Sample records for aleksandrov jaanus purga

  1. On polars of mixed projection bodies

    NASA Astrophysics Data System (ADS)

    Zhao, Chang-Jian; Leng, Gang-Song

    2006-04-01

    Recently, Lutwak established general Minkowski inequality, Brunn-Minkowski inequality and Aleksandrov-Fenchel inequality for mixed projection bodies. In this paper, following Lutwak, we established their polar forms. As applications, we prove some interrelated results.

  2. Literacy Update. Volume 19, Number 1

    ERIC Educational Resources Information Center

    Gallagher, Jan, Ed.

    2009-01-01

    This newsletter, published five times a year, features articles on issues of concern to adult, family, and youth literacy practitioners, as well as recommended resources, announcements, and teaching strategies. This issue includes: (1) Literacy Zones Fight Poverty and Close Education Gaps (Robert Purga); (2) Staying at the Table: Building a…

  3. Bibliography on Cold Regions Science and Technology. Volume 41. Part 2

    DTIC Science & Technology

    1987-12-01

    Aletschgletscher [1984, p.9-25, eng, 41-622 Aleksandrov, B.M. Multivariate regression analysis of the process of frozen peat dehydration [1986. p.15-19...freezing of high- way bridge decks [1977. 5p., eng] 41-4604 Britton, K.B. Low temperature effects on sorption. hydrolysis ...snowy season in 1986 at Sapporo [1986. p.17-23. jpn) 41-3503 Ishikawa, S. Experimental decomposition of

  4. Chronology of Soviet Dissidence: January 1970 through December 1982,

    DTIC Science & Technology

    1983-05-17

    Dymshits and Eduard Kuznetsov . The other 9 defendants received prison terms ranging from 4 to 15 years. 17 Pravda article signed I. Aleksandrov linked...Solzhenitsyn with Valeriy Tarsis, Anatoliy Kuznetsov , A. Amalrik, and Vladimir Bukovskiy and labeled him a ’spiritual internal emigr6, alien and hostile to...about the transmission abroad of the prison diary of E. Kuznetsov . December 11 US House of Representatives passed trade bill denying USSR most-favored

  5. 120th anniversary of the birth of Sergei Ivanovich Vavilov (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 30 March 2011)

    NASA Astrophysics Data System (ADS)

    2011-12-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) dedicated to the 120th anniversary of the birth of Sergei Ivanovich Vavilov was held in the Conference Hall of the P N Lebedev Physical Institute, RAS, on 30 March 2011. The following reports were put on the session's agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Masalov A V (P N Lebedev Physical Institute, RAS, Moscow) "S I Vavilov and nonlinear optics"; (2) Basiev T T (Laser Materials and Technology Research Center, A M Prokhorov General Physics Institute, RAS, Moscow) "Luminescent nanophotonics and high-power lasers"; (3) Vitukhnovsky A G (P N Lebedev Physical Institute, RAS, Moscow) "Advances in luminescent light sources and displays"; (4) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Sergei Ivanovich Vavilov and the special theory of relativity"; (5) Bolotovsky B M (P N Lebedev Physical Institute, RAS, Moscow) "Vavilov-Cherenkov effect"; (6) Vizgin V P (S I Vavilov Institute of the History of Natural Scienses and Technology, RAS, Moscow) "Sergei Ivanovich Vavilov as a historian of science"; (7) Ginzburg A S (Knowledge Society) "Academician S I Vavilov — a devotee of the enlightenment and the first president of the Knowledge Society of the USSR". The papers written on the basis of reports 1-4 and 6 are given below. The main contents of report 5 is reflected in the paper "Vavilov-Cherenkov radiation: its discovery and application" [Usp. Fiz. Nauk 179 1161 (2009); Phys. Usp. 52 1099 (2009)] published earlier by B M Bolotovsky. • S I Vavilov and nonlinear optics, A V Masalov, Z A Chizhikova Physics-Uspekhi, 2011, Volume 54, Number 12, Pages 1257-1262 • Luminescent nanophotonics, fluoride laser ceramics, and crystals, T T Basiev, I T Basieva, M E Doroshenko Physics-Uspekhi, 2011, Volume 54, Number 12, Pages 1262-1268 • Advances in light sources and displays, A G Vitukhnovsky Physics

  6. International Program and Local Organizing Committees

    NASA Astrophysics Data System (ADS)

    2012-12-01

    International Program Committee Dionisio Bermejo (Spain) Roman Ciurylo (Poland) Elisabeth Dalimier (France) Alexander Devdariani (Russia) Milan S Dimitrijevic (Serbia) Robert Gamache (USA) Marco A Gigosos (Spain) Motoshi Goto (Japan) Magnus Gustafsson (Sweden) Jean-Michel Hartmann (France) Carlos Iglesias (USA) John Kielkopf (USA) John C Lewis (Canada) Valery Lisitsa (Russia) Eugene Oks (USA) Christian G Parigger (USA) Gillian Peach (UK) Adriana Predoi-Cross (Canada) Roland Stamm (Germany) Local Organizing Committee Nikolay G Skvortsov (Chair, St Petersburg State University) Evgenii B Aleksandrov (Ioffe Physico-Technical Institute, St Petersburg) Vadim A Alekseev (Scientific Secretary, St Petersburg State University) Sergey F Boureiko (St.Petersburg State University) Yury N Gnedin (Pulkovo Observatory, St Petersburg) Alexander Z Devdariani (Deputy Chair, St Petersburg State University) Alexander P Kouzov (Deputy Chair, St Petersburg State University) Nikolay A Timofeev (St Petersburg State University)

  7. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula

    NASA Astrophysics Data System (ADS)

    Mavrodiev, S. Cht.; Deliyergiyev, M. A.

    We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numerically generalized semi-empirical mass formula of Bethe and von Weizsäcker. It was solved in a step-by-step way based on the AME2012 nuclear database. The established parametrization describes the measured nuclear masses of 2564 isotopes with a maximum deviation less than 2.6MeV, starting from the number of protons and number of neutrons equal to 1. The explicit form of unknown functions in the generalized mass formula was discovered in a step-by-step way using the modified least χ2 procedure, that realized in the algorithms which were developed by Lubomir Aleksandrov to solve the nonlinear systems of equations via the Gauss-Newton method, lets us to choose the better one between two functions with same χ2. In the obtained generalized model, the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. The obtained results were compared with the predictions of other models.

  8. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50

  9. Direct Binding of the Corrector VX-809 to Human CFTR NBD1: Evidence of an Allosteric Coupling between the Binding Site and the NBD1:CL4 Interface.

    PubMed

    Hudson, Rhea P; Dawson, Jennifer E; Chong, P Andrew; Yang, Zhengrong; Millen, Linda; Thomas, Philip J; Brouillette, Christie G; Forman-Kay, Julie D

    2017-08-01

    Understanding the mechanism of action of modulator compounds for the cystic fibrosis transmembrane conductance regulator (CFTR) is key for the optimization of therapeutics as well as obtaining insights into the molecular mechanisms of CFTR function. We demonstrate the direct binding of VX-809 to the first nucleotide-binding domain (NBD1) of human CFTR. Disruption of the interaction between C-terminal helices and the NBD1 core upon VX-809 binding is observed from chemical shift changes in the NMR spectra of residues in the helices and on the surface of β -strands S3, S9, and S10. Binding to VX-809 leads to a significant negative shift in NBD1 thermal melting temperature (T m ), pointing to direct VX-809 interaction shifting the NBD1 conformational equilibrium. An inter-residue correlation analysis of the chemical shift changes provides evidence of allosteric coupling between the direct binding site and the NBD1:CL4 interface, thus enabling effects on the interface in the absence of direct binding in that location. These NMR binding data and the negative T m shifts are very similar to those previously reported by us for binding of the dual corrector-potentiator CFFT-001 to NBD1 (Hudson et al., 2012), suggesting that the two compounds may share some aspects of their mechanisms of action. Although previous studies have shown an important role for VX-809 in modulating the conformation of the first membrane spanning domain (Aleksandrov et al., 2012; Ren et al., 2013), this additional mode of VX-809 binding provides insight into conformational dynamics and allostery within CFTR. Copyright © 2017 by The Author(s).

  10. Genesis, evolution, and catastrophic burying of the Ryshkovo paleosol of the Mikulino Interglacial (MIS 5e)

    NASA Astrophysics Data System (ADS)

    Sycheva, S. A.; Sedov, S. N.; Bronnikova, M. A.; Targulian, V. O.; Solleiro-Rebolledo, E.

    2017-09-01

    The results of a hierarchical morphogenetic, physicochemical, and mineralogical study of the Ryshkovo full-profile texture-differentiated paleosol of the Mikulino Interglacial from the section at Aleksandrov quarry in Kursk oblast are discussed. The correlation analysis of the stratigraphy of this section with global geological records made it possible to determine the position of the Ryshkovo paleosol in the chronostratigraphic system of the Late Pleistocene and to attribute it to stage MIS 5e; the duration of pedogenesis for this paleosol was no more than 12-15 ka. The results of the study indicate that the Ryshkovo paleosol is close in its properties to the Holocene soddy-podzolic soils of the East European Plain. No direct evidences in favor of the former interpretation of this paleosol as a lessivated soil genetically close to Luvisols of nemoral broadleaved forest of Central Europe have been found. The difference between the paleosol of the Mikulino Interglacial and the modern soddy-podzolic soils is mainly related to the distribution of clay coatings. In the upper part of the illuvial horizon of Mikulino paleosol, clay coatings are few in number, and typical tongues of podzolized (albic) material are absent in the profile. At the same time, silty coatings (skeletans) are abundant even in the lower part of the illuvial horizon. In general, the Mikulino paleosol is characterized by a smaller diversity of clay pedofeatures. These differences might be related to less contrasting fluctuations of the environmental conditions in the second half of the Mikulino Interglacial, to the periodical renewal of the eluvial part of Mikulino paleosol by erosional and accumulative processes, and to the absence of anthropogenic impacts on the soil during the Mikulino Interglacial. The burying of the Ryshkovo paleosol took place due to the intense development of erosional processes induced by the contrasting climatic events at the end of the interglacial period accompanied by

  11. PREFACE: 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (RJUS TeraTech - 2013)

    NASA Astrophysics Data System (ADS)

    Karasik, Valeriy; Ryzhii, Viktor; Yurchenko, Stanislav

    2014-03-01

    The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) Bauman Moscow State Technical University Moscow, Russia, 3-6 June, 2013 The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) was held in Bauman Moscow State Technical University on 3-6 June 2013 and was devoted to modern problems of terahertz optical technologies. RJUS TeraTech 2013 was organized by Bauman Moscow State Technical University in cooperation with Tohoku University (Sendai, Japan) and University of Buffalo (The State University of New York, USA). The Symposium was supported by Bauman Moscow State Technical University (Moscow, Russia) and Russian Foundation for Basic Research (grant number 13-08-06100-g). RJUS TeraTech - 2013 became a foundation for sharing and discussing modern and promising achievements in fundamental and applied problems of terahertz optical technologies, devices based on grapheme and grapheme strictures, condensed matter of different nature. Among participants of RJUS TeraTech - 2013, there were more than 100 researchers and students from different countries. This volume contains proceedings of the 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies'. Valeriy Karasik, Viktor Ryzhii and Stanislav Yurchenko Bauman Moscow State Technical University Symposium chair Anatoliy A Aleksandrov, Rector of BMSTU Symposium co-chair Valeriy E Karasik, Head of the Research and Educational Center 'PHOTONICS AND INFRARED TECHNOLOGY' (Russia) Invited Speakers Taiichi Otsuji, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Akira Satou, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Michael Shur, Electrical, Computer and System Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, NY, USA Natasha

  12. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact