Science.gov

Sample records for alekseyev sergey babichenko

  1. [Development of clinical radiology in the Military field therapy Department of the Military Medical Academy (the 90th anniversary of the birth of G. I. Alekseyev)].

    PubMed

    Khalimov, Iu Sh; Vlasenko, A N; Matveev, S Iu

    2012-08-01

    On August 18, 2012, 90 years have passed since the birth of the former head of the Military field therapy Department of The Military-Medical Academy named after S. M. Kirov--the main radiologist of the Ministry of Defence of Russian Federation, the corresponding member of the Soviet Union Academy of Medical Science and the Russian Academy of Medical Science, the major- general of a medical service G. I. Alekseyev, who had been working in the department since its foundation till the last day of his life. Being the head of the department for twelve years, G. I. Alekseyev made a considerable contribution to the formation and development of native military radiology, training of medical and scientific skilled specialists. Professor G. I. Alekseyev's scientific ideas and views in the sphere of radiology were realized and developed in further educational, research and medical work of the department. Nowadays the staff of the Military field therapy Department remembers G. I. Alekseyev with special gratitude and appreciation and successfully realizes his ideas and plans in work.

  2. Sergey gen. n., a new doryctine genus from temperate forests of Mexico and Cuba (Hymenoptera, Braconidae).

    PubMed

    Martínez, Juan José; Lázaro, Rubi Nelsi Meza; Pedraza-Lara, Carlos; Zaldívar-Riverón, Alejandro

    2016-01-01

    The new doryctine genus Sergey gen. n. is described with four new species (Sergey cubaensis Zaldívar-Riverón & Martínez, sp. n., Sergey coahuilensis Zaldívar-Riverón & Martínez, sp. n., Sergey tzeltal Martínez & Zalídivar-Riverón, sp. n., Sergey tzotzil Martínez & Zalídivar-Riverón, sp. n.) from temperate forests of Mexico and Cuba. Similar to many other doryctine taxa, the new genus has a considerably elongated, petiolate basal sternal plate of the first metasomal tergite, although it can be distinguished from these by having the mesoscutum sharply declivous anteriorly with sharp anterolateral edges. The described species have been characterised molecularly based on two mitochondrial (COI, cyt b) and one nuclear (28S) gene markers. Based on the mitochondrial gene genealogies reconstructed, the evidence suggests the existence of incomplete lineage sorting or hybridization in the populations from Chiapas and Oaxaca assigned to Sergey tzeltal sp. n. PMID:27408539

  3. Sergey gen. n., a new doryctine genus from temperate forests of Mexico and Cuba (Hymenoptera, Braconidae).

    PubMed

    Martínez, Juan José; Lázaro, Rubi Nelsi Meza; Pedraza-Lara, Carlos; Zaldívar-Riverón, Alejandro

    2016-01-01

    The new doryctine genus Sergey gen. n. is described with four new species (Sergey cubaensis Zaldívar-Riverón & Martínez, sp. n., Sergey coahuilensis Zaldívar-Riverón & Martínez, sp. n., Sergey tzeltal Martínez & Zalídivar-Riverón, sp. n., Sergey tzotzil Martínez & Zalídivar-Riverón, sp. n.) from temperate forests of Mexico and Cuba. Similar to many other doryctine taxa, the new genus has a considerably elongated, petiolate basal sternal plate of the first metasomal tergite, although it can be distinguished from these by having the mesoscutum sharply declivous anteriorly with sharp anterolateral edges. The described species have been characterised molecularly based on two mitochondrial (COI, cyt b) and one nuclear (28S) gene markers. Based on the mitochondrial gene genealogies reconstructed, the evidence suggests the existence of incomplete lineage sorting or hybridization in the populations from Chiapas and Oaxaca assigned to Sergey tzeltal sp. n.

  4. Sergey gen. n., a new doryctine genus from temperate forests of Mexico and Cuba (Hymenoptera, Braconidae)

    PubMed Central

    Martínez, Juan José; Lázaro, Rubi Nelsi Meza; Pedraza-Lara, Carlos; Zaldívar-Riverón, Alejandro

    2016-01-01

    Abstract The new doryctine genus Sergey gen. n. is described with four new species (Sergey cubaensis Zaldívar-Riverón & Martínez, sp. n., Sergey coahuilensis Zaldívar-Riverón & Martínez, sp. n., Sergey tzeltal Martínez & Zalídivar-Riverón, sp. n., Sergey tzotzil Martínez & Zalídivar-Riverón, sp. n.) from temperate forests of Mexico and Cuba. Similar to many other doryctine taxa, the new genus has a considerably elongated, petiolate basal sternal plate of the first metasomal tergite, although it can be distinguished from these by having the mesoscutum sharply declivous anteriorly with sharp anterolateral edges. The described species have been characterised molecularly based on two mitochondrial (COI, cyt b) and one nuclear (28S) gene markers. Based on the mitochondrial gene genealogies reconstructed, the evidence suggests the existence of incomplete lineage sorting or hybridization in the populations from Chiapas and Oaxaca assigned to Sergey tzeltal sp. n. PMID:27408539

  5. Bitz, Ginoux, Jacobson, Nizkorodov, and Yang Receive 2013 Atmospheric Sciences Ascent Awards: Citation for Sergey Nizkorodov

    NASA Astrophysics Data System (ADS)

    Webster, Peter J.

    2014-07-01

    The Atmospheric Sciences section of AGU awards one of the five Ascent Awards to Professor Sergey Nizkorodov of the Department of Chemistry at the University of California, Irvine (UCI) for elucidating at the molecular level the formation, growth, and reactions of organic molecules in the atmosphere.

  6. Probing the Source of Explosive Volcanic Eruptions (Sergey Soloviev Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Eichelberger, John C.

    2015-04-01

    International Continental Scientific Drilling Program (ICDP) would continuously core through the margin of the magma body, accompanied by state-of-the-art geophysics, geochemical analyses and 3-D mass/heat transport modeling. Coring of molten rock has been conducted with success in lava lakes. Gradients in phase assemblage and composition will provide definitive tests of models of mass/heat transfer and magma evolution. By knowing 'the answer', techniques for finding magma will likewise be tested, making Krafla an international magma laboratory. In fact, Krafla may resemble the state of neighboring Askja Caldera system prior its 1875 eruption, with hidden rhyolite being brewed in a basalt-fired caldera crucible. Additionally, the observed high permeability and sustained power output from the magma body's margin implies self-sustained thermal fracturing, i.e. an 'Enhanced Geothermal System' an order of magnitude more powerful than conventional geothermal. The cost should be balanced against the higher cost of ignorance. For tsunamis, Sergey Soloviev showed there is no substitute for direct measurements at depth, despite technical and economic obstacles. He also led the way in Russian - American cooperation on natural hazards, thereby mitigating the risk of the ultimate hazard, of humans to each other.

  7. Korolyov [Koroljow], Sergej [Sergey, Sergei] Pavlovich [Pawlowitsch] (1907-66)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Rocket designer, founder of the Soviet space program, born in Zhitomir, Russia. After pioneering experiments on rockets in Moscow, Korolyov fell foul of Stalin's pogroms but was recalled from the stalags to make liquid-fuel rocket boosters for military aircraft. After the war he took over captured German V-2 missiles, and developed the Soviet Union's first intercontinental ballistic missile. He d...

  8. Disasters, Scientists and Society: The Quest for Wisdom (Sergey Soloviev Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Okal, Emile A.

    2013-04-01

    The horror which accompanied the significant natural disasters of the past decade (major earthquakes, tsunamis, hurricanes...), many of which exposing inadequate preparation and/or response, has revived our quest for improved mitigation, or in simple words, enhanced wisdom, to confront natural hazards, both in scientific and societal terms. The Sumatra and Tohoku megathrust earthquakes have led to the abandonment of the once-popular concept of a "maximum" earthquake predictable on the basis of simple tectonic parameters and the latter has dealt a serious blow to seismic scaling laws which had been the cornerstone of probabilistic hazard estimations. Similarly, large hurricanes such as Katrina and Sandy have featured a significant diversity poorly captured by the single concept of "category". On the other hand, substantial theoretical progress has been made with the development of real-time tsunami warning algorithms based on the seismic W phase. An examination of mitigation aspects and operational procedures during the recent disasters exposes very significant shortcomings in the relationship between Scientists and decision-makers. We will review fields as diverse as the proper evaluation of historical databases, the correct real-time assessment of major earthquakes, the adequate timing of an all-clear, and the role, rights and duties of hazard scientists in their interaction with Society. As the ultimate goal of mitigation, warning and evacuation from many disasters remains the saving of human lives, many recent stories having emphasized the value of education, which casts a substantial ray of hope and enlightenment in the never-ending pursuit of wisdom in the face of future disasters, a noble endeavor to which Sergei Leonidovich Solov'ev had dedicated his life.

  9. When tsunamology and geophysics clash, throw geophysics in the trash (Sergey Soloviev Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Synolakis, Costas

    2014-05-01

    Tsunami science has evolved differently from research on other extreme natural hazards, primarily because of the unavailability, until recently, of instrumental recordings of tsunamis in the open ocean. Recordings and observations have catapulted tsunamology into a rapidly evolving high-interdisciplinary field spanning geology, geophysics, oceanography, coastal engineering, hydrodynamics and social science. I will discuss progress in tsunami geology and geophysics in the past thirty years, and describe the evolution of numerical codes and analytical results. I will describe field observations which, while counter-intuitive at first, they later helped explain complex dynamics and assisted us in improving tsunami hazard mitigation. While the grand science synthesis remains elusive, we are converging to where we can reduce tsunami-related fatalities and injuries by about one half in the next few years.

  10. Earthquake-induced landslides from horseback surveys through GIS analyses (Sergey Soloviev Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Keefer, David K.

    2010-05-01

    Landslides are among the most widespread of earthquake effects. In great earthquakes, landslides can number in the tens of thousands and occur hundreds of kilometers from the causative fault rupture. They can cause significant changes in the landscape and, by such processes as damming rivers, can present hazards to life and property that persist long after the earthquake shaking has stopped. They have killed thousands of people in recent earthquakes, and they are among the leading causes of earthquake-related economic losses. Thus understanding and forecasting their occurrence is important in both scientific and practical terms. The empirical association between earthquakes and landslides has been noted for thousands of years, and the study of earthquake-induced landslides has progressed from anecdotal accounts, through horseback surveys, to mapping from aerial photography, and most recently to analysis using Geographic Information Systems (GIS). Likewise, analytical studies of slope stability during earthquakes have progressed from pseudo-static models, where earthquake shaking is treated as a constant additional force, to a variety of dynamic models that account for both the transient characteristics of input ground-motion and the variety of potential slope-failure mechanisms. These developments have both shown and responded to the complex nature of landslides triggered by earthquakes. Such landslides can be classified in a number of ways, but one widely used classification system separates them into 3 main categories and 14 different individual types. Each type of landslide occurs in particular geologic environments and involves particular failure mechanisms, such as tensile cracking, shear failure, or liquefaction. These landslides also vary greatly in their size, velocity, and distance of travel; the largest and most mobile involve tens of millions of cubic maters of material, and travel distances of several kilometers at velocities that can exceed 100 km/hr. Accurately characterizing earthquake-induced landslides thus involves documenting many parameters during immediate post-earthquake investigations and then developing analyses to treat a wide variety of mechanisms and conditions. The generation of research up to the present has greatly increased our understanding of earthquake-induced landslides. On a regional scale we now have developed general relations between the magnitude of the triggering earthquake and several measures of landslide abundance and distribution, including numbers of landslides, areas affected by landslide occurrence, and maximum distances of landslides from the earthquake epicenters and fault ruptures. We have similar general relations between landslide occurrence and seismic intensities. We also have several empirical and analytical methods to forecast where landslides are most likely to occur in future earthquake scenarios. On the scale of individual landslides, we know much about the types of landslides specifically triggered by earthquakes and the types of slopes that produce each. We have analytical models of the main failure mechanisms, and can carry out analyses to determine whether particular slopes are likely to fail given specified future earthquake shaking. However, we still have much to learn. New remote sensing capabilities enable us to map the landslides triggered by an earthquake more completely, and GIS analyses enable us to develop much more detailed and specific relations between seismic and geologic parameters, on the one hand, and landslide occurrence on the other. Additional development and application in these areas, along with the continuing development of analytical techniques to characterize initiation and, especially, movement of landslides can be expected in the next generation of research. Such research should lead to a more detailed and specific understanding of where earthquake-induced landslides will occur and what their characteristics will be. Ultimately, this research should also lead to lessening the loss of life and economic damage associated with future earthquakes.

  11. Meeting the Challenge of Earthquake Risk Globalisation: Towards the Global Earthquake Model GEM (Sergey Soloviev Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Zschau, J.

    2009-04-01

    Earthquake risk, like natural risks in general, has become a highly dynamic and globally interdependent phenomenon. Due to the "urban explosion" in the Third World, an increasingly complex cross linking of critical infrastructure and lifelines in the industrial nations and a growing globalisation of the world's economies, we are presently facing a dramatic increase of our society's vulnerability to earthquakes in practically all seismic regions on our globe. Such fast and global changes cannot be captured with conventional earthquake risk models anymore. The sciences in this field are, therefore, asked to come up with new solutions that are no longer exclusively aiming at the best possible quantification of the present risks but also keep an eye on their changes with time and allow to project these into the future. This does not apply to the vulnerablity component of earthquake risk alone, but also to its hazard component which has been realized to be time-dependent, too. The challenges of earthquake risk dynamics and -globalisation have recently been accepted by the Global Science Forum of the Organisation for Economic Co-operation and Development (OECD - GSF) who initiated the "Global Earthquake Model (GEM)", a public-private partnership for establishing an independent standard to calculate, monitor and communicate earthquake risk globally, raise awareness and promote mitigation.

  12. Landslide risk assessment and landslide disaster risk management: on the missing link between scientific knowledge, decision making and practice (Sergey Soloviev Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Alcántara-Ayala, Irasema

    2016-04-01

    Different investigations have been developed to address the uncertainty and quality evaluations leading to improve landslide hazard and risk assessment. With no doubt, and by using a wide range of scientific and technical approaches, they have contributed to a major extent to the understanding of the dynamics of landslide processes at different scales. Nonetheless, in a similar fashion than other hazards, it has been rather difficult to assess in a precise manner the multi-dimensions of their associated vulnerability and what is more, to effectively link risk assessments with disaster risk management. Owing to the double-character of landslide events, as natural and socio-natural hazards, mass movements turn out to be very complex processes, as their occurrence is also enhanced by population growth, socio-economic inequality, urbanization processes, land-degradation, unsustainable practices and mounting hazard exposure. Disaster Risk Management rope in the actions to attain Disaster Risk Reduction. The latter aims at decreasing existing hazard, vulnerability, and exposure, in addition to strengthening resilience, and very importantly, avoiding the construction of future disaster risk (UNISDR, 2015a). More specifically, and along the same line of ideas, the new-fangled Sendai Framework for Disaster Risk Reduction (SFDRR) 2015-2030 (UNISDR, 2015b) points towards reducing disaster risk and losses by engaging in a series of actions at local, national and global levels. Among them and of utterly significance are those initiatives related to the need of moving from risk assessment into disaster risk management. Consequently, and beyond championing scientific and technical capacity to strengthen landslide knowledge to assess vulnerability, hazard exposure and disaster risks, the challenge remains in the realm of promoting and improving permanent communication, dialogue and partnership among the science and technology communities, policymakers and other stakeholders, including indeed society, with the intention of encouraging a science-policy interface for effective decision-making and practice within the sphere of landslide disaster risk management. References UNISDR (2015a) Global Assessment Report, Making Development Sustainable: The Future of Disaster Risk Management. Geneva, Switzerland. UNISDR (2015b) Sendai Framework for Disaster Risk Reduction 2015-2030. Geneva, Switzerland.

  13. The Global Precipitation Measurement (GPM) Microwave Imager Polarimetric (GMI-P); 10 - 183 GHz with Polarimetric channels including digital and analog back-ends: Ardeshir Art Azarbarzin, Sergey Krimchansky Jeff Piepmeir NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

    NASA Astrophysics Data System (ADS)

    Azarbarzin, A.

    2014-12-01

    The Global Precipitation Measurement (GPM) Microwave Imager Polarimetric (GMI-P) will be an instrument covering 10, 18, 23, 36, 89, 166 and 183 GHz with polarimetric channels on 10, 18 and 36 GHz channels. The GMI-P (or VWPIR) will have 13 analog channels and 12 digital channels. This instrument builds upon the success of GPM Microwave Imager (GMI) flying on the Global Precipitation Measurement (GPM) launched in Feb 2014. And with GMI-P for the first time we can compare performance of digital and analog channels for 10, 18 and 36 channels. The GMI-P is recently renamed "Vector Wind Precipitation Imaging Radiometer (VWPIR). The instrument is a passive microwave with 1.2 m diameter reflector with 4-point hot/cold calibration capability in orbit. GMI-P (VWPIR) will provides measurements of precipitation intensity and distribution in addition to wind vector and speed. The Receivers, and multiple feedhorn tray rotate with the reflector at 32 RPM. The GMI-P will have capabilities as good as Windsat with added cyclone intensity and snow/ice measurement capability. This instrument will have a 2-Look capability (front and back) as well which will reduce uncertainty of reducing calibration accuracy further.

  14. Brecht: A Collection of Critical Essays. Twentieth Century Views Series.

    ERIC Educational Resources Information Center

    Demetz, Peter, Ed.

    One of a series of works aimed at presenting contemporary critical opinion on major authors, this collection includes essays by Sergey Tretiakov, Hearings of the House Committee on Un-American Activities, Hannah Arendt, Eric Bentley, Oscar Budel, Ernst Schumacher, I. Fradkin, Hans Egon Holthusen, Gunter Rohrmoser, Walter H. Sokol, Franz Norbert…

  15. [Pavlov's unknown letter to L. A. Orbely].

    PubMed

    Budko, A A; Nazartsev, B I

    2012-07-01

    The text of Ivan P. Pavlov's unknown letter addressed to Leon A. Orbely is published for the first time. The document is kept in the Fund of the Military Medical Museum of the Military Medical Academy named after Sergey M. Kirov.

  16. [Outstanding scientist-investigator, S. S. Brukhonenko--founder of artificial circulation method and developer of first in the world autoejector].

    PubMed

    Pavlovskiĭ, L N

    2009-01-01

    The article presents data about well-known Russian physician-physiologist and researcher Sergey Sergeeviche Brukhonenko. The hard way passed by the scientist-researcher from completion of artificial breath technique to the method of artificial blood circulation developed by him and development of the first in the world--artificial blood circulation device--autoejector is shown in the article.

  17. [Pavlov's unknown letter to L. A. Orbely].

    PubMed

    Budko, A A; Nazartsev, B I

    2012-07-01

    The text of Ivan P. Pavlov's unknown letter addressed to Leon A. Orbely is published for the first time. The document is kept in the Fund of the Military Medical Museum of the Military Medical Academy named after Sergey M. Kirov. PMID:23074838

  18. [A feat of military medical attendant S. A. Bogomolov].

    PubMed

    Goncharova, S G

    2015-05-01

    Sergey Bogomolov (1925-1999) is one of a few military paramedics awarded the title of Hero of the Soviet Union for his heroism in the fight against the Nazis during the Great Patriotic War. After graduating from the Kirov Military Medical Academy he worked as a surgeon and anaesthesiologist in the Burdenko Main Military Clinical Hospital. PMID:26513870

  19. Stratified flows and internal waves in the Central West Atlantic

    NASA Astrophysics Data System (ADS)

    Grigorenko, K. S.; Makarenko, N. I.; Morozov, E. G.; Tarakanov, R. Yu; Frey, D. I.

    2016-06-01

    In this paper, we study stratified flows and internal waves in the fracture zones of the Mid Atlantic Ridge. The results of measurements carried out in the 39th and 40th cruises of RV Akademik Sergey Vavilov in the autumn of 2014 and 2015 are presented. Hydrophysical properties of the near-bottom flows are studied experimentally on the basis of CTD- and LADCP profiling. Theoretical analysis involves mathematical formulation of stratified fluid flow which uses CTD-data obtained from field observation in the Vema Fracture Zone region. Spectral properties and kinematic characteristics of internal waves are calculated by finite element method.

  20. "Nonempty" Gap Between Radiation Belts: The First Observations

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail

    2013-12-01

    The first space experiments carried out in 1958 by the scientific groups of James Van Allen (United States) on board the first Explorer satellites and Sergey Vernov (Soviet Union) on board the satellite Sputnik 3 led to the discovery of the Earth's radiation belts—the particles (mainly protons and electrons) captured by the magnetic field of the Earth. Two scientific groups independently came to the conclusion that the electrons in the geomagnetic trapping region fill two areas, inner and outer radiation belts, unlike the protons, which fill the whole trapping region [see, e.g., Lemaire, 2000].

  1. Osmium Isotopic Composition of the Sumbar Cretaceous- Tertiary Boundary, Turkmenia

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1992-07-01

    Turekian (1982) propagated the use of the osmium isotopic composition as a cosmic indicator for the origin of the high osmium (and iridium) layers at the K/T boundaries. He did not consider the osmium isotopic signature of the terrestrial mantle, which also has a chondritic evolution of the Re-Os system. Osmium cannot serve alone as an infallible indicator of the impact theory, but interesting results can be obtained from their investigation. Different K/T boundary section have been analyzed so far for ^187Os/^186Os. An overview of the values is presented in the table. Boundary Clay layer Os ratio Reference Stevns Klint fish clay 1.66 Luck and Turekian, 1983 Woodside Creek 1.12 Lichte et al., 1986 Raton Basin 1.23 Kraehenbuehl et al., 1988 Raton Basin (several) 1.15-1.23 Esser and Turekian, 1989 Sumbar (0-1 cm) 1.16 This work We obtained a complete marine section of the K/T boundary in southern Turkmenia (decribed by Alekseyev, 1988). It shows a very high Ir concentration (66 ppb) at the boundary layer and a remarkable Ir enrichment over crustal rocks continuing up to 30 cm above the boundary. Our aim of this investigation is to analyze several samples from above and below the boundary for the ^187Os/^186Os ratio to obtain a complete picture of the isotopic evolution of the section. We want to evaluate mixing of Os with chondritic ratios with Os from upper crustal rocks. Another goal is to investigate a mobilization of Os. So far only one sample has been analyzed with NTI-MS after fire assay digestion of the sample. The sample 0 to 1 cm has an ^187Os/^186Os ratio of 1.162 +- 13, which is quite low. We expect an even lower value for the boundary clay (0 cm) itself not taking into account a contribution of radiogenic osmium from the decay of terrestrial rhenium. This might put this K/T boundary section closest of all to the present day chondritic value (approx. 1.05). Further analysis will be presented at the meeting. References Alekseyev A. S., Nazarov M. A

  2. Satellite Galaxies of the Milky Way

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    This beautiful 13 x 13 image (click for the full view!) holds more than meets the eye. Look closely at the small concentration of blue stars just to the left of center. This is Eridanus II, one of nine new ultra-faint galaxies discovered just last year aroundthe Milky Way. Detected as part of the Dark Energy Survey (DES) and presented in a study led by Sergey E. Koposov (Institute of Astronomy, Cambridge), these new galaxies add to a growing list of very dim satellites that orbit within the Milky Ways potential. Since their discovery, these DES satellites have been used to answer a number of astronomical questions. In particular, the large dark-matter fraction of these ultra-faint galaxies makes them excellent laboratories for testing models of dark matter in the universe. Check back with us on Wednesday to learn more about what Eridanus II has revealed about dark matter! And for more information on the nine DES-discovered ultra-faint satellites, check out the paper below.CitationSergey E. Koposov et al 2015 ApJ 805 130. doi:10.1088/0004-637X/805/2/130

  3. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    SciTech Connect

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  4. Quantifying the Statistics of Animal Motion: Lévy Flights of the Wandering Albatross

    NASA Astrophysics Data System (ADS)

    Viswanathan, Gandhimohan M.

    1998-03-01

    Lévy flights are commonly observed in physical and biological systems(See, e.g., M. F. Shlesinger, G. Zaslavsky and U. Frisch, eds., Lévy flights and Related Topics in Physics) (Springer, Berlin, 1995)., raising the possibility that similar random walks may be used to describe animal motion. Here we discuss recent findings showing that the Wandering Albatross and other animals may perform Lévy flights when foraging( G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince and H. E. Stanley, ``Lévy Flight Search Patterns of Wandering Albatrosses,'' Nature) 381, 413--415 (1996). We further examine how such random walks may confer biological advantages and discuss recent findings which suggest that under certain conditions there is a universal power law exponent which characterizes Lévy flight foraging ( G. M. Viswanathan, Sergey V. Buldyrev, Shlomo Havlin, M. G. E. da Luz, E. P. Raposo and H. E. Stanley, preprint.).

  5. International Program and Local Organizing Committees

    NASA Astrophysics Data System (ADS)

    2012-12-01

    International Program Committee Dionisio Bermejo (Spain) Roman Ciurylo (Poland) Elisabeth Dalimier (France) Alexander Devdariani (Russia) Milan S Dimitrijevic (Serbia) Robert Gamache (USA) Marco A Gigosos (Spain) Motoshi Goto (Japan) Magnus Gustafsson (Sweden) Jean-Michel Hartmann (France) Carlos Iglesias (USA) John Kielkopf (USA) John C Lewis (Canada) Valery Lisitsa (Russia) Eugene Oks (USA) Christian G Parigger (USA) Gillian Peach (UK) Adriana Predoi-Cross (Canada) Roland Stamm (Germany) Local Organizing Committee Nikolay G Skvortsov (Chair, St Petersburg State University) Evgenii B Aleksandrov (Ioffe Physico-Technical Institute, St Petersburg) Vadim A Alekseev (Scientific Secretary, St Petersburg State University) Sergey F Boureiko (St.Petersburg State University) Yury N Gnedin (Pulkovo Observatory, St Petersburg) Alexander Z Devdariani (Deputy Chair, St Petersburg State University) Alexander P Kouzov (Deputy Chair, St Petersburg State University) Nikolay A Timofeev (St Petersburg State University)

  6. Giant nonlinear optical activity in a plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Ren, Mengxin; Plum, Eric; Xu, Jingjun; Zheludev, Nikolay I.

    2012-05-01

    In 1950, a quarter of a century after his first-ever nonlinear optical experiment when intensity-dependent absorption was observed in uranium-doped glass, Sergey Vavilov predicted that birefringence, dichroism and polarization rotatory power should be dependent on light intensity. It required the invention of the laser to observe the barely detectable effect of light intensity on the polarization rotatory power of the optically active lithium iodate crystal, the phenomenon now known as the nonlinear optical activity, a high-intensity counterpart of the fundamental optical effect of polarization rotation in chiral media. Here we report that a plasmonic metamaterial exhibits nonlinear optical activity 30 million times stronger than lithium iodate crystals, thus transforming this fundamental phenomenon of polarization nonlinear optics from an esoteric phenomenon into a major effect of nonlinear plasmonics with potential for practical applications.

  7. Special Issue on "Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems"

    NASA Astrophysics Data System (ADS)

    Bruzzo, Ugo; Sala, Francesco

    2016-11-01

    This special issue of the Journal of Geometry and Physics collects some papers that were presented during the workshop "Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems" that took place at the Lorentz Center in Leiden, The Netherlands, from 16 to 20 June 2014. The workshop was supported by the Lorentz Center, the "Geometry and Quantum Theory" Cluster, Centre Européen pour les Mathématiques, la Physique et leurs Interactions (Lille, France), Laboratoire Angevin de Recherche en Mathématiques (Angers, France), SISSA (Trieste, Italy), and Foundation Compositio (Amsterdam, the Netherlands). We deeply thank all these institutions for making the workshop possible. We also thank the other organizers of the workshop, Professors Dimitri Markushevich, Vladimir Rubtsov and Sergey Shadrin, for their efforts and great collaboration.

  8. A new species Micrarctia kautti (Lepidoptera: Erebidae, Arctiinae) from West China.

    PubMed

    Saldaitis, Aidas; Pekarsky, Oleg

    2015-05-04

    A new tiger moth, Micrarctia kautti sp. n., from southwest China, Sichuan is described. A diagnostic comparison with Micrarctia trigona (Leech, 1899) is provided. During recent years the Chinese Arctiini have been intensively collected and explored (Dubatolov, 1996a; Dubatolov, 1996b; Dubatolov, 2003; Dubatolov, Kishida & Wu, 2005; Fang & Cao, 1984; Fang, 2000 and numerous other publications) so the discovery of a striking new species by Sergey Murzin in the Dafengding Mountains, Sichuan Province, was most unexpected. Institutional acronyms used are as follows: ASV = Aidas Saldaitis (Vilnius, Lithuania); KNE = Kari Nupponen (Espoo, Finland); PKT = Peter Kautt (Tübingen, Germany); RMB = Ramon Macià (Barselona, Spain); WIGJ = World Insect Gallery (Joniškis, Lithuania).

  9. Osmium Isotopic Composition of the K/T Boundary Sediments from Sumbar: A Progress Report

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1993-07-01

    the basal layer. (3) The local sediments have an Os concentration of 80 pg/g and the ^187Re/^186Os increases with time. Rhenium concentration has not been determined. The Re abundance is a not very sensitive parameter, since the long decay time of ^187Re (42.3 Ga) cannot account for the higher ratios within 65 Ma. It has been observed that Re is highly enriched above the basal layer [9] of the Caravaca section. This might also be true for the Sumbar section, and thus point 3 is plausible. Further analysis of Maastrichtian samples will give additional constraints on the concentration and isotopic composition of the terrigenous source material. References: [1] Luck J. M. and Turekian K. K. (1983) Science, 222, 613-615. [2] Lichte F. E. et al. (1986) Nature, 322, 816-817. [3] Esser B. K. and Turekian K. K. (1989) EOS, 70, 717. [4] Kraehenbuehl U. et al. (1988) Meteoritics, 23, 282. [5] Smitt R. A. (1990) LPS XXI, 1085-1086. [6] Turekian K. K. (1982) Geol. Bull. Am. Spec. Pap., 190, 243-249. [7] Alekseyev A. S. et al. (1988) Int. Geol. Rev., 30, 121-135. [9] Kyte F. T. et al. (1985) EPSL, 73, 183-195. Fig. 1, which appears here in the hard copy, shows the distribution of Ir concentration and Os-isotope ratio over the Sumbar K/T boundary section. Iridium data are from [7].

  10. A Summary History of Reusable Spaceplane Development in the Soviet Union

    NASA Astrophysics Data System (ADS)

    Siddiqi, A. A.

    2002-01-01

    Beginning the early years of space advocacy in the 1920s, the Soviets proposed a large number of winged space vehicle concepts as part of broader work on space transportation systems. These designs left an important legacy that has remained unexamined. In the 1920s, theorists and publicists such as Konstantin Tsiolkovskiy and Fridrikh Tsander were the earliest proponents of spaceplane designs. These were followed in the 1930s by the first concrete projects for rocket-propelled aircraft designed by the young Sergey Korolev. During World War II, the Soviets experimented with a number of rocket-planes, not for spaceflight, but for battle purposes. Subsequently, in the postwar years, the Soviet government for the first time funded a research project into a hypersonic winged vehicle for delivery of nuclear weapons. In later years, in the 1960s, with the growth of the Soviet space program, Soviet designers fielded a multitude of spaceplane programs that all culminated in the development of the famous Buran space shuttle. In this article, I will summarize all known hypersonic and spaceplane proposals during the Soviet era. Despite considerable funding, none of the spaceplane designs ever reached operational status. My goal is to highlight the technological lineage of Soviet and Russian reusable spaceplane concepts in the hope of illuminating design approaches that have continued to influence approaches to developing space transportation systems.

  11. Music and 're-education' in the Soviet Gulag.

    PubMed

    Klause, Inna

    2013-01-01

    After the October Revolution, the Bolsheviks announced a new human dimension of penal policy whose goal should be the so-called 're-education' of prisoners. The desired 're-education' was to be realised using two kinds of measures: the physical work of the prisoners, and 'cultural education work'. A varied musical life in groups, 'agitation brigades', ensembles, orchestras and choirs developed within the framework of the 'cultural education work'. Two camps responsible for building canals in the 1930s particularly adopted this musical life: Belbaltlag and Dmitlag. In the latter, a composition competition took place in 1936 in which, among others, the arrested composer Sergey Protopopov took part. Since the 1930s, the Gulag administration had publicised that the measures taken for 're-education' concerned primarily criminal prisoners, as opposed to 'political prisoners', who were labelled as foreign to socialist society. Although the 'cultural education work' would not have functioned as well as it did without the cooperation of 'political prisoners', since their participation did not fit into the prescribed ideology, they were often underappreciated or even completely concealed. The following is a depiction of the officially organised musical life in the Gulag in the 1920s and 1930s as a grey zone. Music making and listening represented not only a source of strength for the prisoners, but also brought about situations that meant physical and psychological torture for them. PMID:24480890

  12. Music and 're-education' in the Soviet Gulag.

    PubMed

    Klause, Inna

    2013-01-01

    After the October Revolution, the Bolsheviks announced a new human dimension of penal policy whose goal should be the so-called 're-education' of prisoners. The desired 're-education' was to be realised using two kinds of measures: the physical work of the prisoners, and 'cultural education work'. A varied musical life in groups, 'agitation brigades', ensembles, orchestras and choirs developed within the framework of the 'cultural education work'. Two camps responsible for building canals in the 1930s particularly adopted this musical life: Belbaltlag and Dmitlag. In the latter, a composition competition took place in 1936 in which, among others, the arrested composer Sergey Protopopov took part. Since the 1930s, the Gulag administration had publicised that the measures taken for 're-education' concerned primarily criminal prisoners, as opposed to 'political prisoners', who were labelled as foreign to socialist society. Although the 'cultural education work' would not have functioned as well as it did without the cooperation of 'political prisoners', since their participation did not fit into the prescribed ideology, they were often underappreciated or even completely concealed. The following is a depiction of the officially organised musical life in the Gulag in the 1920s and 1930s as a grey zone. Music making and listening represented not only a source of strength for the prisoners, but also brought about situations that meant physical and psychological torture for them.

  13. Assessment of Polarization Effect on Efficiency of Levenberg-Marquardt Algorithm in Case of Thin Atmosphere Over Black Surface

    NASA Technical Reports Server (NTRS)

    Korkin, S.; Lyapustin, A.

    2012-01-01

    The Levenberg-Marquardt algorithm [1, 2] provides a numerical iterative solution to the problem of minimization of a function over a space of its parameters. In our work, the Levenberg-Marquardt algorithm retrieves optical parameters of a thin (single scattering) plane parallel atmosphere irradiated by collimated infinitely wide monochromatic beam of light. Black ground surface is assumed. Computational accuracy, sensitivity to the initial guess and the presence of noise in the signal, and other properties of the algorithm are investigated in scalar (using intensity only) and vector (including polarization) modes. We consider an atmosphere that contains a mixture of coarse and fine fractions. Following [3], the fractions are simulated using Henyey-Greenstein model. Though not realistic, this assumption is very convenient for tests [4, p.354]. In our case it yields analytical evaluation of Jacobian matrix. Assuming the MISR geometry of observation [5] as an example, the average scattering cosines and the ratio of coarse and fine fractions, the atmosphere optical depth, and the single scattering albedo, are the five parameters to be determined numerically. In our implementation of the algorithm, the system of five linear equations is solved using the fast Cramer s rule [6]. A simple subroutine developed by the authors, makes the algorithm independent from external libraries. All Fortran 90/95 codes discussed in the presentation will be available immediately after the meeting from sergey.v.korkin@nasa.gov by request.

  14. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    NASA Astrophysics Data System (ADS)

    Kazaryan, Konstantin

    2011-03-01

    The Rusnanotech 2010 International Forum on Nanotechnology was held from November 1-3, 2010, in Moscow, Russia. It was the third forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into eight sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Catalysis and Chemical Industry Nanobiotechnology Nanodiagnostics Nanoelectronics Nanomaterials Nanophotonics Nanotechnolgy In The Energy Industry Nanotechnology in Medicine The scientific program of the forum included 115 oral presentations by leading scientists from 15 countries. Among them in the "Nanomaterials" section was the lecture by Dr Konstantin Novoselov, winner of the Nobel Prize in Physics 2010. The poster session consisted of over 500 presentations, 300 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of the Journal of Physics: Conference Series includes a selection of 57 submissions. The scientific program committee: Prof Zhores Alferov, AcademicianVice-president of Russian Academy of Sciences, Nobel Prize winner, Russia, Chairman of the Program CommitteeProf Sergey Deev, Corresponding Member of Russian Academy of SciencesHead of the Laboratory of Molecular Immunology, M M Shemyakin and Yu A Ovchinnikov

  15. U.S. and Russia sign agreements to cooperate in Antarctica and Beringia

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    U.S. secretary of state Hillary Rodham Clinton and Russian foreign minister Sergey Lavrov signed a Memorandum of Understanding (MOU) for Cooperation in Antarctica and issued a Joint Statement on Pursuing a Transboundary Area of Shared Beringian Heritage, which is related to a segment of the Bering Strait, at an 8 September ceremony in Vladivostok, Russia. The Antarctica MOU strengthens cooperation and improves coordination of bilateral policies, science, logistics, search and rescue, training, and public outreach in Antarctica. “We are formally deepening our scientific cooperation in Antarctica, a continent with vast opportunities for research,” Clinton said. “Scientists from both our countries will work together to explore Antarctica's terrain, study the effects of climate change, and cooperate on a range of issues to better understand and protect our shared environment.” She added that U.S. and Russian officials and scientists will work together to enforce the 1959 Antarctic Treaty, including inspecting foreign facilities and looking for violations of the treaty and environmental commitments.

  16. A Preliminary Investigation of Hall Thruster Technology

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    1997-01-01

    A three-year NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: (1) Characterized Hall thruster (and arcjet) performance by measuring ion exhaust velocity with probes at various thruster conditions; (2) Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e) ion current density and ion energy distribution, and electric fields by mapping plasma potential; (3) Used emission spectroscopy to identify species within the plume and to measure electron temperatures. A key and unique feature of our research was our collaboration with Russian Hall thruster researcher Dr. Sergey A Khartov, Deputy Dean of International Relations at the Moscow Aviation Institute (MAI). His activities in this program included consulting on and participation in research at PEPL through use of a MAI-built SPT and ion energy probe.

  17. On some generalization of the area theorem with applications to the problem of rolling balls

    NASA Astrophysics Data System (ADS)

    Chaplygin, Sergey A.

    2012-04-01

    This publication contributes to the series of RCD translations of Sergey Alexeevich Chaplygin's scientific heritage. Earlier we published three of his papers on non-holonomic dynamics (vol. 7, no. 2; vol. 13, no. 4) and two papers on hydrodynamics (vol. 12, nos. 1, 2). The present paper deals with mechanical systems that consist of several spheres and discusses generalized conditions for the existence of integrals of motion (linear in velocities) in such systems. First published in 1897 and awarded by the Gold Medal of Russian Academy of Sciences, this work has not lost its scientific significance and relevance. (In particular, its principal ideas are further developed and extended in the recent article "Two Non-holonomic Integrable Problems Tracing Back to Chaplygin", published in this issue, see p. 191). Note that non-holonomic models for rolling motion of spherical shells, including the case where the shells contain intricate mechanisms inside, are currently of particular interest in the context of their application in the design of ball-shaped mobile robots. We hope that this classical work will be estimated at its true worth by the English-speaking world.

  18. PREFACE: 16th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2013)

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The sixteenth Russian Conference on Physics and Astronomy PhysicA.SPb was held 23-24 October 2013 in Saint-Petersburg, Russia. The Conference continues the tradition of Saint-Petersburg Seminars on Physics and Astronomy originating from mid-90s. Since then PhysicA.SPb maintains both scientific and educational quality of contributions delivered to the young audience. This is the main feature of the Conference that makes it possible to combine the whole spectrum of modern Physics and Astronomy within one event. PhysicA.SPb/2013 has brought together about 200 students, young scientists and their colleague professors from many universities and research institutes across whole Russia as well as from Belarus, Ukraine, Switzerland, Turkey, Finland and France. Oral and poster presentations were combined into a few well-defined sections among which one should name Astronomy and Astrophysics, Plasma physics, hydro- and aero-dynamics, Physics of quantum-sized structures, Nanostructured and thin-film materials, Biophysics, THz and UHF materials and devices, Optoelectronic devices, Optics and spectroscopy, Atomic and elementary particles physics, Defects and impurities in solid state, Physics and technology of the alternative energetics. This issue of the Journal of Physics: Conference Series presents the extended contributions from participants of PhysicA.SPb/2013 that were peer-reviewed by expert referees through processes administered by the Presiders of the Organising and Programme Committees to the best professional and scientific standards. The Editors: Nikita S. Averkiev, Sergey A. Poniaev and Grigorii S. Sokolovskii

  19. LPHYS'13: 22nd International Laser Physics Workshop (Prague, 15-19 July 2013)

    NASA Astrophysics Data System (ADS)

    Yevseyev, Alexander V.

    2013-04-01

    The 22nd annual International Laser Physics Workshop (LPHYS'13) will be held from 15-19 July 2013 in the city of Prague, Czech Republic, at the Hotel Krystal and Czech Technical University hosted this year by the Institute of Physics ASCR and Czech Technical University in Prague. LPHYS'13 continues a series of workshops that took place in Dubna, 1992; Dubna/Volga river tour, 1993; New York, 1994; Moscow/Volga river tour (jointly with NATO SILAP Workshop), 1995; Moscow, 1996; Prague, 1997; Berlin, 1998; Budapest, 1999; Bordeaux, 2000; Moscow, 2001; Bratislava, 2002; Hamburg, 2003; Trieste, 2004; Kyoto, 2005; Lausanne, 2006; León, 2007; Trondheim, 2008; Barcelona, 2009; Foz do Iguaçu, 2010; Sarajevo, 2011; and Calgary, 2012. The total number of participants this year is expected to be about 400. In the past, annual participation was typically from over 30 countries. 2013 Chairmen: Miroslav Jelinek (Czech Republic) and Pavel P Pashinin (Russia) LPHYS'13 will offer eight scientific section seminars and one general symposium: Seminar 1 Modern Trends in Laser Physics Seminar 2 Strong Field & Attosecond Physics Seminar 3 Biophotonics Seminar 4 Physics of Lasers Seminar 5 Nonlinear Optics & Spectroscopy Seminar 6 Physics of Cold Trapped Atoms Seminar 7 Quantum Information Science Seminar 8 Fiber Optics Symposium Extreme Light Technologies, Science and Applications Abstract of your presentation A one-page abstract should contain: title; list of all co-authors (the name of the speaker underlined); affiliations; correspondence addresses including phone numbers, fax numbers, e-mail addresses; and the text of the abstract. Abstracts should be sent to the following co-chairs of the scientific seminars and the symposium: Kirill A Prokhorov (Seminar 1) E-mail: cyrpro@gpi.ru Mikhail V Fedorov (Seminar 2) E-mail: fedorov@ran.gpi.ru Sergey A Gonchukov (Seminar 3) E-mail: gonchukov@mephi.ru Ivan A Shcherbakov (Seminar 4) E-mail: gbufetova@lsk.gpi.ru Vladimir A Makarov (Seminar 5) E

  20. LPHYS'14: 23rd International Laser Physics Workshop (Sofia, Bulgaria, 14-18 July 2014)

    NASA Astrophysics Data System (ADS)

    Yevseyev, Alexander V.

    2014-04-01

    The 23rd annual International Laser Physics Workshop (LPHYS14) will be held from 14 July to 18 July 2014 in the city of Sofia, Bulgaria, at the Ramada Sofia Hotel hosted this year by the Institute of Electronics, Bulgarian Academy of Sciences. LPHYS14 continues a series of workshops that took place in Dubna,1992; Dubna/Volga river tour, 1993; New York, 1994; Moscow/Volga river tour (jointly with NATO SILAP Workshop), 1995; Moscow, 1996; Prague, 1997; Berlin, 1998; Budapest, 1999; Bordeaux, 2000; Moscow, 2001; Bratislava, 2002; Hamburg, 2003; Trieste, 2004; Kyoto, 2005; Lausanne, 2006; Len, 2007; Trondheim, 2008; Barcelona, 2009; Foz do Iguau, 2010; Sarajevo, 2011; Calgary, 2012 and Prague, 2013. The total number of participants this year is expected to be about 400. In the past, annual participation was typically from over 30 countries. 2014 Chairpersons Sanka Gateva (Bulgaria), Pavel Pashinin (Russia) LPHYS14 will offer eight scientific section seminars and one general symposium: Seminar 1 Modern Trends in Laser Physics Seminar 2 Strong Field and Attosecond Physics Seminar 3 Biophotonics Seminar 4 Physics of Lasers Seminar 5 Nonlinear Optics and Spectroscopy Seminar 6 Physics of Cold Trapped Atoms Seminar 7 Quantum Information Science Seminar 8 Fiber Optics Symposium Extreme Light Technologies, Science and Applications Abstract of your presentation A one-page abstract should contain: title; list of all co-authors (the name of the speaker underlined); affiliations; correspondence addresses including phone numbers, fax numbers, e-mail addresses; and the text of the abstract. Abstracts should be sent to the following co-chairs of the scientific seminars and the symposium: Kirill A Prokhorov (Seminar 1) E-mail: cyrpro@gpi.ru Mikhail V Fedorov (Seminar 2) E-mail: fedorov@ran.gpi.ru Sergey A Gonchukov (Seminar 3) E-mail: gonchukov@mephi.ru Ivan A Shcherbakov (Seminar 4) E-mail: gbufetova@lsk.gpi.ru Vladimir A Makarov (Seminar 5) E-mail: makarov@msu.ilc.edu.ru Vyacheslav

  1. Preface: phys. stat. sol. (c) 1/6

    NASA Astrophysics Data System (ADS)

    Kavokin, Alexey

    2004-04-01

    ). This time, with the initiative of Jim Harvey from ERO, a special session has been organized on the devices of 21st century, where a number of intriguing ideas have been proposed on new light sources, polariton lasers, and quantum memory elements based on microcavities. A special prize for the most crazy but realizable idea has been won by Misha Portnoi (Exeter) for the concept of a white diode based on a microcavity.Each PLMCN meeting brings participants from new countries. This time, the traditionally strong participation from Japan, Russia, the European Union and the USA has been enforced by a representative delegation from Israel and two speakers from Mexico. We are looking forward for new-comers from other countries not yet involved in the PLMCN community, to join us for the next meeting to be held in St. Petersburg on 29 June-3 July 2004. Sergey Ivanov from the A. F. Ioffe Institute chairs the local Organizing Committee of this future conference. We are going to keep a unique informal and creative atmosphere being characteristic of the PLMCN meetings. We invite all those who wish to know more about light-matter coupling in solids or to present any new interesting results in this area and at the same time to enjoy the beautiful city of St. Petersburg, to contact Sergey Ivanov (ivan@beam.ioffe.rssi.ru) or myself (kavokin@lasmea.univ-bpclermont.fr). We are looking forward to welcoming you in St. Petersburg!

  2. Instantaneous Frequency Attribute Comparison

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; Margrave, G. F.; Ben Horin, Y.

    2013-12-01

    has a larger CPU run-time, resulting from the necessary matrix inversion. Barnes, Arthur E. "The calculation of instantaneous frequency and instantaneous bandwidth.", Geophysics, 57.11 (1992): 1520-1524. Fomel, Sergey. "Local seismic attributes.", Geophysics, 72.3 (2007): A29-A33. Fomel, Sergey. "Shaping regularization in geophysical-estimation problems." , Geophysics, 72.2 (2007): R29-R36. Stockwell, Robert Glenn, Lalu Mansinha, and R. P. Lowe. "Localization of the complex spectrum: the S transform."Signal Processing, IEEE Transactions on, 44.4 (1996): 998-1001. Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. "Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063. Cohen, Leon. "Time frequency analysis theory and applications."USA: Prentice Hall, (1995). Margrave, Gary F., Michael P. Lamoureux, and David C. Henley. "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data." Geophysics, 76.3 (2011): W15-W30.

  3. Regularization of Instantaneous Frequency Attribute Computations

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.

    2014-12-01

    We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.

  4. Rockets and People. Volume 1

    NASA Technical Reports Server (NTRS)

    Chertok, Boris E; Siddiqi, Asif A. (Editor)

    2005-01-01

    Much has been written in the West on the history of the Soviet space program but few Westerners have read direct first-hand accounts of the men and women who were behind the many Russian accomplishments in exploring space.The memoirs of Academician Boris Chertok, translated from the original Russian, fills that gap.Chertok began his career as an electrician in 1930 at an aviation factory near Moscow.Twenty-seven years later, he became deputy to the founding figure of the Soviet space program, the mysterious Chief Designer Sergey Korolev. Chertok s sixty-year-long career and the many successes and failures of the Soviet space program constitute the core of his memoirs, Rockets and People. These writings are spread over four volumes. This is volume I. Academician Chertok not only describes and remembers, but also elicits and extracts profound insights from an epic story about a society s quest to explore the cosmos. In Volume 1, Chertok describes his early years as an engineer and ends with the mission to Germany after the end of World War II when the Soviets captured Nazi missile technology and expertise. Volume 2 takes up the story with the development of the world s first intercontinental ballistic missile ICBM) and ends with the launch of Sputnik and the early Moon probes. In Volume 3, Chertok recollects the great successes of the Soviet space program in the 1960s including the launch of the world s first space voyager Yuriy Gagarin as well as many events connected with the Cold War. Finally, in Volume 4, Chertok meditates at length on the massive Soviet lunar project designed to beat the Americans to the Moon in the 1960s, ending with his remembrances of the Energiya-Buran project.

  5. The CEO's second act.

    PubMed

    Nadler, David A

    2007-01-01

    When a CEO leaves because of performance problems, the company typically recruits someone thought to be better equipped to fix what the departing executive couldn't--or wouldn't. The board places its confidence in the new person because of the present dilemma's similarity to some previous challenge that he or she dealt with successfully. But familiar problems are inevitably succeeded by less familiar ones, for which the specially selected CEO is not quite so qualified. More often than not, the experiences, skills, and temperament that yielded triumph in Act I turn out to be unequal to Act II's difficulties. In fact, the approaches that worked so brilliantly in Act I may be the very opposite of what is needed in Act II. The CEO has four choices: refuse to change, in which case he or she will be replaced; realize that the next act requires new skills and learn them; downsize or circumscribe his or her role to compensate for deficiencies; or line up a successor who is qualified to fill a role to which the incumbent's skills and interests are no longer suited. Hewlett-Packard's Carly Fiorina exemplifies the first alternative; Merrill Lynch's Stanley O'Neal the second; Google's Sergey Brin and Larry Page the third; and Quest Diagnostics' Ken Freeman the fourth. All but the first option are reasonable responses to the challenges presented in the second acts of most CEOs' tenures. And all but the first require a power of observation, a propensity for introspection, and a strain of humility that are rare in the ranks of the very people who need those qualities most. There are four essential steps executives can take to discern that they have entered new territory and to respond accordingly: recognition that their leadership style and approach are no longer working; acceptance of others' advice on why performance is faltering; analysis and understanding of the nature of the Act II shift; and, finally, decision and action.

  6. On the origin of life in the Zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth

    PubMed Central

    2009-01-01

    Eugene Koonin) and Dieter Braun (nominated by Sergey Maslov). PMID:19703272

  7. Costs and deaths of landslides in Europe

    NASA Astrophysics Data System (ADS)

    Haque, Ubydul; Blum, Philipp

    2016-04-01

    Landslides cause human and large economic losses worldwide and also in Europe. However, the quantification of associated costs and deaths is highly underestimated and still incomplete, thus the estimation of landslide costs and risk is still rather ambitious. Hence, in this study a spatio-temporal analysis of fatal landslides is presented for 27 European countries from 1995-2014. These landslides are mainly concentrated in mountainous areas. A total of 1370 fatalities are reported resulting from 476 landslides. The highest fatalities with 335 are observed in Turkey. In general, an increasing trend of fatal landslides is recognized starting in 2008. The latter is almost certainly triggered by an increase in natural extreme events such as storms (i.e. heavy rainfall) and floods. The highest annual economic loss is observed in Italy with 3.9 billion Euro per year. In contrast, in Germany the annual total loss is only about 0.3 billion Euro. The results of this study serves as an initial baseline information for further risk studies integrating landslide locations, local land use data, cost data, and will therefore certainly support the studied countries to better protect their citizens and assets. Acknowledgements We would like to acknowledge the valuable contributions by Paula F. da Silva, Peter Andersen, Jürgen Pilz, Ali Ardalan, Sergey R. Chalov, Jean-Philippe Malet, Mateja Jemec Auflič, Norina Andres, Eleftheria Poyiadji, Pedro C. Lamas, Wenyi Zhang, Igor Pesevski, Halldór G. Pétursson, Tayfun Kurt, Nikolai Dobrev, Juan Carlos García Davalillo, Matina Halkia, Stefano Ferri, George Gaprindashvili, Johanna Engström and David Keellings.

  8. The CEO's second act.

    PubMed

    Nadler, David A

    2007-01-01

    When a CEO leaves because of performance problems, the company typically recruits someone thought to be better equipped to fix what the departing executive couldn't--or wouldn't. The board places its confidence in the new person because of the present dilemma's similarity to some previous challenge that he or she dealt with successfully. But familiar problems are inevitably succeeded by less familiar ones, for which the specially selected CEO is not quite so qualified. More often than not, the experiences, skills, and temperament that yielded triumph in Act I turn out to be unequal to Act II's difficulties. In fact, the approaches that worked so brilliantly in Act I may be the very opposite of what is needed in Act II. The CEO has four choices: refuse to change, in which case he or she will be replaced; realize that the next act requires new skills and learn them; downsize or circumscribe his or her role to compensate for deficiencies; or line up a successor who is qualified to fill a role to which the incumbent's skills and interests are no longer suited. Hewlett-Packard's Carly Fiorina exemplifies the first alternative; Merrill Lynch's Stanley O'Neal the second; Google's Sergey Brin and Larry Page the third; and Quest Diagnostics' Ken Freeman the fourth. All but the first option are reasonable responses to the challenges presented in the second acts of most CEOs' tenures. And all but the first require a power of observation, a propensity for introspection, and a strain of humility that are rare in the ranks of the very people who need those qualities most. There are four essential steps executives can take to discern that they have entered new territory and to respond accordingly: recognition that their leadership style and approach are no longer working; acceptance of others' advice on why performance is faltering; analysis and understanding of the nature of the Act II shift; and, finally, decision and action. PMID:17286076

  9. ESO's Hidden Treasures Brought to Light

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Telescope in Paranal, Chile, with guided tours and the opportunity to participate in a night's observations. Runner-up prizes included an iPod, books and DVDs. Furthermore, the highest ranked images will be released for the world to see on www.eso.org as Photo Releases or Pictures of the Week, co-crediting the winners. The jury evaluated the entries based on the quality of the data processing, the originality of the image and the overall aesthetic feel. As several of the highest ranked images were submitted by the same people, the jury decided to make awards to the ten most talented participants, so as to give more people the opportunity to win a prize and reward their hard work and talent. The ten winners of the competition are: * First prize, a trip to Paranal + goodies: Igor Chekalin (Russia). * Second prize, an iPod Touch + goodies: Sergey Stepanenko (Ukraine). * Third Prize, VLT laser cube model + goodies: Andy Strappazzon (Belgium). * Fourth to tenth prizes, Eyes on the Skies Book + DVD + goodies: Joseph (Joe) DePasquale (USA), Manuel (Manu) Mejias (Argentina), Alberto Milani (Italy), Joshua (Josh) Barrington (USA), Oleg Maliy (Ukraine), Adam Kiil (United Kingdom), Javier Fuentes (Chile). The ten winners submitted the twenty highest ranked images: 1. M78 by Igor Chekalin. 2. NGC3169 & NGC3166 and SN 2003cg by Igor Chekalin. 3. NGC6729 by Sergey Stepanenko. 4. The Moon by Andy Strappazzon. 5. NGC 3621 by Joseph (Joe) DePasquale. 6. NGC 371 by Manuel (Manu) Mejias. 7. Dust of Orion Nebula (ESO 2.2m telescope) by Igor Chekalin. 8. NGC1850 EMMI by Sergey Stepanenko. 9. Abell 1060 by Manuel (Manu) Mejias. 10. Celestial Prominences NGC3582 by Joseph DePasquale. 11. Globular Cluster NGC288 by Alberto Milani. 12. Antennae Galaxies by Alberto Milani. 13. Sakurai's Object by Joshua (Josh) Barrington. 14. NGC 1929, N44 Superbubble by Manuel (Manu) Mejias. 15. NGC 3521 by Oleg Maliy. 16. NGC 6744 by Andy Strappazzon. 17. NGC 2217 by Oleg Maliy. 18. VIMOS.2008-01-31T07_16_47j by

  10. List of Posters

    NASA Astrophysics Data System (ADS)

    : Physics Analysis Design and Application on the GRID By Martin Erdmann, et al.. D0 and the (SAM) GRID: An ongoing success story DO Collaboration. R & D for future accelerators, detectors & new facilities: High Level Trigger Selection in the CMS experiment By Monica Vazquez Acosta. R&D for a Helical Undulator Based Positron Source for the International Linear Collider By Phil Allport. Muon Detection, Reconstruction and Identification in CMS By Ivan Belotelov. Acoustic Measurements for EeV Neutrino Detection at the South Pole By Sebastian Böser. The PSI source of ultracold neutrons (UCN) By Manfred Daum. The LHCb Pixel Hybrid Photon Detectors (Characterization of Nybrig Photon Detectors for the LHCb experiment) By Neville Harnew, et al.. Semi-Insulating GaN-radiation hard semiconductor for ionizing radiation detectors By Juozas Vaitkus. Monitored Drift Tube end-cap spectrometer for the ATLAS detector By Dmitri Kotchetkov. Development of Focusing Aerogel RICH By Sergey Kononov, et al.. Electromagnetic Calibration of the Hadronic Tile Calorimeter Modules of the ATLAS detector at the LHC By Iouri Koultchitski. A Study of Proximity focusing RICH with Multiple Refractive Index Aerogel Radiator By Peter Krizan. The Heavy Flavor Tracker (HFT) for STAR By Vasil Kuspil. ATLAS Liquid Argon Calorimeter ATLAS Collaboration: Field Emission in HEP Colliders Initiated by a Relativistic Positively Charged Bunch of Particles By Boris Levchenko. MICE: the international Muon Ionization Cooling Experiment By Kenneth Long. In situ calibration of the CMS electromagnetic calorimeter By Augustino Lorenzo. The Transition Radiation Tracker for the ATLAS experiment at the LHC By Victor Maleev. Resonance depolarization and Compton-Backscattering technique for beam energy measurement of VEPP-4M collider By Ivan Nikolaev, et al.. CCD - based Pixel Detectors by LCFI By Andrei Nomerotski. The SiD Detector Concept for the International Linear Collider By Dmitry Onoprienko. CMS Hadron Calorimetry

  11. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  12. The Society of Brains: How Alan Turing and Marvin Minsky Were Both Right

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.

    2015-04-01

    In his well-known prediction, Alan Turing stated that computer intelligence would surpass human intelligence by the year 2000. Although the Turing Test, as it became known, was devised to be played by one human against one computer, this is not a fair setup. Every human is a part of a social network, and a fairer comparison would be a contest between one human at the console and a network of computers behind the console. Around the year 2000, the number of web pages on the WWW overtook the number of neurons in the human brain. But these websites would be of little use without the ability to search for knowledge. By the year 2000 Google Inc. had become the search engine of choice, and the WWW became an intelligent entity. This was not without good reason. The basis for the search engine was the analysis of the ’network of knowledge’. The PageRank algorithm, linking information on the web according to the hierarchy of ‘link popularity’, continues to provide the basis for all of Google's web search tools. While PageRank was developed by Larry Page and Sergey Brin in 1996 as part of a research project about a new kind of search engine, PageRank is in its essence the key to representing and using static knowledge in an emergent intelligent system. Here I argue that Alan Turing was right, as hybrid human-computer internet machines have already surpassed our individual intelligence - this was done around the year 2000 by the Internet - the socially-minded, human-computer hybrid Homo computabilis-socialis. Ironically, the Internet's intelligence also emerged to a large extent from ‘exploiting’ humans - the key to the emergence of machine intelligence has been discussed by Marvin Minsky in his work on the foundations of intelligence through interacting agents’ knowledge. As a consequence, a decade and a half decade into the 21st century, we appear to be much better equipped to tackle the problem of the social origins of humanity - in particular thanks to the

  13. Self-Organized Biological Dynamics and Nonlinear Control

    NASA Astrophysics Data System (ADS)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  14. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and

  15. PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)

    NASA Astrophysics Data System (ADS)

    Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey

    2012-02-01

    Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS). Nanomaterials Member of Russian Academy of Sciences, Professor Mikhail Alfimov (Photochemistry Center, RAS), Professor Igor Suzdalev (Semenov Institute of Chemical Physics, RAS), Member of Russian Academy of Science, Professor Vyacheslav Osiko (Prokhorov General Physics Institute, RAS), Member of Russian Academy of Science, Professor Aleksey Khokhlov (Physical department of Moscow State University). Nanotechnology and green energy Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS). Nanotechnology in Healthcare and Pharma Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  16. Self-Similar Conformations and Dynamics of Non-Concatenated Entangled Ring Polymers

    NASA Astrophysics Data System (ADS)

    Ge, Ting

    . NPs larger than the undilated tube diameter undergo power-law sub-diffusion in entangled rings in contrast to strong suppression in entangled linear chains. This result demonstrates that there is no long-lived confining tube in entangled ring polymers, which agrees with complete tube dilation in the self-consistent FLG model. This work is done in collaboration with Drs. Michael Rubinstein, Sergey Panyukov and Gary Grest and supported by NSF.

  17. Studies of atmosphere radio-sounding for monitoring of radiation environments around nuclear power plants

    NASA Astrophysics Data System (ADS)

    Boyarchuk, Kirill; Karelin, Alexander; Tumanov, Mikhail

    2014-05-01

    The nuclear power plants practically do not discharge to the atmosphere any products causing significant radioactive contaminations. However, during the years of the nuclear power industry, some large accidents occurred at the nuclear objects, and that caused enormous environmental contamination. Among the most significant accidents are: thermal explosion of a reservoir with high-level wastes at the Mayak enterprise in the South Ural region, near the town of Kyshtym, in the end of September 1957; accident at the nuclear power plant in Windscale, UK, in October 1957; accident at the Three-Mile Island, USA, in 1979; accident at the Chernobyl power plant in April 1986. In March of 2011, a large earthquake and the following tsunami caused the largest nuclear catastrophe of XXI century, the accident at the Fucushima-1 power plant. The last accident highlighted the need to review seriously the safety issues at the active power plants and to develop the new effective methods for remote detection and control over radioactive environmental contamination and over general geophysical situation in the areas. The main influence of the fission products on the environment is its ionisation, and therefore various detectable biological and physical processes that are caused by ions. Presence of an ionisation source within the area under study may cause significant changes of absolute humidity and, that is especially important, changes of the chemical potential of atmosphere vapours indicating presence of charged condensation centres. These effects may cause anomalies in the IR radiation emitted from the Earth surface and jumps in the chemical potentials of water vapours that may be observed by means of the satellite remote sensing by specialized equipment (works by Dimitar Ouzounov, Sergey Pulinets, e.a.). In the current study, the theoretical description is presented from positions of the molecular-kinetic condensation theory that shows significant changes of the absolute and

  18. The Drama of Starbirth - new-born stars wreak havoc in their nursery

    NASA Astrophysics Data System (ADS)

    2011-03-01

    A new image from ESO's Very Large Telescope gives a close-up view of the dramatic effects new-born stars have on the gas and dust from which they formed. Although the stars themselves are not visible, material they have ejected is colliding with the surrounding gas and dust clouds and creating a surreal landscape of glowing arcs, blobs and streaks. The star-forming region NGC 6729 is part of one of the closest stellar nurseries to the Earth and hence one of the best studied. This new image from ESO's Very Large Telescope gives a close-up view of a section of this strange and fascinating region (a wide-field view is available here: eso1027). The data were selected from the ESO archive by Sergey Stepanenko as part of the Hidden Treasures competition [1]. Sergey's picture of NGC 6729 was ranked third in the competition. Stars form deep within molecular clouds and the earliest stages of their development cannot be seen in visible-light telescopes because of obscuration by dust. In this image there are very young stars at the upper left of the picture. Although they cannot be seen directly, the havoc that they have wreaked on their surroundings dominates the picture. High-speed jets of material that travel away from the baby stars at velocities as high as one million kilometres per hour are slamming into the surrounding gas and creating shock waves. These shocks cause the gas to shine and create the strangely coloured glowing arcs and blobs known as Herbig-Haro objects [2]. In this view the Herbig-Haro objects form two lines marking out the probable directions of ejected material. One stretches from the upper left to the lower centre, ending in the bright, circular group of glowing blobs and arcs at the lower centre. The other starts near the left upper edge of the picture and extends towards the centre right. The peculiar scimitar-shaped bright feature at the upper left is probably mostly due to starlight being reflected from dust and is not a Herbig-Haro object. This

  19. PREFACE: Gauge-string duality and integrability: progress and outlook Gauge-string duality and integrability: progress and outlook

    NASA Astrophysics Data System (ADS)

    Kristjansen, C.; Staudacher, M.; Tseytlin, A.

    2009-06-01

    The AdS/CFT correspondence, proposed a little more than a decade ago, has become a major subject of contemporary theoretical physics. One reason is that it suggests the exact identity of a certain ten-dimensional superstring theory, and a specific supersymmetric four-dimensional gauge field theory. This indicates that string theory, often thought of as a generalization of quantum field theory, can also lead to an alternative and computationally advantageous reformulation of gauge theory. This establishes the direct, down-to-earth relevance of string theory beyond loftier ideas of finding a theory of everything. Put differently, strings definitely lead to a theory of something highly relevant: a non-abelian gauge theory in a physical number of dimensions! A second reason for recent excitement around AdS/CFT is that it uncovers surprising novel connections between otherwise increasingly separate subdisciplines of theoretical physics, such as high energy physics and condensed matter theory. This collection of review articles concerns precisely such a link. About six years ago evidence was discovered showing that the AdS/CFT string/gauge system might actually be an exactly integrable model, at least in the so-called planar limit. Its spectrum appears to be described by (a generalization of) a Bethe ansatz, first proposed as an exact solution for certain one-dimensional magnetic spin chains in the early days of quantum mechanics. The field has been developing very rapidly, and a collection of fine review articles is needed. This special issue is striving to provide precisely that. The first article of the present collection, by Nick Dorey, is a pedagogical introduction to the subject. The second article, by Adam Rej, based on the translation of the author's PhD thesis, describes important techniques for analysing and interpreting the integrable structure of AdS/CFT, mostly from the point of view of the gauge theory. The third contribution, by Gleb Arutyunov and Sergey

  20. Landslide Buries Valley of the Geysers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Volcanology and Seismology, the new lake appears to be stable and draining gradually through the earthen dam, alleviating fears of a catastrophic flood. Should the new lake drain enough, many of the inundated geysers may restart. Initial reports from the Volcanology and Seismology Institute state this has already happened for some geysers. Geysers outside of the slide region, including the Velikan (Giant) Geyser and a major section of the geyser field known as Vitrazh (Stained Glass) appear to have escaped damage. In addition to destroying a number of geysers, the landslide may have damaged habitats in the Valley of the Geysers. The thermal waters and heated steam jets made this valley warmer than the surrounding landscape, and the warmth supported a unique ecosystem. The loss of a large part of its heat source may alter the ecosystem, but it is not clear what additional longer-term changes might occur. For example, salmon that spawn in the Geyser River will be confined to the lower reaches of the river, and bears, which depended on salmon, will need to shift feeding grounds correspondingly. Thanks to Sergey Chernomorets and Boris Yurchak for information and translation. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  1. A Burst to See

    NASA Astrophysics Data System (ADS)

    2008-04-01

    , able to record the event with unprecedented temporal resolution.. "These very early detections (just seconds after the beginning of the burst) showed the object to be so bright that it would have been visible just with the unaided eye," says Stefano Covino, from the REM team. "It was astonishing to see how rapidly the source varied during the observations," adds Sergey Karpov, of the TORTORA team. Astronomers use the so-called magnitude scale, an inverse scale where fainter objects have larger magnitudes. In dark sites, the most acute of human eyes can distinguish sources as faint as magnitude 6. GRB 080319B was slightly brighter than this limit, although for just less than a minute. The 8.2-metre ESO Very Large Telescope also reacted to the gamma-ray burst, thanks to a special procedure known as the rapid-response mode (see ESO 17/07), which allows automatic observations with no human intervention. The high-resolution spectrograph UVES could collect exquisite data starting only 10 minutes after the burst, following requests by Fabrizio Fiore and his team. Another team then used also UVES to determine the distance of the burst. "Despite its stunning brightness, the burst exploded in a galaxy 7.5 billion light years away," says Paul Vreeswijk, who led the second team. "It was therefore not only apparently bright, but also intrinsically very luminous. Indeed, it reached the brightest optical luminosity ever recorded for any astronomical object. For comparison, should the burst have exploded in our Galaxy, it would have lit up the night sky for several minutes as if it were daytime."

  2. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    NASA Astrophysics Data System (ADS)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    - Salicaceae) and selenium (needles of larch - Larix sibirica L.) were found among the plants. References 1. Ermakov V., Jovanovic L. Characteristics of selenium migration in soil-plant system of East Meshchera and Transbaikalia// J. Geochem. Explor., 2010. Vol. 107, 200-205. 2. Ermakov Vadim, Jovanovic Larisa, Berezkin Victor, Tyutikov Sergey, Danilogorskaya Anastasiya, Danilova Valentina, Krechetova Elena, Degtyarev Alexander, Khushvakhtova Sabsbakhor. Chemical assessment of soil and water of Urov biogeochemical provinces of Eastern Transbaikalia// Ecologica, 2012. Vol. 19, 69, 5-9. 3. Ermakov V.V., Tuytikov S.F. Khushvakhtova S.D., Danilova V.N. Boev V.A., Barabanschikova R.N., Chudinova E.A. Peculiarities of quantitative determination of selenium in biological materials// Bulletin of the Tyumen State University Press, 2010, 3, 206-214. Supported by the Russian Foundation for Basic Research, grant number 12-05-00141a.

  3. PREFACE: XII Latin American workshop on plasma physics (17-21 September 2007, Caracas, Venezuela)

    NASA Astrophysics Data System (ADS)

    Puerta, Julio

    2008-10-01

    Deutsch, Ricardo Galvao, Carlos Hidalgo, Paulo Sakanaka, Konosuke Sato, Malcom Haines and Maher Boulos. The general feeling is that these mini-courses were very successful. As an original idea of Professor Ricardo Magnus Osorio Galvão, Director of Centro Brasileiro de Pesquisas Físicas, we saluted the creation of The Vladimir Tsypin Award to the best Poster in the meeting. This prize was presented by Professor Galvão in memoriam of Vladimir Semenovich Tsypin. It was suggested that the granting of this award be made in every meeting from now on. We think that it is very important to emphasise the mini-courses due to the necessity of increasing in the near future a better formation for our young scientists. The contributions of all the lecturers are greatly appreciated. We had the typical fields in plasma physics as in past meetings. We also appreciated very much the lectures of Professor Malcolm Haines, Professor Sergey Popel, Professor Claude Deutsch, and Professor Antony Peratt for their very interesting talks on the Z-Pinch recorded to prehistory. Special thanks again to these lecturers since they have joined and honoured our meetings in the past as well. As in the VII LAWPP, all the sessions of the workshop were held at the Universidad Simon Bolivar campus, located in the nice green Valley of Sartenejas near Caracas. We also appreciate the stimulus and the financial support that we have always had for the preparation of these workshops from our institution by means of its authorities: Professor Benjamin Sharifker (Rector), Professor Aura Lopez (Dean of Academic Activities), (Professor Jose Luis Paz (Dean of Research and Development), Professor Pedro Berrisbeitia (Dean of Postgraduate Studies) and Professor William Colmenares (Dean of Extended Activities). We must also mention and appreciate the collaboration of architect Alejandro Chataing Roncajolo as Secretary and Coordinator of the Congress, as well as the daily important collaborations of our students Anais M

  4. EDITORIAL: Focus on Quantum Information and Many-Body Theory

    NASA Astrophysics Data System (ADS)

    Eisert, Jens; Plenio, Martin B.

    2010-02-01

    in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using the ferromagnetic spin-J XXZ chain with kink boundary conditions Tom Michoel, Jaideep Mulherkar and Bruno Nachtergaele Long-distance entanglement in many-body atomic and optical systems Salvatore M Giampaolo and Fabrizio Illuminati QUANTUM MEMORIES AND TOPOLOGICAL ORDER Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes Stefano Chesi, Daniel Loss, Sergey Bravyi and Barbara M Terhal Topological color codes and two-body quantum lattice Hamiltonians M Kargarian, H Bombin and M A Martin-Delgado RENORMALIZATION Local renormalization method for random systems O Gittsovich, R Hübener, E Rico and H J Briegel

  5. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    should emit similar amounts of gamma-ray energy. The fraction of it detected at Earth should then depend on the 'width' (opening angle) and orientation of the beam as well as on the distance. The energy received should be larger when the beam is narrow or points towards us and smaller when the beam is broad or points away from us. New data collected with ESA's high energy observatories, Integral and XMM-Newton, now show that this picture is not so clear-cut and that the amount of energy emitted by GRBs can vary significantly. "The idea that all GRBs spit out the same amount of gamma rays, or that they are 'standard candles' as we call them, is simply ruled out by the new data," said Dr Sergey Sazonov, from the Space Research Institute of the Russian Academy of Sciences, Moscow (Russia) and the Max-Planck Institute for Astrophysics, Garching near Munich (Germany). Sazonov and an international team of researchers studied the GRB detected by Integral on 3 December 2003 and given the code-name of GRB 031203. Within a record 18 seconds of the burst, the Integral Burst Alert System had pinpointed the approximate position of GRB 031203 in the sky and sent the information to a network of observatories around the world. A few hours later one of them, ESA's XMM-Newton, determined a much more precise position for GRB 031203 and detected a rapidly fading X-ray source, which was subsequently seen by radio and optical telescopes on the ground. This wealth of data allowed astronomers to determine that GRB 031203 went off in a galaxy less than 1300 million light years away, making it the closest GRB ever observed. Even so, the way in which GRB 031203 dimmed with time and the distribution of its energy were not different from those of distant GRBs. Then, scientists started to realise that the concept of the 'standard candle' may not hold. "Being so close should make GRB 031203 appear very bright, but the amount of gamma-rays measured by Integral is about one thousand times less than what

  6. Chandra Contributes to ESA's Integral Detection of Closest Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, and also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed. Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs should emit similar amounts of gamma-ray energy. The fraction of it detected at Earth should then depend on the 'width' (opening angle) and orientation of the beam as well as on the distance. The energy received should be larger when the beam is narrow or points towards us and smaller when the beam is broad or points away from us. New data collected with ESA's high energy observatories, Integral and XMM-Newton, now show that this picture is not so clear-cut and that the amount of energy emitted by GRBs can vary significantly. "The idea that all GRBs spit out the same amount of gamma rays, or that they are 'standard candles' as we call them, is simply ruled out by the new data," said Dr Sergey Sazonov, from the Space Research Institute of the Russian Academy of Sciences, Moscow (Russia) and the Max-Planck Institute for Astrophysics, Garching near Munich (Germany). Sazonov and an international team of researchers studied the GRB detected by Integral on 3 December 2003 and given the code-name of GRB 031203. Within a record 18 seconds of the burst, the Integral Burst Alert System

  7. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2013-10-01

    The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as

  8. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2013-10-01

    The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as

  9. EDITORIAL: Message from the Editor Message from the Editor

    NASA Astrophysics Data System (ADS)

    Thomas, Paul

    2010-02-01

    award was Steven A. Sabbagh et al for the paper entitled 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' (Nucl. Fusion 46 635-644). Reviews Last year I announced a revival of Nuclear Fusion Reviews, following a decision by the Board of Editors. 'A review of zonal flow experiments', by Akihide Fujisawa was the first fruit of this. In 2010, we are expecting to publish further review articles, the first of which is entitled 'Gyrokinetic simulations of turbulent transport' by Xavier Garbet, Yasuhiro Idomura, Laurent Villard and Tomo-Hiko Watanabe. Letters At the 2009 Board of Editors Meeting in Atlanta, the current letters procedure was summarized and it was noted that the peer review time for Letters is quite variable. Some are accepted within a month of submission, others take longer. Since the purpose of Letters is to provide a route for rapid communication, this is quite an important matter. It was agreed that the Board of Editors would play a more active role in the Letter approval process. If a reviewer asks for a second revision the Editor or a Board of Editors member will be queried as to whether the submission should still be treated as a Letter rather than a regular Paper. The Board of Editors The following Board of Editors members reached the end of their term in 2009: Amanda Hubbard, Yaroslav Kolesnichenko, Kunioki Mima, Boris Sharkov and Michael Ulrickson. On behalf of the Nuclear Fusion Office and the Chairman of the Board of Editors, Mitsuru Kikuchi, I would like to thank them for their efforts in support of the journal. At the same time, we welcomed: Hiroshi Azechi, Xuru Duan, Richard Hawryluk, Sergey Konovalov, Bruce Lipschultz, Peter Norreys, Francesco Romanelli, Tony Taylor and Hartmut Zohm. I am sure that such an illustrious group does not need any introduction to the readers of Nuclear Fusion and I am confident that the new members can only further the success of the journal. It is with great sadness that I have to note the

  10. PREFACE New developments in nanopore research—from fundamentals to applications New developments in nanopore research—from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Edel, Joshua B.; Winterhalter, Mathias

    2010-11-01

    refereeing process, and Ms Natalia Goehring for the beautiful cover artwork. Finally, to the readers, we hope you find this special issue a valuable source of information and insight into the field of nanopores. New developments in nanopore research—from fundamentals to applications contents Mathematical modeling and simulation of nanopore blocking by precipitation M-T Wolfram, M Burger and Z S Siwy Protein conducting nanopores Anke Harsman, Vivien Krüger, Philipp Bartsch, Alf Honigmann, Oliver Schmidt, Sanjana Rao, Christof Meisinger and Richard Wagner Electrically sensing protease activity with nanopores Mikiembo Kukwikila and Stefan Howorka Electrical characterization of DNA-functionalized solid state nanopores for bio-sensing V Mussi, P Fanzio, L Repetto, G Firpo, P Scaruffi, S Stigliani, M Menotta, M Magnani, G P Tonini and U Valbusa Automatable lipid bilayer formation and ion channel measurement using sessile droplets J L Poulos, S A Portonovo, H Bang and J J Schmidt Critical assessment of OmpF channel selectivity: merging information from different experimental protocols M L López, E García-Giménez, V M Aguilella and A Alcaraz Chemically modified solid state nanopores for high throughput nanoparticle separation Anmiv S Prabhu, Talukder Zaki N Jubery, Kevin J Freedman, Rafael Mulero, Prashanta Dutta and Min Jun Kim Changes in ion channel geometry resolved to sub-ångström precision via single molecule mass spectrometry Joseph W F Robertson, John J Kasianowicz and Joseph E Reiner Entropic transport of finite size particles W Riefler, G Schmid, P S Burada and P Hänggi Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel Philip A Gurnev, Daniel Harries, V Adrian Parsegian and Sergey M Bezrukov Detection of urea-induced internal denaturation of dsDNA using solid-state nanoporesn Alon Singer, Heiko Kuhn, Maxim Frank-Kamenetskii and Amit Meller Translocation events in a single-walled carbon nanotube Jin He, Hao Liu, Pei Pang

  11. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Wang, Lihong V.; Tuchin, Valery V.

    2011-02-01

    )Ruey-Jen Sung, Stanford University (USA)A Dean Sherry, The University of Texas at Dallas (USA)Bruce Tromberg, University of California/Irvine (USA)Fujia Yang, Nottingham University (UK)Jianquan Yao, Tianjin University (China)Yixin Zeng, Sun Yat-sen University Cancer Center (China)Baoyong Zheng, Hua Wei Technologies Corporation, Inc (China) Program CommitteeWei R Chen, University of Central Oklahoma (USA)Zhongping Chen, University of California/Irvine (USA)Arthur Chiou, National Yang-Ming University (Taiwan, China)Frank Y S Chuang, University of California, Davis (USA)Zhihua Ding, Zhejiang University (China)Congwu Du, Brookhaven National Laboratory (USA)Stefan Haacke, Strasbourg University - IPCMS-DON (France)Weiping Han, Agency for Science, Technology and Research (A*STAR) (Singapore)Zheng Huang, University of Colorado Health Sciences Center (USA)Zhiwei Huang, National University of Singapore (Singapore)Steven L Jacques, Oregon Health & Science University (USA)Fu-Jen Kao, National Yang-Ming University (Taiwan, China)Hideaki Koizumi, Hitachi, Ltd (Japan)Xingde Li, Johns Hopkins University (USA)Yong-qing Li, East Carolina University (USA)Chengyi Liu, South China Normal University (China)Hong Liu, University of Oklahoma (USA)Zuhong Lu, Southeast University (China)Dennis L Matthews, University of California/Davis (USA)Avraham Mayevsky, Bar Ilan University (Israel)Stephen P Morgan, University of Nottingham (UK)Shoko Nioka, University of Pennsylvania (USA)Yingtian Pan, State University of New York at Stony Brook (USA)Alexander V Priezzhev, MV Lomonosov Moscow State University (Russia)Jianan Y Qu, The Hongkong University of Science and Technology (Hong Kong, China)Colin J R Sheppard, National University of Singapore (Singapore)Mamoru Tamura, Tsinghua University (China)Sergey Ulyanov, Saratov State University (Russia)Ruikang K Wang, Oregon Health & Science University (USA)Xunbin Wei, Fudan University (China)Da Xing, South China Normal University (China)Haishan Zeng, BC Cancer Research

  12. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    should emit similar amounts of gamma-ray energy. The fraction of it detected at Earth should then depend on the 'width' (opening angle) and orientation of the beam as well as on the distance. The energy received should be larger when the beam is narrow or points towards us and smaller when the beam is broad or points away from us. New data collected with ESA's high energy observatories, Integral and XMM-Newton, now show that this picture is not so clear-cut and that the amount of energy emitted by GRBs can vary significantly. "The idea that all GRBs spit out the same amount of gamma rays, or that they are 'standard candles' as we call them, is simply ruled out by the new data," said Dr Sergey Sazonov, from the Space Research Institute of the Russian Academy of Sciences, Moscow (Russia) and the Max-Planck Institute for Astrophysics, Garching near Munich (Germany). Sazonov and an international team of researchers studied the GRB detected by Integral on 3 December 2003 and given the code-name of GRB 031203. Within a record 18 seconds of the burst, the Integral Burst Alert System had pinpointed the approximate position of GRB 031203 in the sky and sent the information to a network of observatories around the world. A few hours later one of them, ESA's XMM-Newton, determined a much more precise position for GRB 031203 and detected a rapidly fading X-ray source, which was subsequently seen by radio and optical telescopes on the ground. This wealth of data allowed astronomers to determine that GRB 031203 went off in a galaxy less than 1300 million light years away, making it the closest GRB ever observed. Even so, the way in which GRB 031203 dimmed with time and the distribution of its energy were not different from those of distant GRBs. Then, scientists started to realise that the concept of the 'standard candle' may not hold. "Being so close should make GRB 031203 appear very bright, but the amount of gamma-rays measured by Integral is about one thousand times less than what

  13. PREFACE: Fourth Meeting on Constrained Dynamics and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Cavaglia, Marco; Nelson, Jeanette E.

    2006-04-01

    Cagliari, Italy) Roberto De Pietri (Università di Parma, Italy) Giuseppe De Risi (Università di Bari, Italy) Hans-Thomas Elze (Univ. Federal do Rio de Janeiro, Brasil) Alessandro Fabbri (Università di Bologna, Italy) Sergey Fadeev (VNIIMS, Moscow, Russia) Serena Fagnocchi (Università di Bologna, Italy) Sara Farese (Universidad de Valencia, Spain) Alessandra Feo (Università di Parma, Italy) Dario Francia (Università di Roma Tor Vergata, Italy) Francesco Fucito (Università di Roma Tor Vergata, Italy) Dmitri Fursaev (JINR, Dubna, Russia) Daniel Galehouse (University of Akron, Ohio, USA) Remo Garattini (Università di Bergamo, Italy) Florian Girelli (Perimeter Institute, Waterloo, Canada) Luca Griguolo (Università di Parma, Italy) Daniel Grumiller (Universität Leipzig, Germany) Shinichi Horata (Hayama Center of Advanced Research, Japan) Giorgio Immirzi (Università di Perugia, Italy) Roman Jackiw (MIT, Cambridge, USA) Matyas Karadi (DAMTP, University of Cambridge, UK) Mikhail Katanaev (Steklov Mathematical Institute, Moscow, Russia) Claus Kiefer (Universität Koln, Germany) John Klauder (University of Florida, Gainesville, USA) Pavel Klepac (Masaryk University, Brno, Czech Republic) Jen-Chi Lee (National Chiao-Tung University, Taiwan) Carlos Leiva (Universidad de Tarapacá, Arica, Chile) Stefano Liberati (SISSA/ISAS, Trieste, Italy) Jorma Louko (University of Nottingham, UK) Luca Lusanna (INFN, Sezione di Firenze, Italy) Roy Maartens (University of Portsmouth, UK) Fotini Markopoulou (Perimeter Institute, Waterloo, Canada) Annalisa Marzuoli (Università di Pavia, Italy) Evangelos Melas (QMW, University of London, UK) Maurizio Melis (Università di Cagliary, Italy) Vitaly Melnikov (VNIIMS, Moscow, Russia) Guillermo A. Mena Marugan (CSIC, Madrid, Spain) Pietro Menotti (Università di Pisa, Italy) Salvatore Mignemi (Università di Cagliari, Italy) Aleksandar Mikovic (Universidade Lusófona, Lisboa, Portugal) Leonardo Modesto (Université de la Mediterranée, Marseille

  14. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    wavefront corrector ophthalmic adaptive optics: design and alignment (oral paper) / Alfredo Dubra and David Williams. High speed simultaneous SLO/OCT imaging of the human retina with adaptive optics (oral paper) / M. Pircher ... [et al.]. Characterization of an AO-OCT system (oral paper) / Julia W. Evans ... [et al.]. Adaptive optics optical coherence tomography for retina imaging (oral paper) / Guohua Shi ... [et al.]. Development, calibration and performance of an electromagnetic-mirror-based adaptive optics system for visual optics (oral paper) / Enrique Gambra ... [et al.]. Adaptive eye model (poster paper) / Sergey O. Galetskzy and Alexty V. Kudryashov. Adaptive optics system for retinal imaging based on a pyramid wavefront sensor (poster paper) / Sabine Chiesa ... [et al.]. Modeling of non-stationary dynamic ocular aberrations (poster paper) / Conor Leahy and Chris Dainty. High-order aberrations and accommodation of human eye (poster paper) / Lixia Xue ... [et al.]. Electromagnetic deformable mirror: experimental assessment and first ophthalmic applications (poster paper) / L. Vabre ... [et al.]. Correcting ocular aberrations in optical coherence tomography (poster paper) / Simon Tuohy ... [et al.] -- pt. 4. Adaptive optics in optical storage and microscopy. The application of liquid crystal aberration compensator for the optical disc systems (invited paper) / Masakazu Ogasawara. Commercialization of the adaptive scanning optical microscope (ASOM) (oral paper) / Benjamin Potsaid ... [et al.]. A practical implementation of adaptive optics for aberration compensation in optical microscopy (oral paper) / A. J. Wright ... [et al.]. Active focus locking in an optically sectioning microscope using adaptive optics (poster paper) / S. Poland, A. J. Wright, J. M. Girkin. Towards four dimensional particle tracking for biological applications / Heather I. Campbell ... [et al.]. Adaptive optics for microscopy (poster paper) / Xavier Levecq -- pt. 5. Adaptive optics in lasers

  15. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    NASA Astrophysics Data System (ADS)

    Kornyshev, Alexei A.

    2010-10-01

    achieved in understanding the role of electrostatic interactions with ions and charged moieties that can influence the shape and elasticity of DNA, highlighted particularly in the studies of Jim Maher (University of Minnesota). Generally, the role of helical structure dependent, so called `helix-specific' interactions on which the lecture of Sergey Leikin (NIH) was focused, was unequivocally found to play a crucial role in the interaction, aggregation and assembly of DNA—from liquid crystals to intracellular compartments, as well as viral capsids. One of the hottest sessions was devoted to the 'last great enigma' of genetic recombination: its 'zero' stage—the recognition of homologous genes. The big picture was overviewed in biological terms by Adi Barzel (following a 'manifesto' article with Martin Kupiec [6]). New experiments were then reported that showed that DNA can recognize its homology from a distance without unzipping and local base pair formation. The reported published experiments of an Imperial-NIH team [7], widely discussed last year under a controversial notion of DNA-'telepathy' (in quotes, of course), were based on the direct observation of spontaneous segregation of homologous DNA in cholesteric liquid crystals. The reported by Mara Prentiss, and now published, beautiful experiments of the Harvard team [8] were more involved and were based on the application of the magnetic bead technique (purely physical methods). These have unambiguously demonstrated homology pairing at the double-stranded DNA level, also providing evidence of unimportance of defect-based Watson and Crick pairing in this phenomenon. Both kinds of experiments supported the expectations of an electrostatic snapshot recognition mechanism behind intact, double-stranded DNA homology pairing [9]. But none of them has yet systematically studied its various features, after which one could consider the mentioned mechanism experimentally confirmed. Discussions at breakout meetings referred to

  16. List of Participants

    NASA Astrophysics Data System (ADS)

    2007-11-01

    de Física Teórica, Madrid Aaron Sim Imperial College, London Woojoo Sim Pohang University of Science and Technology (POSTECH) Sergey Slizovskiy Department of Theoretical Physics, Uppsala University Paul Smyth Katholieke Universiteit Leuven Corneliu Sochichiu Laboratori Nazionali di Frascati Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Kellogg Stelle Imperial College, London Piotr Surowka Jagiellonian University, Krakow Yasutoshi Takayama Niels Bohr Institute, København Laura Tamassia Katholieke Universiteit Leuven Radu Tatar University of Liverpool Larus Thorlacius University of Iceland Paavo Tiitola Helsinki Institute of Physics Diego Trancanelli Stony Brook University, NY Michele TraplettiInstitut für Theoretische Physik, Universität Heidelberg Mario Trigiante Politecnico di Torino Angel Uranga CERN, Geneva and Instituto de Física Teórica, Madrid Roberto Valandro SISSA, Trieste Dieter Van den Bleeken Katholieke Universiteit Leuven Antoine Van Proeyen Katholieke Universiteit Leuven Thomas Van Riet Centre for Theoretical Physics, University of Groningen Pierre Vanhove Service de Physique Théorique, Saclay Oscar Varela Universidad de Valencia Alessandro Vichi Scuola Normale Superiore di Pisa Massimiliano VinconQueen Mary, University of London John Ward Queen Mary, University of London and CERN, Geneva Brian Wecht Massachusetts Institute of Technology, Cambridge, MA Marlene Weiss Eidgenössische Technische Hochschule, Zürich and CERN, Geneva Sebastian Weiss Université de Neuchâtel Alexander Wijns Vrije Universiteit, Brussel Przemek Witaszczyk Jagiellonian University, Krakow Timm Wrase University of Texas at Austin Jun-Bao Wu SISSA, Trieste Amos Yarom Ludwig-Maximilians-Universität, München Marco Zagermann Max-Planck-Institut für Physik, München Daniela Zanon Dipartimento di Fisica, Università di Milano Andrea Zanzi University of Bonn Andrey Zayakin Moscow State University (MSU) and Institute for Theoretical and Experimental Physics (ITEP