolic syndrome and type 2 diabetes. However in most such studies sources of dietary carbohydrate may not have been appropriate and protein intakes may have been excessively high. Thus, in a proof-of-concept study we compared two relatively low-fat weight loss diets - one high in protein and the other high in fiber-rich, minimally processed cereals and legumes - to determine whether a relatively high protein diet has the potential to confer greater benefits. Methods Eighty-three overweight or obese women, 18-65 years, were randomized to either a moderately high protein (30% protein, 40% carbohydrate) diet (HP) or to a high fiber, relatively high carbohydrate (50% carbohydrate, > 35 g total dietary fiber, 20% protein) diet (HFib) for 8 weeks. Energy intakes were reduced by 2000 - 4000 kJ per day in order to achieve weight loss of between 0.5 and 1 kg per week. Results Participants on both diets lost weight (HP: -4.5 kg [95% confidence interval (CI):-3.7, -5.4 kg] and HFib: -3.3 kg [95% CI: -4.2, -2.4 kg]), and reduced total body fat (HP: -4.0 kg [5% CI:-4.6, -3.4 kg] and HFib: -2.5 kg [95% CI: -3.5, -1.6 kg]), and waist circumference (HP: -5.4 cm [95% CI: -6.3, -4.5 cm] and HFib: -4.7 cm [95% CI: -5.8, -3.6 cm]), as well as total and LDL cholesterol, triglycerides, fasting plasma glucose and blood pressure. However participants on HP lost more body weight (-1.3 kg [95% CI: -2.5, -0.1 kg; p = 0.039]) and total body fat (-1.3 kg [95% CI: -2.4, -0.1; p = 0.029]). Diastolic blood pressure decreased more on HP (-3.7 mm Hg [95% CI: -6.2, -1.1; p = 0.005]). Conclusions A realistic high protein weight-reducing diet was associated with greater fat loss and lower blood pressure when compared with a high carbohydrate, high fiber diet in high risk overweight and obese women. PMID:21524314

  3. The 60- and 70-kDa heat-shock proteins and their correlation with cardiovascular risk factors in postmenopausal women with metabolic syndrome.

    PubMed

    Nahas, Eliana A P; Nahas-Neto, Jorge; Orsatti, Claudio L; Tardivo, Ana Paula; Uemura, Gilberto; Peraçoli, Maria Terezinha S; Witkin, Steven S

    2014-07-01

    We investigated the association between circulating levels of 60 and 70 kDa heat-shock proteins (HSP60 and 70) and cardiovascular risk factors in postmenopausal women with or without metabolic syndrome (MetS). This cross-sectional study included 311 Brazilian women (age ≥45 years with amenorrhea ≥12 months). Women showing three or more of the following diagnostic criteria were diagnosed with MetS: waist circumference (WC) ≥88 cm, blood pressure ≥130/85 mmHg, triglycerides ≥150 mg/dl, high-density lipoprotein (HDL) <50 mg/dl, and glucose ≥100 mg/dl. Clinical, anthropometric, and biochemical parameters were collected. HSP60, HSP70, antibodies to HSP60 and HSP70, and C-reactive protein (CRP) levels were measured in serum. Student's t test, Kruskal-Wallis test, chi-square test, and Pearson correlation were used for statistical analysis. Of the 311 women, 30.9 % (96/311) were diagnosed with MetS. These women were, on average, obese with abdominal fat deposition and had lower HDL values as well as higher triglycerides and glucose levels. Homeostasis model assessment-insulin resistant (HOMA-IR) test values in these women were compatible with insulin resistance (P < 0.05). CRP and HSP60 concentrations were higher in women with MetS than in women without MetS (P < 0.05). HSP60, anti-HSP70, and CRP concentrations increased with the number of features indicative of MetS (P < 0.05). There was a significant positive correlation between anti-HSP70 and WC, blood pressure and HOMA-IR, and between CRP and WC, blood pressure, glucose, HOMA-IR, and triglycerides (P < 0.05). In postmenopausal women, serum HSP60 and anti-HSP70 concentrations increased with accumulating features of the metabolic syndrome. These results suggest a greater immune activation that is associated with cardiovascular risk in postmenopausal women with metabolic syndrome.

  4. Kartagener syndrome.

    PubMed

    Casanova, M S; Tuji, F M; Yoo, H J; Haiter-Neto, F

    2006-09-01

    Kartagener syndrome (KS), an autosomal recessively inherited disease, is characterized by the triad of situs inversus, bronchiectasis and sinusitis. This disorder affects the activity of proteins important to the movement of cilia, especially in the respiratory tract and the spermatozoa, developing a series of systemic alterations, which can be diagnosed through radiographic examination. The aim of this paper is to describe a clinical case of this unusual pathology, including a brief literature review, emphasising the radiographic aspects of this pathology and stressing the importance of early diagnosis, which could be determined by an oral radiologist.

  5. Activating Transcription Factor 4 and X Box Binding Protein 1 of Litopenaeus vannamei Transcriptional Regulated White Spot Syndrome Virus Genes Wsv023 and Wsv083

    PubMed Central

    Li, Xiao-Yun; Pang, Li-Ran; Chen, Yong-Gui; Weng, Shao-Ping; Yue, Hai-Tao; Zhang, Ze-Zhi; Chen, Yi-Hong; He, Jian-Guo

    2013-01-01

    In response to endoplasmic reticulum (ER) stress, the signaling pathway termed unfolded protein response (UPR) is activated. To investigate the role of UPR in Litopenaeus vannamei immunity, the activating transcription factor 4 (designated as LvATF4) which belonged to a branch of the UPR, the [protein kinase RNA (PKR)-like ER kinase, (PERK)]-[eukaryotic initiation factor 2 subunit alpha (eIF2α)] pathway, was identified and characterized. The full-length cDNA of LvATF4 was 1972 bp long, with an open reading frame of 1299 bp long that encoded a 432 amino acid protein. LvATF4 was highly expressed in gills, intestines and stomach. For the white spot syndrome virus (WSSV) challenge, LvATF4 was upregulated in the gills after 3 hpi and increased by 1.9-fold (96 hpi) compared to the mock-treated group. The LvATF4 knock-down by RNA interference resulted in a lower cumulative mortality of L. vannamei under WSSV infection. Reporter gene assays show that LvATF4 could upregulate the expression of the WSSV gene wsv023 based on the activating transcription factor/cyclic adenosine 3′, 5′-monophosphate response element (ATF/CRE). Another transcription factor of L. vannamei, X box binding protein 1 (designated as LvXBP1), has a significant function in [inositol-requiring enzyme-1(IRE1) – (XBP1)] pathway. This transcription factor upregulated the expression of the WSSV gene wsv083 based on the UPR element (UPRE). These results suggest that in L. vannamei UPR signaling pathway transcription factors are important for WSSV and might facilitate WSSV infection. PMID:23638122

  6. Marine derived compounds as binders of the White spot syndrome virus VP28 envelope protein: In silico insights from molecular dynamics and binding free energy calculations.

    PubMed

    Sivakumar, K C; Sajeevan, T P; Bright Singh, I S

    2016-10-01

    White spot syndrome virus (WSSV) remains as one of the most dreadful pathogen of the shrimp aquaculture industry owing to its high virulence. The cumulative mortality reaches up to 100% within in 2-10days in a shrimp farm. Currently, no chemotherapeutics are available to control WSSV. The viral envelope protein, VP28, located on the surface of the virus particle acts as a vital virulence factor in the initial phases of inherent WSSV infection in shrimp. Hence, inhibition of envelope protein VP28 could be a novel way to deal with infection by inhibiting its interaction in the endocytic pathway. In this direction, a timely attempt was made to recognize a potential drug candidate of marine origin against WSSV using VP28 as a target by employing in silico docking and molecular dynamic simulations. A virtual library of 388 marine bioactive compounds was extracted from reports published in Marine Drugs. The top ranking compounds from docking studies were chosen from the flexible docking based on the binding affinities (ΔGb). In addition, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions. The results suggested that the two compounds obtained a negative binding free energy with -40.453kJ/mol and -31.031kJ/mol for compounds with IDs 30797199 and 144162 respectively. The RMSD curve indicated that 30797199 moves into the hydrophobic core, while the position of 144162 atoms changes abruptly during simulation and is mostly stabilized by water bridges. The shift in RMSD values of VP28 corresponding to ligand RMSD gives an insight into the ligand induced conformational changes in the protein. This study is first of its kind to elucidate the explicit binding of chemical inhibitor to WSSV major structural protein VP28.

  7. The prevalence of metabolic syndrome increases with serum high sensitivity C-reactive protein concentration in individuals without a history of cardiovascular disease: a report from a large Persian cohort.

    PubMed

    Kazemi-Bajestani, Seyyed Mr; Tayefi, Maryam; Ebrahimi, Mahmoud; Heidari-Bakavoli, Ali R; Moohebati, Mohsen; Parizadeh, Seyyed Mr; Esmaeili, Habibollah; Ferns, Gordon Aa; Ghayour-Mobarhan, Majid

    2017-01-01

    Background Metabolic syndrome is defined by a clustering of cardiovascular risk factors and is associated with a heightened inflammatory state. A raised serum high-sensitivity C-reactive protein, a marker of inflammation, is also known to associate with cardiovascular risk. We have investigated the relationship between the presence of metabolic syndrome and serum high-sensitivity C-reactive protein concentration in a large representative Persian population cohort without a history of cardiovascular disease. Methods The MASHAD study population cohort comprised 9778 subjects, who were recruited from the city of Mashhad, Iran, between 2007 and 2008. Several cardiovascular risk factors were measured in this population without cardiovascular disease. Individuals were categorized into quartiles of serum high-sensitivity C-reactive protein concentration: first quartile - 0.72 (0.59-0.85) (median [range]) mg/L, second quartile - 1.30 (1.14-1.4) mg/L, third quartile - 2.29 (1.92-2.81) mg/L and fourth quartile - 6.63 (4.61-11.95) mg/L, respectively. The prevalence of metabolic syndrome in each quartile was determined using either International Diabetes Federation or Adult Treatment Panel III criteria. Results The prevalence of metabolic syndrome was highest in the fourth quartile for serum high-sensitivity C-reactive protein (1220 subjects [50.0%]), and significantly higher than that in the first quartile (reference group) (634 subjects [25.9%]) ( P < 0.001). A positive smoking habit (OR, 1.47 [1.26-1.70], P < 0.001) and the presence of either metabolic syndrome-International Diabetes Federation (OR, 1.35 [1.18-1.55], P < 0.001) or metabolic syndrome-ATPIII (OR, 1.40 [1.18-1.50], P < 0.001) were strong predictors of a fourth quartile for serum high-sensitivity C-reactive protein concentration. Conclusions There was a significant association between high concentrations of serum high-sensitivity C-reactive protein and the presence of metabolic syndrome among

  8. Acrodysostosis syndromes

    PubMed Central

    Silve, C; Le-Stunff, C; Motte, E; Gunes, Y; Linglart, A; Clauser, E

    2012-01-01

    Acrodysostosis (ADO) refers to a heterogeneous group of rare skeletal dysplasia that share characteristic features including severe brachydactyly, facial dysostosis and nasal hypoplasia. The literature describing acrodysostosis cases has been confusing because some reported patients may have had other phenotypically related diseases presenting with Albright Hereditary Osteodystrophy (AHO) such as pseudohypoparathyroidism type 1a (PHP1a) or pseudopseudohypoparathyroidism (PPHP). A question has been whether patients display or not abnormal mineral metabolism associated with resistance to PTH and/or resistance to other hormones that bind G-protein coupled receptors (GPCR) linked to Gsα, as observed in PHP1a. The recent identification in patients affected with acrodysostosis of defects in two genes, PRKAR1A and PDE4D, both important players in the GPCR–Gsα–cAMP–PKA signaling, has helped clarify some issues regarding the heterogeneity of acrodysostosis, in particular the presence of hormonal resistance. Two different genetic and phenotypic syndromes are now identified, both with a similar bone dysplasia: ADOHR, due to PRKAR1A defects, and ADOP4 (our denomination), due to PDE4D defects. The existence of GPCR-hormone resistance is typical of the ADOHR syndrome. We review here the PRKAR1A and PDE4D gene defects and phenotypes identified in acrodysostosis syndromes, and discuss them in view of phenotypically related diseases caused by defects in the same signaling pathway. PMID:24363928

  9. Acrodysostosis syndromes.

    PubMed

    Silve, C; Le-Stunff, C; Motte, E; Gunes, Y; Linglart, A; Clauser, E

    2012-11-21

    Acrodysostosis (ADO) refers to a heterogeneous group of rare skeletal dysplasia that share characteristic features including severe brachydactyly, facial dysostosis and nasal hypoplasia. The literature describing acrodysostosis cases has been confusing because some reported patients may have had other phenotypically related diseases presenting with Albright Hereditary Osteodystrophy (AHO) such as pseudohypoparathyroidism type 1a (PHP1a) or pseudopseudohypoparathyroidism (PPHP). A question has been whether patients display or not abnormal mineral metabolism associated with resistance to PTH and/or resistance to other hormones that bind G-protein coupled receptors (GPCR) linked to Gsα, as observed in PHP1a. The recent identification in patients affected with acrodysostosis of defects in two genes, PRKAR1A and PDE4D, both important players in the GPCR-Gsα-cAMP-PKA signaling, has helped clarify some issues regarding the heterogeneity of acrodysostosis, in particular the presence of hormonal resistance. Two different genetic and phenotypic syndromes are now identified, both with a similar bone dysplasia: ADOHR, due to PRKAR1A defects, and ADOP4 (our denomination), due to PDE4D defects. The existence of GPCR-hormone resistance is typical of the ADOHR syndrome. We review here the PRKAR1A and PDE4D gene defects and phenotypes identified in acrodysostosis syndromes, and discuss them in view of phenotypically related diseases caused by defects in the same signaling pathway.

  10. Immune Responses in Pigs Induced by Recombinant DNA Vaccine Co-Expressing Swine IL-18 and Membrane Protein of Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Zhang, Xiaodong; Wang, Xiaoli; Mu, Lianzhi; Ding, Zhuang

    2012-01-01

    In this study, two DNA vaccines, which express the membrane (M) protein of porcine respiratory and reproductive syndrome virus (PRRSV) (pEGFP-M) and co-express both M and swine IL-18 (pEGFP-IL18-M), were constructed and their abilities to induce humoral and cellular responses in piglets were comparatively evaluated. Experimental results showed that both recombinant DNA vaccines could not elicit neutralizing antibodies in the immunized piglets. However, both DNA vaccines elicited Th1-biased cellular immune responses. Notably, pigs immunized with the plasmid pEGFP-IL18-M developed significantly higher levels of IFN-γ and IL-2 production response and stronger specific T-lymphocyte proliferation response than the pigs inoculated with the plasmids pEGFP-M and pEGFP-IL18 (P < 0.05). These results illustrated that co-expression of M and IL-18 proteins could significantly improve the potency of DNA vaccination on the activation of vaccine-induced virus-specific cell-mediated immune responses in pigs, which may be used as a strategy to develop a new generation of vaccines against highly pathogenic PRRSV. PMID:22754326

  11. Sulfated galactans isolated from the red seaweed Gracilaria fisheri target the envelope proteins of white spot syndrome virus and protect against viral infection in shrimp haemocytes.

    PubMed

    Rudtanatip, Tawut; Asuvapongpatana, Somluk; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2014-05-01

    The present study was aimed at evaluating an underlying mechanism of the antiviral activity of the sulfated galactans (SG) isolated from the red seaweed Gracilaria fisheri against white spot syndrome virus (WSSV) infection in haemocytes of the black tiger shrimp Penaeus monodon. Primary culture of haemocytes from Penaeus monodon was performed and inoculated with WSSV, after which the cytopathic effect (CPE), cell viability and viral load were determined. Haemocytes treated with WSSV-SG pre-mix showed decreased CPE, viral load and cell mortality from the viral infection. Solid-phase virus-binding assays revealed that SG bound to WSSV in a dose-related manner. Far Western blotting analysis indicated that SG bound to VP 26 and VP 28 proteins of WSSV. In contrast to the native SG, desulfated SG did not reduce CPE and cell mortality, and showed low binding activity with WSSV. The current study suggests that SG from Gracilaria fisheri elicits its anti-WSSV activity by binding to viral proteins that are important for the process of viral attachment to the host cells. It is anticipated that the sulfate groups of SG are important for viral binding.

  12. The Shwachman-Bodian-Diamond syndrome associated protein interacts with HsNip7 and its down-regulation affects gene expression at the transcriptional and translational levels

    SciTech Connect

    Hesling, Cedric; Oliveira, Carla C.; Castilho, Beatriz A.; Zanchin, Nilson I.T.

    2007-12-10

    The Shwachman-Bodian-Diamond syndrome (SDS) is an autosomal disorder with pleiotropic phenotypes including pancreatic, skeletal and bone marrow deficiencies and predisposition to hematological dysfunctions. SDS has been associated to mutations in the SBDS gene, encoding a highly conserved protein that was shown to function in ribosome biogenesis in yeast. In this work, we show that SBDS is found in complexes containing the human Nip7 ortholog. Analysis of pre-rRNA processing in a stable SBDS knock-down HEK293-derivative cell line revealed accumulation of a small RNA which is a further indication of SBDS involvement in rRNA biosynthesis. Global transcription and polysome-bound mRNA profiling revealed that SBDS knock-down affects expression of critical genes involved in brain development and function, bone morphogenesis, blood cell proliferation and differentiation, and cell adhesion. Expression of a group of growth and signal transduction factors and of DNA damage response genes is also affected. In SBDS knock-down cells, 34 mRNAs showed decreased and 55 mRNAs showed increased association to polysomes, among which is a group encoding proteins involved in alternative splicing and RNA modification. These results indicate that SBDS is required for accurate expression of genes important for proper brain, skeletal, and blood cell development.

  13. Differential apoptotic and proliferative activities of wild-type FOXL2 and blepharophimosis-ptosis-epicanthus inversus syndrome (BPES)-associated mutant FOXL2 proteins.

    PubMed

    Kim, Jae-Hong; Bae, Jeehyeon

    2014-03-07

    FOXL2 is an essential transcription factor that is required for proper development of the ovary and eyelid. Mutations in FOXL2 cause an autosomal dominant genetic disorder, blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES type I patients have eyelid malformation and premature ovarian failure leading to infertility, whereas women with type II BPES are fertile or subfertile. In the present study, we evaluated and compared apoptotic and antiproliferative activities of wild-type (WT) and mutant FOXL2 proteins found in BPES type I and II in human granulosa cell tumor-derived KGN cells. Ectopic expression of WT FOXL2 induced apoptosis and inhibited cell cycle progression in human granulosa cells. In contrast, mutated FOXL2s found in BPES type I significantly reduced these activities, whereas mutated FOXL2s in BPES type II showed intermediate activities. Furthermore, mutant FOX L2 proteins were defective in activating transcription of target genes including Caspase 8, TNF-R1, FAS, p21, and BMP4, which regulate apoptosis, proliferation, and differentiation of granulosa cells. Thus, decreased apoptotic and antiproliferative activities caused by mutant forms of FOXL2 found in BPES patients may at least partially contribute to the pathophysiology of ovarian dysfunction.

  14. Differential Apoptotic and Proliferative Activities of Wild-type FOXL2 and Blepharophimosis-ptosis-epicanthus Inversus Syndrome (BPES)-associated Mutant FOXL2 Proteins

    PubMed Central

    KIM, Jae-Hong; BAE, Jeehyeon

    2013-01-01

    Abstract FOXL2 is an essential transcription factor that is required for proper development of the ovary and eyelid. Mutations in FOXL2 cause an autosomal dominant genetic disorder, blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES type I patients have eyelid malformation and premature ovarian failure leading to infertility, whereas women with type II BPES are fertile or subfertile. In the present study, we evaluated and compared apoptotic and antiproliferative activities of wild-type (WT) and mutant FOXL2 proteins found in BPES type I and II in human granulosa cell tumor-derived KGN cells. Ectopic expression of WT FOXL2 induced apoptosis and inhibited cell cycle progression in human granulosa cells. In contrast, mutated FOXL2s found in BPES type I significantly reduced these activities, whereas mutated FOXL2s in BPES type II showed intermediate activities. Furthermore, mutant FOX L2 proteins were defective in activating transcription of target genes including Caspase 8, TNF-R1, FAS, p21, and BMP4, which regulate apoptosis, proliferation, and differentiation of granulosa cells. Thus, decreased apoptotic and antiproliferative activities caused by mutant forms of FOXL2 found in BPES patients may at least partially contribute to the pathophysiology of ovarian dysfunction. PMID:24240106

  15. Generation of recombinant monoclonal antibodies to study structure-function of envelope protein VP28 of white spot syndrome virus from shrimp

    SciTech Connect

    Wang Yuzhen; Zhang Xiaohua; Yuan Li; Xu Tao; Rao Yu; Li Jia; Dai Heping

    2008-08-08

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.

  16. Elevation of insulin-like growth factor binding protein-2 level in Pallister-Killian syndrome: implications for the postnatal growth retardation phenotype.

    PubMed

    Izumi, Kosuke; Kellogg, Emily; Fujiki, Katsunori; Kaur, Maninder; Tilton, Richard K; Noon, Sarah; Wilkens, Alisha; Shirahige, Katsuhiko; Krantz, Ian D

    2015-06-01

    Pallister-Killian syndrome (PKS) is a multi-system developmental disorder caused by tetrasomy 12p that exhibits tissue-limited mosaicism. Probands with PKS often demonstrate a unique growth profile consisting of macrosomia at birth with deceleration of growth postnatally. We have previously demonstrated that cultured skin fibroblasts from PKS probands have significantly elevated expression of insulin-like growth factor binding protein-2 (IGFBP2). To further evaluate the role of IGFBP2 in PKS, the amount of IGFBP2 secreted from cultured skin fibroblast cell lines and serum IGFBP2 levels were measured in probands with PKS. Approximately 60% of PKS fibroblast cell lines secreted higher levels of IGFBP2 compared to control fibroblasts, although the remaining 40% of PKS samples produced comparable level of IGFBP2 to that of control fibroblasts. Serum IGFBP2 levels were also measured in PKS probands and were elevated in 40% of PKS probands. PKS probands with elevated IGFBP2 manifested with severe postnatal growth retardation. IGFBPs are the family of related proteins that bind IGFs with high affinity and are typically thought to attenuate IGF action. We suggest that elevated IGFBP2 levels might play a role in the growth retardation phenotype of PKS.

  17. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP-) 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats

    PubMed Central

    Castrejón-Tellez, Vicente; Rodríguez-Pérez, José Manuel; Pérez-Torres, Israel; Pérez-Hernández, Nonanzit; Cruz-Lagunas, Alfredo; Guarner-Lans, Verónica; Vargas-Alarcón, Gilberto; Rubio-Ruiz, María Esther

    2016-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier superfamily involved in the control of body temperature and energy balance regulation. They are currently proposed as therapeutic targets for treating obesity and metabolic syndrome (MetS). We studied the gene expression regulation of UCP1, -2, and -3 in abdominal white adipose tissue (WAT) from control and MetS rats treated with two doses of a commercial mixture of resveratrol (RSV) and quercetin (QRC). We found that UCP2 was the predominantly expressed isoform, UCP3 was present at very low levels, and UCP1 was undetectable. The treatment with RSV + QRC did not modify UCP3 levels; however, it significantly increased UCP2 mRNA in control and MetS rats in association with an increase in oleic and linoleic fatty acids. WAT from MetS rats showed a significantly increased expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ when compared to the control group. Furthermore, PPAR-α protein levels were increased by the highest dose of RSV + QRC in the control and MetS groups. PPAR-γ expression was only increased in the control group. We conclude that the RSV + QRC treatment leads to overexpression of UCP2, which is associated with an increase in MUFA and PUFA, which might increase PPAR-α expression. PMID:27399675

  18. Identification of a linear B-cell epitope on non-structural protein 12 of porcine reproductive and respiratory syndrome virus, using a monoclonal antibody.

    PubMed

    Bi, Caihong; Shao, Zengyu; Zhang, Yuanfeng; Hu, Liang; Li, Jiangnan; Huang, Li; Weng, Changjiang

    2017-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses and continues to be a serious problem to the swine industry worldwide. The structure and function of PRRSV nonstructural protein 12 (NSP12) is still unknown. In this study, we produced a monoclonal antibody, named as 1E5, against the NSP12 protein of HP (highly pathogenic) -PRRSV strain HuN4. A series of partially overlapping recombinant NSP12 truncations and synthesized peptides were used to define the epitope recognized by 1E5. We found that (130)KANATSMRFH(139) is the minimal linear epitope and that it is highly conserved among some HP-PRRSV isolates of type 2 PRRSV, but not the classical isolates of type 2 PRRSV or the isolates of type 1 PRRSV. Therefore, 1E5 can be used to establish a valuable tool to distinguish infections with HP-PRRSV isolates of type 2 PRRSV from the classical isolates of type 2 PRRSV and type 1 PRRSV.

  19. A Novel C-Terminal CIB2 (Calcium and Integrin Binding Protein 2) Mutation Associated with Non-Syndromic Hearing Loss in a Hispanic Family.

    PubMed

    Patel, Kunjan; Giese, Arnaud P; Grossheim, J M; Hegde, Rashmi S; Hegde, Rashima S; Delio, Maria; Samanich, Joy; Riazuddin, Saima; Frolenkov, Gregory I; Cai, Jinlu; Ahmed, Zubair M; Morrow, Bernice E

    2015-01-01

    Hearing loss is a complex disorder caused by both genetic and environmental factors. Previously, mutations in CIB2 have been identified as a common cause of genetic hearing loss in Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transition mutation in the CIB2 gene identified through whole exome sequencing (WES) in a Caribbean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within predicted type II PDZ binding ligand at the carboxy terminus. Our ex vivo studies revealed that the mutation did not alter the interactions of CIB2 with Whirlin, nor its targeting to the tips of hair cell stereocilia. However, we found that the mutation disrupts inhibition of ATP-induced Ca2+ responses by CIB2 in a heterologous expression system. Our findings support p.(Arg186Trp) mutation as a cause for hearing loss in this Hispanic family. In addition, it further highlights the necessity of the calcium binding property of CIB2 for normal hearing.

  20. Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function.

    PubMed

    Mikolajczak, Marta; Goodman, Timothy; Hajihosseini, Mohammad K

    2016-12-15

    Heterozygous mutations in the gene encoding fibroblast growth factor 10 (FGF10) or its cognate receptor, FGF-receptor 2 IIIb result in two human syndromes - LADD (lacrimo-auriculo-dento-digital) and ALSG (aplasia of lacrimal and salivary glands). To date, the partial loss-of-FGF10 function in these patients has been attributed solely to perturbed paracrine signalling functions between FGF10-producing mesenchymal cells and FGF10-responsive epithelial cells. However, the functioning of a LADD-causing G138E FGF10 mutation, which falls outside its receptor interaction interface, has remained enigmatic. In the present study, we interrogated this mutation in the context of FGF10's protein sequence and three-dimensional structure, and followed the subcellular fate of tagged proteins containing this or other combinatorial FGF10 mutations, in vitro We report that FGF10 harbours two putative nuclear localization sequences (NLSs), termed NLS1 and NLS2, which individually or co-operatively promote nuclear translocation of FGF10. Furthermore, FGF10 localizes to a subset of dense fibrillar components of the nucleolus. G138E falls within NLS1 and abrogates FGF10's nuclear translocation whilst attenuating its progression along the secretory pathway. Our findings suggest that in addition to its paracrine roles, FGF10 may normally play intracrine role/s within FGF10-producing cells. Thus, G138E may disrupt both paracrine and intracrine function/s of FGF10 through attenuated secretion and nuclear translocation, respectively.

  1. Placental protein 13 (PP13/galectin-13) undergoes lipid raft-associated subcellular redistribution in the syncytiotrophoblast in preterm preeclampsia and HELLP syndrome

    PubMed Central

    Balogh, Andrea; Pozsgay, Judit; Matkó, János; Dong, Zhong; Kim, Chong Jai; Várkonyi, Tibor; Sammar, Marei; Rigó, Jánow; Meiri, Hamutal; Romero, Roberto; Papp, Zoltán; Than, Nandor Gábor

    2012-01-01

    Objective To investigate placental protein 13 (PP13) localization in relation to cytoskeleton and lipid rafts in preeclampsia and HELLP syndrome. Study Design Placental cryosections from patients with preeclampsia and HELLP, and controls were stained for PP13, actin, PLAP (lipid raft marker), and CD71 (nonraft marker). BeWo cells exposed to stress conditions were stained for PP13 and actin. Protein localization were investigated by confocal microscopy, PP13 concentrations by ELISA. Results PP13-actin colocalization was increased in syncytiotrophoblast juxtamembrane regions in term/preterm preeclampsia and HELLP. PP13-CD71 colocalization was decreased and PP13-PLAP proximity was increased in preterm but not term preeclampsia and HELLP. PP13-release from BeWo cells was inhibited by cytoskeleton disruption, and augmented by Ca2+-influx and ischemic stress. Conclusion The actin cytoskeleton, probably in connection with lipid rafts, controls trophoblastic “nonclassical” PP13 export. PP13 is released from the syncytiotrophoblast in preterm preeclampsia and HELLP, mimicked in BeWo cells by ischemic stress, suggesting PP13 is a placental alarmin. PMID:21596368

  2. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.

    PubMed

    Marti, Nesa; Galván, José A; Pandey, Amit V; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück, Christa E

    2017-02-05

    Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.

  3. A Novel C-Terminal CIB2 (Calcium and Integrin Binding Protein 2) Mutation Associated with Non-Syndromic Hearing Loss in a Hispanic Family

    PubMed Central

    Grossheim, J. M.; Hegde, Rashima S.; Delio, Maria; Samanich, Joy; Riazuddin, Saima; Frolenkov, Gregory I.; Cai, Jinlu; Ahmed, Zubair M.; Morrow, Bernice E.

    2015-01-01

    Hearing loss is a complex disorder caused by both genetic and environmental factors. Previously, mutations in CIB2 have been identified as a common cause of genetic hearing loss in Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transition mutation in the CIB2 gene identified through whole exome sequencing (WES) in a Caribbean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within predicted type II PDZ binding ligand at the carboxy terminus. Our ex vivo studies revealed that the mutation did not alter the interactions of CIB2 with Whirlin, nor its targeting to the tips of hair cell stereocilia. However, we found that the mutation disrupts inhibition of ATP-induced Ca2+ responses by CIB2 in a heterologous expression system. Our findings support p.(Arg186Trp) mutation as a cause for hearing loss in this Hispanic family. In addition, it further highlights the necessity of the calcium binding property of CIB2 for normal hearing. PMID:26426422

  4. Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist

    SciTech Connect

    Chen, Z.; Lawson, S.; Sun, Z.; Zhou, X.; Guan, X.; Christopher-Hennings, J.; Nelson, E.A.; Fang, Y.

    2010-03-01

    The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1alpha and nsp1beta subunits. In infected cells, we detected the actual existence of nsp1alpha and nsp1beta. Cleavage sites between nsp1alpha/nsp1beta and nsp1beta/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1alpha and nsp1beta mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-beta expression. The nsp1beta was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK-STAT signaling pathway. These results demonstrated that nsp1beta has ability to inhibit both interferon synthesis and signaling, while nsp1alpha alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.

  5. Interferon-Induced Transmembrane Protein 3 Inhibits Hantaan Virus Infection, and Its Single Nucleotide Polymorphism rs12252 Influences the Severity of Hemorrhagic Fever with Renal Syndrome

    PubMed Central

    Xu-yang, Zheng; Pei-yu, Bian; Chuan-tao, Ye; Wei, Ye; Hong-wei, Ma; Kang, Tang; Chun-mei, Zhang; Ying-feng, Lei; Xin, Wei; Ping-zhong, Wang; Chang-xing, Huang; Xue-fan, Bai; Ying, Zhang; Zhan-sheng, Jia

    2017-01-01

    Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS). Previous studies have identified interferon-induced transmembrane proteins (IFITMs) as an interferon-stimulated gene family. However, the role of IFITMs in HTNV infection is unclear. In this study, we observed that IFITM3 single nucleotide polymorphisms (SNP) rs12252 C allele and CC genotype associated with the disease severity and HTNV load in the plasma of HFRS patients. In vitro experiments showed that the truncated protein produced by the rs12252 C allele exhibited an impaired anti-HTNV activity. We also proved that IFITM3 was able to inhibit HTNV infection in both HUVEC and A549 cells by overexpression and RNAi assays, likely via a mechanism of inhibiting virus entry demonstrated by binding and entry assay. Localization of IFITM3 in late endosomes was also observed. In addition, we demonstrated that the transcription of IFITM3 is negatively regulated by an lncRNA negative regulator of interferon response (NRIR). Taken together, we conclude that IFITM3, negatively regulated by NRIR, inhibits HTNV infection, and its SNP rs12252 correlates with the plasma HTNV load and the disease severity of patients with HFRS. PMID:28096800

  6. Levels of Regulatory Proteins Associated With Cell Proliferation in Endometria From Untreated Patients Having Polycystic Ovarian Syndrome With and Without Endometrial Hyperplasia.

    PubMed

    Bacallao, K; Plaza-Parrochia, F; Cerda, A; Gabler, F; Romero, C; Vantman, D; Vega, M

    2016-02-01

    Polycystic ovarian syndrome (PCOS) has been associated with endometrial hyperplasia and cancer. The aim of this study was to establish whether the expression of proliferation regulatory proteins in the endometria of patients having PCOS, with or without hyperplasia, differs from control women. Control endometria (CE), patients having PCOS without and with endometrial hyperplasia (PCOSE and HPCOSE, respectively), and that of women with endometrial hyperplasia (HE) were used. The phosphorylated estrogen receptor form (pERα), similar to mother against decapentaplegic (SMAD) 2, SMAD3, and SMAD4, vascular epithelial growth factor (VEGF), and phosphorylated SMAD (pSMAD) 2 and pSMAD3 were detected by immunohistochemistry or Western blot. The results show higher levels of pERα in HE versus CE (P < .05), while higher VEGF levels were found in PCOSE and HE (P < .05) compared to CE; SMAD2 diminished in HE (P < .05) versus CE. Consequently, the higher levels of VEGF and pERα in PCOSE could represent early changes in the progression of PCOSE toward hyperplasia and cancer, whereas changes observed in SMAD proteins support the differential origin of the pathologies of HPCOSE and HE.

  7. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2.

    PubMed

    Li, Wenhui; Sui, Jianhua; Huang, I-Chueh; Kuhn, Jens H; Radoshitzky, Sheli R; Marasco, Wayne A; Choe, Hyeryun; Farzan, Michael

    2007-10-25

    The cellular receptor for human coronavirus NL63 (HCoV-NL63), a group I coronavirus, is angiotensin-converting enzyme2 (ACE2). ACE2 is also the receptor for the SARS coronavirus (SARS-CoV), a group II coronavirus. Here we describe the ability of HCoV-NL63 to utilize a number of ACE2 variants previously characterized as SARS-CoV receptors. Several ACE2 variants that reduced SARS-CoV S-protein association similarly reduced that of HCoV-NL63, whereas alteration of a number of solvent-exposed ACE2 residues did not interfere with binding by either S protein. One notable exception is ACE2 residue 354, at the boundary of the SARS-CoV binding site, whose alteration markedly inhibited utilization by the HCoV-NL63 but not SARS-CoV S proteins. In addition, the SARS-CoV S-protein receptor-binding domain inhibited entry mediated by the HCoV-NL63 S protein. These studies indicate that HCoV-NL63, like SARS-CoV, associates region of human ACE2 that includes a key loop formed by beta-strands 4 and 5.

  8. Dressler's Syndrome

    MedlinePlus

    ... syndrome may also be called postpericardiotomy syndrome, post-myocardial infarction syndrome and post-cardiac injury syndrome. With recent ... Dressler's syndrome. References LeWinter MM. Pericardial complications of myocardial infarction. http://www.uptodate.com/home. Accessed May 27, ...

  9. FAMMM syndrome: pathogenesis and management.

    PubMed

    Czajkowski, Rafał; Placek, Waldemar; Drewa, Gerard; Czajkowska, Aldona; Uchańska, Grazyna

    2004-02-01

    Familial atypical multiple mole melanoma (FAMMM) syndrome is an autosomal dominant disorder with variable incomplete penetrance of the clinical phenotypes. Pathogenesis of this syndrome has not been fully investigated. Across multiple studies, germline mutations in the INK4a antioncogene encoding p16 protein were found on average in approximately 40% of the FAMMM syndrome. Patients with the FAMMM syndrome are genetically loaded with an increased risk of developing melanoma and other malignant neoplasms, for example, a pancreatic cancer. Melanoma can develop from numerous atypical moles as well as de novo. A proper diagnosis of the syndrome and early application of prophylactics decreases the risk of neoplastic transformation of melanocytes.

  10. High-sensitivity C-reactive protein (hs-CRP) levels and its relationship with components of polycystic ovary syndrome in Indian adolescent women with polycystic ovary syndrome (PCOS).

    PubMed

    Ganie, Mohd Ashraf; Hassan, Saqib; Nisar, Sobia; Shamas, Nasir; Rashid, Aafia; Ahmed, Ishfaq; Douhat, Syed; Mudassar, Syed; Jan, Vicar M; Rashid, Fouzia

    2014-11-01

    C-reactive protein (CRP) is a risk marker for type 2 diabetes mellitus and cardiovascular diseases. In polycystic ovary syndrome (PCOS), limited data are available on high-sensitivity C-reactive protein (hs-CRP) levels and its relationship with components of PCOS especially in Indian women. The objective was to determine serum hs-CRP concentration in adolescent women with and without PCOS and to assess possible correlations of serum hs-CRP levels with components of PCOS in Indian women. One hundred and sixty women with PCOS and sixty non-PCOS women having normal menstrual cycles were included. Clinical assessment included anthropometry, Ferriman-Gallwey (FG) score and blood pressure (BP) measurement. Laboratory evaluation included estimation of T4, TSH, LH, FSH, total testosterone, prolactin, cortisol, 17OHP, hs-CRP, lipid profile, and insulin, and glucose after 2-h oral glucose tolerance test. Homeostasis Model Assessment Insulin resistance index (HOMA-IR) and Quantitative Insulin Sensitivity Check Index (QUICKI) and glucose intolerance was calculated. FG score, LH, FSH, total Testosterone, HOMA-IR and QUICKI were significantly different among women with or without PCOS (p < 0.01). Although hs-CRP levels showed a higher trend in women having PCOS, there was no significant difference between the groups (p > 0.05). A significant and positive correlation was found between hs-CRP and body mass index (BMI) (r = 0.308, p < 0.01) among PCOS group. The results in Indian adolescent women suggest that hs-CRP levels may not per se be associated with PCOS, rather can be related to fat mass in this subset of subjects.

  11. Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay.

    PubMed

    Yamamoto, Mizuki; Matsuyama, Shutoku; Li, Xiao; Takeda, Makoto; Kawaguchi, Yasushi; Inoue, Jun-Ichiro; Matsuda, Zene

    2016-11-01

    Middle East respiratory syndrome (MERS) is an emerging infectious disease associated with a relatively high mortality rate of approximately 40%. MERS is caused by MERS coronavirus (MERS-CoV) infection, and no specific drugs or vaccines are currently available to prevent MERS-CoV infection. MERS-CoV is an enveloped virus, and its envelope protein (S protein) mediates membrane fusion at the plasma membrane or endosomal membrane. Multiple proteolysis by host proteases, such as furin, transmembrane protease serine 2 (TMPRSS2), and cathepsins, causes the S protein to become fusion competent. TMPRSS2, which is localized to the plasma membrane, is a serine protease responsible for the proteolysis of S in the post-receptor-binding stage. Here, we developed a cell-based fusion assay for S in a TMPRSS2-dependent manner using cell lines expressing Renilla luciferase (RL)-based split reporter proteins. S was stably expressed in the effector cells, and the corresponding receptor for S, CD26, was stably coexpressed with TMPRSS2 in the target cells. Membrane fusion between these effector and target cells was quantitatively measured by determining the RL activity. The assay was optimized for a 384-well format, and nafamostat, a serine protease inhibitor, was identified as a potent inhibitor of S-mediated membrane fusion in a screening of about 1,000 drugs approved for use by the U.S. Food and Drug Administration. Nafamostat also blocked MERS-CoV infection in vitro Our assay has the potential to facilitate the discovery of new inhibitors of membrane fusion of MERS-CoV as well as other viruses that rely on the activity of TMPRSS2.

  12. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa

    PubMed Central

    Maddukuri, Leena; Ketkar, Amit; Eddy, Sarah; Zafar, Maroof K.; Eoff, Robert L.

    2014-01-01

    Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo-dG bypass activity of hpol κ in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC:8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol κ-catalyzed dCMP insertion opposite 8-oxo-dG ∼10-fold and extension from dC:8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (kpol), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol κ were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol κ was observed in human cells treated with hydrogen peroxide. Thus, WRN limits the error-prone bypass of 8-oxo-dG by hpol κ, which could influence the sensitivity to oxidative damage that has previously been observed for Werner's syndrome cells. PMID:25294835

  13. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa.

    PubMed

    Maddukuri, Leena; Ketkar, Amit; Eddy, Sarah; Zafar, Maroof K; Eoff, Robert L

    2014-10-29

    Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo-dG bypass activity of hpol κ in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC:8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol κ-catalyzed dCMP insertion opposite 8-oxo-dG ∼10-fold and extension from dC:8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (kpol), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol κ were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol κ was observed in human cells treated with hydrogen peroxide. Thus, WRN limits the error-prone bypass of 8-oxo-dG by hpol κ, which could influence the sensitivity to oxidative damage that has previously been observed for Werner's syndrome cells.

  14. Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR and SREBP signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male and female rats (age 21 days) were fed AIN-93G diets made with casein, soy protein isolate (SPI+), isoflavone reduced SPI+ (SPI-), or casein plus purified genistein or daidzein. After 2 weeks, peroxisome proliferator activated receptor (PPAR) alpha-regulated genes involved in fatty acid degrada...

  15. Lower vegetable protein intake and higher dietary acid load associated with lower carbohydrate intake are risk factors for metabolic syndrome in patients with type 2 diabetes: Post-hoc analysis of a cross-sectional study

    PubMed Central

    Iwase, Hiroya; Tanaka, Muhei; Kobayashi, Yukiko; Wada, Sayori; Kuwahata, Masashi; Kido, Yasuhiro; Hamaguchi, Masahide; Asano, Mai; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto; Fukui, Michiaki

    2015-01-01

    Aims/Introduction A low-carbohydrate diet based on animal sources is associated with higher all-cause mortality, whereas a vegetable-based low-carbohydrate diet is associated with lower cardiovascular disease mortality. It has been suggested that acid/base imbalance might play an important role in some cardiometabolic abnormalities. The aims of the present study were to evaluate whether carbohydrate intake is associated with quality of dietary protein and acid load, and whether these are related to metabolic syndrome in patients with type 2 diabetes. Materials and Methods The present cross-sectional study involved 149 patients with type 2 diabetes. Dietary intake was assessed using a validated self-administered diet history questionnaire. Dietary acid load was assessed by potential renal acid load and net endogenous acid production. Results Mean daily total energy intake, carbohydrate intake, animal protein intake and vegetable protein intake were 1821.5 kcal, 248.8 g, 36.1 g and 31.1 g, respectively. Carbohydrate energy/total energy was negatively correlated with animal protein energy/total energy, potential renal acid load or net endogenous acid production score, and was positively correlated with vegetable protein energy/total energy. Logistic regression analyses showed that the subgroup of patients with a lower vegetable protein energy/total energy or higher potential renal acid load or net endogenous acid production score was significantly associated with the prevalence of metabolic syndrome. Conclusions The present study showed that carbohydrate intake was associated with the quality of dietary protein and dietary acid load. Furthermore, decreased vegetable protein intake and increased dietary acid load were associated with the prevalence of metabolic syndrome. PMID:26221526

  16. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein

    PubMed Central

    Sainz, Bruno; Mossel, Eric C.; Gallaher, William R.; Wimley, William C.; Peters, C.J.; Wilson, Russell B.; Garry, Robert F.

    2008-01-01

    Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the cause of an atypical pneumonia that affected Asia, North America and Europe in 2002–2003. The viral spike (S) glycoprotein is responsible for mediating receptor binding and membrane fusion. Recent studies have proposed that the carboxyl terminal portion (S2 subunit) of the S protein is a class I viral fusion protein. The Wimley and White interfacial hydrophobicity scale was used to identify regions within the CoV S2 subunit that may preferentially associate with lipid membranes with the premise that peptides analogous to these regions may function as inhibitors of viral infectivity. Five regions of high interfacial hydrophobicity spanning the length of the S2 subunit of SARS-CoV and murine hepatitis virus (MHV) were identified. Peptides analogous to regions of the N-terminus or the pre-transmembrane domain of the S2 subunit inhibited SARS-CoV plaque formation by 40–70% at concentrations of 15–30 μM. Interestingly, peptides analogous to the SARS-CoV or MHV loop region inhibited viral plaque formation by >80% at similar concentrations. The observed effects were dose-dependent (IC50 values of 2–4 μM) and not a result of peptide-mediated cell cytotoxicity. The antiviral activity of the CoV peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions. PMID:16616792

  17. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus.

    PubMed

    Gao, Jing; Lu, Guangwen; Qi, Jianxun; Li, Yan; Wu, Ying; Deng, Yao; Geng, Heyuan; Li, Hongbin; Wang, Qihui; Xiao, Haixia; Tan, Wenjie; Yan, Jinghua; Gao, George F

    2013-12-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) recently emerged as a severe worldwide public health concern. The virus is highly pathogenic, manifesting in infected patients with an approximately 50% fatality rate. It is known that the surface spike (S) proteins of coronaviruses mediate receptor recognition and membrane fusion, thereby playing an indispensable role in initiating infection. In this process, heptad repeats 1 and 2 (HR1 and HR2) of the S protein assemble into a complex called the fusion core, which represents a key membrane fusion architecture. To date, however, the MERS-CoV fusion core remains uncharacterized. In this study, we performed a series of biochemical and biophysical analyses characterizing the HR1/HR2 complexes of this novel virus. The HR sequences were variably truncated and then connected with a flexible amino acid linker. In each case, the recombinant protein automatically assembled into a trimer in solution, displaying a typical α-helical structure. One of these trimers was successfully crystallized, and its structure was solved at a resolution of 1.9 Å. A canonical 6-helix bundle, like those reported for other coronaviruses, was revealed, with three HR1 helices forming the central coiled-coil core and three HR2 chains surrounding the core in the HR1 side grooves. This demonstrates that MERS-CoV utilizes a mechanism similar to those of other class I enveloped viruses for membrane fusion. With this notion, we further identified an HR2-based peptide that could potently inhibit MERS-CoV fusion and entry by using a pseudotyped-virus system. These results lay the groundwork for future inhibitory peptidic drug design.

  18. Anti-melanization mechanism of the white spot syndrome viral protein, WSSV453, via interaction with shrimp proPO-activating enzyme, PmproPPAE2.

    PubMed

    Sutthangkul, Jantiwan-; Amparyup, Piti-; Eum, Jai Hoon; Strand, Michael R; Tassanakajon, Anchalee

    2017-01-28

    Inhibition of the host melanization reaction, activated by the prophenoloxidase activating (proPO) system, is one of the crucial evasion strategies of pathogens. Recently, the shrimp pathogen, white spot syndrome virus (WSSV), was found to inhibit melanization in the shrimp, Penaeus monodon. The viral protein WSSV453 was previously shown to interact with PO-activating enzyme 2 (PmPPAE2) and reported to be involved in suppressing the shrimp melanization response after WSSV infection. Here, we characterized how WSSV453 inhibits melanization. WSSV453 is a non-structural viral protein, which was first detected in shrimp hemocytes at 6 hours post infection (hpi) by WSSV and in shrimp plasma at 24 hpi. We produced recombinant proteins for three components of the P. monodon, proPO system: PmproPPAE2, PmproPO1 and PmproPO2. Functional assays showed that active PmPPAE2 processed PmproPO1 and 2 to produce functional PO. Incubation of WSSV453 with PmproPPAE2 dose-dependently reduced PmPPAE2 activity toward PmPO1 or PmPO2. In contrast, WSSV453 had no effect on activated PmPPAE2. The addition of active PmPPAE2 to WSSV-infected shrimp plasma at day 2 post-infection also rescued PO activity. Taken together, these results indicate that the anti-melanization activity of WSSV is due to WSSV453, which interacts with PmproPPAE2 and interferes its activation to active PmPPAE2.

  19. Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli.

    PubMed

    Pitera, Jolanta E; Scambler, Peter J; Woolf, Adrian S

    2008-12-15

    FRAS1 is mutated in some individuals with Fraser syndrome (FS) and the encoded protein is expressed in embryonic epidermal cells, localizing in their basement membrane (BM). Syndactyly and cryptophthalmos in FS are sequelae of skin fragility but the bases for associated kidney malformations are unclear. We demonstrate that Fras1 is expressed in the branching ureteric bud (UB), and that renal agenesis occurs in homozygous Fras1 null mutant blebbed (bl) mice on a C57BL6J background. In vivo, the bl/bl bud fails to invade metanephric mesenchyme which undergoes involution, events replicated in organ culture. The expression of glial cell line-derived neurotrophic factor and growth-differentiation factor 11 was defective in bl/bl renal primordia in vivo, whereas, in culture, the addition of either growth factor restored bud invasion into the mesenchyme. Mutant primordia also showed deficient expression of Hoxd11 and Six2 transcription factors, whereas the activity of bone morphogenetic protein 4, an anti-branching molecule, was upregulated. In wild types, Fras1 was also expressed by nascent nephrons. Foetal glomerular podocytes expressed Fras1 transcripts and Fras1 immunolocalized in a glomerular BM-like pattern. On a mixed background, bl mutants, and also compound mutants for bl and my, another bleb strain, sometimes survive into adulthood. These mice have two kidneys, which contain subsets of glomeruli with perturbed nephrin, podocin, integrin alpha3 and fibronectin expression. Thus, Fras1 protein coats branching UB epithelia and is strikingly upregulated in the nephron lineage after mesenchymal/epithelial transition. Fras1 deficiency causes defective interactions between the bud and mesenchyme, correlating with disturbed expression of key nephrogenic molecules. Furthermore, Fras1 may also be required for the formation of normal glomeruli.

  20. Nonstructural protein 1{alpha} subunit-based inhibition of NF-{kappa}B activation and suppression of interferon-{beta} production by porcine reproductive and respiratory syndrome virus

    SciTech Connect

    Song Cheng; Krell, Peter; Yoo, Dongwan

    2010-11-25

    Induction of type I interferon (IFN-{alpha}/{beta}) is an early antiviral response of the host, and porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to downregulate the IFN response during infection in cells and pigs. We report that the PRRSV nonstructural protein 1{alpha} (Nsp1{alpha}) subunit of Nsp1 is a nuclear-cytoplasmic protein distributed to the nucleus and contains a strong suppressive activity for IFN-{beta} production that is mediated through the retinoic acid-inducible gene I (RIG-I) signaling pathway. Nsp1{alpha} suppressed the activation of nuclear factor (NF)-{kappa}B when stimulated with dsRNA or tumor necrosis factor (TNF)-{alpha}, and NF-{kappa}B suppression was RIG-I-dependent. The suppression of NF-{kappa}B activation was associated with the poor production of IFN-{beta} during PRRSV infection. The C-terminal 14 amino acids of the Nsp1{alpha} subunit were critical in maintaining immunosuppressive activity of Nsp1{alpha} for both IFN-{beta} and NF-{kappa}B, suggesting that the newly identified zinc finger configuration comprising of Met180 may be crucial for inhibitory activities. Nsp1{alpha} inhibited I{kappa}B phosphorylation and as a consequence NF-{kappa}B translocation to the nucleus was blocked, leading to the inhibition of NF-{kappa}B stimulated gene expression. Our results suggest that PRRSV Nsp1{alpha} is a multifunctional nuclear protein participating in the modulation of the host IFN system.

  1. Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells

    SciTech Connect

    Kim, Oekyung; Sun Yan; Lai, Frances W.; Song Cheng; Yoo, Dongwan

    2010-07-05

    Porcine reproductive and respiratory syndrome (PRRS) is an emerged disease of swine characterized by negligible response of type I IFNs and viral persistence. We show that the PRRSV non-structural protein 1 (Nsp1) is the viral component responsible for modulation of IFN response. Nsp1 blocked dsRNA-induced IRF3 and IFN promoter activities. Nsp1 did not block phosphorylation and nuclear translocation of IRF3 but inhibited IRF3 association with CREB-binding protein (CBP) in the nucleus. While IRF3 was stable, CBP was degraded, and CBP degradation was proteasome-dependent, suggesting that CBP degradation is not due to the protease activity of Nsp1 but an intermediary is involved. Our data suggest that the Nsp1-mediated CBP degradation inhibits the recruitment of CBP for enhanceosome assembly, leading to the block of IFN response. CBP degradation is a novel strategy for viral evasion from the host response, and Nsp1 may form a new class of viral antagonists for IFN modulation.

  2. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway.

    PubMed

    Shoham, Nitza G; Centola, Michael; Mansfield, Elizabeth; Hull, Keith M; Wood, Geryl; Wise, Carol A; Kastner, Daniel L

    2003-11-11

    Pyrin, the familial Mediterranean fever protein, is found in association with the cytoskeleton in myeloid/monocytic cells and modulates IL-1beta processing, NF-kappaB activation, and apoptosis. These effects are mediated in part through cognate interactions with the adaptor protein ASC, which shares an N-terminal motif with pyrin. We sought additi