Science.gov

Sample records for alendronate risedronate ibandronate

  1. Effects of antifracture drugs in postmenopausal, male and glucocorticoid-induced osteoporosis--usefulness of alendronate and risedronate.

    PubMed

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro

    2007-11-01

    The purpose of this paper is to discuss the effects of antifracture drugs on postmenopausal, male and glucocorticoid-induced osteoporosis, focussing on the efficacy and safety of alendronate and risedronate. A search of the literature was conducted using PubMed for strictly conducted systematic reviews published from 1995 to present with homogeneity, meta-analyses with homogeneity, and randomized controlled trials (RCTs) with a narrow confidence interval. According to the results of the systematic reviews and meta-analyses, alendronate and risedronate are useful for the prevention of vertebral and non-vertebral fractures in postmenopausal women with osteoporosis. The results of RCTs have shown the antifracture efficacy of raloxifene and ibandronate against vertebral fractures and that of strontium and parathyroid hormone against vertebral and non-vertebral fractures in postmenopausal women with osteoporosis. In addition, the long-term safety of alendronate, risedronate and raloxifene has been established. On the other hand, RCTs have shown that, only alendronate prevents vertebral fractures in men with osteoporosis, and that alendronate and risedronate can prevent vertebral fractures in patients receiving glucocorticoid treatment. There seems to be less evidence of the antifracture efficacy of the drugs in male and glucocorticoid-induced osteoporosis. They have limitations related to long-term compliance, gastrointestinal intolerance and poor and variable absorption form gastrointestinal tract. Thus, intermittent intravenous administration of bisphosphonates such as ibandronate and zoledronate or subcutaneous administration of denosumab might address some of these problems, although the antifracture efficacy of these drugs needs be established. However, antifracture efficacy and long-term safety are important points in the choice of drugs for the treatment of osteoporosis. Thus, the evidence derived from the literature, based on strict evidence-based medicine

  2. Treatment of osteoporosis after alendronate or risedronate.

    PubMed

    Eiken, P; Vestergaard, P

    2016-01-01

    Alendronate (ALN) and risedronate (RIS) are ideal as first-choice therapy options in the treatment of postmenopausal osteoporosis. What to do for patients who do not respond adequately to bisphosphonates has not been conclusively determined, but transitioning to other therapies should be considered. The aim of this article is to describe potential alternatives for patients switching from ALN or RIS to other therapies for osteoporosis. A systematic search of PubMed was conducted to find papers that evaluate the effects of switching therapies on fractures, bone mineral density (BMD), or bone turnover markers. Results from 11 studies that prospectively assessed treatment after ALN or RIS in women with postmenopausal osteoporosis were reviewed. All studies are of short duration (all 24 months or less) and assess the topic of transitioning therapy from ALN or RIS. None of the studies had the statistical power to assess fracture-reduction efficacy. Transitioning from ALN to zoledronic acid maintains therapeutic effects for 12 months. Switching to strontium ranelate, denosumab, or teriparatide causes further increases in BMD. Specifically, transitioning to teriparatide could be used for a limited time for select patients but needs to be followed up with anti-resorptive treatment to prevent a loss of the bone gained. There are only few studies-of short duration-that assess the topic of transitioning therapy from ALN or RIS, although this is a very frequent occurrence in clinical practice. This is especially true if the patient has not reached his/her therapy goal. Further long-term studies are needed. PMID:26438307

  3. Ibandronate

    MedlinePlus

    ... Ibandronate is in a class of medications called bisphosphonates. It works by preventing bone breakdown and increasing ... unusual problems while taking this medication.Taking a bisphosphonate medication such as ibandronate for osteoporosis may increase ...

  4. Risedronate improves bone architecture and strength faster than alendronate in ovariectomized rats on a low-calcium diet.

    PubMed

    Yano, Tetsuo; Yamada, Mei; Konda, Tomoyuki; Shiozaki, Makoto; Inoue, Daisuke

    2014-11-01

    Clinical evidence suggests that, compared with alendronate, risedronate reduces fracture risk faster and more potently, with less bone mass gain. We tested the hypothesis that risedronate improves bone quality faster than alendronate using calcium-deficient, ovariectomized (OVX) rats. Female Sprague-Dawley rats at 24 weeks of age were divided into sham-operated and OVX groups and fed a low-calcium (0.05%) diet under paired feeding. After 12 weeks, OVX rats were divided into five groups and treated with vehicle, risedronate (3.5 and 17.5 μg/kg/week, s.c.) or alendronate (7 and 35 μg/kg/week, s.c.). Rats were killed 6-8 weeks later and the bone architecture and strength of the left femur were evaluated by micro-computed tomography and a three-point bending test. Trabecular bone mineral density (BMD), number and thickness were significantly lower in OVX rats than in the sham-operated group. Cortical BMD, bone area (Ct.Ar), and thickness (Ct.Th) were similarly decreased. Risedronate significantly improved Ct.Ar (+8%) and Ct.Th (+9%) at 6 weeks, while alendronate only caused a significant improvement in Ct.Ar (+8% at 6 weeks) and only at the higher dose. At 8 weeks, both risedronate and alendronate significantly increased trabecular BMD compared with the vehicle. Bone strength parameters showed a significant correlation between Ct.Ar and Ct.Th. Risedronate significantly improved maximum load at 6 weeks, while alendronate failed to produce any significant changes. Our results suggest that risedronate is superior to alendronate at improving cortical bone architecture and strength, and that enhanced bone quality partly accounts for risedronate's efficacy.

  5. Clinical efficacy on fracture risk and safety of 0.5 mg or 1 mg/month intravenous ibandronate versus 2.5 mg/day oral risedronate in patients with primary osteoporosis.

    PubMed

    Nakamura, Toshitaka; Nakano, Tetsuo; Ito, Masako; Hagino, Hiroshi; Hashimoto, Junko; Tobinai, Masato; Mizunuma, Hideki

    2013-08-01

    This randomized, double-blind study assessed the antifracture efficacy and safety of intermittent intravenous (IV) ibandronate versus oral daily risedronate in Japanese patients with primary osteoporosis. Ambulatory patients aged ≥60 years were randomized to receive 0.5 or 1 mg/month IV ibandronate plus oral daily placebo or 2.5 mg/day oral risedronate, the licensed dose in Japan, plus IV placebo. The primary end point was noninferiority of ibandronate versus risedronate for first new or worsening vertebral fracture over 3 years. A total of 1,265 patients were randomized. A total of 1,134 patients formed the per-protocol set. Both ibandronate doses were noninferior to risedronate: 0.5 mg, hazard ratio (HR) 1.09 [95 % confidence interval (CI) 0.77-1.54]; 1 mg, HR 0.88 (95 % CI 0.61-1.27). The rate of first new vertebral fracture over 3 years was 16.8 % (95 % CI 12.8-20.8) for 0.5 mg ibandronate, 11.6 % (95 % CI 8.2-15.0) for 1 mg ibandronate, and 13.2 % (95 % CI 9.6-16.9) for risedronate. Significant increases in bone mineral density relative to baseline were observed with all treatments after 6 months, with substantial reductions in bone turnover markers after 3 months. Greatest efficacy was obtained with 1 mg ibandronate. Analyses in women only showed similar results to the overall population. No new safety concerns were identified. This study demonstrated the noninferiority of IV ibandronate to the licensed Japanese dose of oral risedronate and suggested that 1 mg/month is an effective dose in Japanese patients with primary osteoporosis. PMID:23644930

  6. Clinical efficacy on fracture risk and safety of 0.5 mg or 1 mg/month intravenous ibandronate versus 2.5 mg/day oral risedronate in patients with primary osteoporosis.

    PubMed

    Nakamura, Toshitaka; Nakano, Tetsuo; Ito, Masako; Hagino, Hiroshi; Hashimoto, Junko; Tobinai, Masato; Mizunuma, Hideki

    2013-08-01

    This randomized, double-blind study assessed the antifracture efficacy and safety of intermittent intravenous (IV) ibandronate versus oral daily risedronate in Japanese patients with primary osteoporosis. Ambulatory patients aged ≥60 years were randomized to receive 0.5 or 1 mg/month IV ibandronate plus oral daily placebo or 2.5 mg/day oral risedronate, the licensed dose in Japan, plus IV placebo. The primary end point was noninferiority of ibandronate versus risedronate for first new or worsening vertebral fracture over 3 years. A total of 1,265 patients were randomized. A total of 1,134 patients formed the per-protocol set. Both ibandronate doses were noninferior to risedronate: 0.5 mg, hazard ratio (HR) 1.09 [95 % confidence interval (CI) 0.77-1.54]; 1 mg, HR 0.88 (95 % CI 0.61-1.27). The rate of first new vertebral fracture over 3 years was 16.8 % (95 % CI 12.8-20.8) for 0.5 mg ibandronate, 11.6 % (95 % CI 8.2-15.0) for 1 mg ibandronate, and 13.2 % (95 % CI 9.6-16.9) for risedronate. Significant increases in bone mineral density relative to baseline were observed with all treatments after 6 months, with substantial reductions in bone turnover markers after 3 months. Greatest efficacy was obtained with 1 mg ibandronate. Analyses in women only showed similar results to the overall population. No new safety concerns were identified. This study demonstrated the noninferiority of IV ibandronate to the licensed Japanese dose of oral risedronate and suggested that 1 mg/month is an effective dose in Japanese patients with primary osteoporosis.

  7. Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: The risedronate and alendronate (REAL) cohort study

    PubMed Central

    Watts, N. B.; Delmas, P. D.; Lange, J. L.; Lindsay, R.

    2006-01-01

    Introduction Randomized clinical trials have shown that risedronate and alendronate reduce fractures among women with osteoporosis. The aim of this observational study was to observe, in clinical practice, the incidence of hip and nonvertebral fractures among women in the year following initiation of once-a-week dosing of either risedronate or alendronate. Methods Using records of health service utilization from July 2002 through September 2004, we created two cohorts: women (ages 65 and over) receiving risedronate (n = 12,215) or alendronate (n = 21,615). Cox proportional hazard modeling was used to compare the annual incidence of nonvertebral fractures and of hip fractures between cohorts, adjusting for potential differences in risk factors for fractures. Results There were 507 nonvertebral fractures and 109 hip fractures. Through one year of therapy, the incidence of nonvertebral fractures in the risedronate cohort (2.0%) was 18% lower (95% CI 2% – 32%) than in the alendronate cohort (2.3%). The incidence of hip fractures in the risedronate cohort (0.4%) was 43% lower (95% CI 13% – 63%) than in the alendronate cohort (0.6%). These results were consistent across a number of sensitivity analyses. Conclusion Patients receiving risedronate have lower rates of hip and nonvertebral fractures during their first year of therapy than patients receiving alendronate. PMID:17106785

  8. Risedronate.

    PubMed

    Goa, K L; Balfour, J A

    1998-07-01

    Risedronate is a pyridinyl bisphosphonate that can be administered orally in lower dosages than other antiresorptive bisphosphonates. Like others of its class risedronate inhibits osteoclast-mediated bone resorption. In experimental models of osteoporosis, risedronate inhibited bone loss and improved trabecular architecture. In patients with Paget's disease, pain diminished or disappeared and serum alkaline phosphatase levels decreased after treatment with oral risedronate 30 mg/day for < or = 3 months. Risedronate 30 mg/day orally for 2 months significantly reduced pain, whereas etidronate 400 mg/day orally for 6 months tended to reduce pain, in a randomised double-blind trial of patients with Paget's disease. Oral risedronate 5 mg/day for < or = 2 years increased bone mass in postmenopausal women with low or normal bone mass. Risedronate 2.5 mg/day prevented bone loss in postmenopausal women treated with glucocorticoids for rheumatoid arthritis. The incidence of gastrointestinal or other adverse events was similar in patients treated with risedronate or placebo in clinical trials.

  9. Risedronate

    MedlinePlus

    ... acting tablets) are used to prevent and treat osteoporosis (a condition in which the bones become thin ... periods). Risedronate tablets are also used to treat osteoporosis in men, and in men and women who ...

  10. Alendronate and Risedronate for the Treatment of Postmenopausal Osteoporosis: Clinical Profiles of the Once-Weekly and Once-Daily Dosing Formulations

    PubMed Central

    Emkey, Ronald

    2004-01-01

    Objective The objective of this review is to present the clinical profiles of the once-weekly and once-daily dosing formulations of alendronate and risedronate, the 2 bisphosphonates currently available in the United States for the prevention and treatment of postmenopausal osteoporosis. Data Source/Study Selection Data were obtained from a MEDLINE literature search of all English language articles published between January 1996 and April 2004 using generic names of the bisphosphonates alendronate and risedronate. Results were refined by incorporating terms such as "osteoporosis," "bone mineral density," "fracture risk," and "adverse events." Randomized, controlled trials of once-daily and once-weekly bisphosphonate therapies were selected. Also selected for review were post hoc analyses and extension studies of the original controlled trials, including more recent data from published abstracts from scientific meetings. Data Extraction Relevant portions of articles obtained from the literature search were used to summarize the efficacy and tolerability of the 2 therapies. Conclusions In prospective trials, both bisphosphonates were effective in reducing vertebral and hip fractures in women with postmenopausal osteoporosis. In the only prospective trial evaluating hip fracture risk reduction as the primary end point, risedronate was effective at reducing hip fracture vs placebo. Both alendronate and risedronate are available in once-weekly formulations that have efficacy and tolerability profiles similar to the once-daily doses. Clinicians should review all available data for both agents as well as the medical history of the patient to make the most appropriate treatment choice. PMID:15520628

  11. Comparison of the analgesic effects of bisphosphonates: etidronate, alendronate and risedronate by electroalgometry utilizing the fall of skin impedance.

    PubMed

    Fujita, Takuo; Ohue, Mutsumi; Fujii, Yoshio; Miyauchi, Akimitsu; Takagi, Yasuyuki

    2009-01-01

    Analgesic effects of etidronate, alendronate and risedronate were compared in patients with osteoporosis and/or osteoarthritis by measuring the fall of skin impedance along with conventional subjective pain-estimation by visual rating scale (VRS). One hundred ninety-nine postmenopausal women consulting the Osteoporosis and Osteoarthritis Clinic of Katsuragi Hospital complaining of back and/or knee pain were randomly divided into four groups; Group A (49 subjects) given 5 mg/day alendronate, Group E (50 subjects) 200 mg/day etidronate, Group R (50 subjects) 2.5 mg/day risedronate and Group P no bisphosphonate. None of the four groups showed significant deviation from others as to age and parameters of bone metabolism. Proportions of subjects with osteoporosis was 18-40%. Those with osteoarthritis of the spine and knee, higher than Grade II according to the Nathan and Lawrence-Kellgren scale, respectively, was 45 and 61%, respectively, without a significant difference among the four groups. Significant positive correlation was found between the fall of skin impedance and pain expressed in VRS. Attenuation of exercise-induced fall of skin impedance and also subjective pain expressed in VRS was greatest in Group E with a highly significant difference from Groups A (P = 0.0002 and P < 0.0001), R (P < 0.0001 and P = 0.0014) and P (P < 0.0001 and P < 0.0001). Neither A nor R showed significant difference from P as to the fall of skin impedance. Among the three bisphosphonates tested, etidronate appeared to be outstanding in analgesic effects.

  12. Alendronate

    MedlinePlus

    ... Alendronate is in a class of medications called bisphosphonates. It works by preventing bone breakdown and increasing ... in the hips, groin, or thighs Taking a bisphosphonate medication such as alendronate for osteoporosis may increase ...

  13. Adherence to alendronic or risedronic acid treatment, combined or not to calcium and vitamin D, and related determinants in Italian patients with osteoporosis

    PubMed Central

    Calabria, S; Cinconze, E; Rossini, M; Rossi, E; Maggioni, AP; Pedrini, A; De Rosa, M

    2016-01-01

    Purpose Osteoporosis is a chronic disease and an important health and social burden due to its worldwide prevalence. Literature and clinical experience report incomplete adherence to the therapy. This retrospective observational study aimed at assessing the adherence to first-line antiosteoporosis drugs (AODs; reimbursed by the National Health System, according to the Italian Medicine Agency recommendation number 79), alendronate or risedronate, with or without calcium and/or vitamin D supplements, in a real, Italian clinical setting. Patients and methods Analyses were carried out on data present in the ARNO Observatory, a population-based patient-centric Italian database. From a population of 5,808,832 inhabitants with available data, a cohort of 3.3 million of patients aged ≥40 years was selected. New users of first-line AODs as monotherapy (accrual period, 2007–2009) were followed up over 3 years to assess adherence at 6, 12, and 36 months to AODs and to supplements and related determinants. Results Approximately 40,000 new users were identified: mostly women, aged on average (standard deviation) 71±10 years. Alendronate was the most prescribed (38.2% of patients), followed by risedronate (34.9%) and alendronate with colecalciferol as a fixed-dose combination (25.8%). Adherence at the 6-month follow-up was 54%, and this constantly and significantly decreased after 1 year to 46%, and after 3 years to 33% (P<0.01). Adherence to the fixed-dose combination was higher than to plain alendronate throughout the follow-up period. Similarly, adherence to supplements constantly decreased with the duration of treatment. Women and patients aged >50 years were more likely to adhere to treatment regimen (P<0.001). The use of drugs for peptic ulcer and gastroesophageal reflux disease and of corticosteroids for systemic use were significantly associated with high adherence at different times. Polytherapy (>5 drugs), cardiovascular, and neurological therapies were

  14. Long-term efficacy, safety, and patient acceptability of ibandronate in the treatment of postmenopausal osteoporosis.

    PubMed

    Inderjeeth, Charles A; Glendenning, Paul; Ratnagobal, Shoba; Inderjeeth, Diren Che; Ondhia, Chandni

    2015-01-01

    Several second-generation bisphosphonates (BPs) are approved in osteoporosis treatment. Efficacy and safety depends on potency of farnesyl pyrophosphate synthase (FPPS) inhibition, hydroxyapatite affinity, compliance and adherence. The latter may be influenced by frequency and route of administration. A literature search using "ibandronate", "postmenopausal osteoporosis", "fracture", and "bone mineral density" (BMD) revealed 168 publications. The Phase III BONE study, using low dose 2.5 mg daily oral ibandronate demonstrated 49% relative risk reduction (RRR) in clinical vertebral fracture after 3 years. Non-vertebral fracture (NVF) reduction was demonstrated in a subgroup (pretreatment T-score ≤ -3.0; RRR 69%) and a meta-analysis of high annual doses (150 mg oral monthly or intravenous equivalent of ibandronate; RRR 38%). Hip fracture reduction was not demonstrated. Long-term treatment efficacy has been confirmed over 5 years. Long term safety is comparable to placebo over 3 years apart from flu-like symptoms which are more common with oral monthly and intravenous treatments. No cases of atypical femoral fracture or osteonecrosis of the jaw have been reported in randomized controlled trial studies. Ibandronate inhibits FPPS more than alendronate but less than other BPs which could explain rate of action onset. Ibandronate has a higher affinity for hydroxyapatite compared with risedronate but less than other BPs which could affect skeletal distribution and rate of action offset. High doses (150 mg oral monthly or intravenous equivalent) were superior to low doses (oral 2.5 mg daily) according to 1 year BMD change. Data are limited by patient selection, statistical power, under-dosing, and absence of placebo groups in high dose studies. Ibandronate treatment offers different doses and modalities of administration which could translate into higher adherence rates, an important factor when the two main limitations of BP treatment are initiation and adherence rates

  15. Ibandronate Injection

    MedlinePlus

    ... Ibandronate is in a class of medications called bisphosphonates. It works by preventing bone breakdown and increasing ... while receiving this medication.Being treated with a bisphosphonate medication such as ibandronate injection for osteoporosis may ...

  16. Efficacy of intravenously administered ibandronate in postmenopausal Korean women with insufficient response to orally administered bisphosphonates.

    PubMed

    Bae, Sung Jin; Kim, Beom-Jun; Lim, Kyeong Hye; Lee, Seung Hun; Kim, Hong Kyu; Kim, Ghi Su; Koh, Jung-Min

    2012-09-01

    We investigated rates of insufficient and over-responsiveness to orally administered bisphosphonates in postmenopausal women, and tested the efficacy of intravenous ibandronate in patients with insufficient response to orally administered bisphosphonates. Postmenopausal women were treated with either alendronate (70 mg/week; n = 88) or risedronate (35 mg/week; n = 84) for 1 year, and their response to orally administered bisphosphonates was assessed using serum C-telopeptide (CTX) levels. Insufficient responders were changed to once-quarterly intravenous ibandronate 3 mg injection (n = 13) or maintained on orally administered bisphosphonates (n = 19), according to patients' preference, for an additional 1 year. There was no significant difference in baseline characteristics between two orally administered bisphosphonate groups except the bone mineral density values at the lumbar spine. Insufficient rate was higher in the risedronate group (19.0 %) than in the alendronate group (8.0 %), using the premenopausal serum CTX median as a cut-off (P = 0.043). The over-response rate among the alendronate group (59.1 %) was significantly higher than that in the risedronate group (38.1 %), based on a serum CTX cut-off value of 0.100 ng/ml (P = 0.006). Intravenous ibandronate suppressed serum CTX levels to a significantly greater degree at 7 days after the second dosing (0.191 ± 0.110 ng/mL; P < 0.001) and 3 months after the fourth dosing (0.274 ± 0.159 ng/mL; P = 0.004) among insufficient responders, compared with post-oral/pre-intravenous levels (0.450 ± 0.134 ng/mL). Rates of insufficient and over-responsiveness to orally administered bisphosphonates were considerable, and a change to intravenous bisphosphonates may be considered in patients showing an insufficient response to orally administered bisphosphonates.

  17. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis.

    PubMed

    Khajuria, Deepak Kumar; Disha, Choudhary; Vasireddi, Ramakrishna; Razdan, Rema; Mahapatra, D Roy

    2016-06-01

    Targeting of superior osteogenic drugs to bone is an ideal approach for treatment of osteoporosis. Here, we investigated the potential of using risedronate/zinc-hydroxyapatite (ZnHA) nanoparticles based formulation in a rat model of experimental osteoporosis. Risedronate, a targeting moiety that has a strong affinity for bone, was loaded to ZnHA nanoparticles by adsorption method. Prepared risedronate/ZnHA drug formulation was characterized by field-emission scanning electron microscopy, X-ray diffraction analysis and fourier transform infrared spectroscopy. In vivo performance of the prepared risedronate/ZnHA nanoparticles was tested in an experimental model of postmenopausal osteoporosis. Therapy with risedronate/ZnHA drug formulation prevented increase in serum levels of bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b better than risedronate/HA or risedronate. With respect to improvement in the mechanical strength of the femoral mid-shaft and correction of increase in urine calcium and creatinine levels, the therapy with risedronate/ZnHA drug formulation was more effective than risedronate/HA or risedronate therapy. Moreover, risedronate/ZnHA drug therapy preserved the cortical and trabecular bone microarchitecture better than risedronate/HA or risedronate therapy. Furthermore, risedronate/ZnHA drug formulation showed higher values of calcium/phosphorous ratio and zinc content. The results strongly implicate that risedronate/ZnHA drug formulation has a therapeutic advantage over risedronate or risedronate/HA therapy for the treatment of osteoporosis. PMID:27040198

  18. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis.

    PubMed

    Khajuria, Deepak Kumar; Disha, Choudhary; Vasireddi, Ramakrishna; Razdan, Rema; Mahapatra, D Roy

    2016-06-01

    Targeting of superior osteogenic drugs to bone is an ideal approach for treatment of osteoporosis. Here, we investigated the potential of using risedronate/zinc-hydroxyapatite (ZnHA) nanoparticles based formulation in a rat model of experimental osteoporosis. Risedronate, a targeting moiety that has a strong affinity for bone, was loaded to ZnHA nanoparticles by adsorption method. Prepared risedronate/ZnHA drug formulation was characterized by field-emission scanning electron microscopy, X-ray diffraction analysis and fourier transform infrared spectroscopy. In vivo performance of the prepared risedronate/ZnHA nanoparticles was tested in an experimental model of postmenopausal osteoporosis. Therapy with risedronate/ZnHA drug formulation prevented increase in serum levels of bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b better than risedronate/HA or risedronate. With respect to improvement in the mechanical strength of the femoral mid-shaft and correction of increase in urine calcium and creatinine levels, the therapy with risedronate/ZnHA drug formulation was more effective than risedronate/HA or risedronate therapy. Moreover, risedronate/ZnHA drug therapy preserved the cortical and trabecular bone microarchitecture better than risedronate/HA or risedronate therapy. Furthermore, risedronate/ZnHA drug formulation showed higher values of calcium/phosphorous ratio and zinc content. The results strongly implicate that risedronate/ZnHA drug formulation has a therapeutic advantage over risedronate or risedronate/HA therapy for the treatment of osteoporosis.

  19. Efficacy of ibandronate: a long term confirmation

    PubMed Central

    Di Munno, Ombretta; Delle Sedie, Andrea

    2010-01-01

    Data deriving from randomized clinical trials, observational studies and meta-analyses, including treatment regimens unlicensed for use in clinical practice, clearly support that 150 mg once-monthly oral and 3 mg quarterly i.v. doses of ibandronate are associated with efficacy, safety and tolerability; notably both these marketed regimens, which largely correspond to ACE ≥10.8 mg, may in addition provide a significant efficacy on non-vertebral and clinical fracture (Fx) efficacy. The MOBILE and the DIVA LTE studies confirmed a sustained efficacy of monthly oral and quarterly i.v. regimens respectively, over 5 years. Furthermore, improved adherence rates with monthly ibandronate, deriving from studies evaluating large prescription databases, promise to enhance fracture protection and decrease the social and economic burden of postmenopausal osteoporosis. PMID:22461287

  20. Efficacy of ibandronate: a long term confirmation.

    PubMed

    Di Munno, Ombretta; Delle Sedie, Andrea

    2010-01-01

    Data deriving from randomized clinical trials, observational studies and meta-analyses, including treatment regimens unlicensed for use in clinical practice, clearly support that 150 mg once-monthly oral and 3 mg quarterly i.v. doses of ibandronate are associated with efficacy, safety and tolerability; notably both these marketed regimens, which largely correspond to ACE ≥10.8 mg, may in addition provide a significant efficacy on non-vertebral and clinical fracture (Fx) efficacy. The MOBILE and the DIVA LTE studies confirmed a sustained efficacy of monthly oral and quarterly i.v. regimens respectively, over 5 years. Furthermore, improved adherence rates with monthly ibandronate, deriving from studies evaluating large prescription databases, promise to enhance fracture protection and decrease the social and economic burden of postmenopausal osteoporosis.

  1. Evaluation of risedronate as an antibiofilm agent.

    PubMed

    Reshamwala, Shamlan M S; Mamidipally, Chandrasekhar; Pissurlenkar, Raghuvir R S; Coutinho, Evans C; Noronha, Santosh B

    2016-01-01

    Escherichia coli cra null mutants have been reported in the literature to be impaired in biofilm formation. To develop E. coli biofilm-inhibiting agents for prevention and control of adherent behaviour, analogues of a natural Cra ligand, fructose-1,6-bisphosphate, were identified based on two-dimensional similarity to the natural ligand. Of the analogues identified, those belonging to the bisphosphonate class of drug molecules were selected for study, as these are approved for clinical use in humans and their safety has been established. Computational and in vitro studies with purified Cra protein showed that risedronate sodium interacted with residues in the fructose-1,6-bisphosphate-binding site. Using a quantitative biofilm assay, risedronate sodium, at a concentration of 300-400 μM, was found to decrease E. coli and Salmonella pullorum biofilm formation by >60 %. Risedronate drastically reduced the adherence of E. coli cells to a rubber Foley urinary catheter, demonstrating its utility in preventing the formation of biofilm communities on medical implant surfaces. The use of risedronate, either alone or in combination with other agents, to prevent the formation of biofilms on surfaces is a novel finding that can easily be translated into practical applications. PMID:26497196

  2. Gastrointestinal tolerability with ibandronate after previous weekly bisphosphonate treatment

    PubMed Central

    Derman, Richard; Kohles, Joseph D; Babbitt, Ann

    2009-01-01

    Data from two open-label trials (PRIOR and CURRENT) of women with postmenopausal osteoporosis or osteopenia were evaluated to assess whether monthly oral and quarterly intravenous (IV) ibandronate dosing improved self-reported gastrointestinal (GI) tolerability for patients who had previously experienced GI irritation with bisphosphonate (BP) use. In PRIOR, women who had discontinued daily or weekly BP treatment due to GI intolerance received monthly oral or quarterly IV ibandronate for 12 months. The CURRENT subanalysis included women receiving weekly BP treatment who switched to monthly oral ibandronate for six months. GI symptom severity and frequency were assessed using the Osteoporosis Patient Satisfaction Questionnaire™. In PRIOR, mean GI tolerability scores increased significantly at month 1 from screening for both treatment groups (oral: 79.3 versus 54.1; IV: 84.4 versus 51.0; p < 0.001 for both). Most patients reported improvement in GI symptom severity and frequency from baseline at all post-screening assessments (>90% at Month 10). In the CURRENT subanalysis >60% of patients reported improvements in heartburn or acid reflux and >70% indicated improvement in other stomach upset at month 6. Postmenopausal women with GI irritability with daily or weekly BPs experienced improvement in symptoms with extended dosing monthly or quarterly ibandronate compared with baseline. PMID:19851511

  3. Risedronate-loaded Eudragit S100 microparticles formulated into tablets.

    PubMed

    Velasquez, Aline A; Mattiazzi, Juliane; Ferreira, Luana M; Pohlmann, Lauren; Silva, Cristiane B; Rolim, Clarice M B; Cruz, Letícia

    2014-05-01

    Risedronate, an anti-osteoporotic drug, is associated with low patient compliance due to the upper gastrointestinal side-effects and stringent dosing regimes. This study aimed to prepare and characterize risedronate-loaded Eudragit® S100 microparticles and develop a final dosage form by the compression of microparticles using direct tableting excipients. Microparticles were prepared by spray-drying and presented yield of 54%, encapsulation efficiency higher than 90%, mean diameter of 3.3 µm, moisture content around 8% and exhibited spherical shape and poor flowability. At pH 1.2, 23% of risedronate was released from microparticles in 120 min, while at pH 6.8 the drug took 90 min to reach 99.5%. Microparticles were compressed into tablets using microcrystalline cellulose, magnesium stearate, colloidal silicon dioxide and 2 polyvinylpyrrolidone concentrations (5% and 15%). Tablets presented low variations in weight, thickness and drug content. Besides, the formulations showed sufficient hardness, low friability and disintegrated in less than 15 min. In acid medium, no more than 16% of the drug was released in 120 min, while in intestinal medium the formulations prolonged the risedronate release for 240 min. Finally, the developed tableted microparticles can be considered a promising dosage form for oral risedronate administration. PMID:23506303

  4. Local Application of Ibandronate/Gelatin Sponge Improves Osteotomy Healing in Rabbits

    PubMed Central

    Xia, Zhidao; Liu, Yueju; Peggrem, Shaun; Geng, Tao; Yang, Zhaoxu; Li, Han; Xu, Bin; Zhang, Chi; Triffitt, James T.; Zhang, Yingze

    2015-01-01

    Delayed healing or non-union of skeletal fractures are common clinical complications. Ibandronate is a highly potent anti-catabolic reagent used for treatment of osteopenia and fracture prevention. We hypothesized that local application of ibandronate after fracture fixation may improve and sustain callus formation and therefore prevent delayed healing or non-union. This study tested the effect of local application of an ibandronate/gelatin sponge composite on osteotomy healing. A right-side distal-femoral osteotomy was created surgically, with fixation using a k-wire, in forty adult male rabbits. The animals were divided into four groups of ten animals and treated by: (i) intravenous injection of normal saline (Control); (ii) local implantation of absorbable gelatin sponge (GS); (iii) local implantation of absorbable GS containing ibandronate (IB+GS), and (iv) intravenous injection of ibandronate (IB i.v.). At two and four weeks the affected femora were harvested for X-ray photography, computed tomography (CT), biomechanical testing and histopathology. At both time-points the results showed that the calluses in both the ibandronate-treated groups, but especially in the IB+GS group, were significantly larger than in the control and GS groups. At four weeks the cross sectional area (CSA) and mechanical test results of ultimate load and energy in the IB+GS group were significantly higher than in other groups. Histological procedures showed a significant reduction in osteoclast numbers in the IB+GS and IB i.v. groups at day 14. The results indicate that local application of an ibandronate/gelatin sponge biomaterial improved early osteotomy healing after surgical fixation and suggest that such treatment may be a valuable local therapy to enhance fracture repair and potentially prevent delayed or non-union. PMID:25951178

  5. Farnesyl pyrophosphate synthase inhibitor, ibandronate, improves endothelial function in spontaneously hypertensive rats

    PubMed Central

    HAN, JIE; JIANG, DONG-MEI; YE, YANG; DU, CHANG-QING; YANG, JIAN; HU, SHEN-JIANG

    2016-01-01

    Reactive oxygen species (ROS), originating predominantly from vascular smooth muscle cells (VSMCs), lead to vascular damage and endothelial dysfunction in rats with hypertension. The downstream signaling pathways of farnesyl pyrophosphate (FPP) synthase, Ras-related C3 botulinum toxin substrate 1 (Rac1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mediate the generation of ROS. The present study investigated the effect of the FPP synthase inhibitor, ibandronate, on ROS production, the possible beneficial effect on endothelial dysfunction and the underlying mechanisms in spontaneously hypertensive rats (SHRs). The SHRs were treated with ibandronate for 30 days. Endothelium-dependent and independent vasorelaxation were measured in isolated aortic rings. Additionally, VSMCs from the SHRs and Wistar-Kyoto (WKY) rats were cultured. The production of ROS and activation of NADPH oxidase were determined using fluorescence and chemiluminescence, respectively, in vivo and in vitro. Angiotensin II (Ang II) increased ROS production in the cultured VSMCs from the WKY rats and SHRs, in a concentration-dependent manner. The Ang II-induced responses were more marked in the SHR VSMCs, compare with those in the WKY VSMCs, however, the response decreased significantly following ibandronate pretreatment. Treatment with ibandronate significantly decreased the production of ROS, translocation of NADPH oxidase subunit p47phox, and activities of NADPH oxidase and Rac1 in the aorta and VSMCs, and improved the impaired endothelium-dependent vasodilation in the SHRs. Adding geranylgeraniol, but not farnesol or mevalonate, reversed the inhibitory effects of ibandronate. In addition, inhibiting geranylgeranyl-transferase mimicked the effect of ibandronate on the excess oxidative response. Ibandronate exerted cellular antioxidant effects through the Rac1/NADPH oxidase pathway. These effects may have contributed to the vasoprotective effects on the impaired endothelium in

  6. On the absorption of alendronate in rats.

    PubMed

    Lin, J H; Chen, I W; deLuna, F A

    1994-12-01

    Alendronate is an antiosteolytic agent under investigation for the treatment of a number of bone disorders. Since the compound is a zwitterion with five pKa values and is completely ionized in the intestine at the physiological pH, absorption is poor; less than 1% of an oral dose is available systemically in rats. In the present studies, absorption was found to be predominantly in the upper part of the small intestine. Administration of buffered solutions of alendronate (pH 2-11) did not improve absorption. Whereas food markedly impaired the absorption of alendronate, EDTA enhanced absorption in a dose-dependent manner. Pretreatment of rats with ulcerogenic agents, mepirizole, acetylsalicylic acid, or indomethacin, resulted in a 3-7-fold increase in the oral absorption of alendronate. The absorption of phenol red, added as an indicator of intestinal tissue damage, was also increased in rats with experimental peptic ulcers. The enhanced absorption of alendronate observed in rats with experimental peptic ulcers was attributed to the alteration of the integrity of the intestinal membrane. PMID:7891304

  7. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    SciTech Connect

    Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao; Zhang, Bin; Xu, Jie; Huang, Fei; Zhao, Rui-Ni; Chen, Yong-Jin

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  8. Assessment of mortality in patients enrolled in a risedronate clinical trial program: a retrospective cohort study.

    PubMed

    Steinbuch, Michael; D'Agostino, Ralph B; Mandel, Jack S; Gabrielson, Edward; McClung, Michael R; Stemhagen, Annette; Hofman, Albert

    2002-06-01

    Risedronate, a pyridinyl bisphosphonate, has been shown in large clinical trials to be effective in the prevention and treatment of osteoporosis. Analysis of safety data from these trials has shown that risedronate (2.5- and 5-mg doses) has an overall safety profile comparable to placebo during the course of the clinical trials. The clinical trials were powered appropriately to analyze the efficacy endpoints; however, patients were not systematically followed after completion of the clinical trials and therefore vital status for most of the patient cohort after the cessation of the clinical trials was unknown. In order to investigate further the safety profile of risedronate observed in the clinical trials database, we conducted a retrospective cohort mortality study among 7981 patients comprising the intent-to-treat population in three North American risedronate osteoporosis trials. No difference in all cause mortality was observed in patients receiving risedronate treatment compared with patients receiving placebo. There were also no differences between these groups in mortality due to all cancers, lung cancer, and gastrointestinal tract cancer. A trend toward lower cardiovascular mortality was observed in the risedronate groups compared with placebo; this difference was largely due to a significant reduction in stroke mortality in the active treatment groups. Follow-up mortality data in this retrospective cohort study demonstrate that treatment with risedronate has no effect on overall mortality rates.

  9. Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo.

    PubMed

    Roelofs, Anke J; Coxon, Fraser P; Ebetino, Frank H; Lundy, Mark W; Henneman, Zachary J; Nancollas, George H; Sun, Shuting; Blazewska, Katarzyna M; Bala, Joy Lynn F; Kashemirov, Boris A; Khalid, Aysha B; McKenna, Charles E; Rogers, Michael J

    2010-03-01

    Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647-labeled risedronate (AF647-RIS), were used to address this question. Twenty-four hours after injection into 3-month-old mice, fluorescent risedronate analogues were bound to bone surfaces. More detailed analysis revealed labeling of vascular channel walls within cortical bone. Furthermore, fluorescent risedronate analogues were present in osteocytic lacunae in close proximity to vascular channels and localized to the lacunae of newly embedded osteocytes close to the bone surface. Following injection into newborn rabbits, intracellular uptake of fluorescently labeled risedronate was detected in osteoclasts, and the active analogue FAM-RIS caused accumulation of unprenylated Rap1A in these cells. In addition, CD14(high) bone marrow monocytes showed relatively high levels of uptake of fluorescently labeled risedronate, which correlated with selective accumulation of unprenylated Rap1A in CD14(+) cells, as well as osteoclasts, following treatment with risedronate in vivo. Similar results were obtained when either rabbit or human bone marrow cells were treated with fluorescent risedronate analogues in vitro. These findings suggest that the capacity of different cell types to endocytose bisphosphonate is a major determinant for the degree of cellular drug uptake in vitro as well as in vivo. In conclusion, this study shows that in addition to bone-resorbing osteoclasts, bisphosphonates may exert direct effects on bone marrow monocytes in vivo.

  10. Fluorescent Risedronate Analogues Reveal Bisphosphonate Uptake by Bone Marrow Monocytes and Localization Around Osteocytes In Vivo

    PubMed Central

    Roelofs, Anke J; Coxon, Fraser P; Ebetino, Frank H; Lundy, Mark W; Henneman, Zachary J; Nancollas, George H; Sun, Shuting; Blazewska, Katarzyna M; Bala, Joy Lynn F; Kashemirov, Boris A; Khalid, Aysha B; McKenna, Charles E; Rogers, Michael J

    2010-01-01

    Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647–labeled risedronate (AF647-RIS), were used to address this question. Twenty-four hours after injection into 3-month-old mice, fluorescent risedronate analogues were bound to bone surfaces. More detailed analysis revealed labeling of vascular channel walls within cortical bone. Furthermore, fluorescent risedronate analogues were present in osteocytic lacunae in close proximity to vascular channels and localized to the lacunae of newly embedded osteocytes close to the bone surface. Following injection into newborn rabbits, intracellular uptake of fluorescently labeled risedronate was detected in osteoclasts, and the active analogue FAM-RIS caused accumulation of unprenylated Rap1A in these cells. In addition, CD14high bone marrow monocytes showed relatively high levels of uptake of fluorescently labeled risedronate, which correlated with selective accumulation of unprenylated Rap1A in CD14+ cells, as well as osteoclasts, following treatment with risedronate in vivo. Similar results were obtained when either rabbit or human bone marrow cells were treated with fluorescent risedronate analogues in vitro. These findings suggest that the capacity of different cell types to endocytose bisphosphonate is a major determinant for the degree of cellular drug uptake in vitro as well as in vivo. In conclusion, this study shows that in addition to bone-resorbing osteoclasts, bisphosphonates may exert direct effects on bone marrow monocytes in vivo. © 2010 American Society for Bone and Mineral Research PMID:20422624

  11. Comparative Effects of Ibandronate and Paclitaxel on Immunocompetent Bone Metastasis Model

    PubMed Central

    Chung, Yoon-Sok; Kang, Ho Chul

    2015-01-01

    Purpose Bone metastasis invariably increases morbidity and mortality. This study compares the effects of ibandronate and paclitaxel on bone structure and its mechanical properties and biochemical turnover in resorption markers using an immunocompetent Walker 256-Sprague-Dawley model, which was subjected to tumor-induced osteolysis. Materials and Methods Seventy rats were divided equally into 4 groups: 1) sham group (SHAM), 2) tumor group (CANC), 3) ibandronate treated group (IBAN), and 4) paclitaxel treated group (PAC). Morphological indices [bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp)] and mechanical properties (failure load, stiffness) were evaluated after thirty days of treatment period. Bone resorption rate was analysed using serum deoxypyridinoline (Dpd) concentrations. Results Morphological indices showed that ibandronate (anti-resorptive drug) had a better effect in treating tumor-induced architectural changes in bone than paclitaxel (chemotherapeutic drug). The deterioration in bone architecture was reflected in the biomechanical properties of bone as studied with decreased failure load (Fx) and stiffness (S) of the bone on the 30th day post-surgery. Dpd concentrations were significantly lower in the IBAN group, indicating successful inhibition of bone resorption and destruction. Conclusion Ibandronate was found to be as effective as higher doses of paclitaxel in maintaining stiffness of bone. Paclitaxel treatment did not appear to inhibit osteoclast resorption, which is contrary to earlier in-vitro literature. Emphasis should be placed on the use of immunocompetent models for examining drug efficacy since it adequately reflects bone metastasis in clinical scenarios. PMID:26446649

  12. Administration of bisphosphonate (ibandronate) impedes molar tooth movement in rabbits: A radiographic assessment

    PubMed Central

    Venkataramana, V.; Kumar, S. Sathesh; Reddy, B. Vishnuvardhan; Cherukuri, A. Sreekanth; Sigamani, K. Raja; Chandrasekhar, G.

    2014-01-01

    Introduction: Bisphosphonate (Bp)-ibandronate is a pharmacological agent, exhibits antiosteoclastic or antiresorptive activity and used to treat osteolytic or osteopenic disorders. BP-ibandronate may also interfere during orthodontic tooth movement. The aim of this study was to examine the influence of locally administered Bp-ibandronate on experimental tooth movement in rabbits. Materials and Methods: Twenty rabbits were divided into two groups- “10” served as Group-1 (control) and other “10” as Group-2 (experimental). Both groups received nickel-titanium closed coil springs with 100 g force between mandibular molar and incisors. Group-1 animals received 1 ml normal saline and Group-2 animals received ibandronate solution (0.3 mg/kg body weight) locally, mesial to the mandibular molar on the 1st, 7th, and 14th day of the experiment. A total of “40” lateral cephalograms were taken from both groups on the 1st and 21st day using a digital X-ray unit (Siemens X-ray systems, 300 mA Pleomophos analog, 2008, Germany). Individually, each animal's radiograph was traced manually and superimposed. The molar tooth movement was measured with the help of a standard metric scale. Results: The Student's t-test has been done to compare the mean values of Group-1 (4.650 ± 0.363) and Group-2 (2.030 ± 0.291) and the difference was statistically significant (P < 0.001). Conclusion: The retarded molar tooth movement was noticed in local drug administered rabbits, which could be beneficial in orthodontics to control the undesired tooth movement. PMID:25210364

  13. Effects of risedronate on the morphology and viability of gingiva-derived mesenchymal stem cells

    PubMed Central

    KIM, BO-BAE; KO, YOUNGKYUNG; PARK, JUN-BEOM

    2015-01-01

    Risedronate has been used for the prevention and treatment of postmenopausal and corticosteroid-induced osteoporosis. The present study was performed to evaluate the effects of risedronate on the morphology and viability of human stem cells derived from the gingiva. Stem cells derived from the gingiva were grown in the presence of risedronate at concentrations that ranged from 1 to 10 µM. The morphology of the cells was viewed under an inverted microscope, and cell proliferation was analyzed with a cell counting kit-8 (CCK-8) on days 2, 4 and 7. The untreated control group showed a spindle-shaped, fibroblast-like morphology. The shapes of the cells treated with 1 and 5 µM risedronate were similar to that of the control group on day 2. However, morphology of the 10 µM group markedly differed from that of the control group. The shapes of the cells in the 1, 5 and 10 µM groups were rounder, and pronounced alterations when compared with the untreated control group were noted in all groups on day 7. The cultures growing in the presence of risedronate showed decreased CCK-8 values on day 7. In conclusion, risedronate produced notable alterations in the morphology of the cells and reduced the viability of gingival mesenchymal stem cells. PMID:26623028

  14. Effective mucoadhesive liposomal delivery system for risedronate: preparation and in vitro/in vivo characterization

    PubMed Central

    Jung, Il-Woo; Han, Hyo-Kyung

    2014-01-01

    In this work, we aimed to develop chitosan-coated mucoadhesive liposomes containing risedronate to improve intestinal drug absorption. Liposomes containing risedronate were prepared with 1,2-distearoryl-sn-glycero-3-phosphocholine and distearoryl-sn-glycero-3-[phospho-rac-(1-glycerol)] using the freeze-drying method, with subsequent coating of the anionic surfaces of the liposomes with chitosan. The in vitro characteristics of the chitosan-coated liposomes were investigated, including their stability, mucoadhesiveness, and Caco-2 cell permeability. This formulation was stable in simulated gastric and intestinal fluids, with the percentage of drug remaining in the liposomes being more than 90% after 24 hours of incubation. Chitosan-coated liposomes also showed strong mucoadhesive properties, implying potential electrostatic interaction with the mucous layer in the gastrointestinal tract. Compared with the untreated drug, chitosan-coated liposomes significantly enhanced the cellular uptake of risedronate, resulting in an approximately 2.1–2.6-fold increase in Caco-2 cells. Further, the chitosan-coated liposomes increased the oral exposure of risedronate by three-fold in rats. Taken together, the results of this study suggest that chitosan-coated liposomes containing risedronate should be effective for improving the bioavailability of risedronate. PMID:24872692

  15. Effective mucoadhesive liposomal delivery system for risedronate: preparation and in vitro/in vivo characterization.

    PubMed

    Jung, Il-Woo; Han, Hyo-Kyung

    2014-01-01

    In this work, we aimed to develop chitosan-coated mucoadhesive liposomes containing risedronate to improve intestinal drug absorption. Liposomes containing risedronate were prepared with 1,2-distearoryl-sn-glycero-3-phosphocholine and distearoryl-sn-glycero-3-[phospho-rac-(1-glycerol)] using the freeze-drying method, with subsequent coating of the anionic surfaces of the liposomes with chitosan. The in vitro characteristics of the chitosan-coated liposomes were investigated, including their stability, mucoadhesiveness, and Caco-2 cell permeability. This formulation was stable in simulated gastric and intestinal fluids, with the percentage of drug remaining in the liposomes being more than 90% after 24 hours of incubation. Chitosan-coated liposomes also showed strong mucoadhesive properties, implying potential electrostatic interaction with the mucous layer in the gastrointestinal tract. Compared with the untreated drug, chitosan-coated liposomes significantly enhanced the cellular uptake of risedronate, resulting in an approximately 2.1-2.6-fold increase in Caco-2 cells. Further, the chitosan-coated liposomes increased the oral exposure of risedronate by three-fold in rats. Taken together, the results of this study suggest that chitosan-coated liposomes containing risedronate should be effective for improving the bioavailability of risedronate. PMID:24872692

  16. Reduced food interaction and enhanced gastrointestinal tolerability of a new system based on risedronate complexed with Eudragit E100: Mechanistic approaches from in vitro and in vivo studies.

    PubMed

    Guzman, M L; Soria, E A; Laino, C; Manzo, R H; Olivera, M E

    2016-10-01

    Novel complexes consisting of Eudragit E100-risedronate are presented. The oral bioavailability of risedronate in rats was determined through its percentage excreted in urine after administration of complexed or free risedronate in fed and fasted conditions. The evaluation of the risedronate gastro-duodenal irritation potential was carried out by macroscopic and histological analyses in an experimental rat model. The degree of counterionic condensation between Eudragit E100 and risedronate was assessed by dialysis with, mechanistic information about the interaction with calcium and the release of risedronate from the complexes being obtained using physiological solution and simulated gastric fluid without pepsin. Non-significant differences were observed in the urinary excretion of risedronate when the complex or free risedronate was administered to fasted rats. However, the urinary excretion of risedronate in the complex group was 4-times higher than in the free risedronate group when animals were concomitantly administered with food. This behavior was related to the high degree of counterionic condensation in the complex (86.5%), which led to a reduction in the calcium induced rate and magnitude of risedronate precipitation and resulted in a decrease in the gastroduodenal damage from the complex, as evidenced by a lower frequency of gastric mucosae hemorrhage. A sustained release of risedronate from the complex was observed toward water, simulated gastric fluid or physiological solution, through an ionic-exchange mechanism. In conclusion, complexation with Eudragit E100 could be a useful strategy to overcome the unfavorable properties of risedronate.

  17. Reduced food interaction and enhanced gastrointestinal tolerability of a new system based on risedronate complexed with Eudragit E100: Mechanistic approaches from in vitro and in vivo studies.

    PubMed

    Guzman, M L; Soria, E A; Laino, C; Manzo, R H; Olivera, M E

    2016-10-01

    Novel complexes consisting of Eudragit E100-risedronate are presented. The oral bioavailability of risedronate in rats was determined through its percentage excreted in urine after administration of complexed or free risedronate in fed and fasted conditions. The evaluation of the risedronate gastro-duodenal irritation potential was carried out by macroscopic and histological analyses in an experimental rat model. The degree of counterionic condensation between Eudragit E100 and risedronate was assessed by dialysis with, mechanistic information about the interaction with calcium and the release of risedronate from the complexes being obtained using physiological solution and simulated gastric fluid without pepsin. Non-significant differences were observed in the urinary excretion of risedronate when the complex or free risedronate was administered to fasted rats. However, the urinary excretion of risedronate in the complex group was 4-times higher than in the free risedronate group when animals were concomitantly administered with food. This behavior was related to the high degree of counterionic condensation in the complex (86.5%), which led to a reduction in the calcium induced rate and magnitude of risedronate precipitation and resulted in a decrease in the gastroduodenal damage from the complex, as evidenced by a lower frequency of gastric mucosae hemorrhage. A sustained release of risedronate from the complex was observed toward water, simulated gastric fluid or physiological solution, through an ionic-exchange mechanism. In conclusion, complexation with Eudragit E100 could be a useful strategy to overcome the unfavorable properties of risedronate. PMID:27418392

  18. Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy

    PubMed Central

    Nepal, Manoj; Li, Liang; Bae, Tae Sung; Kim, Byung Il; Soh, Yunjo

    2014-01-01

    Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (μCT) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with μCT and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation. PMID:25489426

  19. Risedronate, a highly effective oral agent in the treatment of patients with severe Paget's disease.

    PubMed

    Singer, F R; Clemens, T L; Eusebio, R A; Bekker, P J

    1998-06-01

    Thirteen patients with severe Paget's disease of bone [mean serum alkaline phosphatase (SAP) level 17 times the upper limit of normal] were treated with 30 mg oral risedronate daily for 8 weeks. Patients were followed for 16 weeks without treatment. The change from baseline SAP was the primary end point. Those patients whose SAP levels did not reach the normal range were retreated with 30 mg for another 8 weeks. There was a mean percent decrease in SAP of 77% after the first course of risedronate treatment and 87% after the second course of treatment. All patients who completed the study had a decrease in SAP of at least 77% from the baseline. The urinary hydroxyproline/creatinine level was decreased by 64% and 79%, respectively, during the first and second treatment courses. There were transient asymptomatic decreases in serum calcium and phosphorus levels. The urinary calcium/creatinine ratio also decreased in these patients. Serum intact PTH and 1,25-dihydroxyvitamin D levels increased transiently during risedronate treatment. Oral risedronate was well tolerated by the patients. Only one patient discontinued treatment because of an adverse event (diarrhea) thought to be related to risedronate therapy.

  20. Risedronate adsorption on bioactive glass surface for applications as bone biomaterial

    NASA Astrophysics Data System (ADS)

    Mosbahi, Siwar; Oudadesse, Hassane; Lefeuvre, Bertand; Barroug, Allal; Elfeki, Hafed; Elfeki, Abdelfattah; Roiland, Claire; Keskes, Hassib

    2016-03-01

    The aim of the current work is to study the physicochemical interactions between bisphosphonates molecules, risedronate (RIS) and bioactive glass (46S6) after their association by adsorption phenomenon. To more understand the interaction processes of RIS with the 46S6 surface we have used complementary physicochemical techniques such as infrared (FTIR), Raman and nuclear magnetic resonance (NMR) spectroscopy. The obtained results suggest that risedronate adsorption corresponds to an ion substitution reaction with silicon ions occurring at the bioactive glass surface. Thus, a pure bioactive glass was synthesized and fully characterized comparing the solids after adsorption (46S6-XRIS obtained after the interaction of 46S6 and X% risedronate). Therefore, based on the spectroscopic results FTIR, Raman and MAS-NMR, it can be concluded that strong interactions have been established between RIS ions and 46S6 surface. In fact, FTIR and Raman spectroscopy illustrate the fixation of risedronate on the bioactive glass surface by the appearance of several bands characterizing risedronate. The 31P MAS-NMR of the composite 46S6-XRIS show the presence of two species at a chemical shift of 15 and 19 ppm demonstrating thus the fixation of the RIS on 46S6 surface.

  1. In Vitro and In Vivo Antiplasmodial Activities of Risedronate and Its Interference with Protein Prenylation in Plasmodium falciparum▿†

    PubMed Central

    Jordão, Fabiana Morandi; Saito, Alexandre Yukio; Miguel, Danilo Ciccone; de Jesus Peres, Valnice; Kimura, Emília Akemi; Katzin, Alejandro Miguel

    2011-01-01

    The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC50] of 20.3 ± 1.0 μM). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates. PMID:21357292

  2. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice.

    PubMed

    Sasaki, A; Boyce, B F; Story, B; Wright, K R; Chapman, M; Boyce, R; Mundy, G R; Yoneda, T

    1995-08-15

    Human breast cancer frequently metastasizes to the skeleton to cause osteolysis and subsequent pain, pathological fracture, and hypercalcemia. Because bone continuously releases growth factors stored in bone matrix by bone resorption during physiological remodeling and, thus, possibly provides a favorable microenvironment for metastatic breast cancer cells to proliferate, inhibitors of bone resorption used either prophylactically or in patients with established disease, therefore, would seem likely to be useful adjuvant therapy in patients with breast cancer. However, the parameters for monitoring progressive osteolytic bone disease in humans are imprecise. We examined the effects of the third generation bisphosphonate, risedronate, which is a specific inhibitor of osteoclastic bone resorption, in a bone metastasis model in nude mice in which intracardiac injection of the human breast cancer cell line MDA-231 leads to osteolytic bone metastases. Risedronate (4 micrograms/animal/day) was given s.c. to animals (a) after radiologically small but defined osteolytic metastases were observed; (b) simultaneously with MDA-231 cell inoculation through the entire experimental period; or (c) by short-term prophylactic administration before inoculation of MDA-231 cells. In all experiments, risedronate either slowed progression or inhibited the development of bone metastases assessed radiographically. Furthermore, mice treated continuously with risedronate showed significantly longer survival than did control mice. Histomorphometrical analysis revealed that osteoclast numbers were diminished at metastatic tumor sites. Unexpectedly, there was also a marked decrease in tumor burden in bone in risedronate-treated animals. In contrast, the growth of metastatic breast cancer in soft tissues surrounding bones was not affected by risedronate. Moreover, risedronate had no effects on the local growth of s.c. implanted MDA-231 breast cancers in nude mice or on MDA-231 cell proliferation

  3. Ibandronate and periprosthetic bone mass: new therapeutic approach in periprosthetic loosening prevention.

    PubMed

    Muratore, Maurizio; Quarta, Eugenio; Quarta, Laura; Grimaldi, Antonella; Orgiani, Antonio; Marsilio, Antonio; Rollo, Giuseppe

    2011-01-01

    A prosthetic implant modifies the physiological transmission of loads to the bone, initiating a remodeling process.Studies of the mechanisms responsible for periprosthetic bone loss contributed to the definition of new pharmacological strategies that may prevent aseptic implant loosening. Bisphosphonates are a class of drugs useful to this purpose, and have been shown to be effective in reducing periprosthetic resorption during the first year after the implant. We aimed to assess the inhibitory effect on periprosthetic osteolysis of ibandronate, a highly potent aminobisphosphonate, administered orally and IV with an extended interval between doses and optimal treatment adherence. In view of the fact that periprosthetic remodeling takes place during the first 6-12 months after surgery and is ultimately responsible for prosthesis longevity, we may conclude that the administration of high dosage ibandronate postsurgery by IV bolus and subsequently as cyclic oral treatment reduced cortical osteopenia in the metaphyseal region, and in the calcar region of the proximal femur. This therapy might therefore be used as preventive measure against postsurgical osteopenia and probably also against aseptic loosening.

  4. Bisphosphonates in the management of postmenopausal osteoporosis – optimizing efficacy in clinical practice

    PubMed Central

    Bock, Oliver; Felsenberg, Dieter

    2008-01-01

    Nitrogen-containing bisphosphonates are potent inhibitors of osteoclastic bone resorption. With their individually proven efficacy to significantly reduce the incidence of vertebral and/or non-vertebral fractures and with their overall beneficial safety profile, alendronate, ibandronate, risedronate, and zoledronate are considered today a treatment of first choice in postmenopausal osteoporosis. However, treatment effects in an individual patient and cost-effectiveness in public health perspective are vitally dependent on the long-term patient adherence as well as on compliance and persistence. As compliance and persistence with daily oral bisphosphonates are shown to be suboptimal in many patients, leading to an increased fracture incidence in non-compliant patients, there is a need to improve overall adherence for bisphosphonate treatment in order to achieve maximum treatment effects. One option is to extend dosing intervals to weekly (alendronate, risedronate) or monthly (ibandronate) oral regimens. Less frequent oral regimens are generally preferred by majority of patients. Another alternative is intravenous, instead of oral application (ibandronate, zoledronate). Treatment acceptance could be further improved by IV bisphosphonates with their benefit of only quarterly, or even once-yearly, application. Treatment decisions should be based on anti-fracture efficacy data first. In addition, to ensure best possible patient adherence and maximum treatment benefits, physicians should consider individual patient conditions affecting compliance and persistence as well as patient preferences. PMID:18686751

  5. Biocompatibility evaluation of alendronate paste in rat's subcutaneous tissue.

    PubMed

    Mori, Graziela Garrido; de Moraes, Ivaldo Gomes; Nunes, Daniele Clapes; Castilho, Lithiene Ribeiro; Poi, Wilson Roberto; Capaldi, Maria Luciana P Manzoli

    2009-04-01

    Alendronate is a known inhibitor of root resorption and the development of alendronate paste would enhance its utilization as intracanal medication. Therefore, this study aimed to investigate the biocompatibility of experimental alendronate paste in subcutaneous tissue of rats, for utilization in teeth susceptible to root resorption. The study was conducted on 15 male rats, weighing approximately 180-200 grams. The rats' dorsal regions were submitted to one incision on the median region and, laterally to the incision, the subcutaneous tissue was raised and gently dissected for introduction of two tubes, in each rat. The tubes were sealed at one end with gutta-percha and taken as control. The tubes were filled with experimental alendronate paste. The animals were killed at 7, 15 and 45 days after surgery and the specimens were processed in laboratory. The histological sections were stained with hematoxylin-eosin and analyzed by light microscopy. Scores were assigned to the inflammatory process and statistically compared by the Tukey test (P < 0.05). Alendronate paste promoted severe inflammation process at 7 days, with statistically significant difference compared to the control (P < 0.05%). However, at 15 days, there was a regression of inflammation and the presence of connective tissue with collagen fibers, fibroblasts and blood vessels was observed. After 45 days, it was observed the presence of well-organized connective tissue, with collagen fibers and fibroblasts, and few inflammatory cells. No statistical difference was observed between the control and experimental paste at 15 and 45 days. The experimental alendronate paste was considered biocompatible with subcutaneous tissue of rat.

  6. ESWT and alendronate sodium demonstrate equal protective effects in osteoarthritis of the knee

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Jen; Chou, Wen-Yi; Hsu, Shan-Ling; Huang, Chien-Yiu; Cheng, Jai-Hong

    2016-01-01

    This study compared the effects of extracorporeal shock wave therapy (ESWT) and alendronate sodium (alendronate) in osteoarthritis (OA) of rat knees. The control group was subjected to a sham surgery and did not receive either ESWT or alendronate treatment. The OA group underwent anterior cruciate ligament transection (ACLT) and medial meniscectomy (MM) surgery and did not receive either ESWT or alendronate. The ESWT group underwent ACLT and MM surgery and received ESWT after the surgery. The alendronate group received alendronate after ACLT and MM surgery. The evaluations included radiograph, bone mineral density (BMD), serum C-telopeptide collagen II (CTX-II), cartilage oligomeric protein (COMP), alkaline phosphatase and osteocalcin, histopathological examination and immunohistochemical analysis. Radiographs at 12 weeks showed pronounced OA changes in the OA group. The BMD values, CTX-II, COMP, alkaline phosphatase and osteocalcin showed no significant difference between ESWT and alendronate groups. In histopathology, the Mankin and Safranin O scores significantly increased in the OA, ESWT and alendronate groups, but without any significant difference between the ESWT and alendronate groups. In immunohistochemical analysis, the von Willebrand factor (vWF), vascular endothelial factor (VEGF), soluble vascular cell adhesion molecule (sVCAM), proliferating cell nuclear antigen (PCNA), bone morphogenetic protein 2 (BMP-2), and osteocalcin expressions in articular cartilage and subchondral bone showed a significant decrease in the OA group, but no difference was noted between the ESWT and alendronate groups. In conclusion, ESWT and alendronate sodium demonstrate equal protective effects from developing osteoarthritis of the knee in rats.

  7. Risedronate slows or partly reverses cortical and trabecular microarchitectural deterioration in postmenopausal women.

    PubMed

    Bala, Yohann; Chapurlat, Roland; Cheung, Angela M; Felsenberg, Dieter; LaRoche, Michel; Morris, Edward; Reeve, Jonathan; Thomas, Thierry; Zanchetta, Jose; Bock, Oliver; Ghasem-Zadeh, Ali; Djoumessi, Roger Martin Zebaze; Seeman, Ego; Rizzoli, René

    2014-02-01

    During early menopause, steady-state bone remodeling is perturbed; the number of basic multicellular units (BMUs) excavating cavities upon the endosteal surface exceeds the number (generated before menopause) concurrently refilling. Later in menopause, steady-state is restored; the many BMUs generated in early menopause refill as similarly large numbers of BMUs concurrently excavate new cavities. We hypothesized that risedronate reduces the number of cavities excavated. However, in younger postmenopausal women, the fewer cavities excavated will still exceed the fewer BMUs now refilling, so net porosity increases, but less than in controls. In older postmenopausal women, the fewer cavities excavated during treatment will be less than the many (generated during early menopause) now refilling, so net porosity decreases and trabecular volumetric bone mineral density (vBMD) increases. We recruited 324 postmenopausal women in two similarly designed double-blind placebo-controlled studies that included 161 younger (Group 1, ≤ 55 years) and 163 older (Group 2, ≥ 55 years) women randomized 2:1 to risedronate 35 mg/week or placebo. High-resolution peripheral computed tomography was used to image the distal radius and tibia. Cortical porosity was quantified using the StrAx1.0 software. Risedronate reduced serum carboxyterminal cross-linking telopeptide of type 1 bone collagen (CTX-1) and serum amino-terminal propeptide of type 1 procollagen (P1NP) by ∼50%. In the younger group, distal radius compact-appearing cortex porosity increased by 4.2% ± 1.6% (p = 0.01) in controls. This was prevented by risedronate. Trabecular vBMD decreased by 3.6% ± 1.4% (p = 0.02) in controls and decreased by 1.6% ± 0.6% (p = 0.005) in the risedronate-treated group. In the older group, changes did not achieve significance apart from a reduction in compact-appearing cortex porosity in the risedronate-treated group (0.9% ± 0.4%, p = 0.047). No between

  8. No effect of risedronate on femoral periprosthetic bone loss following total hip arthroplasty

    PubMed Central

    Muren, Olle; Akbarian, Ehsan; Salemyr, Mats; Bodén, Henrik; Eisler, Thomas; Stark, André

    2015-01-01

    Background and purpose We have previously shown that during the first 2 years after total hip arthroplasty (THA), periprosthetic bone resorption can be prevented by 6 months of risedronate therapy. This follow-up study investigated this effect at 4 years. Patients and methods A single-center, double-blind, randomized placebo-controlled trial was carried out from 2006 to 2010 in 73 patients with osteoarthritis of the hip who were scheduled to undergo THA. The patients were randomly assigned to receive either 35 mg risedronate or placebo orally, once a week, for 6 months postoperatively. The primary outcome was the percentage change in bone mineral density (BMD) in Gruen zones 1 and 7 in the proximal part of the femur at follow-up. Secondary outcomes included migration of the femoral stem and clinical outcome scores. Results 61 of the 73 patients participated in this 4-year (3.9- to 4.1-year) follow-up study. BMD was similar in the risedronate group (n = 30) and the placebo group (n = 31). The mean difference was −1.8% in zone 1 and 0.5% in zone 7. Migration of the femoral stem, the clinical outcome, and the frequency of adverse events were similar in the 2 groups. Interpretation Although risedronate prevents periprosthetic bone loss postoperatively, a decrease in periprosthetic BMD accelerates when therapy is discontinued, and no effect is seen at 4 years. We do not recommend the use of risedronate following THA for osteoarthritis of the hip. PMID:25885280

  9. Lipid Profiles within the SABRE Trial of Anastrozole with and without Risedronate

    PubMed Central

    Van Poznak, Catherine; Makris, Andreas; Clack, Glen; Barlow, David H.; Eastell, Richard

    2012-01-01

    Introduction Lipid profiles in women with early breast cancer receiving anastrozole with or without risedronate were examined within an international Phase III/IV study to assess for possible treatment related changes. Methods Postmenopausal women with hormone receptor-positive breast cancer were assigned to 1 of 3 strata by risk of fragility fracture. Patients with the highest risk for fracture received anastrozole plus risedronate (A+R). Moderate-risk patients were randomized in a double-blind manner to anastrozole and risedronate (A+R) or anastrozole and placebo (A+P). Lower-risk patients received anastrozole (A) alone. Serial fasting blood samples were assessed for changes in lipid parameters relative to baseline after 12 months of treatment with anastrozole with or without risedronate. Samples were centrally analyzed for low density lipoprotein cholesterol (LDL-cholesterol), high density lipoprotein (HDL) cholesterol, total cholesterol (TC) and triglycerides (TG). Analysis was performed as primary analysis population for lipids (A plus A+P), lipid intention to treat population and secondary population (A+R). Results Of the 119 patients treated with A plus A+P, there were 66 patients eligible for inclusion in the primary analysis population. Of the 115 patients treated with secondary population (A+R) there were 65 patients eligible for lipid profiling. For LDL cholesterol, HDL cholesterol, TC and TG there were no significant changes between the baseline and 12 month assessments to suggest that any of these therapies have a negative impact on the lipid profile. Conclusions In this study of postmenopausal women with early breast cancer receiving adjuvant anastrozole with or without risedronate, there was no adverse effect on LDL cholesterol, HDL cholesterol, TC or TG values over the 12 month monitoring period. PMID:22763465

  10. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGES

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; Hensley, Dale K.

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media withmore » pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  11. Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological material: a review of analytical methods.

    PubMed

    Zacharis, Constantinos K; Tzanavaras, Paraskevas D

    2008-11-01

    Bisphosphonates is a class of chemical compounds finding extensive medical applications against bone disorders including osteoporosis, Pagets' disease, etc. Non-N-containing members include etidronate, clodronate and tiludronate, while N-containing bisphosphonates include active pharmaceutical compounds such as pamidronate, neridronate, olpadronate, alendronate, ibandronate, risedronate and zoledronate. The present study covers 20 years of analytical research on this group of compounds, focusing on bioanalytical and pharmaceutical QC applications. A wide range of analytical techniques is presented and critically discussed including among others liquid and gas phase separations, electrophoretic, electroanalytical, automated and enzymatic approaches.

  12. Effect of the bisphosphonate risedronate on bone metastases in a rat mammary adenocarcinoma model system.

    PubMed

    Hall, D G; Stoica, G

    1994-02-01

    Risedronate (NE-58095) is a third-generation bisphosphonate with very potent antiresorptive activity but few toxic effects. The purpose of this work was to evaluate the effect of risedronate treatment on bone metastases produced in a rat breast cancer model. Berlin Druckrey IV rats inoculated with ENU1564 mammary adenocarcinoma cells were treated daily with risedronate or a saline placebo. Survival times, dictated by extraskeletal metastases (lung, heart, and brain), were not affected by risedronate treatment. Risedronate-treated animals had skeletal changes associated with decreased remodeling of bones undergoing endochondral ossification, most prominently affecting the appendicular skeleton. Despite the skeletal alterations induced by the treatment, the distribution of bone metastases throughout the surveyed skeletal sites was similar for treated and untreated animals. Bone metastases were enumerated in histologic sections of distal femur, spine, and skull. Tumor size was estimated from area measurements obtained from histologic lesions in distal femoral metaphyses and vertebral bodies. A greater number of treated rats had no bone metastases in any of the examined sections (30 versus 16.1% of untreated rats). Multiple bone metastases were observed less frequently in treated rats (33.3 versus 71% of untreated rats). Treated rats had fewer observed bone metastases in each examined site than untreated rats (p < or = 0.025). Mean tumor areas in femora and vertebrae were smaller in treated rats (p < or = 0.05), due to the less frequent presence of very large lesions. In untreated animals, osteoclasts appeared to be active at the tumor/bone interface and osseous structures were often completely replaced by expanding tumors. In contrast, metastases in treated animals caused less disruption of skeletal histoarchitecture. The apparent lack of osteoclastic activity and retention of bone within lesions suggested a decreased contribution of osteoclasts to the bone resorptive

  13. Lipid profiles within the SABRE trial of anastrozole with and without risedronate.

    PubMed

    Van Poznak, Catherine; Makris, Andreas; Clack, Glen; Barlow, David H; Eastell, Richard

    2012-08-01

    Lipid profiles in women with early breast cancer receiving anastrozole with or without risedronate were examined within an international Phase III/IV study to assess for possible treatment related changes. Postmenopausal women with hormone receptor-positive breast cancer were assigned to 1 of 3 strata by risk of fragility fracture. Patients with the highest risk for fracture received anastrozole plus risedronate (A + R). Moderate-risk patients were randomized in a double-blind manner to A + R or anastrozole and placebo (A + P). Lower-risk patients received anastrozole (A) alone. Serial fasting blood samples were assessed for changes in lipid parameters relative to baseline after 12 months of treatment with anastrozole with or without risedronate. Samples were centrally analyzed for low-density lipoprotein cholesterol (LDL-cholesterol), high-density lipoprotein (HDL) cholesterol, total cholesterol (TC) and triglycerides (TG). Analysis was performed as primary analysis population for lipids (A plus A + P), lipid intention to treat population and secondary population (A + R). Of the 119 patients treated with A plus A + P, there were 66 patients eligible for inclusion in the primary analysis population. Of the 115 patients treated with secondary population (A + R) there were 65 patients eligible for lipid profiling. For LDL-cholesterol, HDL-cholesterol, TC and TG there were no significant changes between the baseline and 12 months assessments to suggest that any of these therapies have a negative impact on the lipid profile. In this study of postmenopausal women with early breast cancer receiving adjuvant anastrozole with or without risedronate, there was no adverse effect on LDL-cholesterol, HDL-cholesterol, TC or TG values over the 12 months monitoring period.

  14. Prevention of aromatase inhibitor-induced bone loss using risedronate: the SABRE trial.

    PubMed

    Van Poznak, Catherine; Hannon, Rosemary A; Mackey, John R; Campone, Mario; Apffelstaedt, Justus P; Clack, Glen; Barlow, David; Makris, Andreas; Eastell, Richard

    2010-02-20

    PURPOSE To investigate the management of bone health in women with early breast cancer (EBC) who were scheduled to receive anastrozole. PATIENTS AND METHODS Postmenopausal women with hormone receptor-positive EBC were assigned to one of three strata by risk of fragility fracture. Patients with the highest risk (H) received anastrozole 1 mg/d plus risedronate 35 mg/wk orally. Patients with moderate-risk (M) were randomly assigned in a double-blind manner to anastrozole and risedronate (A + R) or to anastrozole and placebo (A + P). Patients with lower-risk (L) received anastrozole (A) alone. Calcium and vitamin D were recommended for all patients. Lumbar spine and total hip bone mineral density (BMD) were assessed at baseline, 12 months, and 24 months. Results At 24 months, in the M group, treatment with A + R resulted in a significant increase in lumbar spine and total hip BMD compared with A + P treatment (2.2% v -1.8%; treatment ratio, 1.04; P < .0001; and 1.8% v -1.1%; treatment ratio, 1.03; P < .0001, respectively). In the H stratum, lumbar spine and total hip BMD increased significantly (3.0%; P = .0006; and 2.0%; P = .0104, respectively). Patients in the L stratum showed a significant decrease in lumbar spine BMD (-2.1%; P = .0109) and a numerical decrease in total hip BMD (-0.4%; P = .5988). Safety profiles for anastrozole and risedronate were similar to those already established. CONCLUSION In postmenopausal women at risk of fragility fracture who were receiving adjuvant anastrozole for EBC, the addition of risedronate at doses established for preventing and treating osteoporosis resulted in favorable effects in BMD during 24 months.

  15. Efficacy of alendronate for preventing collapse of femoral head in adult patients with nontraumatic osteonecrosis.

    PubMed

    Hong, Yu-Cai; Luo, Ru-Bin; Lin, Tiao; Zhong, Hui-Ming; Shi, Jian-Bin

    2014-01-01

    The purpose of the current review was to determine the efficacy of alendronate for preventing collapse of femoral head in adult patients with nontraumatic avascular osteonecrosis of femoral head (ANFH). Five randomized controlled trials (RCTs) involving 305 hips were included in this review, of which 3 studies investigated alendronate versus control/placebo and the other 2 studies compared the combination of alendronate and extracorporeal shockwave therapy (ESWT) with ESWT alone. Our results suggested that even the patients with extensive necrosis encountered much less collapse in the alendronate group than control group. In these RCTs, their data also indicated a positive short- and middle-term efficacy of alendronate treatment in joint function improvement and hip pain diminishment. With the presence of the outlier study, only insignificant overall efficacy of alendronate could be observed with substantial heterogeneities. In addition, we did not find any additive benefits of alendronate in combination with ESWT for preventing collapse compared to ESWT alone. In conclusion, there is still lack of strong evidence for supporting application of alendronate in adult patients with nontraumatic ANFH, which justified that large scale, randomized, and double-blind studies should be developed to demonstrate the confirmed efficacies, detailed indication, and optimized strategy of alendronate treatment.

  16. Risedronate therapy for neurofibromatosis Type 1-related low bone mass: a stitch in time saves nine.

    PubMed

    Benlidayi, I Coskun; Ortac, E Aygul; Kozanoglu, E

    2015-04-01

    Neurofibromatosis Type 1 (NF1) is a common hereditary disease characterized by disorders regarding the skin, neural, and skeletal systems. Osteoporosis is one of the skeletal manifestations of NF1, which is associated with increased fracture risk. The management of NF1-related low bone mass has been less studied in the literature. We present a 19-year-old patient with severe low bone mass complicating NF1. The patient received 1-year course of 35 mg risedronate sodium once per week along with a daily regimen of 1200 mg calcium and 800 IU vitamin D. Significant improvement with regard to the Z-scores and bone mineral density values was achieved. Besides, rapid favourable biochemical response was obtained. The patient experienced 24·4 and 15·0% improvements in bone mineral density at the lumbar site and hip, respectively, at the first year of therapy. No adverse effect was observed. Since increased bone turnover is the primary contributor of osteoporosis in NF1, antiresorptive agents such as bisphosphonates can be considered for treatment. Despite the lack of consensus on the treatment of osteoporosis in NF1, risedronate may hold a promise as a potential therapy for osteoporosis complicating NF1. This is the first report of risedronate therapy in a case with NF1-associated low bone mass in the literature.

  17. Effects of glucosamine and risedronate alone or in combination in an experimental rabbit model of osteoarthritis

    PubMed Central

    2014-01-01

    Background The osteoarthritis (OA) treatment in humans and in animals is a major orthopaedic challenge because there is not an ideal drug for preserving the joint structure and function. The aim of this study was to assess the effects of the treatment with oral glucosamine and risedronate alone or in combination on articular cartilage, synovial membrane and subchondral bone in an experimental rabbit model of OA. Osteoarthritis was surgically induced on one knee of 32 New Zealand White rabbits using the contralateral as healthy controls. Three weeks later treatments were started and lasted 8 weeks. Animal were divided in four groups of oral treatment: the first group received only saline, the second 21.5 mg/kg/day of glucosamine sulfate, the third 0.07 mg/kg/day of risedronate; and the fourth group both drugs simultaneously at the same dosages. Following sacrifice femurs were removed and osteochondral cylinders and synovial membrane were obtained for its histological and micro-CT evaluation. Results Sample analysis revealed that the model induced osteoarthritic changes in operated knees. OA placebo group showed a significant increase in cartilage thickness respect to the control and inflammatory changes in synovial membrane; whereas subchondral bone structure and volumetric bone mineral density remained unchanged. All the treated animals showed an improvement of the cartilage swelling independent of the drug used. Treatment with glucosamine alone seemed to have no effect in the progression of cartilage pathology while risedronate treatment had better results in superficial fibrillation and in resolving the inflammatory changes of the tissues, as well as modifying the orientation of trabecular lattice. The combination of both compounds seemed to have additive effects showing better results than those treated with only one drug. Conclusions The results of this animal study suggested that glucosamine sulfate and risedronate treatment alone or in combination may be

  18. Experimental osteonecrosis: development of a model in rodents administered alendronate.

    PubMed

    Conte, Nicolau; Spolidorio, Luis Carlos; Andrade, Cleverton Roberto de; Esteves, Jônatas Caldeira; Marcantonio, Elcio

    2016-01-01

    The main objective of this study was to cause bisphosphonate-related osteonecrosis of the jaws to develop in a rodent model. Adult male Holtzman rats were assigned to one of two experimental groups to receive alendronate (AL; 1 mg/kg/week; n = 6) or saline solution (CTL; n = 6). After 60 days of drug therapy, all animals were subjected to first lower molar extraction, and 28 days later, animals were euthanized. All rats treated with alendronate developed osteonecrosis, presenting as ulcers and necrotic bone, associated with a significant infection process, especially at the inter-alveolar septum area and crestal regions. The degree of vascularization, the levels of C-telopeptide cross-linked collagen type I and bone-specific alkaline phosphatase, as well as the bone volume were significantly reduced in these animals. Furthermore, on radiographic analysis, animals treated with alendronate presented evident sclerosis of the lamina dura of the lower first molar alveolar socket associated with decreased radiographic density in this area. These findings indicate that the protocol developed in the present study opens new perspectives and could be a good starting model for future property design. PMID:27556684

  19. Alendronate as an Effective Countermeasure to Disuse Induced Bone loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian D.; Driscol, Theda B.; Shackelford, Linda C.; Evans, Harlan J.; Rianon, Nahid J.; Smith, Scott M.; Lai, Dejian

    2002-01-01

    Microgravity, similar to diuse immobilization on earth, causes rapid bone loss. This loss is believed to be an adaptive response to the reduced musculoskelatal forces in space and occurs gradually enough that changes occurring during short duration space flight are not a concern. Bone loss, however, will be a major impediment for long duration missions if effective countermeasures are not developed and implemented. Bed rest is used to simulate the reduced mechanical forces in humans and was used to test the hypothesis that oral alendronate would reduce the effects of long duration (17 weeks) inactivity on bone. Eight male subjects were given daily oral doses of alendronate during 17 weeks of horizontal bed rest and compared with 13 male control subjects not given the drug. Efficacy was evaluated based on measurements of bone markers, calcium balance and bone density performed before, during and after the bed rest. The results show that oral alendronate attenuates most of the characteristic changes associated with long duration bed rest and presumably space flight.

  20. Disuse bone loss in hindquarter suspended rats: partial weightbearing, exercise and ibandronate treatment as countermeasures

    NASA Technical Reports Server (NTRS)

    Schultheis, L.; Ruff, C. B.; Rastogi, S.; Bloomfield, S.; Hogan, H. A.; Fedarko, N.; Thierry-Palmer, M.; Ruiz, J.; Bauss, F.; Shapiro, J. R.

    2000-01-01

    The purpose of this study was to evaluate potential countermeasures for bone loss during long-term space missions in the hindquarter suspended rat, including partial weight bearing (surrogate for artificial gravity) episodic full weight bearing (2 hour/day full weight bearing) and treatment with the third generation bisphosphonate ibandronate (Roche). Graded mechanical loading was studied by housing the animals on a novel servo controlled force plate system which permitted the titration of mechanical force at varying frequency and amplitude and different levels of weight bearing. The force plate, which forms the cage floor, is a glass platform supported by an 18" diameter speaker cone filled with expanding polyurethane foam. An infrared optical sensor attached to the speaker cone yields a voltage linearly related to vertical displacement of the glass platform. The dynamic force on the paw was computed as a product of the apparent mass of the animal on the platform at rest and the acceleration of the platform determined from the second derivative of the optical sensor output. The mass of the animal on the platform was varied by adjusting tension on the tether suspending the animal. Mechanical impact loading was titrated with the force plate resonating at different frequencies, including 3 Hz and 16 Hz.

  1. Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy.

    PubMed

    Leu, Chih-Tai; Luegmayr, Eva; Freedman, Leonard P; Rodan, Gideon A; Reszka, Alfred A

    2006-05-01

    Potent bisphosphonates (BPs) preferentially bind bone at sites of active osteoclastic bone resorption, where they are taken up by the osteoclast and inhibit resorption. We tested the hypothesis that BP affinity to human bone affects antiresorptive potency. [(1)(4)C]-Alendronate binding to human bone was saturable and reversible with an apparent Kd of 72 microM by Scatchard analysis. In competition binding assays, unlabeled alendronate (Ki: 61 microM) was slightly more potent than pyrophosphate (Ki = 156 microM) in blocking [(1)(4)C]-alendronate binding. Likewise, most tested BPs, including etidronate (Ki: 91 microM), ibandronate (116 microM), pamidronate (83 microM), risedronate (85 microM) and zoledronate (81 microM), showed comparable affinities. Interestingly, tiludronate (173 microM; P < 0.05 vs. all other BPs) and especially clodronate (806 microM; P > 0.0001 vs. all other BPs) displayed significantly weaker affinity for bone. The weak affinity of clodronate translated into a requirement for 10-fold higher dosing in in vitro bone resorption assays when bone was pretreated with BP and subsequently washed prior to adding osteoclasts. In stark contrast, neither alendronate nor risedronate lost any efficacy after washing the bone surface. These findings suggest that most clinically tested BPs may have similar affinities for human bone. For those with reduced affinity, this may translate into lower potency that necessitates higher dosing.

  2. Risedronate Prevents Bone Loss in Breast Cancer Survivors: A 2-Year, Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    PubMed Central

    Greenspan, Susan L.; Brufsky, Adam; Lembersky, Barry C.; Bhattacharya, Rajib; Vujevich, Karen T.; Perera, Subashan; Sereika, Susan M.; Vogel, Victor G.

    2014-01-01

    Purpose Limited data are available on the efficacy of oral bisphosphonate therapy in breast cancer survivors. Our goal was to examine prevention of breast cancer–related bone loss in this cohort. Patients and Methods Eighty-seven postmenopausal women after chemotherapy for breast cancer were randomly assigned to once-weekly risedronate 35 mg or placebo for 24 months. Outcomes included bone mineral density (BMD) and turnover markers. Results At study initiation, 13% of patients were on an aromatase inhibitor (AI). After 24 months, there were differences of 1.6 to 2.5% (P < .05) at the spine and hip BMD between the placebo and risedronate groups. At study completion, 44% were on an AI. Adjusting for an AI, women on placebo plus AI had a decrease in BMD of (mean ± SE) 4.8% ± 0.8% at the spine and 2.8% ± 0.5% at the total hip (both P < .001). In women on risedronate + AI, the spine decreased by 2.4% ± 1.1% (P < .05) and was stable at the hip. Women in the placebo group not on an AI, maintained BMD at the spine, and had a 1.2% ± 0.5% loss at the total hip (P < .05). Women who received risedronate but no AI had the greatest improvement in BMD of 2.2% ± 0.9% (P < .05) at the total hip. Bone turnover was reduced with risedronate. There were no differences in adverse events between the groups. Conclusion We conclude that in postmenopausal women with breast cancer with or without AI therapy, once-weekly oral risedronate was beneficial for spine and hip BMD, reduced bone turnover, and was well tolerated. PMID:18427147

  3. Ibandronate does not reduce the anabolic effects of PTH in ovariectomized rat tibiae: a microarchitectural and mechanical study.

    PubMed

    Yang, Xiao; Chan, Yong Hoow; Muthukumaran, Padmalosini; Dasde, Shamal; Teoh, Swee-Hin; Lee, Taeyong

    2011-05-01

    Osteoporosis remains a challenging problem. Understanding the regulation on osteoclast and osteoblast by drugs has been of great interest. Both anabolic and anti-resorptive drugs yield positive results in the treatment of osteoporosis. However, whether the concurrent administration of parathyroid hormone (1-34) and ibandronate may offer an advantage over monotherapy is still unknown. This study, therefore, attempts to compare the efficacy of two therapeutical approaches and to investigate the beneficial effects in concurrent therapy in a rat model using three-point bending, pQCT and μCT analysis. A total of 60 female Sprague-Dawley rats of age 10 to 12 weeks were divided into 5 groups (SHAM, OVX+VEH, OVX+PTH, OVX+IBAN, OVX+PTH+IBAN) and subjected to ovariectomy or sham surgery accordingly. Low-dose parathyroid hormone (PTH) and/or ibandronate or its vehicle were administered subcutaneously to the respective groups starting from 4th week post-surgery at weekly intervals. Three rats from each group were euthanized every 2 weeks and their tibiae were harvested. The tibiae were subjected to metaphyseal three-point bending, pQCT and μCT analysis. Serum biomarkers for both bone formation (P1NP) and resorption (CTX) were studied. A total of 11 indices showed a significant difference between SHAM and OVX+VEH groups, suggesting the successful establishment of osteoporosis in the rat model. Compared to the previous studies which showed impedance from bisphosphonates in combination therapy with PTH, our study revealed that ibandronate does not block the anabolic effects of PTH in ovariectomized rat tibiae. Maximum load, strength-strain indices and serum bone formation markers of OVX+PTH+IBAN group are significantly higher than both monotherapy groups. With the proper ratio of anabolic and anti-resorptive drugs, the effect could be more pronounced. PMID:21334474

  4. Cost-utility of denosumab for the treatment of postmenopausal osteoporosis in Spain

    PubMed Central

    Darbà, Josep; Kaskens, Lisette; Sorio Vilela, Francesc; Lothgren, Mickael

    2015-01-01

    Background The objective of this study was to estimate the cost-effectiveness of denosumab for fracture prevention compared with no treatment, generic bisphosphonates, and strontium ranelate in a cohort of osteoporotic postmenopausal women in Spain. Methods A Markov model represented the possible health state transitions of Spanish postmenopausal women from initiation of fracture prevention treatment until age 100 years or death. The perspective was that of the Spanish National Health System. Fracture efficacy data for denosumab were taken from a randomized controlled trial. Fracture efficacy data for alendronate, ibandronate, risedronate, and strontium ranelate were taken from an independent meta-analysis. Data on the incidence of fractures in Spain were either taken from the published literature or derived from Swedish data after applying a correction factor based on the reported incidence from each country. Resource use in each health state was obtained from the literature, or where no data had been published, conservative assumptions were made. Utility values for the various fracture health states were taken from published sources. The primary endpoints of the model were life-years gained, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios for denosumab against the comparators. Results Denosumab reduced the risk of fractures compared with either no treatment or the other active interventions, and produced the greatest gains in life-years and QALYs. With an annual acquisition cost of €417.34 for denosumab, the incremental cost-effectiveness ratios for denosumab versus no treatment, alendronate, risedronate, and ibandronate were estimated at €6,823, €16,294, €4,895, and €2,205 per QALY gained, respectively. Denosumab dominated strontium ranelate. Sensitivity analyses confirmed the robustness of these findings. Conclusion Our analyses show that denosumab is a cost-effective intervention for fracture prevention in osteoporotic

  5. Effect of ibandronate on bending strength and toughness of rodent cortical bone

    PubMed Central

    Savaridas, T.; Wallace, R. J.; Dawson, S.; Simpson, A. H. R. W.

    2015-01-01

    Objectives There remains conflicting evidence regarding cortical bone strength following bisphosphonate therapy. As part of a study to assess the effects of bisphosphonate treatment on the healing of rat tibial fractures, the mechanical properties and radiological density of the uninjured contralateral tibia was assessed. Methods Skeletally mature aged rats were used. A total of 14 rats received 1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium chloride (control) daily. Stress at failure and toughness of the tibial diaphysis were calculated following four-point bending tests. Results Uninjured cortical bone in the iban group had a significantly greater mean (standard deviation (sd)), p < 0.001, stress at failure of 219.2 MPa (sd 45.99) compared with the control group (169.46 MPa (sd 43.32)) following only nine weeks of therapy. Despite this, the cortical bone toughness and work to failure was similar. There was no significant difference in radiological density or physical dimensions of the cortical bone. Conclusions Iban therapy increases the stress at failure of uninjured cortical bone. This has relevance when normalising the strength of repair in a limb when comparing it with the unfractured limb. However, the 20% increase in stress at failure with iban therapy needs to be interpreted with caution as there was no corresponding increase in toughness or work to failure. Further research is required in this area, especially with the increasing clinical burden of low-energy diaphyseal femoral fractures following prolonged use of bisphosphonates. Cite this article: Bone Joint Res 2015;4:99–104 PMID:26062566

  6. Ibandronate and cementless total hip arthroplasty: densitometric measurement of periprosthetic bone mass and new therapeutic approach to the prevention of aseptic loosening

    PubMed Central

    Muratore, Maurizio; Quarta, Eugenio; Quarta, Laura; Calcagnile, Fabio; Grimaldi, Antonella; Orgiani, M. Antonio; Marsilio, Antonio; Rollo, Giuseppe

    2012-01-01

    Summary Studies of the mechanisms of periprosthetic bone loss have led to the development of pharmacologic strategies intended to enhance bone mass recovery after surgery and consequently prevent aseptic loosening and prolong the implant survival. Bisphosphonates, potent anti-resorptive drugs widely used in the treatment of osteoporosis and other disorders of bone metabolism, were shown to be particularly effective in reducing periprosthetic bone resorption in the first year after hip and knee arthroplasty, both cemented and cementless. Based on these results, we investigated the inhibitory effects of ibandronate on periprosthetic bone loss in a 2-year study of postmenopausal women that underwent cementless total hip arthroplasty. In the first 6 months both groups (A, treated with ibandronate 3 mg i.v. within five days after surgery and then with oral ibandronate 150 mg/month, plus calcium and vitamin D supplementation; and B, treated with calcium and vitamin D supplementation only) experienced bone loss, though to a lesser extent in group A. After 12 months, group A showed a remarkable BMD recovery, that was statistically significant versus baseline values (about +1, 74% of global BMD) and most evident in region R1 (+3, 81%) and R2 (+4, 12%); in group B, on the contrary, BMD values were unchanged compared with those at 6 months post-surgery. Quality of life scores also showed a greater improvement in group A, both at 6 and 12 months after surgery, likely because of the pain-reducing effects of ibandronate treatment. PMID:22783337

  7. Ibandronate and cementless total hip arthroplasty: densitometric measurement of periprosthetic bone mass and new therapeutic approach to the prevention of aseptic loosening.

    PubMed

    Muratore, Maurizio; Quarta, Eugenio; Quarta, Laura; Calcagnile, Fabio; Grimaldi, Antonella; Orgiani, M Antonio; Marsilio, Antonio; Rollo, Giuseppe

    2012-01-01

    Studies of the mechanisms of periprosthetic bone loss have led to the development of pharmacologic strategies intended to enhance bone mass recovery after surgery and consequently prevent aseptic loosening and prolong the implant survival. Bisphosphonates, potent anti-resorptive drugs widely used in the treatment of osteoporosis and other disorders of bone metabolism, were shown to be particularly effective in reducing periprosthetic bone resorption in the first year after hip and knee arthroplasty, both cemented and cementless. Based on these results, we investigated the inhibitory effects of ibandronate on periprosthetic bone loss in a 2-year study of postmenopausal women that underwent cementless total hip arthroplasty. In the first 6 months both groups (A, treated with ibandronate 3 mg i.v. within five days after surgery and then with oral ibandronate 150 mg/month, plus calcium and vitamin D supplementation; and B, treated with calcium and vitamin D supplementation only) experienced bone loss, though to a lesser extent in group A. After 12 months, group A showed a remarkable BMD recovery, that was statistically significant versus baseline values (about +1, 74% of global BMD) and most evident in region R1 (+3, 81%) and R2 (+4, 12%); in group B, on the contrary, BMD values were unchanged compared with those at 6 months post-surgery. Quality of life scores also showed a greater improvement in group A, both at 6 and 12 months after surgery, likely because of the pain-reducing effects of ibandronate treatment.

  8. Fracture healing with alendronate treatment in the Brtl/+ mouse model of osteogenesis imperfecta.

    PubMed

    Meganck, J A; Begun, D L; McElderry, J D; Swick, A; Kozloff, K M; Goldstein, S A; Morris, M D; Marini, J C; Caird, M S

    2013-09-01

    Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by increased skeletal fragility. Patients are often treated with bisphosphonates to attempt to reduce fracture risk. However, bisphosphonates reside in the skeleton for many years and long-term administration may impact bone material quality. Acutely, there is concern about risk of non-union of fractures that occur near the time of bisphosphonate administration. This study investigated the effect of alendronate, a potent aminobisphosphonate, on fracture healing. Using the Brtl/+ murine model of type IV OI, tibial fractures were generated in 8-week-old mice that were untreated, treated with alendronate before fracture, or treated before and after fracture. After 2, 3, or 5 weeks of healing, tibiae were assessed using microcomputed tomography (μCT), torsion testing, quantitative histomorphometry, and Raman microspectroscopy. There were no morphologic, biomechanical or histomorphometric differences in callus between untreated mice and mice that received alendronate before fracture. Alendronate treatment before fracture did not cause a significant increase in cartilage retention in fracture callus. Both Brtl/+ and WT mice that received alendronate before and after fracture had increases in the callus volume, bone volume fraction and torque at failure after 5 weeks of healing. Raman microspectroscopy results did not show any effects of alendronate in wild-type mice, but calluses from Brtl/+ mice treated with alendronate during healing had a decreased mineral-to-matrix ratio, decreased crystallinity and an increased carbonate-to-phosphate ratio. Treatment with alendronate altered the dynamics of healing by preventing callus volume decreases later in the healing process. Fracture healing in Brtl/+ untreated animals was not significantly different from animals in which alendronate was halted at the time of fracture.

  9. Crystallization and preliminary neutron diffraction experiment of human farnesyl pyrophosphate synthase complexed with risedronate.

    PubMed

    Yokoyama, Takeshi; Ostermann, Andreas; Mizuguchi, Mineyuki; Niimura, Nobuo; Schrader, Tobias E; Tanaka, Ichiro

    2014-04-01

    Nitrogen-containing bisphosphonates (N-BPs), such as risedronate and zoledronate, are currently used as a clinical drug for bone-resorption diseases and are potent inhibitors of farnesyl pyrophosphate synthase (FPPS). X-ray crystallographic analyses of FPPS with N-BPs have revealed that N-BPs bind to FPPS with three magnesium ions and several water molecules. To understand the structural characteristics of N-BPs bound to FPPS, including H atoms and hydration by water, neutron diffraction studies were initiated using BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ). FPPS-risedronate complex crystals of approximate dimensions 2.8 × 2.5 × 1.5 mm (∼3.5 mm(3)) were obtained by repeated macro-seeding. Monochromatic neutron diffraction data were collected to 2.4 Å resolution with 98.4% overall completeness. Here, the first successful neutron data collection from FPPS in complex with N-BPs is reported.

  10. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis.

    PubMed

    Sahana, H; Khajuria, Deepak Kumar; Razdan, Rema; Mahapatra, D Roy; Bhat, M R; Suresh, Sarasija; Rao, R Ramachandra; Mariappan, L

    2013-02-01

    A superior drug formulation capable of achieving efficient osteogenesis is in imperative demand for the treatment of osteoporosis. In the present study we investigated the potential of using novel risedronate-hydroxyapatite (HA) nanoparticle based formulation in an animal model of established osteoporosis. Nanoparticles of HA loaded with risedronate (NHLR) of various sizes (80-130 nm) were generated for bone targeted drug delivery. Three months after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups and treated with various doses of NHLR (500, 350 and 250 microg/kg intravenous single dose) and sodium risedronate (500 microg/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. One month after drug administration, the left tibia and femur were tested for bone mechanical properties and histology, respectively. In the right femur, bone density was measured by method based on Archimedes principle and bone porosity analyses were performed using X-ray imaging. NHLR (250 microg/kg) showed a significant increase in bone density and reduced bone porosity when compared with OVX control. Moreover, NHLR (250 microg/kg) significantly increased bone mechanical properties and bone quality when compared with OVX control. The results strongly suggest that the NHLR, which is a novel nanoparticle based formulation, has a therapeutic advantage over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model of postmenopausal osteoporosis. PMID:23627045

  11. Design of a randomized clinical trial of concurrent treatment with vitamin K2 and risedronate compared to risedronate alone in osteoporotic patients: Japanese Osteoporosis Intervention Trial-03 (JOINT-03).

    PubMed

    Tanaka, Shiro; Miyazaki, Teruhiko; Uemura, Yukari; Kuroda, Tatsuhiko; Miyakawa, Nobuaki; Nakamura, Toshitaka; Fukunaga, Masao; Ohashi, Yasuo; Ohta, Hiroaki; Mori, Satoshi; Hagino, Hiroshi; Hosoi, Takayuki; Sugimoto, Toshitsugu; Itoi, Eiji; Orimo, Hajime; Shiraki, Masataka

    2014-05-01

    Concurrent treatments with bisphosphonates and vitamin K are promising given that bisphosphonates possibly interfere with vitamin K activation. This is a prospective, multi-center, open-labeled, randomized trial of the efficacy of concurrent treatment with vitamin K2 and risedronate compared with risedronate alone and to explore subsets of patients for which concurrent treatment is particularly efficacious (trial identification number UMIN000000991). Inclusion criteria are women who meet the criteria for pharmacological therapy for osteoporosis, aged ≥65 years, have any of pre-specified risk factors, can walk unassisted, and are able to answer questionnaires. Exclusion criteria are prior warfarin use, secondary osteoporosis or non-osteoporotic metabolic bone diseases, contraindication for vitamin K2 and risedronate, hyper- or hypoparathyroidism, mental disorders, prevalent vertebral fracture at ≥6 sites, severe degenerative spinal deformation between T4 and L4, serious heart, liver, or kidney disease, or bisphosphonate use within the previous 6 months. Patients were recruited from 123 institutes between January 2008 and February 2010, and allocated to vitamin K2 (45 mg/day) and risedronate (2.5 mg/day or 17.5 mg/week) or risedronate alone (2.5 mg/day or 17.5 mg/week) groups. Primary endpoint is a vertebral or non-vertebral fracture. Secondary endpoints are bone mineral density, height, undercarboxylated osteocalcin, JOQOL, EQ-5D and safety. A sample size of 910 subjects per group and 2-year follow-up will provide 80 % power to detect 35 % risk reduction for fracture, with a two-sided significance level of 5 %. Subgroup analysis stratified to adjustment factors for random allocation, body mass index, 25-hydroxyvitamin D, estimated glomerular filtration rate, grade of vertebral fracture, JOQOL, EQ-5D, and co-morbidity is pre-specified.

  12. Sustained efficacy of risedronate in men with primary and secondary osteoporosis: results of a 2-year study.

    PubMed

    Ringe, Johann D; Farahmand, Parvis; Faber, Herbert; Dorst, Alfred

    2009-01-01

    The aim of this study was to assess the effect of treatment with risedronate 5 mg daily relative to control in men with primary or secondary osteoporosis over 2 years. Osteoporosis is a common condition in men that can have serious clinical consequences. In an earlier interim report, we found that 1 year of risedronate therapy resulted in significant increases in bone mineral density (BMD) and a significant reduction in vertebral fractures compared to control in men with osteoporosis. We conducted an open-label, prospective, match-control trial on men with primary or secondary osteoporosis in a single center, outpatient setting. Men with primary or secondary osteoporosis, as defined by a baseline lumbar spine BMD T-score < or = -2.5 and a baseline femoral neck BMD T-score < or = 2.0, were eligible for this study. Patients who had been treated with bisphosphonates or fluoride within the last 12 months were excluded. A total of 316 men were randomized to risedronate (n = 158) or control (n = 158). Patients were stratified by the presence of prevalent vertebral fractures at baseline and case by case allocated to either daily treatment with risedronate 5 mg daily plus calcium (1,000 mg) and vitamin D (800 IU) or to a control group (daily alfacalcidol (1 microg) plus calcium (500 mg) for those with prevalent vertebral fractures; daily vitamin D (800 IU) plus calcium (1,200 mg) for those without previous vertebral fractures). Primary study end points were identified prior to study initiation as the incidence of new vertebral fractures and changes in BMD at the lumbar spine, femoral neck, and total hip. Other end points included incidence of nonvertebral fractures and change in body height and back pain. Compared to control, the incidence of new vertebral fractures was significantly reduced in the risedronate 5 mg daily group at 2 years [14/152 (9.2%) for risedronate vs. 35/148 (23.6%) for control (61% risk reduction; P = 0.0026)]. Treatment with risedronate 5 mg daily

  13. Effects of risedronate alone or combined with vitamin K2 on serum undercarboxylated osteocalcin and osteocalcin levels in postmenopausal osteoporosis.

    PubMed

    Kasukawa, Yuji; Miyakoshi, Naohisa; Ebina, Toshihito; Aizawa, Toshiaki; Hongo, Michio; Nozaka, Koji; Ishikawa, Yoshinori; Saito, Hidetomo; Chida, Shuichi; Shimada, Yoichi

    2014-05-01

    Risedronate decreases osteoporotic fracture incidence; however, its effects remain unclear in elderly osteoporotic patients. Vitamin K mediates carboxylation of osteocalcin (OC), and high undercarboxylated osteocalcin (ucOC) levels indicate vitamin K deficiency and increased osteoporotic fracture risk. We aimed to evaluate the effects of risedronate alone or combined with vitamin K2 on serum ucOC, OC, and incidence of vertebral fractures in elderly osteoporotic patients. A total of 101 women with postmenopausal osteoporosis aged >60 years were randomly stratified into two groups-R group (n = 51), treated with risedronate alone; and R + K group (n = 50), treated with risedronate and vitamin K2. Serum ucOC, OC and incidence of vertebral fractures were evaluated before treatment and at 6 and 12 months post-treatment. Decreased ucOC rates at 6 and 12 months were not significant between groups. However, at 6 and 12 months, decreased OC rates in the R group (p < 0.01 and 0.05, respectively) were significantly higher than in the R + K group, and ucOC/OC change rates in the R group (p < 0.05 and 0.001, respectively) were significantly lower than in the R + K group. Vertebral fracture incidence was not significantly different between the groups at 6 and 12 months. ucOC levels in patients with incident vertebral fractures were significantly higher than in patients without incident vertebral fractures in the R group at 6 months (p < 0.05). Although no significant difference was observed for ucOC decrease rate and incidence of vertebral fractures between treatments, ucOC levels in patients with incident vertebral fractures were significantly greater than in patients without when using risedronate alone.

  14. Prevention of hypercalciuria and stone-forming propensity during prolonged bedrest by alendronate

    NASA Technical Reports Server (NTRS)

    Ruml, L. A.; Dubois, S. K.; Roberts, M. L.; Pak, C. Y.

    1995-01-01

    The bone loss and hypercalciuria induced by immobilization or the decreased gravitational forces of space are well described. Using a model of bedrest immobilization, the ability of a potent aminobisphosphonate, alendronate, to avert hypercalciuria and stone-forming propensity was tested. Sixteen male subjects participated in a randomized, placebo-controlled trial in which they received either 20 mg of alendronate or placebo 2 weeks prior to and during 3 weeks of strict bedrest. Parameters of bone and calcium metabolism and urinary crystallization of stone-forming salts were measured before and at the end of bedrest. In the placebo group, bedrest increased urinary calcium (209 +/- 47 to 267 +/- 60 mg/day, p < 0.01) and the saturation of calcium phosphate. Before bedrest, the alendronate group had a significantly lower serum calcium (8.8 +/- 0.4 vs. 9.6 +/- 0.5 mg/dl, p < 0.01) and higher serum PTH (62.4 +/- 33.1 vs. 23.1 +/- 7.5 pg/ml, p < 0.01) compared with the placebo group. Moreover, the alendronate group had a lower urinary calcium (75 +/- 41 mg/day) and saturation of calcium oxalate and calcium phosphate. These effects of alendronate were sustained during bedrest. Following bedrest in the alendronate group, urinary calcium rose to 121 +/- 50 mg/day, a value less than that in the placebo group before or during bedrest. Similarly, urinary saturation of calcium oxalate and calcium phosphate rose with bedrest in the alendronate-treated patients but remained lower than values obtained in placebo-treated patients before or during bedrest. Alendronate inhibits bone mineral loss and averts the hypercalciuria and increased propensity for the crystallization of stone-forming calcium salts which occurs during 3 weeks of strict bedrest.

  15. Bone density around endosseous implants in patients taking alendronate: a pilot study.

    PubMed

    Griffiths, Garth R

    2012-06-01

    The purpose of this blind, randomized, controlled pilot investigation was to noninvasively determine bone mineral density (BMD) changes around endosseous implants placed in healthy patients who were administered the oral aminobisphosphonate alendronate. BMD was analyzed using computed tomography (CT) and grayscale imaging. Male patients (62 ± 12 years of age) were selected for placement of implants in a two-stage protocol. Patients requiring implants were initially seen for placement of half the total number of implants unilaterally in the maxilla or mandible, and each patient underwent a baseline CT scan. Six months from baseline, contralateral implants were placed with randomization into groups receiving 70 mg of alendronate weekly or a placebo, and a second CT scan was completed. Alendronate/placebo was discontinued after 6 months, and a CT scan was completed at 12 months. Patients returned for an exit evaluation and CT scan at 18 months. Hounsfield units were measured at implant placement and nonsurgical sites in the maxilla and mandible. Within the limitations of this study, results included: a decreasing trend in BMD surrounding an implant when alendronate was administered for 6 months starting at the time of implant placement, a less evident decreasing trend in BMD surrounding an implant when alendronate was administered for 6 months after the implant had successfully undergone osseointegration, and a trend suggesting BMD "rebound" when alendronate was discontinued for 6 months after initial drug administration starting either at the time of implant placement or after the implant had successfully undergone osseointegration for 6 months. PMID:22408779

  16. The Effects of Partial Mechanical Loading and Ibandronate on Skeletal Tissues in the Adult Rat Hindquarter Suspension Model for Microgravity

    NASA Technical Reports Server (NTRS)

    Schultheis, Lester W.

    1999-01-01

    We report initial data from a suspended rat model that quantitatively relates chronic partial weightbearing to bone loss. Chronic partial weightbearing is our simulation of the effect of limited artificial gravity aboard spacecraft or reduced planetary gravity. Preliminary analysis of bone by PQCT, histomorphometry, mechanical testing and biochemistry suggest that chronic exposure to half of Earth gravity is insufficient to prevent severe bone loss. The effect of episodic full weightbearing activity (Earth Gravity) on rats otherwise at 50% weightbearing was also explored. This has similarity to treatment by an Earth G-rated centrifuge on a spacecraft that normally maintained artificial gravity at half of Earth G. Our preliminary evidence, using the above techniques to analyze bone, indicate that 2 hours daily of full weightbearing was insufficient to prevent the bone loss observed in 50% weightbearing animals. The effectiveness of partial weightbearing and episodic full weightbearing as potential countermeasures to bone loss in spaceflight was compared with treatment by ibandronate. Ibandronate, a long-acting potent bisphosphonate proved more effective in preventing bone loss and associated functionality based upon structure than our first efforts at mechanical countermeasures. The effectiveness of ibandronate was notable by each of the testing methods we used to study bone from gross structure and strength to tissue and biochemistry. These results appear to be independent of generalized systemic stress imposed by the suspension paradigm. Preliminary evidence does not suggest that blood levels of vitamin D were affected by our countermeasures. Despite the modest theraputic benefit of mechanical countermeasures of partial weightbearing and episodic full weightbearing, we know that some appropriate mechanical signal maintains bone mass in Earth gravity. Moreover, the only mechanism that correctly assigns bone mass and strength to oppose regionally specific force

  17. Dose-dependent differential effects of risedronate on gene expression in osteoblasts.

    PubMed

    Wang, J; Stern, P H

    2011-04-15

    Bisphosphonates have multiple effects on bone. Their actions on osteoclasts lead to inhibition of bone resorption, at least partially through apoptosis. Effects on osteoblasts vary, with modifications in the molecule and concentration both resulting in qualitatively different responses. To understand the mechanism of the differential effects of high and low bisphosphonate concentrations on osteoblast activity, we compared the effects of 10⁻⁸ M and 10⁻⁴ M risedronate on gene expression in UMR-106 rat osteoblastic cells. Two targeted arrays, an 84-gene signaling array and an 84-gene osteogeneic array were used. Gene expression was measured at 1 and 24 h. Although some genes were regulated similarly by low and high concentrations of the drug, there was also differential regulation. At 1 h, 11 genes (1 signaling and 10 osteogenesis) were solely regulated by the low concentration, and 7 genes (3 signaling, 4 osteogenesis) were solely regulated by the high concentration. At 24 h, 8 genes (3 signaling, 5 osteogenesis) were solely regulated by the low concentration and 30 genes (16 signaling and 14 osteogenesis) were solely regulated by the high concentration. Interestingly, the low, but not the high concentration of risedronate transiently and selectively upregulated several genes associated with cell differentiation. A number of genes related to apoptosis were regulated, and could be involved in effects of bisphosphonates to promote osteoblast apoptosis. Also, observed gene changes associated with decreased angiogenesis and decreased metastasis could, if they occur in other cell types, provide a basis for the effectiveness of bisphosphonates in the prevention of cancer metastases.

  18. Prevention of Bone Loss with Risedronate in Breast Cancer Survivors: A Randomized, Controlled Clinical Trial

    PubMed Central

    Greenspan, Susan L.; Vujevich, Karen T.; Brufsky, Adam; Lembersky, Barry C.; van Londen, G.J.; Jankowitz, Rachel C.; Puhalla, Shannon L.; Rastogi, Priya; Perera, Subashan

    2016-01-01

    Purpose Aromatase inhibitors (AIs), adjuvant endocrine therapy for postmenopausal women with hormone receptor positive breast cancer, are associated with bone loss and fractures. Our objectives were to determine if 1) oral bisphosphonate therapy can prevent bone loss in women on an AI and, 2) early changes in bone turnover markers (BTM) can predict later changes in bone mineral density (BMD). Methods We conducted a 2 year double-blind, placebo-controlled, randomized trial in 109 postmenopausal women with low bone mass on an aromatase inhibitor (AI-anastrozole, letrozole, or exemestane) for hormone receptor positive breast cancer. Participants were randomized to once weekly risedronate 35 mg or placebo and all received calcium plus vitamin D. The main outcome measures included BMD, BTM [carboxy-terminal collagen crosslinks (CTX) and N-terminal propeptide of type 1 procollagen (P1NP)] and safety. Results Eighty-seven percent completed 24 months. BMD increased more in the active treatment group compared to placebo with an adjusted difference at 24 months of 3.9 ± 0.7 percentage points at the spine and 3.2 ± 0.5 percentage points at the hip (both p<0.05). The adjusted difference between the active treatment and placebo groups were 0.09 ± 0.04 nmol/LBCE for CTX and 23.3 ± 4.8 µg/mL for P1NP (both p<0.05). Women with greater 12-month decreases in CTX and P1NP in the active treatment group had a greater 24-month increase in spinal BMD (p<0.05). The oral therapy was safe and well tolerated. Conclusion In postmenopausal women with low bone mass and breast cancer on an AI, the oral bisphosphonate risedronate maintained skeletal health. PMID:25792492

  19. The bisphosphonate alendronate improves the damage associated with trinitrobenzenesulfonic acid-induced colitis in rats

    PubMed Central

    Ballester, I; Daddaoua, A; López-Posadas, R; Nieto, A; Suárez, M D; Zarzuelo, A; Martínez-Augustin, O; de Medina, F Sánchez

    2007-01-01

    Background and purpose: The nitrogen-containing bisphosphonates are drugs used successfully in the treatment of osteoporosis. They act inhibiting farnesyl diphosphate synthase. This mechanism may also produce anti-inflammatory effects. The therapeutic activity of alendronate was tested in vivo using a model of inflammatory bowel disease. Experimental approach: The trinitrobenzenesulfonic acid model of colitis in the rat was used. Rats were treated orally with alendronate and its efficacy compared with that of oral sulphasalazine or vehicle, starting 2 h after colitis induction. The status of the animals was assessed 5 days later. Key results: Alendronate treatment (25 or 75 mg kg-1 day-1) resulted in a decrease in the colonic damage score and loss of body weight (at 25 mg kg-1 day-1 only). This was associated to a dramatic reduction in the mRNA levels of interleukin 1β (IL-1β), monocyte chemoattractant protein 1 (MCP-1) and interleukin 1 receptor antagonist (IL-1ra). The magnitude of the beneficial effect was comparable to that of sulphasalazine (at a 6-20 fold higher dose). Thus sulphasalazine post-treatment reduced the mRNA levels of IL-1β/IL-1ra and MCP-1 to the same extent as alendronate and additionally lowered colonic alkaline phosphatase activity, but failed to affect body weight loss or colonic damage score. Alendronate failed to exert beneficial effects when administered intraperitoneally. Conclusions and Implications: Oral but not intraperitoneal alendronate significantly protected the colon in experimental rat colitis. Inflammatory bowel disease patients might benefit from exposure to oral alendronate. PMID:17375077

  20. Beneficial treatment with risedronate in long-term survivors after allogeneic stem cell transplantation for hematological malignancies.

    PubMed

    Tauchmanovà, L; Selleri, C; Esposito, M; Di Somma, C; Orio, F; Bifulco, G; Palomba, S; Lombardi, G; Rotoli, B; Colao, A

    2003-12-01

    In this prospective randomized study we evaluated the effect of risedronate, an aminobisphosphonate, on bone mass and turnover in patients who had undergone allogeneic stem cell transplant (SCT) for hematological malignancies. Thirty-four patients (18 females, 16 males, age 32+/-10 years) with bone mineral density (BMD) risedronate 5 mg/day. The duration of treatment was 12 months. After 6 months, lumbar BMD increased by 4.4+/-1.6% in patients of group 1 and decreased by 4.3+/-1.5% in those of group 2 ( P<0.05); at the femoral neck, BMD did not change significantly in patients of group 1 (+1.2+/-1.2%), while it decreased in those of group 2 (-4.3+/-2.1%; P<0.05). After 12 months, lumbar BMD further increased (+5.9+/-1.7%, P<0.05), compared to baseline in group 1 and slightly increased (+1.1+/-1.4%) in group 2. No further changes were observed at femoral neck in both groups. In conclusion, treatment with risedronate for 12 months increased BMD significantly at the lumbar spine and prevented further bone loss at the femoral neck in long-term survivors after allo-SCT.

  1. Comparison of the effects of elcatonin and risedronate on back and knee pain by electroalgometry using fall of skin impedance and quality of life assessment using SF-36.

    PubMed

    Fujita, Takuo; Ohue, Mutsumi; Nakajima, Mikio; Fujii, Yoshio; Miyauchi, Akimitsu; Takagi, Yasuyuki

    2011-09-01

    Back and knee pain is a widespread health problem and a serious threat to the quality of life (QOL) in middle-aged and older adults, as it frequently accompanies osteoporosis and osteoarthritis. In order to compare the effects of elcatonin and risedronate on such pain, 20 units of elcatonin was intramuscularly injected to 18 patients, and 5 mg of risedronate was orally administered daily to 20 others with similar backgrounds. Exercise-induced pain was analyzed by measuring the fall of skin impedance by electroalgometry (EAM), and subjective pain was recorded by a visual rating system (VRS) on a scale of 0 (no pain) to 100 (unbearable pain). In patients treated with elcatonin, the mean EAM-estimated pain was significantly reduced after 4, 5 and 6 months of treatment, and the VRS score after 3, 5 and 6 months, indicating a significant analgesic effect. In the risedronate group, however, improvement was less remarkable. Two-way analysis of variance using pain as a dependent variable and treatment group and time as independent variables revealed a significantly greater effect of elcatonin over risedronate on both the EAM and VRS scores, and the influence of treatment time on pain was indistinguishable between the two treatment groups. Effect of exercise load on pain was less on knee load than knee and spine load and spine load, but indistinguishable between the two groups. Changes in QOL were evaluated by the SF-36 system. Norm-based scoring showed significant improvements in 3 of 4 categories for elcatonin and in 2 of 4 for risedronate, suggesting comparable effects on the physical aspects of QOL, whereas responses to emotionally and socially directed questions indicated significant improvements in all 4 categories for risedronate, but none for elcatonin, suggesting a more physical than emotional component in elcatonin effects compared to risedronate.

  2. Additive effect of elcatonin to risedronate for chronic back pain and quality of life in postmenopausal women with osteoporosis: a randomized controlled trial.

    PubMed

    Hongo, Michio; Miyakoshi, Naohisa; Kasukawa, Yuji; Ishikawa, Yoshinori; Shimada, Yoichi

    2015-07-01

    Calcitonin has been reported to reduce acute and chronic back pain in osteoporotic patients. The additive effect of calcitonin with a bisphosphonate on chronic back pain remains unclear. The purpose of this study was to evaluate the effect of combining elcatonin (eel calcitonin) with risedronate for patients with chronic back pain. Forty-five postmenopausal women diagnosed as having osteoporosis with chronic back pain persisting for more than 3 months, after excluding women with fresh vertebral fractures within the last 6 months, were randomly allocated to a risedronate group (risedronate alone, n = 22) and a combined group (risedronate and elcatonin, n = 23). The study period was 6 months. Pain was evaluated with a visual analogue scale (VAS) and the Roland-Morris questionnaire (RDQ). Back extensor strength, bone mineral density, and quality of life on the SF-36 and the Japanese osteoporosis quality of life score were also evaluated. Significant improvements were found in the combined group for VAS at final follow-up compared with baseline and 3 months, mental health status on the SF-36, and JOQOL domains for back pain and general health. The JOQOL domain for back pain improved significantly, but no change was found in the VAS or other domains in the risedronate group. Bone mineral density increased significantly in the two groups, but no significant difference was found between the groups. Back extensor strength did not change in both groups. In conclusion, the use of elcatonin in addition to risedronate for more than 3 months reduced chronic back pain. The additional therapy of risedronate with elcatonin may be a useful and practical choice for the treatment of osteoporosis with chronic back pain persisting more than 3 months.

  3. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  4. The effect of alendronate (Fosamax) and implant surface on bone integration and remodeling in a canine model.

    PubMed

    Frenkel, S R; Jaffe, W L; Valle, C D; Jazrawi, L; Maurer, S; Baitner, A; Wright, K; Sala, D; Hawkins, M; Di Cesare, P E

    2001-01-01

    Patients at high risk for osteoporosis and its associated morbidity, including postmenopausal women, are being pharmacologically managed to stabilize and improve bone mass. Alendronate sodium (Fosamax) is a commonly used antiresorptive agent effective in osteopenic women for reducing bone resorption, increasing bone density, and decreasing fracture incidence. With the increased incidence of alendronate-treated women who are undergoing hip replacement or fracture repair by prosthesis placement, data are needed to predict how alendronate affects host bone integration with uncemented surfaces. The aim of this study was to determine the effect of alendronate on new bone formation and attachment to implant surfaces in a normal and simulated estrogen-deficient, calcium-deficient canine model, using an implantable bone growth chamber. Alendronate did not affect host bone integration to surfaces commonly used in uncemented total joint arthroplasty, but there were significant differences dependent solely on the type of surface.

  5. Preparation and Biological Study of 68Ga-DOTA-alendronate

    PubMed Central

    Fakhari, Ashraf; Jalilian, Amir R.; Johari-Daha, Fariba; Shafiee-Ardestani, Mehdi; Khalaj, Ali

    2016-01-01

    Objective(s): In line with previous research on the development of conjugated bisphosphonate ligands as new bone-avid agents, in this study, DOTA-conjugated alendronate (DOTA-ALN) was synthesized and evaluated after labeling with gallium-68 (68Ga). Methods: DOTA-ALN was synthesized and characterized, followed by 68Ga-DOTA-ALN preparation, using DOTA-ALN and 68GaCl3 (pH: 4-5) at 92-95° C for 10 min. Stability tests, hydroxyapatite assay, partition coefficient calculation, biodistribution studies, and imaging were performed on the developed agent in normal rats. Results: The complex was prepared with high radiochemical purity (>99% as depicted by radio thin-layer chromatography; specific activity: 310-320 GBq/mmol) after solid phase purification and was stabilized for up to 90 min with a log P value of -2.91. Maximum ligand binding (65%) was observed in the presence of 50 mg of hydroxyapatite; a major portion of the activity was excreted through the kidneys. With the exception of excretory organs, gastrointestinal tract organs, including the liver, intestine, and colon, showed significant uptake; however, the bone uptake was low (<1%) at 30 min after the injection. The data were also confirmed by sequential imaging at 30-90 min following the intravenous injection. Conclusion: The high solubility and anionic properties of the complex led to major renal excretion and low hydroxyapatite uptake; therefore, the complex failed to demonstrate bone imaging behaviors. PMID:27408898

  6. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    SciTech Connect

    Li, Dongdong; Zhu, Yuntao; Liang, Zhiqiang

    2013-06-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N{sub 2} adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH{sub 3}{sup +} on the matrix and -COO{sup −}belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate.

  7. The Effects of Partial Mechanical Loading and Ibandronate on Skeletal Tissues in the Adult Rat Hindquarter Suspension Model for Microgravity

    NASA Technical Reports Server (NTRS)

    Schultheis, Lester W.

    1999-01-01

    We report initial data from a suspended rat model that quantitatively relates chronic partial weightbearing to bone loss. Chronic partial weightbearing is our simulation of the effect of limited artificial gravity aboard spacecraft or reduced planetary gravity. Preliminary analysis of bone by PQCT, histomorphometry, mechanical testing and biochemistry suggest that chronic exposure to half of Earth gravity is insufficient to prevent severe bone loss. The effect of episodic full weightbearing activity (Earth Gravity) on rats otherwise at 50% weightbearing was also explored. This has similarity to treatment by an Earth G-rated centrifuge on a spacecraft that normally maintained artificial gravity at half of Earth G. Our preliminary evidence, using the above techniques to analyze bone, indicate that 2 hours daily of full weightbearing was insufficient to prevent the bone loss observed in 50% weightbearing animals. The effectiveness of partial weightbearing and episodic full weightbearing as potential countermeasures to bone loss in spaceflight was compared with treatment by ibandronate. Ibandronate, a long-acting potent bisphosphonate proved more effective in preventing bone loss and associated functionality based upon structure than our first efforts at mechanical countermeasures. The effectiveness of ibandronate was notable by each of the testing methods we used to study bone from gross structure and strength to tissue and biochemistry. These results appear to be independent of generalized systemic stress imposed by the suspension paradigm. Preliminary evidence does not suggest that blood levels of vitamin D were affected by our countermeasures. Despite the modest theraputic benefit of mechanical countermeasures of partial weightbearing and episodic full weightbearing, we know that some appropriate mechanical signal maintains bone mass in Earth gravity. Moreover, the only mechanism that correctly assigns bone mass and strength to oppose regionally specific force

  8. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function

    SciTech Connect

    Moon, Ho-Jin; Yun, Young-Pil; Han, Choong-Wan; Kim, Min Sung; Kim, Sung Eun; Bae, Min Soo; Kim, Gyu-Tae; Choi, Yong-Suk; Hwang, Eui-Hwan; Lee, Joon Woo; Lee, Jin-Moo; Lee, Chang-Hoon; Kim, Duck-Su; Kwon, Il Keun

    2011-09-23

    Highlights: {yields} We examine bone metabolism of engineered alendronate attached to Ti surfaces. {yields} Alendronate-immobilized Ti enhances activation of osteoblast differentiation. {yields} Alendronate-immobilized Ti inhibits osteoclast differentiation. {yields} Alendronate-immobilized Ti may be a bioactive implant with dual functions. -- Abstract: The failure of orthopedic and dental implants has been attributed mainly to loosening of the implant from host bone, which may be due to weak bonding of the implant material to bone tissue. Titanium (Ti) is used in the field of orthopedic and dental implants because of its excellent biocompatibility and outstanding mechanical properties. Therefore, in the field of materials science and tissue engineering, there has been extensive research to immobilize bioactive molecules on the surface of implant materials in order to provide the implants with improved adhesion to the host bone tissue. In this study, chemically active functional groups were introduced on the surface of Ti by a grafting reaction with heparin and then the Ti was functionalized by immobilizing alendronate onto the heparin-grafted surface. In the MC3T3-E1 cell osteogenic differentiation study, the alendronate-immobilized Ti substrates significantly enhanced alkaline phosphatase activity (ALP) and calcium content. Additionally, nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells was inhibited with the alendronate-immobilized Ti as confirmed by TRAP analysis. Real time PCR analysis showed that mRNA expressions of osteocalcin and osteopontin, which are markers for osteogenesis, were upregulated in MC3T3-E1 cells cultured on alendronate-immobilized Ti. The mRNA expressions of TRAP and Cathepsin K, markers for osteoclastogenesis, in RAW264.7 cells cultured on alendronate-immobilized Ti were down-regulated. Our study suggests that alendronate-immobilized Ti may be a bioactive implant with dual functions to enhance

  9. Cancer-induced bone loss and associated pain-related behavior is reduced by risedronate but not its phosphonocarboxylate analog NE-10790.

    PubMed

    Hald, Andreas; Hansen, Rikke R; Thomsen, Mette W; Ding, Ming; Croucher, Peter I; Gallagher, Orla; Ebetino, Frank H; Kassem, Moustapha; Heegaard, Anne-Marie

    2009-09-01

    Prostate, breast and lung cancers readily develop bone metastases which lead to fractures, hypercalcemia and pain. Malignant growth in the bones depends on osteoclast-mediated bone resorption and in this regard bisphosphonate compounds, which have high-bone affinity and inhibit osteoclast activity, have been found to alleviate bone cancer symptoms. In this study, the bisphosphonate risedronate and its phosphonocarboxylate derivative NE-10790 was tested in a murine bone cancer pain model. Risedronate decreased bone cancer-related bone destruction and pain-related behavior and decreased the spinal expression of glial fibrillary acidic protein, whereas NE-10790 had no effect on these parameters. Furthermore, risedronate but not NE-10790 induced dose-dependent toxicity in NCTC-2472 cells in vitro. Furthermore, the direct toxic effect of risedronate on tumor cells observed in vitro opens the possibility that a direct toxic effect on tumor cells may also be present in vivo and be related to the efficacy of bisphosphonate compounds. In conclusion, these results suggest that risedronate treatment may lead to an increased life quality, in patient suffering from bone cancer, in terms of decreased osteolysis and pain, and merits further study.

  10. Risedronate prevents persistent bone loss in prostate cancer patients treated with androgen deprivation therapy: results of a 2-year follow-up study.

    PubMed

    Izumi, K; Mizokami, A; Sugimoto, K; Narimoto, K; Kitagawa, Y; Koh, E; Namiki, M

    2011-09-01

    Androgen deprivation therapy (ADT) for prostate cancer (PCa) causes bone loss. Although we reported previously that risedronate significantly recovers bone mineral density (BMD) for up to 12 months, there have been no reports with longer follow-up periods to date. This study extended our earlier series extending the follow-up period to 24 months. Eligible patients had histologically confirmed PCa without lumbar spine metastasis and underwent ADT. Lumbar spine BMD, urinary deoxypyridinoline (uDPD) and serum bone alkaline phosphatase were measured at 6, 12 and 24 months. Among the total of 96 patients, we analyzed 26 and 18 patients in risedronate administration and control groups, respectively. BMD relative to the young adult mean ratio, uDPD and serum bone alkaline phosphatase of the risedronate administration group recovered significantly after 24 months compared with the control group (P<0.0001, P=0.0001, and P<0.0001, respectively). Transient blurred vision, malaise and vertigo were observed in 1 patient each among the 46 patients treated with risedronate within 28 days after first administration. Oral administration of risedronate is safe and effective for the recovery of ADT-induced bone loss in PCa patients even at 24 months after commencement of treatment.

  11. Alendronate induces gastric damage by reducing nitric oxide synthase expression and NO/cGMP/K(ATP) signaling pathway.

    PubMed

    Silva, Renan O; Lucetti, Larisse T; Wong, Deysi V T; Aragão, Karoline S; Junior, Eudmar M A; Soares, Pedro M G; Barbosa, André Luiz R; Ribeiro, Ronaldo A; Souza, Marcellus H L P; Medeiros, Jand-Venes R

    2014-08-31

    Chronic use of alendronate has been linked to gastrointestinal tract problems. Our objective was to evaluate the role of the NO/cGMP/KATP signaling pathway and nitric oxide synthase expression in alendronate-induced gastric damage. Rats were either treated with the NO donor, sodium nitroprusside (SNP; 1, 3, and 10 mg/kg), or the NO synthase (NOS) substrate, L-arginine (L-Arg; 50, 100, and 200 mg/kg). Some rats were pretreated with either ODQ (a guanylate cyclase inhibitor; 10 mg/kg) or glibenclamide (KATP channels blocker; 10 mg/kg). In other experiments, rats were pretreated with L-NAME (non-selective NOS inhibitor; 10 mg/kg), 1400 W (selective inducible NOS [iNOS] inhibitor; 10 mg/kg), or L-NIO (a selective endothelial NOS [eNOS] inhibitor; 30 mg/kg). After 1 h, the rats were treated with alendronate (30 mg/kg) by gavage for 4 days. SNP and L-Arg prevented alendronate-induced gastric damage in a dose-dependent manner. Alendronate reduced nitrite/nitrate levels, an effect that was reversed with SNP or L-Arg treatment. Pretreatment with ODQ or glibenclamide reversed the protective effects of SNP and L-Arg. L-NAME, 1400 W, or L-NIO aggravated the severity of alendronate-induced lesions. In addition, alendronate reduced the expression of iNOS and eNOS in the gastric mucosa. Gastric ulcerogenic responses induced by alendronate were mediated by a decrease in NO derived from both eNOS and iNOS. In addition, our findings support the hypothesis that activation of the NO/cGMP/KATP pathway is of primary importance for protection against alendronate-induced gastric damage.

  12. Five-year experience with risedronate therapy for patients with increased fracture risk: a practice-based observational study.

    PubMed

    Takakuwa, Masayuki; Iwamoto, Jun

    2015-01-01

    The purpose of this practice-based observational study was to examine the effects of long-term treatment with risedronate in patients with an increased fracture risk. Seventy patients (4 men and 66 postmenopausal women; mean age, 68.0 years) with osteoporosis or osteopenia and clinical risk factors for fractures were treated with risedronate at either 2.5 mg/d or 17.5 mg/week for 5 years. The bone mineral density (BMD) of the lumbar spine and proximal femur, and the structural geometric parameters of the proximal femur were evaluated by dual-energy X-ray absorptiometry with advanced hip assessment software at baseline and after each year of treatment. The lumbar spine BMD rapidly increased during the first year of the treatment and steadily increased throughout the 5-year treatment period. The BMD of the femoral neck and total hip also significantly increased during the first 3 and 2 years of treatment, respectively, then gradually declined and reached the baseline level after 5 years of treatment. The cross-sectional moment of inertia, cross-sectional area, and mean width of the femoral neck region of interest significantly increased during the first 2 years, and these increases were maintained throughout the 5-year treatment period. The femur strength index and section modulus also significantly increased following time courses similar to those of the above three parameters. These results suggest that risedronate produced both a sustained increase in the lumbar spine BMD and improvement in the femoral structural geometric parameters for 5 years of treatment.

  13. Preventive effect of risedronate on bone loss and frailty fractures in elderly women treated with anastrozole for early breast cancer.

    PubMed

    Sergi, Giuseppe; Pintore, Giulia; Falci, Cristina; Veronese, Nicola; Berton, Linda; Perissinotto, Egle; Basso, Umberto; Brunello, Antonella; Monfardini, Silvio; Manzato, Enzo; Coin, Alessandra

    2012-07-01

    The aim of this study was to assess the effect of adjuvant anastrozole, alone or associated with risedronate, on BMD and bone fracture risk in women more than 70 years old with hormone receptor-positive early breast cancer (EBC). In a group of 51 elderly women (aged 76.4 ± 5.0 years) considered for adjuvant aromatase inhibitors for EBC, 24 patients with T-scores ≥ -2 and no prevalent fractures received anastrozole 1 mg/day (group A), and 27 patients with T-scores < -2, or with T-scores ≥ -2 and prevalent fractures (group B), received anastrozole (1 mg/day) plus risedronate (35 mg/week). Both groups received supplementation with 1 g calcium carbonate and 800 IU vitamin D per day. Differences in BMD and frailty fractures were evaluated after 1 and 2 years. In group A, significant decreases in BMD were observed in the lumbar spine (Δ BMD, -0.030 ± 0.04 g/cm², P < 0.05), femoral neck (Δ BMD, -0.029 ± 0.05 g/cm², P < 0.05), and trochanter (Δ BMD, -0.026 ± 0.03 g/cm², P < 0.01) after 2 years. The greatest percent reduction in height (Hpr) emerged in the thoracic spine (3.6 ± 2.4%, P < 0.01), although only one incident vertebral fracture was observed. In group B, BMD increased in the lumbar spine (Δ BMD, 0.038 ± 0.04, P < 0.001), although no significant changes were seen in the hip regions. The decline in Hpr was negligible (about 1%). No incident fractures were observed at follow-up. In conclusion, anastrozole treatment for EBC in elderly women seems to have only mild negative effects on the femoral bone. Risedronate makes the use of anastrozole safer, even for osteopenic or osteoporotic elderly patients.

  14. Whole body vibration exercise improves body balance and walking velocity in postmenopausal osteoporotic women treated with alendronate: Galileo and Alendronate Intervention Trail (GAIT).

    PubMed

    Iwamoto, J; Sato, Y; Takeda, T; Matsumoto, H

    2012-09-01

    A randomized controlled trial was conducted to determine the effect of 6 months of whole body vibration (WBV) exercise on physical function in postmenopausal osteoporotic women treated with alendronate. Fifty-two ambulatory postmenopausal women with osteoporosis (mean age: 74.2 years, range: 51-91 years) were randomly divided into two groups: an exercise group and a control group. A four-minute WBV exercise was performed two days per week only in the exercise group. No exercise was performed in the control group. All the women were treated with alendronate. After 6 months of the WBV exercise, the indices for flexibility, body balance, and walking velocity were significantly improved in the exercise group compared with the control group. The exercise was safe and well tolerated. The reductions in serum alkaline phosphatase and urinary cross-linked N-terminal telopeptides of type I collagen during the 6-month period were comparable between the two groups. The present study showed the benefit and safety of WBV exercise for improving physical function in postmenopausal osteoporotic women treated with alendronate.

  15. Healing properties of allograft from alendronate-treated animal in lumbar spine interbody cage fusion.

    PubMed

    Xue, Qingyun; Li, Haisheng; Zou, Xuenong; Bünger, Mathias; Egund, Niels; Lind, Martin; Christensen, Finn Bjarke; Bünger, Cody

    2005-04-01

    This study investigated the healing potential of allograft from bisphosphonate-treated animals in anterior lumbar spine interbody fusion. Three levels of anterior lumbar interbody fusion with Brantigan cages were performed in two groups of five landrace pigs. Empty Brantigan cages or cages filled with either autograft or allograft were located randomly at different levels. The allograft materials for the treatment group were taken from the pigs that had been fed with alendronate, 10 mg daily for 3 months. The histological fusion rate was 2/5 in alendronate-treated allograft and 3/5 in non-treated allograft. The mean bone volume was 39% and 37.2% in alendronate-treated or non-treated allograft (NS), respectively. No statistical difference was found between the same grafted cage comparing two groups. The histological fusion rate was 7/10 in all autograft cage levels and 5/10 in combined allograft cage levels. No fusion was found at all in empty cage levels. With the numbers available, no statistically significant difference was found in histological fusion between autograft and allograft applications. There was a significant difference of mean bone volume between autograft (49.2%) and empty cage (27.5%) (P<0.01). In conclusion, this study did not demonstrate different healing properties of alendronate-treated and non-treated allograft for anterior lumbar interbody fusion in pigs. PMID:15248057

  16. The Effect of Alendronate on Various Graft Materials Used in Maxillary Sinus Augmentation: A Rabbit Study

    PubMed Central

    Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul

    2015-01-01

    Background: Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. Objectives: The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. Materials and Methods: This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. Results: At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized

  17. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats.

    PubMed

    Katsumi, Hidemasa; Liu, Shu; Tanaka, Yutaro; Hitomi, Kaori; Hayashi, Rie; Hirai, Yuka; Kusamori, Kosuke; Quan, Ying-shu; Kamiyama, Fumio; Sakane, Toshiyasu; Yamamoto, Akira

    2012-09-01

    Alendronate is a nitrogen-containing bisphosphonate that is widely used for the treatment of osteoporosis. In this study, we developed a novel self-dissolving micron-size needle array (microneedle array) containing alendronate, which was fabricated by micromodeling technologies using hyaluronic acid as a basic material. Micron-scale pores in the skin were seen after the application of the alendronate-loaded microneedle array, verifying establishment of transdermal pathways for alendronate. The absorption of alendronate after the application of alendronate-loaded microneedle array was almost equivalent to that after subcutaneous administration, and the bioavailability of alendronate was approximately 90% in rats. Furthermore, delivery of alendronate via this strategy effectively suppressed the decrease in the width of the growth plate in a rat model of osteoporosis. Although mild cutaneous irritation was observed after the application of the alendronate-loaded microneedle array, it resolved by day 15. These findings indicate that this alendronate-loaded microneedle array is a promising transdermal formulation for the treatment of osteoporosis. PMID:22467424

  18. Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis.

    PubMed

    Ferreira, Diego dos Santos; Boratto, Fernanda Alves; Cardoso, Valbert Nascimento; Serakides, Rogéria; Fernandes, Simone Odília; Ferreira, Lucas Antônio Miranda; Oliveira, Mônica Cristina

    2015-01-01

    Osteomyelitis is a progressive destruction of bones caused by microorganisms. Inadequate or absent treatment increases the risk of bone growth inhibition, fractures, and sepsis. Among the diagnostic techniques, functional images are the most sensitive in detecting osteomyelitis in its early stages. However, these techniques do not have adequate specificity. By contrast, radiolabeled antibiotics could improve selectivity, since they are specifically recognized by the bacteria. The incorporation of these radiopharmaceuticals in drug-delivery systems with high affinity for bones could improve the overall uptake. In this work, long-circulating and alendronate-coated liposomes containing (99m)technetium-radiolabeled ceftizoxime were prepared and their ability to identify infectious foci (osteomyelitis) in animal models was evaluated. The effect of the presence of PEGylated lipids and surface-attached alendronate was evaluated. The bone-targeted long-circulating liposomal (99m)technetium-ceftizoxime showed higher uptake in regions of septic inflammation than did the non-long-circulating and/or alendronate-non-coated liposomes, showing that both the presence of PEGylated lipids and alendronate coating are important to optimize the bone targeting. Scintigraphic images of septic or aseptic inflammation-bearing Wistar rats, as well as healthy rats, were acquired at different time intervals after the intravenous administration of these liposomes. The target-to-non-target ratio proved to be significantly higher in the osteomyelitis-bearing animals for all investigated time intervals. Biodistribution studies were also performed after the intravenous administration of the formulation in osteomyelitis-bearing animals. A significant amount of liposomes were taken up by the organs of the mononuclear phagocyte system (liver and spleen). Intense renal excretion was also observed during the entire experiment period. Moreover, the liposome uptake by the infectious focus was

  19. Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis

    PubMed Central

    Ferreira, Diego dos Santos; Boratto, Fernanda Alves; Cardoso, Valbert Nascimento; Serakides, Rogéria; Fernandes, Simone Odília; Ferreira, Lucas Antônio Miranda; Oliveira, Mônica Cristina

    2015-01-01

    Osteomyelitis is a progressive destruction of bones caused by microorganisms. Inadequate or absent treatment increases the risk of bone growth inhibition, fractures, and sepsis. Among the diagnostic techniques, functional images are the most sensitive in detecting osteomyelitis in its early stages. However, these techniques do not have adequate specificity. By contrast, radiolabeled antibiotics could improve selectivity, since they are specifically recognized by the bacteria. The incorporation of these radiopharmaceuticals in drug-delivery systems with high affinity for bones could improve the overall uptake. In this work, long-circulating and alendronate-coated liposomes containing 99mtechnetium-radiolabeled ceftizoxime were prepared and their ability to identify infectious foci (osteomyelitis) in animal models was evaluated. The effect of the presence of PEGylated lipids and surface-attached alendronate was evaluated. The bone-targeted long-circulating liposomal 99mtechnetium–ceftizoxime showed higher uptake in regions of septic inflammation than did the non-long-circulating and/or alendronate-non-coated liposomes, showing that both the presence of PEGylated lipids and alendronate coating are important to optimize the bone targeting. Scintigraphic images of septic or aseptic inflammation-bearing Wistar rats, as well as healthy rats, were acquired at different time intervals after the intravenous administration of these liposomes. The target-to-non-target ratio proved to be significantly higher in the osteomyelitis-bearing animals for all investigated time intervals. Biodistribution studies were also performed after the intravenous administration of the formulation in osteomyelitis-bearing animals. A significant amount of liposomes were taken up by the organs of the mononuclear phagocyte system (liver and spleen). Intense renal excretion was also observed during the entire experiment period. Moreover, the liposome uptake by the infectious focus was significantly

  20. Capillary electrophoresis-electrochemiluminescence detection method for the analysis of ibandronate in drug formulations and human urine.

    PubMed

    Huang, Yu-Shan; Chen, Shun-Niang; Whang, Chen-Wen

    2011-08-01

    A simple, rapid and sensitive CE method coupled with electrochemiluminescence (ECL) detection for direct analysis of ibandronate (IBAN) has been developed. Using a buffer solution of 20 mM sodium phosphate (pH 9.0) and a voltage of 13.5 kV, separation of IBAN in a 30-cm length capillary was achieved in 3 min. ECL detection was performed with an indium tin oxide working electrode bias at 1.6 V (versus a Pt wire reference) in a 200-mM sodium phosphate buffer (pH 8.0) containing 3.5 mM Ru(bpy)(3)(2+) (where bpy=2,2'-bipyridyl). Derivatization of IBAN prior to CE-ECL analysis was not needed. Linear correlation (r=0.9992, n=7) between ECL intensity and analyte concentration was obtained in the range of 0.25-50 μM IBAN. The LOD of IBAN in water was 0.08 μM. The developed method was applied to the analysis of IBAN in a drug formulation and human urine sample. SPE using magnetic Fe(3)O(4)@Al(2)O(3) nanoparticles as the extraction phase was employed to pretreat the urine sample before CE-ECL analysis. The linear range was 0.2-12.0 μM IBAN in human urine (r=0.9974, n=6). The LOD of IBAN in urine was 0.06 μM. Total analysis time including sample preparation was <1 h. PMID:21793001

  1. Teriparatide Versus Alendronate for the Preservation of Bone Mineral Density After Total Hip Arthroplasty - A randomized Controlled Trial.

    PubMed

    Kobayashi, Naomi; Inaba, Yutaka; Uchiyama, Makoto; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki

    2016-01-01

    In this study, the effect of teriparatide for the prevention of bone mineral density (BMD) loss after THA was compared with alendronate in a randomized controlled trial. Forty-eight patients were assigned to three groups, namely, the teriparatide, alendronate, and no medication groups. Dual-energy x-ray absorptiometry (DEXA) was performed at 1 week post-surgery as a baseline reference, followed by subsequent measurements at 12, 24, and 48 weeks postoperatively. For periprosthetic BMD loss, a significant effect of teriparatide was demonstrated, though its effect was similar to alendronate. On the other hand, higher lumbar BMD was observed in the teriparatide group than in the alendronate group at 48 weeks post-surgery. Teriparatide administration may be one reasonable option for osteoporotic patient to preserve the periprosthetic BMD after THA.

  2. New strategies for osteoporosis patients previously managed with strontium ranelate.

    PubMed

    Vestergaard, Peter

    2014-12-01

    The aim of this article is to describe potential alternatives to patients no longer eligible for management with strontium ranelate for osteoporosis according to the recommendations by the European Medicines Agency. A systematic search of Pubmed was done for papers on fracture efficacy of various treatments for osteoporosis, and potential harms especially in terms of cardiovascular events and stroke. The results showed that drugs more efficacious in terms of relative risk reduction of fractures than strontium ranelate were alendronate, risedronate, zoledronate, and denosumab. Raloxifene, as for strontium, may be associated with an increased risk of deep venous thromboembolism and fatal stroke. In terms of cardiovascular events special attention may be given to calcium supplements. Thus, patients at risk of stroke and ischemic cardiac events such as acute myocardial infarction should not use strontium ranelate. Ideally more efficacious drugs in terms of fracture reduction should be used such as alendronate, risedronate, zoledronate or denosumab. Raloxifene may pose a special problem as this too may be associated with an increased risk of fatal strokes. Other less-potent drugs in terms of fracture reduction should only be used if no alternatives are available (ibandronate, pamidronate, clodronate). Parathyroid hormone or analogs may be used for a limited time interval in specially selected patients and needs to be followed up with antiresorptive treatment to prevent loss of the bone gained. However, it should be remembered that no head-to-head comparison studies exist. PMID:25435924

  3. Isoprenoid-independent pathway is involved in apoptosis induced by risedronate, a bisphosphonate, in which Bim plays a critical role in breast cancer cell line MCF-7.

    PubMed

    Suyama, Keiko; Noguchi, Yoshihiko; Tanaka, Tomoaki; Yoshida, Tomohiko; Shibata, Takahisa; Saito, Yasushi; Tatsuno, Ichiro

    2007-11-01

    Bisphosphonates cause apoptosis to various types of cancer cells including breast cancer. Inhibition of the mevalonate pathway was reported to be involved in the apoptosis induced by bisphosphonates, but its precise mechanism has not been unveiled. In the present study, we investigated the molecular mechanism of risedronate, a bisphosphonate, in the apoptosis of the breast cancer cell line MCF-7 in comparison with that of cerivastatin, an HMG CoA reductase inhibitor (statin), since statin has been known to induce apoptosis through an isoprenoid-dependent pathway in these cells. We found that i) risedronate induced MCF-7 cells into apoptosis in a manner similar to cerivastatin with the activation of caspase-9 followed by caspase-6 and -7, that ii) bisphosphonate-induced apoptosis was significantly, but not fully, recovered by the addition of GGOH, an isoprenoid, which completely rescued in case of cerivastatin-induced apoptosis, that iii) risedronate induced G2 arrest with the induction of Bim (BH3-only protein), but that statin induced G1 arrest without it, and that iv) the down-regulation of Bim protein by siRNA significantly attenuated the risedronate-induced apoptosis. These data clearly indicate that both isoprenoid-dependent and -independent pathways might be involved in the apoptosis induced by bisphosphonate, and Bim might be a critical component for the isoprenoid-independent apoptotic pathway.

  4. Bisphosphonates: Pharmacokinetics, bioavailability, mechanisms of action, clinical applications in children, and effects on tooth development.

    PubMed

    Soares, Ana Prates; do Espírito Santo, Renan Fernandes; Line, Sérgio Roberto Peres; Pinto, Maria das Graças Farias; Santos, Pablo de Moura; Toralles, Maria Betânia Pereira; do Espírito Santo, Alexandre Ribeiro

    2016-03-01

    Bisphosphonates (BPs) avidly bind to calcium crystals and inhibit osteoclastic bone resorption, making them useful for treatment of skeletal disorders such as osteoporosis, Paget's disease, osteogenesis imperfecta and metastatic bone diseases. BPs therapeutically act by causing toxic effects on osteoclasts or interfering with specific intracellular pathways in those cells. BPs that possess nitrogen in their composition are called nitrogen-containing BPs (NBPs) and include alendronate, pamidronate, risedronate, ibandronate, and zoledronate. Simple BPs or non-NBPs do not have nitrogen in their composition, include etiodronate and clodronate, and were the first to be tested in animals and clinically used. Because BPs may be administered to pregnant women or children during deciduous and permanent teeth development, it is expected that they might disturb tooth eruption and development. A review of current literature on pharmacokinetics, bioavailability, mechanisms of action, and clinical applications of BPs in children, and their effects on tooth eruption and development is presented.

  5. Prediction of bioavailability of selected bisphosphonates using in silico methods towards categorization into a biopharmaceutical classification system.

    PubMed

    Biernacka, Joanna; Betlejewska-Kielak, Katarzyna; Kłosińska-Szmurło, Ewa; Pluciński, Franciszek A; Mazurek, Aleksander P

    2013-01-01

    The physicochemical properties relevant to biological activity of selected bisphosphonates such as clodronate disodium salt, etidronate disodium salt, pamidronate disodium salt, alendronate sodium salt, ibandronate sodium salt, risedronate sodium salt and zoledronate disodium salt were determined using in silico methods. The main aim of our research was to investigate and propose molecular determinants thataffect bioavailability of above mentioned compounds. These determinants are: stabilization energy (deltaE), free energy of solvation (deltaG(solv)), electrostatic potential, dipole moment, as well as partition and distribution coefficients estimated by the log P and log D values. Presented values indicate that selected bisphosphonates a recharacterized by high solubility and low permeability. The calculated parameters describing both solubility and permeability through biological membranes seem to be a good bioavailability indicators of bisphosphonates examined and can be a useful tool to include into Biopharmaceutical Classification System (BCS) development.

  6. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability

    PubMed Central

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability. PMID:27148747

  7. Phase I clinical study to select a novel oral formulation for ibandronate containing the excipient sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC).

    PubMed

    Bittner, B; McIntyre, C; Tian, H; Tang, K; Shah, N; Phuapradit, W; Ahmed, H; Chokshi, H; Infeld, M; Fotaki, N; Ma, H; Portron, A; Jordan, P; Schmidt, J

    2012-03-01

    The aim of this study was to select a novel oral formulation for ibandronate (IBN, CAS number: 13892619). In four cohorts of 28, 21, 19 and 29 healthy volunteers, the impact of the carrier molecule sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC, CAS number: 203787-91-1) on the bioavailability of IBN was investigated. Within each cohort different oral formulations with one dose of ibandronate (30 mg) and three different ratios of IBN:SNAC (1:5, 1:10 and 1:20) were compared to the approved oral IBN tablet formulations (150 and 50 mg IBN) in a 4-way cross-over design and a one week washout between the administrations. The highest mean IBN exposure was achieved with a capsule formulation containing drug-coated beadlets and an IBN:SNAC ratio of 1:5. AUC(last) and C(max) of IBN were approximately 1.3- and 2.2-fold higher compared to the reference treatment (150 mg IBN without SNAC). Increasing the post-dose fasting duration from 15 to 30 min resulted in a more than 2-fold increase in AUC(last), while superimposable IBN serum concentration-time profiles were achieved after a 30 and 60 min fast. The tolerability of the IBN/SNAC treatments in all cohorts was similar to that in the IBN reference groups and most adverse events (AEs) were of mild to moderate intensity. PMID:22530305

  8. Differing effects of denosumab and alendronate on cortical and trabecular bone.

    PubMed

    Zebaze, Roger M; Libanati, Cesar; Austin, Matthew; Ghasem-Zadeh, Ali; Hanley, David A; Zanchetta, Jose R; Thomas, Thierry; Boutroy, Stephanie; Bogado, Cesar E; Bilezikian, John P; Seeman, Ego

    2014-02-01

    Vertebral fractures and trabecular bone loss are hallmarks of osteoporosis. However, 80% of fractures are non-vertebral and 70% of all bone loss is cortical and is produced by intracortical remodeling. The resulting cortical porosity increases bone fragility exponentially. Denosumab, a fully human anti-RANKL antibody, reduces the rate of bone remodeling more than alendronate. The aim of this study was to quantify the effects of denosumab and alendronate on cortical and trabecular bone. Postmenopausal women, mean age 61years (range 50 to 70), were randomized double blind to placebo (n=82), alendronate 70mg weekly (n=82), or denosumab 60mg every 6months (n=83) for 12months. Porosity of the compact-appearing cortex (CC), outer and inner cortical transitional zones (OTZ, ITZ), and trabecular bone volume/total volume (BV/TV) of distal radius were quantified in vivo from high-resolution peripheral quantitative computed tomography scans. Denosumab reduced remodeling more rapidly and completely than alendronate, reduced porosity of the three cortical regions at 6months, more so by 12months relative to baseline and controls, and 1.5- to 2-fold more so than alendronate. The respective changes at 12months were [mean (95% CI)]; CC: -1.26% (-1.61, -0.91) versus -0.48% (-0.96, 0.00), p=0.012; OTZ: -1.97% (-2.37, -1.56) versus -0.81% (-1.45, -0.17), p=0.003; and ITZ: -1.17% (-1.38, -0.97) versus -0.78% (-1.04, -0.52), p=0.021. Alendronate reduced porosity of the three cortical regions at 6months relative to baseline and controls but further decreased porosity of only the ITZ at 12months. By 12months, CC porosity was no different than baseline or controls, OTZ porosity was reduced only relative to baseline, not controls, while ITZ porosity was reduced relative to baseline and 6months, but not controls. Each treatment increased trabecular BV/TV volume similarly: 0.25% (0.19, 0.30) versus 0.19% (0.13, 0.30), p=0.208. The greater reduction in cortical porosity by denosumab may be due

  9. Modulation of adhesion-dependent cAMP signaling by echistatin and alendronate

    NASA Technical Reports Server (NTRS)

    Fong, J. H.; Ingber, D. E.

    1996-01-01

    We measured intracellular cAMP levels in cells during attachment and spreading on different extracellular matrix (ECM) proteins. Increases in cAMP were observed within minutes when cells attached to fibronectin, vitronectin, and a synthetic RGD-containing fibronectin peptide (Petite 2000), but not when they adhered to another integrin alpha nu beta 3 ligand, echistatin. Because echistatin also inhibits bone resorption, we measured the effects of adding another osteoporosis inhibitor, alendronate, in this system. Alendronate inhibited the cAMP increase induced by ligands that primarily utilize integrin alpha nu beta 3 (vitronectin, Peptite 2000), but not by fibronectin which can also use integrin alpha 5 beta 1. These results show that cell adhesion to ECM can increase intracellular cAPM levels and raise the possibility that inhibitors of osteoporosis may act, in part, by preventing activation of this pathway by integrins.

  10. Effect of alendronate on endochondral ossification in mandibular condyles of growing rats

    PubMed Central

    Bradaschia-Correa, V.; Barrence, F.A.C.; Ferreira, L.B.; Massa, L.F.; Arana-Chavez, V.E.

    2012-01-01

    The replacement of the calcified cartilage by bone tissue during the endochondral ossification of the mandibular condyle is dependent of the resorbing activity of osteoclats. After partial resorption, calcified cartilage septa are covered by a primary bone matrix secreted by osteoblasts. Osteoadherin (OSAD) is a small proteoglycan present in bone matrix but absent in cartilage during the endochondral ossification. The aim of this study was to analyze the effect of alendronate, a drug known to inhibit bone resorption by osteoclasts, on the endochondral ossification of the mandibular condyle of young rats, by evaluating the distribution of osteoclasts and the presence of OSAD in the bone matrix deposited. Wistar newborn rats (n=45) received daily injections of alendronate (n=27) or sterile saline solution as control (n=18) from the day of birth until the ages of 4, 14 and 30 days. At the days mentioned, the mandibular condyles were collected and processed for transmission electron microscopy analysis. Specimens were also submitted to tartrate resistant acid phosphatase (TRAP) histochemistry and ultrastructural immunodetection of OSAD. Alendronate treatment did not impede the recruitment and fusion of osteoclasts at the ossification zone during condyle growth, but they presented inactivated phenotype. The trabeculae at the ossification area consisted of cartilage matrix covered by a layer of primary bone matrix that was immunopositive to OSAD at all time points studied. Apparently, alendronate impeded the removal of calcified cartilage and maturation of bone trabeculae in the mandibular ramus, while in controls they occurred normally. These findings highlight for giving attention to the potential side-effects of bisphosphonates administered to young patients once it may represent a risk of disturbing maxillofacial development. PMID:22688305

  11. Comparative in vitro study of oesophageal adhesiveness of different commercial formulations containing alendronate.

    PubMed

    Shakweh, Monjed; Bravo-Osuna, Irene; Ponchel, Gilles

    2007-08-01

    Cases of oesophageal irritation have been reported in patients ingesting alendronate with little liquid or reclining shortly after taking the medication. Pill-induced oesophagitis principally occurs because of adherence of ingested tablets to the epithelial surface. The objective of this in vitro study was to evaluate the oesophageal bioadhesive characteristics of alendronate generics marketed in Europe, the proprietary Fosamax((R)), one negative and two positive polymer controls. A texture analyser was used for qualitative analysis and to determine the maximal detachment force and the adhesion work developed by each formulation on porcine oesophageal mucosa. Fosamax showed few or no bioadhesive characteristics, but the detachment of few tablets powder particles in some of the experiments does not preclude the potential risk of oesophageal lesions. The 10-mg generic Teva tablets had bioadhesive characteristics similar to a positive control. Other generic formulations (Alenat, Stada, Aliud, Ratiopharm showed "cleavage" rupture, leaving a large piece of the tablet mass attached to the mucosa. The bioadhesive characteristics seem to be related to the inactive ingredients: the presence of adhesive polymers such as HPC or very active disintegration agents, such as sodium croscarmellose. The demonstrated differences in adhesiveness suggest that differences in oesophageal tolerance between Fosamax tablets and generics of sodium alendronate may exist. PMID:17576054

  12. Alendronate-associated osteonecrosis of the jaws: A review of the main topics

    PubMed Central

    Paiva-Fonseca, Felipe; Santos-Silva, Alan R.; Della-Coletta, Ricardo; Vargas, Pablo A.

    2014-01-01

    Bisphosphonates is a group of inorganic pyrophosphates analogues that suppress bone resorption by inducing osteoclast inactivation, being frequently used for management of diseases affecting bone metabolism, bone metastases and bone tumors. However, since 2003 many cases describing the presence of necrotic bone exposures in the jaws have been described in patients receiving these drugs, what represent a significant complication of bisphosphonates treatment. The overall incidence of bisphosphonate-related osteonecrosis of the jaws is low, ranging from 0.7% to 12%, mainly observed in those patients receiving intravenously treatment. Osteonecrosis of the jaws associated to oral bisphosphonate, particularly alendronate, has also been reported by a number of authors. Considering that alendronate is one of the most used drugs worldwide, specially for treatment of osteoporosis, a better understanding of osteonecrosis of the jaws related to its use and how to manage these patients is extremely important. Therefore, in the current manuscript the authors aim to review the most important topics related to this pathological presentation. Key words:Bisphosphonates, alendronate, bisphosphonate-related osteonecrosis of the jaws, osteonecrosis. PMID:23986020

  13. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  14. Skeletal Health After Continuation, Withdrawal, or Delay of Alendronate in Men With Prostate Cancer Undergoing Androgen-Deprivation Therapy

    PubMed Central

    Greenspan, Susan L.; Nelson, Joel B.; Trump, Donald L.; Wagner, Julie M.; Miller, Megan E.; Perera, Subashan; Resnick, Neil M.

    2008-01-01

    Purpose Androgen-deprivation therapy (ADT) for prostate cancer is associated with bone loss and osteoporotic fractures. Our objective was to examine changes in bone density and turnover with sustained, discontinued, or delayed oral bisphosphonate therapy in men receiving ADT. Patients and Methods A total of 112 men with nonmetastatic prostate cancer receiving ADT were randomly assigned to alendronate 70 mg once weekly or placebo in a double-blind, partial-crossover trial with a second random assignment at year 2 for those who initially received active therapy. Outcomes included bone mineral density and bone turnover markers. Results Men initially randomly assigned to alendronate and randomly reassigned at year 2 to continue had additional bone density gains at the spine (mean, 2.3% ± 0.7) and hip (mean, 1.3% ± 0.5%; both P < .01); those randomly assigned to placebo in year 2 maintained density at the spine and hip but lost (mean, −1.9% ± 0.6%; P < .01) at the forearm. Patients randomly assigned to begin alendronate in year 2 experienced improvements in bone mass at the spine and hip, but experienced less of an increase compared with those who initiated alendronate at baseline. Men receiving alendronate for 2 years experienced a mean 6.7% (± 1.2%) increase at the spine and a 3.2% (± 1.5%) at the hip (both P < .05). Bone turnover remained suppressed. Conclusion Among men with nonmetastatic prostate cancer receiving ADT, once-weekly alendronate improves bone density and decreases turnover. A second year of alendronate provides additional skeletal benefit, whereas discontinuation results in bone loss and increased bone turnover. Delay in bisphosphonate therapy appears detrimental to bone health. PMID:18802155

  15. Long-term Risedronate Treatment Normalizes Mineralization and Continues to Preserve Trabecular Architecture: Sequential Triple Biopsy Studies with Micro-Computed Tomography

    SciTech Connect

    Borah,B.; Dufresne, T.; Ritman, E.; Jorgensen, S.; Liu, S.; Chmielewski, P.; Phipps, R.; Zhou, X.; Sibonga, J.; Turner, R.

    2006-01-01

    The objective of the study was to assess the time course of changes in bone mineralization and architecture using sequential triple biopsies from women with postmenopausal osteoporosis (PMO) who received long-term treatment with risedronate. Transiliac biopsies were obtained from the same subjects (n = 7) at baseline and after 3 and 5 years of treatment with 5 mg daily risedronate. Mineralization was measured using 3-dimensional (3D) micro-computed tomography (CT) with synchrotron radiation and was compared to levels in healthy premenopausal women (n = 12). Compared to the untreated PMO women at baseline, the premenopausal women had higher average mineralization (Avg-MIN) and peak mineralization (Peak-MIN) by 5.8% (P = 0.003) and 8.0% (P = 0.003), respectively, and lower ratio of low to high-mineralized bone volume (BMR-V) and surface area (BMR-S) by 73.3% (P = 0.005) and 61.7% (P = 0.003), respectively. Relative to baseline, 3 years of risedronate treatment significantly increased Avg-MIN (4.9 {+-} 1.1%, P = 0.016) and Peak-MIN (6.2 {+-} 1.5%, P = 0.016), and significantly decreased BMR-V (-68.4 {+-} 7.3%, P = 0.016) and BMR-S (-50.2 {+-} 5.7%, P = 0.016) in the PMO women. The changes were maintained at the same level when treatment was continued up to 5 years. These results are consistent with the significant reduction of turnover observed after 3 years of treatment and which was similarly maintained through 5 years of treatment. Risedronate restored the degree of mineralization and the ratios of low- to high-mineralized bone to premenopausal levels after 3 years of treatment, suggesting that treatment reduced bone turnover in PMO women to healthy premenopausal levels. Conventional micro-CT analysis further demonstrated that bone volume (BV/TV) and trabecular architecture did not change from baseline up to 5 years of treatment, suggesting that risedronate provided long-term preservation of trabecular architecture in the PMO women. Overall, risedronate provided

  16. Effects of Prostaglandin E2 and Risedronate Administration on Cancellous Bone in Older Female Rats

    NASA Technical Reports Server (NTRS)

    Lin, B. Y.; Jee, W. S. S.; Ma, Y. F.; Ke, H. Z.; Kimmel, D. B.; Li, X. J.

    1994-01-01

    The effects of Prostaglandin E2 (PGE2) and Risedronate (Ris) both separately and in combination (PGE2 + Ris) were studied on the intact aged female rat skeleton to determine whether the combination of PGE2 with an antiresorptive agent is more effective anabolically than PGE2 alone. Nine month-old Sprague-Dawley rats were injected subcutaneously either with vehicle, 6 mg PGE2/kg per day, 1 or 5 microgram Ris/kg twice a week, or 6 mg PGE2/kg per day plus 1 or 5 microgram Ris/kg twice a week (PGE2 + 1 Ris or PGE2 + 5 Ris) for 60 days. After the treatment, we determined the longitudinal bone growth rate, the qualitative appearance of the primary spongiosa (PS), and the static and dynamic bone histomorphometry of the secondary spongiosa (SS) of the proximal tibial metaphysis (PTM) by examining undecalcified longitudinal sections after double fluorescent labeling. The relative effects of these treatments on longitudinal bone growth were ranked as follows: PGE2 + 5 Ris greater than PGE2 + 1 Ris = basal greater than PGE2 greater than 1 microgram Ris = 5 microgram Ris = aging. The density of the PS was ranked as follows: PGE2 + 5 Ris greater than PGE2 + 1 Ris = PGE2 = 5 microgram Ris = 1 microgram Ris greater than basal = aging. The increase in density of the PS was the result of stimulated longitudinal growth and the action of bisphosphonate. Bone mass in the SS was ranked as follows: PGE2 + 5 Ris = PGE2 + 1 Ris = PGE2 greater than 5 microgram Ris = 1 microgram Ris = aging = basal. However, PGE2 alone and its cotreatment with Ris accumulated bone by different tissue mechanisms. PGE2 alone created new bone by increasing activation frequency 8.3-fold and the formation to resorption ratio 1.3-fold from the controls. The combination of PGE2 and Ris depressed activation frequency (-54% to -74%), and bone formation rate (tissue-based -31%, and bone-based -42%) and eroded surface (-79% to -81%), so as to increase the formation to resorption ratio (three- to four-fold) over PGE2

  17. Alendronate prevents glucocorticoid-induced osteoporosis in patients with rheumatic diseases

    PubMed Central

    Kan, Shun-Li; Yuan, Zhi-Fang; Li, Yan; Ai, Jie; Xu, Hong; Sun, Jing-Cheng; Feng, Shi-Qing

    2016-01-01

    Abstract Glucocorticoid-induced osteoporosis (GIOP) is a serious problem for patients with rheumatic diseases requiring long-term glucocorticoid treatment. Alendronate, a bisphosphonate, has been recommended in the prevention of GIOP. However, the efficacy and safety of alendronate in preventing GIOP remains controversial. We performed a meta-analysis to investigate the efficacy and safety of alendronate in preventing GIOP in patients with rheumatic diseases. We retrieved randomized controlled trials from PubMed, EMBASE, and the Cochrane Library. Two reviewers extracted the data and evaluated the risk of bias and quality of the evidence. We calculated the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes, and the mean difference (MD) with a 95% CI for continuous outcomes using Review Manager, version 5.3. A total of 339 studies were found, and 9 studies (1134 patients) were included. Alendronate was not able to reduce the incidence of vertebral fractures (RR = 0.63, 95% CI: 0.10–4.04, P = 0.62) and nonvertebral fractures (RR = 0.40, 95% CI: 0.15–1.12, P = 0.08). Alendronate significantly increased the percent change in bone mineral density (BMD) at the lumbar spine (MD = 3.66, 95% CI: 2.58–4.74, P < 0.05), total hip (MD = 2.08, 95% CI: 0.41–3.74, P < 0.05), and trochanter (MD = 1.68, 95% CI: 0.75–2.61, P < 0.05). Significant differences were not observed in the percent change in BMD at the femoral neck (MD = −0.33, 95% CI: −2.79 to 2.13, P = 0.79) and total body (MD = 0.64, 95% CI: −0.06 to 1.34, P = 0.07). No significant differences in the adverse events were observed in patients treated with alendronate versus the controls (RR = 1.00, 95% CI: 0.94–1.07, P = 0.89). The odds of gastrointestinal adverse events were significantly reduced (RR = 0.77, 95% CI: 0.62–0.97, P < 0.05). Our analysis suggests that alendronate can increase the percent change in BMD at the

  18. The efficacy and safety of weekly 35-mg risedronate dosing regimen for Chinese postmenopausal women with osteoporosis or osteopenia: 1-year data

    PubMed Central

    Gu, Jie-mei; Wang, Li; Lin, Hua; Chen, De-cai; Tang, Hai; Jin, Xiao-lan; Xia, Wei-bo; Hu, Yun-qiu; Fu, Wen-zhen; He, Jin-wei; Zhang, Hao; Wang, Chun; Yue, Hua; Hu, Wei-wei; Liu, Yu-juan; Zhang, Zhen-lin

    2015-01-01

    Aim: Oral risedronate is effective in the treatment of postmenopausal osteoporosis when administered daily, weekly, or monthly. In this 1-year, randomized, double-blind, multicenter study we compared the weekly 35-mg and daily 5-mg risedronate dosing regimens in the treatment of Chinese postmenopausal women with osteoporosis or osteopenia. Methods: Postmenopausal women with primary osteoporosis or osteopenia were randomly assigned to the weekly group or daily group (n=145 for each) that received oral risedronate 35 mg once a week or 5 mg daily, respectively, for 1 year. The subjects' bone mineral densities (BMDs), bone turnover markers (P1NP and β-CTX), new vertebral fractures, and adverse events were assessed at baseline and during the treatments. Results: All subjects in the weekly group and 144 subjects in the daily group completed the study. The primary efficacy endpoint after 1 year, ie the mean percent changes in the lumbar spine BMD (95% CI) were 4.87% (3.92% to 5.81%) for the weekly group and 4.35% (3.31% to 5.39%) for the daily group. The incidences of clinical adverse events were 48.3% in the weekly group and 54.2% in the daily group. Conclusion: The weekly 35-mg and daily 5-mg risedronate dosing regimens during 1 year of follow-up show similar efficacy in improving BMDs and biochemical markers of bone turnover in Chinese postmenopausal women with osteoporosis or osteopenia. Moreover, the two dosing regimens exhibit similar safety and tolerability. PMID:26051110

  19. Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice

    PubMed Central

    Tuomela, Johanna M; Valta, Maija P; Väänänen, Kalervo; Härkönen, Pirkko L

    2008-01-01

    Background Metastatic prostate cancer is associated with a high morbidity and mortality but the spreading mechanisms are still poorly understood. The aminobisphosphonate alendronate, used to reduce bone loss, has also been shown to inhibit the invasion and migration of prostate cancer cells in vitro. We used a modified orthotopic PC-3 nude mouse tumor model of human prostate cancer to study whether alendronate affects prostate tumor growth and metastasis. Methods PC-3 cells (5 × 105) were implanted in the prostates of nude mice and the mice were treated with alendronate (0.5 mg/kg/day in PBS, s.c.) or vehicle for 4 weeks. After sacrifice, the sizes of tumor-bearing prostates were measured and the tumors and prostate-draining regional iliac and sacral lymph nodes were excised for studies on markers of proliferation, apoptosis, angiogenesis and lymphangiogenesis, using histomorphometry and immunohistochemistry. Results Tumor occurrence in the prostate was 73% in the alendronate-treated group and 81% in the control group. Mean tumor size (218 mm3, range: 96–485 mm3, n = 11) in the alendronate-treated mice was 41% of that in the control mice (513 mm3, range: 209–1350 mm3, n = 13) (p < 0.05). In the iliac and sacral lymph nodes of alendronate-treated mice, the proportion of metastatic area was only about 10% of that in control mice (p < 0.001). Immunohistochemical staining of tumor sections showed that alendronate treatment caused a marked decrease in the number of CD34-positive endothelial cells in tumors (p < 0.001) and an increase in that of ISEL positive apoptotic cells in tumors as well as in lymph node metastases (p < 0.05) compared with those in the vehicle-treated mice. The density of m-LYVE-1-stained lymphatic capillaries was not changed. Conclusion Our results demonstrate that alendronate treatment opposes growth of orthotopic PC-3 tumors and decreases tumor metastasis to prostate-draining lymph nodes. This effect could be at least partly explained by

  20. Synergistic antiosteoporotic effect of Lepidium sativum and alendronate in glucocorticoid-induced osteoporosis in Wistar rats.

    PubMed

    Elshal, Mohamed F; Almalki, Abdulrahman L; Hussein, Hussein K; Khan, Jalal A

    2013-01-01

    Alendronate belongs to a class of drugs called bisphosphonates. Bisphosphonates (BP) therapy is a vital option to reduce the risk of bone fracture in people who suffer from osteoporosis. Yet, bisphosphonate have displayed several side effects. Lepidium sativum (LS) seeds have been used in traditional folk medicine to heal fractured bones. However, there is a dearth of information on the impact of LS on bone metabolism especially in cases of glucocorticoids induced osteoporosis. Therefore, the aim of the study was to compare the biochemical bone markers and histological responses of LS alone (6 g of LS seeds in diet daily, n=8), ALD (alendronate, 70 mg/kg s.c.; n=8) alone, or LS and ALD combined in a rat model of glucocorticoid-induced osteoporosis (GIO) by injecting rats with methylprednisolone 3.5 mg/kg per day for 4 weeks. Serum calcium (Ca), albumin, phosphorus (P), bone-specific alkaline phosphatase (b-ALP), and tartrate-resistant acid phosphatase (TRAP) were measured 4 weeks after induction of GIO. GIO-group showed significantly increased serum TRAP and decreased b-ALP. GIO-group also showed significantly decreased serum P and unaltered Ca concentrations. Histological examination of GIO-group tibia bones indicated an osteoporotic change and a concomitant decrease in percentage of trabecular area or bone marrow area (PTB) in the proximal femoral epiphysis. Treatment with either LS and/or ALD ameliorated the above mentioned changes with variable degrees, with a net results of enhanced serum calcium, bone architecture, PTB, b-ALP and decreased TRAP in LS and LS+ALD groups compared to that of animals treated with alendronate alone. In conclusion, our findings present evidence supporting the potential benefits of LS in reducing the burden of GCs on bone health.

  1. Simultaneous, bilateral, complete atypical femoral fractures after long-term alendronate use.

    PubMed

    Higgins, Mark; Morgan-John, Sam; Badhe, Sachin

    2016-12-01

    Over the past decade there have been increasing reports of atypical femoral fractures (AFFs) associated with bisphosphonate use. Reported cases of bilateral involvement usually refer to sequential injuries, or a complete fracture with an incomplete injury to the contralateral limb. In this case report we describe simultaneous, bilateral, complete atypical femoral fractures following a simple fall. A history of prodromal pain, previous radiological evidence of cortical thickening and long term alendronate therapy for osteoporosis secondary to corticosteroid treatment paint a classical picture of the presentation of an atypical fracture pattern of which orthopaedic surgeons should be aware. PMID:27570414

  2. Alendronate decorated nano hydroxyapatite in mesoporous silica: Cytotoxicity and osteogenic properties

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Liu, Weiqiang; She, Zhending; Wu, Hongkai; Shi, Xuetao

    2011-09-01

    Mesoporous silica is a promising drug delivery vehicle due to its large surface area and order porous structure. Hydroxyapatite-modified mesoporous silica materials (MSH) have been developed, and the cytotoxicity of MSH and unmodified mesoporous silica (HMS) has also been studied in this work. The results indicated that MSH exhibited lower cytotoxicity than HMS. The drug release property of MSH was also investigated in this paper. Alendronate (AL) was laden into MSH and HMS, respectively. MSH exhibited long release period lasting over 30 days with a weak burst release in the first 5 days; however, the AL release period of HMS was just 5 days with a remarkable burst release. In addition, the osteogenic commitment induced in human marrow mesenchymal stem cells (MSCs) by MSH-alendronate (MSH-AL) was also investigated, and the osteogenesis of MSCs was evaluated by alkaline phosphatase (ALP) assay. The osteogenesis of MSCs induced by MSH-AL is comparable to that induced by the osteogenic medium. Taken together, MSH can be severed as potential bone repair materials with lower cytotoxicity.

  3. Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: confocal microscopy analysis

    NASA Astrophysics Data System (ADS)

    Ramalho-Ferreira, Gabriel; Faverani, Leonardo Perez; Grossi-Oliveira, Gustavo Augusto; Okamoto, Tetuo; Okamoto, Roberta

    2015-03-01

    In this study, the characteristics of the alveolar bone of rats with induced osteoporosis were examined. Thirty-two rats were divided into four groups according to the induction of osteoporosis and drugs administered: OG, osteoporotic rats without treatment (negative control); SG, rats which underwent sham surgery ovariectomy (SHAM); alendronate (AG), osteoporotic rats treated with alendronate; and RG, osteoporotic rats treated with raloxifene (RG). On the 8th day after ovariectomy and SHAM surgeries, drug therapy was started with AG or RG. On the 52nd day, 20 mg/kg calcein was administered to all of the rats, and on the 80th day, 20 mg/kg alizarin red was administered. Euthanasia was performed on the 98th day. The bone area marked by fluorochromes was calculated and data were subjected to two-way ANOVA test and Tukey's post-hoc test (p<0.05). The comparison of the induced osteoporosis groups showed no statistically significant differences in bone turnover only between RG and SG (p=0.074) and AG and OG (p=0.138). All other comparisons showed significant differences (p<0.001). The largest bone turnover was observed in RG and SG groups. RG was the medication that improved the dynamics of the alveolar bone of rats with induced osteoporosis, resembling that of healthy rats.

  4. Alendronate-associated osteonecrosis of the jaws: a review of the main topics.

    PubMed

    Paiva-Fonseca, F; Santos-Silva, A-R; Della-Coletta, R; Vargas, P-A; Lopes, M-A

    2014-03-01

    Bisphosphonates is a group of inorganic pyrophosphates analogues that suppress bone resorption by inducing osteoclast inactivation, being frequently used for management of diseases affecting bone metabolism, bone metastases and bone tumors. However, since 2003 many cases describing the presence of necrotic bone exposures in the jaws have been described in patients receiving these drugs, what represent a significant complication of bisphosphonates treatment. The overall incidence of bisphosphonate-related osteonecrosis of the jaws is low, ranging from 0.7% to 12%, mainly observed in those patients receiving intravenously treatment. Osteonecrosis of the jaws associated to oral bisphosphonate, particularly alendronate, has also been reported by a number of authors. Considering that alendronate is one of the most used drug worldwide, specially for treatment of osteoporosis, a better understanding of osteonecrosis of the jaws related to its use and how to manage these patients is extremely important. Therefore, in the current manuscript the authors aim to review the most important topics related to this pathological presentation.

  5. An NMR Metabolomic Study on the Effect of Alendronate in Ovariectomized Mice

    PubMed Central

    Chen, Shin-Yu; Yu, Hui-Tzu; Kao, Ju-Po; Yang, Chung-Chun; Chiang, Shen-Shih; Mishchuk, Darya O.; Mau, Jeng-Leun; Slupsky, Carolyn M.

    2014-01-01

    Alendronate sodium (Fosamax) is most widely used for the prevention and treatment of osteoporosis. It is a type of anti-resorptive agent that reduces the risk of fractures by changing bone turnover and bone mineral density. We investigated the effect of Fosamax on a mouse model of osteoporosis. Twenty-seven female C57BL/6JNarl mice were divided into three groups: sham, ovariectomized (OVX) and OVX + Fosamax (Fosamax). After 23 weeks, bone density of femurs was analyzed using microcomputed tomography (micro-CT), and serum was analyzed for osteoblast and osteoclast activity, as well as metabolites using nuclear magnetic resonance (NMR) spectroscopy. Fosamax increased bone mineral density and cortical bone thickness, and decreased osteoblast activity slightly. Fosamax did not significantly change osteoclast activity. Serum metabolomics revealed that Fosamax had profound effects on overall metabolism, as significantly higher concentrations of metabolites associated with energy metabolism (including TCA-cycle intermediates and glucose), 3-hydroxybutyrate, taurine, allantoin, acetate, and ethanol, as well as lower concentrations of aspartate were observed in the Fosamax-treated mice compared with the OVX mice. These results suggest that alendronate may work by increasing bone density through altered metabolic activity. PMID:25184758

  6. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana

    2015-12-01

    The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate. PMID:26445021

  7. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages.

    PubMed

    Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko

    2015-03-10

    Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema.

  8. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages.

    PubMed

    Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko

    2015-01-01

    Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema. PMID:25757189

  9. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    SciTech Connect

    Deng Xue; Tamai, Riyoko; Endo, Yasuo; Kiyoura, Yusuke

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, a promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.

  10. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana

    2015-12-01

    The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate.

  11. Immunocytochemical study of amelogenin deposition during the early odontogenesis of molars in alendronate-treated newborn rats.

    PubMed

    Massa, Luciana F; Bradaschia-Correa, Vivian; Arana-Chavez, Victor E

    2006-06-01

    Newborn rats were treated with sodium alendronate to study how enamel is formed and the effect of alendronate during early odontogenesis. Ultrastructural analysis combined with high-resolution immunocytochemistry for amelogenin was carried out. Twelve rats were subjected to daily SC injections of sodium alendronate (2.5 mg/kg/day) for 3 days on their dorsal region, whereas three rats were daily injected with saline solution as a control. Molar tooth germs from 3-day-old rats were fixed under microwave irradiation in 0.1% glutaraldehyde + 4% formaldehyde buffered at pH 7.2 with 0.1 M sodium cacodylate. The specimens were left undecalcified, postfixed with osmium tetroxide, dehydrated, and embedded in LR White resin. Ultrathin sections were incubated with a chicken anti-24-kDa rat amelogenin antibody, a secondary antibody, and finally with a protein A-gold complex. Large patches of amelogenin were present over the unmineralized mantle dentin and at early secretory ameloblasts. At more advanced stages, they were also detected at the enamel matrix, as well as in the mineralized dentin, at the periodontoblastic space of the dentinal tubules, and at the predentin. It is likely that the main effect of alendronate at early stages of odontogenesis is the increase of synthesis/secretion of amelogenin, promoting its deposition within the forming dentin and enamel.

  12. Renal safety in patients treated with bisphosphonates for osteoporosis: a review.

    PubMed

    Miller, Paul D; Jamal, Sophie A; Evenepoel, Pieter; Eastell, Richard; Boonen, Steven

    2013-10-01

    Bisphosphonates are widely used for the treatment of osteoporosis and are generally well tolerated. However, the United States Food and Drug Administration safety reports have highlighted the issue of renal safety in bisphosphonate-treated patients. All bisphosphonates carry labeled "warnings" or a contraindication for use in patients with severe renal impairment (creatinine clearance <30 or <35 mL/min). Data from pivotal trials and their extension studies of bisphosphonates approved for the management of osteoporosis were obtained via PubMed, and were reviewed with support from published articles available on PubMed. Renal safety analyses of pivotal trials of oral alendronate, risedronate, and ibandronate for postmenopausal osteoporosis showed no short-term or long-term effects on renal function. Transient postinfusion increases in serum creatinine have been reported in patients receiving intravenous ibandronate and zoledronic acid; however, studies showed that treatment with these agents did not result in long-term renal function deterioration in clinical trial patients with osteoporosis. All bisphosphonate therapies have "warnings" for use in patients with severe renal impairment. Clinical trial results have shown that even in elderly, frail, osteoporotic patients with renal impairment, intravenous bisphosphonate therapy administration in accordance with the prescribing information did not result in long-term renal function decline. Physicians should follow guidelines for bisphosphonate therapies administration at all times.

  13. Alendronate sodium hydrate (oral jelly) for the treatment of osteoporosis: review of a novel, easy to swallow formulation.

    PubMed

    Imai, Kazuhiro

    2013-01-01

    Osteoporosis is a skeletal disorder characterized by loss of bone mass, decreased bone strength, and an increased risk of bone fracture. The disease progresses with age, especially in postmenopausal women. Japan is one of the most rapidly aging societies worldwide. Japanese individuals over 65 years of age constituted 23.0% of the population in 2010 and 25.1% to 25.2% as of 2013. The estimated number of people with osteoporosis in Japan is currently 13 million. Bisphosphonates increase bone mineral density by inhibiting osteoclast-mediated bone resorption, thereby reducing the risk of fractures. Alendronate sodium hydrate (alendronate) is a bisphosphonate that potently inhibits bone resorption and is used to treat osteoporosis. Sufficient water is required to take an alendronate oral tablet; insufficient water could result in digestive system diseases, such as esophageal ulceration. Elderly patients with swallowing difficulty may choke on the tablet. Taking a tablet with oral jelly is a method to prevent digestive system disease and reduce the choking hazard. Once-weekly alendronate oral jelly was approved in 2012 by the Ministry of Health, Labour, and Welfare of Japan as the world's first drug for osteoporosis in a jelly formulation. It consists of a jelly portion and an air portion. The jelly formulation is smoothly discharged by pushing the air portion. Therefore, elderly patients with physical disabilities are able to easily take all of the jelly formulation from the package. In this review, this new formulation of alendronate sodium hydrate (oral jelly) is introduced and discussed in terms of osteoporosis treatment. This new formulation provides an alternative so that patients may select a method of dosing tailored to their preferences. Management of osteoporosis involves assessing fracture risk and preventing fractures. Higher adherence to the treatment of patients with osteoporosis and prevention of osteoporotic fractures are issues to be resolved. PMID

  14. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis.

    PubMed Central

    Chavassieux, P M; Arlot, M E; Reda, C; Wei, L; Yates, A J; Meunier, P J

    1997-01-01

    Treatment effects on bone quality and remodeling was assessed in postmenopausal women with osteoporosis treated with oral alendronate. One transiliac bone biopsy was obtained from 231 women at either 24 mo (n = 11) or 36 mo (n = 120) from the start of treatment with alendronate at doses of between 5 and 20 mg/d, or placebo. 64 biopsies at 24 mo (31 from the placebo group and 33 alendronate-treated patients) and 95 biopsies at 36 mo (40 from the placebo group and 55 alendronate-treated patients) provided adequate cancellous tissue, and were analyzed by histomorphometry. Mineral apposition rate was unaffected by treatment. At 24 and 36 mo, osteoid thickness, volume, and surface significantly decreased. At each of the doses studied, mineralizing surface and activation frequency significantly decreased at each time point (e.g., -92% and -87%, respectively, for the 10 mg daily dose after 2 yr). These diminutions were of the same magnitude for each dose at 24 mo, and for the two highest doses at 36 mo. A significant increase in wall thickness accompanied by a reduction in erosion depth was detected in biopsies obtained at 24 mo. These findings confirm that mineralization is normal, and trabecular bone turnover markedly decreased in patients receiving long-term dosing with alendronate. The findings also suggest that the observed increases in bone mineral density could result both from a reduction in the remodeling space due to a decreased activation frequency and a possible trend to a positive bone balance. In addition, further studies focused on a possible increase in the degree of mineralization of bone are required. PMID:9294113

  15. Randomized, Double-Blinded, Placebo-Controlled, Trial of Risedronate for the Prevention of Bone Mineral Density Loss in Nonmetastatic Prostate Cancer Patients Receiving Radiation Therapy Plus Androgen Deprivation Therapy

    SciTech Connect

    Choo, Richard; Lukka, Himu; Cheung, Patrick; Corbett, Tom; Briones-Urbina, Rosario; Vieth, Reinhold; Ehrlich, Lisa; Kiss, Alex; Danjoux, Cyril

    2013-04-01

    Purpose: Androgen deprivation therapy (ADT) has been used as an adjuvant treatment to radiation therapy (RT) for the management of locally advanced prostate carcinoma. Long-term ADT decreases bone mineral density (BMD) and increases the risk of osteoporosis. The objective of this clinical trial was to evaluate the efficacy of risedronate for the prevention of BMD loss in nonmetastatic prostate cancer patients undergoing RT plus 2 to 3 years of ADT. Methods and Materials: A double-blinded, placebo-controlled, randomized trial was conducted for nonmetastatic prostate cancer patients receiving RT plus 2 to 3 years of ADT. All had T scores > −2.5 on dual energy x-ray absorptiometry at baseline. Patients were randomized 1:1 between risedronate and placebo for 2 years. The primary endpoints were the percent changes in the BMD of the lumbar spine at 1 and 2 years from baseline, measured by dual energy x-ray absorptiometry. Analyses of the changes in BMD and bone turnover biomarkers were carried out by comparing mean values of the intrapatient changes between the 2 arms, using standard t tests. Results: One hundred four patients were accrued between 2004 and 2007, with 52 in each arm. Mean age was 66.8 and 67.5 years for the placebo and risedronate, respectively. At 1 and 2 years, mean (±SE) BMD of the lumbar spine decreased by 5.77% ± 4.66% and 13.55% ± 6.33%, respectively, in the placebo, compared with 0.12% ± 1.29% at 1 year (P=.2485) and 0.85% ± 1.56% (P=.0583) at 2 years in the risedronate. The placebo had a significant increase in serum bone turnover biomarkers compared with the risedronate. Conclusions: Weekly oral risedronate prevented BMD loss at 2 years and resulted in significant suppression of bone turnover biomarkers for 24 months for patients receiving RT plus 2 to 3 years of ADT.

  16. Tolerability of different dosing regimens of bisphosphonates for the treatment of osteoporosis and malignant bone disease.

    PubMed

    Bobba, Raja S; Beattie, Karen; Parkinson, Bill; Kumbhare, Dinesh; Adachi, Jonathan D

    2006-01-01

    Bisphosphonates are the primary pharmacological agents used for the management of osteoporosis and hypercalcaemia of malignant bone disease. The efficacy of these agents in these two conditions has been demonstrated in many well designed trials published over the past 2 decades. The variety of bisphosphonates currently available to us provides a wide range of tolerability and dosing profiles thus necessitating a thorough comparison of the most recent oral and intravenous bisphosphonates to differentiate the clinical context in which they should be used. Despite the fact that bisphosphonates are generally well accepted, their tolerability is dependent on complications which encompass gastrointestinal (GI) and renal toxicity. Other adverse events include osteonecrosis of the jaw, arthralgias, flu-like symptoms and uveitis. Studies have shown that various dosing regimens are able to modulate these rates of toxicity. To maximise tolerability, the direction of future therapy will likely fall into a pattern of decreasing the frequency of administration of bisphosphonates, whether it is oral or intravenous formulations, thus improving patient adherence. To review the literature on different dosing regimens of various bisphosphonates and their associated tolerability, we searched MEDLINE for articles from 1975 to 2006. Oral bisphosphonates, in particular alendronate and risedronate, have been systematically evaluated with regards to GI toxicity. Overall tolerability with these oral formulations has found GI toxicity to be the primary adverse event of interest. Both alendronate and risedronate have been found to have similar rates of GI toxicity when compared with placebo. Mounting evidence has developed validating the use of intravenous ibandronate and zoledronic acid for the purpose of treating hypercalcaemia secondary to malignancy. Unique to all other bisphosphonates, ibandronate also has an oral form which has a similar GI-toxicity profile to placebo. In addition, no

  17. The Effect of Local Delivery Doxycycline and Alendronate on Bone Repair.

    PubMed

    Limirio, Pedro Henrique Justino Oliveira; Rocha, Flaviana Soares; Batista, Jonas Dantas; Guimarães-Henriques, João César; de Melo, Geraldo Batista; Dechichi, Paula

    2016-08-01

    The aim of the present study was to investigate the local effect of 10% doxycycline and 1% alendronate combined with poly(lactic-co-glycolic acid) (PLGA) on bone repair. Thirty rats were divided into three groups, as follows: control group (CG), drug group (DG), and vehicle-PLGA group (VG). Bone defect was created in the right femur and filled with the following: blood clot (CG); PLGA gel, 10% doxycycline and 1% alendronate (DG); or vehicle-PLGA (VG). The animals were euthanized 7 or 15 days after surgery. Bone density, bone matrix and number of osteoclasts were quantified. At 7 days, the findings showed increased density in DG (177.75 ± 76.5) compared with CG (80.37 ± 27.4), but no difference compared with VG (147.1 ± 41.5); no statistical difference in bone neoformation CG (25.6 ± 4.8), VG (27.8 ± 4), and DG (18.9 ± 7.8); and decrease osteoclasts in DG (4.6 ± 1.9) compared with CG (26.7 ± 7.4) and VG (17.3 ± 2.7). At 15 days, DG (405.1 ± 63.1) presented higher density than CG (213.2 ± 60.9) and VG (283.4 ± 85.8); there was a significant increase in percentage of bone neoformation in DG (31.5 ± 4.2) compared with CG (23 ± 4), but no difference compared with VG (25.1 ± 2.9). There was a decreased number of osteoclasts in DG (20.7 ± 4.7) and VG (29.5 ± 5.4) compared with CG (40 ± 9.4). The results suggest that the association of 10% doxycycline and 1% alendronate with PLGA-accelerated bone repair.

  18. A sensitive post-column photochemical derivatization/fluorimetric detection system for HPLC determination of bisphosphonates.

    PubMed

    Pérez-Ruiz, Tomás; Martínez-Lozano, Carmen; García-Martínez, María Dolores

    2009-02-27

    A new reversed-phase ion-pair high-performance liquid chromatographic (HPLC) method has been developed for the determination of the following bisphosphonic acids: alendronic acid (ALEN), etidronic acid (ETID), ibandronic acid (IBAN) and risedronic acid (RISE). Separation was achieved on a C(18) column using a mixture of 50 mmol L(-1) borate buffer pH 9.0 containing 0.25 mmol L(-1) tetrabutylammonium chloride and 0.5 mmol L(-1) EDTA and acetonitrile (97:3) as the mobile phase. The sensitive detection of the above bisphosphonic acids was based on their oxidation to orthophosphate by the on-line peroxydisulfate-assisted photolysis followed by post-column reaction with molybdate to yield phosphomolybdate. This subsequently reacted with thiamine to generate thiochrome and, finally, the fluorescence of thiochrome was measured at 440 nm with excitation at 375 nm. The developed method is precise with a mean relative standard deviation of 1.3%, sensitive (with a detection limit at the nmol L(-1) level), accurate, specific, rapid (analysis time approximately 13 min) and inexpensive because to the low cost of the reagents. The assay was applied to the analysis of the four bisphosphonic acids in commercial dosage formulations, in which the excipients did not interfere with the determination. The method was also applied to the determination of etidronate, risedronate and ibandronate in human urine. Sample preparation involves precipitation of the analytes from urine along with endogenous phosphates such as calcium salts by addition of calcium chloride at alkaline pH and dissolution of the precipitate in 0.05 mol L(-1) ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. PMID:19150069

  19. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys.

    PubMed

    Kostenuik, Paul J; Smith, Susan Y; Samadfam, Rana; Jolette, Jacquelin; Zhou, Lei; Ominsky, Michael S

    2015-04-01

    Postmenopausal osteoporosis is a chronic disease wherein increased bone remodeling reduces bone mass and bone strength. Antiresorptive agents including bisphosphonates are commonly used to mitigate bone loss and fracture risk. Osteoclast inhibition via denosumab (DMAb), a RANKL inhibitor, is a newer approach for reducing fracture risk in patients at increased risk for fracture. The safety of transitioning from bisphosphonate therapy (alendronate; ALN) to DMAb was examined in mature ovariectomized (OVX) cynomolgus monkeys (cynos). One day after OVX, cynos (7-10/group) were treated with vehicle (VEH, s.c.), ALN (50 μg/kg, i.v., twice monthly) or DMAb (25 mg/kg/month, s.c.) for 12 months. Other animals received VEH or ALN for 6 months and then transitioned to 6 months of DMAb. DMAb caused significantly greater reductions in serum CTx than ALN, and transition from ALN to DMAb caused further reductions relative to continued ALN. DMAb and ALN decreased serum calcium (Ca), and transition from ALN to DMAb resulted in a lesser decline in Ca relative to DMAb or to VEH-DMAb transition. Bone histomorphometry indicated significantly reduced trabecular and cortical remodeling with DMAb or ALN. Compared with ALN, DMAb caused greater reductions in osteoclast surface, eroded surface, cortical porosity and fluorochrome labeling, and transition from ALN to DMAb reduced these parameters relative to continued ALN. Bone mineral density increased in all active treatment groups relative to VEH controls. Destructive biomechanical testing revealed significantly greater vertebral strength in all three groups receiving DMAb, including those receiving DMAb after ALN, relative to VEH controls. Bone mass and strength remained highly correlated in all groups at all tested skeletal sites, consistent with normal bone quality. These data indicate that cynos transitioned from ALN to DMAb exhibited reduced bone resorption and cortical porosity, and increased BMD and bone strength, without

  20. Denosumab for Elderly Men with Osteoporosis: A Cost-Effectiveness Analysis from the US Payer Perspective

    PubMed Central

    Silverman, Stuart; Agodoa, Irene; Kruse, Morgan; Parthan, Anju; Orwoll, Eric

    2015-01-01

    Purpose. To evaluate the cost-effectiveness of denosumab versus other osteoporotic treatments in older men with osteoporosis from a US payer perspective. Methods. A lifetime cohort Markov model previously developed for postmenopausal osteoporosis (PMO) was used. Men in the model were 78 years old, with a BMD T-score of −2.12 and a vertebral fracture prevalence of 23%. During each 6-month Markov cycle, patients could have experienced a hip, vertebral or nonhip, nonvertebral (NHNV) osteoporotic fracture, remained in a nonfracture state, remained in a postfracture state, or died. Background fracture risks, mortality rates, persistence rates, health utilities, and medical and drug costs were derived from published sources. Previous PMO studies were used for drug efficacy in reducing fracture risk. Lifetime expected costs and quality-adjusted life-years (QALYs) were estimated for denosumab, generic alendronate, risedronate, ibandronate, teriparatide, and zoledronate. Results. Denosumab had an incremental cost-effectiveness ratio (ICER) of $16,888 compared to generic alendronate and dominated all other treatments. Results were most sensitive to changes in costs of denosumab and the relative risk of hip fracture. Conclusion. Despite a higher annual treatment cost compared to other medications, denosumab is cost-effective compared to other osteoporotic treatments in older osteoporotic US men. PMID:26783494

  1. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-07-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.

  2. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    PubMed Central

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-01-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation. PMID:27468811

  3. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells.

    PubMed

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J; Deb, Sanjukta

    2016-01-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation. PMID:27468811

  4. Effect of alendronate on HIV-associated osteoporosis: a randomized, double-blind, placebo-controlled, 96-week trial (ANRS 120).

    PubMed

    Rozenberg, Sylvie; Lanoy, Emillie; Bentata, Michelle; Viard, Jean-Paul; Valantin, Marc Antoine; Missy, Pascale; Darasteanu, Iuliana; Roux, Christian; Kolta, Sami; Costagliola, Dominique

    2012-09-01

    Low bone mineral density (BMD) is common in HIV-infected patients. Bisphosphonates such as alendronate potently inhibit bone resorption and are effective against osteoporosis. The aim of the ANRS 120 Fosivir trial was to evaluate the effect of alendronate on low BMD in HIV-infected patients. HIV-1-infected adults with a t-score≤-2.5 at the lumbar spine and/or total hip, as assessed by dual x-ray absorptiometry, and no other known risk factors for low BMD, were randomized to receive either extended-release alendronate 70 mg weekly or placebo for 96 weeks, with stratification for gender. All the patients also received daily calcium carbonate (500 mg) and vitamin D (400 U). The primary endpoint for efficacy was the percentage change in BMD at the site with a t-score≤-2.5. Forty-four antiretroviral-treated patients (42 men, 2 women) were enrolled. The median age was 45 years, the median CD4 cell count was 422/mm(3), and viral load was <400 copies/ml in 84% of patients. Baseline characteristics were well balanced between the alendronate (n=20) and placebo (n=24) groups. At baseline, 15 patients (75%) in the alendronate group and 17 patients (71%) in the placebo group had a t-score≤-2.5 at the lumbar spine. In the main analysis, BMD at the site with a t-score≤-2.5 increased by 7.1% and 1.0%, respectively, in the alendronate (n=14) and placebo (n=20) groups at week 96 [mean difference, 6.1% (95% CI 2.8 to 9.3); p=0.0003]. Alendronate 70 mg weekly for 96 weeks improves BMD in HIV-1-infected patients on antiretroviral therapy.

  5. Treatment with the combination of ibandronate plus eldecalcitol has a synergistic effect on inhibition of bone resorption without suppressing bone formation in ovariectomized rats.

    PubMed

    Sakai, Sadaoki; Takeda, Satoshi; Sugimoto, Masanori; Shimizu, Masaru; Shimonaka, Yasushi; Yogo, Kenji; Hashimoto, Junko; Bauss, Frieder; Endo, Koichi

    2015-12-01

    Bisphosphonates are widely used in the treatment of osteoporosis and contribute to the reduction of bone fractures. Ibandronate (IBN) is a highly potent, nitrogen-containing bisphosphonate, which is administered orally or intravenously at extended dosing intervals. Vitamin D or active vitamin D3 derivatives are also used in the treatment of osteoporosis, and are often used in combination with other drugs. In this study, we investigated the effect of treatment with the combination of once-monthly s.c. dosing of IBN plus once-daily oral eldecalcitol (ELD), an active vitamin D3 derivative, using aged ovariectomized (OVX) rats. Treatment was started the day after OVX, and analyses were performed 4, 8, and 12 weeks thereafter by determination of bone markers, bone mineral density, biomechanical properties, and histomorphometry. The combination treatment showed a synergistic effect in increasing both lumbar and femoral BMD, and resulted in a significant increase in bone ultimate load. The combination of IBN plus ELD acted synergistically to reduce bone resorption, whereas bone formation did not decrease any more than with monotherapy with either IBN or ELD. Bone formation independent of bone resorption (a process known as 'minimodeling') was not changed in vehicle treated OVX rats despite the increase in bone turnover. ELD upregulated minimodeling, which was however not diminished in the combination treatment. In conclusion, treatment with the combination of IBN plus ELD was beneficial in the treatment of osteoporosis in aged OVX rats. It exhibited a synergistic inhibitory effect on bone resorption and keeps bone formation at the level of sham controls. This uncoupling of bone resorption/bone formation was affected, to some extent, by minimodeling-based bone formation which is independent of bone resorption. This combination regimen which showed synergistic effect on BMD and bone ultimate load without inhibition of bone formation may be beneficial in long

  6. The relative efficacy of nine osteoporosis medications for reducing the rate of fractures in post-menopausal women

    PubMed Central

    2011-01-01

    Background In the absence of head-to-head trials, indirect comparisons of randomized placebo-controlled trials may provide a viable option to assess relative efficacy. The purpose was to estimate the relative efficacy of reduction of fractures in post-menopausal women, and to assess robustness of the results. Methods A systematic literature review of multiple databases identified randomized placebo-controlled trials with nine drugs for post-menopausal women. Odds ratio and 95% credibility intervals for the rates of hip, non-vertebral, vertebral, and wrist fractures for each drug and between drugs were derived using a Bayesian approach. A drug was ranked as the most efficacious if it had the highest posterior odds ratio, or had the highest effect size. Results 30 studies including 59,209 patients reported fracture rates for nine drugs: alendronate (6 studies), denosumab (1 study), etidronate (8 studies), ibandronate (4 studies), raloxifene (1 study), risedronate (7 studies), strontium (2 study), teriparatide (1 study), and zoledronic acid (1 study). The drugs with the highest probability of reducing non-vertebral fractures was etidronate and teriparatide while the drugs with the highest probability of reducing vertebral, hip or wrist fractures were teriparatide, zoledronic acid and denosumab. The drugs with the largest effect size for vertebral fractures were zoledronic acid, teriparatide and denosumab, while the drugs with the highest effect size for non-vertebral, hip or wrist fractures were alendronate or risedronate. Estimates were consistent between Bayesian and classical approaches. Conclusion Teriparatide, zoledronic acid and denosumab have the highest probabilities of being most efficacious for non-vertebral and vertebral fractures, and having the greatest effect sizes. The estimates from indirect comparisons were robust to differences in methodology. PMID:21943363

  7. Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment.

    PubMed

    Fahrleitner-Pammer, Astrid; Burr, David; Dobnig, Harald; Stepan, Jan J; Petto, Helmut; Li, Jiliang; Krege, John H; Pavo, Imre

    2016-08-01

    An increase in procollagen type I amino-terminal propeptide (PINP) early after teriparatide initiation was shown to correlate with increased lumbar spine areal BMD and is a good predictor of the anabolic response to teriparatide. Few data exist correlating PINP and bone microstructure, and no data exist in patients on teriparatide following prior potent antiresorptive treatment. This exploratory analysis aimed to investigate the effects of teriparatide on cancellous bone microstructure and correlations of bone markers with microstructure in alendronate-pretreated patients. This was a post hoc analysis of changes in bone markers and three-dimensional indices of bone microstructure in paired iliac crest biopsies from a prospective teriparatide treatment study in postmenopausal women with osteoporosis who were either treatment-naïve (TN, n=16) or alendronate-pretreated (ALN, n=29) at teriparatide initiation. Teriparatide (20μg/day) was given for 24months; biopsies were taken at baseline and endpoint, and serum concentrations of PINP and type 1 collagen cross-linked C-telopeptide (βCTX) were measured at intervals up to 24months. In the TN and ALN groups, respectively, mean (SD) increases in three-dimensional bone volume/tissue volume were 105 (356)% (P=0.039) and 55 (139)% (P<0.005) and trabecular thickness 30.4 (30)% (P<0.001) and 30.8 (53)% (P<0.001). No significant changes were observed in trabecular number or separation. In the ALN patients, 3-month change of neither PINP nor βCTX correlated with indices of cancellous bone microstructure. However, 12-month changes in biochemical bone markers correlated significantly with improvements in bone volume/tissue volume, r=0.502 (P<0.01) and r=0.378 (P<0.05), trabecular number, r=0.559 (P<0.01) and r=0.515 (P<0.01), and reduction of trabecular separation, r=-0.432 (P<0.05) and r=-0.530 (P<0.01), for PINP and βCTX, respectively. We conclude that cancellous bone microstructure improved with teriparatide therapy

  8. Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment.

    PubMed

    Fahrleitner-Pammer, Astrid; Burr, David; Dobnig, Harald; Stepan, Jan J; Petto, Helmut; Li, Jiliang; Krege, John H; Pavo, Imre

    2016-08-01

    An increase in procollagen type I amino-terminal propeptide (PINP) early after teriparatide initiation was shown to correlate with increased lumbar spine areal BMD and is a good predictor of the anabolic response to teriparatide. Few data exist correlating PINP and bone microstructure, and no data exist in patients on teriparatide following prior potent antiresorptive treatment. This exploratory analysis aimed to investigate the effects of teriparatide on cancellous bone microstructure and correlations of bone markers with microstructure in alendronate-pretreated patients. This was a post hoc analysis of changes in bone markers and three-dimensional indices of bone microstructure in paired iliac crest biopsies from a prospective teriparatide treatment study in postmenopausal women with osteoporosis who were either treatment-naïve (TN, n=16) or alendronate-pretreated (ALN, n=29) at teriparatide initiation. Teriparatide (20μg/day) was given for 24months; biopsies were taken at baseline and endpoint, and serum concentrations of PINP and type 1 collagen cross-linked C-telopeptide (βCTX) were measured at intervals up to 24months. In the TN and ALN groups, respectively, mean (SD) increases in three-dimensional bone volume/tissue volume were 105 (356)% (P=0.039) and 55 (139)% (P<0.005) and trabecular thickness 30.4 (30)% (P<0.001) and 30.8 (53)% (P<0.001). No significant changes were observed in trabecular number or separation. In the ALN patients, 3-month change of neither PINP nor βCTX correlated with indices of cancellous bone microstructure. However, 12-month changes in biochemical bone markers correlated significantly with improvements in bone volume/tissue volume, r=0.502 (P<0.01) and r=0.378 (P<0.05), trabecular number, r=0.559 (P<0.01) and r=0.515 (P<0.01), and reduction of trabecular separation, r=-0.432 (P<0.05) and r=-0.530 (P<0.01), for PINP and βCTX, respectively. We conclude that cancellous bone microstructure improved with teriparatide therapy

  9. Multiple miliary osteoma cutis of the face after initiation of alendronate therapy for osteoporosis.

    PubMed

    Riahi, Ryan R; Cohen, Philip R

    2011-01-01

    A 62-year-old Asian woman presented with multiple small, rock-hard papular lesions on her face (Figure). She had no previous history of acne vulgaris or cutaneous malignancy. She had been diagnosed with breast cancer in 1995 and was treated with left lumpectomy followed by combination chemotherapy consisting of cyclophosphamide, 5-fluorouracil, and methotrexate. In 1995, at age 50, she also began therapy with systemic alendronate to treat osteoporosis. Within 1 year, she noticed the development of asymptomatic indurated dermal papules on her cheeks. Topical treatment with 12% lactic acid lotion did not improve her condition. Clinical examination revealed numerous 1- to 2-mm, brown dermal nodules on the malar cheeks bilaterally. Normal laboratory data included complete blood cell count, alkaline phosphatase, serum calcium, and serum phosphate. A lesional punch biopsy from the left cheek revealed lamellar bone within the dermis. Correlation of the clinical presentation, laboratory data, and pathology established the diagnosis of multiple miliary osteoma cutis of the face.

  10. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro

    PubMed Central

    Li, Yu-Hua; Wang, Zhen-Dong; Wang, Wei; Ding, Chang-Wei; Zhang, Hao-Xuan

    2015-01-01

    The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43 ± 4.2% and pore size of 213 ± 95 µm. The compressive strength for APC was 5.79 ± 1.21 MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering. PMID:25877763

  11. Primary brain calcification in patients undergoing treatment with the biphosphanate alendronate.

    PubMed

    Oliveira, J R M; Oliveira, M F

    2016-01-01

    Brain calcification might be associated with various metabolic, infectious or vascular conditions. Clinically, brain calcification can include symptoms such as migraine, parkinsonism, psychosis or dementia. The term Primary Brain Calcification was recently used for those patients without an obvious cause (formerly idiopathic) while Primary Familial Brain Calcifications was left for the cases with autosomal dominant inheritance. Recent studies found mutations in four genes (SLC20A2, PDGFRB, PDGFB and XPR1). However, these gene represent only 60% of all familial cases suggesting other genes remain to be elucidated. Studies evaluating treatments for such a devastating disease are scattered, usually appearing as single case reports. In the present study, we describe a case series of 7 patients treated with Alendronate, a widely prescribed biphosphanate. We observed good tolerance and evidence of improvements and stability by some patients. No side effects were reported and no specific symptoms related to medication. Younger patients and one individual continuing a prescription (prior to study commencement) appeared to respond more positively with some referred improvements in symptoms. Biphosphanates may represent an excellent prospect for the treatment of brain calcifications due to their being well tolerated and easily available. Conversely, prospective and controlled studies should promptly address weaknesses found in the present analysis. PMID:26976513

  12. Combinational effect of matrix elasticity and alendronate density on differentiation of rat mesenchymal stem cells.

    PubMed

    Jiang, Pengfei; Mao, Zhengwei; Gao, Changyou

    2015-06-01

    Differentiation of mesenchymal stem cells (MSCs) is regulated by multivariate physical and chemical signals in a complicated microenvironment. In this study, polymerizable double bonds (GelMA) and osteo-inductive alendronate (Aln) (Aln-GelMA) were sequentially grafted onto gelatin molecules. The biocompatible hydrogels with defined stiffness in the range of 4-40 kPa were prepared by using polyethylene glycol diacrylate (PEGDA) as additional crosslinker. The Aln density was adjusted from 0 to 4 μM by controlling the ratio between the GelMA and Aln-GelMA. The combinational effects of stiffness and Aln density on osteogenic differentiation of MSCs were then studied in terms of ALP activity, collagen type I and osteocalcin expression, and calcium deposition. The results indicated that the stiffness and Aln density could synergistically improve the expression of all these osteogenesis markers. Their osteo-inductive effects are comparable to some extent, and high Aln density could be more effective than the stiffness.

  13. Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate.

    PubMed

    Posadowska, Urszula; Parizek, Martin; Filova, Elena; Wlodarczyk-Biegun, Malgorzata; Kamperman, Marleen; Bacakova, Lucie; Pamula, Elzbieta

    2015-05-15

    Systemic administration of bisphosphonates, e.g. sodium alendronate (Aln) is characterized by extremely low bioavailability and high toxicity. To omit aforementioned drawbacks an injectable system for the intra-bone delivery of Aln based on Aln-loaded nanoparticles (NPs-Aln) suspended in a hydrogel matrix (gellan gum, GG) was developed. Aln was encapsulated in poly(lactide-co-glycolide) (PLGA 85:15) by solid-oil-water emulsification. Drug release tests showed that within 25 days all the encapsulated drug was released from NPs-Aln and the release rate was highest at the beginning and decreased with time. In contrast, by suspending NPs-Aln in a GG matrix, the release rate was significantly lower and more constant in time. The GG-NPs-Aln system was engineered to be easily injectable and was able to reassemble its structure after extrusion as shown by rheological measurements. Invitro studies showed that the GG-NPs-Aln was cytocompatible with MG-63 osteoblast-like cells and it inhibited RANKL-mediated osteoclastic differentiation of RAW 264.7 cells. The injectability, the sustained local delivery of small doses of Aln and the biological activity render the GG-NPs-Aln system promising for the local treatment of osteoporosis and other bone tissue disorders.

  14. Alendronate-Loaded Modified Drug Delivery Lipid Particles Intended for Improved Oral and Topical Administration.

    PubMed

    Ochiuz, Lacramioara; Grigoras, Cristian; Popa, Marcel; Stoleriu, Iulian; Munteanu, Corneliu; Timofte, Daniel; Profire, Lenuta; Grigoras, Anca Giorgiana

    2016-01-01

    The present paper focuses on solid lipid particles (SLPs), described in the literature as the most effective lipid drug delivery systems that have been introduced in the last decades, as they actually combine the advantages of polymeric particles, hydrophilic/lipophilic emulsions and liposomes. In the current study, we present our most recent advances in the preparation of alendronate (AL)-loaded SLPs prepared by hot homogenization and ultrasonication using various ratios of a self-emulsifying lipidic mixture of Compritol 888, Gelucire 44/14, and Cremophor A 25. The prepared AL-loaded SLPs were investigated for their physicochemical, morphological and structural characteristics by dynamic light scattering, differential scanning calorimetry, thermogravimetric and powder X-ray diffraction analysis, infrared spectroscopy, optical and scanning electron microscopy. Entrapment efficacy and actual drug content were assessed by a validated HPLC method. In vitro dissolution tests performed in simulated gastro-intestinal fluids and phosphate buffer solution pH 7.4 revealed a prolonged release of AL of 70 h. Additionally, release kinetics analysis showed that both in simulated gastrointestinal fluids and in phosphate buffer solution, AL is released from SLPs based on equal ratios of lipid excipients following zero-order kinetics, which characterizes prolonged-release drug systems. PMID:27367664

  15. Farnesyl pyrophosphate synthase enantiospecificity with a chiral risedronate analog, [6,7-dihydro-5H-cyclopenta[c]pyridin-7-yl(hydroxy)methylene]bis(phosphonic acid) (NE-10501): Synthetic, structural, and modeling studies.

    PubMed

    Deprèle, Sylvine; Kashemirov, Boris A; Hogan, James M; Ebetino, Frank H; Barnett, Bobby L; Evdokimov, Artem; McKenna, Charles E

    2008-05-01

    The complex formed from crystallization of human farnesyl pyrophosphate synthase (hFPPS) from a solution of racemic [6,7-dihydro-5H-cyclopenta[c]pyridin-7-yl(hydroxy)methylene]bis(phosphonic acid) (NE-10501, 8), a chiral analog of the anti-osteoporotic drug risedronate, contained the R enantiomer in the enzyme active site. This enantiospecificity was assessed by computer modeling of inhibitor-active site interactions using Autodock 3, which was also evaluated for predictive ability in calculations of the known configurations of risedronate, zoledronate, and minodronate complexed in the active site of hFPPS. In comparison with these structures, the 8 complex exhibited certain differences, including the presence of only one Mg(2+), which could contribute to its 100-fold higher IC(50). An improved synthesis of 8 is described, which decreases the number of steps from 12 to 8 and increases the overall yield by 17-fold.

  16. Effect of Alendronate on Bone Formation during Tooth Extraction Wound Healing.

    PubMed

    Tanoue, R; Koi, K; Yamashita, J

    2015-09-01

    Alendronate (ALN) is an antiresorptive agent widely used for the treatment of osteoporosis. Its suppressive effect on osteoclasts has been extensively studied. However, the effect of ALN on bone formation is not as clear as its effect on resorption. The objective was to determine the effect of short-term ALN on bone formation and tooth extraction wound healing. Molar tooth extractions were performed in mice. ALN, parathyroid hormone (PTH), or saline (vehicle control) was administered. PTH was used as the bone anabolic control. Mice were euthanized at 3, 5, 7, 10, and 21 d after extractions. Hard tissue healing was determined histomorphometrically. Neutrophils and lymphatic and blood vessels were quantified to evaluate soft tissue healing. Gene expression in the wounds was assessed at the RNA level. Furthermore, the vossicle bone transplant system was used to verify findings from extraction wound analysis. Alkaline phosphatase (ALP) was visualized in the vossicles to assess osteoblast activity. ALN exhibited no negative effect on bone formation. In intact tibiae, ALN increased bone mass significantly more than PTH did. Consistently, significantly elevated osteoblast numbers were noted. In the extraction sockets, bone fill in the ALN-treated mice was equivalent to the control. Genes associated with bone morphogenetic protein signaling, such as bmp2, nog, and dlx5, were activated in the extraction wounds of the ALN-treated animals. Bone formation in vossicles was significantly enhanced in the ALN versus PTH group. In agreement with this, ALN upregulated ALP activity considerably in vossicles. Neutrophil aggregation and suppressed lymphangiogenesis were evident in the soft tissue at 21 d after extraction, although gross healing of extraction wounds was uneventful. Bone formation was not impeded by short-term ALN treatment. Rather, short-term ALN treatment enhanced bone formation. ALN did not alter bone fill in extraction sockets.

  17. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    PubMed

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures.

  18. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    PubMed

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  19. Acid extrusion is induced by osteoclast attachment to bone. Inhibition by alendronate and calcitonin.

    PubMed Central

    Zimolo, Z; Wesolowski, G; Rodan, G A

    1995-01-01

    Acid extrusion is essential for osteoclast (OC) activity. We examined Na+ and HCO3(-)-independent H+ extrusion in rat- and mouse OCs by measuring intracellular pH (pHi) changes, with the pHi indicator BCECF (biscarboxyethyl-5-(6) carboxyfluorescein) after H+ loading with an ammonium pulse. 90% of OCs attached to glass do not possess HCO3- and Na(+)-independent H(+)-extrusion (rate of pHi recovery = 0.043 +/- 0.007 (SEM) pH U/min, n = 26). In contrast, in OCs attached to bone, the pHi recovery rate is 0.228 +/- 0.011 pHi U/min, n = 25. OCs on bone also possess a NH(4+)-permeable pathway not seen on glass. The bone-induced H+ extrusion was inhibited by salmon calcitonin (10(-8) M, for 2 h), and was not present after pretreating the bone slices with the aminobisphosphonate alendronate (ALN). At ALN levels of 0.22 nmol/mm2 bone, H+ extrusion was virtually absent 12 h after cell seeding (0.004 +/- 0.002 pH U/min) and approximately 50% inhibition was observed at 0.022 pmol ALN/mm2 bone. The Na(+)-independent H+ extrusion was not inhibited by bafilomycin A1 (up to 10(-7) M), although a bafilomycin A1 (10(-8) M)-sensitive H+ pump was present in membrane vesicles isolated from these osteoclasts. These findings indicate that Na(+)-independent acid extrusion is stimulated by osteoclast attachment to bone and is virtually absent when bone is preincubated with ALN, or when osteoclasts are treated with salmon calcitonin. Images PMID:7593614

  20. Reciprocating sliding wear behavior of alendronate sodium-loaded UHMWPE under different tribological conditions.

    PubMed

    Huang, Jie; Qu, Shuxin; Wang, Jing; Yang, Dan; Duan, Ke; Weng, Jie

    2013-07-01

    The aim of this study is to investigate the tribological behaviors and wear mechanisms of ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN), a potential drug to treat osteolysis, under different normal loads and lubrication conditions. A mixture of UHMWPE powder and ALN (1.0 wt.%) solution was dried and hot pressed. The static and dynamic friction coefficients of UHMWPE-ALN were slightly higher than those of UHMWPE except under normal load as 10 N and in 25 v/v % calf serum. The specific wear rates of UHMWPE-ALN and UHMWPE were the lowest in 25 v/v % calf serum compared to those in deionized water or physiological saline. In particular, the specific wear rate of UHMWPE-ALN was lower than that of UHMWPE at 50 N in 25 v/v % calf serum. The main wear mechanisms of UHMWPE and UHMWPE-ALN in deionized water and UHMWPE in physiological saline were abrasive. The main wear mechanism of UHMWPE-ALN in physiological saline was micro-fatigue. In 25 v/v % calf serum, the main wear mechanism of UHMWPE and UHMWPE-ALN was abrasive wear accompanied with plastic deformation. The results of Micro-XRD indicated that the molecular deformation of UHMWPE-ALN and UHMWPE under the lower stress were in the amorphous region but in the crystalline region at the higher stress. These results showed that the wear of UHMWPE-ALN would be reduced under calf serum lubricated, which would be potentially applied to treat osteolysis.

  1. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing.

    PubMed

    Gerstenfeld, Louis C; Sacks, Daniel J; Pelis, Megan; Mason, Zachary D; Graves, Dana T; Barrero, Mauricio; Ominsky, Michael S; Kostenuik, Paul J; Morgan, Elise F; Einhorn, Thomas A

    2009-02-01

    The role of osteoclast-mediated resorption during fracture healing was assessed. The impact of two osteoclast inhibitors with different mechanisms of action, alendronate (ALN) and denosumab (DMAB), were examined during fracture healing. Male human RANKL knock-in mice that express a chimeric (human/murine) form of RANKL received unilateral transverse femur fractures. Mice were treated biweekly with ALN 0.1 mg/kg, DMAB 10 mg/kg, or PBS (control) 0.1 ml until death at 21 and 42 days after fracture. Treatment efficacy assessed by serum levels of TRACP 5b showed almost a complete elimination of TRACP 5b levels in the DMAB-treated animals but only approximately 25% reduction of serum levels in the ALN-treated mice. Mechanical testing showed that fractured femurs from both ALN and DMAB groups had significantly increased mechanical properties at day 42 compared with controls. muCT analysis showed that callus tissues from DMAB-treated mice had significantly greater percent bone volume and BMD than did both control and ALN-treated tissues at both 21 and 42 days, whereas ALN-treated bones only had greater percent bone volume and BMC than control at 42 days. Qualitative histological analysis showed that the 21-and 42-day ALN and DMAB groups had greater amounts of unresorbed cartilage or mineralized cartilage matrix compared with the controls, whereas unresorbed cartilage could still be seen in the DMAB groups at 42 days after fracture. Although ALN and DMAB delayed the removal of cartilage and the remodeling of the fracture callus, this did not diminish the mechanical integrity of the healing fractures in mice receiving these treatments. In contrast, strength and stiffness were enhanced in these treatment groups compared with control bones.

  2. Mutual augmentation of the induction of the histamine-forming enzyme, histidine decarboxylase, between alendronate and immuno-stimulants (IL-1, TNF, and LPS), and its prevention by clodronate

    SciTech Connect

    Deng Xue; Yu Zhiqian; Funayama, Hiromi; Shoji, Noriaki; Sasano, Takashi; Iwakura, Yoichiro; Sugawara, Shunji; Endo, Yasuo . E-mail: endo@pharmac.dent.tohoku.ac.jp

    2006-05-15

    Nitrogen-containing bisphosphonates (N-BPs), powerful anti-bone-resorptive drugs, have inflammatory side effects, while histamine is not only an inflammatory mediator, but also an immuno-modifier. In murine models, a single intraperitoneal injection of an N-BP induces various inflammatory reactions, including the induction of the histamine-forming enzyme histidine decarboxylase (HDC) in tissues important in immune responses (such as liver, lungs, spleen, and bone marrow). Lipopolysaccharide (LPS) and the proinflammatory cytokines IL-1 and TNF are also capable of inducing HDC. We reported previously that in mice (i) the inflammatory actions of N-BPs depend on IL-1 (ii) N-BP pretreatment augments both LPS-stimulated IL-1 production and HDC induction, and (iii) the co-administration of clodronate (a non-N-BP) with an N-BP inhibits the latter's inflammatory actions (including HDC induction). Here, we add the new findings that (a) pretreatment with alendronate (a typical N-BP) augments both IL-1- and TNF-induced HDC elevations, (b) LPS pretreatment augments the alendronate-induced HDC elevation, (c) co-administration of clodronate with alendronate abolishes these augmentations, (d) alendronate does not induce HDC in IL-1-deficient mice even if they are pretreated with LPS, and (e) alendronate increases IL-1{beta} in all tissues tested, but not in the serum. These results suggest that (1) there are mutual augmentations between alendronate and immuno-stimulants (IL-1, TNF, and LPS) in HDC induction, (2) tissue IL-1{beta} is important in alendronate-stimulated HDC induction, and (3) combination use of clodronate may have the potential to reduce the inflammatory effects of alendronate (we previously found that clodronate, conveniently, does not inhibit the anti-bone-resorptive activity of alendronate)

  3. Antiresorptive treatment of postmenopausal osteoporosis: review of randomized clinical studies and rationale for the Evista alendronate comparison (EVA) trial.

    PubMed

    Lufkin, Edward G; Sarkar, Somnath; Kulkarni, Pandurang M; Ciaccia, Angelina V; Siddhanti, Suresh; Stock, John; Plouffe, Leo

    2004-03-01

    Standard pharmacological antiresorptive therapy for the prevention and/or treatment of postmenopausal osteoporosis now consists of four categories of drugs: estrogens, a selective estrogen receptor modulator (SERM), bisphosponates, and calcitonin. All of these drugs have been studied in randomized controlled trials, but meaningful comparisons of the efficacy of drugs have been difficult due to differences in baseline risks for fracture and differences in study design, including calcium and vitamin D supplementation, definition of fracture, and discontinuation rates. The current paper reviews results from pivotal studies of antiresorptive therapies with fracture as a primary endpoint, as well as head-to-head trials comparing these therapies using surrogate markers of fracture risk, and introduces the first head-to-head trial with fracture as a primary endpoint. The Evista Alendronate Comparison (EVA) trial, a multi-center, double-blind, double-dummy, randomized trial with two active treatment arms is currently underway to compare directly the osteoporotic fracture risk reduction efficacy of raloxifene and alendronate in postmenopausal women with osteoporosis as defined by bone mineral density. The results from this trial will permit more informed judgment by practitioners and provider groups concerning the relative clinical utility of these two drugs.

  4. A comparative study of the effects of daily minodronate and weekly alendronate on upper gastrointestinal symptoms, bone resorption, and back pain in postmenopausal osteoporosis patients.

    PubMed

    Yoshioka, Toru; Okimoto, Nobukazu; Okamoto, Ken; Sakai, Akinori

    2013-03-01

    The purpose of the present study was to precisely compare both the efficacy and abdominal symptom-related quality of life after treatment with daily minodronate and weekly alendronate in patients with primary postmenopausal osteoporosis. The efficacy of the two drugs was assessed based on improvements in a bone turnover marker, back pain, and gastrointestinal symptoms that impair quality of life, which was assessed using the Izumo scale questionnaire. In the minodronate group, there were no significant changes during the treatment period in the specific scores for heartburn, epigastralgia and epigastric fullness, whereas all of the scores were significantly elevated at some time point after drug administration in the alendronate group. Urinary N-telopeptide of type I collagen (uNTX), a bone resorption marker, and bone-specific alkaline phosphatase, a bone formation marker, significantly decreased in both groups, but decreases in uNTX in the minodronate group was observed significantly earlier compared with those in the alendronate group. The back pain scores, which were obtained using a visual analog scale, were significantly reduced in both groups. However, analgesic effects were detected earlier in the minodronate group. In conclusion, compared with weekly alendronate, daily minodronate improved bone turnover and back pain more promptly without causing upper gastrointestinal symptoms.

  5. The Resistance of Cortical Bone Tissue to Failure under Cyclic Loading is Reduced with Alendronate

    PubMed Central

    Bajaj, Devendra; Geissler, Joseph R.; Allen, Matthew R.; Burr, David B.; Fritton, J. Christopher

    2014-01-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0 mg/kg/day; Alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (−14%, ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×103 µm2; p<0.01) and the density of osteocyte lacunae (−20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×102 #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. PMID:24704262

  6. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.

    PubMed

    Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C

    2014-07-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; p<0.01) and the density of osteocyte lacunae (-20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×10(2) #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions.

  7. Aqueous extract of pomegranate seed attenuates glucocorticoid-induced bone loss and hypercalciuria in mice: A comparative study with alendronate.

    PubMed

    Zhang, Yan; Shao, Jin; Wang, Zhi; Yang, Tieyi; Liu, Shuyi; Liu, Yue; Fan, Xinbing; Ye, Weiguang

    2016-08-01

    The present study was performed in order to examine bone loss and calcium homeostasis in mice with glucocorticoid (GC)-induced osteoporosis (GIOP) following treatment with the aqueous extract of pomegranate seed (AE-PS). In addition, a comparative study with alendronate was performed. Biomarkers in the serum and the urine were measured. The tibias, kidney and duodenum were removed in order to measure the levels of bone calcium, protein expression as well as to perform histomorphological analysis of the bone. GC treatment facilitated the induction of hypercalciuria in the mice, and the AE-PS‑treated mice exhibited a greater increase in serum calcium and a decrease in urine calcium. The AE-PS reversed the deleterious effects on the trabecular bone induced by DXM and stimulated bone remodeling, including an increase in bone calcium and alkaline phosphatase‑b (ALP-b) and a decrease in a the critical bone resorption markers C-terminal telopeptide of type I collagen (CTX) and tartrate‑resistant acid phosphatase-5b (TRAP-5b). Hematoxylin and eosin (H&E) staining revealed the increased disconnections and separation between the growth plate and the trabecular bone network as well as the reduction in the trabecular bone mass of the primary and secondary spongiosa throughout the proximal metaphysis of the tibia in the DXM group. Moreover, the decreased protein expression of transient receptor potential vanilloid (TRPV)5, TRPV6 and calbindin‑D9k (CaBP‑9k) was reversed by the AE-PS or alendronate supplementation in the kidneys and the duodenum as well as plasma membrane Ca2+‑ATPase1 (PMCA1) expression in the kidneys of mice with GIOP. There was no marked difference in pharmacological effectiveness between alendronate and the AE-PS. Taken together, these findings suggest that the AE-PS may be an alternative therapy suitable for use in the management of secondary osteoporosis. PMID:27278225

  8. Duration-dependent effects of clinically relevant oral alendronate doses on cortical bone toughness in beagle dogs

    PubMed Central

    Burr, David B.; Liu, Ziyue; Allen, Matthew R.

    2014-01-01

    Bisphosphonates (BPs) have been shown to significantly reduce bone toughness in vertebrae within one year when given at clinical doses to dogs. Although BPs also reduce toughness in cortical bone when given at high doses, their effect on cortical bone material properties when given at clinical doses is less clear. In part, this may be due to the use of small sample sizes that were powered to demonstrate differences in bone mineral density rather than bone’s material properties. Our lab has conducted several studies in which dogs were treated with alendronate at a clinically relevant dose. The goal of this study was to examine these published and unpublished data collectively to determine whether there is a significant time-dependent effect of alendronate on toughness of cortical bone. This analysis seemed particularly relevant given the recent occurrence of atypical femoral fractures in humans. Differences in the toughness of ribs taken from dogs derived from five separate experiments were measured. The dogs were orally administered saline (CON, 1 ml/kg/day) or alendronate (ALN) at a clinical dose (0.2 mg/kg/day). Treatment duration ranged from 3 months to 3 years. Groups were compared using ANOVA, and time trends analyzed with linear regression analysis. Linear regressions of the percent difference in toughness between CON and ALN at each time point revealed a significant reduction in toughness with longer exposure to ALN. The downward trend was primarily driven by a downward trend in post-yield toughness, whereas toughness in the pre-yield region was not changed relative to CON. These data suggest that a longer duration of treatment with clinical doses of ALN results in deterioration of cortical bone toughness in a time-dependent manner. As the duration of treatment is lengthened, the cortical bone exhibits increasingly brittle behavior. This may be important in assessing the role that long-term BP treatments play in the risk of atypical fractures of femoral

  9. Immunomodulatory effect of bisphosphonate risedronate sodium on CD163+ arginase 1+ M2 macrophages: the development of a possible supportive therapy for angiosarcoma.

    PubMed

    Fujimura, Taku; Kambayashi, Yumi; Furudate, Sadanori; Kakizaki, Aya; Aiba, Setsuya

    2013-01-01

    An imbalance of immunosuppressive cells and cytotoxic cells plays an important role in inhibiting the antitumor immune response of the tumor-bearing host. We previously reported the profiles of tumor infiltrating leukocytes in cutaneous angiosarcoma (AS) and suggested that a combination of docetaxel (DTX) with bisphosphonate risedronate sodium (RS) might be effective for MMP9-expressing AS by targeting immunosuppressive cells such as M2 macrophages. To further confirm the effect of this combination therapy, in this report we investigated the immunomodulatory effect of DTX and RS on CD163(+) arginase 1 (Arg1)(+) M2 macrophages in vitro. Interestingly, our present study demonstrated that DTX in combination with RS significantly upregulated the mRNA expression of CXCL10 on M2 macrophages and significantly decreased the mRNA expression of CCL17 and Arg1. Moreover, the production of CXCL10 and CXCL11 from M2 macrophages was significantly increased by DTX with RS though there was no effect of DTX with RS on the production of CCL5 and CCL17. Furthermore, DTX with RS significantly decreased the production of CCL18, which was previously reported to correlate with the severity and prognosis in cancer patients. Our present report suggests one of the possible mechanisms of DTX with RS in the supportive therapy for angiosarcoma.

  10. Glucocorticoid Steroid and Alendronate Treatment Alleviates Dystrophic Phenotype with Enhanced Functional Glycosylation of α-Dystroglycan in Mouse Model of Limb-Girdle Muscular Dystrophy with FKRPP448L Mutation.

    PubMed

    Wu, Bo; Shah, Sapana N; Lu, Peijuan; Richardson, Stephanie M; Bollinger, Lauren E; Blaeser, Anthony; Madden, Kyle L; Sun, Yubo; Luckie, Taylor M; Cox, Michael D; Sparks, Susan; Harper, Amy D; Lu, Qi Long

    2016-06-01

    Fukutin-related protein-muscular dystrophy is characterized by defects in glycosylation of α-dystroglycan with variable clinical phenotypes, most commonly as limb-girdle muscular dystrophy 2I. There is no effective therapy available. Glucocorticoid steroids have become the standard treatment for Duchenne and other muscular dystrophies with serious adverse effects, including excessive weight gain, immune suppression, and bone loss. Bisphosphonates have been used to treat Duchenne muscular dystrophy for prevention of osteoporosis. Herein, we evaluated prednisolone and alendronate for their therapeutic potential in the FKRPP448L-mutant mouse representing moderate limb-girdle muscular dystrophy 2I. Mice were treated with prednisolone, alendronate, and both in combination for up to 6 months. Prednisolone improved muscle pathology with significant reduction in muscle degeneration, but had no effect on serum creatine kinase levels and muscle strength. Alendronate treatment did not ameliorate muscle degeneration, but demonstrated a limited enhancement on muscle function test. Combined treatment of prednisolone and alendronate provided best improvement in muscle pathology with normalized fiber size distribution and significantly reduced serum creatine kinase levels, but had limited effect on muscle force generation. The use of alendronate significantly mitigated the bone loss. Prednisolone alone and in combination with alendronate enhance functionally glycosylated α-dystroglycan. These results, for the first time, demonstrate the efficacy and feasibility of this alliance treatment of the two drugs for fukutin-related protein-muscular dystrophy.

  11. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study

    PubMed Central

    Abrahamsen, Bo; Eiken, Pia; Eastell, Richard

    2016-01-01

    Objectives To determine the skeletal safety and efficacy of long term (≥10 years) alendronate use in patients with osteoporosis. Design Open register based cohort study containing two nested case control studies. Setting Nationwide study of population of Denmark. Participants 61 990 men and women aged 50-94 at the start of treatment, who had not previously taken alendronate, 1996-2007. Interventions Treatment with alendronate. Main outcome measures Incident fracture of the subtrochanteric femur or femoral shaft (ST/FS) or the hip. Non-fracture controls from the cohort were matched to fracture cases by sex, year of birth, and year of initiation of alendronate treatment. Conditional logistic regression models were fitted to calculate odds ratios with and without adjustment for comorbidity and comedications. Sensitivity analyses investigated subsequent treatment with other drugs for osteoporosis. Results 1428 participants sustained a ST/FS (incidence rate 3.4/1000 person years, 95% confidence interval 3.2 to 3.6), and 6784 sustained a hip fracture (16.2/1000 person years, 15.8 to 16.6). The risk of ST/FS was lower with high adherence to treatment with alendronate (medication possession ratio (MPR, a proxy for compliance) >80%) compared with poor adherence (MPR <50%; odds ratio 0.88, 0.77 to 0.99; P=0.05). Multivariable adjustment attenuated this association (adjusted odds ratio 0.88, 0.77 to 1.01; P=0.08). The risk was no higher in long term users (≥10 dose years; 0.70, 0.44 to 1.11; P=0.13) or in current compared with past users (0.91, 0.79 to 1.06; P=0.22). Similarly, MPR >80% was associated with a decreased risk of hip fracture (0.73, 0.68 to 0.78; P<0.001) as was longer term cumulative use for 5-10 dose years (0.74, 0.67 to 0.83; P<0.001) or ≥10 dose years (0.74, 0.56 to 0.97; P=0.03). Conclusions These findings support an acceptable balance between benefit and risk with treatment with alendronate in terms of fracture outcomes, even for over 10

  12. Selective inhibition of Rab prenylation by a phosphonocarboxylate analogue of risedronate induces apoptosis, but not S-phase arrest, in human myeloma cells.

    PubMed

    Roelofs, Anke J; Hulley, Philippa A; Meijer, Annemieke; Ebetino, Frank H; Russell, R Graham G; Shipman, Claire M

    2006-09-15

    Bisphosphonates (BPs) are widely used in the treatment of osteolytic bone disease associated with multiple myeloma, and have been demonstrated to exert antitumor effects both in vitro and in vivo. However, the precise molecular mechanisms involved in the direct antitumor effects of BPs in vitro are not known. Nitrogen-containing BPs, such as risedronate (RIS), act by inhibiting protein prenylation. A phosphonocarboxylate analogue of RIS, 3-PEHPC, has previously been shown in osteoclasts and macrophages to specifically inhibit prenylation of Rab GTPases. The aim of this study was to identify the molecular targets of RIS and 3-PEHPC in human myeloma cells and to determine the cellular effects of selective inhibition of Rab prenylation by 3-PEHPC as compared to nonspecific inhibition of protein prenylation by RIS in human myeloma cells. RIS dose-dependently inhibited prenylation of both Rap1A and Rab6, whereas 3-PEHPC only inhibited Rab6 prenylation. Both RIS and 3-PEHPC dose-dependently increased apoptosis in human myeloma cells. RIS induced an accumulation of cells in the S-phase of the cell cycle, associated with inhibition of DNA replication. In contrast, 3-PEHPC did not cause cell-cycle arrest. Furthermore, geranylgeraniol could prevent inhibition of prenylation, induction of apoptosis, and cell-cycle arrest in response to RIS, but not inhibition of Rab prenylation and apoptosis induced by 3-PEHPC, consistent with specific inhibition of Rab geranylgeranyl transferase by 3-PEHPC. In conclusion, our studies demonstrate that selective inhibition of Rab prenylation induces apoptosis, but not S-phase arrest, thus identifying distinct molecular pathways that mediate the antimyeloma effect of nitrogen-containing BPs.

  13. Efficacy, effectiveness and side effects of medications used to prevent fractures.

    PubMed

    Reid, I R

    2015-06-01

    There is an increasing number of effective therapies for fracture prevention in adults at risk of osteoporosis. However, shortcomings in the evidence underpinning our management of osteoporosis still exist. Evidence of antifracture efficacy in the groups of patients who most commonly use calcium and vitamin D supplements is lacking, the safety of calcium supplements is in doubt, and the safety and efficacy of high doses of vitamin D give cause for concern. Alendronate, risedronate, zoledronate and denosumab have been shown to prevent spine, nonspine and hip fractures; in addition, teriparatide and strontium ranelate prevent both spine and nonspine fractures, and raloxifene and ibandronate prevent spine fractures. However, most trials provide little information regarding long-term efficacy or safety. A particular concern at present is the possibility that oral bisphosphonates might cause atypical femoral fractures. Observational data suggest that the incidence of this type of fracture increases steeply with duration of bisphosphonate use, resulting in concern that the benefit-risk balance may become negative in the long term, particularly in patients in whom the osteoporotic fracture risk is not high. Therefore, reappraisal of ongoing use of bisphosphonates after about 5 years is endorsed by expert consensus, and 'drug holidays' should be considered at this time. Further studies are needed to guide clinical practice in this area. PMID:25495429

  14. Oral bisphosphonate associated osteonecrosis of the jaws: three case reports.

    PubMed

    Malden, N J; Pai, A Y

    2007-07-28

    Bisphosphonate associated osteonecrosis of the jaws (BONJ) has been well documented recently in relation to intravenous preparations of the drug. These are most commonly used as part of the management of hypercalcaemia of malignancy and metastatic bone disease but BONJ can also occur in association with oral bisphosphonate use. The oral preparations can also be prescribed in the management of metastatic bone disease but are more commonly used for the prevention and treatment of osteoporosis. Three case reports are presented in which alendronate, risedronate and ibandronate have been associated with osteonecrosis of the jaws. A review of the recent literature is used in the discussion of the management of these cases. The authors conclude, in agreement with other published authors, that prevention and early detection could be improved to reduce the occurrence and severity of this condition. However when BONJ is diagnosed, the early application of a closely monitored conservative regimen, with consideration given to discontinuation of the bisphosphonate, may give the best chance of containing or resolving the condition.

  15. [Glucocorticoid and Bone. Updated Japanese guidelines for the management of glucocorticoid-induced osteoporosis].

    PubMed

    Suzuki, Yasuo

    2014-09-01

    The Japanese Society for Bone and Mineral Research (JSBMR) has updated the Guidelines on the Management and Treatment of Glucocorticoid-induced Osteoporosis (GIO) and has incorporated a new scoring method. In the updated guidelines, the JSBMR committee established an intervention threshold by analyzing five Japanese GIO cohorts from primary and secondary prevention studies and then by comprehensively assessing fracture risk using the scoring method. Age, GC dose, lumbar BMD, and prior fragility fractures were identified as factors predicting future fracture and the fracture risk for an individual can be calculated as the sum of the scores for each risk factor. The guidelines were updated on the basis of a score of 3 as the optimal cut-off score for pharmacological intervention. The medications recommended in the guidelines are limited to those approved for the treatment of osteoporosis in Japan. Among these agents, the committee comprehensively reviewed validity for both primary and secondary prevention and assessed the benefit for both BMD and fracture prevention based on the results of clinical studies. Both alendronate and risedronate are recommended as first-line treatment. Ibandronate, teriparatide, and active vitamin D3 derivatives are recommended as alternative option.

  16. Long-term treatment with bisphosphonates and their safety in postmenopausal osteoporosis

    PubMed Central

    Pazianas, Michael; Cooper, Cyrus; Ebetino, F Hal; Russell, R Graham G

    2010-01-01

    Bisphosphonates are the leading drugs for the treatment of osteoporosis. In randomized controlled trials (RCTs), alendronate, risedronate, and zoledronate have shown to reduce the risk of vertebral, nonvertebral, and hip fractures, whereas RCTs with ibandronate show antifracture efficacy at vertebral sites. Bisphosphonates are generally well tolerated and safe. Nevertheless, adverse events have been noted, and it is important to consider the strength of the evidence for causal relationships. Effects on the gastrointestinal tract and kidney function are well recognized, as are transient acute-phase reactions. Atrial fibrillation was first identified as a potential adverse event in a zoledronate trial, but subsequent trials and analyses failed to substantiate an association with bisphosphonates. Case reports have suggested a relationship between oral bisphosphonates and esophageal cancer, but this has not been demonstrated in epidemiologic studies. A possible association between bisphosphonate use and osteonecrosis of the jaw (ONJ) has also been suggested. However, the risk of ONJ in patients with osteoporosis appears to be very low, with no evidence from prospective RCTs of a causal association. There are reports of occasional occurrence of subtrochanteric or diaphyseal fractures in osteoporotic patients, but an association with bisphosphonate therapy is not substantiated by epidemiologic studies or prospective RCTs. PMID:20668715

  17. [Drug therapy for primary osteoporosis in men].

    PubMed

    Soen, Satoshi

    2016-07-01

    Overall, drug therapies for osteoporosis in men are less defined than in women, mainly due to the fact that there are fewer RCTs performed in male populations, to the relatively smaller sample sizes, and to the lack of long-term extension studies. In a series of well-designed RCTs, alendronate, risedronate, zoledronic acid, and teriparatide were demonstrated to reduce the risk of new vertebral fractures in men presenting with primary osteoporosis(including osteoporosis associated with low testosterone levels)and to improve the bone mineral density(BMD). In preliminary studies, ibandronate and denosumab also showed their beneficial effects on surrogate outcomes(BMD and markers of bone turnover)in men with osteoporosis. Although direct evidence about their non-vertebral anti-fracture efficacy are lacking, the effects of bisphosphonates, denosumab and teriparatide on surrogate outcomes were similar to those reported in pivotal RCTs undertaken in postmenopausal women, in which vertebral and non-vertebral anti-fracture efficacy have been clearly demonstrated. PMID:27346317

  18. An overview on the treatment of postmenopausal osteoporosis.

    PubMed

    Maeda, Sergio Setsuo; Lazaretti-Castro, Marise

    2014-03-01

    Osteoporosis is a worldwide health problem related to the aging of the population, and it is often underdiagnosed and undertreated. It is related to substantial morbidity, mortality and impairment of the quality of life. Estrogen deficiency is the major contributing factor to bone loss after menopause. The lifetime fracture risk at 50 years of age is about 50% in women. The aim of the treatment of osteoporosis is to prevent fractures. Non-pharmacological treatment involves a healthy diet, prevention of falls, and physical exercise programs. Pharmacological treatment includes calcium, vitamin D, and active medication for bone tissue such, as anti-resorptives (i.e., SERMs, hormonal replacement therapy, bisphosphonates, denosumab), bone formers (teriparatide), and mixed agents (strontium ranelate). Bisphosphonates (alendronate, risedronate, ibandronate, and zoledronate) are the most used anti-resorptive agents for the treatment of osteoporosis. Poor compliance, drug intolerance, and adverse effects can limit the benefits of the treatment. Based on the knowledge on bone cells signaling, novel drugs were developed and are being assessed in clinical trials.

  19. The influence of low-level laser therapy with alendronate irrigation on healing of bone defects in rats.

    PubMed

    Akyol, Utkan Kamil; Sipal, Sare; Demirci, Elif; Gungormus, Metin

    2015-04-01

    The aim of this study was to investigate the effects of alendronate (Aln) irrigation with low-level laser therapy (LLLT) on the healing of bone defects in rats. Sixty Wistar rats weighing 250 to 300 g were randomly divided into three groups of 20 animals each: (1) control group, (2) Aln group, and (3) Aln with LLLT group. The distal epiphysis of all rats was perforated with a surgical bone drill. Twenty rats served as control. The bone defects of 40 rats received local alendronate sodium trihydrate irrigation (1 mg/ml) at the time of surgery. LLLT was applied to the bone defects of 20 rats immediately after Aln irrigation, and repeated on days 2, 4, 6, and 8 with a total dose of 10 J/cm(2) (2 J/cm(2) × 5). Continuous wave of GaAlAs laser (808 nm) was used with a power density of 0.1 W/cm(2). Laser energy was applied for 20 s (0.1 W × 20 s/1 cm(2)) per session. Control group, Aln group, and Aln with LLLT group rats were sacrificed at days 10 and 20 to compare the bone healing of each group histologically. There were significant differences between the three groups regarding union, substantia spongiosa, cortex formation, and in sum of histologic scores on days 10 and 20 (P < 0.0001). Our findings demonstrated that Aln has a more positive effect with LLLT on bone healing in rats. It was concluded that combining LLLT (808 nm laser at 10 J/cm(2)) with Aln irrigation has a beneficial effect in bone repair. It was demonstrated experimentally that Aln irrigation during the surgery had a significant effect to enhance bone formation, and LLLT significantly potentiated the osseous healing effects of Aln on bone defects. This administration method is able to minimize the dose of Aln in order to avoid both systemic and local adverse effects as well as the local injection times during the bone healing process.

  20. Asymptomatic Paget's disease of bone in a 62-year-old Nigerian man: three years post-alendronate therapy

    PubMed Central

    Ipadeola, Arinola

    2016-01-01

    Summary Paget's disease is a chronic and progressive disorder of bone characterized by focal areas of excessive osteoclastic resorption accompanied by a secondary increase in the osteoblastic activity. Paget's disease of bone (PBD) is a rare endocrine disease especially among Africans and Asians. Hence the detection of a case in a middle-aged Nigerian is of interest. We present the case of a 62-year-old Nigerian man in apparent good health who was found to have a markedly elevated serum total alkaline phosphatase (ALP) of 1179 U/l (reference range, 40–115 U/l) 4 years ago during a routine medical check-up in the USA. He had no history suggestive of PDB and also had no known family history of bone disease. Examination findings were not remarkable except for a relatively large head. A repeat ALP in our centre was 902 U/l (reference range, 40–120 U/l). Cranial CT scan showed diffuse cranial vault thickening consistent with Paget's disease which was confirmed by Tc-99m hydroxymethylene diphosphonate. He was placed on 40 mg alendronate tablets daily for 6 months. The patient has remained asymptomatic and has been in continuing biochemical remission during the 3-year follow-up period. The most recent ALP result is 88 U/l (reference range, 30–132 U/l) in April 2015. Learning points Serum total alkaline phosphatase remains a sensitive marker of bone turnover and an isolated increase above the upper limit of normal warrants more intense scrutiny in form of investigations targeted at excluding PD.Paget's disease is very rare but can occur in the Africans as seen in this Nigerian man and most patients are asymptomatic.Asymptomatic patients can benefit from treatment if disease is active, polyostotic or the lesions are located in bones with future risk of complications such as long bones, vertebrae and skull.Bisphosphonates are still the mainstay of treatment and alendronate is a useful therapeutic option for treatment. PMID:26870373

  1. Efficacy, tolerability and safety of once-monthly administration of 75mg risedronate in Japanese patients with involutional osteoporosis: a comparison with a 2.5mg once-daily dosage regimen.

    PubMed

    Hagino, Hiroshi; Kishimoto, Hideaki; Ohishi, Hiroaki; Horii, Sayako; Nakamura, Toshitaka

    2014-02-01

    Oral risedronate has been shown to be effective in the treatment of osteoporosis when administered once-daily or once-weekly in Japan. This randomized, double-blind, multicenter 12-month study was conducted to compare the efficacy and tolerability of oral risedronate 75mg once-monthly with 2.5mg once-daily in Japanese patients with involutional osteoporosis. Bone mineral density (BMD), biochemical markers of bone metabolism, fractures, and adverse events (AEs) were evaluated. At the end of the study (Month 12, last observation carried forward [M12, LOCF]), mean percent change (SD) from baseline in lumbar spine (L2-L4) BMD, measured by dual energy X-ray absorptiometry (primary endpoint), was increased by 5.69 (4.00)% in the 2.5mg once-daily group (n=428), and 5.98 (4.54)% in the 75mg once-monthly group (n=422). In the non-inferiority t-test (non-inferiority margin Δ=1.5%), the 75mg once-monthly group was non-inferior to the 2.5mg once-daily group (p<0.0001). The difference between treatment groups was 0.28% (95% CI, -0.31% to 0.88%). Changes in biochemical markers of bone metabolism were generally comparable in the two groups, although decreases in the percent change from baseline in urinary NTX/CRN and CTX/CRN were statistically greater in the 2.5mg once-daily group than the 75mg once-monthly group. The frequency of new vertebral fractures (including aggravation of prevalent fractures) at the end of the study (M12, LOCF) was also similar in the two groups: 1.2% in the 2.5mg once-daily group and 1.3% in the 75mg once-monthly group. The incidence of mild/moderate/severe AEs was 75.5%/6.3%/0.5% in the 2.5mg once-daily group and 77.7%/8.1%/0.7% in the 75mg once-monthly group. AEs associated with gastrointestinal symptoms occurred in approximately 30% of subjects in each group but with no severe cases. AEs potentially associated with acute phase reaction (including symptoms of influenza-like illness or pyrexia starting within 3days of the first dose of the study drug

  2. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model.

    PubMed

    Park, Kwang-Won; Yun, Young-Pil; Kim, Sung Eun; Song, Hae-Ryong

    2015-01-01

    This study investigated the effect of alendronate (Aln) released from biphasic calcium phosphate (BCP) scaffolds. We evaluated the in vitro osteogenic differentiation of Aln/BCP scaffolds using MG-63 cells and the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial defect model with radiography, micro-computed tomography (CT), and histological examination. In vitro studies included the surface morphology of BCP and Aln-loaded BCP scaffolds visualized using field-emission scanning electron microscope, release kinetics of Aln from BCP scaffolds, alkaline phosphatase (ALP) activity, calcium deposition, and gene expression. The in vitro studies showed that sustained release of Aln from the BCP scaffolds consisted of porous microstructures, and revealed that MG-63 cells cultured on Aln-loaded BCP scaffolds showed significantly increased ALP activity, calcium deposition, and gene expression compared to cells cultured on BCP scaffolds. The in vivo studies using radiograph and histology examination revealed abundant callus formation and bone maturation at the site in the Aln/BCP groups compared to the control group. However, solid bony bridge formation was not observed at plain radiographs until 8 weeks. Micro-CT analysis revealed that bone mineral density and bone formation volume were increased over time in an Aln concentration-dependent manner. These results suggested that Aln/BCP scaffolds have the potential for controlling the release of Aln and enhance bone formation and mineralization. PMID:26561810

  3. Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. A one-year study.

    PubMed Central

    Lafage, M H; Balena, R; Battle, M A; Shea, M; Seedor, J G; Klein, H; Hayes, W C; Rodan, G A

    1995-01-01

    Fluoride stimulates trabecular bone formation, whereas bisphosphonates reduce bone resorption and turnover. Fracture prevention has not been convincingly demonstrated for either treatment so far. We compared the effects of 1-yr treatment of 9-mo-old minipigs with sodium fluoride (NaF, 2 mg/kg/d p.o.) or alendronate (ALN, 4 amino-1-hydroxybutylidene bisphosphonate monosodium, 1 mg/kg/d p.o.) on the biomechanical and histomorphometric properties of pig bones. As expected, NaF increased and ALN decreased bone turnover, but in these normal animals neither changed mean bone volume. NaF reduced the strength of cancellous bone from the L4 vertebra, relative to control animals, and the stiffness (resistance to deformation) of the femora, relative to the ALN group. In the ALN-treated animals, there was a strong positive correlation between bone strength and L5 cancellous bone volume, but no such correlation was observed in the NaF group. Furthermore, the modulus (resistance to deformation of the tissue) was inversely related to NaF content and there was a relative decrease in bone strength above 0.25 mg NaF/g bone. Moreover, within the range of changes measured in this study, there was an inverse correlation between bone turnover, estimated as the percentage of osteoid surface, and modulus. These findings have relevant implications regarding the use of these agents for osteoporosis therapy. PMID:7738180

  4. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer

    PubMed Central

    Ye, Wei-liang; Zhao, Yi-pu; Li, Huai-qiu; Na, Ren; Li, Fei; Mei, Qi-bing; Zhao, Ming-gao; Zhou, Si-yuan

    2015-01-01

    In order to increase the therapeutic effect of doxorubicin (DOX) on bone metastases, a multifunctional micelle was developed by combining pH-sensitive characteristics with bone active targeting capacity. The DOX loaded micelle was self-assembled by using doxorubicin-poly (ethylene glycol)-alendronate (DOX-hyd-PEG-ALN) as an amphiphilic material. The size and drug loading of DOX loaded DOX-hyd-PEG-ALN micelle was 114 nm and 24.3%. In pH 5.0 phosphate buffer solution (PBS), the micelle released DOX significantly faster than in pH 7.4 PBS. In addition, with the increase of incubation time, more red DOX fluorescence was observed in tumor cells and trafficked from cytoplasm to nucleus. The IC50 of DOX loaded DOX-hyd-PEG-ALN micelle on A549 cells was obviously lower than that of free DOX in 48 h. Furthermore, the in vivo image experimental results indicated that a larger amount of DOX was accumulated in the bone metastatic tumor tissue after DOX loaded DOX-hyd-PEG-ALN micelle was intravenously administered, which was confirmed by histological analysis. Finally, DOX loaded DOX-hyd-PEG-ALN micelle effectively delayed the tumor growth, decreased the bone loss and reduced the cardiac toxicity in tumor-bearing nude mice as compared with free DOX. In conclusion, DOX loaded DOX-hyd-PEG-ALN micelle had potential in treating bone metastatic tumor. PMID:26419507

  5. The effect of an alendronate-eluting titanium system to induce osteogenic differentiation in human buccal fat cells (HBFCs)

    NASA Astrophysics Data System (ADS)

    Kim, Sung Eun; Lee, Su-Young; Yun, Young-Pil; Lee, Jae Yong; Park, Kyeongsoon; Lee, Deok-Won; Song, Hae-Ryong

    2012-10-01

    The purpose of this study was to develop alendronate (Aln)-eluting Ti substrates to induce osteogenic differentiation of human buccal fat cells (HBFCs). The surface of pristine Ti was modified by dopamine (DOPA) and then heparin was grafted onto the aminated Ti surfaces to achieve the Aln-eluting Ti system. Aln was subsequently immobilized on the surface of heparinized Ti (Hep-Ti). Pristine Ti and surface-modified-Ti were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. Osteogenic differentiation of HBFCs on the surface of pristine-Ti, Hep-Ti, Aln (1 mg)/Hep-Ti, and Aln (5 mg)/Hep-Ti was demonstrated by alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin and osteopontin mRNA expression. Successful immobilization of Aln on Hep-Ti was confirmed by XPS and contact angle. Aln/Hep-Ti showed the sustained release for up to 28 days. Additionally, HBFCs cultured on Aln/Hep-Ti substrates showed significantly induced ALP activity, calcium deposition, and osteocalcin and osteopontin mRNA expression. These results suggest that Aln-eluting Ti substrates have a potential effect on osteogenic differentiation of HBFCs and will be a promising material for bone regeneration.

  6. Alendronate and Resistive Exercise Countermeasures Against Bed Rest-Induced Bone Loss: Biochemical Markers of Bone and Calcium Metabolism

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Nillen, Jeannie L.; Davis-Street, Janis E.; DeKerlegand, Diane E.; LeBlanc, Adrian; Shackelford, Linda C.

    2001-01-01

    Weightlessness-induced bone loss must be counteracted to ensure crew health during extendedduration space missions. Studies were conducted to assess two bone loss countermeasures in a ground-based model: horizontal bed rest. Following a 3-wk ambulatory adaptation period, male and female subjects (aged 21-56 y) completed a 17-wk bed rest protocol. Subjects were assigned to one of three treatments: alendronate (ALEN; 10 mg/d, n=6), resistive exercise (RE; 1.5 h/d, 6 d/wk, n=8), or control (CN; no countermeasure, n=8). Dietary intake was adjusted to maintain body weight. Endocrine and biochemical indices were measured in blood and urine using standard laboratory methods. All data reported are expressed as percent change from individual pre-bedrest data. Serum calcium changed little during bed rest, and tended to decrease (4-8%) in ALEN subjects. In RE subjects, bone alkaline phosphatase and osteocalcin were increased >65 and >30%, respectively, during bed rest, while these were unchanged or decreased in ALEN and CN subjects. Urinary calcium was increased 50% in CN subjects, but was unchanged or decreased in both ALEN and RE groups. Urinary n-telopeptide excretion was increased 40-50% in CN and RE subjects, but decreased 20% in ALEN subjects. Pyridinium crosslink and deoxypyridinoline excretion were increased 20-50% during bed rest. These data suggest that RE countermeasures are effective at increasing markers of bone formation in an analog of weightlessness, while ALEN reduces markers of bone resorption. Counteracting the bone loss of space flight may require both pharmacologic and exercise countermeasures.

  7. Comparative clinicoradiographical evaluation of effect of aminobisphosphonate (sodium alendronate) on peri-implant bone status: Controlled clinical trial

    PubMed Central

    Aggarwal, Rajni; Babaji, Prashant; Nathan, S. Senthil; Attokaran, George; Santosh Kumar, S. M.; Sathnoorkar, Sharanpriya

    2016-01-01

    Aim: The present study aims to compare the peri-implant bone status around immediately loaded dental implants treated with aminobisphosphonate solution and untreated control implants in terms of clinical and radiographical parameters. Materials and Methods: A total of 24 patients were randomly divided equally into two groups. This study was conducted in accordance to the Helsinki's declaration of 1975, revised in 2000, and with the approval of the institutional ethical committee. In the control group after preparation, osteotomy sites were irrigated with normal saline solution, whereas in the test group osteotomy sites were irrigated with modified bisphosphonate solution and then TRX-OP, Hi-Tec dental implants were inserted. Clinical parameters, such as modified plaque and gingival index, probing depth, mobility, and radiographic parameters were recorded at baseline (0), 3, 6, and 9 months. Data analysis was performed using the Statistical Package for the Social Sciences version 17 for windows, and the statistical techniques employed were repeated measures analysis of variance, independent sample t-test, and paired sample t-test. Results: Reduction in mean radiographic bone levels (height) was observed on the mesial and distal aspect of the control group in comparison to its baseline at all intervals. In the test group, there was reduction in mean radiographic bone levels on mesial and distal aspect of the implant site in comparison to its baseline till 6-month follow up, however, at 9 month, there was gain in bone level on both mesial and distal aspect of implant. This represents the effectiveness of sodium alendronate in enhancing the bone formation. On comparison, between both groups on mesial and distal aspect of implants, statistically significant differences were observed at 3 and 9 months on mesial and distal aspect, respectively, without any clinical evidence of mobility in the test group. Conclusion: Implant site treated with aminobisphosphonate solution

  8. Long-term treatment with alendronate increases the surgical difficulty during simple exodontias – an in vivo observation in Holtzman rats

    PubMed Central

    2012-01-01

    Background Atraumatic teeth extractions protocols are highly encouraged in patients taking bisphosphonates (Bps) to reduce surgical trauma and, consequently, the risk of jaws osteonecrosis development. In this way, this paper aims to report the findings of increased surgical difficulty during simple exodontias in animals treated with bisphosphonates. Methods Sixty male Holtzman rats were randomly distributed into three groups of 20 animals and received daily subcutaneous administration of 1 mg/kg (AL1) or 3 mg/kg (AL3) of alendronate or saline solution (CTL). After 60 days of drug therapy all animals were submitted to first lower molars extractions under general anesthesia. Operatory surgical time and the frequency of teeth fractures were measured as principal outcomes and indicators of surgical difficulty degree. Results Animals treated with alendronate (AL1 and AL3) were associated to higher operatory times and increased frequency of teeth fractures compared to match controls. Conclusions The bisphosphonate therapy may be associated with an increased surgical difficulty and trauma following simple exodontias protocols, which is considered a critical issue when it comes to osteonecrosis development. PMID:22834876

  9. Effects of alendronate and pamidronate on cultured rat metatarsal bones: failure to prevent dexamethasone-induced growth retardation.

    PubMed

    Heino, Terhi J; Chagin, Andrei S; Takigawa, Masaharu; Sävendahl, Lars

    2008-04-01

    Bisphosphonates are widely used anti-resorptive drugs in the adult population. In children, their use has mainly been limited to patients with osteogenesis imperfecta. However, the powerful effects of bisphosphonates on bone turnover have raised concern about their long-term effects on the growing skeleton. We aimed to study the effects of two commonly used bisphosphonates, alendronate (Aln) and pamidronate (Pam) on normal bone growth as well as their potential to prevent glucocorticoid-induced growth retardation. Effects on bone growth were studied in fetal rat metatarsal bones (day E20) that were cultured for 5-47 days and measured every 2-7 days. Cellular mechanisms were investigated in metatarsal bones and also in the human chondrocytic cell line HCS-2/8. Chondrocyte viability (WST-1), proliferation (BrdU incorporation), differentiation (collagen type X immunohistochemistry) and apoptosis (TUNEL and Cell Death ELISA) were determined. At a clinically relevant concentration of bisphosphonates (1 microM), metatarsal bone growth was stimulated by both Aln (p<0.001 for length and p<0.05 for width) and Pam (p<0.05 for both length and width) from day 19 of culture. The growth-stimulatory effect was associated with increased chondrocyte proliferation (+21% with Aln and +24% with Pam), while cell differentiation and apoptosis were not affected. Despite the finding that both Aln and Pam (1 muM) rescued HCS-2/8 cells from undergoing dexamethasone-induced apoptosis, neither of them was able to prevent dexamethasone-induced growth retardation of fetal rat metatarsal bones. Aln and Pam have the capacity to stimulate the growth of cultured fetal rat metatarsal bones; an effect associated with increased proliferation of growth plate chondrocytes. Our experimental data suggest that bisphosphonates are ineffective in preventing glucocorticoid-induced growth retardation. Nevertheless, based on our in vitro data, both Aln and Pam appear safe to use in growing children, at least

  10. Effects of alendronate and strontium ranelate on cancellous and cortical bone mass in glucocorticoid-treated adult rats.

    PubMed

    Sun, P; Cai, D H; Li, Q N; Chen, H; Deng, W M; He, L; Yang, L

    2010-06-01

    We studied the effects of alendronate (Aln) and strontium ranelate (SrR) administration on cancellous and cortical bone in glucocorticoid (GC)-treated rats. Thirty-two 3.5-month male Sprague-Dawley rats were randomized into four groups: age-matched normal control (Nrm), methylprednisolone (Met; 5.0 mg/kg/day, sc, for 5 days/week), Met plus Aln orally (1.0 mg/kg/day), and Met plus SrR orally (900 mg/kg/day). The study period was 9 weeks. DXA was used to evaluate the femoral diaphysis and fifth lumbar vertebra (L5). Histomorphometry was performed in the proximal tibial metaphysis and tibial diaphysis. Met significantly decreased body weight and bone mineral density (BMD) compared with Nrm. Aln and SrR significantly increased body weight and BMD compared with Met. SrR resulted in significantly higher BMD than Aln. Met markedly decreased BV/TV, Tb.Th, and Tb.N and increased Tb.Sp compared with Nrm. Aln and SrR showed significantly increased of BV/TV, Tb.Th, and Tb.N and improved bone architecture. Moreover, Met reduced %Ct.Ar, enlarged %Ma.Ar, and decreased bone formation indices in the periosteum as well as increased ES/BS in the endosteum compared with Nrm. Aln significantly decreased endosteal ES/BS compared with Met. SrR significantly increased %Ct.Ar and bone formation indices in the periosteum as well as the endosteum and decreased endosteal ES/BS compared with Met. Furthermore, SrR led to a significantly higher cancellous and endocortical MS/BS and endocortical bone formation compared with Aln. Our findings suggest SrR at a dose of 900 mg/kg has a greater effect than Aln at 1.0 mg/kg, according to BMD and histomorphometric analysis, in preventing GC-induced osteopenia. Therefore, SrR might be applicable as a bone therapeutic agent to treat secondary osteoporosis in the clinic. PMID:20390406

  11. Efficacy of alfacalcidol and alendronate on lumbar bone mineral density in osteoporotic patients using proton pump inhibitors

    PubMed Central

    Asaoka, Daisuke; Nagahara, Akihito; Hojo, Mariko; Matsumoto, Kenshi; Ueyama, Hiroya; Matsumoto, Kohei; Izumi, Kentaro; Takeda, Tsutomu; Komori, Hiroyuki; Akazawa, Yoichi; Shimada, Yuji; Osada, Taro; Watanabe, Sumio

    2016-01-01

    It has been indicated that proton pump inhibitor (PPI) use is associated with a loss of the anti-fracture efficacy of alendronate (AD). However, there are few prospective studies that have investigated the efficacy of AD on lumbar bone mineral density (BMD) in osteoporotic patients who are using PPIs. Thus, the aim of the present study was to investigate the efficacy of alfacalcidol (AC) and AD on lumbar BMD in osteoporotic patients using PPIs. A prospective, randomized, active control study enrolled such osteoporotic patients (age, ≥50 years). The patients were randomly assigned to receive AC (1 µg/day) or AD (35 mg/week) and were followed up for one year. Patient profiles were maintained, and lumbar BMD, bone-specific alkaline-phosphatase (BAP) and collagen type-I cross-linked N-telopeptide (NTX), upper gastrointestinal endoscopy results, and the frequency scale for the symptoms of gastroesophageal reflux disease (FSSG) were evaluated. Percentage changes in lumbar BMD, NTX, BAP, and change in FSSG score from baseline to the end of one year of treatment were investigated. Sixteen patients were eligible for analysis (eight assigned to receive AC, eight assigned to receive AD). The percentage change in lumbar BMD from baseline to the end of treatment was −0.4±4.0% for the AC group vs. 6.8±6.3% for the AD group (P=0.015). No significant percentage change of BAP and NTX between the two groups was observed. Subsequent to one year of treatment, the FSSG score did not change from the baseline values for either study group, and no new bone fractures or esophagitis were observed in either group of patients. The findings demonstrated that in osteoporotic patients using concomitant PPIs, there was a greater increase in lumbar BMD after one year of treatment with AD compared with AC. However, the number of study subjects was small; thus, further, large prospective studies are required to determine the effect of AD in osteoporotic patients using concomitant PPIs. PMID

  12. Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection

    PubMed Central

    Bivi, Nicoletta; Romanello, Milena; Harrison, Richard; Clarke, Ian; Hoyle, David C; Moro, Luigi; Ortolani, Fulvia; Bonetti, Antonella; Quadrifoglio, Franco; Tell, Gianluca; Delneri, Daniela

    2009-01-01

    Background Nitrogen-containing bisphosphonates are the elected drugs for the treatment of diseases in which excessive bone resorption occurs, for example, osteoporosis and cancer-induced bone diseases. The only known target of nitrogen-containing bisphosphonates is farnesyl pyrophosphate synthase, which ensures prenylation of prosurvival proteins, such as Ras. However, it is likely that the action of nitrogen-containing bisphosphonates involves additional unknown mechanisms. To identify novel targets of nitrogen-containing bisphosphonates, we used a genome-wide high-throughput screening in which 5,936 Saccharomyces cerevisiae heterozygote barcoded mutants were grown competitively in the presence of sub-lethal doses of three nitrogen-containing bisphosphonates (risedronate, alendronate and ibandronate). Strains carrying deletions in genes encoding potential drug targets show a variation of the intensity of their corresponding barcodes on the hybridization array over the time. Results With this approach, we identified novel targets of nitrogen-containing bisphosphonates, such as tubulin cofactor B and ASK/DBF4 (Activator of S-phase kinase). The up-regulation of tubulin cofactor B may explain some previously unknown effects of nitrogen-containing bisphosphonates on microtubule dynamics and organization. As nitrogen-containing bisphosphonates induce extensive DNA damage, we also document the role of DBF4 as a key player in nitrogen-containing bisphosphonate-induced cytotoxicity, thus explaining the effects on the cell-cycle. Conclusions The dataset obtained from the yeast screen was validated in a mammalian system, allowing the discovery of new biological processes involved in the cellular response to nitrogen-containing bisphosphonates and opening up opportunities for development of new anticancer drugs. PMID:19744312

  13. Current and emerging therapies for the treatment of osteoporosis

    PubMed Central

    Waalen, Jill

    2010-01-01

    Osteoporosis represents a weakening of bone tissue due to an imbalance in the dynamic processes of bone formation and bone resorption that are continually ongoing within bone tissue. Most currently available osteoporosis therapies are antiresorptive agents. Over the past decade, bisphosphonates, notably alendronate and risedronate, have become the dominant agents with newer bisphosphonates such as ibandronate and zoledronic acid following a trend of less frequent dosing regimens. Synthetic estrogen receptor modulators (SERMs) continue to be developed as drugs that maintain the bone-protective effects of estrogen while avoiding its associated adverse side effects. Currently available agents of this class include raloxifene, the only SERM available in the United States (US), and lasofoxifene and bazedoxifene, available in Europe. Calcitonin, usually administered as a nasal spray, completes the list of currently approved antiresorptive agents, while parathyroid hormone analogs represent the only anabolic agents currently approved in both the US and Europe. Strontium ranelate is an additional agent available in Europe but not the US that has both anabolic and antiresorptive activity. New agents expected to further expand therapeutic options include denosumab, a monoclonal antibody inhibitor of the resorptive enzyme cathepsin K, which is in the final stages of Food and Drug Administration approval. Other agents in preclinical development include those targeting specific molecules of the Wnt/β-catenin pathway involved in stimulating bone formation by osteoblast cells. This review discusses the use of currently available agents as well as highlighting emerging agents expected to bring significant changes to the approach to osteoporosis therapy in the near future. PMID:27186098

  14. Management of Osteoporosis among the Elderly with Other Chronic Medical Conditions

    PubMed Central

    Curtis, Jeffrey R.; Safford, Monika M.

    2013-01-01

    Osteoporosis is a highly prevalent chronic disease in the US and worldwide. The most serious consequence of this disorder is fractures, which have a serious negative impact on quality of life and are often the trigger for accelerated deterioration, ultimately ending in death. Despite the availability of effective preventive treatments, osteoporosis is frequently underdiagnosed and/or undertreated, particularly among the elderly, who are also at greatest risk. In addition, the presence of co-morbid medical conditions may be both a barrier to osteoporosis care and a risk factor for falls; thus individuals with multiple co-morbid conditions may be a particularly high-risk group. The management of osteoporosis involves improving bone health via adequate nutrition, calcium and vitamin D supplements, and fall prevention strategies. Although these measures are important in the management of all patients, most elderly patients are likely to need additional pharmacological therapy to adequately reduce their fracture risk. Several pharmacological treatments have been shown to significantly reduce the risk of fracture, including bisphosphonates (e.g. alendronate, risedronate, ibandronate, zoledronic acid), denosumab, raloxifene, calcitonin and teriparatide. Despite recent advances in osteoporosis care, additional action is urgently needed to improve the quality of life of osteoporotic patients in general and of elderly patients in particular, since fracture outcomes are typically poorer in older than in younger patients. This article reviews the current status of osteoporosis management, emphasizing the need to improve osteoporosis care, with a particular focus on the US, by the use of quality- improvement measures and incentives, which might result in an increased awareness and improved treatment for this debilitating disease. PMID:22715862

  15. Liquid chromatography-mass spectrometry analysis of five bisphosphonates in equine urine and plasma.

    PubMed

    Wong, April S Y; Ho, Emmie N M; Wan, Terence S M; Lam, Kenneth K H; Stewart, Brian D

    2015-08-15

    Bisphosphonates are used in the management of skeletal disorder in humans and horses, with tiludronic acid being the first licensed veterinary medicine in the treatment of lameness associated with degenerative joint disease. Bisphosphonates are prohibited in horseracing according to Article 6 of the International Agreement on Breeding, Racing and Wagering (published by the International Federation of Horseracing Authorities). In order to control the use of bisphosphonates in equine sports, an effective method to detect the use of bisphosphonates is required. Bisphosphonates are difficult-to-detect drugs due to their hydrophilic properties. The complexity of equine matrices also added to their extraction difficulties. This study describes a method for the simultaneous detection of five bisphosphonates, namely alendronic acid, clodronic acid, ibandronic acid, risedronic acid and tiludronic acid, in equine urine and plasma. Bisphosphonates were first isolated from the sample matrices by solid-phase extractions, followed by methylation with trimethylsilyldiazomethane prior to liquid chromatography - tandem mass spectrometry analysis using selective reaction monitoring in the positive electrospray ionization mode. The five bisphosphonates could be detected at low ppb levels in 0.5mL equine plasma or urine with acceptable precision, fast instrumental turnaround time, and negligible matrix interferences. The method has also been applied to the excretion study of tiludronic acid in plasma and urine collected from a horse having been administered a single dose of tiludronic acid. The applicability and effectiveness of the method was demonstrated by the successful detection and confirmation of the presence of tiludronic acid in an overseas equine urine sample. To our knowledge, this is the first reported method in the successful screening and confirmation of five amino- and non-amino bisphosphonates in equine biological samples.

  16. Alendronate-conjugated amphiphilic hyperbranched polymer based on Boltorn H40 and poly(ethylene glycol) for bone-targeted drug delivery.

    PubMed

    Chen, Hongying; Li, Guolin; Chi, Huirong; Wang, Dali; Tu, Chunlai; Pan, Lijie; Zhu, Lijuan; Qiu, Feng; Guo, Fulin; Zhu, Xinyuan

    2012-09-19

    A novel type of alendronate(ALE)-conjugated amphiphilic hyperbranched copolymer based on a hydrophobic hyperbranched Boltorn H40 (H40) core with ALE targeting moiety and many hydrophilic poly(ethylene glycol) (PEG) arms was synthesized as a carrier for bone-targeted drug delivery. The star copolymer H40-star-PEG/ALE was characterized using nuclear magnetic resonance (NMR), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) analysis. Benefiting from its highly branched structure, H40-star-PEG/ALE could form micelles in aqueous solution, which was confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. The cytotoxicity and hemolysis of the H40-star-PEG/ALE micelles were evaluated via methylthiazoletetrazolium (MTT) assay against NIH/3T3 normal cells and red blood cell (RBC) lysis assay, respectively. As a model anticancer drug, doxorubicin (DOX) was encapsulated into the H40-star-PEG/ALE micelles. The anticancer activity of DOX-loaded micelles was evaluated by MTT assay against an HN-6 human head and neck carcinoma cell line. The strong affinity of H40-star-PEG/ALE micelles to bone was confirmed by the hydroxyapatite (HA) binding assay. These results indicate that the H40-star-PEG/ALE micelles are highly promising bone-targeted drug carriers for skeletal metastases. PMID:22946621

  17. Differences in In Vitro Disintegration Time among Canadian Brand and Generic Bisphosphonates

    PubMed Central

    Olszynski, Wojciech P.; Adachi, Jonathan D.; Davison, K. Shawn

    2014-01-01

    The objective of this study was to compare the disintegration times among Canadian-marketed brand (alendronate 70 mg, alendronate 70 mg plus vitamin D 5600 IU, and risedronate 35 mg) and generic (Novo-alendronate 70 mg and Apo-alendronate 70 mg) once-weekly dosed bisphosphonates. All disintegration tests were performed with a Vanderkamp Disintegration Tester. Disintegration was deemed to have occurred when no residue of the tablet, except fragments of insoluble coating or capsule shell, was visible. Eighteen to 20 samples were tested for each bisphosphonate group. The mean (±standard deviation) disintegration times were significantly (P < 0.05) faster for Apo-alendronate (26 ± 5.6 seconds) and Novo-alendronate (13 ± 1.1 seconds) as compared to brand alendronate (147 ± 50.5 seconds), brand alendronate plus vitamin D (378 ± 60.5 seconds), or brand risedronate (101 ± 20.6 seconds). The significantly faster disintegration of the generic tablets as compared to the brand bisphosphonates may have concerning safety and effectiveness implications for patients administering these therapies. PMID:25349772

  18. Prostaglandin E2 (PGE2) and risedronate was superior to PGE2 alone in maintaining newly added bone in the cortical bone site after withdrawal in older intact rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Lin, B. Y.; Jee, W. S.; Lin, C. H.; Chen, Y. Y.; Ke, H. Z.; Li, X. J.

    1997-01-01

    The objects of this study were (1) to determine the effects of risedronate (Ris) and prostaglandin E2 (PGE2) alone and in combination, on tibial diaphyses of older intact female rats; and (2) to observe the fate of any extra bone if formed after withdrawal of the treatment. Nine-month-old female Sprague-Dawley rats were treated with 6 mg of PGE2/kg/day, 1 or 5 micrograms of Ris/kg twice a week, or 6 mg of PGE2/kg/day plus 1 or 5 micrograms of Ris/kg twice a week for the first 60 days and followed by vehicle injections for another 60 days. Cross-sections of double fluorescent labeled, undecalcified tibial diaphyses proximal to the tibiofibular junction were processed for histomorphometry. We found that: (1) neither the 1 microgram nor the 5 micrograms of Ris treatment in the 60-day on/60-day off group showed any histomorphometric differences from age-related controls; (2) while the 60 days of PGE2 treatment added extra cortical bone (6%) on the tibial shaft (due to stimulation of periosteal, endocortical, and marrow trabecular bone formation), the new endocortical and most of the new marrow trabecular bone were lost when treatment was withdrawn; however, the new periosteal bone remained; (3) PGE2 with Ris added the same amount of new bone to tibial diaphysis as did PGE2 alone and upon withdrawal, new marrow trabecular bone was lost but new periosteal and endocortical bones were preserved in PGE2 + 1 microgram of Ris on/off group. In contrast, all the new bone was maintained in the PGE2 + 5 micrograms of Ris on/off group; (4) PGE2 + Ris cotreatment failed to block the increase in cortical bone porosity induced by PGE2; and (5) in the PGE2 alone and PGE2 + 1 microgram of Ris on/off groups bone turnover was higher than that in the PGE2 + 5 micrograms of Ris on/off group. These results indicate that on/off treatment with PGE2 and Ris is superior to PGE2 alone in that it forms the same amount of new bone during treatment, but preserves more cortical bone during

  19. A novel automated hydrophilic interaction liquid chromatography method using diode-array detector/electrospray ionization tandem mass spectrometry for analysis of sodium risedronate and related degradation products in pharmaceuticals.

    PubMed

    Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita

    2014-10-24

    A simple, sensitive and fast hydrophilic interaction liquid chromatography (HILIC) method using ultraviolet diode-array detector (UV-DAD)/electrospray ionization tandem mass spectrometry was developed for the automated high performance liquid chromatography (HPLC) determination of sodium risedronate (SR) and its degradation products in new pharmaceuticals. The chromatographic separations were performed on Ascentis Express HILIC 2.7μm (150mm×2.1mm, i.d.) stainless steel column (fused core). The mobile phase consisted of formate buffer solution (pH 3.4; 0.03M)/acetonitrile 42:58 and 45:55 (v/v) for granules for oral solution and effervescent tablet analysis, respectively, at a flow-rate of 0.2mL/min, setting the wavelength at 262nm. Stability characteristics of SR were evaluated by performing stress test studies. The main degradation product formed under oxidation conditions corresponding to sodium hydrogen (1-hydroxy-2-(1-oxidopyridin-3-yl)-1-phosphonoethyl)phosphonate was characterized by high performance liquid chromatography-electrospray ionization-mass tandem mass spectrometry (HPLC-ESI-MS/MS). The validation parameters such as linearity, sensitivity, accuracy, precision and selectivity were found to be highly satisfactory. Linear responses were observed in standard and in fortified placebo solutions. Intra-day precision (relative standard deviation, RSD) was ≤1.1% for peak area and ≤0.2% for retention times (tR) without significant differences between intra- and inter-day data. Recovery studies showed good results for all the examined compounds (from 98.7 to 101.0%) with RSD ranging from 0.6 to 0.7%. The limits of detection (LOD) and quantitation (LOQ) were 1 and 3ng/mL, respectively. The high stability of standard and sample solutions at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed stability indicating

  20. Pharmacodynamic responses to combined treatment regimens with the calcium sensing receptor antagonist JTT-305/MK-5442 and alendronate in osteopenic ovariectomized rats.

    PubMed

    Fisher, John E; Scott, Kevin; Wei, Nan; Zhao, Jing Z; Cusick, Tara; Tijerina, Monica; Karanam, Bindhu; Duong, Le; Glantschnig, Helmut

    2012-06-01

    Parathyroid hormone (PTH) is the anabolic standard of care for patients with severe osteoporosis. The CaSR allosteric antagonist JTT-305/MK-5442, a PTH secretagogue, could offer an oral osteoanabolic treatment alternative for postmenopausal women with osteoporosis. Here we disclose the pharmacokinetic profile of JTT-305/MK-5442 and its activity on bone remodeling in ovariectomized (OVX) osteopenic rats. Daily treatments (0.3 to 2.4 mg/kg/d) for 12 weeks resulted in plateaued BMD increases (3.8 to 5.3%) at axial and appendicular skeletal sites. However, treatment effects were not statistically significant, in agreement with effects seen in animals treated with low dose PTH (1-84) (5 μg/kg/d). In a consecutive study we tested JTT-305/MK-5442 effects on bone formation in OVX-rats challenged with combined alendronate (ALN) treatment paradigms. At 7 month, JTT-305/MK-5442 treatment significantly increased BMD in lumbar vertebrae (LV), while no change in BMD was observed in femora or tibiae. ALN add-on co-treatment produced incremental increases in LV, distal femur (DF) and proximal tibia (PT) BMD over the respective ALN control. Histological analyses confirmed modest increases in mineralized surface (MS/BS) and bone formation rate (30.5±1.9%) on trabecular surfaces by JTT-305/MK-5442. As expected, ALN administration profoundly reduced bone formation, however, JTT-305/MK-5442 significantly stimulated MS/BS and BFR in ALN treated groups. In summary, JTT-305/MK-5442 acts as a PTH secretagogue in the osteopenic OVX-rat, eliciting consistent, though modest effects on remediation of BMD due to estrogen depletion. Induction of bone formation by JTT-305/MK-5442 at trabecular bone surfaces appears to be resilient to ALN-mediated suppression of bone formation. This study provides for the first time, a mechanistic evaluation of combination treatment of a PTH secretagogue with ALN.

  1. Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis

    PubMed Central

    2015-01-01

    The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca2+ ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca2+ release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague–Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation. PMID:24826838

  2. Persistence of 1,25D-induced hypercalciuria in alendronate-treated genetic hypercalciuric stone-forming rats fed a low-calcium diet

    PubMed Central

    Asplin, John R.; Culbertson, Christopher D.; Granja, Ignacio; Krieger, Nancy S.; Bushinsky, David A.

    2014-01-01

    Genetic hypercalciuric stone-forming (GHS) rats demonstrate increased intestinal Ca absorption, increased bone resorption, and reduced renal tubular Ca reabsorption leading to hypercalciuria and all form kidney stones. GHS have increased vitamin D receptors (VDR) at these sites of Ca transport. Injection of 1,25(OH)2D3 (1,25D) leads to a greater increase in urine (u)Ca in GHS than in control Sprague-Dawley (SD), possibly due to the additional VDR. In GHS the increased uCa persists on a low-Ca diet (LCD) suggesting enhanced bone resorption. We tested the hypothesis that LCD, coupled to inhibition of bone resorption by alendronate (alen), would eliminate the enhanced 1,25D-induced hypercalciuria in GHS. SD and GHS were fed LCD and half were injected daily with 1,25D. After 8 days all were also given alen until euthanasia at day 16. At 8 days, 1,25D increased uCa in SD and to a greater extent in GHS. At 16 days, alen eliminated the 1,25D-induced increase in uCa in SD. However, in GHS alen decreased, but did not eliminate, the 1,25D-induced hypercalciuria, suggesting maximal alen cannot completely prevent the 1,25D-induced bone resorption in GHS, perhaps due to increased VDR. There was no consistent effect on mRNA expression of renal transcellular or paracellular Ca transporters. Urine CaP and CaOx supersaturation (SS) increased with 1,25D alone in both SD and GHS. Alen eliminated the increase in CaP SS in SD but not in GHS. If these results are confirmed in humans with IH, the use of bisphosphonates, such as alen, may not prevent the decreased bone density observed in these patients. PMID:24573387

  3. Anabolic and antiresorptive therapy for osteoporosis: combination and sequential approaches.

    PubMed

    Cosman, Felicia

    2014-12-01

    In the recent Bone Key Reports review, it was noted that combinations of anabolic and antiresorptive agents have potential to improve bone density and bone strength more than either agent as monotherapy. Small clinical trials have been performed evaluating combinations of PTH1-34 (TPTD) or PTH1-84 (PTH) with a variety of antiresorptives including hormone/estrogen therapy, raloxifene, alendronate, risedronate, ibandronate, zoledronic acid, and denosumab. Most of the studies evaluate dual-energy X-ray absorptiometry outcomes, and a few trials report volumetric mineral density (BMD) by quantitative computed tomography, followed by finite element modeling to calculate bone strength. None of the studies has been powered to assess differences in fracture incidence between combination therapy and monotherapy. BMD outcomes vary based on the timing of introduction of the anabolic agent (before, during, or after antiresorptive treatment), as well as the specific anabolic and antiresorptive used. Furthermore, effects of combination therapies are site-dependent. The most consistent effect of combining antiresorptive agents with PTH or TPTD is a superior hip BMD outcome compared with TPTD/PTH alone. This is most evident when TPTD/PTH is combined with a bisphosphonate or denosumab. In contrast to findings in the hip, in the majority of studies, there is no benefit to spine BMD with combination therapy vs monotherapy. The 2 exceptions to this are when TPTD is combined with denosumab and when TPTD is given as monotherapy first for 9 months, followed by the addition of alendronate (with continuation administration of TPTD). Based on what we now know, in patients previously treated with bisphosphonates who suffer hip fractures or who have very low or declining hip BMD, strong consideration should be given to starting TPTD and continuing a potent antiresorptive agent (possibly switching to zoledronic acid or denosumab) to improve hip BMD and strength quickly. Furthermore, in

  4. [Medical treatment of osteoporosis in men].

    PubMed

    Eiken, Pia A; Vestergaard, Peter

    2015-08-31

    One in five men over the age of 50 years will suffer an osteoporotic fracture during their lifetime, and men who sustain fractures have an increased mortality risk compared to women. Three bisphosphonates (alendronate, risedronate and zolendronic acid), denosumab, strontium ranelate and teriparatide are currently approved in Denmark for the treatment of osteoporosis in men. This review summarizes the available therapeutic options. PMID:26324291

  5. Effect of Alendronate with β – TCP Bone Substitute in Surgical Therapy of Periodontal Intra-Osseous Defects: A Randomized Controlled Clinical Trial

    PubMed Central

    Ravi, Vishali; Subbaraya, Dwijendra Kocherlakota; Prasanna, Jammula Surya; Panthula, Veerendranath Reddy; Koduganti, Rekha Rani

    2016-01-01

    Introduction Alendronate (ALN), an aminobisphosphonate, inhibits osteoclastic bone resorption and also stimulates osteogenesis. Beta-Tricalcium Phosphate (β-TCP) is an osteoconductive graft material which provides a scaffold for bone formation and also a widely used drug delivery vehicle for growth factors and antibiotics. Drug delivery vehicles, like β-TCP, improve the potency of the drugs by specific local site delivery of the drug, optimal release characteristics and easy handling. Aim The aim of the this study was to evaluate the bone formation potential of 400μg ALN delivered in β-TCP in the treatment of periodontal intra-osseous defects. Materials and Methods Thirty patients with periodontal defects were randomly assigned to 400μg ALN + β-TCP + Saline (test) group and β-TCP + Saline (active-control) group. Clinical parameters like Clinical Attachment Level (CAL) gain, Probing Depth (PD) reduction, post-operative Gingival Recession (GR) were assessed from the baseline, 3 months and 6 months recordings. Radiographic parameters like Linear Bone Growth (LBG), Percentage Bone Fill (%BF), and change in alveolar crest height (ACH) were assessed from baseline and 6 months radiographs. Results Mean measurements in the ALN test group for CAL gain (3.4 ± 0.74 mm), PD reduction (4.33 ± 0.82 mm), LBG (2.88 ± 0.88 mm), and %BF (51.98 ± 15.84%) were significantly greater with a p-value <0.05 compared to the mean measurements of CAL gain (2.20 ± 0.86 mm), PD reduction (3.20 ± 1.15 mm), LBG (1.70 ± 0.39 mm), and %BF (30.35 ± 6.88%) of the control group. There was mild alveolar crestal apposition (0.32 ± 0.68 mm) in the ALN test group and mild alveolar crestal resorption (-0.24 ± 0.40 mm) in the control group. Conclusion 400μg ALN combined with β-TCP bone graft material was effective in improving soft tissue parameters, inhibiting alveolar crestal resorption and enhancing bone formation, compared to β-TCP alone. PMID:27656552

  6. Difference in Bone Mineral Density Change at the Lateral Femoral Cortices according to Administration of Different Bisphosphonate Agents

    PubMed Central

    Kim, Sungjun; Bang, Hyun Hee; Yoo, Hanna; Lim, Hyunsun; Jung, Woo Seok

    2016-01-01

    Background To retrospectively assess whether the response of subtrochanteric lateral cortex (STLC) is different according to the bisphosphonate agents in terms of bone mineral density (BMD) change. Methods A total of 149 subjects, who had 2- to 4-year interval follow-up of BMD using dual energy X-ray absorptiometry (DXA), were included in this retrospective study divided into following 3 groups: control group (no consumption of any anti-osteoporotic drugs, n=38), alendronate group (naïve alendronate users, n=48), risedronate group (naïve risedronate users, n=63). BMD was measured at the STLC and subtrochanteric medial cortex (STMC) in each patient by drawing rectangular ROIs at the bone cortices. The percent change of BMD at the STLC were compared between the aforementioned 3 groups by using analysis of covariance model to control five independent variables of age, body mass index, percent change of STMC, hip axis length, time interval between DXA examinations. Results The least square mean values±standard deviation of the percent change of BMD in the control, alendronate, and risedronate groups were 1.46±1.50, 2.23±1.26, and 6.96±1.11, respectively. The risedronate group showed significantly higher change of BMD percentage compared with the control (adjusted P=0.012) or alendronate (adjusted P=0.016) groups. Conclusions The percent change of BMD at the STLC in the risedronate user group was greater than the alendronate and control groups. The implication of these changes needs to be further verified. PMID:27294080

  7. Treatment of primary osteoporosis in men.

    PubMed

    Giusti, Andrea; Bianchi, Gerolamo

    2015-01-01

    With the aging of the population worldwide, osteoporosis and osteoporotic fractures are becoming a serious health care issue in the Western world. Although less frequent than in women, osteoporosis in men is a relatively common problem. Hip and vertebral fractures are particularly relevant, being associated with significant mortality and disability. Since bone loss and fragility fractures in men have been recognized as serious medical conditions, several randomized controlled trials (RCTs) have been undertaken in males with osteoporosis to investigate the anti-fracture efficacy of the pharmacological agents commonly used to treat postmenopausal osteoporosis. Overall, treatments for osteoporosis in men are less defined than in women, mainly due to the fact that there are fewer RCTs performed in male populations, to the relatively smaller sample sizes, and to the lack of long-term extension studies. However, the key question is whether men are expected to respond differently to osteoporosis therapies than women. The pharmacological properties of bisphosphonates, teriparatide, denosumab, and strontium ranelate make such differentiation unlikely, and available clinical data support their efficacy in men with primary osteoporosis as well as in women. In a series of well-designed RCTs, alendronate, risedronate, zoledronic acid, and teriparatide were demonstrated to reduce the risk of new vertebral fractures in men presenting with primary osteoporosis (including osteoporosis associated with low testosterone levels) and to improve the bone mineral density (BMD). In preliminary studies, ibandronate, denosumab, and strontium ranelate also showed their beneficial effects on surrogate outcomes (BMD and markers of bone turnover) in men with osteoporosis. Although direct evidence about their non-vertebral anti-fracture efficacy are lacking, the effects of bisphosphonates, denosumab, teriparatide, and strontium ranelate on surrogate outcomes (BMD and markers of bone turnover

  8. Treatment of primary osteoporosis in men.

    PubMed

    Giusti, Andrea; Bianchi, Gerolamo

    2015-01-01

    With the aging of the population worldwide, osteoporosis and osteoporotic fractures are becoming a serious health care issue in the Western world. Although less frequent than in women, osteoporosis in men is a relatively common problem. Hip and vertebral fractures are particularly relevant, being associated with significant mortality and disability. Since bone loss and fragility fractures in men have been recognized as serious medical conditions, several randomized controlled trials (RCTs) have been undertaken in males with osteoporosis to investigate the anti-fracture efficacy of the pharmacological agents commonly used to treat postmenopausal osteoporosis. Overall, treatments for osteoporosis in men are less defined than in women, mainly due to the fact that there are fewer RCTs performed in male populations, to the relatively smaller sample sizes, and to the lack of long-term extension studies. However, the key question is whether men are expected to respond differently to osteoporosis therapies than women. The pharmacological properties of bisphosphonates, teriparatide, denosumab, and strontium ranelate make such differentiation unlikely, and available clinical data support their efficacy in men with primary osteoporosis as well as in women. In a series of well-designed RCTs, alendronate, risedronate, zoledronic acid, and teriparatide were demonstrated to reduce the risk of new vertebral fractures in men presenting with primary osteoporosis (including osteoporosis associated with low testosterone levels) and to improve the bone mineral density (BMD). In preliminary studies, ibandronate, denosumab, and strontium ranelate also showed their beneficial effects on surrogate outcomes (BMD and markers of bone turnover) in men with osteoporosis. Although direct evidence about their non-vertebral anti-fracture efficacy are lacking, the effects of bisphosphonates, denosumab, teriparatide, and strontium ranelate on surrogate outcomes (BMD and markers of bone turnover

  9. The relationship between the chemistry and biological activity of the bisphosphonates.

    PubMed

    Ebetino, Frank H; Hogan, Anne-Marie L; Sun, Shuting; Tsoumpra, Maria K; Duan, Xuchen; Triffitt, James T; Kwaasi, Aaron A; Dunford, James E; Barnett, Bobby L; Oppermann, Udo; Lundy, Mark W; Boyde, Alan; Kashemirov, Boris A; McKenna, Charles E; Russell, R Graham G

    2011-07-01

    The ability of bisphosphonates ((HO)(2)P(O)CR(1)R(2)P(O)(OH)(2)) to inhibit bone resorption has been known since the 1960s, but it is only recently that a detailed molecular understanding of the relationship between chemical structures and biological activity has begun to emerge. The early development of chemistry in this area was largely empirical and based on modifying R(2) groups in a variety of ways. Apart from the general ability of bisphosphonates to chelate Ca(2+) and thus target the calcium phosphate mineral component of bone, attempts to refine clear structure-activity relationships had led to ambiguous or seemingly contradictory results. However, there was increasing evidence for cellular effects, and eventually the earliest bisphosphonate drugs, such as clodronate (R(1)=R(2)=Cl) and etidronate (R(1)=OH, R(2)=CH(3)), were shown to exert intracellular actions via the formation in vivo of drug derivatives of ATP. The observation that pamidronate, a bisphosphonate with R(1)=OH and R(2)=CH(2)CH(2)NH(2), exhibited higher potency than previously known bisphosphonate drugs represented the first step towards the later recognition of the critical importance of having nitrogen in the R(2) side chain. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates took place particularly in the 1980s, but still with an incomplete understanding of their structure-activity relationships. A major advance was the discovery that the anti-resorptive effects of the nitrogen-containing bisphosphonates (including alendronate, risedronate, ibandronate, and zoledronate) on osteoclasts appear to result from their potency as inhibitors of the enzyme farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the mevalonate pathway. FPPS generates isoprenoid lipids utilized in sterol synthesis and for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Effects on other cellular targets

  10. How long should patients take medications for postmenopausal osteoporosis?

    PubMed

    Briot, Karine; Trémollières, Florence; Thomas, Thierry; Roux, Christian

    2007-01-01

    Several medications have proved effective in reducing the fracture risk in postmenopausal women with osteoporosis. The optimal duration of use of these medications remains to be established, however. Gains in bone mineral density (BMD) persisted throughout 10 years of treatment with alendronate or 7 years with risedronate. However, proof of long-term protection against fractures was obtained only for shorter treatment periods, 4 years with alendronate and 5 years with risedronate. The persistence of treatment effects after drug discontinuation varies across medications, and further studies are needed before this point can be incorporated into treatment decisions. With raloxifene, the BMD effect observed after 3 and 4 years persisted when the drug was given for 8 years, and the fracture risk reduction was similar after 4 years and after 3 years. The long-term safety profile also was similar, with a significant decrease in the incidence of invasive estrogen-receptor-positive breast cancer and a persistent increase in the risk of deep vein thrombosis. However, a sharp drop in BMD occurred upon raloxifene discontinuation. Thus, 4 years may be appropriate for anti-resorptive drug therapy. However, the optimal treatment duration should be determined on a case-by-case basis according to the results of regular fracture-risk evaluations.

  11. Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro.

    PubMed

    Moreau, M F; Guillet, C; Massin, P; Chevalier, S; Gascan, H; Baslé, M F; Chappard, D

    2007-03-01

    Bisphosphonates (BPs) inhibits bone resorption by reducing osteoclastic activity; they induce osteoclast apoptosis. Pathophysiology of prostheses loosening is complex and implies an inflammatory reaction secondary to the phagocytosis of wear debris by macrophages with a secondary increased bone resorption by osteoclasts. BPs inhibit proliferation and cause cell death in macrophages by induction of apoptosis. We have used mouse macrophage-like J774.1 cells to evaluate the effects of five BPs. J774A.1 cells were cultured in a standard culture medium for 2-days. BPs (alendronate, pamidronate, etidronate, risedronate, zoledronic acid) were added in the medium at concentration of 10(-6) to 10(-4)M during 3 days. Cells were studied by fluorescence microscopy after staining with the fluorescent dye Hoescht H33342 and the percentage of apoptotic cells was determined on 300 nuclei. Cells were analyzed by flow cytofluorometry after staining with annexin V-FITC (for counting apoptotic cells) and propidium iodide (for necrotic/late-apoptotic cells) on 2000 cells. Etidronate did not cause significant apoptosis or necrosis, at any concentration. Alendronate and pamidronate caused apoptosis and death only at very high concentration [10(-4)M]. On the contrary, apoptotic and necrotic cells were evidenced with risedronate or zoledronic acid at lower concentrations. These effects were dose-dependant and occurred when concentration reached [10(-5)M]. The number of apoptotic cells was higher with zoledronic acid and then with risedronate. Cytofluorometry appeared superior to cytologic analysis in the investigation of macrophage apoptosis, since necrotic cells loose contact with the glass slides and are not identifiable in cytological counts. Some amino-BPs appear to induce apoptosis in macrophages. PMID:17157266

  12. Pathophysiology and medical treatment of pain in fibrous dysplasia of bone.

    PubMed

    Chapurlat, Roland D; Gensburger, Deborah; Jimenez-Andrade, Juan M; Ghilardi, Joseph R; Kelly, Marilyn; Mantyh, Patrick

    2012-05-24

    One of the most common complications of fibrous dysplasia of bone (FD) is bone pain. Usual pain killers are often of inadequate efficacy to control this bone pain. The mechanism of bone pain in FD remains uncertain, but by analogy with bone tumors one may consider that ectopic sprouting and formation of neuroma-like structures by sensory and sympathetic nerve fibers also occur in the dysplastic skeleton. Bone pain has been reported in up to 81% of adults and 49% of children. It affects predominantly the lower limbs and the spine. The degree of pain is highly variable and adults reports more pain than children. Bisphosphonates have been shown to reduce bone pain in uncontrolled studies. Their influence on bone strength remains unknown. In a randomized trial testing alendronate, bone pain was not significantly improved. Another trial assessing the effect of risedronate is ongoing. Possible future therapies include tocilizumab, denosumab and drugs targeting nerve growth factor and its receptor TrkA.

  13. Advances in osteoporosis therapy. 2003 update of practical guidelines.

    PubMed Central

    Khan, Aliya

    2003-01-01

    OBJECTIVE: To review evidence for current therapies for postmenopausal osteoporosis and to establish practical guidelines for management of osteoporosis by family physicians. QUALITY OF EVIDENCE: MEDLINE was searched from January 1990 to January 2003. Articles retrieved were graded by level of evidence (I to III). Recommendations for diagnosis and therapy were based on evidence from randomized controlled trials and meta-analyses. MAIN MESSAGE: Osteoporosis is treatable. Early diagnosis and intervention is recommended. After excluding secondary causes of osteoporosis, physicians should advise patients to take appropriate calcium and vitamin D supplementation. Those with osteopenia at risk of fractures and those with established osteoporosis need additional therapy. CONCLUSION: Approved pharmacologic therapies include alendronate, risedronate, raloxifene, calcitonin, cyclical etidronate, and hormone replacement therapy. Family physicians can help with early diagnosis and intervention and should discuss lifestyle modification with patients. PMID:12729240

  14. Medical treatment of vertebral osteoporosis.

    PubMed

    Lippuner, K

    2003-10-01

    Although osteoporosis is a systemic disease, vertebral fractures due to spinal bone loss are a frequent, sometimes early and often neglected complication of the disease, generally associated with considerable disability and pain. As osteoporotic vertebral fractures are an important predictor of future fracture risk, including at the hip, medical management is targeted at reducing fracture risk. A literature search for randomized, double-blind, prospective, controlled clinical studies addressing medical treatment possibilities of vertebral fractures in postmenopausal Caucasian women was performed on the leading medical databases. For each publication, the number of patients with at least one new vertebral fracture and the number of randomized patients by treatment arm was retrieved. The relative risk (RR) and the number needed to treat (NNT, i.e. the number of patients to be treated to avoid one radiological vertebral fracture over the duration of the study), together with the respective 95% confidence intervals (95%CI) were calculated for each study. Treatment of steroid-induced osteoporosis and treatment of osteoporosis in men were reviewed separately, based on the low number of publications available. Forty-five publications matched with the search criteria, allowing for analysis of 15 different substances tested regarding their anti-fracture efficacy at the vertebral level. Bisphosphonates, mainly alendronate and risedronate, were reported to have consistently reduced the risk of a vertebral fracture over up to 50 months of treatment in four (alendronate) and two (risedronate) publications. Raloxifene reduced vertebral fracture risk in one study over 36 months, which was confirmed by 48 months' follow-up data. Parathormone (PTH) showed a drastic reduction in vertebral fracture risk in early studies, while calcitonin may also be a treatment option to reduce fracture risk. For other substances published data are conflicting (calcitriol, fluoride) or insufficient

  15. Treatment of osteoporosis in women intolerant of oral bisphosphonates.

    PubMed

    Aspray, Terry J; Francis, Roger M

    2012-01-01

    In the past 15 years, oral bisphosphonate therapy has become the mainstay of pharmacological management in patients with osteoporosis. In the UK, alendronate is the drug of first choice, based on clinical efficacy data and cost. However, some patients are unable to take oral bisphosphonates for a number of reasons. In this article, we review the practical management of such cases, including strategies for monitoring adherence and switching to alternative oral agents (e.g. risedronate, strontium ranelate, raloxifene). In some cases, alternative parenteral agents may be considered, including intravenous bisphosphonates, parathyroid hormone therapies and denosumab. Specific concerns about safe prescribing are considered, when prescribing potent anti-resorptive medications, particularly relating to renal function and vitamin D deficiency. Finally, consideration is given to clinical risk factors, including aspects of lifestyle which may be modified to decrease fracture risk.

  16. [Prevention and treatment of glucocorticoid-induced osteoporosis in International and Italian scenarios].

    PubMed

    Di Munno, O; Delle Sedie, A

    2011-01-01

    Osteoporosis (OP) and increased risk of fracture (Fx) associated with chronic glucocorticoid treatment pushed panels of experts and scientific societies to produce recommendations for both prevention and treatment of glucocorticoid-induced OP (GIO). Recently the American College of Rheumatology developed and/or endorsed their updated guidelines and recommendations for the prevention and treatment of GIO. In these recommendations the use of FRAX tool, for the 10-year probability of a major osteoporotic Fx, was integrated with other clinical risk factors to define low-, medium-, and high-risk patients. Updated approaches are delineated for post-menopausal women and men >50 years, pre-menopausal women not of childbearing potential, men <50 years and pre-menopausal women of childbearing potential with a history of a fragility Fx. Alendronate, risedronate, and zoledronic acid are the first-line choice in the majority of patients, with teriparatide as a second-line option. Concerning Italian scenarios, alendronate and risedronate are therapeutic agents currently dispensed and fully paid by the Public Health Service for the prevention and treatment of GIO in all patients >50 years, receiving >5 mg/day prednisone equivalent for >3 months; more recently teriparatide has also been included, only for those patients presenting ≥1 prevalent fragility Fx and receiving >5 mg/day prednisone equivalent for >12 months. Also zoledronic acid has been approved by Italian Agency of the Drug (AIFA, 30/08/10) for "... post-menopausal women and men chronically treated with GC ad high risk of Fx", but the drug is dispensed exclusively at the hospital.

  17. Oral bisphosphonate-related osteonecrosis of the jaws: Clinical characteristics of a series of 20 cases in Spain

    PubMed Central

    López-Cedrún, José L.; Fernández-Sanromán, Jacinto; García-García, Abel; Fernández-Feijoo, Javier; Diz-Dios, Pedro

    2012-01-01

    Objective: The objective of this study was to define the clinical characteristics of osteonecrosis of the jaws (ONJ) induced by oral bisphosphonates in a series of patients from a circumscribed area in northwest Spain. Study Design:A retrospective multicentre study was undertaken in 3 hospitals in an area with a radius less than 100 km in the Autonomous Community of Galicia (Spain). The medical records were reviewed and an oral examination was performed of patients diagnosed with oral bisphosphonate-related ONJ in the previous 3 years. Results: We detected 20 cases of ONJ (24 lesions) related to oral bisphosphonates (alendronate [16 patients] and ibandronate [4 patients]), which were mainly administered as treatment for osteoporosis (17 patients). The mean interval between initiation of treatment and confirmation of a diagnosis of ONJ was 66±43 months (range, 6-132 months); in 7 patients (35%) the interval was less than 36 months. The past history revealed hypertension in 13 cases (65%) and diabetes in 4 (20%); 7 patients (35%) were on corticosteroid treatment. Oral surgery had been previously performed in 13 patients (65%) and the remaining 7 patients (35%) had removable dental prostheses. The lesions most frequently affected the posterior mandible (62.5%). The majority of the lesions (75%) were classified as stage 2, although lesions were identified in all established clinical stages (including 2 stage 0 lesions). Conclusion: In conclusion, in the present series, ONJ induced by oral bisphosphonates typically develops in women around 70 years of age, taking alendronate, that underwent oral surgery. Most lesions are located in the posterior mandible and are classified as stage 2 at diagnosis. Some patients presented no known risk factors, suggesting that there may be risk factors still to be identified. There are well-defined patterns of clinical presentation that can facilitate early diagnosis of ONJ. Key words:Oral bisphosphonates, osteonecrosis of the jaws

  18. Bisphosphonates: the first 40 years.

    PubMed

    Russell, R Graham G

    2011-07-01

    classified into at least two groups with different molecular modes of action. The simpler non-nitrogen containing bisphosphonates (such as etidronate and clodronate) can be metabolically incorporated into non-hydrolysable analogues of ATP, which interfere with ATP-dependent intracellular pathways. The more potent, nitrogen-containing bisphosphonates (including pamidronate, alendronate, risedronate, ibandronate and zoledronate) are not metabolised in this way but inhibit key enzymes of the mevalonate/cholesterol biosynthetic pathway. The major enzyme target for bisphosphonates is farnesyl pyrophosphate synthase (FPPS), and the crystal structure elucidated for this enzyme reveals how BPs bind to and inhibit at the active site via their critical N atoms. Inhibition of FPPS prevents the biosynthesis of isoprenoid compounds (notably farnesol and geranylgeraniol) that are required for the post-translational prenylation of small GTP-binding proteins (which are also GTPases) such as rab, rho and rac, which are essential for intracellular signalling events within osteoclasts. The accumulation of the upstream metabolite, isopentenyl pyrophosphate (IPP), as a result of inhibition of FPPS may be responsible for immunomodulatory effects on gamma delta (γδ) T cells, and can also lead to production of another ATP metabolite called ApppI, which has intracellular actions. Effects on other cellular targets, such as osteocytes, may also be important. Over the years many hundreds of BPs have been made, and more than a dozen have been studied in man. As reviewed elsewhere in this issue, bisphosphonates are established as the treatments of choice for various diseases of excessive bone resorption, including Paget's disease of bone, the skeletal complications of malignancy, and osteoporosis. Several of the leading BPs have achieved 'block-buster' status with annual sales in excess of a billion dollars. As a class, BPs share properties in common. However, as with other classes of drugs, there are

  19. Bisphosphonate drug holidays--when, why and for how long?

    PubMed

    Anagnostis, P; Stevenson, J C

    2015-01-01

    Bisphosphonates are first-line agents used for the treatment of osteoporosis in postmenopausal women and men. Although their efficacy in the reduction of vertebral, non-vertebral and hip fracture risk has been established, some concerns have arisen associated with their long-term use. These include osteonecrosis of the jaw and atypical (subtrochanteric and femoral shaft) fractures. The latter may result from accumulation of fatigue damage due to oversuppression of bone turnover in susceptible individuals. In this respect, the concept of a 'drug holiday' after completion of a reasonable period of bisphosphonate therapy has emerged. Theoretically, this allows bone turnover to increase and permits normal skeletal maintenance and repair, although there is as yet no good evidence that bisphosphonate discontinuation will reduce the risk of these adverse events. Current data derive from studies in postmenopausal women and support a beneficial effect of alendronate or zolendronate continuation in high-risk groups, such as those with T-score < -2.5 or prevalent vertebral fractures after completion of 5 or 3 years, respectively. The optimal length of a 'drug holiday' has not been established but existing data suggest up to 5 years with alendronate, 3 years with zoledronate and 1 year with risedronate. A decision to recommence therapy should then probably be based on regular reassessment of bone mineral density and fracture risk.

  20. Enthalpy versus entropy-driven binding of bisphosphonates to farnesyl diphosphate synthase.

    PubMed

    Yin, Fenglin; Cao, Rong; Goddard, Amanda; Zhang, Yonghui; Oldfield, Eric

    2006-03-22

    We report the results of an ITC (isothermal titration calorimetry) investigation of the binding of six bisphosphonates to the enzyme farnesyl diphosphate synthase (FPPS; EC 2.5.1.10) from Trypanosoma brucei. The bisphosphonates investigated were zoledronate, risedronate, ibandronate, pamidronate, 2-phenyl-1-hydroxyethane-1,1-bisphosphonate, and 1-(2,2-bisphosphonoethyl)-3-iodo pyridinium. At pH = 7.4, both risedronate and the phenylethane bisphosphonate bind in an enthalpy-driven manner (DeltaH approximately -9 to 10 kcal mol-1), but the other four bisphosphonates bind in an entropy-driven manner (DeltaS varying from 31.2 to 55.1 cal K-1 mol-1). However, at pH = 8.5, zoledronate binding switches from entropy to enthalpy-driven. The DeltaG results are highly correlated with FPPS inhibition results obtained using a radiochemical assay (R2 = 0.85, N = 11, P < 0.001). The DeltaH and DeltaS results are interpreted in terms of a model in which bisphosphonates with charged side chains have positive DeltaH values, due to the enthalpic cost of desolvation (due to strong ion-dipole interactions) and, likewise, a positive DeltaS, due to an increase in water entropy (both ligand and protein associated) on ligand binding to FPPS: the hydrophobic effect. For the neutral side chains (risedronate at pH 7.4, 8.5 and zoledronate at pH 8.5, as well as the phenylethane bisphosphonate), binding is overwhelmingly enthalpy-driven, with the enhanced activity of the basic side chain containing species being attributable to their becoming protonated in the active site. Given the large size of the bisphosphonate market and the potential importance of the development of these compounds for cancer immunotherapy and anti-parasitic chemotherapy, these results are of broad general interest in the context of the development of new, potent, and selective FPPS inhibitors.

  1. Technical advance: liposomal alendronate depletes monocytes and macrophages in the nonhuman primate model of human disease.

    PubMed

    Burwitz, Benjamin J; Reed, Jason S; Hammond, Katherine B; Ohme, Merete A; Planer, Shannon L; Legasse, Alfred W; Ericsen, Adam J; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B

    2014-09-01

    Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. PMID:24823811

  2. Technical Advance: Liposomal alendronate depletes monocytes and macrophages in the nonhuman primate model of human disease

    PubMed Central

    Burwitz, Benjamin J.; Reed, Jason S.; Hammond, Katherine B.; Ohme, Merete A.; Planer, Shannon L.; Legasse, Alfred W.; Ericsen, Adam J.; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B.

    2014-01-01

    Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. PMID:24823811

  3. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment

    PubMed Central

    Lee, Ming-Song; Su, Chao-Ming; Yeh, Jih-Chao; Wu, Pei-Ru; Tsai, Tien-Yao; Lou, Shyh-Liang

    2016-01-01

    Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis.

  4. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment

    PubMed Central

    Lee, Ming-Song; Su, Chao-Ming; Yeh, Jih-Chao; Wu, Pei-Ru; Tsai, Tien-Yao; Lou, Shyh-Liang

    2016-01-01

    Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis. PMID:27695319

  5. [Severe osteoporosis with vertebral crushes in juvenile dermatomyositis. Effect of oral alendronate therapy].

    PubMed

    Tau, Cristina; Russo, Ricardo

    2007-01-01

    Glucocorticoids are used for the treatment of inflammatory and autoimmune diseases, cancer, and in prevention of organ rejects. A frequent secondary effect of longterm treatment with corticoids is the loss of bone mass, caused by several mechanisms: decrease in the intestinal calcium absorption, increase of the renal calcium excretion at the distal renal tubule, suppressive effect on the osteoblast and also in apoptosis of osteoclasts, inhibition in local production of IGF I (Insulin-like growth factor) and IGFBPs (binding IGF I proteins necessary for bone metabolism), and decrease on osteocalcin production. Longterm treatment with corticoids is associated with osteoporosis and vertebral fractures. To improve this condition, treatment with bisphosphonates has been proposed. We present here a clinical case of a girl with dermatomyositis and severe osteoporosis with vertebral crushes, who responded well to oral bisphophonate treatment.

  6. Effects of ibandronate sodium, a nitrogen-containing bisphosphonate, on intermediate-conductance calcium-activated potassium channels in osteoclast precursor cells (RAW 264.7).

    PubMed

    Wu, Sheng-Nan; Huang, Yan-Ming; Liao, Yu-Kai

    2015-02-01

    Ibanonate sodium (Iban), a nitrogen-containing bisphosphonate, is recognized to reduce skeletal complications through an inhibition of osteoclast-mediated bone resorption. However, how this drug interacts with ion channels in osteoclasts and creates anti-osteoclastic activity remains largely unclear. In this study, we investigated the possible effects of Iban and other related compounds on ionic currents in the osteoclast precursor RAW 264.7 cells. Iban suppressed the amplitude of whole-cell K(+) currents (I K) in a concentration-dependent manner with an IC50 value of 28.9 μM. The I K amplitude was sensitive to block by TRAM-34 and Iban-mediated inhibition of I K was reversed by further addition of DCEBIO, an activator of intermediate-conductance Ca(2+)-activated K(+) (IKCa) channels. Intracellular dialysis with Iban diminished I K amplitude and further addition of ionomycin reversed its inhibition. In 17β-estradiol-treated cells, Iban-mediated inhibition of I K remained effective. In cell-attached current recordings, Iban applied to bath did not modify single-channel conductance of IKCa channels; however, it did reduce channel activity. Iban-induced inhibition of IKCa channels was voltage-dependent. As IKCa-channel activity was suppressed by KN-93, subsequent addition of Iban did not further decrease the channel open probability. Iban could not exert any effect on inwardly rectifying K(+) current in RAW 264.7 cells. Under current-clamp recordings, Iban depolarized the membrane of RAW 264.7 cells and DCEBIO reversed Iban-induced depolarization. Iban also suppressed lipopolysaccharide-stimulated migration of RAW 264.7 cells in a concentration-dependent manner. Therefore, the inhibition by Iban of IKCa channels would be an important mechanism underlying its actions on the functional activity of osteoclasts occurring in vivo. PMID:25362532

  7. Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer.

    PubMed

    Moon, So-Hee; Lee, Seung-Jae; Park, Il-Song; Lee, Min-Ho; Soh, Yun-Jo; Bae, Tae-Sung; Kim, Hyung-Seop

    2012-11-01

    Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti-6Al-4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti-6Al-4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti-6Al-4V alloy surface in tibiae of rats. Ti-6Al-4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat-, and bisphosphonate-treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE-SEM and EDS. In vitro, the drug loading capacity of the Ti-6Al-4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate-treated Ti-6Al-4V alloy implants with nanotubular surfaces have positive effects in bone-to-implant contact.

  8. Oral bisphosphonate-associated osteonecrosis of maxillary bone: A review of 18 cases

    PubMed Central

    Mardenlli, Fabiana; Paz, Marisa

    2014-01-01

    Biphosphonate-associated maxillary bone osteonecrosis (BPMO) is a complication related to nitrogen-containing biphosphonate therapy. This adverse effect occasionally appears in patients who are administered biphosphonates through intravenous infusion for the treatment of cancer involving bone metastases. It can also present, in a lesser degree, in patients who take these drugs orally for the treatment of osteoporosis. Lately, there has been an increase in the number of cases of osteopenia and osteoporosis due to the increasing life expectancy of the world’s population. In our country, a risk group composed mainly of older women who have been diagnosed with osteopenia or osteoporosis, and submitted to the continuous action of oral biphosphonates, is emerging. In this paper we present 18 cases of BPMO associated to the use of oral biphosphonates, diagnosed and treated in the Department of Stomatology of the School or Dentistry at Universidad Nacional de Rosario, Argentina. A protocol was designed in which the following information was recorded: age and sex of the patients, the original disease which led to therapy with oral biphosphonates, the drugs used and the period in which those drugs were administered, the clinical features and location of the lesions, together with triggering factors. Key words:Maxillary osteonecrosis, mandibular osteonecrosis, oral biphosphonates, alendronate, ibandronate. PMID:25674321

  9. Proline modulates the effect of bisphosphonate on calcium levels and adenosine triphosphate production in cell lines derived from bovine Echinococcus granulosus protoscoleces.

    PubMed

    Fuchs, A G; Echeverría, C I; Pérez Rojo, F G; Prieto González, E A; Roldán, E J A

    2014-12-01

    Bisphosphonates have been proposed as pharmacological agents against parasite and cancer cell growth. The effect of these compounds on helminthic cell viability and acellular compartment morphology, however, has not yet been studied. The effects of different types of bisphosphonates, namely etidronate (EHDP), pamidronate (APD), alendronate (ABP), ibandronate (IB) and olpadronate (OPD), and their interaction with amiloride, 1,25-dihydroxycholecalciferol (D3) and proline were evaluated on a cell line derived from bovine Echinococcus granulousus protoscoleces (EGPE) that forms cystic colonies in agarose. The EGPE cell line allowed testing the effect of bisphosphonates alone and in association with other compounds that could modulate calcium apposition/deposition, and were useful in measuring the impact of these compounds on cell growth, cystic colony formation and calcium storage. Decreased cell growth and cystic colony formation were found with EHDP, IB and OPD, and increased calcium storage with EHDP only. Calcium storage in EGPE cells appeared to be sensitive to the effect of amiloride, D3 and proline. Proline decreased calcium storage and increased colony formation. Changes in calcium storage may be associated with degenerative changes of the cysts, as shown in the in vitro colony model and linked to an adenosine triphosphate (ATP) decrease. In conclusion, bisphosphonates could be suitable tempering drugs to treat cestode infections.

  10. Atraumatic bilateral femur fracture in long-term bisphosphonate use.

    PubMed

    Goddard, Maria S; Reid, Kristoff R; Johnston, James C; Khanuja, Harpal S

    2009-08-01

    Postmenopausal women with osteoporosis are commonly treated with the bisphosphonate class of medications, one of the most frequently prescribed medications in the United States. In the past 4 years, reports have been published implying that long-term bisphosphonate therapy could be linked to atraumatic femoral diaphyseal fractures. This article presents a case of a 67-year-old woman who presented with an atraumatic right femur fracture. She had a medical history notable for use of the bisphosphonate alendronate for 16 years before being switched to ibandronate for 1 year before presentation. She had sustained a similar fracture on the contralateral side 3 years previously. This case report, in addition to a review of the literature, shows that use of the bisphosphonate class of medications for an extended period of time may result in an increased susceptibility to atraumatic femoral diaphyseal fractures. Some studies have suggested that the reason may be the mechanism of action of bisphosphonates, resulting in decreased bone turnover and remodeling. Studies have not shown if the entire class of medications produce a similar result, but patients who have been treated with any bisphosphonate for an extended period of time should be considered at risk. In patients who have already sustained a femoral diaphyseal fracture, imaging of the contralateral side should be performed to identify cortical thickening as an early sign of fracture risk. Patients should also be questioned about thigh pain.

  11. Bisphosphonate-related osteonecrosis of jaw (BRONJ) in Japanese population: a case series of 13 patients at our clinic.

    PubMed

    Nomura, Takeshi; Shibahara, Takahiko; Uchiyama, Takeshi; Yamamoto, Nobuharu; Shibui, Takeo; Yakushiji, Takashi; Watanabe, Akira; Muramatsu, Kyotaro; Ogane, Satoshi; Murayama, Masato; Sekine, Riyo; Nakata, Erika; Fujimoto, Yuko

    2013-01-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) affects quality of life and is an important problem for dentists. A Japanese position paper on BRONJ was published in 2010. The purpose of this study was to review clinical data on the treatment of BRONJ obtained at the Clinic of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba Hospital to further our understanding of this disease. A total of 13 patients (6 men and 7 women) were included. All the patients included in this study had received Bisphosphonate (BP) therapy and had BRONJ. Five of them (38.5%) had received oral BP therapy for osteoporosis, while the remaining 8 (61.5%) had received parenteral BP therapy for bone metastases from breast or prostate cancer. Osteoporosis patients were treated with risedronate or alendronate. Breast or prostate cancer patients were treated with zoledronate. Two patients with rheumatoid arthritis were treated with corticosteroid. Three patients had diabetes mellitus. Eleven patients were treated with antibiotics, while 5 underwent surgical treatment. Discontinuation of BP was recorded in 7 patients during dental treatment. Sequestration was observed in 6 patients during an 11-month follow-up. Eventually, healing and improvement of the oral mucosa were observed in 3 patients. The current standard treatment for BRONJ does not always provide good results. It is necessary to accumulate further clinical data to establish more effective treatment strategies for BRONJ.

  12. Osteochemonecrosis of jaws and bisphosphonates.

    PubMed

    Khosa, A D; Nayyar, M S; Beirne, J C

    2007-03-01

    Osteochemonecrosis of the jaws is a well described side effect of bisphosphonate therapy. Bisphosphonates are non metabolised analogues of pyrophosphate that are capable of localizing to bone, slowing both rate of growth and rate of dissolution therefore reducing the rate of bone turnover. Although the exact mechanism is not clear but it has been established that bisphosphonates target osteoclast, inhibiting their function in several ways: There are two types of bisphosphonates. The first are oral preparations of bisphosphonates, which include Alendronate and Risedronate. They are indicated for the treatment of osteoporosis. They are considered as lower risk of osteochemonecrosis. The second are administered intravenously. Pamindronate is a first generation bisphosphonate; 90 mg administered intravenouly over 2-24 hours every 3-4 weeks. The next generation of intravenous bisphosphonate is Zoldronic acid, which is more effective than Pamidronate in controlling hypercalcaemia of bone and reducing the skeletal related events in patients with metastatic breast cancer, multiple myeloma, hypercalcaemia of malignancy, paget's disease and bone metastasis from prostate and lung cancer.

  13. Biomarkers of bone health and osteoporosis risk.

    PubMed

    Eastell, Richard; Hannon, Rosemary A

    2008-05-01

    The assay features of biochemical markers of bone turnover have markedly improved in the past few years. The most sensitive and specific markers of bone formation include serum bone alkaline phosphatase, total osteocalcin (including the intact molecule and the large N-mid fragment) and the procollagen type I N-terminal propeptide assay. Among the various markers of bone resorption, measurements of the urinary excretion of N- and C-terminal cross-linked telopeptides) and of serum C-terminal cross-linked telopeptides are the most sensitive and specific. Markers of bone turnover can be used to predict the rate of bone loss in post-menopausal women and can also be used to assess the risk of fractures. In osteoporosis-treatment studies (with alendronate, risedronate, raloxifene) markers of bone turnover appear even more strongly associated with fracture risk reduction than bone mineral density (BMD). These observations support the use of markers of bone turnover as surrogates for fracture risk reduction, perhaps even more so than BMD. Bone markers can also be used to monitor the efficacy of antiresorptive therapy such as hormone-replacement therapy, raloxifene and bisphosphonates in individual patients. Furthermore, they have also proved to be helpful in monitoring the response to nutritional interventions and have the advantage over BMD in that they provide information about mechanism of effect and changes are often observed much more rapidly.

  14. Osteoporosis in the aging male: treatment options.

    PubMed

    Tuck, Stephen P; Datta, Harish K

    2007-01-01

    In elderly women, loss in bone mass and micro-architectural changes are generally attributed to the onset of menopause. Men do not experience menopause, they do, however, experience age-related acceleration in bone loss and micro-architecture deterioration. The incidence of osteoporotic fractures in elderly men, just as in aged women, increases exponen-tially with age; the rise in men, however, is some 5-10 years later than in women. Up to 50% of male osteoporotics have no identifiable etiology; however elderly males have much higher likelihood of having an identifiable secondary cause than younger men. Therefore, clinical and laboratory evaluation of aged male osteoporotics must be thorough and should be aimed at identifying lifestyle or conditions contributing to bone loss and fragility. It is essential to identify and treat secondary causes and ensure adequate vitamin D and calcium intake before embarking upon treatment with pharmacological agents. The evidence from a limited number of trials suggests that bisphosphonates, especially alendronate and risedronate, are effective in improving BMD, and seem to be the treatments of choice in aged men with osteoporosis. In cases where bisphosphonates are contra-indicated or ineffective, teriparatide or alternatives such as strontium should be considered. PMID:18225452

  15. Osteochemonecrosis of jaws and bisphosphonates.

    PubMed

    Khosa, A D; Nayyar, M S; Beirne, J C

    2007-03-01

    Osteochemonecrosis of the jaws is a well described side effect of bisphosphonate therapy. Bisphosphonates are non metabolised analogues of pyrophosphate that are capable of localizing to bone, slowing both rate of growth and rate of dissolution therefore reducing the rate of bone turnover. Although the exact mechanism is not clear but it has been established that bisphosphonates target osteoclast, inhibiting their function in several ways: There are two types of bisphosphonates. The first are oral preparations of bisphosphonates, which include Alendronate and Risedronate. They are indicated for the treatment of osteoporosis. They are considered as lower risk of osteochemonecrosis. The second are administered intravenously. Pamindronate is a first generation bisphosphonate; 90 mg administered intravenouly over 2-24 hours every 3-4 weeks. The next generation of intravenous bisphosphonate is Zoldronic acid, which is more effective than Pamidronate in controlling hypercalcaemia of bone and reducing the skeletal related events in patients with metastatic breast cancer, multiple myeloma, hypercalcaemia of malignancy, paget's disease and bone metastasis from prostate and lung cancer. PMID:17491545

  16. New approaches to pharmacological treatment of osteoporosis.

    PubMed Central

    Akesson, Kristina

    2003-01-01

    Osteoporosis has been recognized as a major public health problem for less than two decades. The increasing incidence of fragility fractures, such as vertebral, hip, and wrist fractures, first became apparent from epidemiological studies in the early and mid-1980s, when effective treatment was virtually unavailable. Pharmacological therapies that effectively reduce the number of fractures by improving bone mass are now available widely in countries around the world. Most current agents inhibit bone loss by reducing bone resorption, but emerging therapies may increase bone mass by directly promoting bone formation--as is the case with parathyroid hormone. Current treatment alternatives include bisphosphonates, calcitonin, and selective estrogen receptor modulators, but sufficient calcium and vitamin D are a prerequisite. The availability of evidence-based data that show reductions in the incidence of fractures of 30-50% during treatment has been a major step forward in the pharmacological prevention of fractures. With all agents, fracture reduction is most pronounced for vertebral fracture in high-risk individuals; alendronate and risedronate also may protect against hip fracture in the elderly. New approaches to pharmacological treatment will include further development of existing drugs, especially with regard to tolerance and frequency of dosing. New avenues for targeting the condition will emerge as our knowledge of the regulatory mechanisms of bone remodelling increases, although issues of tissue specificity may be difficult to solve. In the long term, information gained through knowledge of bone genetics may be used to adapt pharmacological treatments more precisely to each individual. PMID:14710507

  17. [Glucocorticoid-induced osteoporosis and rheumatic diseases. Pathogenesis, prevention and treatment].

    PubMed

    Di Munno, Ombretta; Delle Sedie, Andrea

    2006-01-01

    Glucocorticoids (GC) are diffusely used to treat a wide variety of inflammatory and autoimmune disorders, including rheumatic diseases. GC-induced osteoporosis (GIO) is the most common and serious side-effect for patients receiving GC. Loss of bone mineral density (BMD) is greatest in the first few months of GC use; fracture (Fx) risk is significantly increased at the spine and hip on doses even as low as 2.5 mg of prednisolone daily; Fx risk increases rapidly from the onset of therapy and, for a given BMD, is higher in GIO than in postmenopausal OP. General measures to reduce bone loss include use of the lowest effective dose; consideration of alternative routes of administration; adequate calcium and vitamin D supplementation. Today, results from large randomised controlled clinical trials provide evidence that bone loss and Fx may be prevented through the use of bone sparing agents (hormone therapy, bisphosphonates, PTH 1-34). Bisphosphonates (alendronate, risedronate) are first-choice therapy for the prevention and treatment of GIO; patients at high risk for Fx, for example those in post-menopausal status or aged > or =65 years and those with a prior fragility Fx, should be advised to start bone-protective therapy at the time of starting GC. Due to the prevalence of GC use, it is imperative that there be a greater awareness of GIO and of therapies that may be offered to patients both for prevention and treatment.

  18. Bisphosphonate-Related Osteonecrosis of the Jaw: Historical, Ethical, and Legal Issues Associated With Prescribing

    PubMed Central

    Faiman, Beth; Pillai, Aiswarya Lekshmi Pillai Chandran; Benghiac, Ana Gabriela

    2013-01-01

    The long-term effects of many drugs are unknown. Established risks are communicated to patients who participate in clinical trials during the informed consent process. However, unknown and unanticipated side effects of medications may occur years after treatment. Patients with metastatic bone cancer experience an imbalance between tumor cells and the bone marrow microenvironment. Increased cytokine release, osteoclastic activity, and uncoupled osteoblastic activity lead to weakened bone structure and osteolytic lesions. The bisphosphonates are a class of drugs available in IV and oral formulations to treat and prevent bone loss and decrease the risk of skeletal-related events. Intravenous bisphosphonates such as zoledronic acid and pamidronate disodium are approved by the US Food and Drug Administration for the treatment of bone pain and hypercalcemia of malignancy and the prevention of painful bone fractures in patients with metastatic bone cancer. Oral bisphosphonates such as alendronate, risedronate, and etidronate are used to reduce the risk of skeletal fractures in patients with osteoporosis and in breast cancer. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare but painful complication of treatment characterized by infection, exposed bone, and poor wound healing. In this article, we discuss BRONJ and identify past, present, and future ethical and legal issues surrounding bisphosphonate administration. PMID:25031978

  19. Bisphosphonates and glucocorticoid-induced osteoporosis: efficacy and tolerability.

    PubMed

    Lespessailles, Eric

    2013-05-01

    In this review, the efficacy concern relating to bisphosphonates therapy for glucocorticoid-induced osteoporosis is considered. Sole the randomised clinical trials that including more than 50 patients in each treatment arm were considered. This review also covered the safety of bisphosphonates in the setting of glucocorticoid-induced osteoporosis with specific focus on atrial fibrillation, osteonecrosis of the jaw, upper gastrointestinal adverse events and esophageal cancer risk, atypical fractures and renal safety. These last adverse events have been selected due to the rationale of a possible additive, pathophysiologic or synergetic, deleterious effect of bisphosphonates and glucocorticoid on these organs. The available evidence for glucocorticoid-induced osteoporosis treatment and management is much less important than for post-menopausal osteoporosis. However, based on randomised clinical trials with lumbar spine BMD as the primary endpoint after one year, bisphosphonates can be considered as efficacious. Alendronate, etidronate, risedronate and zoledronate prevented declines in spine BMD in adults receiving glucocorticoid. Treatment and prevention studies in glucocorticoid-induced osteoporosis have a short duration and have included smaller population than in post-menopausal osteoporosis. However in this setting, the safety profile of bisphosphonates in glucocorticoid-induced osteoporosis was good. Long-term use of bisphosphonates in patients treated with glucocorticoid might be cautiously monitored in order to prevent adverse effects.

  20. Gateways to Clinical Trials.

    PubMed

    Bayés, M; Rabasseda, X; Prous, J R

    2002-09-01

    Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Studies knowledge area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: Adalimumab, aeroDose insulin inhaler, agomelatine, alendronic acid sodium salt, aliskiren fumarate, alteplase, amlodipine, aspirin, atazanavir; Bacillus Calmette-Guérin, basiliximab, BQ-788, bupropion hydrochloride; Cabergoline, caffeine citrate, carbamazepine, carvedilol, celecoxib, cyclosporine, clopidogrel hydrogensulfate, colestyramine; Dexamethasone, diclofenac sodium, digoxin, dipyridamole, docetaxel, dutasteride; Eletriptan, enfuvirtidie, eplerenone, ergotamine tartrate, esomeprazole magnesium, estramustine phosphate sodium; Finasteride, fluticasone propionate, fosinopril sodium; Ganciclovir, GBE-761-ONC, glatiramer acetate, gliclazide, granulocyte-CSF; Heparin sodium, human isophane insulin (pyr), Hydrochlorothiazide; Ibuprofen, inhaled insulin, interferon alfa, interferon beta-1a; Laminvudine, lansoprazole, lisinopril, lonafarnib, losartan potassium, lumiracoxib; MAb G250, meloxicam methotrexate, methylprednisolone aceponate, mitomycin, mycophenolate mofetil; Naproxen sodium, natalizumab, nelfinavir mesilate, nemifitide ditriflutate, nimesulide; Omalizumab, omapatrilat, omeprazole, oxybutynin chloride; Pantoprazole sodium, paracetamol, paroxetine, pentoxifylline, pergolide mesylate, permixon, phVEGF-A165, pramipexole hydrochloride, prasterone, prednisone, probucol, propiverine hydrochloride; Rabeprazole sodium, resiniferatoxin, risedronate sodium, risperidone, rofecoxib rosiglitazone maleate, ruboxistaurin mesilate hydrate; Selegiline transdermal system, sertraline, sildenafil citrate, streptokinase; Tadalafil, tamsulosin hydrochloride, technosphere/Insulin, tegaserod maleate, tenofovir disoproxil

  1. Gateways to clinical trials.

    PubMed

    Bayés, M; Rabasseda, X; Prous, J R

    2002-12-01

    Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Studies knowledge area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: Abacavir sulfate, adalimumab, AERx morphine sulphate, alefacept, alemtuzumab, alendronic acid sodium salt, alicaforsen sodium, almotriptan, amprenavir, aripiprazole, atenolol, atorvastatin calcium; BSYX-A110; Cantuzumab mertansine, capravirine, CDP-571, CDP-870, celecoxib; Delavirdine mesilate, docetaxel, dofetilide, donepezil hydrochloride, duloxetine hydrochloride, dutasteride, dydrogesterone; Efavirenz, emtricitabine, enjuvia, enteryx, epristeride, erlotinib hydrochloride, escitalopram oxalate, etanercept, etonogestrel, etoricoxib; Fesoterodine, finasteride, flt3ligand; Galantamine hydrobromide, gemtuzumab ozogamicin, genistein, gepirone hydrochloride; Indinavir sulfate, infliximab; Lamivudine, lamivudine/zidovudine/abacavir sulfate, leteprinim potassium, levetiracetam, liposomal doxorubicin, lopinavir, lopinavir/ritonavir, losartan potassium; MCC-465, MRA; Nebivolol, nesiritide, nevirapine; Olanzapine, OROS(R)-Methylphenidate hydrochloride; Peginterferon alfa-2a, peginterferon alfa-2b, Pimecrolimus, polyethylene glycol 3350, pramlintide acetate, pregabalin, PRO-2000; Risedronate sodium, risperidone, ritonavir, rituximab, rivastigmine tartrate, rofecoxib, rosuvastatin calcium; Saquinavir mesilate, Stavudine; Tacrolimus, tadalafil, tamsulosin hydrochloride, telmisartan, tomoxetine hydrochloride, treprostinil sodium, trimegestone, trimetrexate; Valdecoxib, venlafaxine hydrochloride; Zoledronic acid monohydrate. PMID:12616965

  2. 76 FR 40735 - Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... the treatment and prevention of osteoporosis (thinning and weakening of bones that increases the... osteoporosis include: FOSAMAX (alendronate sodium) tablets and solution and FOSAMAX PLUS D (alendronate...

  3. Enhanced Individual Trabecular Repair and Its Mechanical Implications in Parathyroid Hormone and Alendronate Treated Rat Tibial Bone

    PubMed Central

    Altman, Allison R.; de Bakker, Chantal M. J.; Tseng, Wei-Ju; Chandra, Abhishek; Qin, Ling; Sherry Liu, X.

    2015-01-01

    Combined parathyroid hormone (PTH) and bisphosphonate (alendronate—ALN) therapy has recently been shown to increase bone volume fraction and plate-like trabecular structure beyond either monotherapy. To identify the mechanism through which plate-like structure was enhanced, we used in vivo microcomputed tomography (μCT) of the proximal tibia metaphysis and individual trabecular dynamics (ITD) analysis to quantify connectivity repair (incidences of rod connection and plate perforation filling) and deterioration (incidences of rod disconnection and plate perforation). Three-month-old female, intact rats were scanned before and after a 12 day treatment period of vehicle (Veh, n = 5), ALN (n = 6), PTH (n = 6), and combined (PTH+ALN, n = 6) therapy. Additionally, we used computational simulation and finite element (FE) analysis to delineate the contributions of connectivity repair or trabecular thickening to trabecular bone stiffness. Our results showed that the combined therapy group had greater connectivity repair (5.8 ± 0.5% connected rods and 2.0 ± 0.3% filled plates) beyond that of the Veh group, resulting in the greatest net gain in connectivity. For all treatment groups, increases in bone volume due to thickening (5–31%) were far greater than those due to connectivity repair (2–3%). Newly formed bone contributing only to trabecular thickening caused a 10%, 41%, and 69% increase in stiffness in the ALN, PTH, and PTH+ALN groups, respectively. Moreover, newly formed bone that led to connectivity repair resulted in an additional improvement in stiffness, with the highest in PTH+ALN (by an additional 12%), which was significantly greater than either PTH (5.6%) or ALN (4.5%). An efficiency ratio was calculated as the mean percent increase in stiffness divided by mean percent increase in BV for either thickening or connectivity repair in each treatment. For all treatments, the efficiency ratio of connectivity repair (ALN: 2.9; PTH: 3.4; PTH+ALN: 4.4) was higher than that due to thickening (ALN: 2.0; PTH: 1.7; PTH+ALN: 2.2), suggesting connectivity repair required less new bone formation to induce larger gains in stiffness. We conclude that through rod connection and plate perforation filling PTH+ALN combination therapy improved bone stiffness in a more efficient and effective manner than either monotherapy. PMID:25321622

  4. A 12-year ecological study of hip fracture rates among older Taiwanese adults.

    PubMed

    Chan, Ding-Cheng; Lee, Yow-Shan; Wu, Ya-Ju; Tsou, Hsiao-Hui; Chen, Cheng-Ting; Hwang, Jawl-Shan; Tsai, Keh-Sung; Yang, Rong-Sen

    2013-11-01

    Hip fracture rates in Taiwan are among the highest in the world. The aim of this study was to describe the trends of hip fracture hospitalizations among Taiwanese elderly (aged ≥ 65 years) and the trends of antiosteoporosis medication expenditure from 1999 to 2010. We conducted an ecological study using inpatient health care-utilization data from the Department of Health, and medication expenditure data from the IMS Health, Taiwan. The International Classification of Disease, Clinical Modification, 9th version, code 820 was used to identify hip fracture hospitalizations. Medications included alendronate, calcitonin, ibandronate, raloxifene, strontium ranelate, teriparatide, and zoledronic acid. Year 2010 was assigned as the reference point for age-standardized rates, currency exchange (to the US dollar), and discount rates. Over the 12-year study period, age-standardized hip fracture hospitalizations decreased by 2.7 % annually (p for trend < 0.001) for Taiwanese elders. The decline was more obvious among those aged ≥75 years (6.1 %). However, the number of hip fracture hospitalizations increased from 14,342 to 18,023. Total hospitalization costs increased by US$0.6 ± 0.2 million annually (p for trend = 0.002); however, the per capita costs decreased by US$23.0 ± 8.0 (p for trend = 0.017). The total medication expenditure increased 7.2-fold, from US$8.1 million to US$58.9 million, accounting for an increase in the overall pharmaceutical market by fivefold, from 3.4 to 15.9 ‰ (both p for trend < 0.001). From 1999 to 2010, there was a decline in hip fracture rates among elderly Taiwanese adults with a concomitant increase in antiosteoporosis medication expenditure.

  5. Exercise and pharmacological countermeasures for bone loss during long-duration space flight

    NASA Technical Reports Server (NTRS)

    Cavanagh, Peter R.; Licata, Angelo A.; Rice, Andrea J.

    2005-01-01

    Bone loss in the lower extremities and lumbar spine is an established consequence of long-duration human space flight. Astronauts typically lose as much bone mass in the proximal femur in 1 month as postmenopausal women on Earth lose in 1 year. Pharmacological interventions have not been routinely used in space, and countermeasure programs have depended solely upon exercise. However, it is clear that the osteogenic stimulus from exercise has been inadequate to maintain bone mass, due to insufficient load or duration. Attention has therefore been focused on several pharmacological interventions that have been successful in preventing or attenuating osteoporosis on Earth. Anti-resorptives are the class of drugs most commonly used to treat osteoporosis in postmenopausal women, notably alendronate sodium, risedronate sodium, zoledronic acid, and selective estrogen receptor modulators, such as raloxifene. There has also been considerable recent interest in anabolic agents such as parathyroid hormone (PTH) and teriparatide (rhPTH [1-34]). Vitamin D and calcium supplementation have also been used. Recent studies of kindreds with abnormally high bone mineral density have provided insight into the genetic regulation of bone mass. This has led to potential therapeutic interventions based on the LRP5, Wnt and BMP2 pathways. Another target is the RANK-L/osteoprotegerin signaling pathway, which influences bone turnover by regulating osteoclast formation and maturation. Trials using such therapies in space are being planned. Among the factors to be considered are dose-response relationships, bone quality, post-use recovery, and combination therapies--all of which may have unique characteristics when the drugs are used in space.

  6. Bridging the osteoporosis treatment gap: performance and cost-effectiveness of a fracture liaison service.

    PubMed

    Yates, Christopher J; Chauchard, Marie-Anne; Liew, Danny; Bucknill, Andrew; Wark, John D

    2015-01-01

    Individuals who sustain fragility fractures are at high risk of refracture. However, osteoporosis treatment rates remain low for these patients. Therefore, we aimed to assess the performance and cost-effectiveness of introducing a fracture liaison service (FLS) into a tertiary hospital. In "nonhospitalized" ambulatory patients who had sustained fragility fractures, we assessed baseline osteoporosis investigation and treatment rates, and subsequently, the impact of introducing an orthopedic osteoporosis policy and an FLS. Outcomes measured were uptake of osteoporosis intervention, patient satisfaction, and quality-adjusted life years (QALYs) gained. QALYs were calculated over 5 years using predicted fracture risks without intervention and estimated fracture risk reduction with intervention. At baseline (n = 49), 2% of ambulatory patients who had sustained fragility fractures underwent dual-energy X-ray absorptiometry (DXA) and 6% received osteoporosis-specific medication. After introduction of an osteoporosis policy (n = 58), 28% were investigated with DXA (p < 0.0001). However, treatment rates were unchanged. An FLS was introduced, reviewing 203 new patients over the inaugural 2 years (mean age [standard deviation], 67 (11) years; 77% female). All underwent DXA, and criteria for osteoporosis and osteopenia were identified in 44% and 40%, respectively. Osteoporosis medications were prescribed to 61% patients (risedronate: 22%, alendronate: 16%, strontium ranelate: 13%, zoledronic acid: 8%, other: 2%). Eighty-five of 90 questionnaire respondents were very satisfied or satisfied with the FLS. With the treatment prescribed over 5 years, we conservatively estimated that this FLS would reduce nonvertebral refractures from 59 to 50, improving QALYs by 0.054 and costing $1716 per patient (incremental cost-effectiveness ratio: $31749). This FLS model improves uptake of osteoporosis intervention guidelines, is popular among patients, and improves cost-effectiveness. Thus, it

  7. Peri-implant and systemic effects of high-/low-affinity bisphosphonate-hydroxyapatite composite coatings in a rabbit model with peri-implant high bone turnover

    PubMed Central

    2012-01-01

    Background Hydroxyapatite (HA) coatings composed with bisphosphonates (BPs) which have high mineral-binding affinities have been confirmed to successfully enhance implant stability. However, few previous studies focused on HA coatings composed with low-affinity BPs or on systemic effects of locally released BPs. Methods In this long-term study, we developed two kinds of BP-HA composite coatings using either high-affinity BP (alendronate, ALN) or low-affinity BP (risedronate, RIS). Thirty-six rabbits were divided into three groups according to different coating applications (group I: HA, group II: ALN-HA, and group III: RIS-HA). Implants were inserted into the proximal region of the medullary cavity of the left tibiay. At insertion, 2 × 108 wear particles were injected around implants to induce a peri-implant high bone turnover environment. Both local (left tibias) and systemic (right tibias and lumbar vertebrae) inhibitory effect on bone resorption were compared, including bone-implant integration, bone architecture, bone mineral density (BMD), implant stability, and serum levels of bone turnover markers. Results The results indicated that ALN-HA composite coating, which could induce higher bone-implant contact (BIC) ratio, bone mass augmentation, BMD, and implant stability in the peri-implant region, was more potent on peri-implant bone, while RIS-HA composite coating, which had significant systemic effect, was more potent on non-peri-implant bone, especially lumbar vertebrae. Conclusions It is instructive and meaningful to further clinical studies that we could choose different BP-HA composite coatings according to the patient’s condition. PMID:22686414

  8. Exercise and pharmacological countermeasures for bone loss during long-duration space flight.

    PubMed

    Cavanagh, Peter R; Licata, Angelo A; Rice, Andrea J

    2005-06-01

    Bone loss in the lower extremities and lumbar spine is an established consequence of long-duration human space flight. Astronauts typically lose as much bone mass in the proximal femur in 1 month as postmenopausal women on Earth lose in 1 year. Pharmacological interventions have not been routinely used in space, and countermeasure programs have depended solely upon exercise. However, it is clear that the osteogenic stimulus from exercise has been inadequate to maintain bone mass, due to insufficient load or duration. Attention has therefore been focused on several pharmacological interventions that have been successful in preventing or attenuating osteoporosis on Earth. Anti-resorptives are the class of drugs most commonly used to treat osteoporosis in postmenopausal women, notably alendronate sodium, risedronate sodium, zoledronic acid, and selective estrogen receptor modulators, such as raloxifene. There has also been considerable recent interest in anabolic agents such as parathyroid hormone (PTH) and teriparatide (rhPTH [1-34]). Vitamin D and calcium supplementation have also been used. Recent studies of kindreds with abnormally high bone mineral density have provided insight into the genetic regulation of bone mass. This has led to potential therapeutic interventions based on the LRP5, Wnt and BMP2 pathways. Another target is the RANK-L/osteoprotegerin signaling pathway, which influences bone turnover by regulating osteoclast formation and maturation. Trials using such therapies in space are being planned. Among the factors to be considered are dose-response relationships, bone quality, post-use recovery, and combination therapies--all of which may have unique characteristics when the drugs are used in space.

  9. Oral bisphosphonates do not increase the risk of severe upper gastrointestinal complications: a nested case–control study

    PubMed Central

    2014-01-01

    Background Data on the effect of oral bisphosphonates (BPs) on risk of upper gastrointestinal complications (UGIC) are conflicting. We conducted a large population-based study from a network of Italian healthcare utilization databases aimed to assess the UGIC risk associated with use of BPs in the setting of secondary prevention of osteoporotic fractures. Methods A nested case–control study was carried out within a cohort of 68,970 patients aged 45 years or older, who have been hospitalized for osteoporotic fracture from 2003 until 2005. Cases were the 804 patients who experienced hospitalization for UGIC until 2007. Up to 20 controls were randomly selected for each case. Conditional logistic regression model was used to estimate odds ratio (OR) associated with current and past use of BPs (i.e. for drug dispensation within 30 days and over 31 days prior the outcome onset, respectively) after adjusting for several covariates. Results Compared with patients who did not use BPs, current and past users had OR (and 95% confidence interval) of 0.86 (0.60 to 1.22) and 1.07 (0.80 to 1.44) respectively. There was no difference in the ORs estimated according with BPs type (alendronate or risedronate) and regimen (daily or weekly), nor with co-therapies and comorbidities. Conclusions Further evidence that BPs dispensed for secondary prevention of osteoporotic fractures are not associated with increased risk of severe gastrointestinal complications is supplied from this study. Further research is required to clarify the role BPs and other drugs of co-medication in inducing UGIC. PMID:24397769

  10. Exercise and pharmacological countermeasures for bone loss during long-duration space flight.

    PubMed

    Cavanagh, Peter R; Licata, Angelo A; Rice, Andrea J

    2005-06-01

    Bone loss in the lower extremities and lumbar spine is an established consequence of long-duration human space flight. Astronauts typically lose as much bone mass in the proximal femur in 1 month as postmenopausal women on Earth lose in 1 year. Pharmacological interventions have not been routinely used in space, and countermeasure programs have depended solely upon exercise. However, it is clear that the osteogenic stimulus from exercise has been inadequate to maintain bone mass, due to insufficient load or duration. Attention has therefore been focused on several pharmacological interventions that have been successful in preventing or attenuating osteoporosis on Earth. Anti-resorptives are the class of drugs most commonly used to treat osteoporosis in postmenopausal women, notably alendronate sodium, risedronate sodium, zoledronic acid, and selective estrogen receptor modulators, such as raloxifene. There has also been considerable recent interest in anabolic agents such as parathyroid hormone (PTH) and teriparatide (rhPTH [1-34]). Vitamin D and calcium supplementation have also been used. Recent studies of kindreds with abnormally high bone mineral density have provided insight into the genetic regulation of bone mass. This has led to potential therapeutic interventions based on the LRP5, Wnt and BMP2 pathways. Another target is the RANK-L/osteoprotegerin signaling pathway, which influences bone turnover by regulating osteoclast formation and maturation. Trials using such therapies in space are being planned. Among the factors to be considered are dose-response relationships, bone quality, post-use recovery, and combination therapies--all of which may have unique characteristics when the drugs are used in space. PMID:16038092

  11. Development of Alendronate-conjugated Poly (lactic-co-glycolic acid)-Dextran Nanoparticles for Active Targeting of Cisplatin in Osteosarcoma.

    PubMed

    Liu, Ping; Sun, Liang; Zhou, Dong-sheng; Zhang, Peng; Wang, Yong-hui; Li, Dong; Li, Qing-hu; Feng, Rong-Jie

    2015-01-01

    In this study, we developed a novel poly (lactic-co-glycolic acid)-dextran (PLD)-based nanodelivery system to enhance the anticancer potential of cisplatin (CDDP) in osteosarcoma cells. A nanosized CDDP-loaded PLGA-DX nanoparticle (PLD/CDDP) controlled the release rate of CDDP up to 48 h. In vitro cytotoxicity assay showed a superior anticancer effect for PLD/CDDP and with an appreciable cellular uptake via endocytosis-mediated pathways. PLD/CDDP exhibited significant apoptosis of MG63 cancer cells compared to that of free CDDP. Approximately ~25% of cells were in early apoptosis phase after PLD/CDDP treatment comparing to ~15% for free CDDP after 48h incubation. Similarly, PLD/CDDP exhibited ~30% of late apoptosis cells comparing to only ~8% for free drug treatment. PLD/CDDP exhibited significantly higher G2/M phase arrest in MG63 cells than compared to free CDDP with a nearly 2-fold higher arrest in case of PLD/CDDP treated group (~60%). Importantly, PLD/CDDP exhibited a most significant anti-tumor activity with maximum tumor growth inhibition. The superior inhibitory effect was further confirmed by a marked reduction in the number of CD31 stained tumor blood vessels and decrease in the Ki67 staining intensity for PLD/CDDP treated animal group. Overall, CDDP formulations could provide a promising and most effective platform in the treatment of osteosarcoma. PMID:26619950

  12. Development of Alendronate-conjugated Poly (lactic-co-glycolic acid)-Dextran Nanoparticles for Active Targeting of Cisplatin in Osteosarcoma

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Sun, Liang; Zhou, Dong-Sheng; Zhang, Peng; Wang, Yong-Hui; Li, Dong; Li, Qing-Hu; Feng, Rong-Jie

    2015-12-01

    In this study, we developed a novel poly (lactic-co-glycolic acid)-dextran (PLD)-based nanodelivery system to enhance the anticancer potential of cisplatin (CDDP) in osteosarcoma cells. A nanosized CDDP-loaded PLGA-DX nanoparticle (PLD/CDDP) controlled the release rate of CDDP up to 48 h. In vitro cytotoxicity assay showed a superior anticancer effect for PLD/CDDP and with an appreciable cellular uptake via endocytosis-mediated pathways. PLD/CDDP exhibited significant apoptosis of MG63 cancer cells compared to that of free CDDP. Approximately ~25% of cells were in early apoptosis phase after PLD/CDDP treatment comparing to ~15% for free CDDP after 48h incubation. Similarly, PLD/CDDP exhibited ~30% of late apoptosis cells comparing to only ~8% for free drug treatment. PLD/CDDP exhibited significantly higher G2/M phase arrest in MG63 cells than compared to free CDDP with a nearly 2-fold higher arrest in case of PLD/CDDP treated group (~60%). Importantly, PLD/CDDP exhibited a most significant anti-tumor activity with maximum tumor growth inhibition. The superior inhibitory effect was further confirmed by a marked reduction in the number of CD31 stained tumor blood vessels and decrease in the Ki67 staining intensity for PLD/CDDP treated animal group. Overall, CDDP formulations could provide a promising and most effective platform in the treatment of osteosarcoma.

  13. Development of Alendronate-conjugated Poly (lactic-co-glycolic acid)-Dextran Nanoparticles for Active Targeting of Cisplatin in Osteosarcoma

    PubMed Central

    Liu, Ping; Sun, Liang; Zhou, Dong-sheng; Zhang, Peng; Wang, Yong-hui; Li, Dong; Li, Qing-hu; Feng, Rong-jie

    2015-01-01

    In this study, we developed a novel poly (lactic-co-glycolic acid)-dextran (PLD)-based nanodelivery system to enhance the anticancer potential of cisplatin (CDDP) in osteosarcoma cells. A nanosized CDDP-loaded PLGA-DX nanoparticle (PLD/CDDP) controlled the release rate of CDDP up to 48 h. In vitro cytotoxicity assay showed a superior anticancer effect for PLD/CDDP and with an appreciable cellular uptake via endocytosis-mediated pathways. PLD/CDDP exhibited significant apoptosis of MG63 cancer cells compared to that of free CDDP. Approximately ~25% of cells were in early apoptosis phase after PLD/CDDP treatment comparing to ~15% for free CDDP after 48h incubation. Similarly, PLD/CDDP exhibited ~30% of late apoptosis cells comparing to only ~8% for free drug treatment. PLD/CDDP exhibited significantly higher G2/M phase arrest in MG63 cells than compared to free CDDP with a nearly 2-fold higher arrest in case of PLD/CDDP treated group (~60%). Importantly, PLD/CDDP exhibited a most significant anti-tumor activity with maximum tumor growth inhibition. The superior inhibitory effect was further confirmed by a marked reduction in the number of CD31 stained tumor blood vessels and decrease in the Ki67 staining intensity for PLD/CDDP treated animal group. Overall, CDDP formulations could provide a promising and most effective platform in the treatment of osteosarcoma. PMID:26619950

  14. Travelers' Health: Motion Sickness

    MedlinePlus

    ... morphine, meperidine Nonsteroidal analgesics Ibuprophen, naproxen, indomethacin Antidepressants Fluoxetine, paroxitene, sertraline Asthma medication Aminophylline Bisphosphonates Alendronate sodium, ...

  15. Extracellular calcium increases bisphosphonate-induced growth inhibition of breast cancer cells

    PubMed Central

    Journé, Fabrice; Kheddoumi, Naïma; Chaboteaux, Carole; Duvillier, Hugues; Laurent, Guy; Body, Jean-Jacques

    2008-01-01

    Introduction Bisphosphonates have become standard therapy for the treatment of skeletal complications related to breast cancer. Although their therapeutic effects mainly result from an inhibition of osteoclastic bone resorption, in vitro data indicate that they also act directly on breast cancer cells, inhibiting proliferation and inducing apoptosis. Methods The present study examined the effects of calcium (from 0.6 to 2.0 mmol/l) on the antitumour activity of the bisphosphonate ibandronate (1 to 1,000 nmol/l) on MDA-MB-231 and MCF-7 breast cancer cells. Cell culture densities were determined using crystal violet staining assay. Apoptotic cell death was assessed by annexin V-phycoerythrin and 7-amino-actinomycin double staining. Results At low calcium concentration, 30 μmol/l ibandronate had no effect on MDA-MB-231 cells growth and only slightly inhibited MCF-7 cells growth. Higher calcium levels significantly increased growth inhibition as well as cell apoptosis induced by ibandronate. We observed similar effects with zoledronic acid. Of note, enhancement of ibandronate-induced growth inhibition was also observed in other breast cancer cell lines (T-47D, ZR-75, Hs-578T and BT-549 cells). The growth inhibitory effect of ibandronate in the presence of high concentrations of calcium was partly suppressed by the calcium chelator EGTA (ethylene glycol tetra-acetic acid). In addition, in the presence of calcium at high concentrations, cells accumulated more [14C]ibandronate than at low calcium concentrations. We obtained further evidence of enhancement of cellular ibandronate accumulation by calcium by demonstrating that high calcium levels increased the inhibition of protein prenylation induced by the bisphosphonate. Conclusion Altogether, our data suggest that extracellular calcium, probably through its binding to ibandronate, markedly increased its cellular accumulation and its inhibitory activity on breast tumour cells. Thus, calcium released during the process of

  16. Photonic monitoring of chitosan nanostructured alginate microcapsules for drug release

    NASA Astrophysics Data System (ADS)

    Khajuria, Deepak Kumar; Konnur, Manish C.; Vasireddi, Ramakrishna; Roy Mahapatra, D.

    2015-02-01

    By using a novel microfluidic set-up for drug screening applications, this study examines delivery of a novel risedronate based drug formulation for treatment of osteoporosis that was developed to overcome the usual shortcomings of risedronate, such as its low bioavailability and adverse gastric effects. Risedronate nanoparticles were prepared using muco-adhesive polymers such as chitosan as matrix for improving the intestinal cellular absorption of risedronate and also using a gastric-resistant polymer such as sodium alginate for reducing the gastric inflammation of risedronate. The in-vitro characteristics of the alginate encapsulated chitosan nanoparticles are investigated, including their stability, muco-adhesiveness, and Caco-2 cell permeability. Fluorescent markers are tagged with the polymers and their morphology within the microcapsules is imaged at various stages of drug release.

  17. Nitrogen-containing bisphosphonate mechanism of action.

    PubMed

    Reszka, Alfred A; Rodan, Gideon A

    2004-09-01

    The current paradigm for drug discovery requires the identification of a target involved in the disease process (e.g. enzyme or receptor) and the development of an appropriate ligand (activator, inhibitor or selective modulator). Selection of ligands for clinical development is based on the therapeutic window between efficacy vs. safety and ADME (absorption, distribution, metabolism and elimination) considerations. For bisphosphonates (BPs) the process has not followed that paradigm. BPs have very low absorption and are retained in bone, their target tissue. A few have been used on a limited basis for over 20 years in diseases of rapid bone destruction (e.g. post-menopausal osteoporosis, Paget's disease, bone metastases, etc.), without understanding their molecular mechanism of action. The nitrogen-containing BPs (N-BPs) are the latest and most potent addition to this family of compounds and have the widest use. They have high potency, are specifically targeted to the osteoclast on bone and are used at very low doses (5-10 mg clinically). Over the last four years, there was significant progress in elucidating the mechanism of action of BPs, both lacking and containing nitrogen. This review will focus on the mechanism of action of the N-BPs, specifically alendronate (ALN) and risedronate (RIS), the two agents most widely used. For these and all other N-BPs, the molecular target is the isoprenoid biosynthetic enzyme, farnesyl diphosphate synthase, in the cholesterol biosynthesis pathway. Although inhibition of this enzyme by N-BPs results in the suppression of sterol biosynthesis, it is actually disruption of a branch pathway, isoprenylation, that is responsible for N-BP pharmacological activity. Isoprenylation involves covalent linkage of the 15 or 20 carbon isoprene moiety farnesyl diphosphate or geranylgeranyl diphosphate, respectively, to the carboxy-terminus of regulatory proteins, including the small GTPases Ras, Rac, Rho and Cdc42. The latter three, as well as

  18. Chronic kidney disease and osteoporosis: evaluation and management.

    PubMed

    Miller, Paul D

    2014-01-01

    (alendronate, risedronate and denosumab) in stage 4 CKD. This review also discusses how to diagnose and manage fragility fractures across the five stages of CKD. PMID:24991405

  19. Chronic kidney disease and the skeleton.

    PubMed

    Miller, Paul D

    2014-01-01

    osteoporosis therapies (alendronate, risedronate and denosumab) in stage 4 CKD. This review also discusses how to diagnose and manage fragility fractures across the five stages of CKD. PMID:26273531

  20. Current and potential future drug treatments for osteoporosis.

    PubMed Central

    Patel, S

    1996-01-01

    There has been a major interest in the drug treatment of osteoporosis and an increase in the number of drugs available in most countries. The ideal drug (one which increases or restores bone density and trabecular connectivity) is still not available. However, in patients with relatively preserved trabecular connectivity and moderately reduced bone density, several agents have shown substantial clinical benefit. Oestrogens are still the mainstay of drug treatment, but the risks of breast cancer versus the cardiovascular and skeletal benefits with long term use have to be assessed in the individual. Newer tissue specific oestrogens show some promise in this respect. The bisphosphonates and possibly fluoride are likely to be the major alternatives to oestrogens in the medium term. The newer bisphosphonates, alendronate and in the future risedronate, are likely to supersede etidronate. Calcitriol probably has a limited role, confined to those patients in whom HRT or bisphosphonates are not appropriate. Calcium supplementation, or an increase in dietary intake if deficient, irrespective of which agent is used, is also of benefit. In older patients there is considerable support for using a combination of calcium and vitamin D. Whether combination treatment, for example oestrogens, bisphosphonates, and calcium together, will result in greater efficacy remains to be conclusively shown, but may be an attractive option in younger patients with higher bone turnover. Apart from fluoride, bone formation stimulators are unlikely to have a major role until the next century, although it may be possible to use growth factors as part of an ADFR regimen (A = activate remodelling, D = depress resorption, F = free formation, and R = repeat). This is still an important theoretical approach and needs further work with newer agents to see if increased efficacy can be found. In addition sequential treatment may be necessary in view of the limited time periods over which particular agents

  1. Bisphosphonates do not alter the rate of secondary mineralization

    SciTech Connect

    Fuchs R. K.; Miller L.; Faillace M.E.; Allen M.R.; Phipps R.J. and Burr D.B.

    2011-05-18

    Bisphosphonates function to reduce bone turnover, which consequently increases the mean degree of tissue mineralization at an organ level. However, it is not clear if bisphosphonates alter the length of time required for an individual bone-modeling unit (BMU) to fully mineralize. We have recently demonstrated that it takes {approx}350 days (d) for normal, untreated cortical bone to fully mineralize. The aim of this study was to determine the rate at which newly formed trabecular BMUs become fully mineralized in rabbits treated for up to 414 d with clinical doses of either risedronate (RIS) or alendronate (ALN). Thirty-six, 4-month old virgin female New Zealand white rabbits were allocated to RIS (n = 12; 2.4 {micro}g/kg body weight), ALN (n = 12; 2.4 {micro}g/kg body weight), or volume-matched saline controls (CON; n = 12). Fluorochrome labels were administered at specific time intervals to quantify the rate and level of mineralization of trabecular bone from the femoral neck (FN) by Fourier transform infrared microspectroscopy (FTIRM). The organic (collagen) and inorganic (phosphate and carbonate) IR spectral characteristics of trabecular bone from undecalcified 4 micron thick tissue sections were quantified from fluorescently labels regions that had mineralized for 1, 8, 18, 35, 70, 105, 140, 210, 280, and 385 d (4 rabbits per time point and treatment group). All groups exhibited a rapid increase in mineralization over the first 18 days, the period of primary mineralization, with no significant differences between treatments. Mineralization continued to increase, at a slower rate up, to 385 days (secondary mineralization), and was not different among treatments. There were no significant differences between treatments for the rate of mineralization within an individual BMU; however, ALN and RIS both increased global tissue mineralization as demonstrated by areal bone mineral density from DXA. We conclude that increases in tissue mineralization that occur

  2. Bisphosphonates do not Alter the Rate of Secondary Mineralization

    SciTech Connect

    R Fuchs; M Faillace; M Allen; R Phipps; L Miller; D Burr

    2011-12-31

    Bisphosphonates function to reduce bone turnover, which consequently increases the mean degree of tissue mineralization at an organ level. However, it is not clear if bisphosphonates alter the length of time required for an individual bone-modeling unit (BMU) to fully mineralize. We have recently demonstrated that it takes {approx}350 days (d) for normal, untreated cortical bone to fully mineralize. The aim of this study was to determine the rate at which newly formed trabecular BMUs become fully mineralized in rabbits treated for up to 414 d with clinical doses of either risedronate (RIS) or alendronate (ALN). Thirty-six, 4-month old virgin female New Zealand white rabbits were allocated to RIS (n=12; 2.4 {mu}g/kg body weight), ALN (n=12; 2.4 {mu}g/kg body weight), or volume-matched saline controls (CON; n=12). Fluorochrome labels were administered at specific time intervals to quantify the rate and level of mineralization of trabecular bone from the femoral neck (FN) by Fourier transform infrared microspectroscopy (FTIRM). The organic (collagen) and inorganic (phosphate and carbonate) IR spectral characteristics of trabecular bone from undecalcified 4 micron thick tissue sections were quantified from fluorescently labels regions that had mineralized for 1, 8, 18, 35, 70, 105, 140, 210, 280, and 385 d (4 rabbits per time point and treatment group). All groups exhibited a rapid increase in mineralization over the first 18 days, the period of primary mineralization, with no significant differences between treatments. Mineralization continued to increase, at a slower rate up, to 385 days (secondary mineralization), and was not different among treatments. There were no significant differences between treatments for the rate of mineralization within an individual BMU; however, ALN and RIS both increased global tissue mineralization as demonstrated by areal bone mineral density from DXA. We conclude that increases in tissue mineralization that occur following a period

  3. Chronic kidney disease and the skeleton.

    PubMed

    Miller, Paul D

    2014-01-01

    osteoporosis therapies (alendronate, risedronate and denosumab) in stage 4 CKD. This review also discusses how to diagnose and manage fragility fractures across the five stages of CKD.

  4. 77 FR 10536 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... (ANDAs). In the Federal Register of June 11, 2010 (75 FR 33311), FDA announced the availability of a... comment. Recommendations were last announced in the Federal Register of January 25, 2012 (77 FR 3777... ingredients: A Alendronate Sodium Alendronate Sodium; Cholecalciferol B Benzoyl Peroxide;...

  5. Lowering bone mineral affinity of bisphosphonates as a therapeutic strategy to optimize skeletal tumor growth inhibition in vivo.

    PubMed

    Fournier, Pierrick G J; Daubiné, Florence; Lundy, Mark W; Rogers, Michael J; Ebetino, Frank H; Clézardin, Philippe

    2008-11-01

    Bisphosphonates bind avidly to bone mineral and are potent inhibitors of osteoclast-mediated bone destruction. They also exhibit antitumor activity in vitro. Here, we used a mouse model of human breast cancer bone metastasis to examine the effects of risedronate and NE-10790, a phosphonocarboxylate analogue of the bisphosphonate risedronate, on osteolysis and tumor growth. Osteolysis was measured by radiography and histomorphometry. Tumor burden was measured by fluorescence imaging and histomorphometry. NE-10790 had a 70-fold lower bone mineral affinity compared with risedronate. It was 7-fold and 8,800-fold less potent than risedronate at reducing, respectively, breast cancer cell viability in vitro and bone loss in ovariectomized animals. We next showed that risedronate given at a low dosage in animals bearing human B02-GFP breast tumors reduced osteolysis by inhibiting bone resorption, whereas therapy with higher doses also inhibited skeletal tumor burden. Conversely, therapy with NE-10790 substantially reduced skeletal tumor growth at a dosage that did not inhibit osteolysis, a higher dosage being able to also reduce bone destruction. The in vivo antitumor activity of NE-10790 was restricted to bone because it did not inhibit the growth of subcutaneous B02-GFP tumor xenografts nor the formation of B16-F10 melanoma lung metastases. Moreover, NE-10790, in combination with risedronate, reduced both osteolysis and skeletal tumor burden, whereas NE-10790 or risedronate alone only decreased either tumor burden or osteolysis, respectively. In conclusion, our study shows that decreasing the bone mineral affinity of bisphosphonates is an effective therapeutic strategy to inhibit skeletal tumor growth in vivo.

  6. How do bisphosphonates inhibit bone metastasis in vivo?

    PubMed

    Fournier, Pierrick G; Stresing, Verena; Ebetino, Frank H; Clézardin, Philippe

    2010-07-01

    Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption and have demonstrated clinical utility in the treatment of patients with osteolytic bone metastases. They also exhibit direct antitumor activity in vitro and can reduce skeletal tumor burden and inhibit the formation of bone metastases in vivo. However, whether such effects are caused by a direct action of bisphosphonates on tumor cells or indirectly through inhibition of bone resorption remains unclear. To address this question, we used here a structural analog of the bisphosphonate risedronate, NE-58051, which has a bone mineral affinity similar to that of risedronate, but a 3000-fold lower bone antiresorptive activity. In vitro, risedronate and NE-58051 inhibited proliferation of breast cancer and melanoma cell lines. In vivo, risedronate and NE-58051 did not inhibit the growth of subcutaneous B02 breast tumor xenografts or the formation of B16F10 melanoma lung metastasis. In contrast to NE-58051, risedronate did inhibit B02 breast cancer bone metastasis formation by reducing both bone destruction and skeletal tumor burden, indicating that the antitumor effect of bisphosphonates is achieved mainly through inhibition of osteoclast-mediated bone resorption.

  7. Polymer-ceramic Monolithic In-Needle Extraction (MINE) device: Preparation and examination of drug affinity.

    PubMed

    Pietrzyńska, Monika; Tomczak, Rafał; Jezierska, Katarzyna; Voelkel, Adam; Jampílek, Josef

    2016-11-01

    Polymer-ceramic materials were placed in the in-needle device. Polymer-ceramic Monolithic In-Needle Extraction (MINE) device is an extraction device used in sample preparation step but, on the other hand, it can be a tool for examination of interactions between potential antiresorptive drugs and bones. MINE device was used as tool for determination of bisphosphonate affinity to hydroxyapatite. Spectra of prepared materials containing different proportion of the ceramic part were performed with the use of Fourier transform infrared spectroscopy. The extraction of sodium risedronate as standard compound from simulated body fluids was carried out by pumping liquid samples through the MINE device. The amount of sodium risedronate in solutions was examined using UV-VIS spectroscopy. The sorption results of sodium risedronate obtained for monolithic materials containing different amount of hydroxyapatite were compared to the values determined for pure (bulk) hydroxyapatite. Sorption capacity for polymer-ceramic materials placed in the in-needle extraction device was about 0.39mg of sodium risedronate. The complete desorption process was carried out at the level over 95% using various eluents. The results of sorption-desorption experiments allow to deduce on the affinity of sodium risedronate to the ceramic part of sorbent (hydroxyapatite). PMID:27523998

  8. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis

    PubMed Central

    Gavin, Carson T; Ali, Sohrab N; Tailly, Thomas; Olvera-Posada, Daniel; Alenezi, Husain; Power, Nicholas E; Hou, Jinqiang; St. Amant, Andre H; Luyt, Leonard G; Wood, Stephen; Wu, Charles; Razvi, Hassan; Leong, Hon S

    2016-01-01

    Accurate determination of urinary stone composition has significant bearing on understanding pathophysiology, choosing treatment modalities and preventing recurrence. A need exists for improved methods to determine stone composition. Urine of 31 patients with known renal calculi was examined with nanoscale flow cytometry and the calculi collected during surgery subsequently underwent petrographic thin sectioning with polarized and fluorescent microscopy. Fluorescently labeled bisphosphonate probes (Alendronate-fluorescein/Alendronate-Cy5) were developed for nanoscale flow cytometry to enumerate nanocrystals that bound the fluorescent probes. Petrographic sections of stones were also imaged by fluorescent and polarized light microscopy with composition analysis correlated to alendronate +ve nanocrystal counts in corresponding urine samples. Urine samples from patients with Ca2+ and Mg2+ based calculi exhibited the highest alendronate +ve nanocrystal counts, ranging from 100–1000 nm in diameter. This novel urine based assay was in agreement with composition determined by petrographic thin sections with Alendronate probes. In some cases, high alendronate +ve nanocrystal counts indicated a Ca2+ or Mg2+ composition, as confirmed by petrographic analysis, overturning initial spectrophotometric diagnosis of stone composition. The combination of nanoscale flow cytometry and petrographic thin sections offer an alternative means for determining stone composition. Nanoscale flow cytometry of alendronate +ve nanocrystals alone may provide a high-throughput means of evaluating stone burden. PMID:26771074

  9. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis.

    PubMed

    Gavin, Carson T; Ali, Sohrab N; Tailly, Thomas; Olvera-Posada, Daniel; Alenezi, Husain; Power, Nicholas E; Hou, Jinqiang; St Amant, Andre H; Luyt, Leonard G; Wood, Stephen; Wu, Charles; Razvi, Hassan; Leong, Hon S

    2016-01-14

    Accurate determination of urinary stone composition has significant bearing on understanding pathophysiology, choosing treatment modalities and preventing recurrence. A need exists for improved methods to determine stone composition. Urine of 31 patients with known renal calculi was examined with nanoscale flow cytometry and the calculi collected during surgery subsequently underwent petrographic thin sectioning with polarized and fluorescent microscopy. Fluorescently labeled bisphosphonate probes (Alendronate-fluorescein/Alendronate-Cy5) were developed for nanoscale flow cytometry to enumerate nanocrystals that bound the fluorescent probes. Petrographic sections of stones were also imaged by fluorescent and polarized light microscopy with composition analysis correlated to alendronate +ve nanocrystal counts in corresponding urine samples. Urine samples from patients with Ca(2+) and Mg(2+) based calculi exhibited the highest alendronate +ve nanocrystal counts, ranging from 100-1000 nm in diameter. This novel urine based assay was in agreement with composition determined by petrographic thin sections with Alendronate probes. In some cases, high alendronate +ve nanocrystal counts indicated a Ca(2+) or Mg(2+) composition, as confirmed by petrographic analysis, overturning initial spectrophotometric diagnosis of stone composition. The combination of nanoscale flow cytometry and petrographic thin sections offer an alternative means for determining stone composition. Nanoscale flow cytometry of alendronate +ve nanocrystals alone may provide a high-throughput means of evaluating stone burden.

  10. 77 FR 74669 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... INFORMATION: I. Background In the Federal Register of June 11, 2010 (75 FR 33311), FDA announced the... FR 56851). This notice announces draft product-specific recommendations, either new or revised, that... Risedronate sodium T Tacrolimus Thalidomide Tinidazole For a complete history of previously published...

  11. In Vitro Antimalarial Activity of Different Inhibitors of the Plasmodial Isoprenoid Synthesis Pathway.

    PubMed

    da Silva, Marcia F; Saito, Alexandre Y; Peres, Valnice J; Oliveira, Antonio C; Katzin, Alejandro M

    2015-08-01

    Previous studies have shown that fosmidomycin, risedronate, and nerolidol exert antimalarial activity in vitro. We included squalestatin, an inhibitor of the isoprenoid metabolism in Erwinia uredovora, and found that combinations of compounds which act on different targets of the plasmodial isoprenoid pathway possess important supra-additivity effects. PMID:26055383

  12. In Vitro Antimalarial Activity of Different Inhibitors of the Plasmodial Isoprenoid Synthesis Pathway

    PubMed Central

    da Silva, Marcia F.; Saito, Alexandre Y.; Peres, Valnice J.; Oliveira, Antonio C.

    2015-01-01

    Previous studies have shown that fosmidomycin, risedronate, and nerolidol exert antimalarial activity in vitro. We included squalestatin, an inhibitor of the isoprenoid metabolism in Erwinia uredovora, and found that combinations of compounds which act on different targets of the plasmodial isoprenoid pathway possess important supra-additivity effects. PMID:26055383

  13. Heel ultrasound can assess maintenance of bone mass in women with breast cancer.

    PubMed

    Langmann, Gabrielle A; Vujevich, Karen T; Medich, Donna; Miller, Megan E; Perera, Subashan; Greenspan, Susan L

    2012-01-01

    Postmenopausal women with early stage breast cancer are at increased risk for bone loss and fractures. Bisphosphonates can prevent bone loss, but little data are available on changes in bone mass assessed by heel quantitative ultrasound (QUS). Our objectives were to determine if (1) heel QUS would provide a reliable and accessible method for evaluation of changes in bone mass in women with breast cancer when compared with the current standard of bone mass measurement, dual-energy X-ray absorptiometry (DXA) and (2) oral risedronate could affect these changes. Eighty-six newly postmenopausal (up to 8 yr) women with nonmetastatic breast cancer were randomized to risedronate, 35 mg once weekly or placebo. Outcomes were changes in heel QUS bone mass measurements and conventional DXA-derived bone mineral density (BMD). Over 2 yr, bone mass assessed by heel QUS remained stable in women on risedronate, whereas women on placebo had a 5.2% decrease (p ≤ 0.05) in heel QUS bone mass. Both total hip BMD and femoral neck BMD assessed by DXA decreased by 1.6% (p ≤ 0.05) in the placebo group and remained stable with risedronate. Spine BMD remained stable in both groups. Heel QUS was moderately associated with BMD measured by DXA at the total hip (r=0.50), femoral neck (r=0.40), and spine (r=0.46) at baseline (all p ≤ 0.001). In conclusion, risedronate helps to maintain skeletal integrity as assessed by heel QUS for women with early stage breast cancer. Heel QUS is associated with DXA-derived BMD at other major axial sites and may be used to follow skeletal health and bone mass changes in these women.

  14. Bisphosphonate release profiles from magnetite microspheres.

    PubMed

    Miyazaki, Toshiki; Inoue, Tatsuya; Shirosaki, Yuki; Kawashita, Masakazu; Matsubara, Takao; Matsumine, Akihiko

    2014-10-01

    Hyperthermia has been suggested as a novel, minimally invasive cancer treatment method. After implantation of magnetic nano- or microparticles around a tumour through blood vessels, irradiation with alternating magnetic fields facilitates the efficient in situ hyperthermia even for deep-seated tumours. On the basis of this idea, if the microspheres are capable of delivering drugs, they could be promising multifunctional biomaterials effective for chemotherapy as well as hyperthermia. In the present study, magnetite microspheres were prepared by aggregation of the iron oxide colloid in water-in-oil (W/O) emulsion. The release behaviour of alendronate, a typical bisphosphonate, from the microspheres was examined in vitro as a model of the bone tumour prevention and treatment system. The alendronate was successfully incorporated onto the porous magnetite microspheres in vacuum conditions. The drug-loaded microspheres maintained their original spherical shapes even after shaking in ultrapure water for 3 days, suggesting that they have sufficient mechanical integrity for clinical use. It was attributed to high aggregation capability of the magnetite nanoparticles through van der Waals and weak magnetic attractions. The microspheres showed slow release of the alendronate in vitro, resulting from tight covalent or ionic interaction between the magnetite and the alendronate. The release rate was diffusion-controlled type and well controlled by the alendronate concentration in drug incorporation to the microspheres.

  15. Bisphosphonate release profiles from magnetite microspheres.

    PubMed

    Miyazaki, Toshiki; Inoue, Tatsuya; Shirosaki, Yuki; Kawashita, Masakazu; Matsubara, Takao; Matsumine, Akihiko

    2014-10-01

    Hyperthermia has been suggested as a novel, minimally invasive cancer treatment method. After implantation of magnetic nano- or microparticles around a tumour through blood vessels, irradiation with alternating magnetic fields facilitates the efficient in situ hyperthermia even for deep-seated tumours. On the basis of this idea, if the microspheres are capable of delivering drugs, they could be promising multifunctional biomaterials effective for chemotherapy as well as hyperthermia. In the present study, magnetite microspheres were prepared by aggregation of the iron oxide colloid in water-in-oil (W/O) emulsion. The release behaviour of alendronate, a typical bisphosphonate, from the microspheres was examined in vitro as a model of the bone tumour prevention and treatment system. The alendronate was successfully incorporated onto the porous magnetite microspheres in vacuum conditions. The drug-loaded microspheres maintained their original spherical shapes even after shaking in ultrapure water for 3 days, suggesting that they have sufficient mechanical integrity for clinical use. It was attributed to high aggregation capability of the magnetite nanoparticles through van der Waals and weak magnetic attractions. The microspheres showed slow release of the alendronate in vitro, resulting from tight covalent or ionic interaction between the magnetite and the alendronate. The release rate was diffusion-controlled type and well controlled by the alendronate concentration in drug incorporation to the microspheres. PMID:24854985

  16. Bisphosphonate-modified gold nanoparticles: a useful vehicle to study the treatment of osteonecrosis of the femoral head

    NASA Astrophysics Data System (ADS)

    Fanord, Fedena; Fairbairn, Korie; Kim, Harry; Garces, Amanda; Bhethanabotla, Venkat; Gupta, Vinay K.

    2011-01-01

    Legg-Calvé-Perthes disease (LCPD) is a juvenile form of osteonecrosis of the femoral head that presents in children aged 2-14 years. To date, there is no effective medical therapy for treating LCPD largely due to an inability to modulate the repair process, including the predominance of bone resorption. This investigation aims to evaluate the feasibility of using gold nanoparticles (GNPs) that are surface modified with a bisphosphonate compound for the treatment of osteonecrosis at the cellular level. Studies have found osteoclast-mediated resorption to be a process that contributes significantly to the pathogenesis of femoral head deformities arising from Perthes disease. Our in vitro model was designed to elucidate the effect of alendronate-(a bisphosphonate) modified GNPs, on osteoclastogenesis and osteoclast function. RAW 264.7 macrophage cells were cultured with recombinant mouse receptor activator of NF-κB ligand (RANKL), which stimulates osteoclastogenesis, and were then treated with alendronate-modified GNPs for 24, 48, and 72 h. Cell proliferation, osteoclast function, and osteoclast morphology were evaluated by trypan blue dye exclusion assay, tartrate-resistant acid phosphatase (TRAP) staining, and transmission electron microscopy (TEM) imaging. Comparative studies were performed with GNPs that were only stabilized with citrate ions and with alendronate alone. Neither osteoclastogenesis nor osteoclast function were adversely affected by the presence of the citrate-GNP. Alendronate-modified GNPs had an enhanced effect on inducing osteoclast apoptosis and impairing osteoclast function when compared to unbound alendronate populations.

  17. Osteogenic Activity of Locally Applied Small Molecule Drugs in a Rat Femur Defect Model

    PubMed Central

    Cottrell, Jessica A.; Vales, Francis M.; Schachter, Deborah; Wadsworth, Scott; Gundlapalli, Rama; Kapadia, Rasesh; O'Connor, J. Patrick

    2010-01-01

    The long-term success of arthroplastic joints is dependent on the stabilization of the implant within the skeletal site. Movement of the arthroplastic implant within the bone can stimulate osteolysis, and therefore methods which promote rigid fixation or bone growth are expected to enhance implant stability and the long-term success of joint arthroplasty. In the present study, we used a simple bilateral bone defect model to analyze the osteogenic activity of three small-molecule drug implants via microcomputerized tomography (micro-CT) and histomorphometry. In this study, we show that local delivery of alendronate, but not lovastatin or omeprazole, led to significant new bone formation at the defect site. Since alendronate impedes osteoclast-development, it is theorized that alendronate treatment results in a net increase in bone formation by preventing osteoclast mediated remodeling of the newly formed bone and upregulating osteoblasts. PMID:20625499

  18. Severe hypocalcemia following bisphosphonate treatment in a patient with Paget's disease of bone.

    PubMed

    Whitson, Heather E; Lobaugh, Bruce; Lyles, Kenneth W

    2006-10-01

    Bisphosphonate therapy is a common and effective treatment for Paget's disease of bone, osteoporosis, hypercalcemia of malignancy and cancer metastatic to bone. Clinically significant hypocalcemia has not been reported in patients with Paget's disease of bone and normal parathyroid function treated with an aminobisphosphonate. We treated a 52-year-old woman with polyostotic Paget's disease of bone (serum alkaline phosphatase level-1971 IU/L [normal 31-110 IU/L]), who had not previously received bisphosphonates, with daily oral 30 mg risedronate, oral 1000 mg elemental calcium and oral 400 IU cholecalciferol. After 10 days of treatment, she developed severe hypocalcemia (5.4 mg/dL [normal 8.7-10.2 mg/dL]), requiring hospitalization and support with 5 days of intravenous calcium gluconate. On the day risedronate treatment began, her PTH was low normal at 14 pg/mL (normal 12-72 pg/mL), consistent with a relatively suppressed PTH axis due to high bone turnover. Her vitamin D level was within normal limits (serum 25(OH)D 19 ng/mL [normal 8-38 ng/mL]), although possibly not optimally repleted. We hypothesize that this case represents an example of hungry bone syndrome in a patient with extensive Paget's disease of bone who received risedronate, causing acute suppression of bone resorption while elevated bone formation rates continued. In the year following her recovery, the patient was successfully treated with slowly titrated anti-resorptive therapy (subcutaneous calcitonin followed by titrated doses of risedronate), and is now clinically well. Physicians should be aware of the potential for hypocalcemia when patients with polyostotic Paget's disease and markedly elevated indicators of bone remodeling are initiated on powerful anti-resorptive therapy.

  19. Studies of the Effectiveness of Bisphosphonate and Vanadium-Bisphosphonate Compounds In Vitro against Axenic Leishmania tarentolae

    PubMed Central

    Christensen, Amy T.; McLauchlan, Craig C.; Dolbecq, Anne; Mialane, Pierre; Jones, Marjorie A.

    2016-01-01

    Leishmaniasis is a disease that is a significant problem for people, especially in tropical regions of the world. Current drug therapies to treat the disease are expensive, not very effective, and/or of significant side effects. A series of alkyl bisphosphonate compounds and one amino bisphosphonate compound, as well as alendronate and zoledronate, were tested as potential agents against Leishmania tarentolae. Also, two polyoxometalates (POMs) with nitrogen-containing bisphosphonate ligands, vanadium/alendronate (V5(Ale)2) and vanadium/zoledronate (V3(Zol)3), were tested against L. tarentolae and compared to the results of the alendronate and zoledronate ligands alone. Of the compounds evaluated in this study, the V5(Ale)2 and V3(Zol)3 complexes were most effective in inhibiting the growth of L. tarentolae. The V5(Ale)2 complex had a larger impact on cell growth than either alendronate or orthovanadate alone, whereas zoledronate itself has a significant effect on cell growth, which may contribute to the activity of the V3(Zol)3 complex. PMID:27034744

  20. [Curative effects of pulsed electromagnetic fields on postmenopausal osteoporosis].

    PubMed

    Liu, Huifang; Liu, Ying; Yang, Lin; Wang, Chunyan; Wu, Yuanchao; He, Chengqi

    2014-02-01

    We investigated the effects and optimal treatment frequency of pulsed electromagnetic fields (PEMFs) on postmenopausal osteoporosis (PMO). A comparison was performed with the cyclical alendronate and a course of PEMFs in the treatment for postmenopausal osteoporosis on bone mineral density (BMD), pain intensity and balance function. There was no significant difference between the two groups on mean percentage changes from baseline of BMD within 24 weeks after random treatments (P > or = 0.05). However, at the ends of 48 weeks and 72 weeks, the BMD of the PEMFs group were significantly lower than that of the alendronate group (P < 0.05). No significant difference was detected between the two groups with regard to treatment effects on Visual Analogue Scale score, the Timed Up & Go Test and Berg Balance Scale score. Compared with cyclical alendronate, a course of PEMFs was as effective as alendronate in treating PMO for at least 24 weeks. So its optimal treatment frequency for PMO may be one course per six months.

  1. Maintaining Restored Bone with Bisphoshonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  2. Maintaining Restored Bone with Bisphosphonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an antiresorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE(sub 2)kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE(sub 2) treatment and began treatment with 1 or 5 micrograms/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the Proximal Tibial Metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE(sub 2) treatment was stopped, the PGE(sub 2)-induced cancellous bone disappeared. In contrast, 5 miligrams of Risedronate inhibited the bone loss and maintained it at the PGE(sub 2) treatment level. The key dynamic histomorphometry value for the Restore (R) and Maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 miligram Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5miligrams Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE(sub 2) after discontinuing PGE(sub 2) by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  3. Osteoporosis and venous thromboembolism: a retrospective cohort study in the UK General Practice Research Database

    PubMed Central

    Cooper, C.; Meyer, O.; Speirs, C.; Deltour, N.; Reginster, J. Y.

    2009-01-01

    Summary In a retrospective cohort study using the General Practice Research Database (GPRD), there was a greater association of venous thromboembolism (VTE) in osteoporotic than in non-osteoporotic female patients. No greater association was shown in treated patients with strontium ranelate or alendronate compared to untreated osteoporotic female patients. Introduction We explored the risk of VTE in usual practice in osteoporotic and non-osteoporotic women with and without anti-osteoporotic treatment. Methods A retrospective study was conducted using the GPRD in the UK. The cohorts consisted of untreated osteoporotic women (N = 11,546), osteoporotic women treated with alendronate (N = 20,084), or strontium ranelate (N = 2,408), and a sample of non-osteoporotic women (N = 115,009). Cohorts were compared using a Cox proportional hazards regression model. Results There was a significantly increased relative risk for VTE in untreated osteoporotic women versus non-osteoporotic women (annual incidence 5.6 and 3.2 per 1,000 patient–years, respectively; relative risk 1.75 [95% confidence interval (CI), 1.09–1.84]). Results were confirmed using adjusted models. The annual incidences of VTE in osteoporotic patients treated with strontium ranelate and alendronate were 7.0 and 7.2 per 1,000 patient–years, respectively, with no significant difference between untreated and treated patients whatever the treatment. Adjusted hazard ratios for treated versus untreated osteoporotic women were 1.09 (95% CI, 0.60–2.01) for strontium ranelate and 0.92 (95% CI, 0.63–1.33) for alendronate. Conclusion This study shows a greater association of VTE in osteoporotic compared to non-osteoporotic patients, but does not show any greater association in treated patients with strontium ranelate or alendronate compared to untreated osteoporotic patients. PMID:19806285

  4. Restoring and Maintaining Bone in Osteopenic Female Rat Skeleton. Part 1; Changes in Bone Mass and Structure

    NASA Technical Reports Server (NTRS)

    Tang, Li Ya; Jee, Webster S. S.; Ke, Hua Zhu; Kimmel, Donald B.

    1992-01-01

    This experiment contains the crucial data for the lose, restore, and maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses anabolic agents to restore bone mass and architecture (+ phase) and then switches to an agent with the established ability to maintain bone mass, to keep the new bone (+/- phase). The purpose of this study was to learn whether switching to an agent known chiefly for its ability to maintain existing bone mass preserves new bone induced by PGE2, in osteopenic,estrogen-depleted rats. The current study had three phases, the bone loss (-), restore (+), and maintain (+/-) phases. We ovariectomized (OX) or sham ovariectomized (sham-OX) 5.5 month-old female rats (- phase). The OX rats were treated 5 months postovariectomy with 1-6 mg PGE2, per kg/day for 75 days to restore lost cancellous bone mass (+ phase), and then PGE2, treatment was stopped and treatment began with 1 or 5 micro-g/kg of risedronate, a bisphosphonate, twice a week for 60 days (+/- phase). During the loss (-) phase, the cancellous bone volume of the proximal tibial metaphysis in the OX rat fell to 19% of initial and 30% of age-matched control levels. During the restore (+) phase, the cancellous bone volume in OX rats doubled. When PGE2 treatment was stopped, however, and no special maintenance efforts were made during the maintain (+/-) phase, the PGE2-induced cancellous bone disappeared. In contrast, the PGE2-induced cancellous bone persisted when the PGE2 treatment was followed by either a 1 or 5 micro-g treatment of risedronate per kg given twice a week for 60 days during the maintain (+/-) phase. The tibial shaft demonstrated very little cortical bone loss during the loss (-) phase in OX rats. The tibial shaft cortical bone fell some 8%. During the restore (+) phase, new cortical bone in OX rats increased by 22%. When PGE2 treatment was stopped and nothing was given during the maintain (+/-) phase, however, all but the PGE2-induced

  5. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine.

    PubMed

    Sun, Shuting; Błażewska, Katarzyna M; Kadina, Anastasia P; Kashemirov, Boris A; Duan, Xuchen; Triffitt, James T; Dunford, James E; Russell, R Graham G; Ebetino, Frank H; Roelofs, Anke J; Coxon, Fraser P; Lundy, Mark W; McKenna, Charles E

    2016-02-17

    A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.

  6. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine.

    PubMed

    Sun, Shuting; Błażewska, Katarzyna M; Kadina, Anastasia P; Kashemirov, Boris A; Duan, Xuchen; Triffitt, James T; Dunford, James E; Russell, R Graham G; Ebetino, Frank H; Roelofs, Anke J; Coxon, Fraser P; Lundy, Mark W; McKenna, Charles E

    2016-02-17

    A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications. PMID:26646666

  7. Update of the Bisphosphonate ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackelford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is an international collaboration between the NASA and JAXA space agencies to investigate the potential value of antiresorptive drugs to mitigate the well-established bone changes associated with long-duration spaceflight. Our hypothesis is that an antiresorptive drug in combination with in-flight exercise will ameliorate bone loss and hypercalcuria during long-duration spaceflight. We have completed data analysis for 7 crewmembers treated with alendronate during flight and 3 of 10 controls without treatment. We previously reported the pre/postflight changes in bone density and the pre versus in-flight changes in various biomarkers in crewmembers taking alendronate during flight. The purpose of this report is to compare these results with the 12- month follow-up data. The table below presents these data as a percentage change from baseline either immediately postflight or in-flight (biochemical markers) with a 1-year follow-up.

  8. Bisphosphonate-associated osteonecrosis of the jaw, with healing after teriparatide: a review of the literature and a case report.

    PubMed

    Narongroeknawin, Pongthorn; Danila, Maria I; Humphreys, Lewis G; Barasch, Andrei; Curtis, Jeffrey R

    2010-01-01

    This paper reports the case history of a patient who had bisphosphonate-associated osteonecrosis of the jaw (ONJ) in which adjunctive treatment with teriparatide was used. The patient was treated for 5 years with alendronate for osteoporosis and developed ONJ after extraction of maxillary teeth. An implant was placed at the site of the extracted teeth. The pathology report confirmed the clinical diagnosis of ONJ; treatment was changed from alendronate to teriparatide and the ONJ resolved. To our knowledge, this is the third case history reported in the literature in which teriparatide was successfully used as adjunct therapy in ONJ because it has an anabolic effect and presumed role in accelerating bone healing. ONJ is a serious but infrequent condition that has been recently associated with nitrogen-containing bisphosphonate therapy. Teriparatide may be a useful adjunctive therapy when ONJ develops.

  9. Effect of methylprednisolone on bone mineral density in rats with ovariectomy-induced bone loss and suppressed endogenous adrenaline levels by metyrosine

    PubMed Central

    Yilmaz, Mehmet; Isaoglu, Unal; Uslu, Turan; Yildirim, Kadir; Seven, Bedri; Akcay, Fatih; Hacimuftuoglu, Ahmet

    2013-01-01

    Objectives: In this study, effect of methylprednisolone on bone mineral density (BMD) was investigated in rats with overiectomy induced bone lose and suppressed endogenous adrenalin levels, and compared to alendronate. Materials and Methods: Severity of bone loss in the examined material (femur bones) was evaluated by BMD measurement. Results: The group with the highest BMD value was metyrosinemetyrosine + methylprednisolone combination (0.151 g/cm2), while that with the lowest BMD was methylprednisolone (0.123 g/cm2). Alendronate was effective only when used alone in ovariectomized rats (0.144 g/cm2), but not when used in combination with methylprednisolone (0.124 g/cm2). In the ovariectomized rat group which received only metyrosine, BMD value was statistically indifferent from ovariectomized control group. Conclusions: Methylprednisolone protected bone loss in rats with suppressed adrenaline levels because of metyrosinemetyrosine. PMID:24014908

  10. The Role of Muscle Loading on Bone (Re)modeling at the Developing Enthesis

    PubMed Central

    Tatara, Alexander M.; Lipner, Justin H.; Das, Rosalina; Kim, H. Mike; Patel, Nikunj; Ntouvali, Eleni; Silva, Matthew J.; Thomopoulos, Stavros

    2014-01-01

    Muscle forces are necessary for the development and maintenance of a mineralized skeleton. Removal of loads leads to malformed bones and impaired musculoskeletal function due to changes in bone (re)modeling. In the current study, the development of a mineralized junction at the interface between muscle and bone was examined under normal and impaired loading conditions. Unilateral mouse rotator cuff muscles were paralyzed using botulinum toxin A at birth. Control groups consisted of contralateral shoulders injected with saline and a separate group of normal mice. It was hypothesized that muscle unloading would suppress bone formation and enhance bone resorption at the enthesis, and that the unloading-induced bony defects could be rescued by suppressing osteoclast activity. In order to modulate osteoclast activity, mice were injected with the bisphosphonate alendronate. Bone formation was measured at the tendon enthesis using alizarin and calcein fluorescent labeling of bone surfaces followed by quantitative histomorphometry of histologic sections. Bone volume and architecture was measured using micro computed tomography. Osteoclast surface was determined via quantitative histomorphometry of tartrate resistant acid phosphatase stained histologic sections. Muscle unloading resulted in delayed initiation of endochondral ossification at the enthesis, but did not impair bone formation rate. Unloading led to severe defects in bone volume and trabecular bone architecture. These defects were partially rescued by suppression of osteoclast activity through alendronate treatment, and the effect of alendronate was dose dependent. Similarly, bone formation rate was increased with increasing alendronate dose across loading groups. The bony defects caused by unloading were therefore likely due to maintained high osteoclast activity, which normally decreases from neonatal through mature timepoints. These results have important implications for the treatment of muscle unloading

  11. [New data on biphosphonate therapy: are therapeutic holidays advisable?].

    PubMed

    Casado Burgos, Enrique

    2011-09-01

    Bisphosphonates are potent antiresorptive agents proven to be highly effective in vertebral and non-vertebral fractures. However, the reported complications associated with long-term use have led to questions on indefinite treatment. After administration of alendronate there is a high retention of the drug due to slow skeletal release as a result of bone resorption (half-life of more than 10 years), and it seems logical to propose a cessation of treatment (drug holidays) after prolonged treatment. The largest study published to date that assesses the effects on bone mineral density (BMD) and fractures with maintained or discontinued alendronate treatment is the FLEX (Fracture Intervention Trial Long-term Extension) trial. This study showed that discontinuation of alendronate for up to 5 years, after 5 years of treatment, the anti-resorptive effect is slowly lost, mainly in the lumbar spine (approximately 1.5% in 5 years), as well as a slow and progressive loss of femur BMD (<3% in 5 years), but maintains its vertebral (morphometric) and non-vertebral anti-fracture efficacy. In this context, the American Society for Bone and Mineral Research recommended that continued use of bisphosphonates beyond 5 years should be reevaluated annually, assessing factors such as BMD, particularly in the hip region, fracture history, newly diagnosed underlying conditions or initiation of other medications known to affect skeletal status, and new research findings in a rapidly evolving field. However, the molecular differences between bisphosphonates, provides them different affinity and antiresorptive potency, so we can not extrapolate these recommendations to bisphosphonates other than alendronate.

  12. [Bone metastases in breast carcinoma].

    PubMed

    Teut, Michael; Warning, Albrecht

    2006-02-01

    The case of a 66-year-old patient with multiple osteolytic bone metastases caused by breast cancer is presented. The patient refused conventional pain therapy although she suffered from severe pain. A complementary therapy with homoeopathic high potencies, devil's-claw extract, enzymes, alendronate and orthomolecular substitution as well as physiotherapy resulted in effective pain relief over a period of 1 year. The case is discussed. PMID:16582551

  13. Effects of eight-month treatment with ONO-5334, a cathepsin K inhibitor, on bone metabolism, strength and microstructure in ovariectomized cynomolgus monkeys.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Nakanishi, Yasutomo; Nishikawa, Satoshi; Kayasuga, Ryoji; Kawada, Naoki; Kunishige, Akiko; Hashimoto, Yasuaki; Tanaka, Makoto; Sugitani, Masafumi; Kawabata, Kazuhito

    2014-08-01

    This study examined the effect of ONO-5334, a cathepsin K inhibitor, on bone turnover, mineral density (BMD), mechanical strength and microstructure in ovariectomized (OVX) cynomolgus monkeys. Vehicle, ONO-5334 (3, 10 or 30 mg/kg) or alendronate (0.5 mg/kg) was orally administered for eight months to sham- and OVX-operated monkeys. ONO-5334 dose-dependently suppressed OVX-induced increase in bone turnover markers (urinary C-terminal cross-linking telopeptide of type I collagen (CTX) and serum osteocalcin). At the dose of 30 mg/kg, ONO-5334 maintained urinary CTX at nearly zero level and kept serum osteocalcin around the level of the sham animals. Marker levels in the alendronate-treated animals were similar to those in the sham animals throughout the study. ONO-5334 dose-dependently reversed the effect of OVX on vertebral BMD as measured by dual-energy X-ray absorptiometry (DXA) with improvement of bone mechanical strength. Both ONO-5334 and alendronate suppressed OVX-induced changes in vertebral microstructure and turnover state. In the femoral neck, peripheral quantitative computed tomography (pQCT) analysis showed that ONO-5334 increased total and cortical BMD. In particular, ONO-5334 significantly increased cortical BMD with improvement of bone mechanical strength. In microstructural analysis, alendronate suppressed OVX-induced increase in femoral mid-shaft osteonal bone formation rate (BFR) to a level below that recorded in the sham group, whereas ONO-5334 at 30 mg/kg did not suppress periosteal, osteonal and endocortical BFR. This finding supports the significant effect of ONO-5334 on cortical BMD and mechanical strength in the femoral neck. The results of this study suggest that ONO-5334 has good therapeutic potential for the treatment of osteoporosis.

  14. Differences in osteoclast formation between proximal and distal tibial osteoporosis in rats with adjuvant arthritis: inhibitory effects of bisphosphonates on osteoclasts.

    PubMed

    Shu, Goukei; Yamamoto, Kaname; Nagashima, Masakazu

    2006-01-01

    Patients with rheumatoid arthritis commonly suffer both systemic and periarticular osteoporosis. Bisphosphonates (BPs) are inhibitors of bone resorption, and several derivatives have been developed for treatment of enhanced bone resorption. We aimed to characterize osteoclast formation in two different sites, the proximal tibial and distal tibial areas, in rats with adjuvant arthritis, and to investigate the impact of amino or non-amino types of bisphosphonate. Adjuvant arthritis was initiated in rats while administering daily injections of either etidronate, a non-amino BP, or alendronate, an amino BP, for 3 weeks. On the day following the last injection, bone mineral density (BMD) was measured in the proximal tibia to assess systemic osteoporosis and in the distal tibia for periarticular osteoporosis using dual-energy X-ray absorptiometry. Subsequently, bone marrow cells from either end of the tibia were collected and incubated for 7 days before staining and counting tartrate-resistant acid phosphatase positive cells. In the rats with adjuvant arthritis, BMD of either end of the tibia was lower than in normal rats. Although etidronate prevented bone mineral loss at both ends, distal loss was significantly less than proximal. In contrast, alendronate significantly inhibited mineral loss primarily in the proximal area. Large osteoclasts, defined as having five or more nuclei, formed preferentially in the proximal tibia, while small osteoclasts with fewer than four nuclei were found mainly distally. The suppressive effect of alendronate was greater on the large osteoclasts, while etidronate had a greater effect on the small osteoclasts. These results show that the size and multinuclearity of osteoclasts and the number of osteoclasts formed are different in the distal and proximal areas of the tibia, and that alendronate and etidronate may suppress different types of osteoclasts as discriminated by the number of nuclei. PMID:17164994

  15. The Effect of Osteoporosis Treatments on Fatigue Properties of Cortical Bone Tissue

    PubMed Central

    Brock, Garry R.; Chen, Julia T.; Ingraffea, Anthony R.; MacLeay, Jennifer; Pluhar, G. Elizabeth; Boskey, Adele L.; van der Meulen, Marjolein C.H.

    2015-01-01

    Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFF). AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical bone are unknown. To examine if fatigue-life differences occur in bone tissue after different pharmacologic treatments for osteoporosis, we tested bone tissue from the femurs of sheep given a metabolic acidosis diet to induce osteoporosis, followed by treatment with a selective estrogen reception modulator (raloxifene), a bisphosphonate (alendronate or zoledronate), or parathyroid hormone (teriparatide, PTH). Beams of cortical bone tissue were created and tested in four-point bending fatigue to failure. Tissues treated with alendronate had reduced fatigue life and less modulus loss at failure compared to other treatments, while tissue treated with PTH had a prolonged fatigue life. No loss of fatigue life occurred with zoledronate treatment despite its greater binding affinity and potency compared to alendronate. Tissue mineralization measured by microCT did not explain the differences seen in fatigue behavior. Increased fatigue life with PTH suggests that current treatment methods for AFF could have beneficial effects for restoring fatigue life. These results indicate that fatigue life differs with each type of osteoporosis treatment. PMID:25642445

  16. Safety and efficacy of the cathepsin K inhibitor ONO-5334 in postmenopausal osteoporosis: the OCEAN study.

    PubMed

    Eastell, Richard; Nagase, Shinichi; Ohyama, Michiyo; Small, Maria; Sawyer, James; Boonen, Steven; Spector, Tim; Kuwayama, Tomohiro; Deacon, Steve

    2011-06-01

    Osteoporosis occurs when there is an imbalance between resorption and formation of bone, with resorption predominating. Inhibitors of cathepsin K may rebalance this condition. This is the first efficacy study of a new cathepsin K inhibitor, ONO-5334. The objective of the study was to investigate the efficacy and safety of ONO-5334 in postmenopausal osteoporosis. This was a 12-month, randomized, double-blind, placebo- and active-controlled parallel-group study conducted in 13 centers in 6 European countries. Subjects included 285 postmenopausal women aged 55 to 75 years with osteoporosis. Subjects were randomized into one of five treatment arms: placebo; 50 mg twice daily, 100 mg once daily, or 300 mg once daily of ONO-5334; or alendronate 70 mg once weekly. Lumbar spine, total hip, and femoral neck BMD values were obtained along with biochemical markers of bone turnover and standard safety assessments. All ONO-5334 doses and alendronate showed a significant increase in BMD for lumbar spine, total hip (except 100 mg once daily), and femoral neck BMD. There was little or no suppression of ONO-5334 on bone-formation markers compared with alendronate, although the suppressive effects on bone-resorption markers were similar. There were no clinically relevant safety concerns. With a significant increase in BMD, ONO-5334 also demonstrated a new mode of action as a potential agent for treating osteoporosis. Further clinical studies are warranted to investigate long-term efficacy as well as safety of ONO-5334.

  17. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids. PMID:25736591

  18. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids.

  19. Successful conservative treatment: multiple atypical fractures in osteoporotic patients after bisphosphate medication: a unique case report.

    PubMed

    Kim, Hyo-Sang; Jung, Han Young; Kim, Myeong-Ok; Joa, Kyung-Lim; Kim, Yeo Ju; Kwon, Su-Yeon; Kim, Chang-Hwan

    2015-02-01

    Bisphosphonates have been commonly used for the treatment of osteoporosis. However, there have been recent case reports of atypical fractures citing their long-term use, which inhibits the turnover of bone components. A 64-year-old woman visited the outpatient clinic with pain in her right thigh and ambulation difficulty. We found fractures at both pedicles of L4 vertebra. subtrochanteric region of right femur, and left femoral shaft upon a radiologic examination. She had taken intravenous ibandronic sodium for osteoporosis over 3 years. We changed the bishophonates to a parathyroid hormone because it was suspected that the multiple fractures were caused by the medication. Further, rehabilitation, including progressive weight bearing, was started. After 3 months of the conservative treatment, she was able to walk independently. In conclusion, it is necessary to evaluate the possibility of atypical fractures in osteoporotic patients when they complain of lower extremity pain and to consider alternative treatments instead of bisphosphonates.

  20. Restoring and maintaining bone in osteopenic female rat skeleton: I. Changes in bone mass and structure

    NASA Technical Reports Server (NTRS)

    Tang, L. Y.; Jee, W. S.; Ke, H. Z.; Kimmel, D. B.

    1992-01-01

    This experiment contains the crucial data for the lose, restore, and maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses anabolic agents to restore bone mass and architecture (+ phase) and then switches to an agent with the established ability to maintain bone mass, to keep the new bone (+/- phase). The purpose of this study was to learn whether switching to an agent known chiefly for its ability to maintain existing bone mass preserves new bone induced by PGE2 in osteopenic, estrogen-depleted rats. The current study had three phases, the bone loss (-), restore (+), and maintain (+/-) phases. We ovariectomized (OX) or sham ovariectomized (sham-OX) 5.5-month-old female rats (- phase). The OX rats were treated 5 months postovariectomy with 1-6 mg PGE2 per kg/day for 75 days to restore lost cancellous bone mass (+ phase), and then PGE2 treatment was stopped and treatment began with 1 or 5 micrograms/kg of risedronate, a bisphosphonate, twice a week for 60 days (+/- phase). During the loss (-) phase, the cancellous bone volume of the proximal tibial metaphysis in the OX rat fell to 19% of initial and 30% of age-matched control levels. During the restore (+) phase, the cancellous bone volume in OX rats doubled. When PGE2 treatment was stopped, however, and no special maintenance efforts were made during the maintain (+/-) phase, the PGE2-induced cancellous bone disappeared. In contrast, the PGE2-induced cancellous bone persisted when the PGE2 treatment was followed by either a 1 or 5 micrograms treatment of risedronate per kg given twice a week for 60 days during the maintain (+/-) phase. The tibial shaft demonstrated very little cortical bone loss during the loss (-) phase in OX rats. The tibial shaft cortical bone fell some 8%. During the restore (+) phase, new cortical bone in OX rats increased by 22%. When PGE2 treatment was stopped and nothing was given during the maintain (+/-) phase, however, all but the PGE2

  1. Impact of equol-producing capacity and soy-isoflavone profiles of supplements on bone calcium retention in postmenopausal women: a randomized crossover trial12

    PubMed Central

    Pawlowski, Jessica W; Martin, Berdine R; McCabe, George P; McCabe, Linda; Jackson, George S; Peacock, Munro; Barnes, Stephen; Weaver, Connie M

    2015-01-01

    Background: Postmenopausal estrogen depletion is a major contributing factor to bone loss. Soy isoflavones have variable effects on the prevention of postmenopausal bone loss, which is possibly related to the specific isoflavone content or the variable equol-producing capacity of individuals. Objective: We aimed to determine the effects of the content of isoflavones in a soy supplement and the equol-producing ability of the individual on postmenopausal bone calcium retention. Design: The study was a blinded, randomized, crossover intervention trial in 24 postmenopausal women who were prescreened for their ability to convert daidzein to equol. Women were equilibrated with 41Ca before the intervention. Interventions were 5 soy isoflavone oral supplements (2 doses of a genistein-rich soy supplement and 3 doses of mixed isoflavones in various proportions) and a bisphosphonate (risedronate). Each intervention was given sequentially for 50 d followed by a 50-d washout period. The percentage of bone calcium retention was determined from the change in urinary 41Ca:calcium. Results: Interventions that ranged from 52 to 220 mg total isoflavones/d increased bone calcium retention between 3.4% and 7.6% (P < 0.05), which was a moderate effect compared with that of risedronate at 15.3% (95% CI: 7.1%, 22.7%; P = 0.0014). The most-effective soy intervention delivered 105.23 mg total isoflavones/d as genistein, daidzein, and glycitein in their natural ratios and increased bone calcium retention by 7.6% (95% CI: 4.9%, 10.2%; P < 0.0001). Genistein, at 52.85 mg/d, increased bone calcium retention by 3.4% (95% CI: 0.5%, 6.2%; P = 0.029); but there was no benefit at higher amounts (113.52 mg/d). There was no difference (P = 0.5) in bone calcium retention between equol producers and nonproducers. Conclusion: Soy isoflavones, although not as potent as risedronate, are effective bone-preserving agents in postmenopausal women regardless of their equol-producing status, and mixed

  2. Normalization of bone mineral density after five years of treatment with strontium ranelate.

    PubMed

    Sánchez, Julio Ariel

    2015-01-01

    E.F., female, age 58, mother of 4 children and otherwise healthy, had gone into menopause when she was 42. She had received hormone replacement therapy during 8 years. Due to low bone mass she had been treated with oral alendronate during 7 years. She had a normal calcium intake in her diet and engaged in regular physical activity. She did not smoke, and drank alcohol only occasionally. Her mother had sustained a hip fracture at age 90. Bone densitometry of her lumbar spine by DXA showed a T-score of -3.0; standardized bone mineral density (sBMD) had decreased by 11% in the previous 3 years. She was advised to start treatment with strontium ranelate (SrR) 2 g/day, plus oral cholecalciferol (1,000 IU/day). Three months later serum alkaline phosphatase had increased 10%, and serum osteocalcin was 18.9 ng/ml (upper normal limit 13.7). One year later her lumbar BMD had increased by 13.5%. After five years of treatment the BMD value was normal (1.357 g/cm(2); T-score -0.3). The case presented here is noteworthy for two reasons. Firstly, the patient maintained low bone mass after several years of combined treatment with alendronate and hormone replacement; this combination usually induces greater densitometric responses than either treatment given alone. Secondly, she responded promptly and significantly to SrR in spite of the previous long exposure to alendronate. SrR is widely used for the treatment of osteoporosis. It is an effective and safe drug, provided the patients are properly selected. As shown here, it can help some patients to achieve a normal BMD. PMID:26811705

  3. Bone metabolism and clinical study of 44 patients with bisphosphonate-related osteonecrosis of the jaws

    PubMed Central

    Bocanegra-Pérez, María S.; Sosa-Henríquez, Manuel; Rodríguez-Bocanegra, Eduardo; Limiñana-Cañal, José M.; López-Márquez, Ariadna; Pérez-Plasencia, Daniel; Ramos-Macías, Angel

    2012-01-01

    Osteonecrosis of the jaws is a clinical entity described and linked to treatment with bisphosphonates in 2003. Its real incidence is unknown and it could increase due to the large number of patients treated with these drugs, and its cumulative effect on the bone. State of the art knowledge regarding its etiopathogeny, clinical course and suitable treatments is limited. Objectives: To study the clinical characteristics of 44 patients with bisphosphonate-related osteonecrosis of the jaws and the state of their bone mineral metabolism: bone remodeling state, prevalence of fractures, bone mineral density study, and assessment of the different treatment strategies. Design of the Study: Observational. Information was gathered prospectively through interviews, clinical examinations, additional tests and review of medical records. Results: We studied 16 men and 28 women with a mean age of 64.7 years. Breast cancer was the most frequent underlying disease. Zoledronate was used in 82% of the cases and in the non-oncology group of patients; alendronate was the most frequently used bisphosphonate. The mean duration of the zoledronate and alendronate treatments was 25 months and 88 months respectively. The lower jaw was the most frequent location, and previous exodontias—among the triggering factors known—were the most closely linked to its onset. We found considerable osteoblastic activity in patients suffering from neoplasia, with artifacts present in their bone densitometry and a high percentage of vertebral fractures. Conclusions: According to our results, osteonecrosis of the jaws affects elderly patients. We found a direct relationship between the duration of exposure and the accumulated dose. Other relevant factors are: Poor oral and dental health, corticoids, diabetes and teeth extractions. In essence, it is a clinical diagnosis. Prevention is the best strategy to handle this clinical entity. Key words:Alendronate, bisphosphonate, jaw, maxilla, osteonecrosis

  4. Normalization of bone mineral density after five years of treatment with strontium ranelate

    PubMed Central

    Sánchez, Julio Ariel

    2015-01-01

    Summary E.F., female, age 58, mother of 4 children and otherwise healthy, had gone into menopause when she was 42. She had received hormone replacement therapy during 8 years. Due to low bone mass she had been treated with oral alendronate during 7 years. She had a normal calcium intake in her diet and engaged in regular physical activity. She did not smoke, and drank alcohol only occasionally. Her mother had sustained a hip fracture at age 90. Bone densitometry of her lumbar spine by DXA showed a T-score of −3.0; standardized bone mineral density (sBMD) had decreased by 11% in the previous 3 years. She was advised to start treatment with strontium ranelate (SrR) 2 g/day, plus oral cholecalciferol (1,000 IU/day). Three months later serum alkaline phosphatase had increased 10%, and serum osteocalcin was 18.9 ng/ml (upper normal limit 13.7). One year later her lumbar BMD had increased by 13.5%. After five years of treatment the BMD value was normal (1.357 g/cm2; T-score −0.3). The case presented here is noteworthy for two reasons. Firstly, the patient maintained low bone mass after several years of combined treatment with alendronate and hormone replacement; this combination usually induces greater densitometric responses than either treatment given alone. Secondly, she responded promptly and significantly to SrR in spite of the previous long exposure to alendronate. SrR is widely used for the treatment of osteoporosis. It is an effective and safe drug, provided the patients are properly selected. As shown here, it can help some patients to achieve a normal BMD. PMID:26811705

  5. Periodontitis in Rats Induces Systemic Oxidative Stress That Is Controlled by Bone-Targeted Antiresorptives

    PubMed Central

    Oktay, Sehkar; Chukkapalli, Sasanka S.; Rivera-Kweh, Mercedes F.; Velsko, Irina M.; Holliday, L. Shannon; Kesavalu, Lakshmyya

    2015-01-01

    Background Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease–induced oxidative stress during oral infection. Methods Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bisenoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. Results Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. Conclusion To the best of the authors’ knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives. PMID:25101489

  6. Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Ko, I. H.; Jeon, S.-H.; Chae, J. H.; Lee, E. J.; Chang, J. H.

    2011-10-01

    This study describes the preparation of hydroxyapatite microspheres for local drugs delivery. The formation of the hydroxyapatite microspheres was initiated by enzymatic decomposition of urea and accomplished by emulsification process (water-in-oil). The microspheres obtained were sintered at 500°C. Scanning electron microscope (SEM) indicated that the microspheres have various porous with random size, which maximizes the surface area. Cytotoxicity was not observed after sintering. Osteoporosis drugs, alendronate and BMP-2, were loaded into HAp microspheres and the releases of both molecules showed sustained releasing profiles.

  7. Bisphosphonate therapy for painless fracture: change of HSAN 1 clinical course with biphosphonate and Vitamin D therapy.

    PubMed

    Marik, I A; Marikova, A; Hudakova, O; Samuels, M E; Kozlowski, K S

    2012-09-01

    Hereditary Sensory and Autonomic Neuropathies comprise a set of 5 rare neurologic conditions, little known to radiologists as the neurologic and skin abnormalities precede the radiographic changes by months or even years. We report a Caucasian patient with a clinical history of HSAN, most consistent with subtype 1, whose progressive, destructive bone changes of the foot were not only controlled but to a degree reversed by the administration of bisphosphonates (Alendronate ) and vitamin D (Colecalciferol). The authors believe that combined bisphosphonate and vitamin D therapy is the treatment of choice for progressive bony changes in HSAN1. This therapy may be beneficial in other neuropathic osteoarthropathies and possibly osteolytic bone disorders.

  8. Skeletal lead release during bone resorption: effect of bisphosphonate treatment in a pilot study.

    PubMed Central

    Gulson, Brian; Mizon, Karen; Smith, Howard; Eisman, John; Palmer, Jacqueline; Korsch, Michael; Donnelly, John; Waite, Kay

    2002-01-01

    There has been renewed interest in impacts on physiologic systems in the middle and older age groups, especially from fractures and hypertension. Increased blood lead (BPb) levels in postmenopausal females, which are thought to arise from bone demineralization, may also relate to other health effects including hypertension. Taking advantage of natural differences in lead isotope signature between Australian sources of lead and those from other countries, a 2-year pilot study was performed in premenopausal and postmenopausal females and male partners in which the subjects were administered a bisphosphonate, alendronate, for 6 months. The aim of the study was to determine how lead isotopes and lead concentrations changed in relation to bone remodeling processes. Premenopausal subjects were a woman (and male partner) from Bosnia and two women from Colombia. The postmenopausal subject was a woman from Russia. Her male partner and one man from Sri Lanka were included. Multigenerational Australian subjects were 2 perimenopausal women and 1 postmenopausal woman. Each subject had blood and urine samples collected for markers of bone turnover and for lead isotope studies monthly for 7-9 months before, for 3 months during, and for up to 6 months after treatment with alendronate to inhibit bone resorption. Each subject thus acted as his or her own control. As predicted, there were significant decreases in the lead isotope ratio, (206)Pb/(204)Pb, for the migrant subjects during treatment compared with the pretreatment period (p < 0.01). After cessation of treatment, an increasing isotope ratio for the postmenopausal subject (and older male partner) occurred later than for premenopausal subjects, indicative of prolonged efficacy of the alendronate for the older subjects. The average BPb concentrations in migrant subjects decreased by about 20% during the treatment compared with the pretreatment period (p < 0.01). To our knowledge, these are the first BPb concentrations reported

  9. 1-(Fluoroalkylidene)-1,1-bisphosphonic Acids are Potent and Selective Inhibitors of the Enzymatic Activity of Toxoplasma gondii Farnesyl Pyrophosphate Synthase

    PubMed Central

    Szajnman, Sergio H.; Rosso, Valeria S.; Malayil, Leena; Smith, Alyssa; Moreno, Silvia N. J.; Docampo, Roberto

    2012-01-01

    α-Fluorinated-1,1-bisphosphonic acids derived from fatty acids were designed, synthesized and biologically evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease and against Toxoplasma gondii, the responsible agent of toxoplasmosis and also towards the target parasitic enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. Interestingly, 1-fluorononylidene-1,1-bisphosphonic acid (compound 43) has proven to be an extremely potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range exhibiting an IC50 of 30 nM. This compound was two-fold more potent than risedronate (IC50 = 74 nM) taken as a positive control. This enzymatic activity was associated to a strong cell growth inhibition against tachyzoites of T. gondii having an IC50 value of 2.7 μM. PMID:22215028

  10. Comparison of immunosuppressive and cytotoxic cells in angiosarcoma: development of a possible supportive therapy for angiosarcoma.

    PubMed

    Kambayashi, Yumi; Fujimura, Taku; Furudate, Sadanori; Hashimoto, Akira; Haga, Takahiro; Aiba, Setsuya

    2013-01-01

    An imbalance of immunosuppressive and cytotoxic cells plays an important role in inhibiting the anti-tumor immune response of the tumor-bearing host. The purpose of this study was to elucidate the involvement of immunosuppressive cells, such as regulatory T cells and CD163+ M2 macrophages as well as cytotoxic cells, such as granulysin-bearing cells and TIA-1+ cells in cutaneous angiosarcoma (AS) by immunohistochemical staining. In addition we evaluated the potencies of bisphosphonate, which was previously reported to suppress the expression of matrix metalloproteinase 9 (MMP-9), as a supportive therapy for AS together with docetaxel in 6 cases of cutaneous AS. These findings suggest that a high number of immunosuppressive cells might be related to the prognosis of AS, and that a combination of docetaxel with bisphosphonate risedronate sodium might be effective for MMP-9-expressing AS.

  11. Geranylgeranyl transferase type II inhibition prevents myeloma bone disease.

    PubMed

    Lawson, Michelle A; Coulton, Les; Ebetino, Frank H; Vanderkerken, Karin; Croucher, Peter I

    2008-12-12

    Geranylgeranyl transferase II (GGTase II) is an enzyme that plays a key role in the isoprenylation of proteins. 3-PEHPC, a novel GGTase II inhibitor, blocks bone resorption and induces myeloma cell apoptosis in vitro. Its effect on bone resorption and tumor growth in vivo is unknown. We investigated the effect of 3-PEHPC on tumor burden and bone disease in the 5T2MM model of multiple myeloma in vivo. 3-PEHPC significantly reduced osteoclast numbers and osteoclast surface. 3-PEHPC prevented the bone loss and the development of osteolytic bone lesions induced by 5T2MM myeloma cells. Treatment with 3-PEHPC also significantly reduced myeloma burden in bone. The magnitude of response was similar to that seen with the bisphosphonate, risedronate. These data show that targeting GGTase II with 3-PEHPC can prevent osteolytic bone disease and reduce tumor burden in vivo, and represents a novel approach to treating tumors that grow in bone.

  12. Primary lymphoma of the mandible masquerading as bisphosphonate-related osteonecrosis of jaws.

    PubMed

    Zadik, Yehuda; Lehman, Hadas; Neuman, Tzahi; Benoliel, Rafael

    2012-10-01

    A 66-year-old osteoporotic woman suffered from long-term mental paresthesia (numbness), facial swelling, and a nonhealing extraction site. Fulfilling the three clinical diagnostic criteria for bisphosphonate-related osteonecrosis of the jaw (BRONJ; exposed bone for at least 8 weeks, current bisphosphonate [risedronate] treatment, and no history of head and neck radiation therapy), she was diagnosed and treated accordingly. Nevertheless, a later histopathologic examination revealed malignant lymphoproliferative infiltration of large and intermediate cells. Based on immunostaining and positron-emission tomography, she was diagnosed as having primary diffuse large B-cell lymphoma. This case demonstrates the limitation of the current diagnostic method of BRONJ. Thus, the clinician should be particularly cautious and aware of the differential diagnosis, including malignancy, especially when lesions are accompanied by (mental nerve) neuropathy and long-standing swelling/expansion, and even when plain radiography is not a contributing factor.

  13. A new dinuclear platinum complex with a nitrogen-containing geminal bisphosphonate as potential anticancer compound specifically targeted to bone tissues.

    PubMed

    Margiotta, Nicola; Capitelli, Francesco; Ostuni, Rosa; Natile, Giovanni

    2008-12-01

    The paper describes the synthesis and characterization of a new platinum dinuclear complex (2) bearing a nitrogen-containing geminal bisphosphonate (NBP, 1), structurally related to the commercial drug risedronate. NBPs themselves have shown in quite a few cases to be endowed with anticancer activity, therefore the new platinum complex has two potential antitumor moieties (the NBP ligand and the platinum residue) and could have high affinity for bone tumors or metastases (due to the presence of NBP). The free bisphosphonate (1) has been crystallized by a sol-gel method and characterized by X-ray diffraction analysis. The platinum complex (2) has been found to have a dinuclear structure with the bisphosphonate bridging two platinum moieties in a W conformation.

  14. Nanostructured polyelectrolyte multilayer drug delivery systems for bone metastasis prevention.

    PubMed

    Daubiné, Florence; Cortial, Delphine; Ladam, Guy; Atmani, Hassan; Haïkel, Youssef; Voegel, Jean-Claude; Clézardin, Philippe; Benkirane-Jessel, Nadia

    2009-10-01

    Polyelectrolyte multilayers (PEM) are well established nanoarchitectures with numerous potential applications, in particular as biomaterial coatings. They may exhibit specific biological properties in terms of controlled cell activation or local drug delivery. Here, in a new approach for bone metastasis prevention, we employed poly-l-lysine covalently grafted with beta-cyclodextrin as a polycationic vector (PLL-CD) for the antitumor bisphosphonate drug risedronate (RIS). Molar ratio for maximum loading of the PLL-CD vector with RIS was determined by Raman microspectroscopy. The efficacy of RIS at inhibiting cancer cell invasion in vitro was strongly enhanced upon complexation, whatever PLL-CD:RIS complexes were in solution or embedded into PEM nanoarchitectures. Complexes in solution also clearly prevented cancer-induced bone metastasis in animals. Incorporation of the complexes into PEM nanoarchitectures covering bone implants appears of interest for in situ prevention of bone metastasis after ablation.

  15. Treatment of bisphosphonates-associated osteonecrosis

    PubMed Central

    Migliorati, Cesar A.; Hupp, Wendy S.; Migliorati, Erica K.J.

    2007-01-01

    This mini-review will focus on the management of a patient with bisphosphonate-associated osteonecrosis (BON). In order to review the subject the authors report a case of a patient with prostate cancer and metastatic bone disease who was treated with zoledronic acid. Prior to cancer the patient was treated with risedronate for osteopenia but had discontinued this treatment when cancer was diagnosed. During the description of each aspect of the case, a discussion of the rationale used for the case management is presented with support of the available literature. Aspects of interest include the diagnosis of BON, the risk factor for BON for this particular patient, the decision making process for the management of acute and long-term oral cavity problems, and the introduction of high intensity laser therapy to help control pain and reduce infection and local bacterial load. PMID:22460756

  16. Treatment of osteoporosis in renal insufficiency.

    PubMed

    Schipper, Lydia G; Fleuren, Hanneke W H A; van den Bergh, Joop P W; Meinardi, Johan R; Veldman, Bart A J; Kramers, Cornelis

    2015-08-01

    Patients with osteoporosis often have chronic kidney disease (CKD). CKD is associated with bone and mineral disturbances, renal osteodystrophy, which like osteoporosis leads to a higher risk of fractures. Bisphosphonates are first-line therapy for osteoporosis; however, these are contra-indicated in patients with a GFR <30 ml/min. In this article, we have reviewed the diagnosis and treatment of osteoporosis in moderate to severe renal failure from data of clinical trials. Results have shown that osteoporosis patients and severe CKD with no signs of renal osteodystrophy, oral bisphosphonates (risedronate) seem to be a safe choice. Renal function and PTH should subsequently be monitored strictly. Denosumab, with regularly monitoring of calcium and adequate vitamin D levels or raloxifene are a possible second choice. In any case, one should be certain that there is no adynamic bone before treatment can be started. If there is any doubt, bone biopsies should be taken. PMID:25630310

  17. On-Demand Urine Analyzer

    NASA Technical Reports Server (NTRS)

    Farquharson, Stuart; Inscore, Frank; Shende, Chetan

    2010-01-01

    A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health. The analyzer containing the lab-on-a- chip includes materials to extract 3- methylhistidine (a muscle-loss indicator) and Risedronate (a bone-loss indicator) from the urine sample and detect them at the required concentrations using a Raman analyzer. The lab-on- a-chip has both an extractive material and a SERS-active material. The analyzer could be used to monitor the onset of diseases, such as osteoporosis.

  18. Spontaneous supracondylar femoral fracture in an HIV patient in lotus position.

    PubMed

    Pinto Neto, Lauro F S; Eis, Sergio Ragi; Miranda, Angelica Espinosa

    2011-01-01

    Bone disorders have been described in patients chronically infected with human immunodeficiency virus (HIV). A case of spontaneous supracondylar femoral fracture that occurred in a 58-year-old monk during meditation is reported. His AIDS disease was controlled with combination antiretroviral therapy. Vitamin D and calcium had been added 3yr before since osteoporosis was detected by dual-energy X-ray absorptiometry (DXA). At the time of the fracture, the patient was on treatment with 35mg every week of sodium risedronate, 1000mg of calcium, and 400IU of Vitamin D every day. Clinical use of DXA for HIV patients should be considered as a routine measure to help reducing risk for fractures. PMID:21295744

  19. The cell cycle arrest and the anti-invasive effects of nitrogen-containing bisphosphonates are not mediated by DBF4 in breast cancer cells.

    PubMed

    Mansouri, Mahdieh; Mirzaei, Seyed Abbas; Lage, Hermann; Mousavi, Seyyedeh Soghra; Elahian, Fatemeh

    2014-04-01

    Recent work has shown that a DBF4 analog in yeast may be a target of nitrogen-containing bisphosphonates. DBF4 is an essential protein kinase required for DNA replication from primary eukaryotes to humans and appears to play a critical role in the S-phase checkpoint. It is also required for cell migration and cell surface adhesion. The effects of Pamidronate, risedronate, or zoledronate on cell viability and DBF4 expression were measured via MTT assays and western blotting. In addition, FACS cell cycle analyses and invasion assays were conducted in cells in the presence of nitrogen-containing bisphosphonates to identify any correlations between DBF4 expression and S-phase arrest or anti-invasive effects of the bisphosphonates. Zoledronate transiently down-regulated DBF4 expression in all three cell lines in the first 24 h of the experiment, but after 72 h, DBF4 expression returned to the control levels in all treated cells. Following treatment of the tumor cells with the bisphosphonates, the number of cells in S-phase was increased. Pamidronate and zoledronate showed anti-invasive effects in BT20 cells. The anti-invasive effects of pamidronate, risedronate and zoledronate appeared after 48 h of exposure. In MDA-MB231 cells a reduction of invasiveness was only observed after 72 h of the pamidronate exposure. We finally concluded that the anti-invasive and cell cycle arrest-inducing effects of nitrogen-containing bisphosphonates are not DBF4 mediated, and other mediators are therefore needed to explain the observed complex behaviors.

  20. [Efficiency in the prescription of drugs. Impact of a health policy: automatic change to prescription by active ingredient].

    PubMed

    López de Landache, Isabel Elizondo; Braceras Izaguirre, Leire; Echeto García, Ainara; Gardeazabal Romillo, Maria José; Acevedo Heranz, Paloma

    2013-11-01

    In the Basque Country in June 2010 were changed in the electronic prescription system the treatments prescribed by a brand by active ingredients, all the patients who had prescribed these molecules: atorvastatin, clopidogrel, weekly risedronate and losartan-hydrochlorothiazide. The aim of this study was to evaluate the economic impact of this change automated done in June 2010. Retrospective study of the prescriptions made in the Basque Country of the selected active ingredients. The use of generics of these molecules from May to December 2010 increased from 64 points to 87. Particularly clopidogrel increased from 6.25% in generic prescriptions to 93.76%, losartan + hydrochlorothiazide from 17.94% to 93.83%, 18.92% for atorvastatin acid and 96.03% risedronic 1.76% to 65.97%. If we make the estimation of the amount of active ingredient in generic containers that have been dispensed from June to December 2010. If they had dispensed brand drugs you get this quantity of total savings: 8 104 762.22 euros. This work suggests that a program to promote use of generics increased efficiency in the use of drugs. To promote the use of generic drugs is an efficiency measure implemented in the NHS and in the neighboring countries, in recent figures are reached 40% in securities of U.S.A packaging and around 65% in the Basque Country the consume in early 2010 was much lower than these figures stand at 20% and at the end of the year stood at 27% thanks to the measures taken. PMID:24404717

  1. Drug holidays: the most frequent type of noncompliance with calcium plus vitamin D supplementation in persistent patients with osteoporosis

    PubMed Central

    Touskova, Tereza; Vytrisalova, Magda; Palicka, Vladimir; Hendrychova, Tereza; Fuksa, Leos; Holcova, Radka; Konopacova, Jana; Kubena, Ales Antonin

    2015-01-01

    Purpose All current recommendations include calcium and vitamin D (Ca–D) as an integrated part of osteoporosis treatment. The purpose of this pilot study was to analyze compliance with a fixed combination of Ca–D in women persistent with the treatment. Patients and methods An observational study was carried out in three osteocenters in the Czech Republic. Women with osteoporosis ≥55 years of age concurrently treated with oral ibandronate were eligible. Compliance was evaluated in a period of 3 months by Medication Event Monitoring System (MEMS), tablet count, and self-report. Nonpersistence was defined as a MEMS-based gap in the use of Ca–D to be 30 days or more. Results A total of 73 patients were monitored, of which 49 patients were analyzed (target population). Based on MEMS, mean overall compliance was 71%; good compliance (≥80%) was observed in 59% of the patients. As many as 71% of the patients took drug holidays (≥3 consecutive days without intake); overall compliance of these patients was 59% and was slightly lower on Fridays and weekends. Patients without drug holidays were fully compliant (did not omit individual doses). Compliance differed according to daily time at which the patients mostly used the Ca–D. Afternoon/evening takers showed a mean overall compliance of 82% while morning/night takers only 51% (P=0.049). Based on MEMS, tablet count, and self-report, compliance ≥75% was observed in 59%, 100%, and 87% of the patients, respectively. Outcomes obtained by the three methods were not associated with each other. Undesirable concurrent ingestion of Ca–D and ibandronate was present only twice. Conclusion Despite almost perfect self-reported and tablet count-based compliance, MEMS-based compliance was relatively poor. Consecutive supplementation-free days were common; more than two-thirds of the patients took at least one drug holiday. This pilot study showed drug holiday to be the most important type of noncompliance with Ca–D in

  2. The kidney and bisphosphonates.

    PubMed

    Miller, Paul D

    2011-07-01

    Bisphosphonates are eliminated from the human body by the kidney. Renal clearance is both by glomerular filtration and proximal tubular secretion. Bisphosphonates given rapidly in high doses in animal models have induced a variety of adverse renal effects, from glomerular sclerosis to acute tubular necrosis. Nevertheless in the doses that are registered for the management of postmenopausal osteoporosis (PMO), oral bisphosphonates have never been shown to adversely affect the kidney, even (in post-hoc analysis of clinical trial data) down to estimated glomerular filtration rates of 15 ml/min. In addition fracture risk reduction has also been observed in these populations with stage 4 chronic kidney disease (CKD) with age-related reductions in glomerular filtration rate (GFR). Intravenous zoledronic acid is safe when the infusion rate is no faster than 15 min though there have been short-term (days 9-11 post-infusion) increases in serum creatinine concentrations in a small sub-set of patients from the postmenopausal registration trials. For these reasons intravenous zoledronic acid should be avoided in patients with GFR levels <35 ml/min; and the patients should be well hydrated and have avoided the concomitant use of any agent that may impair renal function. Intravenous ibandronate has not to date been reported to induce acute changes in serum creatinine concentrations in the PMO clinical trial data, but the lack of head-to-head comparative data between ibandronate and zoledronic acid precludes knowing if one intravenous bisphosphonate is safer than the other. In patients with GFR levels <30-35 ml/min, the correct diagnosis of osteoporosis becomes more complex since other forms of renal bone disease, which require different management strategies than osteoporosis, need to be excluded before the assumption can be made that fractures and/or low bone mass are due to osteoporosis. In addition, in patients who may have pre-existing adynamic renal bone disease, there is a

  3. Preparation, Biological Evaluation and Dosimetry Studies of 175Yb-Bis-Phosphonates for Palliative Treatment of Bone Pain

    PubMed Central

    Fakhari, Ashraf; Jalilian, Amir R.; Yousefnia, Hassan; Shanehsazzadeh, Saeed; Samani, Ali Bahrami; Daha, Fariba Johari; Ardestani, Mehdi Shafiee; Khalaj, Ali

    2015-01-01

    Objective: Optimized production and quality control of ytterbium-175 (Yb-175) labeled pamidronate and alendronate complexes as efficient agents for bone pain palliation has been presented. Methods: Yb-175 labeled pamidronate and alendronate (175Yb-PMD and 175Yb-ALN) complexes were prepared successfully at optimized conditions with acceptable radiochemical purity, stability and significant hydroxyapatite absorption. The biodistribution of complexes were evaluated up to 48 h, which demonstrated significant bone uptake ratios for 175Yb-PAM at all-time intervals. It was also detected that 175Yb-PAM mostly washed out and excreted through the kidneys. Results: The performance of 175Yb-PAM in an animal model was better or comparable to other 175Yb-bone seeking complexes previously reported. Conclusion: Based on calculations, the total body dose for 175Yb-ALN is 40% higher as compared to 175Yb-PAM (especially kidneys) indicating that 175Yb-PAM is probably a safer agent than 175Yb-ALN. PMID:27529886

  4. New methodology for evaluating osteoclastic activity induced by orthodontic load.

    PubMed

    Araújo, Adriele Silveira; Fernandes, Alline Birra Nolasco; Maciel, José Vinicius Bolognesi; Netto, Juliana de Noronha Santos; Bolognese, Ana Maria

    2015-01-01

    Orthodontic tooth movement (OTM) is a dynamic process of bone modeling involving osteoclast-driven resorption on the compression side. Consequently, to estimate the influence of various situations on tooth movement, experimental studies need to analyze this cell. Objectives The aim of this study was to test and validate a new method for evaluating osteoclastic activity stimulated by mechanical loading based on the fractal analysis of the periodontal ligament (PDL)-bone interface. Material and Methods The mandibular right first molars of 14 rabbits were tipped mesially by a coil spring exerting a constant force of 85 cN. To evaluate the actual influence of osteoclasts on fractal dimension of bone surface, alendronate (3 mg/Kg) was injected weekly in seven of those rabbits. After 21 days, the animals were killed and their jaws were processed for histological evaluation. Osteoclast counts and fractal analysis (by the box counting method) of the PDL-bone interface were performed in histological sections of the right and left sides of the mandible. Results An increase in the number of osteoclasts and in fractal dimension after OTM only happened when alendronate was not administered. Strong correlation was found between the number of osteoclasts and fractal dimension. Conclusions Our results suggest that osteoclastic activity leads to an increase in bone surface irregularity, which can be quantified by its fractal dimension. This makes fractal analysis by the box counting method a potential tool for the assessment of osteoclastic activity on bone surfaces in microscopic examination. PMID:25760264

  5. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles.

    PubMed

    Cohen-Sela, Einat; Chorny, Michael; Koroukhov, Nickolay; Danenberg, Haim D; Golomb, Gershon

    2009-01-19

    The commonly utilized techniques for encapsulating hydrophilic molecules in NP suffer from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. We hypothesized that combining the double emulsion system with a partially water-soluble organic solvent, could result in better encapsulation yield of hydrophilic molecules in nano-sized NP, and the utilization of both biocompatible surfactants and solvents. As a model drug we used alendronate, a hydrophilic low MW bisphosphonate. The new NP preparation technique, double emulsion solvent diffusion (DES-D), resulted in improved formulation characteristics including smaller size, lower size distribution, higher encapsulation yield, and more biocompatible ingredients in comparison to classical methods. The utilization of partially water-miscible organic solvent (ethyl acetate) enabled rapid diffusion through the aqueous phase forming smaller NP. In addition, the formulated alendronate NP exhibited profound inhibition of raw 264 macrophages, depletion of rabbit's circulating monocytes, and inhibition of restenosis in the rat model. It is concluded that the new technique is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and more biocompatible ingredients, with unaltered bioactivity.

  6. Secretion of PDGF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs.

    PubMed

    Rahman, M Motiur; Matsuoka, Kazuhiko; Takeshita, Sunao; Ikeda, Kyoji

    2015-06-26

    In an attempt to identify secretory products of osteoclasts that mediate the coupling of bone formation to resorption, we found that along with osteoclast differentiation, PDGF-A gene expression increase occurred first, by 12 h after stimulation of bone marrow macrophages with M-CSF and RANKL, and peaked at 36 h. This was next followed by a progressive increase in PDGF-B gene expression until a peak at 60 h, when mature osteoclasts formed. Isoform-specific ELISA of the conditioned medium collected every 24 h revealed that all three of the isoforms of PDGF-AA, AB and BB were secreted, in this temporal order as differentiation proceeded. Their secretion was enhanced when osteoclasts were activated by placing them on dentin slices. The secretion of all three isoforms was decreased in cathepsin K-deficient osteoclasts compared with wild-type osteoclasts. Pharmacological inhibition of cathepsin K with odanacatib also inhibited the secretion of all three isoforms, as was also the case with alendronate treatment. The secretion of sphingosine-1-phosphate, which increased during osteoclastogenesis, was reduced from cathepsin K-deficient osteoclasts, and was inhibited by treatment with odanacatib more profoundly than with alendronate. Thus, all three isoforms of PDGF, which are secreted at distinct differentiation stages of osteoclasts, appear to have distinct roles in the cell-cell communication that takes place in the microenvironment of bone remodeling, especially from the osteoclast lineage to mesenchymal cells and vascular cells, thereby stimulating osteogenesis and angiogenesis.

  7. Clinical Practice. Postmenopausal Osteoporosis.

    PubMed

    Black, Dennis M; Rosen, Clifford J

    2016-01-21

    Key Clinical Points Postmenopausal Osteoporosis Fractures and osteoporosis are common, particularly among older women, and hip fractures can be devastating. Treatment is generally recommended in postmenopausal women who have a bone mineral density T score of -2.5 or less, a history of spine or hip fracture, or a Fracture Risk Assessment Tool (FRAX) score indicating increased fracture risk. Bisphosphonates (generic) and denosumab reduce the risk of hip, nonvertebral, and vertebral fractures; bisphosphonates are commonly used as first-line treatment in women who do not have contraindications. Teriparatide reduces the risk of nonvertebral and vertebral fractures. Osteonecrosis of the jaw and atypical femur fractures have been reported with treatment but are rare. The benefit-to-risk ratio for osteoporosis treatment is strongly positive for most women with osteoporosis. Because benefits are retained after discontinuation of alendronate or zoledronic acid, drug holidays after 5 years of alendronate therapy or 3 years of zoledronic acid therapy may be considered for patients at lower risk for fracture.

  8. Bisphosphonates in the management of thalassemia-associated osteoporosis: a systematic review of randomised controlled trials.

    PubMed

    Giusti, Andrea

    2014-11-01

    Bisphosphonates are potent inhibitors of bone resorption, widely used for the management of osteoporosis and fracture prevention. Recent evidence suggests that bisphosphonates may have beneficial effects in the treatment of thalassemia-associated osteoporosis, a complex and multifactorial condition. Here we summarise available data about the efficacy and tolerability of bisphosphonates in beta--thalassemic patients. Randomised controlled trials (RCTs) of bisphosphonates in beta-thalassemia were identified searching PubMed. Studies were reviewed to retrieve relevant clinical information. The following variables were considered to assess the safety and efficacy of bisphosphonates-bone mineral density (BMD), markers of bone turnover, incidence of fragility fracture, bone pain, back pain, and clinical adverse events. Five RCTs were identified, investigating alendronate, clodronate, zoledronic acid and neridronate. All bisphosphonates produced a significant decrease of the markers of bone turnover. Alendronate, neridronate, and zoledronic acid significantly improved BMD at the lumbar spine, femoral neck and total hip. Zoledronic acid and neridronate were also shown to reduce bone and back pain. Probably due to the small sample sizes and to the short duration of the trials, it was not possible to establish the anti-fracture efficacy of bisphosphonates; however, they were well tolerated and adverse events were rare but expected on the basis of previous studies. Sufficient evidence exists to support the use of bisphosphonates in the management of thalassemia-associated osteoporosis (to prevent bone loss and improve the BMD). Further research is warranted to establish their anti-fracture efficacy and long-term safety.

  9. Pulsed electromagnetic fields on postmenopausal osteoporosis in Southwest China: a randomized, active-controlled clinical trial.

    PubMed

    Liu, Hui-Fang; Yang, Lin; He, Hong-Chen; Zhou, Jun; Liu, Ying; Wang, Chun-Yan; Wu, Yuan-Chao; He, Cheng-Qi

    2013-05-01

    A randomized, active-controlled clinical trial was conducted to examine the effect of pulsed electromagnetic fields (PEMFs) on women with postmenopausal osteoporosis (PMO) in southwest China. Forty-four participants were randomly assigned to receive alendronate or one course of PEMFs treatment. The primary endpoint was the mean percentage change in bone mineral density of the lumbar spine (BMDL), and secondary endpoints were the mean percentage changes in left proximal femur bone mineral density (BMDF), serum 25OH vitamin D3 (25(OH)D) concentrations, total lower-extremity manual muscle test (LE MMT) score, and Berg Balance Scale (BBS) score. The BMDL, BMDF, total LE MMT score and BBS score were recorded at baseline, 5, 12, and 24 weeks. Serum concentrations of 25(OH)D were measured at baseline and 5 weeks. Using a mixed linear model, there was no significant treatment difference between the two groups in the BMDL, BMDF, total LE MMT score, and BBS score (P ≥ 0.05). For 25(OH)D concentrations, the effects were also comparable between the two groups (P ≥ 0.05) with the Mann-Whitney's U-test. These results suggested that a course of PEMFs treatment with specific parameters was as effective as alendronate in treating PMO within 24 weeks.

  10. SEOM guidelines for the treatment of bone metastases from solid tumours.

    PubMed

    Cassinello Espinosa, Javier; González Del Alba Baamonde, Aránzazu; Rivera Herrero, Fernando; Holgado Martín, Esther

    2012-07-01

    Bone metastases are a common and distressing effect of cancer, being a major cause of morbidity in many patients with advanced stage cancer, in particular in breast and prostate cancer. Patients with bone metastases can experience complications known as skeletal-related events (SREs) which may cause significant debilitation and have a negative impact on quality of life and functional independence. The current recommended systemic treatment for the prevention of SREs is based on the use of bisphosphonates: ibandronate, pamidronate and zoledronic acid- the most potent one- are approved in advanced breast cancer with bone metastases, whereas only zoledronic acid is indicated in advanced prostate cancer with bone metastases. The 2011 ASCO guidelines on breast cancer, recommend initiating bisphosphonate treatment only for patients with evidence of bone destruction due to bone metastases. Denosumab, a fully human antibody that specifically targets the RANK-L, has been demonstrated in two phase III studies to be superior to zoledronic acid in preventing or delaying SREs in breast and prostate cancer and non-inferior in other solid tumours and mieloma; it's convenient subcutaneous administration and the fact that does not require dose adjustment in cases of renal impairment, make this agent an attractive new therapeutic option in patients with bone metastases. Finally, in a phase III study against placebo, denosumab significantly increased the median metastasis-free survival in high risk non-metastatic prostate cancer, arising the potential role of these bone-modifying agents in preventing or delaying the development of bone metastases. PMID:22721794

  11. Novel therapies for osteoporosis.

    PubMed

    Biskobing, Diane M

    2003-04-01

    Osteoporosis remains a significant clinical problem despite effective therapies. Many patients cannot or will not take currently available therapies. For this reason research continues in search of more effective and more tolerable agents. Anabolic agents offer a unique mechanism of action. The anabolic agents parathyroid hormone and strontium will be discussed. The investigational bisphosphonates ibandronate, minodronate and zoledronic acid may offer the advantage of less frequent dosing. Arzoxifene, bazedoxifene, lasofoxifene, MDL-103,323 and ospemifene are investigational selective oestrogen receptor modulators shown to be effective in animal studies and are now in clinical studies. Tibolone is a tissue-specific steroid that is currently used in Europe for prevention and treatment of osteoporosis. Multiple studies have shown efficacy in improving bone mineral density, but no fracture studies have been conducted to date. While studies of the effect of isoflavones on bone mineral density have been encouraging, a large, multi-centre study in Europe showed no effect of isoflavones on fractures. The newly described agent osteoprotegerin has been shown in early studies to inhibit bone turnover. Other agents with unique mechanisms of action in early development include cathepsin K inhibitors, integrin receptor inhibitors, nitrosylated non-steroidal anti-inflammatory agents and Src inhibitors. The efficacy of statins in bone continues to be debated with no prospective, randomised studies yet to confirm the suggestion of benefit seen in epidemiological studies. PMID:12665416

  12. Determination of the purity of pharmaceutical reference materials by 1H NMR using the standardless PULCON methodology.

    PubMed

    Monakhova, Yulia B; Kohl-Himmelseher, Matthias; Kuballa, Thomas; Lachenmeier, Dirk W

    2014-11-01

    A fast and reliable nuclear magnetic resonance spectroscopic method for quantitative determination (qNMR) of targeted molecules in reference materials has been established using the ERETIC2 methodology (electronic reference to access in vivo concentrations) based on the PULCON principle (pulse length based concentration determination). The developed approach was validated for the analysis of pharmaceutical samples in the context of official medicines control, including ibandronic acid, amantadine, ambroxol and lercanidipine. The PULCON recoveries were above 94.3% and coefficients of variation (CVs) obtained by quantification of different targeted resonances ranged between 0.7% and 2.8%, demonstrating that the qNMR method is a precise tool for rapid quantification (approximately 15min) of reference materials and medicinal products. Generally, the values were within specification (certified values) provided by the manufactures. The results were in agreement with NMR quantification using an internal standard and validated reference HPLC analysis. The PULCON method was found to be a practical alternative with competitive precision and accuracy to the classical internal reference method and it proved to be applicable to different solvent conditions. The method can be recommended for routine use in medicines control laboratories, especially when the availability and costs of reference compounds are problematic.

  13. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells.

    PubMed

    Karlic, Heidrun; Thaler, Roman; Gerner, Christopher; Grunt, Thomas; Proestling, Katharina; Haider, Florian; Varga, Franz

    2015-05-01

    The mevalonate pathway provides metabolites for post-translational modifications such as farnesylation, which are critical for the activity of RAS downstream signaling. Subsequently occurring regulatory processes can induce an aberrant stimulation of DNA methyltransferase (DNMT1) as well as changes in histone deacetylases (HDACs) and microRNAs in many cancer cell lines. Inhibitors of the mevalonate pathway are increasingly recognized as anticancer drugs. Extensive evidence indicates an intense cross-talk between signaling pathways, which affect growth, differentiation, and apoptosis either directly or indirectly via epigenetic mechanisms. Herein, we show data obtained by novel transcriptomic and corresponding methylomic or proteomic analyses from cell lines treated with pharmacologic doses of respective inhibitors (i.e., simvastatin, ibandronate). Metabolic pathways and their epigenetic consequences appear to be affected by a changed concentration of NADPH. Moreover, since the mevalonate metabolism is part of a signaling network, including vitamin D metabolism or fatty acid synthesis, the epigenetic activity of associated pathways is also presented. This emphasizes the far-reaching epigenetic impact of metabolic therapies on cancer cells and provides some explanation for clinical observations, which indicate the anticancer activity of statins and bisphosphonates.

  14. Determination of the purity of pharmaceutical reference materials by 1H NMR using the standardless PULCON methodology.

    PubMed

    Monakhova, Yulia B; Kohl-Himmelseher, Matthias; Kuballa, Thomas; Lachenmeier, Dirk W

    2014-11-01

    A fast and reliable nuclear magnetic resonance spectroscopic method for quantitative determination (qNMR) of targeted molecules in reference materials has been established using the ERETIC2 methodology (electronic reference to access in vivo concentrations) based on the PULCON principle (pulse length based concentration determination). The developed approach was validated for the analysis of pharmaceutical samples in the context of official medicines control, including ibandronic acid, amantadine, ambroxol and lercanidipine. The PULCON recoveries were above 94.3% and coefficients of variation (CVs) obtained by quantification of different targeted resonances ranged between 0.7% and 2.8%, demonstrating that the qNMR method is a precise tool for rapid quantification (approximately 15min) of reference materials and medicinal products. Generally, the values were within specification (certified values) provided by the manufactures. The results were in agreement with NMR quantification using an internal standard and validated reference HPLC analysis. The PULCON method was found to be a practical alternative with competitive precision and accuracy to the classical internal reference method and it proved to be applicable to different solvent conditions. The method can be recommended for routine use in medicines control laboratories, especially when the availability and costs of reference compounds are problematic. PMID:25215441

  15. Teriparatide for the rapid resolution of delayed healing of atypical fractures associated with long-term bisphosphonate use

    PubMed Central

    Mastaglia, Silvina R.; Aguilar, Gabriel; Oliveri, Beatriz

    2016-01-01

    Bisphosphonates (BPs) are the most widely used drugs to treat osteoporosis. However, recent reports associated to long-term BPs use with atypical low-impact fractures and prodromal pain. It is estimated that 26% of the cases of atypical fractures associated with the long-term use of BPs show delayed healing or nonunion. Teriparatide [PTH1-34] (TPTD) is an anabolic drug shown to be effective in stimulating bone formation. The aim was to describe the course of a right diaphyseal femoral fracture sustained by a patient on long-term BPs treatment. A 57-year-old postmenopausal Caucasian female presented with delayed healing of a right femoral diaphyseal fracture 10 months after the fracture, despite having received orthopedic treatment. The fracture was preceded by progressive, severe, and bilateral thigh pain. Her medical history included osteopenia that was treated with alendronate over 7 years. On presentation at our clinic, the patient ambulated with the aid of a walking cane. The diagnosis was an atypical right femoral fracture associated with long-term alendronate use. The levels of the following parameters were measured: mineral metabolism laboratory: intact parathormone, 40 ng/mL (reference values (rv): 10–65 ng/mL); 25-hydroxyvitamin D, 40 ng/mL (rv: >30 ng/mL); serum Crosslaps, 318 ng/mL (rv: 80–590 ng/mL); and bone-specific alkaline phosphatase, 76UI/L (rv: 31–95UI/L)]. Magnetic resonance imaging of the left femur was performed, which revealed a diaphyseal stress fracture. She was prescribed 20 μg/day of subcutaneous (s.c.) TPTD (PTH1-34, Forteo; Eli Lilly Co., Indianapolis, IN, United States). A computed tomography scan performed 3 months later showed that the fracture had healed; the patient was able to resume her usual activities. Twenty micrograms per day of s.c. TPD accelerated the healing of the atypical fracture associated with long-term alendronate therapy, allowing a fast recovery of ambulation and quality of life. PMID:27708978

  16. Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum

    PubMed Central

    2013-01-01

    Background Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites. Methods The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate. Results The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic

  17. Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis.

    PubMed

    Lange, B M; Ketchum, R E; Croteau, R B

    2001-09-01

    Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory cells as an experimental model system to study the effects of the herbicides fosmidomycin, phosphonothrixin, methyl viologen, benzyl viologen, clomazone, 2-(dimethylamino)ethyl diphosphate, alendronate, and pamidronate on the pools of metabolites related to monoterpene biosynthesis via the mevalonate-independent pathway. A newly developed isolation protocol for polar metabolites together with an improved separation and detection method based on liquid chromatography-mass spectrometry have allowed assessment of the enzyme targets for a number of these herbicides.

  18. Isoprenoid Biosynthesis. Metabolite Profiling of Peppermint Oil Gland Secretory Cells and Application to Herbicide Target Analysis1

    PubMed Central

    Lange, B. Markus; Ketchum, Raymond E.B.; Croteau, Rodney B.

    2001-01-01

    Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory cells as an experimental model system to study the effects of the herbicides fosmidomycin, phosphonothrixin, methyl viologen, benzyl viologen, clomazone, 2-(dimethylamino)ethyl diphosphate, alendronate, and pamidronate on the pools of metabolites related to monoterpene biosynthesis via the mevalonate-independent pathway. A newly developed isolation protocol for polar metabolites together with an improved separation and detection method based on liquid chromatography-mass spectrometry have allowed assessment of the enzyme targets for a number of these herbicides. PMID:11553758

  19. Potential therapeutic effects of oral bisphosphonates on the intestine.

    PubMed

    Pazianas, Michael; Russell, R Graham G

    2011-12-01

    Bisphosphonates are the principal drugs prescribed for the prevention of osteoporotic fractures. They are bone specific but poorly absorbed. In oral formulations, almost 99% of the administered dose remains within the intestinal tract and reaches the small and large bowel. Although the nitrogen-containing bisphosphonates can irritate the distal esophageal/gastric mucosa, they improve drug-induced colitis in animal models and exhibit antitumor properties on intestinal cells in vitro. Several recent epidemiological studies provide evidence of a reduced risk of colorectal cancer in osteoporotic patients treated with oral bisphosphonates, notably alendronate. In this review, we will explore the possible mechanisms of action underlying these effects and raise the question of whether these agents might be used in the chemoprophylaxis against colorectal cancer.

  20. Extracorporeal shockwave therapy for avascular necrosis of femoral head.

    PubMed

    Wang, Ching-Jen; Cheng, Jai-Hong; Huang, Chung-Cheng; Yip, Han-Kan; Russo, Sergio

    2015-12-01

    The etiology of osteonecrosis of the femoral head (ONFH) is multifactorial. Treatment of ONFH is disease stage dependent. For early stages, femoral head preservation procedures are preferred including core decompression, muscle pedicle grafting and de-rotational osteotomy. Core decompression with bone grafting is considered the gold standard. However, the results are inconsistence and unpredictable. An effective non-invasive method of treatment is imperative. Recently, extracorporeal shockwave therapy (ESWT) has shown beneficial effects in ONFH. ESWT improves pain and function of the hip and regression of the ONFH lesion. ESWT is more effective than core decompression with or without bone grafting, cocktail therapy that combined HBO, ESWT and oral alendronate is shown effective for patients with early osteonecrosis. The purpose of the article is to review, update and summarize the clinical treatment of ONFH using shockwave therapy.

  1. Osteoporosis Treatment: When to Discontinue and When to Re-start

    PubMed Central

    Adami, Silvano; Idolazzi, Luca; Fracassi, Elena; Gatti, Davide; Rossini, Maurizio

    2013-01-01

    A number of effective therapies for the treatment of osteoporosis have become available in recent years. However, uncertainty exists regarding their long-term use and effectiveness. Bisphosphonate treatment, unlike hormone replacement, denosumab or teriparatide, is associated with benefits extended even after treatment discontinuation. The extended benefits are most apparent for alendronate (ALN) and zoledronate (ZOL). A drug holiday might be considered in patients at low-moderate risk and who have been fully compliant with treatment, and who have had a response to treatment. In patients at low-moderate risk of fractures the decision to consider a drug holiday should be balanced also with the safety profile of each treatment. PMID:26273510

  2. Epidemiological aspects of rheumatoid arthritis patients affected by oral bisphosphonate-related osteonecrosis of the jaws

    PubMed Central

    2012-01-01

    This literature review aims to evaluate the epidemiologic profile of patients with rheumatoid arthritis (RA) that developed a bisphosphonate-related osteonecrosis that affect the jaws (BRONJ), including demographic aspects, as well as clinical and therapeutic issues. A search of PUBMED/MEDLINE, Scopus, and Cochrane databases from January 2003 to September 2011 was conducted with the objective of identifying publications that contained case reports regarding oral BRONJ in RA patients. Patients with RA who develop oral BRONJ are usually women above 60 years taking steroids and long-term alendronate. Most of them have osteoporosis, and lesions, triggered by dental procedures, are usually detected at stage II in the mandible. Although there is no accepted treatment protocol, these patients seem to have better outcomes with conservative approaches that include antibiotic therapy, chlorhexidine, and drug discontinuation. PMID:22376948

  3. [Pyrophosphate in medicine].

    PubMed

    Goldman, Adrian; Boije af Gennis, Gustav; Xhaard, Henri; Meri, Seppo; Yli-Kauhaluoma, Jari

    2016-01-01

    In all organisms from bacteria to humans, specific hydrolases--pyrophosphatases--hydrolyse inorganic pyrophosphate to phosphate. Without this, DNA, RNA and protein synthesis stops. Pyrophosphatases are thus essential for all life. In humans, disorders in pyrophosphate metabolism cause chondrocalcinosis and hypophosphatasia. Currently, pyrophosphate analogues, e.g. alendronate, are in clinical use in osteoporosis and Paget's disease but also for e.g. complications of prostate cancer. In bacteria and protozoan parasites, membrane-bound pyrophosphatases (mPPases), which do not occur in humans, convert pyrophosphate to a proton or sodium gradient. mPPases, which are crucial for protozoan parasites, are thus promising drug targets e.g. for malaria and leishmaniasis. PMID:27483627

  4. Deposition of PLA/CDHA composite coating via electrospraying.

    PubMed

    Zhou, Huan; Bhaduri, Sarit B

    2013-01-01

    Composite coatings composed of carbonated calcium deficient hydroxyapatite (CDHA) and polylactic acid (PLA) were deposited on a PLA substrate surface via electrospraying. The operation parameters, structural properties, bioactivity, cell adhesion, and growth capability of as-fabricated PLA/CDHA coatings were investigated. The composite coating showed good biocompatibility and bioactivity. The deposited coating was also applied as a carrier to assist alendronate sodium (AS) local release. AS, an approved bisphosphonate drug used for the treatment of osteoporosis, was incorporated into a composite coating matrix via coelectrospraying. Its release behavior showed a long-term sustained release. This approach can be a potential coating technique for the surface modification of biopolymer implants. PMID:23594068

  5. Effect of Long-Term Use of Bisphosphonates on Forearm Bone: Atypical Ulna Fractures in Elderly Woman with Osteoporosis

    PubMed Central

    Atbasi, Zafer; Kavadar, Gülis; Demiralp, Bahtiyar

    2016-01-01

    Osteoporosis is a common musculoskeletal disease of the elderly population characterized by decreased bone mineral density and subsequent fractures. Bisphosphonates are a widely accepted drug therapy which act through inhibition of bone resorption and prevent fractures. However, in long-term use, atypical bisphosphonate induced fractures may occur, particularly involving the lower weight bearing extremity. Atypical ulna fracture associated with long-term bisphosphonate use is rarely reported in current literature. We present a 62-year-old woman with atypical ulna due to long-term alendronate therapy without a history of trauma or fall. Clinicians should be aware of stress fracture in a patient who has complaints of upper extremity pain and history of long-term bisphosphonate therapy. PMID:27595031

  6. Effect of Long-Term Use of Bisphosphonates on Forearm Bone: Atypical Ulna Fractures in Elderly Woman with Osteoporosis.

    PubMed

    Erdem, Yusuf; Atbasi, Zafer; Emre, Tuluhan Yunus; Kavadar, Gülis; Demiralp, Bahtiyar

    2016-01-01

    Osteoporosis is a common musculoskeletal disease of the elderly population characterized by decreased bone mineral density and subsequent fractures. Bisphosphonates are a widely accepted drug therapy which act through inhibition of bone resorption and prevent fractures. However, in long-term use, atypical bisphosphonate induced fractures may occur, particularly involving the lower weight bearing extremity. Atypical ulna fracture associated with long-term bisphosphonate use is rarely reported in current literature. We present a 62-year-old woman with atypical ulna due to long-term alendronate therapy without a history of trauma or fall. Clinicians should be aware of stress fracture in a patient who has complaints of upper extremity pain and history of long-term bisphosphonate therapy. PMID:27595031

  7. Atypical femoral diaphyseal and subtrochanteric fractures and their association with bisphosphonates

    PubMed Central

    Leung, Frankie; Lau, Tak-Wing; To, Michael; Luk, Keith Dip-Kei; Kung, Annie Wai Chee

    2009-01-01

    Antiresorptive bisphosphonate agents are the mainstay of treatment for osteoporosis in both men and postmenopausal women. However, recent studies have raised concerns about the oversuppression of bone turnover related to the long-term use of bisphosphonates. Cases of atypical femoral diaphyseal and subtrochanteric fracture were reported recently in patients on long-term alendronate, and oversuppression of bone turnover was postulated to be the cause. We retrospectively reviewed all patients with femoral diaphyseal and subtrochanteric fracture presented between July 2003 and June 2008, and identified 10 patients who reported prior bisphosphonate use. Bone formation markers of all these patients were in the low range. Although the incidence of bisphosphonate-related atypical fracture accounts for an extremely low percentage of the total number of femoral diaphyseal and subtrochanteric fractures, we observed a steady increase from 0% in 2003 to 2004 to 25% in 2007 to 2008. PMID:21686468

  8. Diagnosis and treatment of SAPHO syndrome: A case report

    PubMed Central

    SONG, XINGHUA; SUN, WENWEN; MENG, ZHAOWEI; GONG, LU; TAN, JIAN; JIA, QIANG; YU, CHUNSHUI; YU, TIELIAN

    2014-01-01

    The present study reports a rare case of synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO) syndrome in an adult male. The 42-year-old man complained of skin lesions, chest pain and lumbago. Laboratory evaluations demonstrated an elevated erythrocyte sedimentation rate and increased levels of C-reactive protein. Computerized tomography, bone scintigraphy and magnetic resonance imaging revealed multiple bone lesions. A diagnosis of SAPHO syndrome was made. Non-steroidal anti-inflammatory drugs, alendronate sodium and steroids were administered, which resulted in clinical improvement. The current case study demonstrates that skin manifestation and multiple imaging modalities are important in generating a definite diagnosis of SAPHO syndrome, and that early treatment is vital for a positive outcome. PMID:25009594

  9. Management of Root Resorption Using Chemical Agents: A Review

    PubMed Central

    Mohammadi, Zahed; C. Cehreli, Zafer; Shalavi, Sousan; Giardino, Luciano; Palazzi, Flavio; Asgary, Saeed

    2016-01-01

    Root resorption (RR) is defined as the loss of dental hard tissues because of clastic activity inside or outside of tooth the root. In the permanent dentition, RR is a pathologic event; if untreated, it might result in the premature loss of the affected tooth. Several hypotheses have been suggested as the mechanisms of root resorption such as absence of the remnants of Hertwig's epithelial root sheath (HERS) and the absence of some intrinsic factors in cementum and predentin such as amelogenin or osteoprotegerin (OPG). It seems that a barrier is formed by the less-calcified intermediate cementum or the cementodentin junction that prevents external RR. There are several chemical strategies to manage root resorption. The purpose of this paper was to review several chemical agents to manage RR such as tetracycline, sodium hypochlorite, acids (citric acid, phosphoric acid, ascorbic acid and hydrochloric acid), acetazolamide, calcitonin, alendronate, fluoride, Ledermix and Emdogain. PMID:26843869

  10. HIV infection, bone metabolism, and fractures.

    PubMed

    Güerri-Fernández, Robert; Villar-García, Judit; Díez-Pérez, Adolfo; Prieto-Alhambra, Daniel

    2014-07-01

    With the advent of high active antiretroviral therapy there was a significant improvement on HIV subjects survival. Thus, bone changes related to HIV became an important aspect of these individuals. HIV affects bone remodeling causing bone fragility. In addition, antiretroviral therapy may also negatively affect bone metabolism. Several studies describe an increased incidence of fractures in these patients when compared with controls without the disease. The European Society of AIDS (EACS), and other societies, have included guidance on management of osteoporosis in HIV-infected patients emphasizing the identification of patients with low bone mass. Supplementation of calcium and vitamin D and the use of alendronate in these individuals should be recommended on a case base. PMID:25166038

  11. Modelling the interaction of several bisphosphonates with hydroxyapatite using the generalised AMBER force field

    NASA Astrophysics Data System (ADS)

    Robinson, Janine; Cukrowski, Ignacy; Marques, Helder M.

    2006-12-01

    The ability of the Generalised AMBER Force Field (GAFF) of Kollman and co-workers to model the structures of bisphosphonate ligands, C(R 1)(R 2)(PO 32-) 2, important compounds in the treatment of bone cancer, by molecular mechanics methods is evaluated. The structure of 50 bisphosphonates and nine bisphosphonate esters were predicted and compared to their crystal structures. Partial charges were assigned from a RHF/6-31G ∗ single point calculation at the geometry of the crystal structure. Additional parameters required for GAFF were determined using the methods of the force field's developers. The structures were found to be well replicated with virtually all bond lengths reproduced to within 0.015 Å, or within 1.2 σ of the crystallographic mean. Bond angles were reproduced to within 1.9° (0.8 σ). The observed gauche or anti conformation of the molecules was reproduced, although in several instances gauche conformations observed in the solid state energy-minimised into anti conformations, and vice versa. The interaction of MDP (R 1 = R 2 = H), HEDP (R 1 = OH, R 2 = CH 3), APD (R 1 = OH, R 2 = (CH 2) 2NH 3+), alendronate (R 1 = OH, R 2 = (CH 2) 3NH 3+) and neridronate (R 1 = OH, R 2 = (CH 2) 5NH 3+) with the (001), (010) and (100) faces of hydroxyapaptite was examined by energy-minimising 20 random orientations of each ligand 20 Å from the mineral (where there is no interaction), and then at about 8 Å from the surface whereupon the ligand relaxes onto the surface. The difference in energy between the two systems is the interaction energy. In all cases interaction with hydroxyapatite caused a decrease in energy. When modelled with a dielectric constant of 78 ɛo, non-bonded interactions dominate; electrostatic interactions become important when the dielectric constant is <10 ɛo. Irrespective of the value of the dielectric constant used, the structure of the ligands on the hydroxyapatite surface is very similar. On the (001) face, both phosphonate groups

  12. Can long-term bisphosphonate use causes low-energy fractures? A case report.

    PubMed

    Dandinoğlu, T; Akarsu, S; Karadeniz, M; Tekin, L; Arıbal, S; Kıralp, M Z

    2014-02-01

    Bisphosphonates are inorganic pyrophosphate analog which accumulate on the bone surface, cause osteoclast apoptosis, and inhibit bone resorption. The nitrogen-containing bisphosphonates continue to be the drug of choice for the treatment of osteoporosis in both men and women. Although histomorphometric studies including bone biopsies have not shown any evidence of microcracks, recent studies have revealed that potent bisphosphonates are responsible for the oversuppression of bone turnover leading to microdamages, reduced bone strength, and increased fracture risk. There are individual cases reporting atypical femoral fractures and severely suppressed bone turnover along with long-term (≥ 5 years) use of biphosphonates. In this study, we report on a 74-year-old woman with a history of continuous alendronate use for nearly 16 years who presented to the emergency department with right proximal humerus and left femur fracture.

  13. Phosphonated nanocelluloses from sequential oxidative-reductive treatment-Physicochemical characteristics and thermal properties.

    PubMed

    Sirviö, Juho Antti; Hasa, Tapani; Ahola, Juha; Liimatainen, Henrikki; Niinimäki, Jouko; Hormi, Osmo

    2015-11-20

    Nanocellulosic materials with good thermal stability are highly desirable for applications, such as reinforcement and filler agents in composites. In the present work, phosphonated cellulose was utilized to obtain nanocelluloses with good thermal stability and potential intumescent properties. Phosphonated cellulose was synthetized from birch pulp via sequential periodate oxidation and reductive amination using a bisphosphonate group-containing amine, sodium alendronate, as a phosphonating reagent. After high-pressure homogenization, bisphosphonate cellulose nanofibres or nanocrystals were obtained, depending on the initial oxidation degree. Nanofibres had a typical diameter of 3.8nm and length of several micrometers, whereas nanocrystals exhibited a width of about 6nm and an average length of 103-129nm. All nanocelluloses exhibited cellulose I crystalline structures and high transparency in water solutions. Phosphonated nanocelluloses exhibited good thermal stability and a greater amount of residual char was formed at 700°C compared to birch pulp and mechanically produced, non-chemically modified NFC. PMID:26344310

  14. The effect of metyrosine/prednisolone combination to oophorectomy-induced osteoporosis

    PubMed Central

    Salman, Suleyman; Kumbasar, Serkan; Hacimuftuoglu, Ahmet; Ozturk, Berna; Seven, Bedri; Polat, Beyzagul; Gundogdu, Cemal; Demirci, Elif; Yildirim, Kadir; Akcay, Fatih; Uslu, Turan; Tuncel Daloglu, Ferrah; Suleyman, Halis

    2012-01-01

    Background: Osteoporosis is a chronic disease characterized by a decrease in bone mineral density (BMD) and corruption of the microarchitectural structure of bone tissue. Objective: It was investigated whether methylprednisolone had a favorable effect on osteoporotic bone tissue in Oophorectomy induced osteoporotic rats whose endogenous adrenaline levels are suppressed with metyrosine. Materials and Methods: Bone Mineral Density, number of osteoblast-osteoclast, bone osteocalcin levels and alkaline phosphatase (ALP) measurements were performed. Obtained results were compared with that of alendronate. Results: Oophorectomy induced osteoporosis was exacerbated by methylprednisolone. Alentronate prevented ovariectomised induced osteoporosis, but it couldn’t prevent methylprednisolone +ovariectomised induced osteoporosis in rats. Conclusion: Combined treatment with methylprednisolon and metyrosine was the best treatment for preventing osteoporosis but metyrosine alone couldn’t prevent osteoporosis in ovariectomised rats. PMID:25246899

  15. An experimental study to evaluate the antiosteoporotic effect of Panchatikta Ghrita in a steroid-induced osteoporosis rat model

    PubMed Central

    Munshi, Renuka; Patil, Tanvi; Garuda, Chetan; Kothari, Dushyant

    2016-01-01

    Objective: The study was conducted to develop the glucocorticoid-induced osteoporosis (GIO) model in Sprague-Dawley weanling rats using different doses of methylprednisolone (MP) and evaluate the antiosteoporotic effect of a classical ayurvedic formulation, Panchatikta Ghrita (PG), in this model. Materials and Methods: Institutional Animal Ethics Committee approval was obtained. Development of model was done by subcutaneous injection of 2 doses of MP (14 and 28 mg/kg/week) for 4 weeks in 21-day old weanlings. Following confirmation of the dose of MP that induced osteoporosis, the antiosteoporotic effect of PG was tested in this model in comparison to a known antiosteoporotic agent, alendronate. Both alendronate (2.9 mg/kg/day) and PG (1.35 g/kg/day) were administered orally 2 weeks after MP - 14 mg/kg/week injection and continued for 4 weeks. Serum and urine calcium and inorganic phosphate were analyzed at weekly intervals. Animals were sacrificed after 6 weeks, and femur bones were processed to measure bone hardness and elasticity and for histological studies. Results: Rats treated with MP - 14 mg/kg/week showed optimum osteoporotic effect with no mortality as compared to MP - 28 mg/kg/week; hence, this dose of MP was used further for the efficacy study. Osteoporotic rats treated with PG 1.35 g/kg showed increase in serum calcium and inorganic phosphate levels, whereas urine calcium and phosphate levels were significantly reduced. A significant decrease in a number of osteoclasts, whereas an increase in bone hardness and elasticity was observed as compared to diseased group demonstrating antiosteoporotic effect of PG. Conclusion: PG has an antiosteoporotic effect in GIO rat model. PMID:27298501

  16. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy.

    PubMed

    Karlsson, Johan; Atefyekta, Saba; Andersson, Martin

    2015-01-01

    The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding-diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments.

  17. Bis-Enoxacin Blocks Rat Alveolar Bone Resorption from Experimental Periodontitis

    PubMed Central

    Lee, Ju-Youn; Bhattacharyya, Indraneel; Dolce, Calogero; Toro, Edgardo J.; Holliday, L. Shannon; Kesavalu, Lakshmyya

    2014-01-01

    Periodontal diseases are multifactorial, caused by polymicrobial subgingival pathogens, including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Chronic periodontal infection results in inflammation, destruction of connective tissues, periodontal ligament, and alveolar bone resorption, and ultimately tooth loss. Enoxacin and a bisphosphonate derivative of enoxacin (bis-enoxacin) inhibit osteoclast formation and bone resorption and also contain antibiotic properties. Our study proposes that enoxacin and/or bis-enoxacin may be useful in reducing alveolar bone resorption and possibly bacterial colonization. Rats were infected with 109 cells of polymicrobial inoculum consisting of P. gingivalis, T. denticola, and T. forsythia, as an oral lavage every other week for twelve weeks. Daily subcutaneous injections of enoxacin (5 mg/kg/day), bis-enoxacin (5, 25 mg/kg/day), alendronate (1, 10 mg/kg/day), or doxycycline (5 mg/day) were administered after 6 weeks of polymicrobial infection. Periodontal disease parameters, including bacterial colonization/infection, immune response, inflammation, alveolar bone resorption, and systemic spread, were assessed post-euthanasia. All three periodontal pathogens colonized the rat oral cavity during polymicrobial infection. Polymicrobial infection induced an increase in total alveolar bone resorption, intrabony defects, and gingival inflammation. Treatment with bis-enoxacin significantly decreased alveolar bone resorption more effectively than either alendronate or doxycycline. Histologic examination revealed that treatment with bis-enoxacin and enoxacin reduced gingival inflammation and decreased apical migration of junctional epithelium. These data support the hypothesis that bis-enoxacin and enoxacin may be useful for the treatment of periodontal disease. PMID:24638087

  18. Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis.

    PubMed

    Stepan, Jan J; Burr, David B; Pavo, Imre; Sipos, Adrien; Michalska, Dana; Li, Jiliang; Fahrleitner-Pammer, Astrid; Petto, Helmut; Westmore, Michael; Michalsky, David; Sato, Masahiko; Dobnig, Harald

    2007-09-01

    Marked suppression of bone turnover by bisphosphonates is associated with increased bone microdamage accumulation in animal models. The purpose of this study was to test the hypothesis that long-term treatment with alendronate (ALN) results in accumulation of microdamage in bone in women after menopause. Sixty-six postmenopausal women with osteoporosis (mean age of 68.0 years and mean BMD T-score of -1.7 at total hip and -2.8 at lumbar spine; 62% with prevalent fractures) were evaluated in this cross-sectional analysis. Thirty-eight had been treated previously with ALN (10 mg/day or 70 mg/week for a mean duration of 63.6 months) while twenty-eight were treatment naive (TN). Without adjustments, crack surface density (Cr.S.Dn) and crack density (Cr.Dn) were not different between ALN and TN patients. After adjustment for potential confounders (age, prevalent fractures, femoral neck BMD, activation frequency and center), Cr.Dn was elevated in ALN patients (P=0.028 and P=0.069 for Cr.S.Dn). In ALN patients only, lower femoral neck BMD (Cr.S.Dn, r=-0.58, P=0.003; Cr.Dn, r=-0.54, P=0.005) and increased age (Cr.S.Dn, r=0.43, P=0.03; Cr.Dn, r=0.43, P=0.03) were associated with microdamage accumulation. Among potential confounders, femoral neck BMD was the only independent predictor for these correlations (P=0.04 for Cr.Dn and P=0.03 for Cr.S.Dn). We conclude that increased microdamage accumulation may occur in low BMD patients treated with alendronate.

  19. Polyoxomolybdate Bisphosphonate Heterometallic Complexes: Synthesis, Structure, and Activity on a Breast Cancer Cell Line.

    PubMed

    Saad, Ali; Zhu, Wei; Rousseau, Guillaume; Mialane, Pierre; Marrot, Jérôme; Haouas, Mohamed; Taulelle, Francis; Dessapt, Rémi; Serier-Brault, Hélène; Rivière, Eric; Kubo, Tadahiko; Oldfield, Eric; Dolbecq, Anne

    2015-07-13

    Six polyoxometalates containing Mn(II) , Mn(III) , or Fe(III) as the heteroelement were synthesized in water by treating Mo(VI) precursors with biologically active bisphosphonates (alendronate (Ale), zoledronate (Zol), an n-alkyl bisphosphonate (BPC9 ), an aminoalkyl bisphosphonate (BPC8 NH2 )) in the presence of additional metal ions. The Pt complex was synthesized from a polyoxomolybdate bisphosphonate precursor with Mo(VI) ions linked by the 2-pyridyl analogue of alendronate (AlePy). The complexes Mo4 Ale2 Mn, Mo4 Zol2 Mn, Mo4 Ale2 Fe, Mo4 Zol2 Fe, Mo4 (BPC8 NH2 )2 Fe, and Mo4 (BPC9 )2 Fe contain two dinuclear Mo(VI) cores bound to a central heterometallic ion. The oxidation state of manganese was determined by magnetic measurements. Complexes Mo12 (AlePy)4 and Mo12 (AlePy)4 Pt4 were studied by solid-state NMR spectroscopy and the photochromic properties were investigated in the solid state; both methods confirmed the complexation of Pt. Activity against the human breast adenocarcinoma cell line MCF-7 was determined and the most potent compound was Mn(III) -containing Mo4 Zol2 Mn (IC50 ≈1.3 μM). Unlike results obtained with vanadium-containing polyoxometalate bisphosphonates, cell growth inhibition was rescued by the addition of geranylgeraniol, which reverses the effects of bisphosphonates on isoprenoid biosynthesis/protein prenylation. The results indicate an important role for both the heterometallic element and the bisphosphonate ligand in the mechanism of action of the most active compounds.

  20. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy.

    PubMed

    Karlsson, Johan; Atefyekta, Saba; Andersson, Martin

    2015-01-01

    The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding-diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. PMID:26185444

  1. Bis-enoxacin blocks rat alveolar bone resorption from experimental periodontitis.

    PubMed

    Rivera, Mercedes F; Chukkapalli, Sasanka S; Velsko, Irina M; Lee, Ju-Youn; Bhattacharyya, Indraneel; Dolce, Calogero; Toro, Edgardo J; Holliday, L Shannon; Kesavalu, Lakshmyya

    2014-01-01

    Periodontal diseases are multifactorial, caused by polymicrobial subgingival pathogens, including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Chronic periodontal infection results in inflammation, destruction of connective tissues, periodontal ligament, and alveolar bone resorption, and ultimately tooth loss. Enoxacin and a bisphosphonate derivative of enoxacin (bis-enoxacin) inhibit osteoclast formation and bone resorption and also contain antibiotic properties. Our study proposes that enoxacin and/or bis-enoxacin may be useful in reducing alveolar bone resorption and possibly bacterial colonization. Rats were infected with 10(9) cells of polymicrobial inoculum consisting of P. gingivalis, T. denticola, and T. forsythia, as an oral lavage every other week for twelve weeks. Daily subcutaneous injections of enoxacin (5 mg/kg/day), bis-enoxacin (5, 25 mg/kg/day), alendronate (1, 10 mg/kg/day), or doxycycline (5 mg/day) were administered after 6 weeks of polymicrobial infection. Periodontal disease parameters, including bacterial colonization/infection, immune response, inflammation, alveolar bone resorption, and systemic spread, were assessed post-euthanasia. All three periodontal pathogens colonized the rat oral cavity during polymicrobial infection. Polymicrobial infection induced an increase in total alveolar bone resorption, intrabony defects, and gingival inflammation. Treatment with bis-enoxacin significantly decreased alveolar bone resorption more effectively than either alendronate or doxycycline. Histologic examination revealed that treatment with bis-enoxacin and enoxacin reduced gingival inflammation and decreased apical migration of junctional epithelium. These data support the hypothesis that bis-enoxacin and enoxacin may be useful for the treatment of periodontal disease.

  2. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    USGS Publications Warehouse

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  3. Eldecalcitol improves muscle strength and dynamic balance in postmenopausal women with osteoporosis: an open-label randomized controlled study.

    PubMed

    Saito, Kimio; Miyakoshi, Naohisa; Matsunaga, Toshiki; Hongo, Michio; Kasukawa, Yuji; Shimada, Yoichi

    2016-09-01

    The antifracture efficacy of vitamin D in osteoporosis is due to its direct action on bones and indirect extraskeletal effects to prevent falls. Eldecalcitol is an analog of active vitamin D3 that improves bone mineral density and reduces the risk of osteoporotic fractures. However, the effects of eldecalcitol on muscle strength and static and dynamic postural balance are unclear. In this open-label randomized controlled study, we assessed the effects of eldecalcitol on muscle strength and static and dynamic postural balance in 50 postmenopausal women (mean age 74 years) with osteoporosis treated with bisphosphonate. Participants were randomly divided into a bisphosphonate group (alendronate at 35 mg/week; n = 25) or an eldecalcitol group (eldecalcitol at 0.75 μg/day and alendronate at 35 mg/week; n = 25) and were followed up for 6 months. Trunk muscle strength, including back extensor strength and iliopsoas muscle strength, was measured. Static standing balance was evaluated and the one leg standing test was performed to assess static postural balance. Dynamic sitting balance was evaluated and the 10-m walk test, functional reach test, and timed up and go test were performed to assess dynamic postural balance. At 6 months, there were no significant changes in any measure of muscle strength or balance in the bisphosphonate group, whereas eldecalcitol significantly increased back extensor strength (p = 0.012) and iliopsoas muscle strength (p = 0.035). Eldecalcitol also significantly improved findings on the timed up and go test (p = 0.001) and dynamic sitting balance (p = 0.015) at 6 months. These results with eldecalcitol may have an impact on prevention of falls.

  4. Complications in primary total hip arthroplasty: avoidance and management: wear.

    PubMed

    Ries, Michael D

    2003-01-01

    Many factors, including polyethylene processing, sterilization method, counterface material, femoral head size, femoral offset, acetabular component position, implant design, and patient activity level, affect the rate of wear in total hip arthroplasty. For patients with life expectancy that exceeds the longevity of the conventional implant materials, an alternative bearing surface (highly cross-linked polyethylene, metal-on-metal, or ceramic-on-ceramic) may be considered. Although laboratory wear tests with these materials are very favorable, clinical outcomes have not been clearly established. When osteolysis does develop in response to particulate debris, the location and progression of the lesions may be quite variable. Asymptomatic stable lesions can be followed clinically and radiographically while symptomatic or enlarging lesions or those that may compromise the integrity of the periprosthetic bone stock require surgery. If acetabular component revision is necessary and an adequate rim of host bone is maintained to support a revision acetabular component, defects can be filled with particulate bone graft. Large segmental defects generally require structural allografts. If the acetabular shell is well fixed in good position and the osteolytic defects are accessible, treatment with curettage and bone grafting of the lesions with liner revision is appropriate to avoid use of a structural allograft. Proximal femoral defects around a well-fixed stem can be managed in a similar manner with curettage and bone grafting. Distal lesions associated with risk of periprosthetic femur fracture or implant loosening require stem revision. Osteoclastic resportion of bone in response to particulate debris can be impaired with use of some drugs such as alendronate. However, the safety and efficacy of alendronate in the clinical management of osteolysis associated with total hip arthroplasty has not been established. PMID:12690853

  5. Engineered nanomedicine for myeloma and bone microenvironment targeting

    PubMed Central

    Swami, Archana; Reagan, Michaela R.; Basto, Pamela; Mishima, Yuji; Kamaly, Nazila; Glavey, Siobhan; Zhang, Sufeng; Moschetta, Michele; Seevaratnam, Dushanth; Zhang, Yong; Liu, Jinhe; Memarzadeh, Masoumeh; Wu, Jun; Manier, Salomon; Shi, Jinjun; Bertrand, Nicolas; Lu, Zhi Ning; Nagano, Kenichi; Baron, Roland; Sacco, Antonio; Roccaro, Aldo M.; Farokhzad, Omid C.; Ghobrial, Irene M.

    2014-01-01

    Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM. PMID:24982170

  6. The novel non-steroidal selective androgen receptor modulator S-101479 has additive effects with bisphosphonate, selective estrogen receptor modulator, and parathyroid hormone on the bones of osteoporotic female rats.

    PubMed

    Furuya, Kazuyuki; Yamamoto, Noriko; Ohyabu, Yuki; Makino, Akito; Morikyu, Teruyuki; Ishige, Hirohide; Kuzutani, Kazuya; Endo, Yasuhisa

    2012-01-01

    We have studied non-steroidal selective androgen receptor modulators (SARMs) to develop anti-osteoporosis drugs for males and females. Many SARMs have been studied for their anabolic effects on bone or muscle with reduced virilizing effects in male animals. However, the tissue selectivities of these agents in female animals have not been fully evaluated. We evaluated the novel SARM S-101479 from tetrahydroquinoline libraries in ovariectomized (OVX) rats. S-101479 preferentially bound to the androgen receptor with nanomolar affinity among nuclear receptors. It increased the bone mineral density (BMD) of femurs and diminished the effects on the uterus and clitoral gland in OVX rats. We then compared the effect of S-101479 on bone with those of commercial anti-osteoporosis drugs such as alendronate, raloxifene, and teriparatide. Furthermore, we evaluated the effects of combination treatments with these agents in OVX rats. After 16-week treatment, all agents significantly increased BMD, but the magnitude of bone mineral content (BMC) and/or bone size (projected bone area) were different. Alendronate, raloxifene, and teriparatide maintained BMC and bone size in this experimental dose. Only S-101479 increased BMC with bone size on single treatments. In combination treatment, S-101479 significantly increased BMC and bone size compared with single treatments of other agents. S-101479, like natural androgen, may have showed periosteal bone formation of the cortical area and indicated additive effects with commercial anti-osteoporosis drugs. These results indicate that S-101479 may be a useful anti-osteoporosis drug, particularly for patients with established severe osteoporosis.

  7. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    PubMed Central

    Karlsson, Johan; Atefyekta, Saba; Andersson, Martin

    2015-01-01

    The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. PMID:26185444

  8. Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone resorption

    NASA Astrophysics Data System (ADS)

    Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin

    2016-05-01

    Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently.Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. Electronic supplementary information (ESI) available: Experiment methods and details; syntheses and characterization of Pami-D and Alen-D; HPLC conditions; Fig. S1-S15, Schemes S1 and S2, Tables S1 and S2

  9. Engineered nanomedicine for myeloma and bone microenvironment targeting.

    PubMed

    Swami, Archana; Reagan, Michaela R; Basto, Pamela; Mishima, Yuji; Kamaly, Nazila; Glavey, Siobhan; Zhang, Sufeng; Moschetta, Michele; Seevaratnam, Dushanth; Zhang, Yong; Liu, Jinhe; Memarzadeh, Masoumeh; Wu, Jun; Manier, Salomon; Shi, Jinjun; Bertrand, Nicolas; Lu, Zhi Ning; Nagano, Kenichi; Baron, Roland; Sacco, Antonio; Roccaro, Aldo M; Farokhzad, Omid C; Ghobrial, Irene M

    2014-07-15

    Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(D,L-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.

  10. "Atypical femoral fractures" during bisphosphonate exposure in adult hypophosphatasia.

    PubMed

    Sutton, Roger A L; Mumm, Steven; Coburn, Stephen P; Ericson, Karen L; Whyte, Michael P

    2012-05-01

    We report a 55-year-old woman who suffered atypical subtrochanteric femoral fractures (ASFFs) after 4 years of exposure to alendronate and then zolendronate given for "osteoporosis." Before alendronate treatment, she had low bone mineral density. After several months of therapy, metatarsal stress fractures began. Bisphosphonate (BP) administration was stopped following the ASFFs, and the adult form of hypophosphatasia (HPP) was diagnosed from low serum alkaline phosphatase (ALP) activity, high endogenous levels of two natural substrates for the "tissue-nonspecific" isoenzyme of ALP (TNSALP), and a heterozygous mutation within the gene that encodes this enzyme. Experience with other HPP families showed that her mutation (Arg71His) with a second defective TNSALP allele can cause severe HPP in infancy, and when heterozygous can cause mild HPP featuring premature loss of deciduous teeth in children. Because the skeletal disease of HPP results from extracellular accumulation of the TNSALP substrate inorganic pyrophosphate (PPi) and its inhibitory effect on mineralization, perhaps HPP patients or carriers will have adverse effects from BPs. BPs are analogues of PPi and can suppress bone turnover but also deactivate TNSALP. Our report is the first of BP exposure preceding ASFFs in adult HPP. To explore a potential role for TNSALP deactivation in ASFFs, mutation analysis of TNSALP should be studied in a cohort of these patients. Meanwhile, clinicians must suspect HPP when clinical or laboratory clues include premature loss of primary dentition, pseudofractures or recurrent poorly healing metatarsal stress fractures, a family history suggestive of HPP, or low serum ALP activity. If HPP is documented, BP treatment might be avoided. To establish the diagnosis of HPP, assays for two natural substrates for TNSALP and TNSALP mutation analysis are available in commercial laboratories. With positive findings, radiological or bone biopsy evidence of acquired osteomalacia would

  11. Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice.

    PubMed

    Kawao, Naoyuki; Yano, Masato; Tamura, Yukinori; Okumoto, Katsumi; Okada, Kiyotaka; Kaji, Hiroshi

    2016-09-01

    Fibrodysplasia ossificans progressiva (FOP) is a disorder of skeletal malformations and progressive heterotopic ossification. The constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2), is responsible for the pathogenesis of FOP. Although transfection of the causal mutation of FOP into myoblasts enhances osteoclast formation by transforming growth factor-β (TGF-β), the role of osteoclasts in heterotopic ossification is unknown. We therefore examined the effects of alendronate, SB431542 and SB203580 on heterotopic ossification induced by the causal mutation of FOP. Total bone mineral content as well as numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated and alkaline phosphatase (ALP)-positive cells in heterotopic bone were significantly higher in muscle tissues implanted with ALK2 (R206H)-transfected mouse myoblastic C2C12 cells than in the tissues implanted with empty vector-transfected cells in nude mice. Alendronate, an aminobisphosphonate, did not affect total mineral content or numbers of TRAP-positive multinucleated and ALP-positive cells in heterotopic bone, which were enhanced by the implantation of ALK2 (R206H)-transfected C2C12 cells, although it significantly decreased serum levels of cross-linked C-telopeptide of type I collagen, a bone resorption index. Moreover, neither SB431542, an inhibitor of TGF-β receptor type I kinase, nor SB203580, an inhibitor of p38 mitogen-activated protein kinase, affected the increase in heterotopic ossification due to the implantation of ALK2 (R206H)-transfected C2C12 cells. In conclusion, the present study indicates that osteoclast inhibition does not affect heterotopic ossification enhanced by FOP-related mutation.

  12. Osteoprotegerin-deficient male mice as a model for severe alveolar bone loss: comparison with RANKL-overexpressing transgenic male mice.

    PubMed

    Koide, Masanori; Kobayashi, Yasuhiro; Ninomiya, Tadashi; Nakamura, Midori; Yasuda, Hisataka; Arai, Yoshinori; Okahashi, Nobuo; Yoshinari, Nobuo; Takahashi, Naoyuki; Udagawa, Nobuyuki

    2013-02-01

    Periodontitis, an inflammatory disease of periodontal tissues, is characterized by excessive alveolar bone resorption. An increase in the receptor activator of nuclear factor-κB ligand (RANKL) to osteoprotegerin (OPG) ratio is thought to reflect the severity of periodontitis. Here, we examined alveolar bone loss in OPG-deficient (OPG(-/-)) mice and RANKL-overexpressing transgenic (RANKL-Tg) mice. Alveolar bone loss in OPG(-/-) mice at 12 weeks was significantly higher than that in RANKL-Tg mice. OPG(-/-) but not RANKL-Tg mice exhibited severe bone resorption especially in cortical areas of the alveolar bone. An increased number of osteoclasts was observed in the cortical areas in OPG(-/-) but not in RANKL-Tg mice. Immunohistochemical analyses showed many OPG-positive signals in osteocytes but not osteoblasts. OPG-positive osteocytes in the cortical area of alveolar bones and long bones were abundant in both wild-type and RANKL-Tg mice. This suggests the resorption in cortical bone areas to be prevented by OPG produced locally. To test the usefulness of OPG(-/-) mice as an animal model for screening drugs to prevent alveolar bone loss, we administered an antimouse RANKL antibody or risedronate, a bisphosphonate, to OPG(-/-) mice. They suppressed alveolar bone resorption effectively. OPG(-/-) mice are useful for screening therapeutic agents against alveolar bone loss.

  13. Bone Loss During Space Flights: Implication of the Vestibular System, Sex-Dependence and Countermeasure

    NASA Astrophysics Data System (ADS)

    Vignaux, G.; Besnard, S.; Philoxene, B.; Sabatier, J. P.; Allouche, S.; Denise, P.

    2008-06-01

    The decrease of mechanical load due to microgravity induces bone loss (BL) during long-term space flights. We previously postulated that vestibular system could also be involved in bone modeling. Herein, we evaluated by tomography, long-term (2 months) effects of bilateral vestibular lesion (Bilab) on BL compared to a model of diffuse osteoporosis induced by gonadectomy in male and female rats. BL (about 12%) was observed on femoral metaphysis and femoral metaphysis/diaphysis respectively in male and female Bilab groups compared to shams. Whole body and spine mineralization remained unchanged in Bilab groups while it appeared decreased in gonadectomy groups as expected. BL in Bilab groups was reported at 1 month and recovered at 2 months while it remained decreased at 2 months in our model of diffuse osteoporosis. Risedronate over counterbalanced BL in both models of BL (Bilab and gonadectomy) at 1 and 2 months. Bilateral vestibular lesions on Earth induced regional bone loss focused on bearing bones in male and female at 1 month with unknown compensatory mechanisms 2 months later.

  14. Antiosteoporotic effects of Polycan in combination with calcium lactate-gluconate in ovariectomized rats.

    PubMed

    Choi, Jae-Suk; Kim, Joo Wan; Kim, Ki Young; Cho, Hyung-Rae; Choi, In Soon; Ku, Sae Kwang

    2014-09-01

    The aim of the present study was to investigate the optimum composition of Polycan (β-glucan complex) and calcium lactate-gluconate (CaLG) that exhibited the most beneficial effects in ovariectomy (OVX)-induced osteoporotic rats. Polycan and CaLG single formulas (100 mg/kg each), and three doses (50, 100 and 200 mg/kg) of three mixed formulas [polycan:CaLG (PCLG)=1:99, 5:95 and 10:90] were orally administered once a day for 84 days. The effects of the test materials were compared with those of a risedronate sodium-treated group. OVX resulted in an increase in body weight, decreased bone formation, elevated serum osteocalcin levels and urine deoxypyridinoline/creatinine ratio, as well as decreased serum bone-specific alkaline phosphatase levels, femur indices, bone mineral content, bone mineral density and failure load. However, these OVX-induced osteoporotic changes markedly decreased following the administration of the test materials. Continuous oral treatment of Polycan or CaLG single formulas and the PCLG mixed formulas preserved bone mass and strength. The PCLG 10:90 mixed formula exhibited the most favorable synergistic antiosteoporotic effects in the OVX-induced osteoporotic rats as compared with equal doses of the Polycan or CaLG single formulas.

  15. Gateways to clinical trials.

    PubMed

    Bayes, M; Rabasseda, X; Prous, J R

    2002-05-01

    Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables can be retrieved from the Clinical Studies knowledge area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: Abacavir sulfate, abarelix, abciximab, acarbose, alefacept, alteplase, amisulpride, amoxicillin trihydrate, apomorphine hydrochloride, aprepitant, argatroban monohydrate, aspirin, atenolol; Betamethasone dipropionate, betamethasone valerate, bicalutamide, bleomycin sulfate; Calcium carbonate, candesartan cilexetil, celecoxib, cetirizine hydrochloride, cisplatin, clarithromycin, clavulanate potassium, clomethiazole edisilate, clopidogrel hydrogensulfate, cyclophosphamide, chorionic gonadotropin (human); Dalteparin sodium, desloratadine, dexamethasone, doxorubicin, DPC-083; Efalizumab, efavirenz, enoxaparin sodium, eprosartan mesilate, etanercept, etoposide, ezetimibe; Faropenem daloxate, fenofibrate, fluocinolone acetonide, flutamide, fluvastatin sodium, follitropin beta, fondaparinux sodium; Gabapentin, glibenclamide, goserelin, granisetron hydrochloride; Haloperidol, hydrochlorothiazide; Imiquimod, interferon beta-1a, irbesartan, iseganan hydrochloride; L-758298, lamivudine, lanoteplase, leflunomide, leuprorelin acetate, loratadine, losartan potassium; Melagatran, metformin hydrochloride, methotrexate, metronidazole, micafungin sodium, mitoxantrone hydrochloride; Nelfinavir mesilate, neutral insulin injection, nizatidine; Olopatadine hydrochloride, omeprazole, ondansetron hydrochloride; Pamidronate sodium, paracetamol, paroxetine hydrochloride, perindopril, pimecrolimus, pioglitazone hydrochloride, piroxicam, pleconaril, pralmorelin, pravastatin sodium, prednisolone, prednisone, propofol; Raloxifene hydrochloride, ranpirnase, remifentanil hydrochloride, risedronate sodium, risperidone, rofecoxib, ropinirole

  16. The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants☆

    PubMed Central

    Tsoumpra, Maria K.; Muniz, Joao R.; Barnett, Bobby L.; Kwaasi, Aaron A.; Pilka, Ewa S.; Kavanagh, Kathryn L.; Evdokimov, Artem; Walter, Richard L.; Von Delft, Frank; Ebetino, Frank H.; Oppermann, Udo; Russell, R. Graham G.; Dunford, James E.

    2015-01-01

    Farnesyl pyrophosphate synthase (FPPS) is the major molecular target of nitrogen-containing bisphosphonates (N-BPs), used clinically as bone resorption inhibitors. We investigated the role of threonine 201 (Thr201) and tyrosine 204 (Tyr204) residues in substrate binding, catalysis and inhibition by N-BPs, employing kinetic and crystallographic studies of mutated FPPS proteins. Mutants of Thr201 illustrated the importance of the methyl group in aiding the formation of the Isopentenyl pyrophosphate (IPP) binding site, while Tyr204 mutations revealed the unknown role of this residue in both catalysis and IPP binding. The interaction between Thr201 and the side chain nitrogen of N-BP was shown to be important for tight binding inhibition by zoledronate (ZOL) and risedronate (RIS), although RIS was also still capable of interacting with the main-chain carbonyl of Lys200. The interaction of RIS with the phenyl ring of Tyr204 proved essential for the maintenance of the isomerized enzyme-inhibitor complex. Studies with conformationally restricted analogues of RIS reaffirmed the importance of Thr201 in the formation of hydrogen bonds with N-BPs. In conclusion we have identified new features of FPPS inhibition by N-BPs and revealed unknown roles of the active site residues in catalysis and substrate binding. PMID:26318908

  17. The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants.

    PubMed

    Tsoumpra, Maria K; Muniz, Joao R; Barnett, Bobby L; Kwaasi, Aaron A; Pilka, Ewa S; Kavanagh, Kathryn L; Evdokimov, Artem; Walter, Richard L; Von Delft, Frank; Ebetino, Frank H; Oppermann, Udo; Russell, R Graham G; Dunford, James E

    2015-12-01

    Farnesyl pyrophosphate synthase (FPPS) is the major molecular target of nitrogen-containing bisphosphonates (N-BPs), used clinically as bone resorption inhibitors. We investigated the role of threonine 201 (Thr201) and tyrosine 204 (Tyr204) residues in substrate binding, catalysis and inhibition by N-BPs, employing kinetic and crystallographic studies of mutated FPPS proteins. Mutants of Thr201 illustrated the importance of the methyl group in aiding the formation of the Isopentenyl pyrophosphate (IPP) binding site, while Tyr204 mutations revealed the unknown role of this residue in both catalysis and IPP binding. The interaction between Thr201 and the side chain nitrogen of N-BP was shown to be important for tight binding inhibition by zoledronate (ZOL) and risedronate (RIS), although RIS was also still capable of interacting with the main-chain carbonyl of Lys200. The interaction of RIS with the phenyl ring of Tyr204 proved essential for the maintenance of the isomerized enzyme-inhibitor complex. Studies with conformationally restricted analogues of RIS reaffirmed the importance of Thr201 in the formation of hydrogen bonds with N-BPs. In conclusion we have identified new features of FPPS inhibition by N-BPs and revealed unknown roles of the active site residues in catalysis and substrate binding. PMID:26318908

  18. Evaluation of symptomatic slow-acting drugs in osteoarthritis using the GRADE system

    PubMed Central

    Bruyère, Olivier; Burlet, Nansa; Delmas, Pierre D; Rizzoli, René; Cooper, Cyrus; Reginster, Jean-Yves

    2008-01-01

    Background Symptomatic slow-acting drugs (SYSADOA) have been largely studied over the last decade. The objective of this study is to prepare a document providing recommendations for the use of SYSADOA in osteoarthritis (OA). Methods The following interventions were taken into consideration: avocado/soybean unsaponifiables, chondroitin sulfate, diacereine, glucosamine sulfate, hyaluronic acid, oral calcitonin, risedronate, strontium ranelate. Recommendations were based on the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. The GRADE system is based on a sequential assessment of the quality of evidence, followed by assessment of the balance between benefits versus downsides and subsequent judgment about the strength of recommendations. Results Chondroitin sulfate, diacereine, glucosamine sulfate, avocado/soybean unsaponifiables and hyaluronic acid have demonstrated pain reduction and physical function improvement with very low toxicity, with moderate to high quality evidence. Even if pre-clinical data and some preliminary in vivo studies have suggested that oral calcitonin and strontium ranelate could be of potential interest in OA, additional well-designed studies are needed. Conclusion In the benefit/risk ratio, the use of chondroitin sulfate, diacereine, glucosamine sulfate, avocado/soybean unsaponifiables and hyaluronic acid could be of potential interest for the symptomatic management of OA. PMID:19087296

  19. Synthesis, chiral high performance liquid chromatographic resolution and enantiospecific activity of a potent new geranylgeranyl transferase inhibitor, 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid.

    PubMed

    McKenna, Charles E; Kashemirov, Boris A; Błazewska, Katarzyna M; Mallard-Favier, Isabelle; Stewart, Charlotte A; Rojas, Javier; Lundy, Mark W; Ebetino, Frank H; Baron, Rudi A; Dunford, James E; Kirsten, Marie L; Seabra, Miguel C; Bala, Joy L; Marma, Mong S; Rogers, Michael J; Coxon, Fraser P

    2010-05-13

    3-(3-Pyridyl)-2-hydroxy-2-phosphonopropanoic acid (3-PEHPC, 1) is a phosphonocarboxylate (PC) analogue of 2-(3-pyridyl)-1-hydroxyethylidenebis(phosphonic acid) (risedronic acid, 2), an osteoporosis drug that decreases bone resorption by inhibiting farnesyl pyrophosphate synthase (FPPS) in osteoclasts, preventing protein prenylation. 1 has lower bone affinity than 2 and weakly inhibits Rab geranylgeranyl transferase (RGGT), selectively preventing prenylation of Rab GTPases. We report here the synthesis and biological studies of 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid (3-IPEHPC, 3), the PC analogue of minodronic acid 4. Like 1, 3 selectively inhibited Rab11 vs. Rap 1A prenylation in J774 cells, and decreased cell viability, but was 33-60x more active in these assays. After resolving 3 by chiral HPLC (>98% ee), we found that (+)-3-E1 was much more potent than (-)-3-E2 in an isolated RGGT inhibition assay, approximately 17x more potent (LED 3 microM) than (-)-3-E2 in inhibiting Rab prenylation in J774 cells and >26x more active in the cell viability assay. The enantiomers of 1 exhibited a 4-fold or smaller potency difference in the RGGT and prenylation inhibition assays.

  20. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera

    PubMed Central

    Ferriols, Victor Marco Emmanuel N.; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru

    2015-01-01

    The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom. PMID:25996801

  1. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation

    SciTech Connect

    Dombrecht, E.J.; De Tollenaere, C.B.; Aerts, K.; Cos, P.; Schuerwegh, A.J.; Bridts, C.H.; Van Offel, J.F.; Ebo, D.G.; Stevens, W.J. . E-mail: immuno@ua.ac.be; De Clerck, L.S.

    2006-09-22

    The objective of this study was to evaluate the effect of bisphosphonates (BPs) and simvastatin on chondrocyte lipid peroxidation. For this purpose, a flow cytometrical method using C11-BODIPY{sup 581/591} was developed to detect hydroperoxide-induced lipid peroxidation in chondrocytes. Tertiary butylhydroperoxide (t-BHP) induced a time and concentration dependent increase in chondrocyte lipid peroxidation. Addition of a Fe{sup 2+}/EDTA complex to t-BHP or hydrogen peroxide (H{sub 2}O{sub 2}) clearly enhanced lipid peroxidation. The lipophilic simvastatin demonstrated a small inhibition in the chondrocyte lipid peroxidation. None of three tested BPs (clodronate, pamidronate, and risedronate) had an effect on chondrocyte lipid peroxidation induced by t-BHP. However, when Fe{sup 2+}/EDTA complex was added to t-BHP or H{sub 2}O{sub 2}, BPs inhibited the lipid peroxidation process varying from 25% to 58%. This study demonstrates that BPs have antioxidant properties as iron chelators, thereby inhibiting the chondrocyte lipid peroxidation. These findings add evidence to the therapeutic potential of bisphosphonates and statins in rheumatoid arthritis.

  2. A predictive mechanical model for evaluating vertebral fracture probability in lumbar spine under different osteoporotic drug therapies.

    PubMed

    López, E; Ibarz, E; Herrera, A; Puértolas, S; Gabarre, S; Más, Y; Mateo, J; Gil-Albarova, J; Gracia, L

    2016-07-01

    Osteoporotic vertebral fractures represent a major cause of disability, loss of quality of life and even mortality among the elderly population. Decisions on drug therapy are based on the assessment of risk factors for fracture from bone mineral density (BMD) measurements. A previously developed model, based on the Damage and Fracture Mechanics, was applied for the evaluation of the mechanical magnitudes involved in the fracture process from clinical BMD measurements. BMD evolution in untreated patients and in patients with seven different treatments was analyzed from clinical studies in order to compare the variation in the risk of fracture. The predictive model was applied in a finite element simulation of the whole lumbar spine, obtaining detailed maps of damage and fracture probability, identifying high-risk local zones at vertebral body. For every vertebra, strontium ranelate exhibits the highest decrease, whereas minimum decrease is achieved with oral ibandronate. All the treatments manifest similar trends for every vertebra. Conversely, for the natural BMD evolution, as bone stiffness decreases, the mechanical damage and fracture probability show a significant increase (as it occurs in the natural history of BMD). Vertebral walls and external areas of vertebral end plates are the zones at greatest risk, in coincidence with the typical locations of osteoporotic fractures, characterized by a vertebral crushing due to the collapse of vertebral walls. This methodology could be applied for an individual patient, in order to obtain the trends corresponding to different treatments, in identifying at-risk individuals in early stages of osteoporosis and might be helpful for treatment decisions. PMID:27265047

  3. Assessing Bone Quality in Terms of Bone Mineral Density, Buckling Ratio and Critical Fracture Load

    PubMed Central

    Anitha, D

    2014-01-01

    Background Bone mineral density (BMD) is used as a sole parameter in the diagnosis of osteoporosis. Due to the ease of acquirement of BMD, clinical diagnosis still involves its usage although the limitations of BMD are quite well-established. Therefore, this preliminary study hoped to reduce the errors introduced by BMD alone by incorporating geometric and structural predictors simultaneously to observe if strength was implicitly dependent on the geometry and BMD. Hence, we illustrated the triadic relationship between BMD, buckling ratio (BR) and critical fracture load (Fcr). Methods The geometric predictor was the BR as it involves both the changes in the periosteum and the cortical thickness. Also, structural changes were monitored by finite element (FE) analysis-predicted Fcr. These BR and Fcr measurements were plotted with their respective femoral neck BMD values in elderly female patients (n=6) in a 3-year follow-up study, treated with ibandronate. Results In all the three-dimensional plots (baseline, mid and final year), high Fcr values were found at regions containing high BMD and low BR values. Quantitatively, this was also proven where an averaged highest Fcr across the three years had a relatively higher BMD (46%) and lower BR (19%) than that of the averaged lowest Fcr. The dependence of FE predicted strength on both the geometry and bone density was illustrated. Conclusions We conclude that use of triadic relationships for the evaluation of osteoporosis and hip fractures with the combination of strength, radiology-derived BR and bone density will lay the foundation for more accurate predictions in the future. PMID:25489572

  4. Do bisphosphonates inhibit direct fracture healing?: A laboratory investigation using an animal model.

    PubMed

    Savaridas, T; Wallace, R J; Salter, D M; Simpson, A H R W

    2013-09-01

    Fracture repair occurs by two broad mechanisms: direct healing, and indirect healing with callus formation. The effects of bisphosphonates on fracture repair have been assessed only in models of indirect fracture healing. A rodent model of rigid compression plate fixation of a standardised tibial osteotomy was used. Ten skeletally mature Sprague-Dawley rats received daily subcutaneous injections of 1 µg/kg ibandronate (IBAN) and ten control rats received saline (control). Three weeks later a tibial osteotomy was rigidly fixed with compression plating. Six weeks later the animals were killed. Fracture repair was assessed with mechanical testing, radiographs and histology. The mean stress at failure in a four-point bending test was significantly lower in the IBAN group compared with controls (8.69 Nmm(-2) (sd 7.63) vs 24.65 Nmm(-2) (sd 6.15); p = 0.017). On contact radiographs of the extricated tibiae the mean bone density assessment at the osteotomy site was lower in the IBAN group than in controls (3.7 mmAl (sd 0.75) vs 4.6 mmAl (sd 0.57); p = 0.01). In addition, histological analysis revealed progression to fracture union in the controls but impaired fracture healing in the IBAN group, with predominantly cartilage-like and undifferentiated mesenchymal tissue (p = 0.007). Bisphosphonate treatment in a therapeutic dose, as used for risk reduction in fragility fractures, had an inhibitory effect on direct fracture healing. We propose that bisphosphonate therapy not be commenced until after the fracture has united if the fracture has been rigidly fixed and is undergoing direct osteonal healing. PMID:23997143

  5. Bisphosphonates modulate vital functions of human osteoblasts and affect their interactions with breast cancer cells.

    PubMed

    Kaiser, Tatjana; Teufel, Ingrid; Geiger, Konstanze; Vater, Yvonne; Aicher, Wilhelm K; Klein, Gerd; Fehm, Tanja

    2013-07-01

    Bisphosphonates (BPs) are in clinical use for the treatment of breast cancer patients with bone metastases. Their anti-resorptive effect is mainly explained by inhibition of osteoclast activity, but recent evidence also points to a direct action of BPs on bone-forming osteoblasts. However, the mechanisms how BPs influence osteoblasts and their interactions with breast cancer cells are still poorly characterized. Human osteoblasts isolated from bone specimens were characterized in depth by their expression of osteogenic marker genes. The influence of the nitrogen-containing BPs zoledronate (Zol), ibandronate (Iban), and pamidronate (Pam) on molecular and cellular functions of osteoblasts was assessed focusing on cell proliferation and viability, apoptosis, cytokine secretion, and osteogenic-associated genes. Furthermore, effects of BPs on osteoblast-breast tumor cell interactions were examined in an established in vitro model system. The BPs Zol and Pam inhibited cell viability of osteoblasts. This effect was mediated by an induction of caspase-dependent apoptosis in osteoblasts. By interfering with the mevalonate pathway, Zol also reduces the proliferation of osteoblasts. The expression of phenotypic markers of osteogenic differentiation was altered by Zol and Pam. In addition, both BPs strongly influenced the secretion of the chemokine CCL2 by osteoblasts. Breast cancer cells also responded to Zol and Pam with a reduced cell adhesion to osteoblast-derived extracellular matrix molecules and with a decreased migration in response to osteoblast-secreted factors. BPs revealed prominent effects on human osteoblasts. Zol and Pam as the most potent BPs affected not only the expression of osteogenic markers, osteoblast viability, and proliferation but also important osteoblast-tumor cell interactions. Changing the osteoblast metabolism by BPs modulates migration and adhesion of breast cancer cells as well. PMID:23807419

  6. Preliminary Results of Bisphosphonate ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Jones, Jeff; Shapiro, Jay; Lang, Tom; Shackelford, Linda C.; Smith, Scott M.; Evans, Harlan J.; Spector, Elisabeth R.; Sibonga, Jean; Matsumoti, Toshio; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi

    2010-01-01

    Bone loss has been recognized as a potential problem from the beginning of human spaceflight. With the spaceflight missions lasting 6 months to potentially 3 years or longer this issue has assumed increased significance. Detailed measurements from the Mir and ISS long duration missions have documented losses in bone mineral density (BMD) from the total skeleton and critical sub-regions. The most important losses are from the femoral hip averaging about -1.6%/mo integral to -2.3%/mo trabecular BMD. Importantly these studies have documented the wide range in individual response from -0.5 to -5%/mo in BMD. Given the small size of any expedition crew, the wide range of responses has to be considered in the implementation of any countermeasure. Assuming that it is unlikely that the susceptibility for bone loss in any given crewmember will be known, a suite of bone loss countermeasures will likely be needed to insure protection of all crewmembers. The hypothesis for this experiment is that the combined effect of anti-resorptive drugs plus the standard in-flight exercise regimen will have a measurable effect on preventing space flight induced bone loss and strength and will reduce renal stone risk. To date, 4 crewmembers have completed the flight portion of the protocol in which crewmembers take a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch. Compared to previous ISS crewmembers (n=14) not taking alendronate, DXA measurements of the total hip BMD were significantly changed from -1.1 0.5%/mo to 0.04 0.3%/mo (p<0.01); QCT-determined trabecular BMD of the total hip was significantly changed from -2.3 1.0%/mo to -0.3 1.6%/mo (p<0.01). Significance was calculated from a one-tailed t test. While these results are encouraging, the current n (4) is small, and the large SDs indicate that while the means are improved there is still high variability in individual response. Four additional crewmembers have been recruited to participate

  7. Update of Bisphosphonate Flight Experiment

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S. M.; Evans, H.; Spector, E.; Snyder, R. P.; Sibonga, J.; Keyak, J.; Nakamura, T.; Kohri, K.; Ohshima, H.; Moralez, G.

    2015-01-01

    Elevated bone resorption is a hallmark of human spaceflight and bed rest indicating that elevated remodeling is a major factor in the etiology of space flight bone loss. In a collaborative effort between the NASA and JAXA space agencies, we are testing whether an antiresorptive drug would provide additional benefit to in-flight exercise to ameliorate bone loss and hypercalciuria during long-duration spaceflight. Measurements of bone loss include DXA, QCT, pQCT, urinary and blood biomarkers. We have completed analysis of R+1year data from 7 crewmembers treated with alendronate during flight, as well as immediate post flight (R+<2wks) data from 6 of 10 concurrent controls without treatment. The treated astronauts used the Advanced Resistive Exercise Device (ARED) during their missions. The purpose of this report is twofold: 1) to report the results of inflight, post flight and one year post flight bone measures compared with available controls with and without the use of ARED; and 2) to discuss preliminary data on concurrent controls. The figure below compares the BMD changes in ISS crewmembers exercising with and without the current ARED protocol and the alendronate treated crewmembers also using the ARED. This shows that the use of ARED prevents about half the bone loss seen in early ISS crewmembers and that the addition of an antiresorptive provides additional benefit. Resorption markers and urinary Ca excretion are not impacted by exercise alone but are significantly reduced with antiresorptive treatment. Bone measures for treated subjects, 1 year after return from space remain at or near baseline. DXA data for the 6 concurrent controls using the ARED device are similar to DXA data shown in the figure below. QCT data for these six indicate that the integral data are consistent with the DXA data, i.e., comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the ARED protocol. Biochemical data of the concurrent

  8. Bisphosphonate ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  9. Antiresorptive Treatment for Spaceflight Induced Bone Atrophy - Preliminary Results

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, toshio; Jones, Jeff; Shapiro, Jay; Lang, Thomas; Shackelford, Linda C.; Smith, Scott M.; Evans, Harlan J.; Spector, Elisabeth R.; Ploutz-Snyder, Robert; Sibonga, Jean; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi

    2011-01-01

    Detailed measurements from the Mir and ISS long duration missions have documented losses in bone mineral density (BMD) from critical skeletal sub-regions. The most important BMD losses are from the femoral hip, averaging about -1.6%/mo integral to -2.3%/mo trabecular. Importantly these studies have documented the wide range in individual BMD loss from -0.5 to -5%/mo. Associated elevated urinary Ca increases the risk of renal stone formation during flight, a serious impact to mission success. To date, countermeasures have not been satisfactory. The purpose of this study is to determine if the combined effect of anti-resorptive drugs plus the standard in-flight exercise regimen will have a measurable effect on preventing space flight induced bone loss (mass and strength) and reducing renal stone risk. To date, 4 crewmembers have completed the flight portion of the protocol in which crewmembers take a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch. Compared to previous ISS crewmembers (n=14) not taking alendronate, DXA measurements of the spine, femur neck and total hip were significantly improved from -0.8 +/- 0.5%/mo to 1.0 +/- 1.1%/mo, -1.1 +/- 0.5%/mo to -0.2 +/- 0.3%/mo, -1.1 +/- 0.5%/mo to 0.04 +/- 0.3%/mo respectively. QCT-determined trabecular BMD of the femur neck, trochanter and total hip were significantly improved from -2.7 +/- 1.9%/mo to -0.2 +/- 0.8%/mo, -2.2 +/- 0.9%/mo to -0.3 +/- 1.9%/mo and -2.3 +/- 1.0%/mo to -0.2 +/- 1.8%/mo respectively. Significance was calculated from a one-tailed t test. Resorption markers were unchanged, in contrast to measurements from previous ISS crewmembers that showed typical increases of 50-100% above baseline. Urinary Ca showed no increase compared to baseline levels, also distinct from the elevated levels of 50% or greater in previous crews. While these results are encouraging, the current n (4) is small, and the large SDs indicate that, while the means are improved, there

  10. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study.

    PubMed

    Engelke, Klaus; Nagase, Shinichi; Fuerst, Thomas; Small, Maria; Kuwayama, Tomohiro; Deacon, Stephen; Eastell, Richard; Genant, Harry K

    2014-03-01

    ONO-5334 (Ono Pharmaceutical Co., Ltd., Osaka, Japan) inhibits cathepsin K and has been shown to increase areal bone mineral density (BMD) at the hip and spine in postmenopausal osteoporosis. Quantitative computed tomography (QCT) allows the study of the cortical and trabecular bone separately and provides structural information such as cortical thickness. We investigated the impact of 2 years of cathepsin K inhibition on these different bone compartments with ONO-5334. The clinical study was a randomized, double-blind, placebo, and active controlled parallel group study conducted in 13 centers in six European countries. The original study period of 12 months was extended by another 12 months. A total of 147 subjects (age 55-75 years) of the QCT substudy who participated in the extension period were included. Subjects had been randomized into one of five treatment arms: placebo; ONO-5334 50 mg twice per day (BID); ONO-5334 100 mg once daily (QD); ONO-5334 300 mg QD; or alendronate 70 mg once weekly (QW). QCT was obtained to evaluate bone structure at the lumbar spine and proximal femur. After 24 months ONO-5334 showed statistically significant increases versus placebo for integral, trabecular, and cortical BMD at the spine and the hip (for ONO-5334 300 mg QD, BMD increases were 10.5%, 7.1%, and 13.4% for integral, cortical, and trabecular BMD at the spine, respectively, and 6.2%, 3.4%, and 14.6% for integral, cortical, and trabecular total femur BMD, respectively). Changes in cortical and trabecular BMD in the spine and hip were similar for alendronate as for ONO-5334. Integral volume did not demonstrate statistically significant changes under ONO-5334 treatment, thus there was no evidence of periosteal apposition, neither at the spine nor at the femur. Cortical thickness changes were not statistically significant for ONO-5334 in the spine and hip, with exception of a 2.1% increase after month 24 in the intertrochanter for ONO-5334 300 mg QD. Over 2

  11. Complex regional pain syndrome type 1. Some treatments assessed versus placebo, limited efficacy.

    PubMed

    2009-12-01

    (1) Complex regional pain syndrome type 1 generally occurs after trauma and usually affects a limb; (2) How is complex regional pain syndrome type 1 diagnosed? What is its natural course? How safe and effective are available treatments? To answer these questions, we reviewed the literature using the standard Prescrire methodology; (3) Diagnosis is mainly based on clinical features, including pain disproportionate to the initial trauma, associated with cutaneous vasomotor, trophic and sweating disorders; (4) Some clinical signs call for additional examinations to help rule out another vascular, neurological, infectious or rheumatic disorder. Radiological evidence of bone demineralisation supports the diagnosis, but radiography, magnetic resonance imaging (MRI) and scintigraphy generally contribute little to the diagnosis of complex regional pain syndrome; (5) Some patients recover spontaneously after a few weeks, while others develop chronic pain or even severe disability after a period of years; (6) The results of small placebo-controlled trials suggest that corticosteroids are effective during the initial phase of this syndrome; (7) A very high oral dose of alendronic acid provided sustained pain relief in a randomised trial. Other studies suggest that bisphosphonates have some impact. The adverse effects of alendronic acid given at such high doses are poorly known; (8) Calcitonin, antiepileptics, antidepressants and opiates have no proven efficacy; (9) Transcutaneous neurostimulation is rapidly effective and safe, but its efficacy also diminishes rapidly. Therefore, the sessions have to take place at increasingly shorter intervals. (10) Spinal neurostimulation with implanted electrodes has been assessed in a comparative trial in 54 patients. Some efficacy was observed, but one-third of patients had complications requiring further surgery; (11) Various substances have been given intravenously with the goal of achieving regional anaesthesia, but none was found to

  12. Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program

    NASA Technical Reports Server (NTRS)

    Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

    1999-01-01

    exercisers, and four subjects taking alendronate (a bisphoshonate that inhibits osteoclastic resorption of bone) have completed 17 weeks bed rest. In contrast to information currently available from space flight (n=28) and bed rest (n= 12) in which all individuals experienced bone loss in at least one region, one of four subjects taking alendronate and one of five subjects performing heavy resistive exercise at bed rest fully maintained bone density in all regions of the spine and lower extremities. Overall results of both countermeasures which will be presented are encouraging. The study will be completed by mid to late 2000 with 10 subjects in each of three groups.

  13. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation.

    PubMed

    Fu, Kun; Xu, Qingguo; Czernuszka, Jan; Triffitt, James T; Xia, Zhidao

    2013-12-01

    A partially converted, biodegradable coralline hydroxyapatite/calcium carbonate (CHACC) composite comprising a coral calcium carbonate scaffold enveloped by a thin layer of hydroxyapatite was used in the present study. The CHACC was characterized using powder x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The ability of the CHACC to promote conductive osteogenesis was assessed in vitro using human mesenchymal stem cells (hMSCs) and in vivo using an immunodeficient mouse model. The clinical performance of CHACC as a bone substitute to fill voids caused by excision of bone tumours was also observed in 16 patients. The CHACC was found to consist of two overlapping layers both morphologically and chemically. Hydroxyapatite formed a thin layer of nanocrystals on the surface and a thick rough crystal layer of around 30 µm in thickness enveloping the rock-like core calcium carbonate exoskeletal architecture. hMSCs cultured on CHACC in osteogenic medium demonstrated significant osteogenic differentiation. After subcutaneous implantation of CHACC incorporating osteogenically differentiated hMSCs and an anti-resorptive agent, risedronate, into an immunodeficient mouse model, bone formation was observed on the surface of the implants. Clinical application of CHACC alone in 16 patients for bone augmentation after tumour removal showed that after implantation, visible callus formation was observed at one month and clinical bone healing achieved at four months. The majority of the implanted CHACC was degraded in 18-24 months. In conclusion, CHACC appears to be an excellent biodegradable bone graft material. It biointegrates with the host, is osteoconductive, biodegradable and can be an attractive alternative to autogenous grafts. PMID:24288015

  14. Cost-effectiveness of Pharmaceutical Interventions to Prevent Osteoporotic Fractures in Postmenopausal Women with Osteopenia

    PubMed Central

    Kwon, Jin-Won; Park, Hae-Young; Kim, Ye Jee; Moon, Seong-Hwan

    2016-01-01

    Background To assess the cost-effectiveness of drug therapy to prevent osteoporotic fractures in postmenopausal women with osteopenia in Korea. Methods A Markov cohort simulation was conducted for lifetime with a hypothetical cohort of postmenopausal women with osteopenia and without prior fractures. They were assumed to receive calcium/vitamin D supplements only or drug therapy (i.e., raloxifene or risedronate) along with calcium/vitamin D for 5 years. The Markov model includes fracture-specific and non-fracture specific health states (i.e. breast cancer and venous thromboembolism), and all-cause death. Published literature was used to determine the model parameters. Local data were used to estimate the baseline incidence rates of fracture in those with osteopenia and the costs associated with each health state. Results From a societal perspective, the estimated incremental cost-effectiveness ratios (ICERs) for the base cases that had T-scores between -2.0 and -2.4 and began drug therapy at the age of 55, 60, or 65 years were $16,472, $6,741, and -$13,982 per quality-adjusted life year (QALY) gained, respectively. Sensitivity analyses for medication compliance, risk of death following vertebral fracture, and relaxing definition of osteopenia resulted in ICERs reached to $24,227 per QALY gained. Conclusions ICERs for the base case and sensitivity analyses remained within the World Health Organization's willingness-to-pay threshold, which is less than per-capita gross domestic product in Korea (about $25,700). Thus, we conclude that drug therapy for osteopenia would be a cost-effective intervention, and we recommend that the Korean National Health Insurance expand its coverage to include drug therapy for osteopenia. PMID:27294078

  15. The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer.

    PubMed

    van Londen, G J; Perera, S; Vujevich, K; Rastogi, P; Lembersky, B; Brufsky, A; Vogel, V; Greenspan, S L

    2011-01-01

    Aromatase inhibitors (AIs) have become the standard adjuvant therapy of postmenopausal breast cancer survivors. AIs induce a reduction of bioavailable estrogens by inhibiting aromatase, which would be expected to induce alterations in body composition, more extensive than induced by menopause. The objectives are to examine the impact of AIs on (1) DXA-scan derived body composition and (2) gonadal hormone levels. This is a sub-analysis of a 2-year double-blind, placebo-controlled, randomized trial of 82 women with nonmetastatic breast cancer, newly menopausal following chemotherapy, who were randomized to risedronate (35 mg once weekly) versus placebo, and stratified for their usage of AI versus no AI. Outcomes included DXA-scan derived body composition and gonadal hormone levels. As a group, total body mass increased in women over 24 months. Women on AIs gained a significant amount of lean body mass compared to baseline as well as to no-AI users (P < 0.05). Women not on an AI gained total body fat compared to baseline and AI users (P < 0.05). Free testosterone significantly increased and sex hormone binding globulin (SHBG) significantly decreased in women on AIs compared to no AIs at 24 months (P < 0.01) while total estradiol and testosterone levels remained stable. Independent of AI usage, chemotherapy-induced postmenopausal breast cancer patients demonstrated an increase of total body mass. AI users demonstrated maintenance of total body fat, an increase in lean body mass and free testosterone levels, and a decrease in SHBG levels compared to no-AI users. The mechanisms and implications of these changes need to be studied further.

  16. Evaluation of results of conservative therapy in patients with transient osteoporosis of hip.

    PubMed

    Guler, Olcay; Ozyurek, Selahattin; Cakmak, Selami; Isyar, Mehmet; Mutlu, Serhat; Mahirogullari, Mahir

    2015-09-01

    The present study aimed to review the general characteristics of 18 cases diagnosed with transient osteoporosis of the hip (TOH) in our hospital within a 3-year period and to present their follow-up results after conservative treatment. A retrospective evaluation was made of the treatment and results of follow-up of TOH cases using physical examination and laboratory findings, hip radiographs and magnetic resonance imaging (MRI) and Harris Hip Scores (HHS). The mean duration of complaints of 6 females (mean age, 34.3±4.3 years) and 12 males (mean age, 40.7±10.5 years) was 6.1±2.7 weeks before the treatment. Three female patients had a history of giving birth by cesarean delivery. None of the patients had any history of trauma. MRI revealed increased intensity in T2 sequences and decreased intensity in T1 sequences in the proximal aspect of the femur. None of the patients had subchondral collapse or intra-articular effusion. For 3 female patients who were breastfeeding, no medical therapy was given, but only hyperbaric oxygen (HBO) therapy and forearm crutches. As standard management, the other patients were prevented from weight-bearing with the use of forearm crutches and medical therapy of diclofenac sodium, acetylsalicylic acid, and risedronate sodium was administered and additional HBO therapy. Clinical and radiological improvements were observed in all patients. None of the patients had avascular necrosis (AVN) of the femoral head. There was no record of therapy-related complications. While HHS was 55.6±7.8 before the treatment, it increased to 88.8±5.8 in the 3rd month and to 96.0±1.8 in the 6th month after the treatment. This change in score over time was found to be significant.

  17. Examination of antimicrobial activity of selected non-antibiotic drugs.

    PubMed

    Kruszewska, Hanna; Zareba, Tomasz; Tyski, Stefan

    2004-12-01

    A variety of pharmaceutical preparations, which are applied in the management of non-infectious diseases, have shown in vitro some antimicrobial activity. These drugs are called "non-antibiotics". The aim of this study was to detect and characterize the antimicrobial activity of non-antibiotic drugs, selected from the preparations analysed during state control performed in the National Institute of Public Health in Poland. Over 180 of pharmaceutical preparations were randomly chosen from different groups of drugs. A surveillance study was performed on standard ATCC microbial strains used for drug control: S. aureus, E. coli, P. aeruginosa and C. albicans. It was shown that the drugs listed below inhibited growth of at least one of the examined strains: Actonel 5 mg tabl. (risedronate), Aldan 10 mg tabl. (amlodipine), Aleras 10 mg tabl. (cetirisine), Aspicam 15 mg tabl. (meloxicam), Baikadent 6 mg/g gel (flavons of Scutellariae), Debretin 100 mg tabl. (trimebutine), Ferro-Duo 100 mg tabl. (ferrum), Gastrovent 145 mg caps. (bismuth citrate), Ibum 200 mg caps., Upfen 200 mg tabl. (ibuprofen), Lastet 100 mg caps. (etoposide), Legalon 70 mg tabl. (sylimarin), Madopar 125 tabl. (benserazide, levodopa), Moxenil 100 mg tabl. (nimesulide), Neurotin 800 mg tabl. (gabapentin), Propranolol 40 mg tabl. (propranolol), Rexetin 20 mg tabl. (paroxetine), Salipax 20 mg caps. (fluoxetine), Selofen 10 mg caps. (zaleplon) Stenorol 0.6% powder (halofuginone), Stimuloton 50 mg tabl. (sertraline), Superoptim 0.3 mg tabl. (hipericine), Uversan 50 mg tabl. (arbutine from Arctostaphylos uva ursi). S. aureus strain was susceptible to the most of the drugs listed above. The lowest inhibitory concentration was found for sertraline and hipericine (0.16 and 0.075 mg/mL, respectively).

  18. Pamidronate Down-regulates Tumor Necrosis Factor-alpha Induced Matrix Metalloproteinases Expression in Human Intervertebral Disc Cells

    PubMed Central

    Kang, Young-Mi; Hong, Seong-Hwan; Yang, Jae-Ho; Oh, Jin-Cheol; Park, Jin-Oh; Lee, Byung Ho; Lee, Sang-Yoon; Kim, Hak-Sun; Lee, Hwan-Mo

    2016-01-01

    Background N-containing bisphosphonates (BPs), such as pamidronate and risedronate, can inhibit osteoclastic function and reduce osteoclast number by inducing apoptotic cell death in osteoclasts. The aim of this study is to demonstrate the effect of pamidronate, second generation nitrogen-containing BPs and to elucidate matrix metallo-proteinases (MMPs) mRNA expression under serum starvation and/or tumor necrosis factor alpha (TNF-α) stimulation on metabolism of intervertebral disc (IVD) cells in vitro. Methods Firstly, to test the effect of pamidronate on IVD cells in vitro, various concentrations (10-12, 10-10, 10-8, and 10-6 M) of pamidronate were administered to IVD cells. Then DNA and proteoglycan synthesis were measured and messenger RNA (mRNA) expressions of type I collagen, type II collagen, and aggrecan were analyzed. Secondly, to elucidate the expression of MMPs mRNA in human IVD cells under the lower serum status, IVD cells were cultivated in full serum or 1% serum. Thirdly, to elucidate the expression of MMPs mRNA in IVD cells under the stimulation of 1% serum and TNF-α (10 ng/mL) In this study, IVD cells were cultivated in three dimensional alginate bead. Results Under the lower serum culture, IVD cells in alginate beads showed upregulation of MMP 2, 3, 9, 13 mRNA. The cells in lower serum and TNF-α also demonstrated upregulation of MMP-2, 3, 9, and 13 mRNA. The cells with various doses of pamidronate and lower serum and TNF-α were reveled partial down-regulation of MMPs. Conclusions Pamidronate, N-containing second generation BPs, was safe in metabolism of IVD in vitro maintaining chondrogenic phenotype and matrix synthesis, and down-regulated TNF-α induced MMPs expression.

  19. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation.

    PubMed

    Fu, Kun; Xu, Qingguo; Czernuszka, Jan; Triffitt, James T; Xia, Zhidao

    2013-12-01

    A partially converted, biodegradable coralline hydroxyapatite/calcium carbonate (CHACC) composite comprising a coral calcium carbonate scaffold enveloped by a thin layer of hydroxyapatite was used in the present study. The CHACC was characterized using powder x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The ability of the CHACC to promote conductive osteogenesis was assessed in vitro using human mesenchymal stem cells (hMSCs) and in vivo using an immunodeficient mouse model. The clinical performance of CHACC as a bone substitute to fill voids caused by excision of bone tumours was also observed in 16 patients. The CHACC was found to consist of two overlapping layers both morphologically and chemically. Hydroxyapatite formed a thin layer of nanocrystals on the surface and a thick rough crystal layer of around 30 µm in thickness enveloping the rock-like core calcium carbonate exoskeletal architecture. hMSCs cultured on CHACC in osteogenic medium demonstrated significant osteogenic differentiation. After subcutaneous implantation of CHACC incorporating osteogenically differentiated hMSCs and an anti-resorptive agent, risedronate, into an immunodeficient mouse model, bone formation was observed on the surface of the implants. Clinical application of CHACC alone in 16 patients for bone augmentation after tumour removal showed that after implantation, visible callus formation was observed at one month and clinical bone healing achieved at four months. The majority of the implanted CHACC was degraded in 18-24 months. In conclusion, CHACC appears to be an excellent biodegradable bone graft material. It biointegrates with the host, is osteoconductive, biodegradable and can be an attractive alternative to autogenous grafts.

  20. Examination of antimicrobial activity of selected non-antibiotic drugs.

    PubMed

    Kruszewska, Hanna; Zareba, Tomasz; Tyski, Stefan

    2004-12-01

    A variety of pharmaceutical preparations, which are applied in the management of non-infectious diseases, have shown in vitro some antimicrobial activity. These drugs are called "non-antibiotics". The aim of this study was to detect and characterize the antimicrobial activity of non-antibiotic drugs, selected from the preparations analysed during state control performed in the National Institute of Public Health in Poland. Over 180 of pharmaceutical preparations were randomly chosen from different groups of drugs. A surveillance study was performed on standard ATCC microbial strains used for drug control: S. aureus, E. coli, P. aeruginosa and C. albicans. It was shown that the drugs listed below inhibited growth of at least one of the examined strains: Actonel 5 mg tabl. (risedronate), Aldan 10 mg tabl. (amlodipine), Aleras 10 mg tabl. (cetirisine), Aspicam 15 mg tabl. (meloxicam), Baikadent 6 mg/g gel (flavons of Scutellariae), Debretin 100 mg tabl. (trimebutine), Ferro-Duo 100 mg tabl. (ferrum), Gastrovent 145 mg caps. (bismuth citrate), Ibum 200 mg caps., Upfen 200 mg tabl. (ibuprofen), Lastet 100 mg caps. (etoposide), Legalon 70 mg tabl. (sylimarin), Madopar 125 tabl. (benserazide, levodopa), Moxenil 100 mg tabl. (nimesulide), Neurotin 800 mg tabl. (gabapentin), Propranolol 40 mg tabl. (propranolol), Rexetin 20 mg tabl. (paroxetine), Salipax 20 mg caps. (fluoxetine), Selofen 10 mg caps. (zaleplon) Stenorol 0.6% powder (halofuginone), Stimuloton 50 mg tabl. (sertraline), Superoptim 0.3 mg tabl. (hipericine), Uversan 50 mg tabl. (arbutine from Arctostaphylos uva ursi). S. aureus strain was susceptible to the most of the drugs listed above. The lowest inhibitory concentration was found for sertraline and hipericine (0.16 and 0.075 mg/mL, respectively). PMID:15909927

  1. The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer

    PubMed Central

    Perera, S.; Vujevich, K.; Rastogi, P.; Lembersky, B.; Brufsky, A.; Vogel, V.; Greenspan, S. L.

    2011-01-01

    Aromatase inhibitors (AIs) have become the standard adjuvant therapy of postmenopausal breast cancer survivors. AIs induce a reduction of bioavailable estrogens by inhibiting aromatase, which would be expected to induce alterations in body composition, more extensive than induced by menopause. The objectives are to examine the impact of AIs on (1) DXA-scan derived body composition and (2) gonadal hormone levels. This is a sub-analysis of a 2-year double-blind, placebo-controlled, randomized trial of 82 women with nonmetastatic breast cancer, newly menopausal following chemotherapy, who were randomized to risedronate (35 mg once weekly) versus placebo, and stratified for their usage of AI versus no AI. Outcomes included DXA-scan derived body composition and gonadal hormone levels. As a group, total body mass increased in women over 24 months. Women on AIs gained a significant amount of lean body mass compared to baseline as well as to no-AI users (P < 0.05). Women not on an AI gained total body fat compared to baseline and AI users (P < 0.05). Free testosterone significantly increased and sex hormone binding globulin (SHBG) significantly decreased in women on AIs compared to no AIs at 24 months (P < 0.01) while total estradiol and testosterone levels remained stable. Independent of AI usage, chemotherapy-induced postmenopausal breast cancer patients demonstrated an increase of total body mass. AI users demonstrated maintenance of total body fat, an increase in lean body mass and free testosterone levels, and a decrease in SHBG levels compared to no-AI users. The mechanisms and implications of these changes need to be studied further. PMID:21046232

  2. The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer.

    PubMed

    van Londen, G J; Perera, S; Vujevich, K; Rastogi, P; Lembersky, B; Brufsky, A; Vogel, V; Greenspan, S L

    2011-01-01

    Aromatase inhibitors (AIs) have become the standard adjuvant therapy of postmenopausal breast cancer survivors. AIs induce a reduction of bioavailable estrogens by inhibiting aromatase, which would be expected to induce alterations in body composition, more extensive than induced by menopause. The objectives are to examine the impact of AIs on (1) DXA-scan derived body composition and (2) gonadal hormone levels. This is a sub-analysis of a 2-year double-blind, placebo-controlled, randomized trial of 82 women with nonmetastatic breast cancer, newly menopausal following chemotherapy, who were randomized to risedronate (35 mg once weekly) versus placebo, and stratified for their usage of AI versus no AI. Outcomes included DXA-scan derived body composition and gonadal hormone levels. As a group, total body mass increased in women over 24 months. Women on AIs gained a significant amount of lean body mass compared to baseline as well as to no-AI users (P < 0.05). Women not on an AI gained total body fat compared to baseline and AI users (P < 0.05). Free testosterone significantly increased and sex hormone binding globulin (SHBG) significantly decreased in women on AIs compared to no AIs at 24 months (P < 0.01) while total estradiol and testosterone levels remained stable. Independent of AI usage, chemotherapy-induced postmenopausal breast cancer patients demonstrated an increase of total body mass. AI users demonstrated maintenance of total body fat, an increase in lean body mass and free testosterone levels, and a decrease in SHBG levels compared to no-AI users. The mechanisms and implications of these changes need to be studied further. PMID:21046232

  3. Pamidronate Down-regulates Tumor Necrosis Factor-alpha Induced Matrix Metalloproteinases Expression in Human Intervertebral Disc Cells

    PubMed Central

    Kang, Young-Mi; Hong, Seong-Hwan; Yang, Jae-Ho; Oh, Jin-Cheol; Park, Jin-Oh; Lee, Byung Ho; Lee, Sang-Yoon; Kim, Hak-Sun; Lee, Hwan-Mo

    2016-01-01

    Background N-containing bisphosphonates (BPs), such as pamidronate and risedronate, can inhibit osteoclastic function and reduce osteoclast number by inducing apoptotic cell death in osteoclasts. The aim of this study is to demonstrate the effect of pamidronate, second generation nitrogen-containing BPs and to elucidate matrix metallo-proteinases (MMPs) mRNA expression under serum starvation and/or tumor necrosis factor alpha (TNF-α) stimulation on metabolism of intervertebral disc (IVD) cells in vitro. Methods Firstly, to test the effect of pamidronate on IVD cells in vitro, various concentrations (10-12, 10-10, 10-8, and 10-6 M) of pamidronate were administered to IVD cells. Then DNA and proteoglycan synthesis were measured and messenger RNA (mRNA) expressions of type I collagen, type II collagen, and aggrecan were analyzed. Secondly, to elucidate the expression of MMPs mRNA in human IVD cells under the lower serum status, IVD cells were cultivated in full serum or 1% serum. Thirdly, to elucidate the expression of MMPs mRNA in IVD cells under the stimulation of 1% serum and TNF-α (10 ng/mL) In this study, IVD cells were cultivated in three dimensional alginate bead. Results Under the lower serum culture, IVD cells in alginate beads showed upregulation of MMP 2, 3, 9, 13 mRNA. The cells in lower serum and TNF-α also demonstrated upregulation of MMP-2, 3, 9, and 13 mRNA. The cells with various doses of pamidronate and lower serum and TNF-α were reveled partial down-regulation of MMPs. Conclusions Pamidronate, N-containing second generation BPs, was safe in metabolism of IVD in vitro maintaining chondrogenic phenotype and matrix synthesis, and down-regulated TNF-α induced MMPs expression. PMID:27622181

  4. Management of the Patient with Aggressive and Resistant Papillary Thyroid Carcinoma

    PubMed Central

    Miftari, Rame; Topçiu, Valdete; Nura, Adem; Haxhibeqiri, Valdete

    2016-01-01

    Purpose: Papillary carcinoma is the most frequent type of thyroid cancer and was considered the most benign of all thyroid carcinomas, with a low risk of distant metastases. However, there are some variants of papillary thyroid carcinoma that have affinity to spread in many organs, such as: lymph nodes, lungs and bones. Aim: The aim of this study was presentation of a case with papillary carcinoma of the thyroid gland, very persistent and resistant in treatment with I 131. Material and results: A man 56 years old were diagnosed with papillary carcinoma of thyroid gland. He underwent a surgical removal of the tumor and right lobe of thyroid gland. With histopathology examination, were confirmed follicular variant of papillary carcinoma pT4. Two weeks later he underwent total thyroidectomy and was treated with 100 mCi of J 131. Six months later, the value of thyroglobulin was found elevated above upper measured limits (more than 500 ng/ml). Patient underwent surgical removal of 10 metastatic lymph nodes in the left side of the neck and has been treated with 145 mCi of radioiodine I 131. The examination after 5 months shows elevation of thyroglobulin, more than 20000 ng/ml and focally uptake of J 131 in the left lung. Patient was treated once again with 150 mCi radioiodine J 131. Whole body scintigraphy was registered focal uptake of radioiodine in the middle of the left collarbone. After a month, patient refers the enlargement of the lymph node in the right side of the neck. Currently patient is being treated with kinase inhibitor drug sorafenib and ibandronate. We have identified first positive response in treatment. Enlarged lymph node in the neck was reduced and the patient began feeling better. Conclusion: This study suggests that some subtypes of papillary thyroid carcinoma appear to have more aggressive biological course. Subtypes of papillary thyroid carcinoma such as diffuse sclerosing carcinoma, tall cell or columnar cell and insular variants, appears to

  5. QUALZICE: A QUALitative exploration of the experiences of the participants from the ZICE clinical trial (metastatic breast cancer) receiving intravenous or oral bisphosphonates

    PubMed Central

    2013-01-01

    Background This qualitative sub-study aimed to explore the experiences of participants on the National Cancer Research Institute ZICE clinical trial, a randomised trial assessing two types of bisphosphonate treatment in breast cancer patients with bone metastases. Participants in the clinical trial were randomly allocated to receive either zoledronate, delivered by an intravenous (IV) infusion at clinic, or oral ibandronate, taken at home. Methods Qualitative research interviews were conducted with participant groups organised by treatment and location. Interviews covered experiences and understanding of bisphosphonate treatment, the experience of the delivery mechanisms (IV or oral), side effects and benefits, and quality of life issues. The analytic framework was interpretative phenomenological analysis. Results This paper reports on one of four superordinate themes: participants’ experience of the ZICE trial, which explores the participants’ experiences with clinical trial-related processes. Results show that participants were generally satisfied with their randomised treatment, although most participants had an initial preference for oral bisphosphonates. Some difficulties were reported from participants for both interventions: needle phobia, poor veins, difficulty with swallowing and gastric side effects, but pain control was improved with both modes of delivery. However, the infused bisphosphonate was reported to lose effectiveness after three weeks for some participants, whereas the oral bisphosphonate was reported to give consistent pain control. Geographical location and distance to travel made little difference to convenience of access to clinic as the reported lengths of travel time were similar due to traffic congestion in the urban areas. Most participants understood the trial processes, such as randomisation, and information about bisphosphonates but some participants showed little understanding of certain aspects of the trial. Some participants

  6. Macrophage depletion by free bisphosphonates and zoledronate-loaded red blood cells.

    PubMed

    Sabatino, Raffaella; Antonelli, Antonella; Battistelli, Serafina; Schwendener, Reto; Magnani, Mauro; Rossi, Luigia

    2014-01-01

    Bisphosphonates, besides being important drugs for the treatment of various bone diseases, could also be used to induce apoptosis in macrophage-like and cancer cells. However, their activity in vivo is limited by a short plasma half-life and rapid uptake within bone. Therefore, several delivery systems have been proposed to modify their pharmacokinetic profile and biodistribution. Among these, red blood cells (RBCs) represent one of the most promising biological carriers. The aim of this study was to select the best performing compound among Clodronate, Pamidronate, Ibandronate and Zoledronate in killing macrophages and to investigate RBCs as innovative carrier system to selectively target bisphosphonates to macrophages. To this end, the encapsulation of the selected bisphosphonates in autologous RBCs as well as the effect on macrophages, both in vitro and in vivo were studied. This work shows that, among the tested bisphosphonates, Zoledronate has proven to be the most active molecule. Human and murine RBCs have been successfully loaded with Zoledronate by a procedure of hypotonic dialysis and isotonic resealing, obtaining a dose-dependent drug entrapment with a maximal loading of 7.96±2.03, 6.95±3.9 and 7.0±1.89 µmoles of Zoledronate/ml of packed RBCs for human, Swiss and Balb/C murine RBCs, respectively. Engineered RBCs were able to detach human and murine macrophages in vitro, leading to a detachment of 66±8%, 67±8% and 60.5±3.5% for human, Swiss and Balb/C RBCs, respectively. The in vivo efficacy of loaded RBCs was tested in Balb/C mice administering 59 µg/mouse of RBC-encapsulated Zoledronate. By a single administration, depletion of 29.0±16.38% hepatic macrophages and of 67.84±5.48% spleen macrophages was obtained, confirming the ability of encapsulated Zoledronate to deplete macrophages in vivo. In conclusion, RBCs loaded with Zoledronate should be considered a suitable system for targeted delivery to macrophages, both in vitro and in vivo.

  7. Macrophage Depletion by Free Bisphosphonates and Zoledronate-Loaded Red Blood Cells

    PubMed Central

    Sabatino, Raffaella; Antonelli, Antonella; Battistelli, Serafina; Schwendener, Reto; Magnani, Mauro; Rossi, Luigia

    2014-01-01

    Bisphosphonates, besides being important drugs for the treatment of various bone diseases, could also be used to induce apoptosis in macrophage-like and cancer cells. However, their activity in vivo is limited by a short plasma half-life and rapid uptake within bone. Therefore, several delivery systems have been proposed to modify their pharmacokinetic profile and biodistribution. Among these, red blood cells (RBCs) represent one of the most promising biological carriers. The aim of this study was to select the best performing compound among Clodronate, Pamidronate, Ibandronate and Zoledronate in killing macrophages and to investigate RBCs as innovative carrier system to selectively target bisphosphonates to macrophages. To this end, the encapsulation of the selected bisphosphonates in autologous RBCs as well as the effect on macrophages, both in vitro and in vivo were studied. This work shows that, among the tested bisphosphonates, Zoledronate has proven to be the most active molecule. Human and murine RBCs have been successfully loaded with Zoledronate by a procedure of hypotonic dialysis and isotonic resealing, obtaining a dose-dependent drug entrapment with a maximal loading of 7.96±2.03, 6.95±3.9 and 7.0±1.89 µmoles of Zoledronate/ml of packed RBCs for human, Swiss and Balb/C murine RBCs, respectively. Engineered RBCs were able to detach human and murine macrophages in vitro, leading to a detachment of 66±8%, 67±8% and 60.5±3.5% for human, Swiss and Balb/C RBCs, respectively. The in vivo efficacy of loaded RBCs was tested in Balb/C mice administering 59 µg/mouse of RBC-encapsulated Zoledronate. By a single administration, depletion of 29.0±16.38% hepatic macrophages and of 67.84±5.48% spleen macrophages was obtained, confirming the ability of encapsulated Zoledronate to deplete macrophages in vivo. In conclusion, RBCs loaded with Zoledronate should be considered a suitable system for targeted delivery to macrophages, both in vitro and in vivo. PMID

  8. Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy.

    PubMed

    Li, Qiaoli; Kingman, Joshua; Sundberg, John P; Levine, Michael A; Uitto, Jouni

    2016-01-01

    Generalized arterial calcification of infancy is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene, resulting in reduced plasma inorganic pyrophosphate (PPi) levels. We previously characterized the Enpp1(asj) mutant mouse as a model of generalized arterial calcification of infancy, and we have now explored the potential efficacy of bisphosphonates, nonhydrolyzable PPi analogs, in preventing ectopic mineralization in these mice. The mice were maintained on either basic diet (control) or diets containing etidronate or alendronate in three different concentrations (experimental). Considering low bioavailability of bisphosphonates when administered orally, subsequent studies tested the mice with subcutaneous injections of etidronate. The treatments were initiated at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks of age by quantitation of calcium deposits in the muzzle skin containing dermal sheath of vibrissae and in aorta. We found that bisphosphonate treatments significantly reduced mineralization in skin and aorta. These changes in treated mice were accompanied with restoration of their bone microarchitecture, determined by microcomputed tomography. The inhibitory capacity of bisphosphonates, with mechanistic implications, was confirmed in a cell-based mineralization assay in vitro. Collectively, these results suggest that bisphosphonate treatment may be beneficial by a dual effect for preventing ectopic soft tissue mineralization while correcting decreased bone mineralization in generalized arterial calcification of infancy caused by ENPP1 mutations.

  9. Use of FRAX®-based fracture risk assessments to identify patients who will benefit from osteoporosis therapy.

    PubMed

    Silverman, Stuart L; Komm, Barry S; Mirkin, Sebastian

    2014-11-01

    Several pharmacological interventions, including selective estrogen receptor modulators (SERMs), bisphosphonates, denosumab, and strontium ranelate have demonstrated efficacy in reducing the incidence of osteoporotic fractures, the most severe consequence of postmenopausal osteoporosis. Until recently, bone mineral density (BMD) was the primary factor used to determine which postmenopausal women may require osteoporosis treatment. However, clinical guidelines now recommend the use of the Fracture Risk Assessment Tool (FRAX(®)), a computer-based algorithm introduced by the World Health Organization, to help primary care physicians identify postmenopausal women who may be candidates for pharmacological osteoporosis therapy based on the level of fracture risk. Beyond its utility as a resource for determining whether or not to initiate osteoporosis treatment, clinical studies have begun to evaluate the correlation between FRAX(®)-based 10-year fracture probability and efficacy of different osteoporosis treatments. Bazedoxifene, clodronate, and denosumab have shown greater fracture risk reduction at higher FRAX(®)-based 10-year fracture probabilities, but the efficacy of raloxifene, alendronate, and strontium ranelate were relatively stable regardless of fracture probability. In summary, these data suggest that the relationship between FRAX(®)-based fracture probability and efficacy of different osteoporosis treatments varies depending upon the agent in question. PMID:25124532

  10. Psoralen and Isopsoralen Ameliorate Sex Hormone Deficiency-Induced Osteoporosis in Female and Male Mice

    PubMed Central

    Yuan, Xiaomei; Bi, Yanan; Yan, Zeman; Pu, Weiling; Li, Yuhong; Zhou, Kun

    2016-01-01

    Osteoporosis is a systemic skeletal disease, which is characterized by a systemic destruction of bone mass and microarchitecture. With life standard improved, the treatment of osteoporosis attracted more attention. The aim of this study is to verify the osteoprotective effect of psoralen and isopsoralen in females and males. Female and male mice were divided into 7 groups in this study: control group (sham-operation), model group (by ovariectomy or orchidectomy), positive control group (females given estradiol valerate; males given alendronate sodium), psoralen groups (10 mg/kg and 20 mg/kg), and isopsoralen groups (10 mg/kg and 20 mg/kg). After administration of psoralen and isopsoralen for 8 weeks, osteoporosis was ameliorated with increasing bone strength and improving trabecular bone microstructure as indicated by CT scan and pathology. Serum alkaline phosphatase (ALP), tartrate resistant acid phosphatase (TRACP), osteocalcin (OC), and C-terminal cross-linking telopeptides of type I collagen (CTX-1) were examined. Decreased TRACP and increased ALP/TRACP suggested restoring from bone destruction. These results suggest that psoralen and isopsoralen may be used as good natural compounds for the treatment of osteoporosis in males, as well as females. PMID:27239473

  11. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles

    PubMed Central

    Lee, Donghyun; Heo, Dong Nyoung; Kim, Han-Jun; Ko, Wan-Kyu; Lee, Sang Jin; Heo, Min; Bang, Jae Beum; Lee, Jung Bok; Hwang, Deok-Sang; Do, Sun Hee; Kwon, Il Keun

    2016-01-01

    In recent years, gold nanoparticles (GNPs) have been reported to affect the regeneration of bone tissue. The goal of this study was to improve bone tissue regeneration by using targeted GNPs. We fabricated a functionalized GNPs conjugated with alendronate (ALD), of the bisphosphonate group. Subsequently, the ALD, GNPs, and ALD conjugated GNPs (GNPs-ALD) were analyzed by ultraviolet-visible absorbance (UV-vis) spectrophotometer, Attenuated total reflectance Fourier transform infrared spectrometer (ATR-FTIR), and thermo gravimetric analysis (TGA). The prepared GNPs-ALD were used to investigate their inhibitory effects on the receptor activator of nuclear factor- κb ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages (BMMs). Additionally, the GNPs-ALD were applied to ovariectomy (OVX)-induced osteoporotic mice and the experiments were evaluated. ALD was found to be successfully conjugated to the GNPs surface, and it displayed significant adhesion onto the bone surface. The in-vitro study indicated that the GNPs, ALD and GNPs-ALD suppressed osteoclast formation in a dose-dependent manner. Furthermore, in the OVX mouse model, the mice treated GNPs-ALD had higher bone density as compared to other OVX mice groups. The results from these tests indicated that GNPs-ALD can be useful agents for preventing and treating osteoporosis. PMID:27251863

  12. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel.

    PubMed

    Wu, Duo; Yang, Jiaojiao; Li, Jiyao; Chen, Liang; Tang, Bei; Chen, Xingyu; Wu, Wei; Li, Jianshu

    2013-07-01

    In situ remineralization of hydroxyapatite (HA) on human tooth enamel surface induced by organic matrices is of great interest in the fields of material science and stomatology. In order to mimic the organic matrices induced biomineralization process in developing enamel and enhance the binding strength at the remineralization interface, carboxyl-terminated poly(amido amine) (PAMAM-COOH)-alendronate (ALN) conjugate (ALN-PAMAM-COOH) was synthesized and characterized. PAMAM-COOH has a highly ordered architecture and is capable of promoting the HA crystallization process. ALN is conjugated on PAMAM-COOH due to its specific adsorption on HA (the main component of tooth enamel), resulting in increased binding strength which is tight enough to resist phosphate buffered saline (PBS) rinsing as compared with that of PAMAM-COOH alone. While incubated in artificial saliva, ALN-PAMAM-COOH could induce in situ remineralization of HA on acid-etched enamel, and the regenerated HA has the nanorod-like crystal structure similar to that of human tooth enamel. The hardness of acid-etched enamel samples treated by ALN-PAMAM-COOH can recover up to 95.5% of the original value with strong adhesion force. In vivo experiment also demonstrates that ALN-PAMAM-COOH is effective in repairing acid-etched enamel in the oral cavity. Overall, these results suggest that ALN-PAMAM-COOH is highly promising as a restorative biomaterial for in situ remineralization of human tooth enamel.

  13. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption.

    PubMed Central

    Jilka, R L; Takahashi, K; Munshi, M; Williams, D C; Roberson, P K; Manolagas, S C

    1998-01-01

    Loss of sex steroids causes an increase in both the resorption and formation of bone, with the former exceeding the latter. Based on evidence that the increased bone resorption after estrogen loss is due to an increase in osteoclastogenesis, we hypothesized that estrogen loss also stimulates osteoblastogenesis. We report that the number of mesenchymal osteoblast progenitors in the murine bone marrow was increased two- to threefold between 2 and 8 wk after ovariectomy and returned to control levels by 16 wk. Circulating osteocalcin, as well as osteoclastogenesis and the rate of bone loss, followed a very similar temporal pattern. Inhibition of bone resorption by administration of the bisphosphonate alendronate led to a decrease of the absolute number of osteoblast progenitors; however, it did not influence the stimulating effect of ovariectomy on osteoblastogenesis or osteoclastogenesis. These observations indicate that the increased bone formation that follows loss of estrogen can be explained, at least in part, by an increase in osteoblastogenesis. Moreover, they strongly suggest that unlike normal bone remodeling, whereby osteoblast development is stimulated by factors released from the bone matrix during osteoclastic resorption, estrogen deficiency unleashes signals that can stimulate the differentiation of osteoblast progenitors in a fashion that is autonomous from the need created by bone resorption, and therefore, inappropriate. PMID:9576759

  14. The effect of bisphosphonate treatment on the biochemical and cellular events during bone remodelling in response to microinjury stimulation.

    PubMed

    Mulcahy, L E; Curtin, C M; McCoy, R J; O'Brien, F J; Taylor, D; Lee, T C; Duffy, G P

    2015-01-01

    Osteoporosis is one of the most prevalent bone diseases worldwide and is characterised by high levels of bone turnover, a marked loss in bone mass and accumulation of microdamage, which leads to an increased fracture incidence that places a huge burden on global health care systems. Bisphosphonates have been used to treat osteoporosis and have shown great success in conserving bone mass and reducing fracture incidence. In spite of the existing knowledge of the in vivo responses of bone to bisphosphonates, the cellular responses to these drugs have yet to be fully elucidated. In vitro model systems that allow the decoupling of complex highly integrated events, such as bone remodelling, provide a tool whereby these biological processes may be studied in a more simplified context. This study firstly utilised an in vitro model system of bone remodelling and comprising all three major cell types of the bone (osteocytes, osteoclasts and osteoblasts), which was representative of the bone's capacity to sense microdamage and subsequently initiate a basic multicellular unit response. Secondly, this system was used to study the effect of two commonly utilised aminobisphosphonate treatments for osteoporosis, alendronate and zoledronate. We demonstrated that microinjury to osteocyte networks being treated with bisphosphonates modulates receptor activator of nuclear factor kappa-B ligand and osteoprotegerin activity, and subsequently osteoclastogenesis. Furthermore, bisphosphonates increased the osteogenic potential following microinjury. Thus, we have shown for the first time that bisphosphonates act at all three stages of bone remodelling, from microinjury to osteoclastogenesis and ultimately osteogenesis.

  15. Oral bisphosphonate-related osteonecrosis of the jaws in rheumatoid arthritis patients: a critical discussion and two case reports

    PubMed Central

    2011-01-01

    Background Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a clinical condition characterized by the presence of exposed bone in the maxillofacial region. Its pathogenesis is still undetermined, but may be associated with risk factors such as rheumatoid arthritis (RA). The aim of this paper is to report two unpublished cases of BRONJ in patients with RA and to conduct a literature review of similar clinical cases with a view to describe the main issues concerning these patients, including demographic characteristics and therapeutic approaches applied. Methods Two case reports of BRONJ involving RA patients were discussed Results Both patients were aging female taking alendronate for more than 3 years. Lesions were detected in stage II in posterior mandible with no clear trigger agent. The treatment applied consisted of antibiotics, oral rinses with chlorhexidine, drug discontinuation and surgical procedures. Complete healing of the lesions was achieved. Conclusions This paper brings to light the necessity for rheumatologists to be aware of the potential risk to their patients of developing BRONJ and to work together with dentists for the prevention and early detection of the lesions. Although some features seem to link RA with oral BRONJ and act as synergistic effects, more studies should be developed to support the scientific bases for this hypothesis. PMID:21524309

  16. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model.

    PubMed

    Lee, Mee Youn; Kim, Hyang Yeon; Singh, Digar; Yeo, Soo Hwan; Baek, Seong Yeol; Park, Yoo Kyoung; Lee, Choong Hwan

    2016-01-26

    The study was aimed at exploring the curative effects of Rubus coreanus (RC) vinegar against postmenopausal osteoporosis by using ovariectomized rats as a model. The investigations were performed in five groups: sham, ovariectomized (OVX) rats without treatment, low-dose RC vinegar (LRV)-treated OVX rats, high-dose RC vinegar (HRV)-treated OVX rats and alendronate (ALEN)-treated OVX rats. The efficacy of RC vinegar was evaluated using physical, biochemical, histological and metabolomic parameters. Compared to the OVX rats, the LRV and HRV groups showed positive effects on the aforementioned parameters, indicating estrogen regulation. Plasma metabolome analysis of the groups using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and ultra-performance liquid chromatography quadrupole-TOF-MS (UPLC-Q-TOF-MS) with multivariate analysis revealed 19 and 16 metabolites, respectively. Notably, the levels of butyric acid, phenylalanine, glucose, tryptophan and some lysophosphatidylcholines were marginally increased in RC vinegar-treated groups compared to OVX. However, the pattern of metabolite levels in RC vinegar-treated groups was found similar to ALEN, but differed significantly from that in sham group. The results highlight the prophylactic and curative potential of dietary vinegar against postmenopausal osteoporosis. RC vinegar could be an effective natural alternative for the prevention of postmenopausal osteoporosis.

  17. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair.

  18. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy

    PubMed Central

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630

  19. Competition between isoprene emission and pigment synthesis during leaf development in aspen

    PubMed Central

    Rasulov, Bahtijor; Bichele, Irina; Laisk, Agu; Niinemets, Ülo

    2014-01-01

    In growing leaves, lack of isoprene synthase is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on postillumination isoprene decay and modeling DMADP consumption to estimate in vivo kinetic characteristics of isoprene synthase and prenyltransferase reactions, and determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data, and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1-5 days old leaves when isoprene emission was absent. Isoprene emission commenced on days 5-6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis-Menten constant (Km) values obtained were 265 nmol m−2 (20 μM) for DMADP-consuming prenyltransferase reactions and 2560 nmol m−2 (190 μM) for isoprene synthase. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both isoprene synthase activity and competition for DMADP by prenyltransferase reactions. PMID:24033429

  20. Reversing bone loss by directing mesenchymal stem cells to bone.

    PubMed

    Yao, Wei; Guan, Min; Jia, Junjing; Dai, Weiwei; Lay, Yu-An E; Amugongo, Sarah; Liu, Ruiwu; Olivos, David; Saunders, Mary; Lam, Kit S; Nolta, Jan; Olvera, Diana; Ritchie, Robert O; Lane, Nancy E

    2013-09-01

    Bone regeneration by systemic transplantation of mesenchymal stem cells (MSCs) is problematic due to the inability to control the MSCs' commitment, growth, and differentiation into functional osteoblasts on the bone surface. Our research group has developed a method to direct the MSCs to the bone surface by conjugating a synthetic peptidomimetic ligand (LLP2A) that has high affinity for activated α4β1 integrin on the MSC surface, with a bisphosphonates (alendronate) that has high affinity for bone (LLP2A-Ale), to direct the transplanted MSCs to bone. Our in vitro experiments demonstrated that mobilization of LLP2A-Ale to hydroxyapatite accelerated MSC migration that was associated with an increase in the phosphorylation of Akt kinase and osteoblastogenesis. LLP2A-Ale increased the homing of the transplanted MSCs to bone as well as the osteoblast surface, significantly increased the rate of bone formation and restored both trabecular and cortical bone loss induced by estrogen deficiency or advanced age in mice. These results support LLP2A-Ale as a novel therapeutic option to direct the transplanted MSCs to bone for the treatment of established bone loss related to hormone deficiency and aging.

  1. Preliminary study on the effect of wear process on drug release of ALN-loaded UHMWPE

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Qu, Shuxin; Lin, Sunzhong; Huang, Jie; Fu, Rong; Zhou, Zhongrong

    2012-12-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) for anti-osteolysis was developed in our previous study. As a potential material of artificial joints, ALN-loaded UHMWPE is subjected to friction and wear which probably affect the ALN release in vivo. This study aims to explore the influence of friction and wear on the ALN release rate. For comparison, the specimens of control group, immersed motionlessly in distilled water, were not applied any friction. The morphological change of worn surface of ALN-loaded UHMWPE was observed through an independent wear test and was compared with that of control UHMWPE. The ALN release rate in the friction and wear process was higher than that of non-friction test. The cumulative mass of ALN increased slowly at the onset of wear process and then speeded up. The fibrils-like wear debris accumulated on the worn surface of ALN-loaded UHMWPE but did not appear on that of UHMWPE. The micro-pores formed during wear process, were probably favorable of the dissolution of ALN. It indicated that the ALN release of ALN-loaded UHMWPE was affected by the friction and wear. The frictional factors should be taken into account in predicting the ALN release rate of ALN-loaded UHMWPE.

  2. Full length parathyroid hormone (1–84) in the treatment of osteoporosis in postmenopausal women

    PubMed Central

    Jódar-Gimeno, Esteban

    2007-01-01

    Objective: To review the pharmacological properties and the available clinical data of full length parathyroid hormone (PTH) in post-menopausal osteoporosis. Sources: A MEDLINE search was completed, together with a review of information obtained from the manufacturer and from the medicine regulatory agencies. Study and data selection: Studies were selected according to relevance and availability. Relevant information (design, objectives, patients’ characteristics, outcomes, adverse events, dosing, etc) was analyzed. Results: Different studies have shown that, when administered intermittently as a subcutaneous injection in the abdomen, PTH increases bone mineral density (BMD) and prevents vertebral fractures. On completion of PTH therapy (up to 24 months), there is evidence that sequential treatment with alendronate is associated with a therapeutic benefit in terms of increase in BMD. Further trials are necessary to determine long-term safety and the role of PTH in combination with other treatments for osteoporosis and the effect of repeated cycles of PTH followed by an anti-catabolic agent. There are currently no completed comparative trials with other osteoporosis treatments. Conclusions: Full length PTH, given intermittently as an abdominal subcutaneous injection, appears to be a safe and efficacious treatment option for high risk osteoporosis. More data are needed to determine its specific role in osteoporosis treatment. PMID:18044089

  3. CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts

    PubMed Central

    Greenblatt, Matthew B.; Park, Kwang Hwan; Oh, Hwanhee; Kim, Jung-Min; Shin, Dong Yeon; Lee, Jae Myun; Lee, Jin Woo; Singh, Anju; Lee, Ki-young; Hu, Dorothy; Xiao, Changchun; Charles, Julia F.; Penninger, Josef M.; Lotinun, Sutada; Baron, Roland; Ghosh, Sankar

    2015-01-01

    Physiological bone remodeling requires that bone formation by osteoblasts be tightly coupled to bone resorption by osteoclasts. However, relatively little is understood about how this coupling is regulated. Here, we demonstrate that modulation of NF-κB signaling in osteoclasts via a novel activity of charged multivesicular body protein 5 (CHMP5) is a key determinant of systemic rates of bone turnover. A conditional deletion of CHMP5 in osteoclasts leads to increased bone resorption by osteoclasts coupled with exuberant bone formation by osteoblasts, resembling an early onset, polyostotic form of human Paget’s disease of bone (PDB). These phenotypes are reversed by haploinsufficiency for Rank, as well as by antiresorptive treatments, including alendronate, zolendronate, and OPG-Fc. Accordingly, CHMP5-deficient osteoclasts display increased RANKL-induced NF-κB activation and osteoclast differentiation. Biochemical analysis demonstrated that CHMP5 cooperates with the PDB genetic risk factor valosin-containing protein (VCP/p97) to stabilize the inhibitor of NF-κBα (IκBα), down-regulating ubiquitination of IκBα via the deubiquitinating enzyme USP15. Thus, CHMP5 tunes NF-κB signaling downstream of RANK in osteoclasts to dampen osteoclast differentiation, osteoblast coupling and bone turnover rates, and disruption of CHMP5 activity results in a PDB-like skeletal disorder. PMID:26195726

  4. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation.

    PubMed

    Takeshita, Sunao; Fumoto, Toshio; Matsuoka, Kazuhiko; Park, Kyoung-ae; Aburatani, Hiroyuki; Kato, Shigeaki; Ito, Masako; Ikeda, Kyoji

    2013-09-01

    Bone remodeling is characterized by the sequential, local tethering of osteoclasts and osteoblasts and is key to the maintenance of bone integrity. While bone matrix-mobilized growth factors, such as TGF-β, are proposed to regulate remodeling, no in vivo evidence exists that an osteoclast-produced molecule serves as a coupling factor for bone resorption to formation. We found that CTHRC1, a protein secreted by mature bone-resorbing osteoclasts, targets stromal cells to stimulate osteogenesis. Cthrc1 expression was robustly induced when mature osteoclasts were placed on dentin or hydroxyapatite, and also by increasing extracellular calcium. Cthrc1 expression in bone increased in a high-turnover state (such as that induced by RANKL injections in vivo), but decreased in conditions associated with suppressed bone turnover (such as with aging and after alendronate treatment). Targeted deletion of Cthrc1 in mice eliminated Cthrc1 expression in bone, whereas its deficiency in osteoblasts did not exert any significant effect. Osteoclast-specific deletion of Cthrc1 resulted in osteopenia due to reduced bone formation and impaired the coupling process after resorption induced by RANKL injections, impairing bone mass recovery. These data demonstrate that CTHRC1 is an osteoclast-secreted coupling factor that regulates bone remodeling.

  5. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy.

    PubMed

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630

  6. Membrane bound pyrophosphatase and P-type adenosine triphosphatase of Leishmania donovani as possible chemotherapeutic targets: similarities and differences in inhibitor sensitivities.

    PubMed

    Sen, S S; Bhuyan, N R; Lakshman, K; Roy, A K; Chakraborty, B; Bera, T

    2009-12-01

    The activities of inorganic pyrophosphatase (PPase) and adenosine triphosphatase (ATPase) were studied in the plasma membrane of Leishmania donovani promastigotes and amastigotes. It was shown that the specific activity of PPase was greater than that of ATPase in the promastigote plasma membrane. We characterized H+-PPase present in the plasma membrane of L. donovani and investigated its possible role in the survival of promastigote and amastigote. PPase activity was stimulated by K+ and sodium orthovanadate and inhibited by pyrophosphate analogs (imidodiphosphate and alendronate), KF, N,N'-dicyclohexylcarbodiimide (DCCD), thiol reagents (p-chloromercuribenzenesulfonate (PCMBS), N-ethylmaleimide (NEM), and phenylarsine oxide (PAO)), the ABC superfamily transport modulator verapamil, and also by the F(1)F(o)-ATPase inhibitor quercetin. ATPase activity was stimulated by K+ and verapamil, inhibited by DCCD, PCMBS, NEM, sodium azide, sodium orthovanadate, and quercetin, and was unaffected by PAO. We conclude that there are significant differences within promastigote, amastigote, and mammalian host in cytosolic pH homeostasis to merit the inclusion of PPase transporter as a putative target for rational drug design. PMID:19961421

  7. Sodium thiosulfate for the treatment of warfarin-induced calciphylaxis in a nondialysis patient

    PubMed Central

    Carrell, Emily J.; Bell, Allison

    2015-01-01

    Calciphylaxis or uremic arteriolopathy is a complex process typically seen in patients with end-stage renal disease, but has also been reported in patients with normal renal function. However, therapies for calciphylaxis are based on reports of traditional patients (i.e., end-stage renal disease). A mainstay of therapy, sodium thiosulfate (STS), has been shown to be effective for the treatment of calciphylaxis. Without a standardized therapy reported for nondialysis patients there is a need for evidence-based therapy. Here, we report a case of a 63-year-old woman with an acute injury on chronic kidney disease (CrClBaseline = 48 mL/min, CrClAKI = 36 mL/min), not requiring dialysis, with warfarin-induced calciphylaxis. After 4 weeks of therapy with STS, sevelamer, alendronate, and enzymatic debridement the patient subjectively reported slight improvement of the necrotic ulcers but developed cellulitis on her nonaffected limb. Additionally, after 12 weeks of therapy she was readmitted for renal failure and subsequently required dialysis. PMID:26816477

  8. The standardized BHH10 extract, a combination of Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, reverses bone mass and metabolism in a rat model of postmenopausal osteoporosis.

    PubMed

    Huh, Jeong-Eun; Kim, Soo-Jeong; Kang, Jung-Won; Nam, Dong-Woo; Choi, Do-Young; Park, Dong-Suk; Lee, Jae-Dong

    2015-01-01

    Jasin-hwan-gagambang (BHH10), a modified prescription of Jasin-hwan, contains Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, and it has been traditionally used to treat osteoporosis and other inflammatory diseases. In this study, we systematically investigated the protective effects of BHH10 in ovariectomy (OVX)-induced rats. Sprague-Dawley rats were randomly divided into sham and OVX subgroups. The rats in the OVX group were treated with vehicle, BHH10, alendronate (ALN), and 17β-estradiol (E2). BHH10 treatment significantly inhibited OVX-induced increases in body weight and uterus atrophy. In addition, it significantly increased the bone mineral density (BMD) and prevented a decrease in trabecular bone volume, connectivity density, trabecular number, thickness, and separation at the total femur and femur neck. The OVX rats showed significant decreases in the serum levels of calcium and phosphorous and significant increases in the serum levels of cholesterol, low-density lipoprotein cholesterol, alkaline phosphatase, osteocalcin, C-telopeptide type 1 collagen, and bone morphogenetic protein-2. These changes were significantly reduced to near sham levels by administration of BHH10 to OVX rats. BHH10-treated rats had a greater bone mass, a better structural architecture of the bone, and higher levels of biochemical markers of the bone than did the ALN-treated or E2-treated rats. These results suggest that BHH10 reverses osteoporosis in OVX rats by stimulating bone formation or regulating bone resorption and is not associated with toxicity. PMID:25230217

  9. Enhanced bone morphogenetic protein-2 performance on hydroxyapatite ceramic surfaces.

    PubMed

    Schuessele, A; Mayr, H; Tessmar, J; Goepferich, A

    2009-09-15

    The immobilization of biomolecules on biomaterial surfaces allows for the control of their localization and retention. In numerous studies, proteins have been simply adsorbed to enhance the biological performance of various materials in vivo. We investigated the potential of surface modification techniques on hydroxyapatite (HA) ceramic discs in an in vitro approach. A novel method for protein immobilization was evaluated using the aminobisphosphonates pamidronate and alendronate, which are strong Ca chelating agents, and was compared with the established silanization technique. Lysozyme and bone morphogenetic protein-2 (BMP-2) were used to assess the suitability of the two surface modification methods with regard to the enzymatic activity of lysozyme and to the capacity of BMP-2 to stimulate the osteoblastic differentiation of C2C12 mouse myoblasts. After immobilization, a 2.5-fold increase in enzymatic activity of lysozyme was observed compared with the control. The alkaline phosphatase activity per cell stimulated by immobilized BMP-2 was 2.5-fold higher [9 x 10(-6) I.U.] than the growth factor on unmodified surfaces [2-4 x 10(-6) I.U.]. With regard to the increase in protein activity, both procedures lead to equivalent results. Thus, the bisphosphonate-based surface modification represents a safe and easy alternative for the attachment of proteins to HA surfaces. PMID:18655137

  10. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

  11. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    NASA Astrophysics Data System (ADS)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  12. Preparation and anti-osteoporotic activities in vivo of phosphorylated peptides from Antarctic krill (Euphausia superba).

    PubMed

    Wang, Yanchao; Wang, Shanshan; Wang, Jingfeng; Xue, Changhu; Chang, Yaoguang; Xue, Yong

    2015-06-01

    Antarctic krill (Euphausia superba) protein serves as a novel sustainable protein source for human. Krill protein isolate was phosphorylated by the dry-heating method with sodium pyrophosphate. Phosphorylated peptides from Antarctic krill (PP-AKP) were obtained from phosphorylated protein through tryptic hydrolysis. Two types of phosphate bonds were introduced by phosphorylation, i.e. PO and PO bonds. The anti-osteoporotic activities of PP-AKP at two doses (400 and 800mg/kg body weight) were investigated with an osteoporotic rat model, which was established with bilateral ovariectomy surgery. Different doses of PP-AKP were given intraperitoneal injections to rats once a day with alendronate as a positive control. Phosphorylated peptides from Antarctic krill dose-dependently preserved bone mineral density in osteoporotic rats by increasing the degree of bone mineralization. Both trabecular and cortical bone strength in osteoporotic rats was significantly improved with PP-AKP treatment. The mechanism by which PP-AKP augmented bone mineral density and bone strength was relation to the reduction in osteoclast-mediated bone remodeling, as was supported by the decrease in bone resorption markers. Phosphorylated peptides from Antarctic krill could be developed as functional food or nutritional supplements.

  13. Diabetes and osteoporosis: Action of gastrointestinal hormones on the bone.

    PubMed

    García-Martín, A; Reyes-García, R; García-Castro, J M; Muñoz-Torres, M

    2013-01-01

    A 62-year-old woman consulted for evaluation of treatment for her type 2 diabetes diagnosed four years ago. He had been received treatment with metformin 850mg twice, with no chronic associated complications. She had hypertension and dyslipidemia. She was being treated with candesartan/hydrochlorothiazide 32/12.5mg and atorvastatin 40mg. Her weight was 92kg and height 162cm (BMI, 35.1kg/m(2)). The last analysis showed fasting glucose 168mg/dl and glycated hemoglobin 7.5%, Microalbuminuria was negative. Blood pressure and lipid profile were within the therapeutic range. Two years ago she suffered a nontraumatic Colle's fracture in her left arm for which she was taking a daily calcium and vitamin D supplement and weekly alendronate. In summary, this is an obese female patient with type 2 diabetes mellitus and inadequate metabolic control, She also has a history of fragility fracture. How should this patient be evaluated and treated?

  14. Garré's sclerosing osteomyelitis: case report.

    PubMed

    de Moraes, Frederico Barra; Motta, Tainá Melo Vieira; Severin, Alessandra Assis; de Alencar Faria, Deniel; de Oliveira César, Fernanda; de Souza Carneiro, Siderlei

    2014-01-01

    The aim of this study was to report on a rare case of Garré's sclerosing osteomyelitis. The patient was a 54-year-old woman with a history of treatment for lupus using corticoids for 20 years, and for osteoporosis using alendronate for five years. She presented edema and developed a limitation of left knee movement one year earlier, with mild effusion and pain on metaphyseal palpation, but without fever. She was in a good general state, without local secretion. Images of her knee showed trabecular osteolysis of the distal metaphysis of the femur and a periosteal reaction in both proximal tibias and both distal femurs, compatible with chronic osteomyelitis of low virulence and slow progression. Magnetic resonance imaging showed T2 hypersignal in the femur and tibia. Curettage was performed on the left distal femur, with release of secretion, but this was negative on culturing. A biopsy showed chronic infection and inflammation, fibrosis, xanthogranulomatous reaction and foci of suppuration. Antibiotic therapy was administered for six months. The etiology was not clarified: bacterial infection was suspected, but culturing was generally negative. The chronic process was maintained by low-virulence infection or even after treatment. The differential diagnoses were fibrous dysplasia, syphilis, pustulosis palmoplantaris, rectocolitis, Crohn's disease, SAPHO (synovitis, acne, pustulosis, hyperostosis and osteitis) and Paget's disease. The unifocal diseases were osteoid osteoma, Ewing's disease, osteosarcoma and eosinophilic granuloma. PMID:26229835

  15. The Volatome of Aspergillus fumigatus

    PubMed Central

    Calvo, A. M.; Latgé, J. P.

    2014-01-01

    Early detection of invasive aspergillosis is absolutely required for efficient therapy of this fungal infection. The identification of fungal volatiles in patient breath can be an alternative for the detection of Aspergillus fumigatus that still remains problematic. In this work, we investigated the production of volatile organic compounds (VOCs) by A. fumigatus in vitro, and we show that volatile production depends on the nutritional environment. A. fumigatus produces a multiplicity of VOCs, predominantly terpenes and related compounds. The production of sesquiterpenoid compounds was found to be strongly induced by increased iron concentrations and certain drugs, i.e., pravastatin. Terpenes that were always detectable in large amounts were α-pinene, camphene, and limonene, as well as sesquiterpenes, identified as α-bergamotene and β-trans-bergamotene. Other substance classes that were found to be present in the volatome, such as 1-octen-3-ol, 3-octanone, and pyrazines, were found only under specific growth conditions. Drugs that interfere with the terpene biosynthesis pathway influenced the composition of the fungal volatome, and most notably, a block of sesquiterpene biosynthesis by the bisphosphonate alendronate fundamentally changed the VOC composition. Using deletion mutants, we also show that a terpene cyclase and a putative kaurene synthase are essential for the synthesis of volatile terpenes by A. fumigatus. The present analysis of in vitro volatile production by A. fumigatus suggests that VOCs may be used in the diagnosis of infections caused by this fungus. PMID:24906414

  16. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence.

    PubMed

    Harris, Golda G; Lombardi, Patrick M; Pemberton, Travis A; Matsui, Tsutomu; Weiss, Thomas M; Cole, Kathryn E; Köksal, Mustafa; Murphy, Frank V; Vedula, L Sangeetha; Chou, Wayne K W; Cane, David E; Christianson, David W

    2015-12-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.

  17. Polycan, a β-glucan from Aureobasidium pullulans SM-2001, mitigates ovariectomy-induced osteoporosis in rats

    PubMed Central

    Jung, Mi Young; Kim, Joo Wan; Kim, Ki Young; Choi, Seong Hun; Ku, Sae Kwang

    2016-01-01

    The present study aimed to investigate the protective effects of Polycan, a β-glucan from Aureobasidium pullulans SM-2001, in a rat model of ovariectomy-induced osteoporosis. Ovariectomized (OVX) rats were orally administered 31.25, 62.5 or 125 mg/kg/day Polycan for 126 days, and alterations in body weight, bone mineral content, bone mineral density, failure load, histological profiles and histomorphometric indices were analyzed. In particular, serum levels of osteocalcin, bone-specific alkaline phosphatase (bALP), calcium and phosphorus, and the urine deoxypyridinoline/creatinine ratio, were measured. Furthermore, the femur, tibia and lumbar vertebrae were harvested from all rats, and histomorphometrical analyses were conducted in order to assess the mass and structure of the bones, and the rates of bone resorption and formation. One group of rats was treated with alendronate, which served as the reference drug. The results of the present study suggested that Polycan treatment was able to inhibit ovariectomy-induced alterations in bone resorption and turnover in a dose-dependent manner. In addition, the serum expression levels of bALP and all histomorphometrical indices for bone formation were markedly increased in the Polycan-treated groups. These results indicated that Polycan was able to preserve bone mass and strength, and increase the rate of bone formation in OVX rats; thus suggesting that Polycan may be considered a potential effective anti-osteoporosis agent. PMID:27588046

  18. The inhibition of RANK-ligand in the management of postmenopausal osteoporosis and related fractures: the role of denosumab.

    PubMed

    Capozzi, Anna; Lello, Stefano; Pontecorvi, Alfredo

    2014-06-01

    There is great interest in new treatments of osteoporosis owing to general ageing of population and increased risk for fragility fractures in the elderly. Current therapies show a good efficacy in improving bone quality and bone density, but, in spite of a certain reduction in fracture rate, according to each treatment, the problem of osteoporotic fractures is yet far from to be solved. Moreover, some treatments may produce different side effects. Denosumab (Dmab), a receptor activator of nuclear factor kappa-B ligand (RANKL)-inhibitor, is an agent recently introduced in clinical practice for treatment of osteoporosis of postmenopausal women. Dmab has improved bone mineral density and prevented new vertebral and non-vertebral fractures with a similar efficacy in comparison with alendronate. Many clinical studies showed Dmab produces also significant improvement versus placebo in bone quality as indicated by decreasing markers of bone turnover. Patients using Dmab reported less risk of AFF (Atypical Femoral Fractures) and ONJ (Osteonecrosis of the Jaw) with an increased number of cellulitis. Here, we review articles using Dmab for female post-menopausal osteoporosis.

  19. Vitamin K₂ therapy for postmenopausal osteoporosis.

    PubMed

    Iwamoto, Jun

    2014-05-16

    Vitamin K may play an important role in the prevention of fractures in postmenopausal women with osteoporosis. Menatetrenone is the brand name of a synthetic vitamin K2 that is chemically identical to menaquinone-4. The present review study aimed to clarify the effect of menatetrenone on the skeleton in postmenopausal women with osteoporosis, by reviewing the results of randomized controlled trials (RCTs) in the literature. RCTs that investigated the effect of menatetrenone on bone mineral density (BMD), measured by dual-energy X-ray absorptiometry and fracture incidence in postmenopausal women with osteoporosis, were identified by a PubMed search for literature published in English. Eight studies met the criteria for RCTs. Small RCTs showed that menatetrenone monotherapy decreased serum undercarboxylated osteocalcin (ucOC) concentrations, modestly increased lumbar spine BMD, and reduced the incidence of fractures (mainly vertebral fracture), and that combined alendronate and menatetrenone therapy enhanced the decrease in serum ucOC concentrations and further increased femoral neck BMD. This review of the literature revealed positive evidence for the effects of menatetrenone monotherapy on fracture incidence in postmenopausal women with osteoporosis. Further studies are required to clarify the efficacy of menatetrenone in combination with bisphosphonates against fractures in postmenopausal women with osteoporosis.

  20. Prevention and treatment of senile osteoporosis and hip fractures.

    PubMed

    Duque, G; Demontiero, O; Troen, B R

    2009-02-01

    Osteoporosis is a major health issue worldwide, with significant economic consequences and adverse impacts on the quality of life. Hip fractures are the most devastating complication of osteoporosis, are likely to increase exponentially with an increasingly aged population, are associated with high recurrence rate, and lead to significant morbidity and mortality. This review discusses the prevalence and impact of hip fractures, the assessment of fracture risk, fall prevention, and treatment of osteoporosis with emphasis on evidence for hip fracture reduction among the various agents currently available. The aim is to provide recommendations to optimize hip fracture prevention and treatment. Ample evidence exists in the literature of many other risk factors independent from bone mineral density that increase fracture risk. These clinical risk factors have been validated in large cohorts and are incorporated into clinical tools that are invaluable in treatment decisions. In addition, strategies to prevent or reduce falls are integral to comprehensive osteoporosis management. Vitamin D combined with calcium has a role in primary prevention. Alendronate, residronate, strontium and zoledronic acid have proven efficacy in primary and secondary hip fracture prevention. An aggressive approach to investigate, assess and manage an individual's fracture risk and fall risk is paramount to reduce the high morbidity and mortality associated with hip fractures. The choice of therapy should be determined by the patient's calculated fracture risk and efficacy of the potential treatment, including long term compliance associated with the agent of choice. PMID:19277006

  1. Treatment of osteoporosis: where are we and where are we going to.

    PubMed

    Reginster, J Y

    1999-06-01

    In the past years, there has been a multiplication of drugs identified as candidates for use in the prevention or the treatment of osteoporosis. When treating established osteoporosis, the objective is to prevent further skeletal deterioration, improve bone mass and/or bone microarchitecture to provide a documented reduction of the risk of vertebral and/or peripheral fractures. Calcium and vitamin D have been shown to be particularly efficient in elderly patients, mainly to prevent non-vertebral fractures. By inhibiting osteoclastic activity, calcitonin improves bone mineral density at all sites. Preliminary results suggest that it might also decrease vertebral fracture rates. Bisphosphonates have been investigated for 20 years in the treatment of osteoporosis. Alendronate was shown to reduce spinal and extravertebral fractures. New formulations of fluoride, like monofluorophosphate appear to be particularly beneficial in women with mild to moderate osteoporosis. Several new compounds, including parathormone, strontium salts, ipriflavone or others are currently developed and subject to large investigational programs to demonstrate their ability to reduce fracture. PMID:10546235

  2. Influence of Bisphosphonate Treatment on Medullary Macrophages and Osteoclasts: An Experimental Study

    PubMed Central

    Escudero, Natalia Daniela; Mandalunis, Patricia Mónica

    2012-01-01

    Nitrogen-containing bisphosphonates are widely used for treating diverse bone pathologies. They are anticatabolic drugs that act on osteoclasts inhibiting bone resorption. It remains unknown whether the mechanism of action is by decreasing osteoclast number, impairing osteoclast function, or whether they continue to effectively inhibit bone resorption despite the increase in osteoclast number. There is increasing evidence that bisphosphonates also act on bone marrow cells like macrophages and monocytes. The present work sought to evaluate the dynamics of preosteoclast fusion and possible changes in medullary macrophage number in bisphosphonate-treated animals. Healthy female Wistar rats received olpadronate, alendronate, or vehicle during 5 weeks, and 5-bromo-2-deoxyuridine (BrdU) on day 7, 28, or 34 of the experiment. Histomorphometric studies were performed to study femurs and evaluate: number of nuclei per osteoclast (N.Nu/Oc); number of BrdU-positive nuclei (N.Nu BrdU+/Oc); percentage of BrdU-positive nuclei per osteoclast (%Nu.BrdU+/Oc); medullary macrophage number (mac/mm2) and correlation between N.Nu/Oc and mac/mm2. Results showed bisphosphonate-treated animals exhibited increased N.Nu/Oc, caused by an increase in preosteoclast fusion rate and evidenced by higher N.Nu BrdU+/Oc, and significantly decreased mac/mm2. Considering the common origin of osteoclasts and macrophages, the increased demand for precursors of the osteoclast lineage may occur at the expense of macrophage lineage precursors. PMID:23008775

  3. Experimental development of bisphosphonate-related osteonecrosis of the jaws in rodents

    PubMed Central

    Conte Neto, Nicolau; Spolidorio, Luis C; Andrade, Cleverton R; S Bastos, Alliny; Guimarães, Morgana; Marcantonio, Elcio

    2013-01-01

    Osteonecrosis of the jaw (ONJ) following the use of bisphosphonates has become of increased interest in the scientific community, due in particular to its as-yet-unsolved pathogenesis. An experimental model of ONJ was induced in normal male rats [alendronate (ALN); 1 mg/Kg/day; n = 10] and matched controls (saline solution; n = 10). After 60 days of drug treatment, all animals were subjected to extractions of the left first lower molars and were euthanized at 3 and 28 days postsurgery. The following analyses were performed: (i) descriptive and quantitative (scores) histological evaluation, (ii) stereometry of distal sockets and (iii) biochemical measurement of C-telopeptide cross-linked collagen type I (CTX) and bone-specific alkaline phosphatase (BALP). The results showed that 28 days postsurgery the animals treated with ALN had areas of exposed and necrotic bone, associated with significant infection, especially in the interalveolar septum area and crestal regions, compared with controls. The levels of CTX, BALP and bone volume, as well as the degrees of inflammation and vascularization, were significantly reduced in these animals. Therefore, analysis of the data presented suggests that ALN therapy is associated with the development of osteonecrosis in the jaws of rodents after tooth extraction. PMID:23317355

  4. The effect of bisphosphonate treatment on the biochemical and cellular events during bone remodelling in response to microinjury stimulation.

    PubMed

    Mulcahy, L E; Curtin, C M; McCoy, R J; O'Brien, F J; Taylor, D; Lee, T C; Duffy, G P

    2015-01-01

    Osteoporosis is one of the most prevalent bone diseases worldwide and is characterised by high levels of bone turnover, a marked loss in bone mass and accumulation of microdamage, which leads to an increased fracture incidence that places a huge burden on global health care systems. Bisphosphonates have been used to treat osteoporosis and have shown great success in conserving bone mass and reducing fracture incidence. In spite of the existing knowledge of the in vivo responses of bone to bisphosphonates, the cellular responses to these drugs have yet to be fully elucidated. In vitro model systems that allow the decoupling of complex highly integrated events, such as bone remodelling, provide a tool whereby these biological processes may be studied in a more simplified context. This study firstly utilised an in vitro model system of bone remodelling and comprising all three major cell types of the bone (osteocytes, osteoclasts and osteoblasts), which was representative of the bone's capacity to sense microdamage and subsequently initiate a basic multicellular unit response. Secondly, this system was used to study the effect of two commonly utilised aminobisphosphonate treatments for osteoporosis, alendronate and zoledronate. We demonstrated that microinjury to osteocyte networks being treated with bisphosphonates modulates receptor activator of nuclear factor kappa-B ligand and osteoprotegerin activity, and subsequently osteoclastogenesis. Furthermore, bisphosphonates increased the osteogenic potential following microinjury. Thus, we have shown for the first time that bisphosphonates act at all three stages of bone remodelling, from microinjury to osteoclastogenesis and ultimately osteogenesis. PMID:26614482

  5. Antiosteoporosis effect of radix scutellariae extract on density and microstructure of long bones in tail-suspended sprague-dawley rats.

    PubMed

    Li, Chen-Rui; Zhang, Guang-Wei; Niu, Yin-Bo; Pan, Ya-Lei; Zhai, Yuan-Kun; Mei, Qi-Bing

    2013-01-01

    Radix Scutellariae (RS), a medicinal herb, is extensively employed in traditional Chinese medicines and modern herbal prescriptions. Two major flavonoids in RS were known to induce osteoblastic differentiation and inhibit osteoclast differentiation, respectively. This study aimed to investigate the effect of Radix Scutellariae extract (RSE) against bone loss induced by mechanical inactivity or weightlessness. A hindlimb unloading tail-suspended rat model (TS) was established to determine the effect of RSE on bone mineral density and bone microarchitecture. Treatment of RSE at 50 mg/kg/day and alendronate (ALE) at 2 mg/kg/day as positive control for 42 days significantly increased the bone mineral density and mechanical strength compared with TS group. Enhanced bone turnover markers by TS treatment were attenuated by RSE and ALE administration. Deterioration of bone trabecula induced by TS was prevented. Moreover, both treatments counteracted the reduction of bone volume fraction, trabecular thickness and number, and connectivity density. In conclusion, RSE was demonstrated for the first time to prevent osteoporosis induced by TS treatment, which suggests the potential application of RSE in the treatment of disuse-induced osteoporosis.

  6. Bisphosphonates and glucocorticoid-induced osteoporosis: cons.

    PubMed

    Lems, Willem F; Saag, Kenneth

    2015-08-01

    During the use of glucocorticoids (GCs), both vertebral and nonvertebral fracture risk are increased, due to the direct and indirect negative effects of GCs on bone, muscles, and the activity of the underlying inflammatory diseases. Inhibition of bone formation and increased apoptosis of osteocytes play a consistent and crucial role in the pathogenesis of glucocorticoid-induced osteoporosis (GIO), while changes in bone resorption during GC-use are variable. To prevent fractures, important general measures include using the lowest possible dose of GCs, treating the underlying disease adequately, a healthy life style, adequate calcium and vitamin D supplementation, and regular exercise. Although it has been shown that bisphosphonates reduce vertebral fractures during the first 2 years of GC-treatment, there are no data on long-term use of bisphosphonates during GC-treatment. Of some concern in GIO, bisphosphonates reduce bone turnover, including bone formation, which is already downregulated by GCs. In contrast, the use of the anabolic agent teriparatide is more effective in reducing vertebral fractures than alendronate. In summary, bisphosphonates remain the first choice in the first two years of treatment in GC-treated patients with high fracture risk, but their long-term effects on bone quality and fracture risk reduction remain uncertain.

  7. [A case report - bisphosphonate-related osteonecrosis of the jaw(stage 0)successfully treated with sitafloxacin].

    PubMed

    Ikeda, Tetsuya; Kohno, Naoyuki

    2012-12-01

    In recent years, many authors have reported that bisphosphonate-related osteonecrosis of the jaw(BRONJ)is a side effect of bisphosphonate therapy. However, clinicians have been confused by these reports, as no definitive criteria or treatment guidelines for BRONJ exist. In this paper, we report a patient who had BRONJ(stage 0)after dental extraction. She was successfully treated with sitafloxacin(STFX). A 73-year-old female had been taking 35 mg of alendronate per week for 24 months for the treatment of osteoporosis. She had a 1-month history of pain, suppuration, and a mandibular socket that would not heal after a left molar tooth extraction, despite the administration of antibiotics. A diagnosis of BRONJ(stage 0)was made without exposed bone, and she started 200 mg of STFX per day for 2 weeks, which was reduced to 100 mg per day for a week thereafter. After 3 weeks of STFX treatment, the mandibular wound healed. Furthermore, antimicrobial susceptibility testing against all of the organisms isolated from the pus indicated that STFX exhibited the most potent antimicrobial activity of all the agents. The results of these data suggested that STFX may be an effective antibiotic for BRONJ.

  8. Clinical and image findings in bisphosphonate-related osteonecrosis of the jaws.

    PubMed

    Farias, Diogo Silva; Zen Filho, Edson Virgilio; de Oliveira, Thais Feitosa Leitão; Tinôco-Araújo, José Endrigo; Sampieri, Marcelo Bonifácio da Silva; Antunes, Heliton Spíndola; Santos, Paulo Sérgio da Silva

    2013-07-01

    Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is characterized as exposed bone in the jaws for more than 8 weeks in patients with current or previous history of therapy with bisphosphonates (BPs) and no history of radiotherapy in the head and neck. We report a case series of 7 patients with BRONJ and analyze the variations of clinical and imaging signs, correlating them with the presence or absence of bone exposure. Among the patients, 6 were women and 1 was a man, aged 42-79 years. Five of the patients were using zoledronic acid and the other 2 alendronate. The use of BPs varied from 3 to 13 years. In 5 patients, tooth extraction was the triggering event of injuries. Panoramic radiographs and computed tomography (CT) were evaluated by a radiologist blinded to the cases. There were persistent unremodeled extraction socket even several months after tooth extraction in 3 of the cases that were consistent wit CT findings that also showed areas of osteosclerosis and osteolysis. Patients were treated according to the recommendations of the AAOMS, with surgical debridement and antibiotic coverage with amoxicillin in the symptomatic patients. The follow-up of these patients ranged from 8 to 34 months, with a good response to treatment. The image findings in this case series were not specific and showed no difference between each stages of BRONJ (AAOMS, 2009). The image features were similar in presence or absence of exposed bone.

  9. Ninety-one osteoporosis patients affected with bisphosphonate-related osteonecrosis of the jaw: a case series.

    PubMed

    Mercer, E; Norton, T; Woo, S; Treister, N; Dodson, T B; Solomon, D H

    2013-09-01

    Bisphosphonate (BP)-related osteonecrosis of the jaw (BRONJ) presents with necrotic bone in the mouth in the setting of BP exposure. It has been studied in cancer patients taking high-dose BP, but BRONJ has also been noted in patients taking lower-dose BP for osteoporosis. The purpose of this study was to characterize the phenotypes and outcomes in a large series of patients with osteoporosis and BRONJ in the setting of BP exposure. We conducted a retrospective case series. The sample was composed of subjects with BRONJ and osteoporosis. Subjects with a history of BP treatment for myeloma or metastatic cancer to the bones were excluded. Descriptive statistics were computed for the study variables. Ninety-one cases of BRONJ met the inclusion criteria. Subjects had a median age of 71 years and were predominantly female (94.5 %). The median time of BP exposure was 60 months (range 2-120). Most subjects were treated with alendronate (82.4 %). The mandible was involved more frequently (58.2 %) than the maxilla (37.3 %). Subjects commonly (65.9 %), but not universally, reported pain. For subjects with treatment outcome data (n = 0), most reported improvement (80.0 %). Although BRONJ is an uncommon condition, the absolute number of cases is fairly large due to the very large number of patients taking BPs for osteoporosis. The findings of this study confirm that BRONJ primarily affects the mandible, a substantial minority present without pain, and patients typically improve with treatment.

  10. Use of FRAX®-based fracture risk assessments to identify patients who will benefit from osteoporosis therapy.

    PubMed

    Silverman, Stuart L; Komm, Barry S; Mirkin, Sebastian

    2014-11-01

    Several pharmacological interventions, including selective estrogen receptor modulators (SERMs), bisphosphonates, denosumab, and strontium ranelate have demonstrated efficacy in reducing the incidence of osteoporotic fractures, the most severe consequence of postmenopausal osteoporosis. Until recently, bone mineral density (BMD) was the primary factor used to determine which postmenopausal women may require osteoporosis treatment. However, clinical guidelines now recommend the use of the Fracture Risk Assessment Tool (FRAX(®)), a computer-based algorithm introduced by the World Health Organization, to help primary care physicians identify postmenopausal women who may be candidates for pharmacological osteoporosis therapy based on the level of fracture risk. Beyond its utility as a resource for determining whether or not to initiate osteoporosis treatment, clinical studies have begun to evaluate the correlation between FRAX(®)-based 10-year fracture probability and efficacy of different osteoporosis treatments. Bazedoxifene, clodronate, and denosumab have shown greater fracture risk reduction at higher FRAX(®)-based 10-year fracture probabilities, but the efficacy of raloxifene, alendronate, and strontium ranelate were relatively stable regardless of fracture probability. In summary, these data suggest that the relationship between FRAX(®)-based fracture probability and efficacy of different osteoporosis treatments varies depending upon the agent in question.

  11. Mechanical competence of ovariectomy-induced compromised bone after single or combined treatment with high-frequency loading and bisphosphonates

    PubMed Central

    Camargos G. V.; Bhattacharya P.; van Lenthe G. H.; Del Bel Cury A. A.; Naert I.; Duyck J.; Vandamme K.

    2015-01-01

    Osteoporosis leads to increased bone fragility, thus effective approaches enhancing bone strength are needed. Hence, this study investigated the effect of single or combined application of high-frequency (HF) loading through whole body vibration (WBV) and alendronate (ALN) on the mechanical competence of ovariectomy-induced osteoporotic bone. Thirty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and divided into five groups: shOVX, OVX-shWBV, OVX-WBV, ALN-shWBV and ALN-WBV. (Sham)WBV loading was applied for 10 min/day (130 to 150 Hz at 0.3g) for 14 days and ALN at 2 mg/kg/dose was administered 3x/week. Finite element analysis based on micro-CT was employed to assess bone biomechanical properties, relative to bone micro-structural parameters. HF loading application to OVX resulted in an enlarged cortex, but it was not able to improve the biomechanical properties. ALN prevented trabecular bone deterioration and increased bone stiffness and bone strength of OVX bone. Finally, the combination of ALN with HF resulted in an increased cortical thickness in OVX rats when compared to single treatments. Compared to HF loading, ALN treatment is preferred for improving the compromised mechanical competence of OVX bone. In addition, the association of ALN with HF loading results in an additive effect on the cortical thickness. PMID:26027958

  12. Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy

    PubMed Central

    Li, Qiaoli; Kingman, Joshua; Sundberg, John P.; Levine, Michael A.; Uitto, Jouni

    2015-01-01

    Generalized arterial calcification of infancy (GACI) is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene resulting in reduced plasma inorganic pyrophosphate levels. We previously characterized the Enpp1asj mutant mouse as a model of GACI, and we have now explored the potential efficacy of bisphosphonates, non-hydrolyzable PPi analogs, in preventing ectopic mineralization in these mice. These mice were maintained on either basic diet (control) or diets containing etidronate or alendronate in three different concentrations (experimental). Considering low bioavailability of bisphosphonates when administered orally, subsequent studies tested the mice with subcutaneous injections of etidronate. The treatments were initiated at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks of age by quantitation of calcium deposits in the muzzle skin containing dermal sheath of vibrissae and in aorta. We found that bisphosphonate treatments significantly reduced mineralization in skin and aorta. These changes in treated mice were accompanied with restoration of their bone microarchitecture, determined bymicrocomputed tomography. The inhibitory capacity of bisphosphonates, with mechanistic implications, was confirmed in a cell-based mineralization assay in vitro. Collectively, these results suggest that bisphosphonate treatment may be beneficial by a dual effect for preventing ectopic soft tissue mineralization while correcting decreased bone mineralization in GACI caused by ENPP1 mutations. PMID:26763447

  13. Garré's sclerosing osteomyelitis: case report.

    PubMed

    de Moraes, Frederico Barra; Motta, Tainá Melo Vieira; Severin, Alessandra Assis; de Alencar Faria, Deniel; de Oliveira César, Fernanda; de Souza Carneiro, Siderlei

    2014-01-01

    The aim of this study was to report on a rare case of Garré's sclerosing osteomyelitis. The patient was a 54-year-old woman with a history of treatment for lupus using corticoids for 20 years, and for osteoporosis using alendronate for five years. She presented edema and developed a limitation of left knee movement one year earlier, with mild effusion and pain on metaphyseal palpation, but without fever. She was in a good general state, without local secretion. Images of her knee showed trabecular osteolysis of the distal metaphysis of the femur and a periosteal reaction in both proximal tibias and both distal femurs, compatible with chronic osteomyelitis of low virulence and slow progression. Magnetic resonance imaging showed T2 hypersignal in the femur and tibia. Curettage was performed on the left distal femur, with release of secretion, but this was negative on culturing. A biopsy showed chronic infection and inflammation, fibrosis, xanthogranulomatous reaction and foci of suppuration. Antibiotic therapy was administered for six months. The etiology was not clarified: bacterial infection was suspected, but culturing was generally negative. The chronic process was maintained by low-virulence infection or even after treatment. The differential diagnoses were fibrous dysplasia, syphilis, pustulosis palmoplantaris, rectocolitis, Crohn's disease, SAPHO (synovitis, acne, pustulosis, hyperostosis and osteitis) and Paget's disease. The unifocal diseases were osteoid osteoma, Ewing's disease, osteosarcoma and eosinophilic granuloma.

  14. The "CROMa" Project: A Care Pathway for Clinical Management of Patients with Bisphosphonate Exposure.

    PubMed

    Capocci, Mauro; Romeo, Umberto; Cocco, Fabio; Bignozzi, Isabella; Annibali, Susanna; Ottolenghi, Livia

    2014-01-01

    Aim. To describe 7 years of activity of "CROMa" (Coordination of Research on Osteonecrosis of the Jaws) project of "Sapienza" University of Rome. Materials and Methods. A preventive and therapeutic care pathway was created for patients with bisphosphonates (BPs) exposure. Demographic, social, behavioural, pharmacological, and clinical variables were registered in a dedicated database. Results. In the project, 502 patients, 403 females and 99 males, were observed. Bone pathologies were 79% osteometabolic diseases (OMD) and 21% metastatic cancer (CA). Females were 90% in OMD group and 41% in CA. BP administration was 54% oral, 31% IV, and 11% IM; 89% of BPs were amino-BP and 11% non-amino-BP. Consistently with bone pathology (OMD/CA), alendronate appears to be prevalent for OMD (40% relative), while zoledronate was indicated in 92% of CA patients. Out of 502 cases collected, 28 BRONJ were detected: 17 of them were related to IV BP treatment. Preventive oral assessment was required for 50% of CA patients and by 4% of OMD patients. Conclusions. The proposed care pathway protocols for BP exposed patients appeared to be useful to meet treatment and preventive needs, in both oncological and osteometabolic diseases patients. Patients' and physicians' prevention awareness can be the starting point of a multilevel prevention system.

  15. Natural isoprenoids inhibit LPS-induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes.

    PubMed

    Marcuzzi, Annalisa; Tommasini, Alberto; Crovella, Sergio; Pontillo, Alessandra

    2010-06-01

    The inhibition of mevalonate pathway through genetic defects (mevalonate kinase deficiency, MKD) or pharmacologic drugs (aminobisphosphonates) causes a shortage of intermediate compounds and, in particular, of geranylgeranyl-pyrophosphate (GGPP) associated to the activation of caspase-1 and IL-1beta release. Geraniol (GOH), farnesol (FOH), geranylgeraniol (GGOH) and menthol (MOH), due to their isoprenoid structure, are supposed to enter the mevalonate pathway and to by-pass the biochemical block, reconstituting the pathway. Considering the already known