Sample records for aleutian arc volcanoes

  1. Massive edifice failure at Aleutian arc volcanoes

    USGS Publications Warehouse

    Coombs, M.L.; White, S.M.; Scholl, D. W.

    2007-01-01

    Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the

  2. Aleutian Arc Magmatism: Continuous or Episodic?

    NASA Astrophysics Data System (ADS)

    Stone, D. B.; Layer, P. W.

    2004-05-01

    For essentially all of Cenozoic time, the plates of the north Pacific - the Pacific, Kula and Faralon plates - have had a generally northward motion. Most models show that rates of subduction perpendicular to the Alaska Peninsula and eastern Aleutian arc were substantial, and do not show any interruptions in expected rates and directions. In contrast, the eastern Aleutian arc (the arc bounded on both sides by oceanic depths) and to some extent the Alaska Peninsula (the parts of the arc built on continental material) appear to have significant gaps in the geologic record of volcanism. In addition to these arc-wide, generally long period gaps in volcanism, individual volcanic centers also appear to have significant temporal gaps (of shorter duration) in their eruptive histories. The most obvious example is the lack of volcanic rocks associated with today's volcanoes that are older than 2 Ma. Paleomagnetic data from Aleutian volcanoes show only one reversal, which would suggest that the bulk of the volcanic rocks were erupted during the Bruhnes normal polarity chron (roughly 700 ka to the present). The earth's field in Cenozoic time spends equal time in each polarity with an average polarity interval of about .25Ma. If eruptive activity was spread uniformly over time, more reversals would be expected. On longer timescales, available radiometric ages for volcanic and plutonic rocks from the eastern Aleutian islands divide roughly into four groups; 0-2Ma, rocks associated with the modern volcanic chain; 5-6Ma, flows, dikes and other intrusives not associated with modern volcanoes; 10-17Ma, mainly small intrusive bodies; 30-40(?)Ma, mainly isolated flow units, dikes and other intrusive rocks. This leaves gaps in the record of igneous rocks ranging from about 3Ma to 15Ma. An analogous but more complex distribution of ages is seen on the Alaska Peninsula where the arc has been built on continental crust. If the chronology and geologic history of the arc is more

  3. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  4. Relationships between Microbial Activities and Subduction-related Outgassing and Volatile Flux at Aleutian Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.

    2016-12-01

    Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon

  5. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  6. Volcanoes of the Alaska Peninsula and Aleutian Islands, Alaska: selected photographs

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    2002-01-01

    This CD-ROM contains 97 digital images of volcanoes along the Aleutian volcanic arc in Alaska. Perspectives include distant aerial shots, ground views of volcanic products and processes, and dramatic views of eruptions in progress. Each image is stored as a .PCD file in five resolutions. Brief captions, a location map, and glossary are included.

  7. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.

    2015-12-01

    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  8. Volcanic Tsunami Generation in the Aleutian Arc of Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Watts, P.

    2003-12-01

    Many of the worlds active volcanoes are situated on or near coastlines, and during eruptions the transfer of mass from volcano to sea is a potential source mechanism for tsunamis. Flows of granular material off of volcanoes, such as pyroclastic flow, debris avalanche, and lahar, often deliver large volumes of unconsolidated debris to the ocean that have a large potential tsunami hazard. The deposits of both hot and cold volcanic grain flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by granular subaerial volcanic flows using examples from Aniakchak volcano in southwestern Alaska, and Augustine volcano in southern Cook Inlet. Evidence for far-field tsunami inundation coincident with a major caldera-forming eruption of Aniakchak volcano ca. 3.5 ka has been described and is the basis for one of our case studies. We perform a numerical simulation of the tsunami using a large volume pyroclastic flow as the source mechanism and compare our results to field measurements of tsunami deposits preserved along the north shore of Bristol Bay. Several attributes of the tsunami simulation, such as water flux and wave amplitude, are reasonable predictors of tsunami deposit thickness and generally agree with the field evidence for tsunami inundation. At Augustine volcano, geological investigations suggest that as many as 14 large volcanic-rock avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during the 1883 eruption may have initiated a tsunami observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. By analogy with the 1883 event, previous studies concluded that tsunamis could have been generated many times in the past. If so

  9. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-01-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths

  10. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  11. Inception and Early Evolution of the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Bezard, R.; Hoernle, K.; Hauff, F.; Portnyagin, M.; Werner, R.; Yogodzinski, G.; Jicha, B.; Garbe-Schönberg, D.; Turner, S.; Schaefer, B. F.

    2017-12-01

    Constraining the timing and style of subduction initiation in the Aleutian system is critical to model the Cenozoic geodynamic evolution of the Pacific. Until now, the oldest ages for the Aleutian arc suggest a subduction inception at c.a. 46-47 Ma. However, the compositions of these samples (arc tholeiites and calc-alkaline rocks) are different from those of typical early-arc sequences found at extensively studied subduction systems (Izu-Bonin-Mariana), dominated by FABs and boninites. Thus, if the FAB/boninite model applies to the Aleutian, the oldest units might not have been recovered yet and the arc inception could have occurred earlier than 47 Ma. To test this hypothesis, we have sampled the lowermost submarine Aleutian sequences at ten forearc and rear-arc localities during the R/V SONNE Cruise 249. We present preliminary whole-rock major and trace element concentrations, Sr-Nd-Hf-Pb isotopes as well as U-Pb zircon dating on the recovered igneous rocks. The sample compositions range from tholeiitic to calc-alkaline. No boninites were found. Most of the samples show strong subduction signatures. However, the remaining rocks present no or minor arc-type trace element features. These samples are either depleted tholeiites with similar trace element characteristics to FABs or enriched calc-alkaline rocks. Preliminary zircon dating suggests an age of 47.2 ± 1.2 Ma for one of the samples with strong arc signatures, consistent with the oldest published ages for the Aleutian so far. However, based on their compositional similarities to FABs, the depleted tholeiites should be older than the arc-type rocks, suggesting that subduction initiation could have occurred earlier than the above-mentioned age. The absence of boninite could either reflect an incomplete sampling of the early-arc sequences or a different initiation style compared to other Pacific subduction zones. Further ages and radiogenic isotope data should refine these interpretations.

  12. Geologic framework of the Aleutian arc, Alaska

    USGS Publications Warehouse

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    The Aleutian arc is the arcuate arrangement of mountain ranges and flanking submerged margins that forms the northern rim of the Pacific Basin from the Kamchatka Peninsula (Russia) eastward more than 3,000 km to Cooke Inlet (Fig. 1). It consists of two very different segments that meet near Unimak Pass: the Aleutian Ridge segment to the west and the Alaska Peninsula-the Kodiak Island segment to the east. The Aleutian Ridge segment is a massive, mostly submerged cordillera that includes both the islands and the submerged pedestal from which they protrude. The Alaska Peninsula-Kodiak Island segment is composed of the Alaska Peninsula, its adjacent islands, and their continental and insular margins. The Bering Sea margin north of the Alaska Peninsula consists mostly of a wide continental shelf, some of which is underlain by rocks correlative with those on the Alaska Peninsula.There is no pre-Eocene record in rocks of the Aleutian Ridge segment, whereas rare fragments of Paleozoic rocks and extensive outcrops of Mesozoic rocks occur on the Alaska Peninsula. Since the late Eocene, and possibly since the early Eocene, the two segments have evolved somewhat similarly. Major plutonic and volcanic episodes, however, are not synchronous. Furthermore, uplift of the Alaska Peninsula-Kodiak Island segment in late Cenozoic time was more extensive than uplift of the Aleutian Ridge segment. It is probable that tectonic regimes along the Aleutian arc varied during the Tertiary in response to such factors as the directions and rates of convergence, to bathymetry and age of the subducting Pacific Plate, and to the volume of sediment in the Aleutian Trench.The Pacific and North American lithospheric plates converge along the inner wall of the Aleutian trench at about 85 to 90 mm/yr. Convergence is nearly at right angles along the Alaska Peninsula, but because of the arcuate shape of the Aleutian Ridge relative to the location of the plates' poles of rotation, the angle of convergence

  13. Scrubbing masks magmatic degassing during repose at Cascade-Range and Aleutian-Arc volcanoes

    USGS Publications Warehouse

    Symonds, Robert B.; Janik, C.J.; Evans, William C.; Ritchie, B.E.; Counce, Dale; Poreda, R.J.; Iven, Mark

    2003-01-01

    Between 1992 and 1998, we sampled gas discharges from ≤173°C fumaroles and springs at 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA) including Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. For each site, we collected and analyzed samples to characterize the chemical (H2O, CO2, H2S, N2, CH4, H2, HCl, HF, NH3, Ar, O2, He) and isotopic (δ13C of CO2, 3He/4He, 40Ar/36Ar, δ34S, δ13C of CH4, δ15N, and δD and δ18O of water) compositions of the gas discharges, and to create baseline data for comparison during future unrest. The chemical and isotopic data show that these gases contain a magmatic component that is heavily modified from scrubbing by deep hydrothermal (150° - 350°C) water (primary scrubbing) and shallow meteoric water (secondary scrubbing). The impact of scrubbing is most pronounced in gas discharges from bubbling springs; gases from boiling-point fumaroles and superheated vents show progressively less impact from scrubbing. The most effective strategies for detecting gas precursors to future CRAA eruptions are to measure periodically the emission rates of CO2 and SO2, which have low and high respective solubilities in water, and to monitor continuously CO2 concentrations in soils around volcanic vents. Timely resampling of fumaroles can augment the geochemical surveillance program by watching for chemical changes associated with drying of fumarolic pathways (all CRAA sites), increases in gas geothermometry temperatures (Mount Mageik, Trident, Mount Baker, Mount Shasta), changes in δ13C of CO2 affiliated with magma movement (all CRAA site), and increases in 3He/4He coupled with intrusion of new magma (Mount Rainier, Augustine Volcano, Makushin, Mount Shasta). Repose magmatic degassing may discharge substantial amounts of S and Cl into the edifices of Mount Baker and several other CRAA

  14. Subsidence at Kiska volcano, Western Aleutians, detected by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Z.; Masterlark, Timothy; Power, J.; Dzurisin, D.; Wicks, Charles

    2002-01-01

    Sequential interferometric synthetic aperture radar images of Kiska, the westernmost historically active volcano in the Aleutian arc, show that a circular area about 3 km in diameter centered near the summit subsided by as much as 10 cm from 1995 to 2001, mostly during 1999 and 2000. An elastic Mogi-type deformation model suggests that the source is within 1 km of the surface. Based on the shallow source depth, the copious amounts of steam during recent eruptions, and recent field reports of vigorous steaming and persistent ground shaking near the summit area, we attribute the subsidence to decreased pore-fluid pressure within a shallow hydrothermal system beneath the summit area.

  15. Nature and Significance of the High-Sr Aleutian Lavas

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y<30, 87Sr/86Sr=0.7031-0.7033). Western Aleutian dredge samples also include high-Sr lavas (>700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr < 0.7028). The endmember Sr-rich lavas are magnesian rhyodacites (SiO2~68%, Mg# >0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (La<7 ppm, Yb<0.4 ppm) and 87Sr/86Sr < 0.70266. The high silica and primitive (high Mg#) character of the high-Sr lavas, combined with their strongly fractionated trace element patterns and MORB-like isotopes are consistent with a source predominantly of subducted basalt and a melt residue that contained garnet. The high-Sr lavas have some characteristics of MORB fluids (low Ce/Pb and unradiogenic Pb), and their highly calc-alkaline nature implies high pre-eruptive water contents[1], but low 87Sr/86Sr indicates that their source was in MORB, not seawater-altered MORB. The high-Sr endmember is clearly present in andesites from some emergent volcanoes in the western Aleutians, and mixing arrays indicate that it may be present in all Aleutian lavas (e.g., 87Sr/86Sr vs. La/Yb or Sr/Y); however, radiogenic Pb and Sr from subducted sediment renders the high-Sr endmember isotopically invisible in most central and

  16. Variations in Melt Generation and Migration along the Aleutian Arc (Invited)

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Van Keken, P. E.

    2013-12-01

    The generation and ascent of mantle melt beneath volcanic arcs sets the course for how magmas differentiate to form the continental crust and erupt explosively from volcanoes. Although the basic framework of melting at subduction zones is understood to involve the convective influx of hot mantle (Tp ≥ 1300°C) and advective transport of water-rich fluids from the subducting slab, the P-T paths that melts follow during melt generation and migration are still not well known. The Aleutian Arc provides an opportunity to explore the conditions of mantle melting in the context of volcanoes that span an unusually large range in the depth to the slab, from Seguam island, with among the shallowest depths to the slab worldwide (~65 km, [1]) to Bogoslof island, behind the main volcanic front and twice the depth to the slab (~130 km). Here we combine thermal models tuned to Aleutian subduction parameters [after 2] with petrological estimates of the T and P of mantle-melt equilibration, using a major element geothermometer [3] and estimates of H2O and fO2 from olivine-hosted melt inclusion measurements [4] for basaltic magmas from 6 volcanoes in the central Aleutians (Korovin, Seguam, Bogoslof, Pakushin, Akutan, Shishaldin). We find mantle-melt equilibration conditions to vary systematically as a function of the depth to the slab, from 30 km and 1220°C (for Seguam) to 60 km and 1300°C (for Bogoslof). Such shallow depths, which extend up to the Moho, define a region perched well above the hot core of the mantle wedge predicted from thermal models, even considering the shallow depths of slab-mantle coupling (< 60 km) required to supply hot mantle beneath Seguam. Thus, even though the greatest melt production will occur in the hot core of the wedge (50-100 km depth), melts apparently ascend and re-equilibrate in the shallowest mantle. Volcanoes that overlie the greatest depth to the slab, and lie furthest from the wedge corner, stall at greater depths (~60 km), at the base of

  17. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    USGS Publications Warehouse

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  18. New constraints on subduction inputs and volatile outputs along the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Lopez, T. M.; Fischer, T. P.; Plank, T. A.; Rizzo, A. L.; Rasmussen, D. J.; Cottrell, E.; Werner, C. A.; Kern, C.; Ilanko, T.; Buff, L.; Andrys, J.; Kelley, K. A.

    2017-12-01

    Volatile cycling drives volcanism in subduction zone settings. At arcs, volatiles can originate from the subducted slab, mantle wedge and/or crust. Each region has characteristic isotopic signatures, which can be used to fingerprint volatile provenance. We speculate that differences in subduction parameters, such as convergence angle, plate coupling and subducted sediment fluxes, may lead to differences in volatile provenance, which may in turn influence volcanic eruption style and frequency. Here we combine updated constraints on subduction inputs and volatile outputs to provide new insights into volatile cycling within the Aleutian Arc. The high proportion of organic carbon (80-100% to total carbon) in sediments subducting at the Aleutian trench stands out globally and predicts a light carbon isotopic composition of recycled volcanic fluids. We assess volatile outputs on volcanic timescales and along the arc by combining carbon (C), nitrogen (N) and helium (He) isotopic compositions of volcanic gases and new analyses of He and, where possible, C isotopes in olivine-hosted fluid inclusions. From our preliminary isotopic analyses of volcanic gases, we find a greater proportion of mantle-derived volatiles released from the Western segment of the Aleutian Arc (>40% mantle) compared with other volcanic arcs around the world (<30% mantle), where volatiles are sourced primarily from subducted or upper crustal carbonates. This trend may be due to the oblique convergence and low subducted sediment input in this region. The Aleutian Arc also exhibits among the lightest carbon isotope ratios of arcs worldwide (δ13C = -10 to -15‰), especially in the central part of the arc, where organic-bearing terrigneous sediment fills the trench and the convergence rate is high. New constraints on subduction inputs and outputs presented here will help discriminate between upper crustal and subducted carbon sources, and provide further insights into volatile cycling and subduction

  19. Regional Variations in Aleutian Magma Composition

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2008-12-01

    This study is based on sample data spanning 20 years from USGS, UAF, and DGGS geologists too numerous to list here. The 2900-km long Aleutian arc contains more than 50 active and over 90 Holocene volcanoes. The arc is built on oceanic Bering-sea floor west of 166W and quasi-continental crust east of 166W. Over the past twenty years the Alaska Volcano Observatory has conducted baseline geologic mapping (or remapping) and volcanic-hazards studies of selected volcanoes - generally those targeted for geophysical monitoring. This marks the largest sustained effort to study Aleutian volcanoes in half a century; AVO scientists have logged as many as 700 person-days per field season. Geologic studies have resulted in comprehensive suites of stratigraphically constrained samples and more than 3500 new whole-rock analyses by XRF and ICP/MS from more than 30 centers, more than doubling the number of previously published analyses. Examination of the data for regional and inter-volcano variations yields a number of first-order observations. (1) The arc can be broadly divided into an eastern segment (east of 158W) of calcalkaline andesite stratocones; a central segment dominated by large, mafic, tholeiitic shield volcanoes and stratocones; and a western segment (west of 175W) of smaller volcanoes with variable morphologies and generally more andesitic compositions. (2) There are NO significant first-order compositional signals that coincide with the transition from oceanic to continental basement. (3) Individual volcanoes are often subtly distinct from neighbors, and those distinctions persist for the lifetime of the centers. (4) All centers, notably including the large basaltic centers of the central arc, are strongly affected by open-system processes significantly more complicated than mixing among sibling-fractionates of parental mafic magmas. (5) Petrogenetic pathways are long-lived; individual batches of magma are (generally) not. (6) Calcalkaline andesites have

  20. Large-scale deformation related to the collision of the Aleutian Arc with Kamchatka

    USGS Publications Warehouse

    Gesit, Eric L.; Scholl, David W.

    1994-01-01

    The far western Aleutian Island Arc is actively colliding with Kamchatka. Westward motion of the Aleutian Arc is brought about by the tangential relative motion of the Pacific plate transferred to major, right-lateral shear zones north and south of the arc. Early geologic mapping of Cape Kamchatka (a promontory of Kamchatka along strike with the Aleutian Arc) revealed many similarities to the geology of the Aleutian Islands. Later studies support the notion that Cape Kamchatka is the farthest west Aleutian “island” and that it has been accreted to Kamchatka by the process of arc-continent collision. Deformation associated with the collision onshore Kamchatka includes gravimetrically determined crustal thickening and formation of a narrow thrust belt of intensely deformed rocks directly west of Cape Kamchatka. The trend of the thrust faults is concave toward the collision zone, indicating a radial distribution of maximum horizontal compressive stress. Offshore, major crustal faults trend either oblique to the Kamchatka margin or parallel to major Aleutian shear zones. These offshore faults are complex, accommodating both strike-slip and thrust displacements as documented by focal mechanisms and seismic reflection data. Earthquake activity is much higher in the offshore region within a zone bounded to the north by the northernmost Aleutian shear zone and to the west by an apparent aseismic front. Analysis of focal mechanisms in the region indicate that the present-day arc-continent “contact zone” is located directly east of Cape Kamchatka. In modeling the dynamics of the collision zone using thin viscous sheet theory, the rheological parameters are only partially constrained to values of n (the effective power law exponent) ≥ 3 and Ar(the Argand number) ≤ 30. These values are consistent with a forearc thermal profile of Kamchatka, previously determined from heat flow modeling. The thin viscous sheet modeling also indicates that onshore thrust faulting

  1. Introduction - The impacts of the 2008 eruption of Kasatochi Volcano on terrestrial and marine ecosystems in the Aleutian Islands, Alaska

    USGS Publications Warehouse

    DeGange, Anthony R.; Byrd, G. Vernon; Walker, Lawrence R.; Waythomas, C.F.

    2010-01-01

    The Aleutian Islands are situated on the northern edge of the so-called “Pacific Ring of Fire,” a 40,000-km-long horseshoe-shaped assemblage of continental landmasses and islands bordering the Pacific Ocean basin that contains many of the world's active and dormant volcanoes. Schaefer et al. (2009) listed 27 historically active volcanoes in the Aleutian Islands, of which nine have had at least one major eruptive event since 1990. Volcanic eruptions are often significant natural disturbances, and ecosystem responses to volcanic eruptions may vary markedly with eruption style (effusive versus explosive), frequency, and magnitude of the eruption as well as isolation of the disturbed sites from potential colonizing organisms (del Moral and Grishin, 1999). Despite the relatively high frequency of volcanic activity in the Aleutians, the response of island ecosystems to volcanic disturbances is largely unstudied because of the region's isolation. The only ecological studies in the region that address the effects of volcanic activity were done on Bogoslof Island, a remote, highly active volcanic island in the eastern Aleutians, which grew from a submarine eruption in 1796 (Merriam, 1910; Byrd et al., 1980; Byrd and Williams, 1994). Nevertheless, in the 214 years of Bogoslof's existence, the island has been visited only intermittently.Kasatochi Island is a small (2.9 km by 2.6 km, 314 m high) volcano in the central Aleutian Islands of Alaska (52.17°N latitude, 175.51°W longitude; Fig. 1) that erupted violently on 7-8 August 2008 after a brief, but intense period of precursory seismic activity (Scott et al., 2010 [this issue]; Waythomas et al., in review). The island is part of the Aleutian arc volcanic front, and is an isolated singular island. Although the immediate offshore areas are relatively shallow (20–50 m water depth), the island is about 10 km south of the 2000 m isobath, north of which, ocean depths increase markedly. Kasatochi is located between the

  2. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  3. Volatile Contents in Mafic Magmas from two Aleutian volcanoes: Augustine and Makushin

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.; Hauri, E. H.; Nye, C.; Faust Larsen, J.; Kelemen, P. B.

    2004-12-01

    There are several competing theories for the origin of tholeiitic (TH) vs. calc-alkaline (CA) fractionation trends in arc magmas. One relates to water (TH-dry magma, CA-wet magma), another to pressure (TH-low pressure crystallization, CA-high pressure), and a third to primary magma composition (TH-low Si/Fe#, CA-hi Si/Fe#) These theories have been difficult to test without quantitative measures of the water contents and pressures of crystallization of arc magmas. We are in the process of studying several Aleutian arc tephra suites (phenocrysts and melt inclusions) with the aim of obtaining volatile element concentrations (by SIMS), major and trace element concentrations and thermobarometric data (by EMP and laser-ICPMS). We report preliminary results on olivine-hosted melt inclusions from Augustine and Makushin volcanoes that support the role of water in calc-alkaline fractionation. Basaltic melt inclusions from Augustine, a low-K2O, calc-alkaline volcano, are hosted in Fo80-82 olivine. The inclusions yield high water contents, up to 5 wt%, and contain 60-90 ppm CO2, 3000-4500 ppm S, and 3000-6000 ppm Cl. Inclusions record vapor-saturation pressures near 2 kbar. Cl/K2O ratios in Augustine inclusions (ave. 1.9) are among the highest documented in an arc setting, and likely record a Cl- and H2O- rich fluid from the subducting plate. High water contents in Augustine primary melts may have contributed to the strong calc-alkaline trend observed at this volcano. Basaltic melt inclusions from Pakushin, a medium-K2O, tholeiitic cone on the flanks of Makushin volcano, are hosted in Fo80-86 olivine. These inclusions have low water contents (<0.15 wt%) and low CO2 contents (<125 ppm), and record shallow vapor saturation pressures (<300 bars). The high sulfur (2000-4000 ppm) and Cl (>2000 ppm) in Pakushin melt inclusions, however, indicate that degassing was minimal. The low water contents and low vapor saturation pressures recorded in Pakushin melt inclusions are consistent

  4. Mantle and Crustal Sources of Carbon, Nitrogen, and Noble gases in Cascade-Range and Aleutian-Arc Volcanic gases

    USGS Publications Warehouse

    Symonds, Robert B.; Poreda, Robert J.; Evans, William C.; Janik, Cathy J.; Ritchie, Beatrice E.

    2003-01-01

    Here we report anhydrous chemical (CO2, H2S, N2, H2, CH4, O2, Ar, He, Ne) and isotopic (3He/4He, 40Ar/36Ar, δ13C of CO2, δ13C of CH4, δ15N) compositions of virtually airfree gas samples collected between 1994 and 1998 from 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA). Sample sites include ≤173°C fumaroles and springs at Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. The chemical and isotopic data generally point to magmatic (CO2, Ar, He), shallow crustal sedimentary (hereafter, SCS) (CO2, N2, CH4), crustal (He), and meteoric (N2, Ar) sources of volatiles. CH4 clearly comes from SCS rocks in the subvolcanic systems because CH4 cannot survive the higher temperatures of deeper potential sources. Further evidence for a SCS source for CH4 as well as for non-mantle CO2 and non-meteoric N2 comes from isotopic data that show wide variations between volcanoes that are spatially very close and similar isotopic signatures from volcanoes from very disparate areas. Our results are in direct opposition to many recent studies on other volcanic arcs (Kita and others, 1993; Sano and Marty, 1995; Fischer and others, 1998), in that they point to a dearth of subducted components of CO2 and N2 in the CRAA discharges. Either the CRAA volcanoes are fundamentally different from volcanoes in other arcs or we need to reevaluate the significance of subducted C and N recycling in convergent-plate volcanoes.

  5. Cascades/Aleutian Play Fairway Analysis: Data and Map Files

    DOE Data Explorer

    Lisa Shevenell

    2015-11-15

    Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.

  6. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica F.

    2016-11-01

    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  7. Catalog of the historically active volcanoes of Alaska

    USGS Publications Warehouse

    Miller, T.P.; McGimsey, R.G.; Richter, D.H.; Riehle, J.R.; Nye, C.J.; Yount, M.E.; Dumoulin, Julie A.

    1998-01-01

    Alaska hosts within its borders over 80 major volcanic centers that have erupted during Holocene time (< 10,000 years). At least 29 of these volcanic centers (table 1) had historical eruptions and 12 additional volcanic centers may have had historical eruptions. Historical in Alaska generally means the period since 1760 when explorers, travelers, and inhabitants kept written records. These 41 volcanic centers have been the source for >265 eruptions reported from Alaska volcanoes. With the exception of Wrangell volcano, all the centers are in, or near, the Aleutian volcanic arc, which extends 2500 km from Hayes volcano 145 km west of Anchorage in the Alaska-Aleutian Range to Buldir Island in the western Aleutian Islands (fig. 1). The volcanic arc, a subduction-related feature associated with underthrusting of the Pacific plate beneath the North American plate is divided between oceanic island arc and continental margin segments, the boundary occurring at about 165° W longitude (fig. 1). An additional 7 volcanic centers in the Aleutian arc (table 2; fig. 1 A) have active fumarole fields but no reported historical eruptions.This report discusses the location, physiography and structure, eruptive history, and geology of those volcanoes in Alaska that have experienced one or more eruptions that have been recorded in the written history (i.e., in historical time). It is part of the group of catalogs entitled Catalogue of Active Volcanoes of the World published beginning in 1951 under the auspices of the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI). A knowledge of the information contained in such catalogs aids in understanding the type and scale of activity that might be expected during a particular eruption, the hazards the eruption may pose, and even the prediction of eruptions. The catalog will thus be of value not only to the inhabitants of Alaska but to government agencies concerned with emergency response, air traffic

  8. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  9. Stratigraphic framework of Holocene volcaniclastic deposits, Akutan Volcano, east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1999-01-01

    Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the 'Akutan tephra,' is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly

  10. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.

    2014-12-01

    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  11. Earth observation views of the Aleutian Mt. Range taken during STS-99

    NASA Image and Video Library

    2000-03-16

    STS099-749-089 (11-22 February 2000) ---As evidenced by this 70mm frame from the Space Shuttle Endeavour, the Alaska Peninsula and Aleutian Islands form a long arc that intervenes between the Bering Sea and the northern Pacific Ocean. This view is of the snowy south coast of the peninsula, from Chignik Bay and Cape Kumliun (on the triangular peninsula) northeastward to Chiginagak Bay and David Island. Port Heiden is the darker area of little ice on the north coast. Within the rim of the Aniakchak volcanic crater (4,450 feet at highest point) the frozen waters of Surprise Lake are visible. The North American and Pacific tectonic plates are converging in this region at a rate of about 5 centimeters a year. The Pacific plate descends beneath North America, producing a deep trench along the south coast; the Aleutian Trench reaches depths greater than 25,000 ft. In such regions (subduction zones) volcanoes form on the overriding plate -- the North American plate in this instance; Aniakchak is one of the many young volcanoes in this arc.

  12. From the Slab to the Surface: Origin, Storage, Ascent, and Eruption of Volatile-Bearing Magmas in the Aleutian arc

    NASA Astrophysics Data System (ADS)

    Roman, D.; Plank, T. A.; Hauri, E. H.; Rasmussen, D. J.; Power, J. A.; Lyons, J. J.; Haney, M. M.; Werner, C. A.; Kern, C.; Lopez, T. M.; Izbekov, P. E.; Stelling, P. L.

    2016-12-01

    We present initial results from an integrated geochemical-geophysical study of the Unimak-Cleveland corridor of the Aleutian volcanic arc, which encompasses six volcanoes spanning 450 km of the arc that have erupted in the past 25 years with a wide range of magmatic water contents. This relatively small corridor also exhibits a range of deep and upper-crustal seismicity, apparent magma storage depths, and depths to the subducting tectonic plate. The ultimate goal of this study is to link two normally disconnected big-picture problems: 1) the deep origin of magmas and volatiles, and 2) the formation and eruption of crustal magma reservoirs, which we will do by establishing the depth(s) of crustal magma reservoirs and pre-eruptive volatile contents throughout the corridor. Our preliminary work focuses on the geographic end members Shishaldin Volcano, which last erupted in 2014-2015, and Cleveland Volcano, which last erupted in April-May of this year (2016). Both systems are persistently degassing, open-vent volcanoes whose frequent eruptions are typically characterized by minimal precursory seismicity, making eruption forecasting challenging. At Cleveland, we analyze data from a 12-station broadband seismic network deployed from August 2015-July 2016, which is complemented by two permanent seismo-acoustic stations operated by the Alaska Volcano Observatory (AVO). We also analyze tephras from recent eruptions (including 2016) and conducted ground- and helicopter-based gas emission surveys. At Shishaldin, we analyze data from the permanent AVO network, which is comprised of mainly short-period, single-component seismic stations. We also present preliminary analyses of samples of recent eruptive deposits and gas emission data. Through integration of these various datasets we present preliminary interpretations related to the origin, storage, ascent and eruption of volatile-bearing magmas at Cleveland and Shishaldin volcanoes.

  13. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery

    USGS Publications Warehouse

    Wang, Teng; Poland, Michael; Lu, Zhong

    2016-01-01

    Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.

  14. Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts

    NASA Astrophysics Data System (ADS)

    Kay, S. Mahlburg; Kay, Robert W.

    1985-07-01

    Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40 50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.

  15. Volcanoes Distribution in Linear Segmentation of Mariana Arc

    NASA Astrophysics Data System (ADS)

    Andikagumi, H.; Macpherson, C.; McCaffrey, K. J. W.

    2016-12-01

    A new method has been developed to describe better volcanoes distribution pattern within Mariana Arc. A previous study assumed the distribution of volcanoes in the Mariana Arc is described by a small circle distribution which reflects the melting processes in a curved subduction zone. The small circle fit to this dataset used in the study, comprised 12 -mainly subaerial- volcanoes from Smithsonian Institute Global Volcanism Program, was reassessed by us to have a root-mean-square misfit of 2.5 km. The same method applied to a more complete dataset from Baker et al. (2008), consisting 37 subaerial and submarine volcanoes, resulted in an 8.4 km misfit. However, using the Hough Transform method on the larger dataset, lower misfits of great circle segments were achieved (3.1 and 3.0 km) for two possible segments combination. The results indicate that the distribution of volcanoes in the Mariana Arc is better described by a great circle pattern, instead of small circle. Variogram and cross-variogram analysis on volcano spacing and volume shows that there is spatial correlation between volcanoes between 420 and 500 km which corresponds to the maximum segmentation lengths from Hough Transform (320 km). Further analysis of volcano spacing by the coefficient of variation (Cv), shows a tendency toward not-random distribution as the Cv values are closer to zero than one. These distributions are inferred to be associated with the development of normal faults at the back arc as their Cv values also tend towards zero. To analyse whether volcano spacing is random or not, Cv values were simulated using a Monte Carlo method with random input. Only the southernmost segment has allowed us to reject the null hypothesis that volcanoes are randomly spaced at 95% confidence level by 0.007 estimated probability. This result shows infrequent regularity in volcano spacing by chance so that controlling factor in lithospheric scale should be analysed with different approach (not from random

  16. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle

    PubMed Central

    Lee, Changyeol; Wada, Ikuko

    2017-01-01

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering. PMID:28660880

  17. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    PubMed

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  18. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  19. Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians

    USGS Publications Warehouse

    Jicha, Brian R.; Coombs, Michelle L.; Calvert, Andrew T.; Singer, Brad S.

    2012-01-01

    We used geologic mapping and geochemical data augmented by 40Ar/39Ar dating to establish an eruptive chronology for the Tanaga volcanic cluster in the western Aleutian arc. The Tanaga volcanic cluster is unique in comparison to other central and western Aleutian volcanoes in that it consists of three closely spaced, active, volumetrically significant edifices (Sajaka, Tanaga, and Takawangha), the eruptive products of which have unusually high K2O contents. Thirty-five new 40Ar/39Ar ages obtained in two different laboratories constrain the duration of Pleistocene–Holocene subaerial volcanism to younger than 295 ka. The eruptive activity has been mostly continuous for the last 150 k.y., unlike most other well-characterized arc volcanoes, which tend to grow in discrete pulses. More than half of the analyzed Tanaga volcanic cluster lavas are basalts that have erupted throughout the lifetime of the cluster, although a considerable amount of basaltic andesite and basaltic trachyandesite has also been produced since 200 ka. Major- and trace-element variations suggest that magmas from Sajaka and Tanaga volcanoes are likely to have crystallized pyroxene and/or amphibole at greater depths than the older Takawangha magmas, which experienced a larger percentage of plagioclase-dominated fractionation at shallower depths. Magma output from Takawangha has declined over the last 86 k.y. At ca. 19 ka, the focus of magma flux shifted to the west beneath Tanaga and Sajaka volcanoes, where hotter, more mafic magma erupted.

  20. Systematic variation in the depths of slabs beneath arc volcanoes

    USGS Publications Warehouse

    England, P.; Engdahl, R.; Thatcher, W.

    2004-01-01

    The depths to the tops of the zones of intermediate-depth seismicity beneath arc volcanoes are determined using the hypocentral locations of Engdahl et al. These depths are constant, to within a few kilometres, within individual arc segments, but differ by tens of kilometres from one arc segment to another. The range in depths is from 65 km to 130 km, inconsistent with the common belief that the volcanoes directly overlie the places where the slabs reach a critical depth that is roughly constant for all arcs. The depth to the top of the intermediate-depth seismicity beneath volcanoes correlates neither with age of the descending ocean floor nor with the thermal parameter of the slab. This depth does, however, exhibit an inverse correlation with the descent speed of the subducting plate, which is the controlling factor both for the thermal structure of the wedge of mantle above the slab and for the temperature at the top of the slab. We interpret this result as indicating that the location of arc volcanoes is controlled by a process that depends critically upon the temperature at the top of the slab, or in the wedge of mantle, immediately below the volcanic arc.

  1. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  2. Volcano geodesy in the Cascade arc, USA

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  3. Volcano geodesy in the Cascade arc, USA

    USGS Publications Warehouse

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  4. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Ming; Song, Sheng-Rong

    2013-09-01

    Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.

  5. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves

    USGS Publications Warehouse

    De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David

    2012-01-01

    In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.

  6. Adakitic volcanism in the eastern Aleutian arc: Petrology and geochemistry of Hayes volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    McHugh, K.; Hart, W. K.; Coombs, M. L.

    2012-12-01

    are the result of partial melting of this slab where thermal erosion and weakening of the crust occurs along the Pacific plate-Yakutat terrane transition. Additionally, flat slab subduction may be responsible for producing adakitic magmas by equilibration of the hydrous slab with ambient mantle temperatures. In contrast, it is possible that the adakitic signature at Hayes is from underplated mafic lower crust that melted as the result of pooling mantle melt at depth. Two volcanoes within the WVF, Mt. Drum and Mt. Churchill, are adakitic with an abundance of biotite and amphibole similar to Hayes volcano and have been suggested to have slab melt origins. Mt. Drum lavas have less radiogenic 87Sr/86Sr but overlapping 206Pb/204Pb signatures while Mt. Churchill, which approximately overlies the eastern edge of the Yakutat terrane, has similar 87Sr/86Sr compositions, but more radiogenic 206Pb/204Pb than Hayes. Mt. Spurr, the nearest CIV to Hayes volcano (90 km south), does not share its adakitic signature but exhibits overlapping, more heterogeneous isotopic compositions. Thus, understanding the petrogenetic history of Hayes volcano is essential not only to explain the development of an adakitic volcanic system but how this relates to regional, arc-wide volcanism.

  7. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

    2013-12-01

    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  8. Geology and mineral resources of the Port Moller region, western Alaska Peninsula, Aleutian arc: A section in USGS research on mineral resources - 1989: Program and abstracts

    USGS Publications Warehouse

    Wilson, Frederic H.; White, Willis H.; Detterman, Robert L.

    1988-01-01

    Geologic mapping of the Port Moller, Stepovak Bay, and Simeonof Island quadrangles was begun under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP) in 1983 . Two important mineral deposits are located in the Port Moller quadrangle; the Pyramid prospect is the largest copper porphyry system in the Aleutian Arc, and the Apollo Mine is the only gold mine to reach production status in the Aleutian Arc.

  9. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Z.; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  10. Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2012-04-01

    Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on

  11. Long-term eruptive activity at a submarine arc volcano.

    PubMed

    Embley, Robert W; Chadwick, William W; Baker, Edward T; Butterfield, David A; Resing, Joseph A; de Ronde, Cornel E J; Tunnicliffe, Verena; Lupton, John E; Juniper, S Kim; Rubin, Kenneth H; Stern, Robert J; Lebon, Geoffrey T; Nakamura, Ko-ichi; Merle, Susan G; Hein, James R; Wiens, Douglas A; Tamura, Yoshihiko

    2006-05-25

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.

  12. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; de Ronde, Cornel E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  13. Postglacial eruptive history and geochemistry of Semisopochnoi volcano, western Aleutian Islands, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; Larsen, Jessica F.; Neal, Christina A.

    2018-02-14

    Semisopochnoi Island, located in the Rat Islands group of the western Aleutian Islands and Aleutian volcanic arc, is a roughly circular island composed of scattered volcanic vents, the prominent caldera of Semisopochnoi volcano, and older, ancestral volcanic rocks. The oldest rocks on the island are gently radially dipping lavas that are the remnants of a shield volcano and of Ragged Top, which is an eroded stratocone southeast of the current caldera. None of these oldest rocks have been dated, but they all are likely Pleistocene in age. Anvil Peak, to the caldera’s north, has the morphology of a young stratocone and is latest Pleistocene to early Holocene in age. The oldest recognized Holocene deposits are those of the caldera-forming eruption, which produced the 7- by 6-km caldera in the center of the island, left nonwelded ignimbrite in valleys below the edifice, and left welded ignimbrite high on its flanks. The caldera-forming eruption produced rocks showing a range of intermediate whole-rock compositions throughout the eruption sequence, although a majority of clasts analyzed form a fairly tight cluster on SiO2-variation diagrams at 62.9 to 63.4 weight percent SiO2. This clustering of compositions at about 63 weight percent SiO2 includes black, dense, obsidian-like clasts, as well as tan, variably oxidized, highly inflated pumice clasts. The best estimate for the timing of the eruption is from a soil dated at 6,920±60 14C years before present underlying a thin facies of the ignimbrite deposit on the island’s north coast. Shortly after the caldera-forming eruption, two scoria cones on the northwest flank of the volcano outside the caldera, Ringworm crater and Threequarter Cone, simultaneously erupted small volumes of andesite.The oldest intracaldera lavas, on the floor of the caldera, are andesitic to dacitic, but are mostly covered by younger lavas and tephras. These intracaldera lavas include the basaltic andesites of small Windy cone, as well as the

  14. The evolution of forearc structures along an oblique convergent margin, central Aleutian Arc

    USGS Publications Warehouse

    Ryan, H.F.; Scholl, D. W.

    1989-01-01

    Multichannel seismic reflection data were used to determine the evolutionary history of the forearc region of the central Aleutian Ridge. Since at least late Miocene time this sector of the ridge has been obliquely underthrust 30?? west of orthogonal convergence by the northwestward converging Pacific plate at a rate of 80-90 km/m.y. Our data indicate that prior to late Eocene time the forearc region was composed of rocks of the arc massif thinly mantled by slope deposits. Beginning in latest Miocene or earliest Pliocene time, a zone of outer-arc structural highs and a forearc basin began to form. Initial structures of the zone of outer-arc highs formed as the thickening wedge underran, compressively deformed, and uplifted the seaward edge of the arc massive above a landward dipping backstop thrust. Forearc basin strata ponded arcward of the elevating zone of outer-arc highs. However, most younger structures of the zone of outer-arc highs cannot be ascribed simply to the orthogonal effects of an underrunning wedge. Oblique convergence created a major right-lateral shear zone (the Hawley Ridge shear zone) that longitudinally disrupted the zone of outer-arc highs, truncating the seaward flank of the forearc basin and shearing the southern limb of Hawley Ridge, an exceptionally large antiformal outer-arc high structure. Uplift of Hawley Ridge may be related to the thickening of the arc massif by westward directed basement duplexes. Great structural complexity, including the close juxtaposition of coeval structures recording compression, extension, differential vertical movements, and strike-slip displacement, should be expected, even within areas of generally kindred tectonostratigraphic terranes. -from Authors

  15. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  16. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in

  17. NASA's MISR Spots Alaskan Volcano's Latest Eruption

    NASA Image and Video Library

    2017-06-02

    The tiny Aleutian island of Bogoslof in Alaska, erupting regularly since December 2016, produced fresh activity on Sunday, May 28, 2017. Bogoslof is a stratovolcano fueled by the subduction of the Pacific Plate under the North American Plate and forms part of the larger Aleutian Arc, which includes more than 60 volcanoes on the Aleutian Islands and the Aleutian Range on the Alaska mainland. Previous to its recent period of activity, Bogoslof had last erupted in 1992, and its above-water surface area was a mere 0.11 square miles (0.29 square kilometers). As of March 11, the most recent data available, the area of the island had tripled to 0.38 square miles (0.98 square kilometers). The event on May 28 produced an ash cloud that reached 40,000 feet (12 km) in altitude, causing the Alaskan Volcano Observatory to issue a red alert for air travel in the area. Volcanic ash can cause major damage to aircraft engines, and the region is close to several major air routes between North America and Asia. On May 28, 2017, at approximately 2:23 p.m. local time, NASA's Terra satellite passed over Bogoslof, less than 10 minutes after the eruption began. MISR has nine cameras that view Earth at different angles. It takes slightly less than seven minutes for all nine cameras to view the same location on Earth. An animation made from the images from the nine MISR cameras, captured between 2:19 and 2:26 p.m., demonstrates how the angled views give a glimpse of the underside of the growing plume of volcanic ash, showing the eruption column widening into the cloud at the top. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21655

  18. 77 FR 16059 - Draft Environmental Impact Statement; Izembek National Wildlife Refuge Land Exchange/Road...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... Aleutian arc chain of volcanoes. Landforms include mountains, active volcanoes, U-shaped valleys, glacial...-foot Shishaldin Volcano. Shishaldin Volcano is a designated National Natural Landmark. Alaska Maritime...

  19. Aseismic inflation of Westdahl volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Z.; Wicks, Charles; Dzurisin, D.; Thatcher, W.; Freymueller, J.T.; McNutt, S.R.; Mann, Dorte

    2000-01-01

    Westdahl volcano, located at the west end of Unimak Island in the central Aleutian volcanic arc, Alaska, is a broad shield that produced moderate-sized eruptions in 1964, 1978-79, and 1991-92. Satellite radar interferometry detected about 17 cm of volcano-wide inflation from September 1993 to October 1998. Multiple independent interferograms reveal that the deformation rate has not been steady; more inflation occurred from 1993 to 1995 than from 1995 to 1998. Numerical modeling indicates that a source located about 9 km beneath the center of the volcano inflated by about 0.05 km3 from 1993 to 1998. On the basis of the timing and volume of recent eruptions at Westdahl and the fact that it has been inflating for more than 5 years, the next eruption can be expected within the next several years.

  20. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  1. The 7-8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.; Scott, William E.; Prejean, Stephanie G.; Schneider, David J.; Izbekov, Pavel; Nye, Christopher J.

    2010-12-01

    Kasatochi volcano in the central Aleutian Islands erupted unexpectedly on 7-8 August 2008. Kasatochi has received little study by volcanologists and has had no confirmed historical eruptions. The island is an important nesting area for seabirds and a long-term biological study site of the U.S. Fish and Wildlife Service. After a notably energetic preeruptive earthquake swarm, the volcano erupted violently in a series of explosive events beginning in the early afternoon of 7 August. Each event produced ash-gas plumes that reached 14-18 km above sea level. The volcanic plume contained large amounts of SO2 and was tracked around the globe by satellite observations. The cumulative volcanic cloud interfered with air travel across the North Pacific, causing many flight cancelations that affected thousands of travelers. Visits to the volcano in 2008-2009 indicated that the eruption generated pyroclastic flows and surges that swept all flanks of the island, accumulated several tens of meters of pyroclastic debris, and increased the diameter of the island by about 800 m. Pyroclastic flow deposits contain abundant accidental lithic debris derived from the inner walls of the Kasatochi crater. Juvenile material is crystal-rich silicic andesite that ranges from slightly pumiceous to frothy pumice. Fine-grained pyroclastic surge and fall deposits with accretionary lapilli cover the lithic-rich pyroclastic flow deposits and mark a change in eruptive style from episodic explosive activity to more continuous ash emission with smaller intermittent explosions. Pyroclastic deposits completely cover the island, but wave erosion and gully development on the flanks have begun to modify the surface mantle of volcanic deposits.

  2. Ages and geochemical comparison of coeval plutons and volcanics from the central and eastern Aleutian arc

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Kelemen, P. B.; Goldstein, S. L.; Yogodzinski, G. M.; Hemming, S. R.; Rioux, M. E.; Cooperdock, E. H. G.

    2016-12-01

    On average, arc volcanics are compositionally different from the bulk continental crust. The relatively little known plutonic part of intra-oceanic arcs is more similar to continental crust, and may play a significant role for understanding continental crust formation. Our pilot study [1] demonstrated that in the central and eastern Aleutian islands, predominantly tholeiitic Quaternary volcanic rocks have statistically different Pb-Nd-Sr-Hf isotopic signatures than predominantly calc-alkaline Miocene and older plutonic rocks, showing that these plutonics and volcanics were derived from compositionally different sources. However, studies of older volcanics are needed to determine whether (1) there was a change in magma chemistry in the central and eastern Aleutian arc between the Miocene and the present-day, or (2) coeval plutonics and volcanics are compositionally different, and formed by different processes. For example, silica- and water-rich calc-alkaline magmas may preferentially stall and form plutons after extensive degassing and rapid viscosity increase in the mid-crust, while silica- and water-poor tholeiitic magmas tend to erupt at the surface. Here we report new geochronological and geochemical results on samples collected during the 2015 GeoPRISMS shared logistics field campaign. We collected more than 500 volcanic and plutonic samples from Unalaska, Umnak and Atka islands, including pillow lavas, sills, and larger plutons. A subset of 50 samples has been analyzed for major and trace element chemistry, Pb-Nd-Sr-Hf isotopes, and Ar-Ar geochronology. So far,40Ar/39Ar cooling dates measured for the volcanics span a wide range, from zero to 35 Ma, which is comparable to the age distribution of the plutons ( 9 Ma to 39 Ma) from these islands. The forthcoming, combined geochronology and geochemistry of coeval plutonics and volcanics will contribute to our understanding of the connections between arc magmatism and continental crust formation. [1] Cai et al

  3. Perspective View of Umnak Island, Aleutian Islands, Alaska #2

    NASA Image and Video Library

    2001-11-04

    This image is a perspective view acquired by NASA Airborne Synthetic Aperture Radar AIRSAR in 2001, is of Umnak Island, one of Alaska Aleutian Islands. The active Okmok volcano appears in the center of the island.

  4. Perspective View of Umnak Island, Aleutian Islands, Alaska #1

    NASA Image and Video Library

    2001-11-04

    This image is a perspective view acquired by NASA Airborne Synthetic Aperture Radar AIRSAR in 2001, is of Umnak Island, one of Alaska Aleutian Islands. The active Okmok volcano appears in the center of the island.

  5. Aleutian volcanic eruption taken by Expedition 13 crewmember

    NASA Image and Video Library

    2006-05-23

    ISS013-E-24184 (23 May 2006) --- Eruption of Cleveland Volcano, Aleutian Islands, Alaska is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. This most recent eruption was first reported to the Alaska Volcano Observatory by astronaut Jeffrey N. Williams, NASA space station science officer and flight engineer, at 3:00 p.m. Alaska Daylight Time (23:00 GMT). This image, acquired shortly after the beginning of the eruption, captures the ash plume moving west-southwest from the summit vent. The eruption was short-lived; the plume had completely detached from the volcano summit two hours later.

  6. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommodation space increased arcward of a large outer-arc high that formed, in part, by a thickening of arc basement. This difference in deformation is interpreted to be the result of a variation in interplate coupling across the Amlia fracture zone that was facilitated by increasing subduction obliquity, a change in orientation of the subducting Amlia fracture zone, and late Quaternary intensification of glaciation. The change in coupling is manifested by a possible tear in the subducting slab along the Amlia fracture zone. Differences in coupling across the Amlia fracture zone have important implications for the location of maximum slip during future great earthquakes. In addition, shaking during a great earthquake could trigger large mass failures of the summit platform, as evidenced by the presence of thick mass transport deposits of primarily Quaternary age that are found in the forearc basin west of the Amlia fracture zone.

  7. Sea birds as proxies of marine habitats and food webs in the western Aleutian Arc

    USGS Publications Warehouse

    Springer, Alan M.; Piatt, John F.; Van Vliet, Gus B.

    1996-01-01

    We propose that ocean conditions of the Near Islands in the western Aleutian Arc mimic those of the shallow continental shelf of the eastern Bering Sea to the extent that the marine community, including assemblages of forage fishes and their avian predators, has distinctly coastal characteristics. In contrast, marine avifauna and their prey at neighbouring Buldir Island are distinctly oceanic. For example, at the Near Islands, the ratio of thick-billed to common murres, Vria lomvia and U. aalge, is low and black-legged kittiwakes, Rissa tridactyla, but not red-legged kittiwakes, R. brevirostris, nest there. Diets of murres and kittiwakes are dominated by sand lance, Ammodytes hexapterus, an abundant coastal species. At Buldir Island, thick-billed murres greatly outnumber common murres, red-legged kittiwakes and black-legged kittiwakes are both abundant, and diets of the birds consist primarily of oceanic squid and lantern-fish (Myctophidae). This mesoscale difference in food webs is apparently a consequence of the local physiography. A broad escarpment on the Near physiographic block creates a comparatively expansive, shallow, shelflike habitat around the Near Islands, where a pelagic community typical of coastal regions flourishes. Buldir Island is the only emergent feature of the Buldir physiographic block, with little shallow water surrounding it and, apparently, little opportunity for other than oceanic species to exist. Patterns in the distribution of fishes, and thus of sea birds, throughout the Aleutian Islands might be largely explained by the presence or absence of shelf-like habitat and the relationship between physical environments and food webs. In the larger context of fisheries oceanography, this model for the Aleutian Islands improves our ability to interpret physical and biological heterogeneity in the ocean and its relationship to regional community dynamics and trends in the abundance and productivity of individual species at higher trophic levels.

  8. Magnetotelluric Investigation of Melt Storage Beneath Okmok Caldera, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Bedrosian, P.; Key, K.; Zelenak, G.

    2015-12-01

    Alaska accounts for nearly 99% of the seismic moment release within the US. Much of this is associated with the Aleutian volcanic arc, the most tectonically active region in North America, and an ideal location for studying arc magmatism. Okmok is an active volcano located in the central Aleutian arc, defined by a pair of nested, 10 km diameter calderas. The subdued topography of Okmok, relative to other Aleutian volcanoes, improves access and permits dense sampling within the caldera closer to the underlying magmatic system. Okmok volcano was selected as the site of study for this project due to frequent volcanic activity and the presence of a crustal magma reservoir as inferred from previous coarse resolution seismic studies. In June-July 2015, we carried out an amphibious geophysical field deployment at Okmok. Onshore work in and around the volcano included collection of an array of magnetotelluric (MT) stations and installation of a temporary, year-long seismic array. A ring of 3D offshore MT deployments made around the island augments the onshore array. An additional 2D tectonic-scale profile spans the trench, volcanic arc, and backarc. This new geophysical data will be used to gain a greater understanding of Aleutian arc melt generation, migration, and storage beneath an active caldera. We present results from the analysis of the newly collected amphibious 3D MT data. This data will be used to model the distribution and migration of melt within Okmok's crustal magma reservoir. Initial processing of the data shows strong MT signal levels, in particular from a geomagnetic storm that occurred from June 21-23, 2015. A companion abstract discussing the 2D tectonic scale MT profile, which constrains the mantle and deep crust beneath Okmok volcano, is discussed by Zelenak et al.

  9. Rear-arc vs. arc-front volcanoes in the Katmai reach of the Alaska Peninsula: A critical appraisal of across-arc compositional variation

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Siems, D.F.; Budahn, J.R.; Ruiz, J.

    2004-01-01

    Physical and compositional data and K-Ar ages are reported for 14 rear-arc volcanoes that lic 11-22 km behind the narrowly linear volcanic front defined by the Mount Katmai-to-Devils Desk chain on the Alaska Peninsula. One is a 30-km3 stratocone (Mount Griggs; 51-63% SiO2) active intermittently from 292 ka to Holocene. The others are monogenetic cones, domes, lava flows, plugs, and maars, of which 12 were previously unnamed and unstudied; they include seven basalts (48-52% SiO2), four mafic andesites (53-55% SiO2), and three andesite-dacite units. Six erupted in the interval 500-88 ka, one historically in 1977, and five in the interval 3-2 Ma. No migration of the volcanic front is discernible since the late Miocene, so even the older units erupted well behind the front. Discussion explores the significance of the volcanic front and the processes that influence compositional overlaps and differences among mafic products of the rear-arc volcanoes and of the several arc-front edifices nearby. The latter have together erupted a magma volume of about 200 km3, at least four times that of all rear-arc products combined. Correlation of Sr-isotope ratios with indices of fractionation indicates crustal contributions in volcanic-front magmas (0.7033-0.7038), but lack of such trends among the rear-arc units (0.70298-0.70356) suggests weaker and less systematic crustal influence. Slab contributions and mantle partial-melt fractions both appear to decline behind the front, but neither trend is crisp and unambiguous. No intraplate mantle contribution is recognized nor is any systematic across-arc difference in intrinsic mantle-wedge source fertility discerned. Both rear-arc and arc-front basalts apparently issued from fluxing of typically fertile NMORB-source mantle beneath the Peninsular terrane, which docked here in the Mesozoic. ?? Springer-Verlag 2004.

  10. Buldir Depression - A Late Tertiary graben on the Aleutian Ridge, Alaska

    USGS Publications Warehouse

    Marlow, M. S.; Scholl, D. W.; Buffington, E.C.; Boyce, R.E.; Alpha, T.R.; Smith, P.J.; Shipek, C.J.

    1970-01-01

    Buldir Depression is a large, rectilinear basin that lies on the northern edge of the Aleutian Ridge and is aligned with the arcuate chain of active volcanoes on the ridge crest. The depression appears to be a volcanic-tectonic feature, which began to form in Late Tertiary time and which is still forming. It is a graben formed by extensional rifting and accompanied by contemporaneous volcanism on the Aleutian Ridge. Subsidence rates for the depression are estimated at 20-70 cm/1,000 years. Sediments in the depression are 300 m thick and are probably pelagic and turbidite deposits of Pleistocene age. The turbidites were apparently derived from the plateau area of the Aleutian Ridge surrounding the depression. Older sediments on the northern slope of the Aleutian Ridge have a maximum thickness of 550 m and are deformed and slumped toward the Bering Sea. These sediments are postulated to overlie a mid-flank terrace on the northern Aleutian Ridge that titled to the north during the formation of Buldir Depression. ?? 1970.

  11. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  12. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes

    USGS Publications Warehouse

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong

    2015-01-01

    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  13. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevenell, Lisa; Coolbaugh, Mark; Hinz, Nick

    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production.more » To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.« less

  14. First data on the volatile fluxes from passively degassing volcanoes of the Kuril Island arc

    NASA Astrophysics Data System (ADS)

    Melnikov, Dmitry; Malik, Nataliya; Chaplygin, Ilya; Zelenski, Mikhail

    2017-04-01

    We report the first data on the volatile fluxes from passively degassing volcanoes of Kuril Island arc in the North-Western Pacific measured in 2015-2016. Four volcanoes: Ebeko on the northern Paramushir Island, Kuntomintar and Pallace on the Central Shiashkotan and Ketoy islands, and Kudryavy on the southern Iturup island are representative for the whole Kuril arc as having the largest and strongest fumarolic fields among 40 of the active volcanoes of the arc. The fluxes were measured using scanning DOAS, remote miniDOAS, plume MultiGas and direct sampling techniques using the SO2 flux from the DOAS data and ratios measured by MultiGas (SO2/CO2, SO2/H2S, SO2/H2O) and direct sampling (SO2/HCl). For Kudryavy volcano the ratios were applied that have been measured by Taran et al. (1995) and Fischer et al. (1998) using direct sampling. Until now, for Kuril arc only the SO2 flux from Kudryavy was measured by the COSPEC technique in 1995 by Fischer et al. (1998) with an average SO2 flux of 75 t/d. Our data give for Kudryavy in October 2016 a value of 340 t/d. The total measured SO2 flux in 2015-2016 from the passively degassing volcanoes of the Kuril arc is near 1000 t/d. This value is an excellent agreement with the estimation made in Taran (2009) using a comparative plume height technique based on visual observations. Averaged fluxes (in ton/day) of mayor (Range of vent temperatures °C, SO2, CO2, H2O, HCl, total flux) components of volcanic emissions from Kurilian volcanoes in 2016: Ebeko - 97-490 °C, 100 (SO2), 81 (CO2), 1120 (H2O), 17 (HCl), 1319; Kuntomintar - 130-260 °C, 54 (SO2), 157 (CO2), 1064 (H2O), 8 (HCl), 1283; Pallas - 140-720 °C, 450 (SO2), 78 (CO2), 3800 (H2O), 120 (HCl), 4448; Kudryavy - 130-920 °C, 340 (SO2), 131 (CO2), 4445 (H2O), 85 (HCl), 5001. Total (± 20%): 930 (SO2), 450 (CO2), 10400 (H2O), 230 (HCl), 12050 (total flux). This work was supported by grant from the Russian Science Foundation # 15-17-20011. References: Taran et al. (1995) GCA

  15. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  16. Volcano flank instability in the Lesser Antilles Arc: Diversity of scale, processes, and temporal recurrence

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Le Friant, Anne; Komorowski, Jean-Christophe; Deplus, Christine; Semet, Michel P.

    2007-08-01

    The 1997 Boxing Day collapse, a remarkable feature of the ongoing eruption of Soufrière Hills on Montserrat, has prompted new interest in the study of volcano stability in the Lesser Antilles. Building on a few cases documented in the literature, we have now identified at least 47 flank collapse events on volcanoes of the Caribbean arc where this type of behavior is characteristic and repetitive. About 15 events occurred on active volcanoes within the last 12,000 years. In the northern part of the arc, flank collapses are repetitive, do not exceed 1 km3 in volume, occur in all directions, and are promoted by intense hydrothermal alteration and well-developed fracturing of the summit part of the edifices. In contrast, infrequent but large sector collapses, with volumes up to tens of km3, are typical of the southern volcanoes. They are always directed to the west as a result of the high overall slopes of the islands toward the deep back-arc Grenada Basin. Because Caribbean islands are small, a large part of the resulting debris avalanches have flowed into the sea thus contributing voluminous and sudden inputs of volcaniclastic sediments to the Grenada Basin. Deposits from such submarine flows have been identified during the recent AGUADOMAR and CARAVAL oceanographic cruises and traced to their source structures on land. Edifice collapses have a major influence on subsequent volcanic activity but also are of high concern because of their tsunamigenic potential.

  17. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.

    PubMed

    Reubi, Olivier; Blundy, Jon

    2009-10-29

    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  18. Kinematic variables and water transport control the formation and location of arc volcanoes.

    PubMed

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-04

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.

  19. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    basalts erupted together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.

  20. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  1. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    PubMed

    Kersting; Arculus; Gust

    1996-06-07

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  2. Advent of Continents: A New Hypothesis

    PubMed Central

    Tamura, Yoshihiko; Sato, Takeshi; Fujiwara, Toshiya; Kodaira, Shuichi; Nichols, Alexander

    2016-01-01

    The straightforward but unexpected relationship presented here relates crustal thickness to magma type in the Izu-Ogasawara (Bonin) and Aleutian oceanic arcs. Volcanoes along the southern segment of the Izu-Ogasawara arc and the western Aleutian arc (west of Adak) are underlain by thin crust (10–20 km). In contrast those along the northern segment of the Izu-Ogasawara arc and eastern Aleutian arc are underlain by crust ~35 km thick. Interestingly, andesite magmas dominate eruptive products from the former volcanoes and mostly basaltic lavas erupt from the latter. According to the hypothesis presented here, rising mantle diapirs stall near the base of the oceanic crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, melting occurs at relatively low pressures in the mantle wedge producing andesitic magmas. Where the crust is thick, melting pressures are higher and only basaltic magmas tend to be produced. The implications of this hypothesis are: (1) the rate of continental crust accumulation, which is andesitic in composition, would have been greatest soon after subduction initiated on Earth, when most crust was thin; and (2) most andesite magmas erupted on continental crust could be recycled from “primary” andesite originally produced in oceanic arcs. PMID:27669662

  3. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series

    NASA Astrophysics Data System (ADS)

    Wang, Teng; DeGrandpre, Kimberly; Lu, Zhong; Freymueller, Jeffrey T.

    2018-02-01

    Akutan volcano is one of the most active volcanoes in the Aleutian arc. An intense swarm of volcano-tectonic earthquakes occurred across the island in 1996. Surface deformation after the 1996 earthquake sequence has been studied using Interferometric Synthetic Aperture Radar (InSAR), yet it is hard to determine the detailed temporal behavior and spatial extent of the deformation due to decorrelation and the sparse temporal sampling of SAR data. Atmospheric delay anomalies over Akutan volcano are also strong, bringing additional technical challenges. Here we present a time series InSAR analysis from 2003 to 2016 to reveal the surface deformation in more detail. Four tracks of Envisat data acquired from 2003 to 2010 and one track of TerraSAR-X data acquired from 2010 to 2016 are processed to produce high-resolution surface deformation, with a focus on studying two transient episodes of inflation in 2008 and 2014. For the TerraSAR-X data, the atmospheric delay is estimated and removed using the common-master stacking method. These derived deformation maps show a consistently uplifting area on the northeastern flank of the volcano. From the TerraSAR-X data, we quantify the velocity of the subsidence inside the caldera to be as high as 10 mm/year, and identify another subsidence area near the ground cracks created during the 1996 swarm.

  4. Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California

    USGS Publications Warehouse

    Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet

    2017-08-15

    The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.

  5. Volcano-Hydrothermal Systems of the Kuril Island Arc (Russia): Geochemistry of the Thermal Waters and Gases.

    NASA Astrophysics Data System (ADS)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.

    2017-12-01

    More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by hydrothermal activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with hydrothermal aquifers inside volcano edifices. The most powerful of them is the ultra-acid hydrothermal system of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of hydrothermal activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-hydrothermal system in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature hydrothermal system with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous

  6. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Hanson, M.; Tunnicliffe, V.; Chadwick, W. W., Jr.; Breuer, E. R.

    2016-02-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 and 2010 and ceased as of 2014. NW Rota-1 experienced a massive landslide in late 2009, decimating the habitat on the southern side of the volcano. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching for larvae which have the potential to recolonize the sea floor after such a major disturbance. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument may act as sources for these larvae, but connectivity in this region of complex topography is unknown. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both the zooplankton and benthic community composition in this area of the Monument.

  7. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  8. The 1997 eruption of Okmok Volcano, Alaska: A synthesis of remotely sensed imagery

    USGS Publications Warehouse

    Patrick, M.R.; Dehn, J.; Papp, K.R.; Lu, Z.; Dean, K.; Moxey, L.; Izbekov, P.; Guritz, R.

    2003-01-01

    Okmok Volcano, in the eastern Aleutian Islands, erupted in February and March of 1997 producing a 6-km-long lava flow and low-level ash plumes. This caldera is one of the most active in the Aleutian Arc, and is now the focus of international multidisciplinary studies. A synthesis of remotely sensed data (AirSAR, derived DEMs, Landsat MSS and ETM+ data, AVHRR, ERS, JERS, Radarsat) has given a sequence of events for the virtually unobserved 1997 eruption. Elevation data from the AirSAR sensor acquired in October 2000 over Okmok were used to create a 5-m resolution DEM mosaic of Okmok Volcano. AVHRR nighttime imagery has been analyzed between February 13 and April 11, 1997. Landsat imagery and SAR data recorded prior to and after the eruption allowed us to accurately determine the extent of the new flow. The flow was first observed on February 13 without precursory thermal anomalies. At this time, the flow was a large single lobe flowing north. According to AVHRR Band 3 and 4 radiance data and ground observations, the first lobe continued growing until mid to late March, while a second, smaller lobe began to form sometime between March 11 and 12. This is based on a jump in the thermal and volumetric flux determined from the imagery, and the physical size of the thermal anomalies. Total radiance values waned after March 26, indicating lava effusion had ended and a cooling crust was growing. The total area (8.9 km2), thickness (up to 50 m) and volume (1.54×108 m3) of the new lava flow were determined by combining observations from SAR, Landsat ETM+, and AirSAR DEM data. While the first lobe of the flow ponded in a pre-eruption depression, our data suggest the second lobe was volume-limited. Remote sensing has become an integral part of the Alaska Volcano Observatory’s monitoring and hazard mitigation efforts. Studies like this allow access to remote volcanoes, and provide methods to monitor potentially dangerous ones.

  9. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  10. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  11. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    NASA Astrophysics Data System (ADS)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  12. Gabbroic and Peridotitic Enclaves from the 2008 Kasatochi Eruption, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Kentner, A.; Nadin, E. S.; Izbekov, P. E.; Nye, C. J.; Neill, O. K.

    2012-12-01

    Kasatochi volcano of the Andreanof Islands in the western Aleutian Arc violently erupted over a two day period from August 7-8, 2008. The eruption involved multiple explosive events generating pyroclastic flows, which included abundant mafic and ultramafic enclaves that have since weathered out and accumulated in talus along the coast. These and other mafic enclaves sampled by modern island arc lavas provide insight into subduction magmatism because they emerge from a section of the subduction system that is less likely than shallower zones to be modified by magmatic processes such as mixing, assimilation, or fractionation. We present new whole rock, clinopyroxene, amphibole, plagioclase, and melt compositions from Kasatochi enclaves of the 2008 eruption. The highly crystalline (~40 vol. % phenocryst content), medium-K basaltic andesite host rock contains ~52-55 wt. % SiO2 and 0.6-0.9 wt. % K2O, and is composed of plagioclase, ortho- and clinopyroxene, amphibole, and Ti-magnetite in a microlite-rich groundmass. Upon eruption, this magma sampled two distinct enclave populations: gabbro and peridotite. The gabbro has abundant amphibole (mostly magnesio-hastingsite) and plagioclase with minor clinopyroxene, olivine, and magnetite, while the peridotite is composed of olivine with minor amounts of clinopyroxene and orthopyroxene. There is little textural variation amongst the peridotitic samples collected, but the gabbroic samples vary from layered to massive and cover a range in grain size from fine-grained to pegmatitic. The layered gabbros display centimeter-scale bands of alternating plagioclase- and amphibole-rich layers, with a strong preferential alignment of the amphibole grains. The coarser-grained samples are very friable, with ~10% pore space; disaggregation of these upon host-magma ascent likely formed the amphibole and plagioclase xenocrysts in the andesitic host. Based on the textural and compositional differences, we divide the enclaves into four groups

  13. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Hanson, M.; Beaulieu, S.; Tunnicliffe, V.; Chadwick, W.; Breuer, E. R.

    2015-12-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both

  14. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  15. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  16. A tectonic earthquake sequence preceding the April-May 1999 eruption of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Stihler, S.D.; Power, J.A.

    2002-01-01

    On 4 March 1999, a shallow ML 5.2 earthquake occurred beneath Unimak Island in the Aleutian Arc. This earthquake was located 10-15 km west of Shishaldin Volcano, a large, frequently active basaltic-andesite stratovolcano. A Strombolian eruption began at Shishaldin roughly 1 month after the mainshock, culminating in a large explosive eruption on 19 April. We address the question of whether or not the eruption caused the mainshock by computing the Coulomb stress change caused by an inflating dike on fault planes oriented parallel to the mainshock focal mechanism. We found Coulomb stress increases of ???0.1 MPa in the region of the mainshock, suggesting that magma intrusion prior to the eruption could have caused the mainshock. Satellite and seismic data indicate that magma was moving upwards beneath Shishaldin well before the mainshock. indicating that, in an overall sense, the mainshock cannot be said to have caused the eruption. However, observations of changes at the volcano following the mainshock and several large aftershocks suggest that the earthquakes may, in turn, have influenced the course of the eruption.

  17. Chemical Fluxes from a Recently Erupted Submarine Volcano on the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Buck, N. J.; Resing, J. A.; Lupton, J. E.; Larson, B. I.; Walker, S. L.; Baker, E. T.

    2016-12-01

    While hydrothermal circulation is paramount to the geochemical budget for a wide array of elements, relatively few flux estimates exist in the literature. To date most studies have concentrated on constraining global and vent-field scale inputs originating from ocean spreading ridges. The goal of this study is to directly measure the chemical flux from an active submarine volcano injecting hydrothermal fluids into the surface ocean. Ahyi Seamount, a submarine intraoceanic arc volcano located in the Northern Mariana Islands, has a summit depth <100 m and erupted in May 2014. In November 2014 a hydrothermal plume originating from Ahyi was sampled aboard the R/V Roger Revelle during the Submarine Ring of Fire 2014 Ironman Expedition. Shipboard hull mounted Acoustic Doppler Current Profile data was collected to provide current vector measurements to be used in combination with continuous and discrete CTD data. Towed CTD sections were conducted perpendicular to the current direction - a sampling strategy that optimizes chemical flux estimate calculations by reducing complexities introduced by temporal variability in the speed and direction of plume dispersion. The Ahyi plume had a significant optical backscatter signal accompanied by evidence of reduced chemical species and a lowered pH. It was sampled for He isotopes, CH4, H2, H2S, total CO2, nutrients, TSM and total and dissolved Fe and Mn. Laboratory analyses found enriched concentrations of H2, 3He, CO2 and Fe, consistent with a recent eruption. Preliminary flux calculations estimate a Fe input of 16 mmol s-1. This indicates shallow submarine arc volcanoes are capable of supplying appreciable quantities of Fe into the surface ocean. Further laboratory analyses and calculations to characterize and constrain the fluxes of other chemical constituents are underway.

  18. Long-term changes in explosive and effusive behaviour at andesitic arc volcanoes: Chronostratigraphy of the Centre Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Coussens, Maya; Cassidy, Michael; Watt, Sebastian F. L.; Jutzeler, Martin; Talling, Peter J.; Barfod, Dan; Gernon, Thomas M.; Taylor, Rex; Hatter, Stuart J.; Palmer, Martin R.; Montserrat Volcano Observatory

    2017-03-01

    Volcanism on Montserrat (Lesser Antilles arc) has migrated southwards since the formation of the Silver Hills 2.5 Ma, and has formed three successively active volcanic centres. The Centre Hills volcano was the focus of volcanism from 1-0.4 Ma, before activity commenced at the currently active Soufrière Hills volcano. The history of activity at these two volcanoes provides an opportunity to investigate the pattern of volcano behaviour on an andesitic arc island over the lifetime of individual volcanoes. Here, we describe the pyroclastic stratigraphy of subaerial exposures around central Montserrat; identifying 11 thick (> 1 m) pumiceous units derived from sustained explosive eruptions of Centre Hills from 0.8-0.4 Ma. Over 10 other, less well- exposed pumiceous units have also been identified. The pumice-rich units are interbedded with andesite lava breccias derived from effusive, dome-forming eruptions of Centre Hills. The stratigraphy indicates that large (up to magnitude 5) explosive eruptions occurred throughout the history of Centre Hills, alongside effusive activity. This behaviour at Centre Hills contrasts with Soufrière Hills, where deposits from sustained explosive eruptions are much less common and restricted to early stages of activity at the volcano, from 175-130 ka. Subsequent eruptions at Soufriere Hills have been dominated by andesitic effusive eruptions. The bulk composition, petrography and mineral chemistry of volcanic rocks from Centre Hills and Soufrière Hills are similar throughout the history of both volcanoes, except for occasional, transient departures to different magma compositions, which mark shifts in vent location or dominant eruption style. For example, the final recorded eruption of Centre Hills, before the initiation of activity at Soufrière Hills, was more silicic than any other identified eruption on Montserrat; and the basaltic South Soufrière Hills episode marked the transition to the current stage of predominantly effusive

  19. Long-range Receiver Function Profile of Crustal and Mantle Discontinuities From the Aleutian Arc to Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Sawade, Lucas

    2016-04-01

    The Circum-Pacific belt, also called the Pacific Ring of Fire, is the most seismically active region on Earth. Multiple plate boundaries form a zone characterized by frequent volcanic eruptions and seismicity. While convergent plate boundaries such as the Peru-Chile trench dominate the Circum-Pacific belt, divergent and transform boundaries are present as well. The eastern section of the Circum-Pacific belt extends from the Aleutian arc, through the Cascadia subduction zone, San Andreas Fault, middle America trench and the Andean margin down to Tierra del Fuego. Due to the significant hazards posed by this tectonic activity, the region has been densely instrumented by thousands of seismic stations deployed across fifteen countries, over a distance of more than 15000 km. Various seismological studies, including receiver function analyses, have been carried out to investigate the crustal and mantle structure beneath local segments of the eastern Circum-Pacific belt (i.e., at ~100-500 km scale). However, to the best of our knowledge, no study to date has ever attempted to combine all available seismic data from the eastern Circum-Pacific belt to generate a continuous profile of seismic discontinuities extending from the Aleutians to Tierra del Fuego. Here, we use results from the "Global Imaging using Earthquake Records" (GLImER) P-wave receiver function database to create a long-range profile of crustal and upper mantle discontinuities across the entire eastern portion of the Circum-Pacific belt. We image intermittent crustal and mantle discontinuities along the profile, and examine them with regard to their behaviour and properties across transitions between different tectonic regimes.

  20. The 2014 eruptions of Pavlof Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  1. U.S. Geological Survey (USGS) Western Region Kasatochi Volcano Coastal and Ocean Science

    USGS Publications Warehouse

    DeGange, Anthony

    2010-01-01

    Alaska is noteworthy as a region of frequent seismic and volcanic activity. The region contains 52 historically active volcanoes, 14 of which have had at least one major eruptive event since 1990. Despite the high frequency of volcanic activity in Alaska, comprehensive studies of how ecosystems respond to volcanic eruptions are non-existent. On August 7, 2008, Kasatochi Volcano, in the central Aleutian Islands, erupted catastrophically, covering the island with ash and hot pyroclastic flow material. Kasatochi Island was an annual monitoring site of the U.S. Fish and Wildlife Service, Alaska Maritime National Wildlife Refuge (AMNWR); therefore, features of the terrestrial and nearshore ecosystems of the island were well known. In 2009, the U.S. Geological Survey (USGS), AMNWR, and University of Alaska Fairbanks began long-term studies to better understand the effects of the eruption and the role of volcanism in structuring ecosystems in the Aleutian Islands, a volcano-dominated region with high natural resource values.

  2. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  3. Eruption of Alaska Volcano Breaks Historic Pattern

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica; Neal, Christina; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick

    2009-05-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (˜2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud “thunder,” lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  4. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  5. Surficial Geologic Map of Mount Veniaminof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Miller, T. P.; Wallace, K.

    2015-12-01

    Mount Veniaminof volcano is a >300 km3 andesite to dacite stratovolcano, characterized by an 8 x 11 km diameter ice-filled summit caldera. Veniaminof is one of the most active volcanoes in the Aleutian arc and has erupted at least 15 times in the past 200 years. The volcano is located on the Alaska Peninsula (56.1979° N, 159.3931° W) about 780 km SW of Anchorage. Our geologic investigations have documented two large (>VEI 5) caldera-forming or -modifying eruptions (V1, V2) of Holocene age whose eruptive products make up most of the surficial deposits around the volcano. These deposits and other unconsolidated glacial, fluvial, and colluvial deposits are depicted on the accompanying map. The the V2 eruption occurred 4.1-4.4 ka (cal 2-sigma age range) and produced an extensive landscape-mantling sequence of pyroclastic deposits >50 km3 in volume that cover or partly obscure older unconsolidated eruptive products. The V1 eruption occurred 8-9 ka and its deposits lie stratigraphically below the pyroclastic deposits associated with the V2 eruption and a prominent, widespread tephra fall deposit erupted from nearby Black Peak volcano 4.4-4.6 ka. The V2 pyroclastic-flow deposits range from densely welded, columnar jointed units exposed along the main valley floors, to loose, unconsolidated, blanketing accumulations of scoriaceous (55-57% SiO2) and lithic material found as far as 75 km from the edifice. Large lahars also formed during the V2 eruption and flowed as far as 50 km from the volcano. The resulting deposits are present in all glacial valleys that head on the volcano and are 10-15 m thick in several locations. Lahar deposits cover an area of about 800-1000 km2, have an approximate volume of 1-2 km3, and record substantial inundation of the major valleys on all flanks of the edifice. Significant amounts of water are required to form lahars of this size, which suggests that an ice-filled summit caldera probably existed when the V2 eruption occurred.

  6. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  7. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  8. An Overview of the Southern Mariana Subduction Factory: Arc, Cross-Chains, and Back-Arc Basin

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Hargrove, U. S.; Leybourne, M. I.; Pearce, J. A.; Bloomer, S. H.

    2002-12-01

    The Mariana arc system south of 18°N provides 3 opportunities to study the magmatic outputs of the IBM Subduction Factory: 1) Along the Magmatic arc; 2) Across arc cross-chains; and 3) Along the back-arc basin spreading axis. In spite of being located near population centers of Guam and Saipan, this is a relatively poorly known part of the arc system. There is a clear break in the trend and morphology of the magmatic arc west of the144°E fault and slab tear, and we surveyed and sampled the region north and east of this during the Cook 7 expedition in March-April 2001. Systematic morphologic covariations are observed along the arc and backarc basin magmatic systems, with the shallower ridge depths adjacent to more magmatically-robust arc segments. Our preliminary results reveal a compositional discontinuity in back-arc basin basalts (BABB) south of a bathymetric break near 15°30'N, with BABB in shallower segments to the north having a strong subduction component (higher Ba/Nb, Rb, Zr, etc.) and deeper regions to the south being more MORB-like. This is close to the morphological break along the magmatic front, with larger (>10E11 m3) edifices of the Central Island Province north of 16°N and smaller, entirely submarine volcanoes to the south, implying a more robust magmatic budget in the north; a similar variations are observed for cross-chain volcanoes, with smaller ones associated with the smaller, southern arc volcanoes and larger ones associated with the larger arc volcanoes of the Central Island Province. In contrast to the back-arc basin spreading axis, no systematic compositional variations are observed along or across the arc. Arc and cross-chains comprise a coherent, low- to medium-K, dominantly tholeiitic suite. REE patterns show moderate LREE-enrichment, with chondrite-normalized La/Yb = 1.5-2. Rear-arc volcanoes sometimes are slightly less fractionated, slightly more potassic, and slightly more LREE-enriched, but these are second order differences. The

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally allmore » have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment

  10. Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993-2000

    USGS Publications Warehouse

    Lu, Z.; Power, J.A.; McConnell, V.S.; Wicks, C.; Dzurisin, D.

    2002-01-01

    Pilot reports in January 1995 and geologic field observations from the summer of 1996 indicate that a relatively small explosive eruption of Makushin, one of the more frequently active volcanoes in the Aleutian arc of Alaska, occured on 30 January 1995. Several independent radar interferograms that each span the time period from October 1993 to September 1995 show evidence of ???7 cm of uplift centered on the volcano's east flank, which we interpret as preeruptive inflation of a ???7-km-deep magma source (??V = 0.022 km3). Subsequent interferograms for 1995-2000, a period that included no reported eruptive activity, show no evidence of additional ground deformation. Interferometric coherence at C band is found to persist for 3 years or more on lava flow and other rocky surfaces covered with short grass and sparsely distributed tall grass and for at least 1 year on most pyroclastic deposits. On lava flow and rocky surfaces with dense tall grass and on alluvium, coherence lasts for a few months. Snow and ice surfaces lose coherence within a few days. This extended timeframe of coherence over a variety of surface materials makes C band radar interferometry an effective tool for studying volcano deformation in Alaska and other similar high-latitude regions.

  11. Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States

    USGS Publications Warehouse

    Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.

    2014-01-01

    Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Jacob, K.

    Flank eruptions of polygenetic volcanoes are regarded as surface expressions of radial dikes. Therefore, the approximate pattern of radial dikes is revealed by the distribution of sites of flank eruptions. Bending of radial dikes into a preferred orientation reveals the maximum horizontal compressive stress axis. The Aleutian and Alaskan volcanoes are studied using this concept and 28 orientations of the maximum horizontal compressive stress axis are obtained. Combined with the orientation of similar quality obtained from active faults in central Alaska the trajectories of the maximum horizontal stress for the entire area during recent 10,000 to 100,000 years or longermore » is depicted. Along the Aleutian-Alaska volcanic belt, the maximum horizontal compression parallels the direction of relative motion between the North American and Pacific plates. Seven roughly east-westerly orientations are obtained from west Alaskan and Bering Sea volcanoes. In central Alaska, the trajectories spread north-westward in a fan shape with axis of symmetry in a N25/sup 0/W direction passing through the easternmost part of the Aleutian trench. The trajectories continue westward onto the Bering Sea shelf with a generally westerly trend. The overall pattern of orientations of maximum horizontal compressive stresses seems to be explained by the convergent plate motions along. An exception is the high--angle relationship between the maximum horizontal stress orientation in the central Aleutians and the immediate back-arc region, which suggests that in the back-arc region the tectonic stress system has a different origin probably at considerable depth beneath the crust.« less

  13. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc

    NASA Astrophysics Data System (ADS)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang

    2018-05-01

    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  14. Preliminary volcano-hazard assessment for Kanaga Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2002-01-01

    Kanaga Volcano is a steep-sided, symmetrical, cone-shaped, 1307 meter high, andesitic stratovolcano on the north end of Kanaga Island (51°55’ N latitude, 177°10’ W longitude) in the western Aleutian Islands of Alaska. Kanaga Island is an elongated, low-relief (except for the volcano) island, located about 35 kilometers west of the community of Adak on Adak Island and is part of the Andreanof Islands Group of islands. Kanaga Volcano is one of the 41 historically active volcanoes in Alaska and has erupted numerous times in the past 11,000 years, including at least 10 eruptions in the past 250 years (Miller and others, 1998). The most recent eruption occurred in 1993-95 and caused minor ash fall on Adak Island and produced blocky aa lava flows that reached the sea on the northwest and west sides of the volcano (Neal and others, 1995). The summit of the volcano is characterized by a small, circular crater about 200 meters in diameter and 50-70 meters deep. Several active fumaroles are present in the crater and around the crater rim. The flanking slopes of the volcano are steep (20-30 degrees) and consist mainly of blocky, linear to spoonshaped lava flows that formed during eruptions of late Holocene age (about the past 3,000 years). The modern cone sits within a circular caldera structure that formed by large-scale collapse of a preexisting volcano. Evidence for eruptions of this preexisting volcano mainly consists of lava flows exposed along Kanaton Ridge, indicating that this former volcanic center was predominantly effusive in character. In winter (October-April), Kanaga Volcano may be covered by substantial amounts of snow that would be a source of water for lahars (volcanic mudflows). In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is not present on the volcano or on other parts of Kanaga Island. Kanaga Island is uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by

  15. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate

    NASA Astrophysics Data System (ADS)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh

    2015-06-01

    Little was known about the nature and origin of the deep crust beneath the Andaman Island Arc in spite of the fact that it formed part of the highly active Indonesian volcanic arc system, one of the important continental crust forming regions in Southeast Asia. This arc, formed as a result of subduction of the Indian Plate beneath the Burma Microplate (a sliver of the Eurasian Plate), contains only one active subaerial magmatic center, Barren Island volcano, whose evolutional timeline had remained uncertain. In this work, we present results of the first successful attempt to date crustal xenoliths and their host lava flows from the island, by incremental heating 40Ar/39Ar method, in an attempt to understand the evolutionary histories of the volcano and its basement. Based on concordant plateau and isochron ages, we establish that the oldest subaerial lava flows of the volcano are 1.58 ± 0.04 (2σ) Ma, and some of the plagioclase xenocrysts have been derived from crustal rocks of 106 ± 3 (2σ) Ma. Mineralogy (anorthite + Cr-rich diopside + minor olivine) and isotopic compositions (87Sr/86Sr < 0.7040; ɛNd > 7.0) of xenoliths not only indicate their derivation from a lower (oceanic) crustal olivine gabbro but also suggest a genetic relationship between the arc crust and the ophiolitic basement of the Andaman accretionary prism. We speculate that the basements of the forearc and volcanic arc of the Andaman subduction zone belong to a single continuous unit that was once attached to the western margin of the Eurasian Plate.

  16. Nature's refineries — Metals and metalloids in arc volcanoes

    USGS Publications Warehouse

    Henley, R.W.; Berger, Byron R.

    2013-01-01

    Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium

  17. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    NASA Astrophysics Data System (ADS)

    Chivarean, Radu

    2017-04-01

    Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes

  18. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  19. Application of AUVs in the Exploration for and Characterization of Arc Volcano Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Walker, S. L.; Caratori Tontini, F.; Baker, E. T.; Embley, R. W.; Yoerger, D.

    2014-12-01

    The application of Autonomous Underwater Vehicles (AUVs) in the search for, and characterization of, seafloor hydrothermal systems associated with arc volcanoes has provided important information at a scale relevant to the study of these systems. That is, 1-2 m resolution bathymetric mapping of the seafloor, when combined with high-resolution magnetic and water column measurements, enables the discharge of hydrothermal vent fluids to be coupled with geological and structural features, and inferred upflow zones. Optimum altitude for the AUVs is ~70 m ensuring high resolution coverage of the area, maximum exposure to hydrothermal venting, and efficency of survey. The Brothers caldera and Clark cone volcanoes of the Kermadec arc have been surveyed by ABE and Sentry. At Brothers, bathymetric mapping shows complex features on the caldera walls including embayment's, ridges extending orthogonal to the walls and the location of a dominant ring fault. Water column measurements made by light scattering, temperature, ORP and pH sensors confirmed the location of the known vent fields on the NW caldera wall and atop the two cones, and discovered a new field on the West caldera wall. Evidence for diffuse discharge was also seen on the rim of the NW caldera wall; conversely, there was little evidence for discharge over an inferred ancient vent site on the SE caldera wall. Magnetic measurements show a strong correlation between the boundaries of vent fields determined by water column measurements and observed from manned submersible and towed camera surveys, and donut-shaped zones of magnetic 'lows' that are focused along ring faults. A magnetic low was also observed to cover the SE caldera site. Similar surveys over the NW edifice of Clark volcano also show a strong correlation between active hydrothermal venting and magnetic lows. Here, the survey revealed a pattern resembling Swiss cheese of magnetic lows, indicating more widespread permeability. Moreover, the magnetic survey

  20. Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2003-01-01

    Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy

  1. The 1999 eruption of Shishaldin Volcano, Alaska: Monitoring a distant eruption

    USGS Publications Warehouse

    Nye, C.J.; Keith, T.E.C.; Eichelberger, J.C.; Miller, T.P.; McNutt, S.R.; Moran, S.; Schneider, D.J.; Dehn, J.; Schaefer, J.R.

    2002-01-01

    Shishaldin Volcano, in the central Aleutian volcanic arc, became seismically restless during the summer of 1998. Increasing unrest was monitored using a newly installed seismic network, weather satellites, and rare local visual observations. The unrest culminated in large eruptions on 19 April and 22-23 April 1999. The opening phase of the 19 April eruption produced a sub-Plinian column that rose to 16 km before rapidly dissipating. About 80 min into the 19 April event we infer that the eruption style transitioned to vigorous Strombolian fountaining. Exceptionally vigorous seismic tremor heralded the 23 April eruption, which produced a large thermal anomaly observable by satellite, but only a modest, 6-km-high plume. There are no ground-based visual observations of this eruption; however we infer that there was renewed, vigorous Strombolian fountaining. Smaller low-level ash-rich plumes were produced through the end of May 1999. The lava that erupted was evolved basalt with about 49% SiO2. Subsequent field investigations have been unable to find a distinction between deposits from each of the two major eruptive episodes.

  2. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse

  3. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Z.; Wicks, C.; Power, J.A.; Dzurisin, D.

    2000-01-01

    In March 1996 an intense swarm of volcano-tectonic earthquakes (???3000 felt by local residents, Mmax = 5.1, cumulative moment of 2.7 ??1018 N m) beneath Akutan Island in the Aleutian volcanic arc, Alaska, produced extensive ground cracks but no eruption of Akutan volcano. Synthetic aperture radar interferograms that span the time of the swarm reveal complex island-wide deformation: the western part of the island including Akutan volcano moved upward, while the eastern part moved downward. The axis of the deformation approximately aligns with new ground cracks on the western part of the island and with Holocene normal faults that were reactivated during the swarm on the eastern part of the island. The axis is also roughly parallel to the direction of greatest compressional stress in the region. No ground movements greater than 2.83 cm were observed outside the volcano's summit caldera for periods of 4 years before or 2 years after the swarm. We modeled the deformation primarily as the emplacement of a shallow, east-west trending, north dipping dike plus inflation of a deep, Mogi-type magma body beneath the volcano. The pattern of subsidence on the eastern part of the island is poorly constrained. It might have been produced by extensional tectonic strain that both reactivated preexisting faults on the eastern part of the island and facilitated magma movement beneath the western part. Alternatively, magma intrusion beneath the volcano might have been the cause of extension and subsidence in the eastern part of the island. We attribute localized subsidence in an area of active fumaroles within the Akutan caldera, by as much as 10 cm during 1992-1993 and 1996-1998, to fluid withdrawal or depressurization of the shallow hydrothermal system. Copyright 2000 by the American Geophysical Union.

  4. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  5. The May 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano

    USGS Publications Warehouse

    Wade, J.A.; Plank, T.; Stern, R.J.; Tollstrup, D.L.; Gill, J.B.; O'Leary, J. C.; Eiler, J.M.; Moore, R.B.; Woodhead, J.D.; Trusdell, F.; Fischer, T.P.; Hilton, David R.

    2005-01-01

    The first historical eruption of Anatahan volcano began on May 10, 2003. Samples of tephra from early in the eruption were analyzed for major and trace elements, and Sr, Nd, Pb, Hf, and O isotopic compositions. The compositions of these tephras are compared with those of prehistoric samples of basalt and andesite, also newly reported here. The May 2003 eruptives are medium-K andesites with 59-63 wt.% SiO2, and are otherwise homogeneous (varying less than 3% 2?? about the mean for 45 elements). Small, but systematic, chemical differences exist between dark (scoria) and light (pumice) fragments, which indicate fewer mafic and oxide phenocrysts in, and less degassing for, the pumice than scoria. The May 2003 magmas are nearly identical to other prehistoric eruptives from Anatahan. Nonetheless, Anatahan has erupted a wide range of compositions in the past, from basalt to dacite (49-66 wt.% SiO2). The large proportion of lavas with silicic compositions at Anatahan (> 59 wt.% SiO2) is unique within the active Mariana Islands, which otherwise erupt a narrow range of basalts and basaltic andesites. The silicic compositions raise the question of whether they formed via crystal fractionation or crustal assimilation. The lack of 87Sr/86Sr variation with silica content, the MORB-like ??18O, and the incompatible behavior of Zr rule out assimilation of old crust, altered crust, or zircon-saturated crustal melts, respectively. Instead, the constancy of isotopic and trace element ratios, and the systematic variations in REE patterns are consistent with evolution by crystal fractionation of similar parental magmas. Thus, Anatahan is a type example of an island-arc volcano that erupts comagmatic basalts to dacites, with no evidence for crustal assimilation. The parental magmas to Anatahan lie at the low 143Nd/144Nd, Ba/La, and Sm/La end of the spectrum of magmas erupted in the Marianas arc, consistent with 1-3 wt.% addition of subducted sediment to the mantle source, or roughly one

  6. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    USGS Publications Warehouse

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  7. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  8. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  9. Aleutian Islands

    NASA Image and Video Library

    2014-05-21

    Remote, rugged and extraordinarily beautiful, Alaska’s Aleutian Islands are best known for wildlife reserves, military bases, fishing, furs and fog. The sprawling volcanic archipelago was brought into the spotlight by the Russian-supported expedition of Alexey Chirikov and Vitus Bering in 1741, and soon became controlled by the Russian-American Fur Company. In 1867 the United States purchased Alaska, including the Aleutian Islands, from Russia. By 1900 the port in Unalaska was well established as a shipping port for Alaska gold. The archipelago sweeps about 1,200 miles (1,800 km) from the tip of the Alaskan Peninsula to Attu, the most westward island. Four major island groups hold 14 large islands, about 55 smaller islands, and a large number of islets, adding up to roughly 150 islands/islets in total. This chain separates the Bering Sea (north) from the Pacific Ocean (south) and the islands are connected by the Marine Highway Ferry – at least as far as Unalaska. For the most remote islands, such as birding paradise of Attu, the western-most Aleutian Island, travel becomes trickier and relies primarily on custom charter. The Moderate Resolution Imaging Spectroradiometer (MODIS) flew over the region and captured this spectacular true-color image of the eastern Aleutian Islands on May 15, 2014. In this image, the Alaskan Peninsula protrudes from the mainland and sweeps to the southwest. The first set of islands are called the Fox Island group. Unalaska Island is part of this group and can be identified, with some imagination, as an island formed in the shape of a flying cherub, with two arms (peninsulas) outstretched towards the northeast, seemingly reaching for the round “balls” of Akutan and Akun Islands. The smallest islands in the west of the image belong to the group known as the Islands of Four Mountains. The Aleutians continue far to the west of this image. Fog surrounds the Aleutians, stretching from just off the southwestern Alaska mainland to the

  10. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    USGS Publications Warehouse

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  11. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    C faster, and in larger volumes at a given time. Subduction erosion rarely, if ever, transports significant amounts of buoyant material deep into the convecting mantle. Because buoyant material can remain part of the crust, it may often be a mistake to add all of the eroded material to the observed arc volume to derive crustal growth rates. Buoyancy instabilities during subduction erosion or arc-arc collision will accumulate felsic arc crust. For example, > 50% of Aleutian arc lavas and exposed plutons are more buoyant than mantle peridotite at 700-800°C, 3-4 GPa. The buoyant material has an average of 60-62 wt% SiO2, molar Mg/(Mg+Fe) 0.4-0.5, and trace elements identical to bulk continental crust, though western Aleutian lavas have the most depleted Sr, Nd and Pb isotope ratios of all arc lavas worldwide. In general, density sorting of arc lithologies, and subsequent partial melting as buoyant rocks rise through the mantle wedge or along a subduction channel, could lead to a kind of double and triple distillation. Incompatible elements such as Th would be enriched in arc crust, retaining correlations with isotopic indicators of a recycled sediment component, while Th-poor, dense, mafic lavas and lower crustal cumulates return to the convecting mantle.

  12. Morphological classification and spatial distribution of Philippine volcanoes

    NASA Astrophysics Data System (ADS)

    Paguican, E. M. R.; Kervyn, M.; Grosse, P.

    2016-12-01

    The Philippines is an island arc composed of two major blocks: the aseismic Palawan microcontinental block and the Philippine mobile belt. It is bounded by opposing subduction zones, with the left-lateral Philippine Fault running north-south. This setting is ideal for volcano formation and growth, making it one of the best places to study the controls on island arc volcano morphometry and evolution. In this study, we created a database of volcanic edifices and structures identified on the SRTM 30 m digital elevation models (DEM). We computed the morphometry of each edifice using MORVOLC, an IDL code for generating quantitative parameters based on a defined volcano base and DEM. Morphometric results illustrate the large range of sizes and volumes of Philippine volcanoes. Heirarchical classification by principal component analysis distinguishes between large massifs, large cones/sub-cones, small shields/sub-cones, and small cones, based mainly on size (volume, basal width) and steepness (height/basal width ratio, average slopes). Poisson Nearest Neighbor analysis was used to examine the spatial distribution of volcano centroids. Spatial distribution of the different types of volcanoes suggests that large volcanic massifs formed on thickened crust. Although all the volcanic fields and arcs are a response to tectonic activity such as subduction or rifting, only West Luzon, North and South Mindanao, and Eastern Philippines volcanic arcs and Basilan, Macolod, and Maramag volcanic fields present a statistical clustering of volcanic centers. Spatial distribution and preferential alignment of edifices in all volcanic fields confirm that regional structures had some control on their formation. Volcanoes start either as steep cones or as less steep sub-cones and shields. They then grow into large cones, sub-cones and eventually into massifs as eruption focus shifts within the volcano and new eruptive material is deposited on the slopes. Examination of the directions of

  13. 49 CFR 71.12 - Hawaii-Aleutian zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Hawaii-Aleutian zone. 71.12 Section 71.12 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.12 Hawaii-Aleutian zone. The seventh zone, the Hawaii-Aleutian standard time zone, includes the entire State of Hawaii and...

  14. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  15. Degassing dynamics of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano, Vanuatu arc

    NASA Astrophysics Data System (ADS)

    Allard, Patrick; Burton, Mike; Sawyer, Georgina; Bani, Philipson

    2016-08-01

    Persistent lava lakes are rare on Earth and provide volcanologists with a remarkable opportunity to directly investigate magma dynamics and degassing at the open air. Ambrym volcano, in Vanuatu, is one of the very few basaltic arc volcanoes displaying such an activity and voluminous gas emission, but whose study has long remained hampered by challenging accessibility. Here we report the first high temporal resolution (every 5 s) measurements of vigorous lava lake degassing inside its 300 m deep Benbow crater using OP-FTIR spectroscopy. Our results reveal a highly dynamic degassing pattern involving (i) recurrent (100-200 s) short-period oscillations of the volcanic gas composition and temperature, correlating with pulsated gas emission and sourced in the upper part of the lava lake, (ii) a continuous long period (∼8 min) modulation probably due to the influx of fresh magma at the bottom of the lake, and (iii) discrete CO2 spike events occurring in coincidence with the sequential bursting of meter-sized bubbles, which indicates the separate ascent of large gas bubbles or slugs in a feeder conduit with estimated diameter of 6 ± 1 m. This complex degassing pattern, measured with unprecedented detail and involving both coupled and decoupled magma-gas ascent over short time scales, markedly differs from that of quieter lava lakes at Erebus and Kilauea. It can be accounted for by a modest size of Benbow lava lake and its very high basalt supply rate (∼20 m3 s-1), favouring its rapid overturn and renewal. We verify a typical basaltic arc signature for Ambrym volcanic gas and, based on contemporaneous SO2 flux measurements, we evaluate huge emission rates of 160 Gg d-1 of H2O, ∼10 Gg d-1 of CO2 and ∼8 Gg d-1 of total acid gas (SO2, HCl and HF) during medium activity of the volcano in 2008. Such rates make Ambrym one of the three most powerful volcanic gas emitters at global scale, whose atmospheric impact at local and regional scale may be considerable.

  16. Volcano-hazard zonation for San Vicente volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  17. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  18. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  19. Geologic field-trip guide to Mount Shasta Volcano, northern California

    USGS Publications Warehouse

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  20. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Z.

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995–1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993–2003 time interval. All interferograms lack coherence within ∼5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5–15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ∼14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1–2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from > 10 km depth, and that the intrusion–eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  1. Episodic inflation of Akutan volcano, Alaska revealed from GPS and InSAR time series

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K.; Lu, Z.; Wang, T.

    2016-12-01

    Akutan volcano is one of the most active volcanoes located long the Aleutian arc. At least 27 eruptions have been noted since 1790 and an intense swarm of volcano-tectonic earthquakes occurred in 1996. Surface deformation after the 1996 earthquake sequence has been studied using GPS and Interferometric Synthetic Aperture Radar (InSAR) separately, yet models created from these datasets require different mechanisms to produce the observed surface deformation: an inflating Mogi source results in the best approximation of displacement observed from GPS data, whereas an opening dyke is the best fit to deformation measured from InSAR. A recent study using seismic data revealed complex magmatic structures beneath the caldera, suggesting that the surface deformation may reflect more complicated mechanisms that cannot be estimated using one type of data alone. Here we integrate the surface deformation measured from GPS and InSAR to better understand the magma plumbing system beneath Akutan volcano. GPS time-series at 12 stations from 2006 to 2016 were analyzed, and two transient episodes of inflation in 2008 and 2014 were detected. These GPS stations are, however, too sparse to reveal the spatial distribution of the surface deformation. In order to better define the spatial extent of this inflation four tracks of Envisat data acquired during 2003-2010 and one track of TerraSAR-X data acquired from 2010 to 2016 were processed to produce high-resolution maps of surface deformation. These deformation maps show a consistently uplifting area on the northwestern flank of the volcano. We inverted for the source parameters required to produce the inflation using GPS, InSAR, and a dataset of GPS and InSAR measurements combined, to find that a deep Mogi source below a shallow dyke fit these datasets best. From the TerraSAR-X data, we were also able to measure the subsidence inside the summit caldera due to fumarole activity to be as high as 10 mm/yr. The complex spatial and temporal

  2. Geologic map of Medicine Lake volcano, northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  3. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Z.

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  4. Avian mortality associated with a volcanic gas seep at Kiska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Bond, Alexander L.; Evans, William C.; Jones, Ian L.

    2012-01-01

    We identified natural pits associated with avian mortality at the base of Kiska Volcano in the western Aleutian Islands, Alaska in 2007. Living, moribund, and dead birds were regularly found at low spots in a canyon between two lava flows during 2001–2006, but the phenomenon was attributed to natural trapping and starvation of fledgling seabirds (mostly Least Auklets, Aethia pusilla) at a colony site with >1 million birds present. However, 302 birds of eight species, including passerines, were found dead at the site during 2007–2010, suggesting additional factors were involved. Most carcasses showed no signs of injury and concentrations of dead birds had accumulated in a few distinctive low pits in the canyon. Gas samples from these locations showed elevated CO2 concentrations in late 2010. Analysis of carcasses indicated no evidence of blunt trauma or internal bleeding. Volcanic gases accumulating at these poorly ventilated sites may have caused the observed mortality, but are temporally variable. Most auklets breeding in the Aleutian Islands do so in recent lava flows that provide breeding habitat; our study documents a cost of this unusual habitat selection.

  5. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    midlatitude or high-latitude volcanoes; (c) safety factors during unrest, which can limit where new instrumentation can safely be installed (particularly at near-vent sites that can be critical for precursor detection and eruption forecasting); and (d) the remoteness of many U.S. volcanoes (particularly those in the Aleutians and the Marianas Islands), where access is difficult or impossible most of the year. Given these difficulties, it is reasonable to anticipate that ground-based monitoring of eruptions at U.S. volcanoes will likely be performed primarily with instruments installed before unrest begins. 2. Given a growing awareness of previously undetected 2. phenomena that may occur before an eruption begins, at present the types and (or) density of instruments in use at most U.S. volcanoes is insufficient to provide reliable early warning of volcanic eruptions. As shown by the gap analysis of Ewert and others (2005), a number of U.S. volcanoes lack even rudimentary monitoring. At those volcanic systems with monitoring instrumentation in place, only a few types of phenomena can be tracked in near-real time, principally changes in seismicity, deformation, and large-scale changes in thermal flux (through satellite-based remote sensing). Furthermore, researchers employing technologically advanced instrumentation at volcanoes around the world starting in the 1990s have shown that subtle and previously undetectable phenomena can precede or accompany eruptions. Detection of such phenomena would greatly improve the ability of U.S. volcano observatories to provide accurate early warnings of impending eruptions, and is a critical capability particularly at the very high-threat volcanoes identified by Ewert and others (2005). For these two reasons, change from a reactive to a proactive volcano-monitoring strategy is clearly needed at U.S. volcanoes. Monitoring capabilities need to be expanded at virtually every volcanic center, regardless of its current state of

  6. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  7. Introduction to Augustine Volcano and Overview of the 2006 Eruption

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2006-12-01

    This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week

  8. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  9. The temporal evolution of back-arc magmas from the Auca Mahuida shield volcano (Payenia Volcanic Province, Argentina)

    NASA Astrophysics Data System (ADS)

    Pallares, Carlos; Quidelleur, Xavier; Gillot, Pierre-Yves; Kluska, Jean-Michel; Tchilinguirian, Paul; Sarda, Philippe

    2016-09-01

    In order to better constrain the temporal volcanic activity of the back-arc context in Payenia Volcanic Province (PVP, Argentina), we present new K-Ar dating, petrographic data, major and trace elements from 23 samples collected on the Auca Mahuida shield volcano. Our new data, coupled with published data, show that this volcano was built from about 1.8 to 1.0 Ma during five volcanic phases, and that Auca Mahuida magmas were extracted from, at least, two slightly different OIB-type mantle sources with a low partial melting rate. The first one, containing more garnet, was located deeper in the mantle, while the second contains more spinel and was thus shallower. The high-MgO basalts (or primitive basalts) and the low-MgO basalts (or evolved basalts), produced from the deeper and shallower lherzolite mantle sources, respectively, are found within each volcanic phase, suggesting that both magmatic reservoirs were sampled during the 1 Myr lifetime of the Auca Mahuida volcano. However, a slight increase of the proportion of low-MgO basalts, as well as of magmas sampled from the shallowest source, can be observed through time. Similar overall petrological characteristics found in the Pleistocene-Holocene basaltic rocks from Los Volcanes and Auca Mahuida volcano suggest that they originated from the same magmatic source. Consequently, it can be proposed that the thermal asthenospheric anomaly is probably still present beneath the PVP. Finally, our data further support the hypothesis that the injection of hot asthenosphere with an OIB mantle source signature, which was triggered by the steepening of the Nazca subducting plate, induced the production of a large volume of lavas within the PVP since 2 Ma.

  10. Mineralogy and Chemistry of Continental-like Calc-alkaline Plutons on Adak Island in the Oceanic Aleutian arc: Emplacement and Implications for the Eocene History of the Arc

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Citron, G. P.; Kay, R. W.; Jicha, B. R.

    2016-12-01

    The mineralogy and chemistry of the 15 km wide latest Eocene/Oligocene (34.6-30.9 Ma) Hidden Bay and Miocene (14.2-13.7 Ma) Kagalaska calc-alkaline plutons on Adak and Kagalaska Islands in the central Aleutian arc provide insight into the arc's Tertiary evolution. The plutons intrude the moderately light REE-enriched tholeiitic basaltic to mafic andesites of the Eocene Finger Bay Formation. The Hidden Bay pluton largely consists of mid to high-K amphibole-bearing cumulate diorite (53-55% SiO2) and granodiorite (57-64% & 61-64% SiO2) with lesser amounts of gabbro (50-52%), leucogranodiorite (67-69% SiO2) and aplite (76-77% SiO2). REE patterns indicate important fractionation of amphibole and plagioclase with pyroxene and olivine present in mafic units and orthopyroxene, biotite, quartz and K-feldspar in silicic units. Quartz, K-feldspar and biotite occur in interstices in most units. Plagioclase cores are mostly from AN40-60 with K-feldspar at OR95-OR98. Fractionation of homogeneous gabbros with high-Al basalt compositions (51% SiO2) best explains the chemistry and mineralogy of the Hidden Bay pluton. The presence of pargasitic amphibole in medium to course grained diorite cumulates indicates fractionation at 12-14 km at 950-1000°C with 5.5% H2O and a NNO oxygen fugacity. Two pyroxene, Mg hornblende and Ti-Zr zircon thermometers for granodiorite and late crystallized areas record temperatures of 850-750°C at 3.5- 4.5 % H2O and a NNO+2 oxygen fugacity. The Kagalaska pluton differs in being more calc-alkaline (alkali-rich), more bimodal in being dominated by amphibole-bearing gabbro and granodiorite/ leucogranodiorite (63-68% SiO2) and in requiring more amphibole fractionation. Both plutons have compositions approaching continental crust and characteristics that are similar to plutons intruded into continental crust. Differences with the Finger Bay Volcanic are best explained by thickening of the crust to near modern thicknesses ( 35-38 km) by the time of pluton

  11. Stratigraphy, petrology, and geochemistry of the Spurr Volcanic Complex, eastern Aleutian Arc, Alaska. [(Appendix for geothermal fluid chemistry)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nye, C.J.

    1987-12-01

    The Spurr Volcanic Complex (SVC) is a calcalkaline, medium-K, sequence of andesites erupted over the last quarter of a million years by the easternmost currently active volcanic center in the Aleutian Arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58 to 60% SiO/sub 2/), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent Bezyianny-type avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt.more » Spurr) was emplaced in the caldera. Both the ashflows and dome are made of acid andesite more silicic than any analyzed lavas from the ancestral Mt. Spurr (60 to 63% SiO/sub 2/), yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53 to 57% SiO/sub 2/) erupted during and after dome emplacement, forming proto-Crater Peak and Crater Peak. Hybrid pyroclastic flows and lavas were also produced. Proto-Crater Peak underwent glacial dissection prior to the formation of Crater Peak in approximately the same location. Appendices II through VIII contain a summary of mineral compositions; Appendix I contains geochemical data. Appendix IX by R.J. Motyka and C.J. Nye describes the chemistry of geothermal fluids. 78 refs., 16 figs., 3 tabs.« less

  12. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    NASA Astrophysics Data System (ADS)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion

  13. Volcano spacing and plate rigidity

    USGS Publications Warehouse

    ten Brink, Uri S.

    1991-01-01

    In-plane stresses, which accompany the flexural deformation of the lithosphere under the load of adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.

  14. Helium isotope, C/3He, and Ba-Nb-Ti signatures in the northern Lau Basin: Distinguishing arc, back-arc, and hotspot affinities

    NASA Astrophysics Data System (ADS)

    Lupton, John; Rubin, Ken H.; Arculus, Richard; Lilley, Marvin; Butterfield, David; Resing, Joseph; Baker, Edward; Embley, Robert

    2015-04-01

    The northern Lau Basin hosts a complicated pattern of volcanism, including Tofua Arc volcanoes, several back-arc spreading centers, and individual "rear-arc" volcanoes not associated with these structures. Elevated 3He/4He ratios in lavas of the NW Lau Spreading Center suggest the influence of a mantle plume, possibly from Samoa. We show that lavas from mid-ocean ridges, volcanic arcs, and hotspots occupy distinct, nonoverlapping fields in a 3He/4He versus C/3He plot. Applied to the northern Lau Basin, this approach shows that most of Lau back-arc spreading systems have mid-ocean ridge 3He/4He-C/3He characteristics, except the NW Lau spreading center, which has 3He/4He-C/3He similar to "high 3He" hotspots such as Loihi, Kilauea, and Yellowstone, but with slightly lower C/3He. Niua seamount, on the northern extension of the Tofua Arc, falls squarely in the arc field. All the NE Lau rear-arc volcanoes, including the recently erupting West Mata, also have arc-like 3He/4He-C/3He characteristics. Ba-Nb-Ti contents of the lavas, which are more traditional trace element indicators of mantle source enrichment, depletion, and subduction input, likewise indicate arc and hot spot influences in the lavas of the northern Lau Basin, but in a more ambiguous fashion because of a complex prior history. This verifies that 3He/4He-C/3He systematics are useful for differentiating between mid-ocean ridge, arc, and hotspot affinities in submarine volcanic systems, that all three of these affinities are expressed in the northern Lau Basin, and provides additional support for the Samoan plume influence in the region.

  15. A Summary of the History and Achievements of the Alaska Volcano Observatory.

    NASA Astrophysics Data System (ADS)

    Smith, R. W.

    2008-12-01

    Volcanoes of the Aleutian Islands, Kamchatka and the Kurile Islands present a serious threat to aviation on routes from North America to the Far East. On March 27, 1986, an eruption of Augustine Volcano deposited ash over Anchorage and disrupted air traffic in south-central Alaska. The consequences of the colocation of an active volcano and the largest city in Alaska were clearly evident. That event led to a three-way partnership between the US Geological Survey, the University of Alaska Geophysical Institute and the Alaska State Division of Geological and Geophysical Surveys that now maintains a continuous watch through ground instrumentation and satellite imagery providing data from which warnings of eruptions can be issued to airline operators and pilots. The eruption of Redoubt Volcano in December 1989 was AVO's first big test. It spewed volcanic ash to a height of 14,000 m (45,000 feet) and managed to catch KLM 867, a Boeing 747 aircraft in its plume under dark conditions while approaching Anchorage Airport. Further details of the early days of the Alaska Volcano Observatory will be described, along with its recent successes and challenges.

  16. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2016-10-01

    Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.

  17. Copahue volcano and its regional magmatic setting

    USGS Publications Warehouse

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  18. Along-arc distribution of 3He/4He and 87Sr/86Sr in thermal fluids of the Kuril Island arc (Russia)

    NASA Astrophysics Data System (ADS)

    Taran, Y.; Kalacheva, E.; Bujakajte, M.; Inguaggiato, S.

    2017-12-01

    The Kuril Island arc in the NW Pacific extends for 1200 km from the Kamchatka Peninsula to Hokkaido Islandand separates the margin Sea of Okhotsk from the Pacific Ocean. Among 40 active volcanoes at least 7 are characterized by strong and high-temperature fumarolic activity, 1 to 3 volcanoes are erupting right now, and many of active and dormant volcanoes host hydrothermal systems. We report our data on hydrochemistry and isotopic composition of He and Sr from fumarolic and hydrothermal discharges sampled along the arc, from Ebeko volcano on Paramushir Island to Golovnin volcano on Kunashir Island. The data were obtained during the field campaign in 2015-2017. Most of hydrothermal systems of Kuril Islands discharge acid-to-ultra acid SO4-Cl and Cl-SO4 waters and steam-heated SO4 waters. On some islands, like Shiashkotan, northern Kurils, coastal hot springs can be found issuing Na-Cl waters mixed with seawater. Mature Na-Cl waters are known only on southern big islands Iturup and Kunashir. The distribution of 3He/4He in hydrothermal and fumarolic gases along the arc is very uniform with 3He/4He values close to the MORB value of 8Ra where Ra is atmospheric ratio (1.4 x 10-6). The northernmost Ebeko volcano discharges fumaroles with 3He/4He up to 7.9Ra, and bubbling gas in the nearest hot springs up to 7.6Ra. Such high 3He/4He values with a maximum of 8.3Ra in fumaroles of the Pallas Peak in the middle of the arc were measured in all thermal manifestations of the arc (fumaroles, hydrothermal steam vents and bubbling gases) up to the southernmost Kunashir Island, where volcanic and hydrothermal gases are characterized by significantly lower values of 5.5Ra at Mendeleev volcano and 3.5Ra at Golovnin volcano. Isotopic ratio of the dissolved Sr as a rule corresponds to the 87Sr/86Sr values of the host rocks and only in the coastal hot springs demonstrates partial mixing with seawater. There is also a general consistence of 87Sr/86Sr in springs and 3He/4He in gases. This

  19. Two types of gabbroic xenoliths from rhyolite dominated Niijima volcano, northern part of Izu-Bonin arc: petrological and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Arakawa, Yoji; Endo, Daisuke; Ikehata, Kei; Oshika, Junya; Shinmura, Taro; Mori, Yasushi

    2017-03-01

    We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths) in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899-955°C) and pressures (3.6-5.9 kbar) than the B-type gabbro (687-824°C and 0.8-3.6 kbar). These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic) magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.

  20. Bayesian probabilities for Mw 9.0+ earthquakes in the Aleutian Islands from a regionally scaled global rate

    NASA Astrophysics Data System (ADS)

    Butler, Rhett; Frazer, L. Neil; Templeton, William J.

    2016-05-01

    We use the global rate of Mw ≥ 9.0 earthquakes, and standard Bayesian procedures, to estimate the probability of such mega events in the Aleutian Islands, where they pose a significant risk to Hawaii. We find that the probability of such an earthquake along the Aleutians island arc is 6.5% to 12% over the next 50 years (50% credibility interval) and that the annualized risk to Hawai'i is about $30 M. Our method (the regionally scaled global rate method or RSGR) is to scale the global rate of Mw 9.0+ events in proportion to the fraction of global subduction (units of area per year) that takes place in the Aleutians. The RSGR method assumes that Mw 9.0+ events are a Poisson process with a rate that is both globally and regionally stationary on the time scale of centuries, and it follows the principle of Burbidge et al. (2008) who used the product of fault length and convergence rate, i.e., the area being subducted per annum, to scale the Poisson rate for the GSS to sections of the Indonesian subduction zone. Before applying RSGR to the Aleutians, we first apply it to five other regions of the global subduction system where its rate predictions can be compared with those from paleotsunami, paleoseismic, and geoarcheology data. To obtain regional rates from paleodata, we give a closed-form solution for the probability density function of the Poisson rate when event count and observation time are both uncertain.

  1. Crystallization Conditions at Cascade and Other Arc Volcanoes: The Role of Recharge, and Ultimate, Proximal and Immediate Causes of Eruption

    NASA Astrophysics Data System (ADS)

    Putirka, K. D.

    2016-12-01

    A number of hypotheses have been offered to explain why volcanoes erupt. These include magma mixing, mafic recharge, or partial crystallization, any of which can drive parts or all of a system to vapor saturation, and so add to a magma's buoyancy. Age dates indicate long pre-eruption storage times for felsic magmas erupted at arcs, indicating that mafic recharge magmas, which can reinvigorate such systems, is a possible eruption trigger. However, plutonic systems reveal numerous recharge events that have no obvious ties to eruption (Coint et al. 2013; Putirka et al. 2014). And crystallization conditions at some arc systems support the implicit view, that recharge might be a necessary, but not a sufficient condition for eruption. At several Cascade volcanoes, Cpx and Amp crystals record coolings of 100-300oC. The Cpx grains derive exclusively from mafic enclaves, while Amp grains derive from both host and enclave materials. These considerable coolings call for a time lag following recharge, and indicate that vapor saturation is a proximal, although not necessarily an immediate cause of eruption. But we cannot discount recharge altogether. At the Cascades and at other arcs, Cpx crystalizes throughout the middle and upper crust, mostly from the surface down to 15 km. And high Fo olivine grains provide evidence for very hot magmas that intrude the upper mantle and lower crust, and possibly the middle crust, if hydrous. Volcanic pathways thus clearly extend into the middle crust, and at times, well below the Moho. It is unclear to what extent these deep pathways are hydraulically connected to the surface, or the role of deep-seated processes in initiating or sustaining eruptions. Progress in understanding these pathways, and triggering mechanisms, requires our differentiating "ultimate", "proximal" and "immediate" causes, and determining which of various magmatic processes provide necessary or sufficient conditions for eruption.

  2. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    USGS Publications Warehouse

    Lu, Z.; Masterlark, Timothy; Dzurisin, Daniel

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr−1 during 1992–1993 to 2 ∼ 3 cm yr−1 during 1993–1995 and then to about −1 ∼ −2 cm yr−1 during 1995–1996. The posteruption inflation rate generally decreased with time during 1997–2001, but increased significantly during 2001–2003. By the summer of 2003, 30 ∼ 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  3. On the time-scales of magmatism at island-arc volcanoes.

    PubMed

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  4. Changes in the Seismicity and Focal Mechanism of Small Earthquakes Prior to an MS 6.7 Earthquake in the Central Aleutian Island Arc

    USGS Publications Warehouse

    Billington, Serena; Engdahl, E.R.; Price, Stephanie

    1981-01-01

    On November 4 1977, a magnitude Ms 6.7 (mb 5.7) shallow-focus thrust earthquake occurred in the vicinity of the Adak seismographic network in the central Aleutian island arc. The earthquake and its aftershock sequence occurred in an area that had not experienced a similar sequence since at least 1964. About 13 1/2 months before the main shock, the rate of occurrence of very small magnitude earthquakes increased abruptly in the immediate vicinity of the impending main shock. To search for possible variations in the focal mechanism of small events preceding the main shock, a method was developed that objectively combines first-motion data to generate composite focal-mechanism information about events occurring within a small source region. The method could not be successfully applied to the whole study area, but the results show that starting about 10 1/2 months before the November 1977 earthquake, there was a change in the mechanism of small- to moderate-sized earthquakes in the immediate vicinity of the hypocenter and possibly in other parts of the eventual aftershock zone, but not in the surrounding regions.

  5. The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.

    2014-12-01

    The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc

  6. Material culture across the Aleutian archipelago.

    PubMed

    Hatfield, Virginia L

    2010-12-01

    The material evidence from sites across the Aleutian Islands reflects colonization events, subsequent adaptations, and influxes of ideas and/or people from the east. The occurrence in the eastern Aleutians of bifacial technology around 7000 BP, of artifacts similar to the Arctic Small Tool tradition between 4000 and 3500 BP, and of slate and jet objects around 1000 BP reflects repeated surges of influence or movement of peoples from further east into the eastern end of the chain. In the central and western Aleutians, influence or perhaps colonization from east of the Aleutians is also marked by the occurrence of bifacial technology about 6500 BP and the appearance of slate artifacts after 1000 BP, suggesting the movement of ideas or people from further east. Basic trends across the archipelago include a decrease in formal chipped-stone tools, an increase in the use and the complexity of bone technology, and the increase in use and variety of ground-stone tools. In addition, increasing village site sizes and denser midden deposits are seen later in time throughout the archipelago. The similarity in sites and assemblages, albeit with regional variations, reflects trends that are seen across the chain and indicates that these island communities were not isolated from one another or from mainland Alaska.

  7. Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska

    USGS Publications Warehouse

    Lu, Z.; Freymueller, J.T.

    1998-01-01

    The feasibility of measuring volcanic deformation or monitoring deformation of active volcanoes using space-borne synthetic aperture radar (SAR) interferometry depends on the ability to maintain phase coherence over appropriate time intervals. Using ERS 1 C band (λ=5.66 cm) SAR imagery, we studied the seasonal and temporal changes of the interferometric SAR coherence for fresh lava, weathered lava, tephra with weak water reworking, tephra with strong water reworking, and fluvial deposits representing the range of typical volcanic surface materials in the Katmai volcano group, Alaska. For interferograms based on two passes with 35 days separation taken during the same summer season, we found that coherence increases after early June, reaches a peak between the middle of July and the middle of September, and finally decreases until the middle of November when coherence is completely lost for all five sites. Fresh lava has the highest coherence, followed by either weathered lava or fluvial deposits. These surfaces maintain relatively high levels of coherence for periods up to the length of the summer season. Coherence degrades more rapidly with time for surfaces covered with tephra. For images taken in different summers, only the lavas maintained coherence well enough to provide useful interferometric images, but we found only a small reduction in coherence after the first year for surfaces with lava. Measurement of volcanic deformation is possible using summer images spaced a few years apart, as long as the surface is dominated by lavas. Our studies suggest that in order to make volcanic monitoring feasible along the Aleutian arc or other regions with similar climatic conditions, observation intervals of the satellite with C band SAR should be at least every month from July through September, every week during the late spring/early summer or late fall, and every 2–3 days during the winter.

  8. Controls on the fore-arc CO2 flux along the Central America margin

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Barry, P. H.; Ramirez, C. J.; Kulongoski, J. T.; Patel, B. S.; Virrueta, C.; Blackmon, K.

    2015-12-01

    The subduction of carbon to the deep mantle via subduction zones is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Whereas output fluxes for arc and back-arc locales are well constrained for the Central America Volcanic Arc (CAVA) [1-2], the fore-arc flux via cold seeps and ground waters is poorly known. We present new He and CO2 data (isotopes and relative abundances) for the volcanic front and inner fore-arc of western Panama to complement on-going studies of fore-arc C-fluxes in Costa Rica [3-4] and to determine tectonic controls on the fore-arc C-outgassing fluxes. Helium isotope (3He/4He) values at Baru, La Yeguada, and El Valle volcanoes are high (5-8RA), consistent with results for other Central America volcanoes. However, CO2/3He values are variable (from > 1012 to < 108). Baru has an arc-like δ13C of - 4‰, whereas the other volcanoes have δ13C < -10 ‰. Cold seeps collected in the coastal fore-arc of Panama show a trend of decreasing He-isotopes from west (~6RA) to east (~1RA). This trend is mirrored by δ13C (-5‰ to <-20‰) values. CO2/3He values of the seeps are also variable and fall between 106 and 1012. Using CO2/3He-δ13C mixing plots with conventional endmember values for Limestone, Organic Sediment and Mantle CO2, we show that several Panama samples have been extensively modified by crustal processes. Nevertheless, there are clear west-to east trends (both volcanoes and coastal seeps), whereby L dominates the CO2 inventory in the west, similar to Costa Rica, and S-derived CO2 increases eastward towards central Panama. Previously [4], we limited the Costa Rica subaerial fore-arc flux to ~ 6 × 107 gCkm-1yr-1, or ~ 4% of the total incoming sedimentary C-load. This flux diminishes to zero within ~400 km to the east of Baru volcano. The transition from orthogonal subduction of the Cocos Plate to oblique subduction of the Nazca Plate, relative to the common over-riding Caribbean Plate, is the major impediment to

  9. Petrographic and Geochemical Investigation of Andesitic Arc Volcanism: Mount Kerinci, Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.

    2014-12-01

    Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for

  10. Mercury concentrations of a resident freshwater forage fish at Adak Island, Aleutian Archipelago, Alaska.

    PubMed

    Kenney, Leah A; von Hippel, Frank A; Willacker, James J; O'Hara, Todd M

    2012-11-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ(13)C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. Copyright © 2012 SETAC.

  11. Andesites from northeastern Kanaga Island, Aleutians

    NASA Astrophysics Data System (ADS)

    Brophy, James G.

    1990-04-01

    Kanaga island is located in the central Aleutian island arc. Northeastern Kanaga is a currently active late Tertiary to Recent calc-alkaline volcanic complex. Basaltic andesite to andesite lavas record three episodes (series) of volcanic activity. Series I and Series II lavas are all andesite while Series III lavas are basaltic andesite to andesite. Four Series II andesites contain abundant quenched magmatic inclusions ranging in composition from high-MgO low-alumina basalt to low-MgO highalumina basalt. The spectrum of lava compositions is due primarily to fractional crystallization of a parental low-MgO high-alumina basalt but with variable degrees of crustal contamination and magma mixing. The earliest Series I lavas represent mixing between high-alumina basalt and silicic andesite with maximum SiO2 contents of 65 67 wt %. Later Series I and all Series II lavas are due to mixing of andesite magmas of similar composition. The maximum SiO2 content of the pre-mixed andesites magmas is estimated at 60 63 wt %. The youngest lavas (Series III) are all non-mixed and have maximum estimated SiO2 contents of 59 wt %. The earliest Series I lavas contain a significant crustal component while all later lavas do not. It is concluded that the maximum SiO2 contents of silicic magmas, the contribution of crustal material to silicic magma generation, and the role of magma mixing all decrease with time. Furthermore, silicic magmas generated by fractional crystallization at this volcanic center have a maximum SiO2 content of 63 wt %. All of these features have also been documented at the central Aleutian Cold Bay Volcanic Center (Brophy 1987). Based on data from these two centers a model of Aleutian calc-alkaline magma chamber development is proposed. The main features are: (1) a single low pressure magma chamber is continuously supplied by primitive low-alumina basalt; (2) non-primary high-alumina basalt is formed along the chamber margins by selective gravitational settling of

  12. Cranial suture biology of the Aleutian Island inhabitants.

    PubMed

    Cray, James; Mooney, Mark P; Siegel, Michael I

    2011-04-01

    Research on cranial suture biology suggests there is biological and taxonomic information to be garnered from the heritable pattern of suture synostosis. Suture synostosis along with brain growth patterns, diet, and biomechanical forces influence phenotypic variability in cranial vault morphology. This study was designed to determine the pattern of ectocranial suture synostosis in skeletal populations from the Aleutian Islands. We address the hypothesis that ectocranial suture synostosis pattern will differ according to cranial vault shape. Ales Hrdlicka identified two phenotypes in remains excavated from the Aleutian Island. The Paleo-Aleutians, exhibiting a dolichocranic phenotype with little prognathism linked to artifacts distinguished from later inhabitants, Aleutians, who exhibited a brachycranic phenotype with a greater amount of prognathism. A total of 212 crania representing Paleo-Aleuts and Aleutian as defined by Hrdlicka were investigated for suture synostosis pattern following standard methodologies. Comparisons were performed using Guttmann analyses. Results revealed similar suture fusion patterns for the Paleo-Aleut and Aleutian, a strong anterior to posterior pattern of suture fusion for the lateral-anterior suture sites, and a pattern of early termination at the sagittal suture sites for the vault. These patterns were found to differ from that reported in the literature. Because these two populations with distinct cranial shapes exhibit similar patterns of suture synostosis it appears pattern is independent of cranial shape in these populations of Homo sapiens. These findings suggest that suture fusion patterns may be population dependent and that a standardized methodology, using suture fusion to determine age-at-death, may not be applicable to all populations. Copyright © 2011 Wiley-Liss, Inc.

  13. Are There Spatial or Temporal Patterns to Holocene Explosive Eruptions in the Aleutian Archipelago? A Work in Progress

    NASA Astrophysics Data System (ADS)

    Martin, C.; Nicolaysen, K. P.; McConville, K.; Hatfield, V.; West, D.

    2013-12-01

    By examining the existing geological and archeological record of radiocarbon dated Aleutian tephras of the last 12,000 years, this study sought to determine whether there were spatial or temporal patterns of explosive eruptive activity. The Holocene tephra record has important implications because two episodes of migration and colonization by humans of distinct cultures established the Unangan/Aleut peoples of the Aleutian Islands concurrently with the volcanic activity. From Aniakchak Volcano on the Alaska Peninsula to the Andreanof Islands (158 to 178° W longitude), 55 distinct tephras represent significant explosive eruptions of the last 12,000 years. Initial results suggest that the Andreanof and Fox Island regions of the archipelago have had frequent explosive eruptions whereas the Islands of Four Mountains, Rat, and Near Island regions have apparently had little or no eruptive activity. However, one clear result of the investigation is that sampling bias strongly influences the apparent spatial patterns. For example field reconnaissance in the Islands of Four Mountains documents two Holocene calderas and a minimum of 20 undated tephras in addition to the large ignimbrites. Only the lack of significant explosive activity in the Near Islands seems a valid spatial result as archeological excavations and geologic reports failed to document Holocene tephras there. An intriguing preliminary temporal pattern is the apparent absence of large explosive eruptions across the archipelago from ca. 4,800 to 6,000 yBP. To test the validity of apparent patterns, a statistical treatment of the compiled data grappled with the sampling bias by considering three confounding variables: larger island size allows more opportunity for geologic preservation of tephras; larger magnitude eruption promotes tephra preservation by creating thicker and more widespread deposits; the comprehensiveness of the tephra sampling of each volcano and island varies widely because of logistical and

  14. Seismicity of the Earth 1900-2007, Kuril-Kamchatka Arc and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Benz, Harley

    2010-01-01

    This map shows details of the Kuril-Kamchatka arc not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. The arc extends about 2,100 km from Hokkaido, Japan, along the Kuril Islands and the pacific coast of the Kamchatka, Russia, peninsula to its intersection with the Aleutian arc near the Commander Islands, Russia. It marks the region where the Pacific plate subducts into the mantle beneath the Okhotsk microplate, a part of the larger North America plate. This subduction is responsible for the generation of the Kuril Islands chain and the deep offshore Kuril-Kamchatka trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that decreases from 83 mm per year at the arc's southern end to 75 mm per year near its northern edge.

  15. Rapid Inflation Caused by Shallow Magmatic Activities at Okmok Volcano, Alaska, Detected by GPS Campaigns 2000-2003

    NASA Astrophysics Data System (ADS)

    Miyagi, Y.; Freymueller, J.; Kimata, F.; Sato, T.; Mann, D.

    2006-12-01

    Okmok volcano is located on Umnak Island in the Aleutian Arc, Alaska. This volcano consists of a large caldera, and there are several post-caldera cones within the caldera. It has erupted more than 10 times during the last century, with the latest eruption occurring in February 1997. Annual GPS campaigns during 2000-2003 have revealed a rapid inflation at Okmok volcano. Surface deformation indicates that Okmok volcano has been inflating during 2000-2003 at a variable inflation rate. Total displacements over three years are as large as 15 cm of maximum radial displacement and more than 35 cm of maximum uplift. Simple inflation pattern after 2001, showing radial outward displacements from the caldera center and significant uplifts, are modeled by a Mogi inflation source, which is located at the depth of about 3.1 km beneath the geometric center of the caldera, and we interpreted the source as a shallow magma chamber. The results from our GPS measurements correspond approximately to the results from InSAR measurement for almost same periods, except for an underestimate of the volume change rate of the source deduced by InSAR data for the period 2002-2003. Taking into consideration the results from InSAR measurements, the amount of volume increase in the source is estimated to be about 0.028 km3 during 1997-2003. This means that 20-54 percent of the volume erupted in the 1997 eruption has been already replenished in the shallow magma chamber. An eruption recurrence time is estimated from the volume change rate of the source to be about 15-30 years for 1997-sized eruptions, which is consistent with about 25 years average time interval between major eruptions at Okmok volcano. An additional modeling using a rectangular tensile source combined to the main spherical source suggests a possibility of other magma storage located between the main source and the active vent, which is associated with lateral magma transportation between them. The combined model improved

  16. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    PubMed

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms. © 2010 Blackwell Publishing Ltd.

  17. Origin, transport, and emplacement of an exotic island-arc terrane exposed in eastern Kamchatka, Russia

    USGS Publications Warehouse

    Geist, Eric L.; Vallier, Tracy L.; Scholl, David W.

    1994-01-01

    consequence of either infra-oceanic transport or coastwise translation is that an open corridor between the western terminus of the Aleutian Arc and Kamchatka must have existed until middle to late Eocene time. Spreading within the Komandorsky Basin, subduction of sea-mounts, and collision of the Aleutian Arc with Kamchatka are proposed to have instigated the second Miocene phase of deformation, which uplifted and reexposed the island-arc terrane.

  18. Sr-Nd-Pb isotope variability across and along the Ecuadorian volcanic arc

    NASA Astrophysics Data System (ADS)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Mouhcine; Hidalgo, Silvana

    2016-04-01

    Determining the contribution of different potential sources in arc magma genesis is of paramount importance for discriminating the role of deep-seated processes at work in the slab and mantle wedge, as well as the process occurring during the magma ascent through the arc crust. The Ecuadorian volcanic arc (2°S - 1°N) results from the subduction of the oceanic Nazca plate below the continental south-American plate. This volcanic province, developed in front of the subducting Carnegie ridge, is characterized by at least 50-60 volcanic centres of Pleistocene-Holocene age, which are distributed along the Western and Eastern Cordilleras and in the back-arc region. Previous studies on this province focused on two main issues: (1) the role of the deep-seated process occurring at the level of the subducting slab and the mantle wedge ([1], [2]), and (2) the role of crustal process ([3]). In this work, we use existing and new (57 samples from 36 volcanoes of the whole Ecuadorian arc) major-trace element and Sr-Nd-Pb isotope data to resolve precisely magma compositional changes occurring across and along the volcanic arc and to precise the role of the heterogeneous crust underlying this arc segment. In the 207Pb/204Pb vs. 206Pb/204Pb diagram, most of Western Cordillera volcanic centres and Back arc volcanoes display a flat trend characterized by a large variation in 206Pb/204Pb (18.5 - 19.15), with little variation in 207Pb/204Pb (15.54-15.62). Along this trend, back arc volcanoes tend towards unradiogenic compositions with Reventador as end-member whereas western cordilleras volcanoes generally show more radiogenic compositions (Pilavo, Imbabura). In contrast, the Eastern cordillera volcanoes display more radiogenic 207Pb/204Pb (15.60 - 15.70) or 208Pb/204Pb (38.7 - 39) at a given 206Pb/204Pb compared to the Western cordillera with similar variation in 206Pb/204Pb (18.85 - 19.05). Extreme compositions are observed at Tungurahua and Antisana volcanoes. Several volcanoes of

  19. Studies of volcanoes of Alaska by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Z.; Wicks, C.; Dzurisin, D.; Thatcher, W.; Power, J.; ,

    2000-01-01

    Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite

  20. Volatile Emissions from Subduction-related Volcanoes: Major and Trace Elements

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Hilton, D. R.

    2003-12-01

    Present-day volatile emissions associated with subduction zone volcanism can be estimated in two ways. One approach is to assume magma production rate at arcs is 20% that of MOR and scale to the MOR 3He flux (1000 mol/yr) to obtain a mantle-derived arc He-3 flux of 200+/-40 mol/yr. This flux and measured gas ratios (xI/3He where xI is the gas species of interest) obtained from volcanic and hydrothermal samples is then used to calculate volatile emissions. A global arc CO2 flux of 0.3 to 3.1 x 1012 mol/yr has been obtained in this way. Another approach is to use individual arc volcano SO2 fluxes (determined by remote sensing) in combination with CO2/SO2 ratios of high temperature fumaroles to calculate volcanic CO2 fluxes. Integrating over an individual arc, and using a power-law distribution to include non-measured volcanoes, it is possible to produce a volatile flux estimate for a particular arc. Summing over all arcs allows a global estimate (e.g. ˜ 1.6 x1012 mol/yr for arc CO2). There are caveats with both methods. In the former case, it is assumed that the mantle wedge is characterized by a similar 3He content to MORB-source. In the latter case, the distribution of SO2 fluxes is decidedly uneven necessitating poorly-justified extrapolations. For example, there is little data available from the I-B-M, Lesser Antilles and Philippines whereas Central American volcanoes have numerous published SO2 fluxes. A further issue (in addition to geographical bias), is the absence of volatile fluxes from submarine arcs. Despite these problems, global estimates of SO2 and CO2 fluxes by both methods vary by only one order of magnitude [1]. It is emphasized that these are present-day estimates as paleo-degassing rates of arc magmas are poorly constrained and depend entirely on estimates of magma intrusion and extrusion rates [2]. The same approach has been used for other species although the flux of magmatic N2, H2O, HCl, HF from arcs remains poorly constrained (N2: ˜ 6 x108

  1. Interactive Volcano Studies and Education Using Virtual Globes

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2006-12-01

    Internet-based virtual globe programs such as Google Earth provide a spatial context for visualization of monitoring and geophysical data sets. At the Alaska Volcano Observatory, Google Earth is being used to integrate satellite imagery, modeling of volcanic eruption clouds and seismic data sets to build new monitoring and reporting tools. However, one of the most useful information sources for environmental monitoring is under utilized. Local populations, who have lived near volcanoes for decades are perhaps one of the best gauges for changes in activity. Much of the history of the volcanoes is only recorded through local legend. By utilizing the high level of internet connectivity in Alaska, and the interest of secondary education in environmental science and monitoring, it is proposed to build a network of observation nodes around local schools in Alaska and along the Aleutian Chain. A series of interactive web pages with observations on a volcano's condition, be it glow at night, puffs of ash, discolored snow, earthquakes, sounds, and even current weather conditions can be recorded, and the users will be able to see their reports in near real time. The database will create a KMZ file on the fly for upload into the virtual globe software. Past observations and legends could be entered to help put a volcano's long-term activity in perspective. Beyond the benefit to researchers and emergency managers, students and teachers in the rural areas will be involved in volcano monitoring, and gain an understanding of the processes and hazard mitigation efforts in their community. K-12 students will be exposed to the science, and encouraged to participate in projects at the university. Infrastructure at the university can be used by local teachers to augment their science programs, hopefully encouraging students to continue their education at the university level.

  2. Clouds off the Aleutian Islands

    NASA Image and Video Library

    2017-12-08

    March 23, 2010 - Clouds off the Aleutian Islands Interesting cloud patterns were visible over the Aleutian Islands in this image, captured by the MODIS on the Aqua satellite on March 14, 2010. Turbulence, caused by the wind passing over the highest points of the islands, is producing the pronounced eddies that swirl the clouds into a pattern called a vortex "street". In this image, the clouds have also aligned in parallel rows or streets. Cloud streets form when low-level winds move between and over obstacles causing the clouds to line up into rows (much like streets) that match the direction of the winds. At the point where the clouds first form streets, they're very narrow and well-defined. But as they age, they lose their definition, and begin to spread out and rejoin each other into a larger cloud mass. The Aleutians are a chain of islands that extend from Alaska toward the Kamchatka Peninsula in Russia. For more information related to this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... For more information about Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html

  3. Monitoring the Sumatra volcanic arc with InSAR

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Hong, S.; Amelung, F.

    2009-12-01

    The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.

  4. Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana

    USGS Publications Warehouse

    Du Bray, E.A.; Harlan, Stephen S.

    1998-01-01

    The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.

  5. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina)

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Hesse, A.; Mandeville, C. W.

    2010-11-01

    Young basaltic back-arc volcanoes occur east of the main Andes chain at about 37.5°-39°S in the Loncopue graben, Province of Neuquen, Argentina. These olivine-rich basalts and trachybasalts have up to 8% MgO, with high Ni and Cr contents, but highly variable incompatible element concentrations. Mafic lava flows and cinder cones at the southern end of the graben lack phenocrystic plagioclase. The northern samples have relative Ta-Nb depletions and K, Pb and LREE enrichment. These samples strongly resemble rocks of the nearby arc volcanoes Copahue and Caviahue, including their Fe-Ti enrichment relative to the main Andes arc rocks. The Sr, Nd and Pb isotope ratios show that the source regions of these back-arc basalts are enriched in subducted components that were depleted in the aqueous mobile elements such as Cs, Sr and Ba as a result of prior extractions from the subducted complex below the main arc. Some mafic flows show slightly low 206Pb/ 204Pb and 143Nd/ 144Nd values as well as incompatible trace element ratios similar to southern Patagonia plateau back-arc basalts, suggesting contributions from an EM1 mantle source. Geothermometry and barometry suggest that the basalts crystallized and fractionated small amounts of olivine and spinel at ˜ 35 km depth at temperatures of 1170-1220 °C, at about QFM + 0.5 to QFM + 1 with 1-2% H 2O, and then rose rapidly to the surface. The Loncopue graben back-arc basalts are transitional in composition between the South Patagonia back-arc plateau basalts and the Caviahue and Copahue arc volcanoes to the northwest. The EM1 source endmember is possibly the subcontinental lithospheric mantle. Strong variations in incompatible element enrichment and isotopic compositions between closely spaced cinder cones and lava flows suggest a heterogeneous mantle source for the Loncopue graben volcanics.

  6. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts

    NASA Astrophysics Data System (ADS)

    Draper, David S.; Johnston, A. Dana

    1992-12-01

    We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10 20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C 1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than ˜12 kbar.

  7. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    PubMed

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  8. Peninsular terrane basement ages recorded by Paleozoic and Paleoproterozoic zircon in gabbro xenoliths and andesite from Redoubt volcano, Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Vazquez, Jorge A.; Wooden, Joseph L.

    2012-01-01

    Historically Sactive Redoubt volcano is an Aleutian arc basalt-to-dacite cone constructed upon the Jurassic–Early Tertiary Alaska–Aleutian Range batholith. The batholith intrudes the Peninsular tectonostratigraphic terrane, which is considered to have developed on oceanic basement and to have accreted to North America, possibly in Late Jurassic time. Xenoliths in Redoubt magmas have been thought to be modern cumulate gabbros and fragments of the batholith. However, new sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages for zircon from gabbro xenoliths from a late Pleistocene pyroclastic deposit are dominated by much older, ca. 310 Ma Pennsylvanian and ca. 1865 Ma Paleoproterozoic grains. Zircon age distributions and trace-element concentrations indicate that the ca. 310 Ma zircons date gabbroic intrusive rocks, and the ca. 1865 Ma zircons also are likely from igneous rocks in or beneath Peninsular terrane basement. The trace-element data imply that four of five Cretaceous–Paleocene zircons, and Pennsylvanian low-U, low-Th zircons in one sample, grew from metamorphic or hydrothermal fluids. Textural evidence of xenocrysts and a dominant population of ca. 1865 Ma zircon in juvenile crystal-rich andesite from the same pyroclastic deposit show that this basement has been assimilated by Redoubt magma. Equilibration temperatures and oxygen fugacities indicated by Fe-Ti–oxide minerals in the gabbros and crystal-rich andesite suggest sources near the margins of the Redoubt magmatic system, most likely in the magma accumulation and storage region currently outlined by seismicity and magma petrology at ∼4–10 km below sea level. Additionally, a partially melted gabbro from the 1990 eruption contains zircon with U-Pb ages between ca. 620 Ma and ca. 1705 Ma, as well as one zircon with a U-Th disequilibrium model age of 0 ka. The zircon ages demonstrate that Pennsylvanian, and probably Paleoproterozoic, igneous rocks exist in, or possibly beneath, Peninsular

  9. Tsunami recurrence in the eastern Alaska-Aleutian arc: A Holocene stratigraphic record from Chirikof Island, Alaska

    USGS Publications Warehouse

    Nelson, Alan R.; Briggs, Richard; Dura, Tina; Engelhart, Simon E.; Gelfenbaum, Guy; Bradley, Lee-Ann; Forman, S.L.; Vane, Christopher H.; Kelley, K.A.

    2015-01-01

    Despite the role of the Alaska-Aleutian megathrust as the source of some of the largest earthquakes and tsunamis, the history of its pre–twentieth century tsunamis is largely unknown west of the rupture zone of the great (magnitude, M 9.2) 1964 earthquake. Stratigraphy in core transects at two boggy lowland sites on Chirikof Island’s southwest coast preserves tsunami deposits dating from the postglacial to the twentieth century. In a 500-m-long basin 13–15 m above sea level and 400 m from the sea, 4 of 10 sandy to silty beds in a 3–5-m-thick sequence of freshwater peat were probably deposited by tsunamis. The freshwater peat sequence beneath a gently sloping alluvial fan 2 km to the east, 5–15 m above sea level and 550 m from the sea, contains 20 sandy to silty beds deposited since 3.5 ka; at least 13 were probably deposited by tsunamis. Although most of the sandy beds have consistent thicknesses (over distances of 10–265 m), sharp lower contacts, good sorting, and/or upward fining typical of tsunami deposits, the beds contain abundant freshwater diatoms, very few brackish-water diatoms, and no marine diatoms. Apparently, tsunamis traveling inland over low dunes and boggy lowland entrained largely freshwater diatoms. Abundant fragmented diatoms, and lake species in some sandy beds not found in host peat, were probably transported by tsunamis to elevations of >10 m at the eastern site. Single-aliquot regeneration optically stimulated luminescence dating of the third youngest bed is consistent with its having been deposited by the tsunami recorded at Russian hunting outposts in 1788, and with the second youngest bed being deposited by a tsunami during an upper plate earthquake in 1880. We infer from stratigraphy, 14C-dated peat deposition rates, and unpublished analyses of the island’s history that the 1938 tsunami may locally have reached an elevation of >10 m. As this is the first record of Aleutian tsunamis extending throughout the Holocene, we

  10. Numerical Tsunami Hazard Assessment of the Only Active Lesser Antilles Arc Submarine Volcano: Kick 'em Jenny.

    NASA Astrophysics Data System (ADS)

    Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.

    2015-12-01

    The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs <1 as compared to areas of deficit/surplus of mass/volume identified on the volcanic edifice using (VolcanoFit 2

  11. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    NASA Astrophysics Data System (ADS)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  12. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  13. Overview for geologic field-trip guides to Mount Mazama, Crater Lake Caldera, and Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Wright, Heather M.

    2017-08-16

    These field-trip guides were written for the occasion of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial scientific assembly in Portland, Oregon, in August 2017. The guide to Mount Mazama and Crater Lake caldera is an updated and expanded version of the guide (Bacon, 1989) for part of an earlier IAVCEI trip to the southern Cascade Range. The guide to Newberry Volcano describes the stops included in the 2017 field trip. Crater Lake and Newberry are the two best-preserved and most recent calderas in the Cascades Volcanic Arc. Although located in different settings in the arc, with Crater Lake on the arc axis and Newberry in the rear-arc, both volcanoes are located at the intersection of the arc and the northwest corner region of the extensional Basin and Range Province.

  14. High-Ca Boninites From the Modern Tonga Arc

    NASA Astrophysics Data System (ADS)

    Cooper, L. B.; Plank, T.; Arculus, R. J.; Hauri, E. H.; Worthington, T. J.

    2007-12-01

    High-Ca boninites are volcanic rocks with unusual compositions (SiO2>53 wt%, Mg#>0.6, CaO/Al2O3>0.75) found in forearcs and trenches, continental cratons, and ophiolites. Generation of high-Ca boninites requires a combination of refractory mantle sources, elevated mantle temperatures and the addition of hydrous fluids. To satisfy these conditions, petrogenetic models invoke unusual tectonic settings such as subduction initiation, ridge subduction, or mantle plume interaction. We have discovered high-Ca boninites from an active arc volcano, Volcano A, a submarine volcano in the Tonga arc dredged during the NoToVE cruise in Nov 2004. Multi-beam sonar images of two pristine volcanic cones and glassy samples lacking Mn coatings suggest that these edifices were formed by modern volcanism. The boninites are represented in both the whole rock and melt inclusion populations of a sample dredged from a ridge on the northern flank of the northern cone. Similarities in the major element compositions of the largely aphyric whole rock and the glassy melt inclusions support both as samples of true boninitic liquids (MgO>9 wt%). These liquids are related by coupled crystal fractionation (from Fo92 to Fo85 in olivine hosts) and degassing (from 4 to 1 wt% H2O in the melt inclusions). Three other dredges from Volc A include whole rocks, glass, and melt inclusions that are related to the boninites by crystal fractionation. Taken together, the samples from Volc A represent a suite of boninites and their differentiates, forming a coherent liquid line of descent with parallel whole rock REE patterns which become more enriched with decreasing Mg#. The REE patterns for Volc A whole rocks are depleted in LREE, however, in contrast to the characteristic U-shaped REE patterns of classic boninites. Volc A is only the second example of boninites being erupted in an active volcanic arc, the first being Bamus volcano in New Britain (Johnson et al., Geol. Rund., 1983). Volc A is not remarkable in

  15. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  16. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  17. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  18. Warm storage for arc magmas

    PubMed Central

    Barboni, Mélanie; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-01-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes. PMID:27799558

  19. Three-dimensional inversion of regional P and S arrival times in the East Aleutians and sources of subduction zone gravity highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abers, G.A.

    1994-03-10

    Free-air gravity highs over forearcs represent a large fraction of the power in the Earth`s anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivalsmore » for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25 - 0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m{sup {minus}3})/(km s{sup {minus}1}), when a 50-km-thick slab is included with a density of 0.055{+-}0.005 Mg m{sup {minus}3}. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed.« less

  20. Precursory deformation and depths of magma storage revealed by regional InSAR time series surveys: example of the Indonesian and Mexican volcanic arcs

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2012-12-01

    Despite the threat posed to millions of people living in the vicinity of volcanoes, only a fraction of the worldwide ~800 potentially active arc volcanoes have geodetic monitoring. Indonesian and Mexican volcanoes are sparsely monitored with ground-based methods but especially dangerous, emphasizing the need for remote sensing monitoring. In this study we take advantage of over 1200 ALOS InSAR images to survey the entire west Sunda and Mexican volcanic arcs, covering a total of 500 000 km2. We use 2 years of data to monitor the background activity of the Indonesian arc, and 4 years of data at four volcanic edifices (Sinabung, Kerinci, Merapi, and Agung), as well as 4 years of data to survey the Mexican arc. We derive time-dependent ground deformation data using the Small Baseline technique with DEM error correction. We detect seven volcanoes with significant deformation in the west-Sunda arc: six inflating volcanoes (Sinabung, Kerinci, Slamet, Lawu, Lamongan, and Agung) and one deflating volcano (Anak Krakatau). Three of the six inflating centers erupted during or after the observation period. We detect inflation prior to Sinabung's first Holocene eruption in September 2010, followed by a small deflation of the summit area. A similar signal is observed at Kerinci before and after its April 2009 eruption. We also detect uplift prior to Slamet's eruption in April 2009. Agung, in Bali, whose last eruption was in 1964, has been inflating steadily between mid 2007 and early 2009, followed by a period with little deformation until mid-2011. Inflation not followed by eruption is also observed at Lamongan and Lawu, both historically active centers. The close relation between periods of activity and observed deformation suggests that edifice inflation is of magmatic origin and represents the pressurization of reservoirs caused by ascent of new magma. We model the observed deformation and show that the seven deforming Indonesian volcanoes have shallow magma reservoirs at ~1

  1. A bird's eye view of "Understanding volcanoes in the Vanuatu arc"

    NASA Astrophysics Data System (ADS)

    Vergniolle, S.; Métrich, N.

    2016-08-01

    The Vanuatu intra-oceanic arc, located between 13 and 22°S in the southwest Pacific Ocean (Fig. 1), is one of the most seismically active regions with almost 39 earthquakes magnitude 7 + in the past 43 years (Baillard et al., 2015). Active deformation in both the Vanuatu subduction zone and the back-arc North-Fiji basin accommodates the variation of convergence rates which are c.a. 90-120 mm/yr along most of the arc (Taylor et al., 1995; Pelletier et al., 1998). The convergence rate is slowed down to 25-43 mm/yr (Baillard et al., 2015) in the central segment where the D'Entrecasteaux ridge - an Eocene-Oligocene island arc complex on the Australian subducting plate - collides and is subducted beneath the fore-arc (Taylor et al., 2005). Hence, the Vanuatu arc is segmented in three blocks which move independently; as the north block rotates counter-clockwise in association with rapid back-arc spreading ( 80 mm/year), the central block translates eastward and the south block rotates clockwise (Calmant et al., 2003; Bergeot et al., 2009). (See Fig. 1.)

  2. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  3. The Keelung Submarine volcanoes and gas plumes in the nearshore of northern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Tsia, C. H.; Hsu, S. K.; Lin, S. S.

    2016-12-01

    Taiwan is located in the collision zone between Philippine Sea Plate and Eurasian Plate. The Philippine Sea Plate subducts northward beneath the Ryukyu arc system while the Eurasian Plate subducts eastward beneath the Luzon arc system. The Taiwan mountain building started at 9 My ago and the most active collision has migrated to middle Taiwan. In consequence, the northern Taiwan has changed its stress pattern from forms a series of thrust faults to normal faults. The stress pattern change has probably induced the post-collisional extension and volcanism in and off northern Taiwan. Under such a tectonic environment, the volcanism and gas plumes are widespread in northern Taiwan and its offshore area. Among the volcanoes of the northern Taiwan volcanic zone, the Tatun Volcano Group is the most obvious one. In this study, we use sub-bottom profiler, EK500 echo sounder, and multibeam echo sounder to study the geophysical structure of a submarine volcano in the nearshore of northern Taiwan. We have analyzed the shallow structures and identified the locations of the gas plumes. The identification of the gas plumes can help us understand the nature of the submarine volcano. Our results show that the gas plumes appear near the Kanchiao Fault and Keelung islet. Some intrusive volcanoes can be observed in the subbottom profiler data. Finally, according to the observations, we found that the Keelung Submarine Volcano is still active. We need the monitor of the active Keelung Submarine Volcano to avoid the volcanic hazard. Additionally, we need to pay attention to the earthquakes related to the Keelung Submarine Volcano.

  4. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    NASA Astrophysics Data System (ADS)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  5. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slidesmore » and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.« less

  6. Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users

    USGS Publications Warehouse

    Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward

    2008-01-01

    Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.

  7. NOAA Deepwater Exploration of the Marianas 2016: Volcanic arc and Backarc Basin

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Brounce, M. N.; Chadwick, B.; Fryer, P. B.; Glickson, D.; Merle, S. G.

    2016-12-01

    Legs 1 and 3 of NOAA Okeanos Explorer EX1605 devoted a total of 17 ROV dives to exploring the Mariana magmatic arc and backarc basin (BAB). Dives were carried out on 11 submarine arc volcanoes, the submerged slopes of two volcanic islands, and at 3 BAB sites along 1000 km of the Mariana arc system. Four of the studied arc volcanoes are extinct, three are dormant, and six are active. All BAB dives were on the spreading ridge between 15-17°N, which is volcanically active. Geologic highpoints of these dives include: 1) discovery of an extinct hydrothermal chimney ( 15m tall) in Fina Nagu A (Leg 1, Dive 7; L1D7); 2) observations of very fresh (<3 years old) BAB pillow basalts (L1D9); 3) discovery of a very active BAB hydrothermal field (T 340°C, active chimneys up to 30m tall; L1D11); 4) examination of Esmeralda Bank crater floor (active venting but too murky to find vents; L1D19); 5) discovery of hydrothermal vents with vent fauna on Chamorro volcano (L3D7; T 30°C, active chimneys 2m tall); and 6) examination of active venting and S degassing at 500-350 m depth on Daikoku volcano (L3D9). Video clips of some of the most exciting discoveries and examinations will be presented. We plan to compare previous bathymetry over the active volcanoes with what was collected during EX1605 to quantify how these edifices have changed since when these were previously mapped, over the past 13 years or less. These dives also provided visual evidence in support of the hypothesis that individual edifices of the Fina Nagu Volcanic Complex increase in age from NE to SW, interpreted as due to the motion of actively-extending lithosphere of the southern Mariana BAB to the SW over a relatively fixed source of arc magma above the subducting Pacific plate (Brounce et al. G3 2016). Continuous interaction between biologists and geologists on EX1605 allowed us to identify regions of high faunal density on hard substrates around some active volcanoes, for example Esmeralda Bank, presumably

  8. Geology of Medicine Lake Volcano, Northern California Cascade Range

    USGS Publications Warehouse

    Donnelly-Nolan, Julie

    1990-01-01

    Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

  9. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc

    PubMed Central

    Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-01-01

    Abstract This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely‐operated vehicle that were analyzed for major element, trace element and Sr‐Nd‐Hf‐Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave‐bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52–60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206Pb/204Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field. PMID:27917071

  10. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc.

    PubMed

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO 2 , 4.2 wt.% K 2 O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO 2 ). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206 Pb/ 204 Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  11. Parvovirus-associated syndrome (Aleutian disease) in two ferrets.

    PubMed

    Palley, L S; Corning, B F; Fox, J G; Murphy, J C; Gould, D H

    1992-07-01

    There is a paucity of information regarding natural Aleutian disease, caused by a parvovirus in ferrets. With the increasing popularity of ferrets as household pets and laboratory animals, and with the advent of a USDA-approved rabies vaccine, the occurrence and the etiopathogenesis of naturally acquired diseases in ferrets needs to be documented. We present the clinical and laboratory findings associated with Aleutian disease in 2 domestic ferrets, one with the chronic wasting form of the disease and one with the central nervous system form.

  12. Molecular genetic status of Aleutian Canada Geese from Buldir and the Semidi Islands, Alaska

    USGS Publications Warehouse

    Pierson, Barbara J.; Pearce, John M.; Talbot, Sandra L.; Shields, Gerald F.; Scribner, Kim T.

    2000-01-01

    We conducted genetic analyses of Aleutian Canada Geese (Branta canadensis leucopareia) from Buldir Island in the western Aleutians and the Semidi Islands in the eastern portion of their breeding range. We compared data from seven microsatellite DNA loci and 143 base pairs of the control region of mitochondrial DNA from the two populations of Aleutian Canada Geese and another small-bodied subspecies, the Cackling Canada Goose (B. c. minima) which nests in western Alaska. The widely separated island-nesting Aleutian geese were genetically more closely related to each other than to mainland-nesting small-bodied geese. The populations of Aleutian geese were genetically differentiated from one another in terms of mitochondrial DNA haplotype and microsatellite allele frequencies, suggesting limited contemporary gene flow and/or major shifts in gene frequency through genetic drift. The degree of population genetic differentiation suggests that Aleutian Canada Goose populations could be considered separate management units. There was some evidence of population bottlenecks, although we found no significant genetic evidence of non-random mating or inbreeding.

  13. Alaska Volcano Observatory's satellite remote sensing of the Okmok and Kasatochi 2008 eruptions

    NASA Astrophysics Data System (ADS)

    Dean, K.; Webley, P. W.; Lovick, J.; Puchrik, R.; Bailey, J. E.; Dehn, J.; Valcic, L.

    2008-12-01

    In July and August 2008, Okmok and Kasatochi volcanoes erupted explosively, both sending ash clouds up to 15 km above sea level (ASL). Okmok volcano last showed signs of volcanic activity in 1997 and Kasatochi in 1899, and then only with suggested steaming. Prior to erupting neither eruption showed any thermal precursors in infrared satellite data, as is common for Aleutian volcanoes. Okmok volcano (53.4 N, 168.2 W, 1073 m ASL) erupted on July 12 at 19:43 UTC, with a phreatomagmatic eruption and within a few hours the ash cloud had reached several 100 km from the volcano. The initial ash cloud reached 16 km ASL, effecting air traffic in the region and caused evacuations of local communities. By July 13, the eruption showed a bifurcated plume with the ash portions at lower elevations than the water rich portion. Kasatochi volcano (52.17 N, 175.51 W, 314 m ASL) erupted on August 7 at approx 22:00 UTC, with two more explosive events on August 8 at 02:00 and 04:35 UTC. The initial plume heights for these events were from 12 to 15 km ASL. From August 7 to 11, the volcanic ash cloud was seen to track across the northeastern portion of the Pacific Ocean and in combination with the sulfur dioxide detected cloud and dispersion modeling predictions resulted in cancellations of numerous flights into Alaska. Here, we show the remote sensing data collected during these two volcanic eruptions, illustrating the strength of the ash signal during the Kasatochi event and also the effect the water rich plume had on the ash detection during the beginning of the Okmok eruption.

  14. Relative velocity changes using ambient seismic noise at Okmok and Redoubt volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Haney, M. M.; De Angelis, S.; Thurber, C. H.

    2013-12-01

    Okmok and Redoubt are two of the most active volcanoes in the Aleutian Arc. Leading up to its most recent eruption, Okmok, a shield volcano on Umnak Island, showed precursors to volcanic activity only five hours before it erupted explosively in July 2008. Redoubt, a stratovolcano located along the Cook Inlet, displayed several months of precursory activity leading up to its March 2009 eruption. Frequent activity at both volcanoes poses a major hazard due to heavy traffic along the North Pacific air routes. Additionally, Okmok is adjacent to several of the world's most productive fisheries and Redoubt is located only 110 miles SW of Anchorage, the major population center of Alaska. For these reasons, it is imperative that we improve our ability to detect early signs of unrest, which could potentially lead to eruptive activity at these volcanoes. We take advantage of continuous waveforms recorded on seismic networks at Redoubt and Okmok in an attempt to identify seismic precursors to the recent eruptions at both volcanoes. We perform seismic interferometry using ambient noise, following Brenguier et al. (2008), in order to probe the subsurface and determine temporal changes in relative seismic velocity from pre- through post-eruption, for the 2008 Okmok and 2009 Redoubt eruptions. In a preliminary investigation, we analyzed 6 months of noise cross-correlation functions averaged over 10-day intervals leading up to the 2009 eruption at Redoubt. During February 2009, station pairs RSO-DFR and RDN-RSO showed a decrease in seismic velocity of ~0.02%. By the beginning of March, the relative velocity changes returned to background levels. Stations RSO and RDN are located within the summit breach, and station DFR is to the north. Although these results are preliminary, it is interesting to note that the decrease in seismic velocity at both station pairs overlaps with the time period when Grapenthin et al. (2012) hypothesize magma in the mid-to-deep crustal reservoir was

  15. History of earthquakes and tsunamis along the eastern Aleutian-Alaska megathrust, with implications for tsunami hazards in the California Continental Borderland

    USGS Publications Warehouse

    Ryan, Holly F.; von Huene, Roland E.; Wells, Ray E.; Scholl, David W.; Kirby, Stephen; Draut, Amy E.; Dumoulin, Julie A.; Dusel-Bacon, C.

    2012-01-01

    the trench. Large slip on the updip part of the eastern Aleutian-Alaska megathrust is a viable possibility owing to the small frontal accretionary prism and the presence of arc basement relatively close to the trench along most of the megathrust.

  16. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170 Section 7.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the...

  17. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170 Section 7.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the...

  18. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170 Section 7.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the...

  19. Identifying potential habitat for the endangered Aleutian shield fern using topographical characteristics

    USGS Publications Warehouse

    Duarte, Adam; Wolcott, Daniel M.; Chow, T. Edwin

    2012-01-01

    The Aleutian shield fern Polystichum aleuticum is endemic to the Aleutian archipelago of Alaska and is listed as endangered pursuant to the U.S. Endangered Species Act. Despite numerous efforts to discover new populations of this species, only four known populations are documented to date, and information is needed to prioritize locations for future surveys. Therefore, we incorporated topographical habitat characteristics (elevation, slope, aspect, distance from coastline, and anthropogenic footprint) found at known Aleutian shield fern locations into a Geographical Information System (GIS) model to create a habitat suitability map for the entirety of the Andreaonof Islands. A total of 18 islands contained 489.26 km2 of highly suitable and moderately suitable habitat when weighting each factor equally. This study reports a habitat suitability map for the endangered Aleutian shield fern using topographical characteristics, which can be used to assist current and future recovery efforts for the species.

  20. Geological constraints on continental arc activity since 720 Ma: implications for the link between long-term climate variability and episodicity of continental arcs

    NASA Astrophysics Data System (ADS)

    Cao, W.; Lee, C. T.

    2016-12-01

    Continental arc volcanoes have been suggested to release more CO2 than island arc volcanoes due to decarbonation of wallrock carbonates in the continental upper plate through which the magmas traverse (Lee et al., 2013). Continental arcs may thus play an important role in long-term climate. To test this hypothesis, we compiled geological maps to reconstruct the surface distribution of granitoid plutons and the lengths of ancient continental arcs. These results were then compiled into a GIS framework and incorporated into GPlates plate reconstructions. Our results show an episodic nature of global continental arc activity since 720 Ma. The lengths of continental arcs were at minimums during most of the Cryogenian ( 720-670 Ma), the middle Paleozoic ( 460-300 Ma) and the Cenozoic ( 50-0 Ma). Arc lengths were highest during the Ediacaran ( 640-570 Ma), the early Paleozoic ( 550-430 Ma) and the entire Mesozoic with peaks in the Early Triassic ( 250-240 Ma), Late Jurassic-Early Cretaceous ( 160-130 Ma), and Late Cretaceous ( 90-65 Ma). The extensive continental arcs in the Ediacaran and early Paleozoic reflect the Pan-African events and circum-Gondwana subduction during the assembly of the Gondwana supercontinent. The Early Triassic peak is coincident with the final closure of the paleo-Asian oceans and the onset of circum-Pacific subduction associated with the assembly of the Pangea supercontinent. The Jurassic-Cretaceous peaks reflect the extensive continental arcs established in the western Pacific, North and South American Cordillera, coincident with the initial dispersal of the Pangea. Continental arcs are favored during the final assembly and the early-stage dispersal of a supercontinent. Our compilation shows a temporal match between continental arc activity and long-term climate at least since 720 Ma. For example, continental arc activity was reduced during the Cryogenian icehouse event, and enhanced during the Early Paleozoic and Jurassic-Cretaceous greenhouse

  1. Magmagenesis at Soufriere volcano St Vincent, Lesser Antilles Arc

    USGS Publications Warehouse

    Heath, E.; Macdonald, R.; Belkin, H.; Hawkesworth, C.; Sigurdsson, Haraldur

    1998-01-01

    Soufriere volcano of St Vincent (3 wt %, whereas various projections onto phase diagrams are more consistent with relatively anhydrous magmas. Primary magmas at Soufriere were generated by around 15% melting of mid-ocean ridge basalt type mantle sources which had been modified by addition of fluids released from the slab containing contributions from subducted sediments and mafic crust.

  2. Mercury and Iodine systematics of volcanic arc fluids

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Kading, T.; Fehn, U.; Lu, Z.

    2008-12-01

    The mantle has low Mercury and Iodine concentrations, but these elements occur in volcanic gases and hydrothermal fluids at ppb (Hg) and ppm (Iodine) levels. Possibly, the Hg and Iodine concentrations in volcanic fluids reflect subducted sediment sources in arc magmas. Iodine is a biophilic element, and I129/I values indicate that subducted sediment (especially organic matter) is an important Iodine source for arc magmas. It is uncertain if this is true for Hg as well, although in the surface environment Hg is commonly associated with organic matter. We present 60 new analyses of Hg and I in fluids from volcanoes in Central America, New Zealand, Japan, and the Cascades. A first assessment suggests that Iodine is released to some degree in the early stage of subduction in the forearc, whereas Hg may be released largely below the main volcanic arc. Isotope and trace element signatures of volcanic rocks of the investigated volcanoes show no simple correlation with Hg or Iodine abundances. The acid hot spring fluids of Copahue volcano (Argentina) carried ~ 200 ppt Hg in January 1999, ~80 ppt Hg in March 2008, and 90 ppt Hg in the crater lake in March 1997. The dissolved Hg fluxes from the Copahue hydrothermal system are ~300 gr Hg/year in 1999 and ~130 gr Hg/year in 2008. The bulk hydrothermal Hg flux (particle bound+dissolved) in 2008 was ~ 350 gr Hg/year. The potential Mercury evasion from these hydrothermal spring fluids into the air has not yet been incorporated in these estimates.

  3. Geochemical constraints on volatile sources and subsurface conditions at Mount Martin, Mount Mageik, and Trident Volcanoes, Katmai Volcanic Cluster, Alaska

    NASA Astrophysics Data System (ADS)

    Lopez, T.; Tassi, F.; Aiuppa, A.; Galle, B.; Rizzo, A. L.; Fiebig, J.; Capecchiacci, F.; Giudice, G.; Caliro, S.; Tamburello, G.

    2017-11-01

    contamination by shallow crustal fluids is inferred for Trident. The isotopic composition of volcanic gases emitted from Mount Mageik and Trident reflect mixing of subducted slab, mantle and crustal volatile sources, with organic sediment and carbonate being the predominant sources. Considering the close proximity of the target volcanoes in comparison with the depth to the subducted slab we speculate that Aleutian Arc volatiles are fed by a relatively homogeneous subducted fluid and that much of the apparent variability in volatile provenance can be explained by shallow crustal volatile sources and/or processes.

  4. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    USGS Publications Warehouse

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (<9.4ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and

  5. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data

  6. Volcano hazards at Fuego and Acatenango, Guatemala

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  7. Computer-Aided Discovery Tools for Volcano Deformation Studies with InSAR and GPS

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Pilewskie, J.; Rude, C. M.; Li, J. D.; Gowanlock, M.; Bechor, N.; Herring, T.; Wauthier, C.

    2016-12-01

    We present a Computer-Aided Discovery approach that facilitates the cloud-scalable fusion of different data sources, such as GPS time series and Interferometric Synthetic Aperture Radar (InSAR), for the purpose of identifying the expansion centers and deformation styles of volcanoes. The tools currently developed at MIT allow the definition of alternatives for data processing pipelines that use various analysis algorithms. The Computer-Aided Discovery system automatically generates algorithmic and parameter variants to help researchers explore multidimensional data processing search spaces efficiently. We present first application examples of this technique using GPS data on volcanoes on the Aleutian Islands and work in progress on combined GPS and InSAR data in Hawaii. In the model search context, we also illustrate work in progress combining time series Principal Component Analysis with InSAR augmentation to constrain the space of possible model explanations on current empirical data sets and achieve a better identification of deformation patterns. This work is supported by NASA AIST-NNX15AG84G and NSF ACI-1442997 (PI: V. Pankratius).

  8. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia; Risso, Corina; Orgeira, María Julia; Nullo, Francisco; Sigismondi, Mario E.; Margonari, Liliana

    2017-08-01

    The Plio-Pleistocene Llancanelo volcanic field is located in the south-eastern region of the province of Mendoza, Argentina. This wide back-arc lava plateau, with hundreds of monogenetic pyroclastic cones, covers a large area behind the active Andean volcanic arc. Here we focus on the northern Llancanelo volcanic field, particularly in Las Bombas volcano. Las Bombas volcano is an eroded, but still recognizable, scoria cone located in a circular depression surrounded by a basaltic lava flow, suggesting that Las Bombas volcano was there when the lava flow field formed and, therefore, the lava flow engulfed it completely. While this explanation seems reasonable, the common presence of similar landforms in this part of the field justifies the need to establish correctly the stratigraphic relationship between lava flow fields and these circular depressions. The main purpose of this research is to investigate Las Bombas volcano 3D subsurface architecture by means of geophysical methods. We carried out a paleomagnetic study and detailed topographic, magnetic and gravimetric land surveys. Magnetic anomalies of normal and reverse polarity and paleomagnetic results point to the occurrence of two different volcanic episodes. A circular low Bouguer anomaly was detected beneath Las Bombas scoria cone indicating the existence of a mass deficit. A 3D forward gravity model was constructed, which suggests that the mass deficit would be related to the presence of fracture zones below Las Bombas volcano cone, due to sudden degassing of younger magma beneath it, or to a single phreatomagmatic explosion. Our results provide new and detailed information about Las Bombas volcano subsurface architecture.

  9. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L.

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench.more » The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.« less

  10. Geodetic Measurements and Numerical Modeling of the Deformation Cycle for Okmok Volcano, Alaska: 1993-2008

    NASA Astrophysics Data System (ADS)

    Ohlendorf, S. J.; Feigl, K.; Thurber, C. H.; Lu, Z.; Masterlark, T.

    2011-12-01

    Okmok Volcano is an active caldera located on Umnak Island in the Aleutian Island arc. Okmok, having recently erupted in 1997 and 2008, is well suited for multidisciplinary studies of magma migration and storage because it hosts a good seismic network and has been the subject of synthetic aperture radar (SAR) images that span the recent eruption cycle. Interferometric SAR can characterize surface deformation in space and time, while data from the seismic network provides important information about the interior processes and structure of the volcano. We conduct a complete time series analysis of deformation of Okmok with images collected by the ERS and Envisat satellites on more than 100 distinct epochs between 1993 and 2008. We look for changes in inter-eruption inflation rates, which may indicate inelastic rheologic effects. For the time series analysis, we analyze the gradient of phase directly, without unwrapping, using the General Inversion of Phase Technique (GIPhT) [Feigl and Thurber, 2009]. This approach accounts for orbital and atmospheric effects and provides realistic estimates of the uncertainties of the model parameters. We consider several models for the source, including the prolate spheroid model and the Mogi model, to explain the observed deformation. Using a medium that is a homogeneous half space, we estimate the source depth to be centered at about 4 km below sea level, consistent with the findings of Masterlark et al. [2010]. As in several other geodetic studies, we find the source to be approximately centered beneath the caldera. To account for rheologic complexity, we next apply the Finite Element Method to simulate a pressurized cavity embedded in a medium with material properties derived from body wave seismic tomography. This approach allows us to address the problem of unreasonably large pressure values implied by a Mogi source with a radius of about 1 km by experimenting with larger sources. We also compare the time dependence of the

  11. Nonlinear partitioning of OH between Ca-rich plagioclase and arc basaltic melt

    NASA Astrophysics Data System (ADS)

    Hamada, M.; Ushioda, M.; Takahashi, E.

    2011-12-01

    The hydrogen in nominally anhydrous minerals (NAMs) is becoming a new proxy for dissolved H2O in silicate melts. Plagioclase is one of the NAMs which accommodates hydrogen as OH. Here, we report experimental results on the partitioning of OH between Ca-rich plagioclase and arc basaltic melt. We carried out hydrous melting experiments of arc basaltic magma at 350 MPa using an internally-heated pressure vessel. Starting material was hydrous glass (0.8 wt.%≦H2O≦4.5 wt.%) of an undifferentiated rock from Miyakejima volcano, a frontal-arc volcano in Izu-arc (MTL rock: 50.5% SiO2, 18.1% Al2O3, 4.9% MgO). A grain of Ca-rich plagioclase (≈ 1 mg, about An95, FeOt ≈ 0.5 wt.%) and ≈ 10 mg of powdered glasses were sealed in Au80Pd20 alloy capsule and kept at around the liquidus temperature. Liquidus phase of MTL rock at 350 MPa is always plagioclase with 0 to 4.5 wt.% H2O in melt, and therefore, a grain of plagioclase and hydrous melt are nearly in equilibrium. Oxygen fugacity during the melting experiments was not controlled; the estimated oxygen fugacity was 3 log unit above Ni-NiO buffer. Experiments were quenched after 24-48 hours. Concentrations of H2O in melt and concentration of OH in plagioclase were analyzed by infrared spectroscopy. Obtained correlation between H2O concentration in melt and OH concentration in plagioclase is nonlinear; partition coefficient in molar basis is ≈ 0.01 with low H2O in melt (≤ 1 wt.%), while it decreases down to ≈ 0.005 with increasing H2O in melt (Fig.1). The OH concentration of Ca-rich plagioclase (about An90) from the 1986 summit eruption of Izu-Oshima volcano, also a frontal-arc volcano in Izu arc, shows variation ranging from <50 ppm H2O through 300 ppm H2O as a result of polybaric degassing (Hamada et al. 2011, EPSL 308, 259-266). Melting experiments of hydrous basalts constrained that An90 plagioclase crystallizes form H2O-rich melt (up to 6 wt.% H2O). In consistent with previous studies, our experiments demonstrate

  12. 75 FR 38940 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    .... 0910131363-0087-02] RIN 0648-XX17 Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands Subarea of the Bering Sea and Aleutian Islands Management Area AGENCY: National... Islands subarea of the Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to...

  13. Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.

    2017-12-01

    Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high

  14. Incorporation of crust at the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.; Bezard, R. C.

    2012-12-01

    Most convergent margin magmas exhibit geochemical characteristics of continental crust, incorporated via subduction of continental sediment into the arc source (mantle wedge) or via assimilation of continental crust by arc magmas en route to surface. Resolving which of these processes dominate at a given arc is important in avoiding the circularity of the question of the origin of the continental crust. The Lesser Antilles is built on oceanic lithosphere so in principle any crustal signature has been introduced via sediment subduction. Geochemical variations in magmas along the arc have been matched with the variations displayed in sediments outboard of the trench 1 . At about the same time, similarly comprehensive data sets were produced from along the Lesser Antilles, arguing that much of the geochemical diversity reflected crustal contamination rather than source contamination 2. These claims were based on; 1) correlations between isotopic ratios and indices of differentiation, 2) high delta18O, which argues for extensive interaction with material that has interacted with water at low T and finally the observation that the highest Pb isotope ratios in the lavas actually exceed the highest seen in the sediments. The latter problem has now been solved since a wider range of sediments have now been examined, with a section of black shales exhibiting remarkably radiogenic Pb isotopes 3 . We have re-examined the origin of geochemical variations by comparing two specific volcanoes, Mt Pelee in the centre of the arc and The Quill in the north 4. The idea is to explore differentiation trends at a given volcano, and back project them to reasonable primitive magma compositions. In that way we can account for geochemical effects resulting from differentiation, and focus on source variations (contributions from slab to wedge along the Antilles). From this we conclude that 1) both suites differentiate largely by amphibole-plag fractionation, along with contamination by the

  15. 78 FR 15677 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ...-BC25 Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab... Amendment 42 to the Fishery Management Plan for Bering Sea/Aleutian Islands King and Tanner Crabs (FMP) for... economic zone of the Bering Sea and Aleutian Islands (BSAI) are managed under the FMP. The FMP was prepared...

  16. Exploring Paleoclimatic and -Oceanographic Consequences for Arctic Beringia by the Eocene Formation and Progressive E-W Lengthening of the Aleutian Ridge (arc) Across the North Pacific Basin

    NASA Astrophysics Data System (ADS)

    Scholl, D. W.

    2013-12-01

    INTRODUCTION: During the past ~50 Myr, magmatic growth of the offshore Aleutian Ridge (AR) or arc and its progressive tectonic lengthening to the west cordoned off the NW corner of the Pacific Basin to formed the deep water (3000-4000 m), marginal sea of the Bering Sea Basin (BSB). Cordoning continuously altered the paths, depths, and locations of water-exchange passes controlling the circulation of waters between the north Pacific and the Bering Sea (BS), and, via the fixed Bering Strait, that entering the Pacific sector of the Arctic Basin. PRESENT PATTERN OF PACIFIC-BERING-ARCTIC WATER EXCHANGE: Cool, low salinity water of the Alaska Stream flowing west along the Pacific side of the AR crosses northward into the BS via tectonically controlled, inter-island passes. The largest volume (~9 SV) enters near the western end of the AR via Near Pass. Flow turns back to the east and CCW northward over the BSB. Surface water exits southward around the western end of the AR through the far western, deep-water (~4000 m) pass of Kamchatka Strait. Because water salinity is low, vertical thermohaline circulation (THC) does not occur over the BSB. However, the deposition of the larger Meiji Drift body, which is charged with Bering-sourced, detritus, on the Pacific side of Kamchatka Strait implies THC may have occurred in the past. Deep-water circulation is presently linked to the inflow of Pacific abyssal water via Kamchatka Strait. A small volume (~0.8 SV) of cool, low salinity water entering the BS mainly through eastern, shallow-silled passes continues northward across the broad Beringian shelf to enter the Arctic Ocean via the Bering Strait. EVOLUTION OF ALEUTIAN RIDGE: At it's inception, the arc massif of the AR likely extended only about 1200 km west of Alaska. Because convergence is increasingly oblique to the west, plate-boundary-driven, right-lateral strike-slip faulting extensionally fragmented the AR and progressively rotated and transported blocks and slivers

  17. Diffuse degassing through magmatic arc crust (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Ingebritsen, S.

    2013-12-01

    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  18. Deciphering Okmok Volcano's restless years (2002-2005)

    NASA Astrophysics Data System (ADS)

    Reyes, Celso Guillermo

    Okmok Volcano is an active island-arc shield volcano located in the central Aleutian islands of Alaska. It is defined by a 10-km-diameter caldera that formed in two cataclysmic eruptions, the most recent being ˜2050 years ago. Subsequent eruptions created several cinder cones within the caldera. The youngest of these, Cone A, was the active vent from 1815 through its 1997 eruption. On July 12 2008 Okmok erupted from new vents located northwest of Cone D. Between 2001 and 2004, geodetic measurements showed caldera inflation. These studies suggested that new magma might be entering the system. In 2002, a newly installed seismic network recorded quasi-periodic ("banded") seismic tremor signals occurring at the rate of two or more episodes per hour. This tremor was a near-continuous signal from the day the seismic network was installed. Although the volcano was not erupting, it was clearly in a state of unrest. This unrest garnered considerable attention because the volcano had erupted just six years prior. The seismic tremor potentially held insight as to whether the unrest was a remnant of the 1997 eruption, or whether it signaled a possible rejuvenation of activity and the potential for eruption. To determine the root cause and implications of this remarkable seismic tremor sequence, I created a catalog of over ˜17,000 tremor events recorded between 2003 and mid-2005. Tremor patterns evolved on the scale of days, but remained the dominant seismic signal. In order to facilitate the analysis of several years of data I created a MATLAB toolbox, known as "The Waveform Suite". This toolbox made it feasible for me to work with several years of digital data and forego my introductory analyses that were based on paper "helicorder" records. I first attempted to locate the tremor using the relative amplitudes of the seismograms to determine where the tremor was being created. Candidate tremor locations were constrained to a few locations along a corridor between Cone A and

  19. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Bering Sea and Aleutian Islands (BSAI... PROVISIONS Specific Fishery or Program Fishing Capacity Reduction Regulations § 600.1103 Bering Sea and... Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs pursuant to § 679.2 of...

  20. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Bering Sea and Aleutian Islands (BSAI... PROVISIONS Specific Fishery or Program Fishing Capacity Reduction Regulations § 600.1103 Bering Sea and... Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs pursuant to § 679.2 of...

  1. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Bering Sea and Aleutian Islands (BSAI... PROVISIONS Specific Fishery or Program Fishing Capacity Reduction Regulations § 600.1103 Bering Sea and... Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs pursuant to § 679.2 of...

  2. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Bering Sea and Aleutian Islands (BSAI... PROVISIONS Specific Fishery or Program Fishing Capacity Reduction Regulations § 600.1103 Bering Sea and... Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs pursuant to § 679.2 of...

  3. Selected 1970 Census Data for Alaska Communities. Part 4 - Bristol Bay-Aleutian Region.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau. Div. of Community Planning.

    As 1 of 6 regional reports supplying statistical information on Alaska's incorporated and unincorporated communities (those of 25 or more people), this report on Alaska's Bristol Bay-Aleutian Region presents data derived from the 1970 U.S. Census first-count microfilm. Organized via the 3 Bristol Bay-Aleutian census divisions, data are presented…

  4. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area...

  5. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area...

  6. International Volcanological Field School in Kamchatka and Alaska: Experiencing Language, Culture, Environment, and Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Gordeev, E.; Ivanov, B.; Izbekov, P.; Kasahara, M.; Melnikov, D.; Selyangin, O.; Vesna, Y.

    2003-12-01

    aptitude for the physical sciences, not necessarily volcanology. It will also serve as an entry point for students wishing to make extended exchange visits to the Russian Far East or Alaska, and to graduate students in volcanology wishing to undertake thesis research in North Pacific volcanism. The school represents the first educational effort of the newly established Japan Kamchatka Alaska Subduction Project (JKASP), which seeks to bring scientists of our three nations together in the study of one shared geophysical province, the Kuril-Kamchatka-Aleutian Arcs.

  7. Did the Bering Sea Form as a Cenozoic Backarc Basin?

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Barth, G. A.; Scheirer, D. S.; Scholl, D. W.

    2012-12-01

    Understanding the origins of Bering Sea marginal basins (Aleutian, Bowers, and Komandorsky basins; AB, BB, KB) is key for reconstructing N. Pacific tectonic and magmatic evolution. New acquisitions and recompilations of MCS, OBS, and potential field data (Barth et al. poster. this session) for USGS Extended Continental Shelf project and selection of Aleutians as GeoPrisms Subduction Cycles and Deformation focus site stimulate reconsideration of BB, KB, and especially AB origins. AB has long been regarded as N. Pacific crust trapped when the Aleutian subduction began ~45-50 Ma. BB and KB probably formed together as Miocene backarc basins. Presence of Oligo-Miocene arc volcanics on Bowers and Shirshov ridges suggests that these are remnant arcs, orphaned by AB and KB opening. Seven lines of evidence suggest that AB formed as a Paleogene backarc basin: 1) AB heatflow suggests an age of about 44 Ma (Langseth et al 1980 JGR). 2) Formation of NNW-trending rift basins on Bering shelf (Navarin, Pribilof, and St. George basins) in Paleogene time indicate extension at this time. 3) The early Paleogene "red unconformity" of the Beringian margin could indicate uplift, erosion, and subsidence associated with AB opening. 4) ~N-S magnetic anomalies in AB contrasts with E-W Kula anomalies on N. Pacific, indicating that the two tracts of oceanic crust formed at different spreading ridges. 5) Thicker sediment in AB (2-4 km) vs. BB and KB (< 2km) indicates AB is older and is consistent with episodic and short-lived (~20 m.y. duration) opening expected for backarc basins. 6) Aleutian arc magmatic activity began ~50 Ma, about the same time that the Beringian arc shut down. This could also be reconciled by rifting of the Beringian arc to form the AB as backarc basin, accompanied by the displacement of arc magmatic activity to near the present Aleutian arc. 7) Formation of the Aleutian arc as ~3900 km long, nearly perfect small circle is easiest to reconcile with an easily deformed

  8. 76 FR 59923 - Fisheries of the Exclusive Economic Zone Off Alaska; “Other Rockfish” in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    .... 101126521-0640-2] RIN 0648-XA734 Fisheries of the Exclusive Economic Zone Off Alaska; ``Other Rockfish'' in the Aleutian Islands Subarea of the Bering Sea and Aleutian Islands Management Area AGENCY: National... subarea of the Bering Sea and Aleutian Islands management area (BSAI). This action is necessary because...

  9. Increased degassing from the Southern Central American Volcanic Arc in response to crustal stress change following the 2012 Nicoya earthquake?

    NASA Astrophysics Data System (ADS)

    de Moor, M. J.; Kern, C.; Fischer, T. P.; Avard, G.; Aiuppa, A.; Protti, M.; Muller, C.; Alvarez, J.; Saballos, J. A.; Galle, B.

    2016-12-01

    The aim of this work is to provide an updated assessment of SO2 and CO2 fluxes from the Southern Central America Volcanic Arc (SCAVA) for the period 2015-2016. We present over 300 new ground-based remote sensing sulfur dioxide flux measurements (DOAS traverses) conducted at 10 volcanoes in Costa Rica and Nicaragua, representing the most comprehensive assessment of volcanic gas flux at SCAVA to date. The data were filtered to exclude measurements directly associated with eruptive activity. The SO2 flux from this 500km section of arc is thus conservatively estimated at 4622 ± 1586 tons/day (unfiltered average of the data yields 6114 ± 1956 tons/day SO2). Our best estimate is about double that of any previous estimations (data from 1972-2013). We attribute this increase in part to our more complete assessment of the arc, as previous studies considered fluxes from only 5 to 7 of the SCAVA volcanoes. Additionally,a greater number of SCAVA volcanoes have had eruptions in 2015-2016 than in any two-year period since 1980. A possible explanation for increased degassing and volcanic activity is a change in crustal stress regime following the 2012 Nicoya earthquake (Mw = 7.8). GPS data show that the SCAVA has experienced a dramatic change from compression to extension, potentially opening conduits for volatiles and magmas to rise from the mantle and lower crustal regions. The dominant contributors to volcanic degassing at SCAVA are Masaya and Turrialba volcanoes, which show average passive degassing SO2 fluxes of 1984 ± 890 T/d and 1672 ± 925 T/d respectively during 2015-2016. High-quality MultiGAS time series datasets for both of these volcanoes provide robust measurements of CO2/SO2 values associated with SO2 flux measurement at these volcanoes. Based on these data we estimate the CO2 flux from Masaya at 5487 ± 1800 T/d and from Turrialba at 4873 ± 2053 T/d. Combining our arc SO2 flux data with gas composition data for the other volcanoes as well as estimations of

  10. Crustal forensics in arc magmas

    NASA Astrophysics Data System (ADS)

    Davidson, Jon P.; Hora, John M.; Garrison, Jennifer M.; Dungan, Michael A.

    2005-01-01

    The geochemical characteristics of continental crust are present in nearly all arc magmas. These characteristics may reflect a specific source process, such as fluid fluxing, common to both arc magmas and the continental crust, and/or may reflect the incorporation of continental crust into arc magmas either at source via subducted sediment, or via contamination during differentiation. Resolving the relative mass contributions of juvenile, mantle-derived material, versus that derived from pre-existing crust of the upper plate, and providing these estimates on an element-by-element basis, is important because: (1) we want to constrain crustal growth rates; (2) we want to quantitatively track element cycling at convergent margins; and (3) we want to determine the origin of economically important elements and compounds. Traditional geochemical approaches for determining the contributions of various components to arc magmas are particularly successful when applied on a comparative basis. Studies of suites from multiple magmatic systems along arcs, for which differentiation effects can be individually constrained, can be used to extrapolate to potential source compositions. In the Lesser Antilles Arc, for example, differentiation trends from individual volcanoes are consistent with open-system evolution. However, such trends do not project back to a common primitive magma composition, suggesting that differentiation modifies magmas that were derived from distinct mantle sources. We propose that such approaches should now be complemented by petrographically constrained mineral-scale isotope and trace element analysis to unravel the contributing components to arc magmas. This innovative approach can: (1) better constrain true end-member compositions by returning wider ranges in geochemical compositions among constituent minerals than is found in whole rocks; (2) better determine magmatic evolution processes from core-rim isotopic or trace element profiles from the phases

  11. Seasonal and distributional patterns of seabirds along the Aleutian Archipelago

    USGS Publications Warehouse

    Renner, M.; Hunt, G.L.; Piatt, John F.; Byrd, G.V.

    2008-01-01

    The Aleutian Archipelago is of global importance to seabirds during the northern summer, but little is known about seabird use of these waters during winter. We compare summer and winter abundances of seabirds around 3 islands: Buldir in the western, Kasatochi in the central, and Aiktak in the eastern Aleutians. The density of combined seabird biomass in nearshore marine waters was higher in summer than in winter at Buldir and Kasatochi, but was higher in winter at Aiktak, despite the departure of abundant migratory species. Comparing foraging guilds, we found that only piscivores increased at the western and central sites in winter, whereas at the eastern site several planktivorous species increased as well. The only planktivore remaining in winter at the central and western sites in densities comparable to summer densities was whiskered auklet Aethia pygmaea. Crested auklet Aethia cristatella and thick-billed murre Uria lomvia showed the greatest proportional winter increase at the eastern site. The seasonal patterns of the seabird communities suggest a winter breakdown of the copepod-based food web in the central and western parts of the archipelago, and a system that remains rich in euphausiids in the eastern Aleutians. We suggest that in winter crested auklets take the trophic role that short-tailed shearwaters Puffinus tenuirostris occupy during summer. We hypothesize that advection of euphausiids in the Aleutian North Slope Current is important for supporting the high biomass of planktivores that occupy the Unimak Pass region on a year-round basis. ?? Inter-Research 2008.

  12. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  13. Along Arc Structural Variation in the Izu-Bonin Arc and its Implications for Crustal Evolution Processes

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Sato, T.; Takahashi, N.; Ito, A.; Kaneda, Y.

    2005-12-01

    A continental-type middle crust having Vp = 6.1 - 6.3 km/s has been imaged at several oceanic island arcs (e.g. northern Izu, Mariana, Tonga, Kyushu-Palau ridge) since Suyehiro et al. (1996) has found a felsic middle crust in the northern Izu arc. A high velocity lower crust (Vp > 7.3 km/s) underlying the felsic middle crust has been also underlined as a characteristic structure in the northern Izu arc. A bulk composition of the crust in the Izu arc may indicate more mafic than that of a typical continental crust due to a large volume of the high velocity lower crust. Since a crust becomes more mature toward the north along the Izu-Bonin arc, investigating structural variation along the volcanic front has been believed to provide a fundamental knowledge for a crustal evolution process. In 2004 and 2005, Japan Agency for Marine-Earth Science and Technology has conducted two along arc wide-angle seismic surveys from the Sagami-bay to the Kita-Iwo jima, a total profile length of about 1000 km. Although data from the Bonin-part of the profile which were acquired this year has not been processed yet, a result from the Izu-part, from the Sagami-bay to Tori shima, shows significant structural variations along the volcanic front. The crustal thickness are varied with a wavelength of several tens of km, i.e., thickened up to 25-30 km around the volcanoes (the Miyake jama, Hachijo jima, Aoga sima, Sumisu jima), while thinned down to 20 km between them. The fine seismic velocity image obtained by refraction tomography as well as a wide-angle reflection migration shows that the variation of the crustal block having 6.0 - 6.7 km/s, which is a typical continental crustal velocity, is mainly responsible for the observed variation of the crustal thickness. The thickness of the high velocity lower crust is not significantly varied along the arc. Therefore, an average crustal seismic velocity (varied 6.6 to 7.0 km/s) represents a higher velocity that that of a typical continental

  14. Three-Dimensional Modeling of Mount Etna Volcano: Volume Assessment, Trend of Eruption Rates, and Geodynamic Significance

    NASA Astrophysics Data System (ADS)

    Barreca, Giovanni; Branca, Stefano; Monaco, Carmelo

    2018-03-01

    3-D modeling of Mount Etna, the largest and most active volcano in Europe, has for the first time enabled acquiring new information on the volumes of products emitted during the volcanic phases that have formed Mount Etna and particularly during the last 60 ka, an issue previously not fully addressed. Volumes emitted over time allow determining the trend of eruption rates during the volcano's lifetime, also highlighting a drastic increase of emitted products in the last 15 ka. The comparison of Mount Etna's eruption rates with those of other volcanic systems in different geodynamic frameworks worldwide revealed that since 60 ka ago, eruption rates have reached a value near to that of oceanic-arc volcanic systems, although Mount Etna is considered a continental rift strato-volcano. This finding agrees well with previous studies on a possible transition of Mount Etna's magmatic source from plume-related to island-arc related. As suggested by tomographic studies, trench-parallel breakoff of the Ionian slab has occurred north of Mount Etna. Slab gateway formation right between the Aeolian magmatic province and the Mount Etna area probably induced a previously softened and fluid-enriched suprasubduction mantle wedge to flow toward the volcano with consequent magmatic source mixing.

  15. The Influence of Plumbing System Structure on Volcano Dimensions and Topography

    NASA Astrophysics Data System (ADS)

    Castruccio, Angelo; Diez, Mikel; Gho, Rayen

    2017-11-01

    Volcano morphology has been traditionally studied from a descriptive point of view, but in this work we took a different more quantitative perspective. Here we used volcano dimensions such as height and basal radius, together with the topographic profile as indicators of key plumbing system properties. We started by coupling models for the ascent of magma and extrusion of lava flows with those for volcano edifice construction. We modeled volcanic edifices as a pile of lavas that are emitted from a single vent and reduce in volume with time. We then selected a number of arc-volcano examples to test our physical relationships and estimate parameters, which were compared with independent methods. Our results indicate that large volcanoes (>2,000 m height and base radius >10 km) usually are basaltic systems with overpressured sources located at more than 15 km depth. On the other hand, smaller volcanoes (<2,000 m height and basal radius <10 km) are associated with more evolved systems where the chambers feeding eruptions are located at shallower levels in the crust (<10 km). We find that surface observations on height and basal radius of a volcano and its lavas can give estimates of fundamental properties of the plumbing system, specifically the depth and size of the magma chamber feeding eruptions, as the structure of the magmatic system determines the morphology of the volcanic edifice.

  16. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    NASA Astrophysics Data System (ADS)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  17. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurisin, D.

    1980-11-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic andmore » tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.« less

  18. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    USGS Publications Warehouse

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  19. A magmatic model of Medicine Lake Volcano, California ( USA).

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.

    1988-01-01

    Medicine Lake volcano is a Pleistocene and Holocene shield volcano of the southern Cascade Range. It is located behind the main Cascade arc in an extensional tectonic setting where high-alumina basalt is the most commonly erupted lava. This basalt is parental to the higher-silica calc-alkaline and tholeiitic lavas that make up the bulk of the shield. The presence of late Holocene, chemically identical rhyolites on opposite sides of the volcano led to hypotheses of a large shallow silicic magma chamber and of a small, deep chamber that fed rhyolites to the surface via cone sheets. Subsequent geophysical work has been unable to identify a large silicic magma body, and instead a small one has apparently been recognized. Some geologic data support the geophysical results. Tectonic control of vent alignments and the dominance of mafic eruptions both in number of events and volume throughout the history of the volcano indicate that no large silicic magma reservoir exists. Instead, a model is proposed that includes numerous dikes, sills and small magma bodies, most of which are too small to be recognized by present geophysical methods.-Author

  20. Offset of Tertiary arcs on the Alaska Peninsula: A section in Geological Survey research, fiscal year 1981

    USGS Publications Warehouse

    ,

    1984-01-01

    Geologic mapping and potassium-argon dating by R. L. Detterman, F. H. Wilson, J. E. Case, and Nora Shew in the Ugashik and western part of the Karluk quadrangles have shown that the Eocene and Oligocene volcanic arc continues into these quadrangles from the south in the Chignik and Sutwik Island quadrangles. Surface exposures of the arc extend northward to approximately 57°30'N., or midway through the Ugashik quadrangle, but none are observed north of that point. Subsurface drill-hole data (Brockway and others, 1975) indicate continuation of the arc, possibly offset to the northwest of the northernmost known surface exposures.In the extreme northern part of the Ugashik and Karluk quadrangles, volcanic rocks again become important. These volcanic rocks are as yet undated; however, they may be related to the Katmai late Tertiary volcanic centers.Like the early Tertiary volcanic arc, the present-day Aleutian arc is also offset to the northwest in the northern part of the Ugashik and Karluk quadrangles. No major offset of the Mesozoic rocks is indicated through the offset zone; this fact suggests a change in the Tertiary tectonic regime in the area of the offset.

  1. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc

    NASA Astrophysics Data System (ADS)

    Allard, P.; Aiuppa, A.; Bani, P.; Métrich, N.; Bertagnini, A.; Gauthier, P.-J.; Shinohara, H.; Sawyer, G.; Parello, F.; Bagnato, E.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    Ambrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge of major, minor, trace and radioactive volatile species from Ambrym volcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H2O, CO2, SO2 and H2S in crater rim emissions, coupled with filter-pack determination of SO2, halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by its two main active craters, Benbow and Marum. These share a high water content ( 93 mol%), similar S/Cl, Cl/F, Br/Cl molar ratios, similar (210Po/210Pb) and (210Bi/210Pb) activity ratios, as well as comparable proportions in most trace metals. Their difference in CO2/SO2 ratio (1.0 and 5.6-3.0, respectively) is attributed to deeper gas-melt separation at Marum (Strombolian explosions) than Benbow (lava lake degassing) during our measurements in 2007. Airborne UV sensing of the SO2 plume flux (90 kg s- 1 or 7800 tons d- 1) demonstrates a prevalent degassing contribution ( 65%) of Benbow crater in that period and allows us to quantify the total volatile fluxes during medium-level eruptive activity of the volcano. Results reveal that Ambrym ranks among the most powerful volcanic gas emitters on Earth, producing between 5% and 9% of current estimates for global subaerial volcanic emissions of H2O, CO2, HCl, Cu, Cr, Cd, Au, Cs and Tl, between 10% and 17% of SO2, HF, HBr, Hg, 210Po and 210Pb, and over 30% of Ag, Se and Sn. Global flux estimates thus need to integrate its contribution and be revised accordingly. Prodigious gas emission from Ambrym does not result from an anomalous volatile enrichment nor a differential excess degassing of its feeding basalt: this latter contains relatively modest

  2. The petrogenesis of island arc basalts from Gunung Slamet volcano, Indonesia: Trace element and 87Sr /86Sr contraints

    NASA Astrophysics Data System (ADS)

    Vukadinovic, Danilo; Nicholls, Ian A.

    1989-09-01

    Selected major and trace elements, rare earth element (REE) and 87Sr /86Sr data are presented for arc basalts from Gunung Slamet volcano, Java, Indonesia. On the basis of stratigraphy, trace element content, Zr/Nb, and 87Sr /86Sr ratios, Slamet basalts can be broadly categorized into high abundance magma (HAM) and low abundance magma (LAM) types. Provided the quantities of 'immobile' trace elements (in aqueous systems) such as Nb, Hf and Zr in the mantle wedge and ensuing magmas are unaffected by additions from subducted lithosphere or overlying arc crust, a model may be developed whereby LAM are generated by higher degrees of melting in the mantle wedge (13%) compared to HAM (7%). Hf/Nb or Zr/Nb ratio systematics indicate that prior to metasomatism by the underlying lithosphere, the Slamet mantle wedge was similar in chemical character to transitional-MORB source mantle. Conversely, examination of immobile/mobile incompatible trace element ratios (IMITER) provide clues to the nature of the metasomatizing agent, most likely derived from the subducted slab (basalts and sediments). HAM have constant IMITER ( e.g.Nb/U, Zr/K), whereas LAM show a negative correlation between IMITER and 87Sr /86Sr . Metasomatism of the mantle wedge was modelled by interaction with either a slab-derived-melt or -aqueous fluid. Yb/Sr and 87Sr /86Sr ratios from Slamet basalts and oceanic sediments suggest that 'bulk' mixing of the latter into the mantle wedge is unlikely. Instead, sediments probably interact with overlying mantle in the same way that subducted basalts do-either as melts or fluids. In the case of slab-derived melts mixing with 'pristine' mantle, good agreement with back-calculated values for HAM and LAM sources can be achieved only if a residual phase such as rutile persists in the subducting lithosphere. In the case of fluids, excellent agreement with back-calculated values is obtained for all elements except heavy REE. It is tentatively suggested that aqueous slab

  3. Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands

    NASA Astrophysics Data System (ADS)

    Kalacheva, Elena; Taran, Yuri; Kotenko, Tatiana

    2015-04-01

    Shiashkotan Island belongs to the Northern Kuril island arc and consists of two joined volcanoes, Sinarka and Kuntomintar, with about 18 km of distance between the summits. Both volcanoes are active, with historic eruptions, and both emit fumarolic gases. Sinarka volcano is degassing through the extrusive dome with inaccessible strong and hot (> 400 °C) fumaroles. A large fumarolic field of the Kuntomintar volcano situated in a wide eroded caldera-like crater hosts many fumarolic vents with temperatures from boiling point to 480 °C. Both volcanoes are characterized by intense hydrothermal activity discharging acid SO4-Cl waters, which are drained to the Sea of Okhotsk by streams. At least 4 groups of near-neutral Na-Mg-Ca-Cl-SO4 springs with temperatures in the range of 50-80 °C are located at the sea level, within tide zones and discharge slightly altered diluted seawater. Volcanic gas of Kuntomintar as well as all types of hydrothermal manifestations of both volcanoes were collected and analyzed for major and trace elements and water isotopes. Volcanic gases are typical for arc volcanoes with 3He/4He corrected for air contamination up to 6.4 Ra (Ra = 1.4 × 10- 6, the air ratio) and δ13C (CO2) within - 10‰ to - 8 ‰ VPDB. Using a saturation indices approach it is shown that acid volcanic waters are formed at a shallow level, whereas waters of the coastal springs are partially equilibrated with rocks at ~ 180 °C. Trace element distribution and concentrations and the total REE depend on the water type, acidity and Al + Fe concentration. The REE pattern for acidic waters is unusual but similar to that found in some acidic crater lake waters. The total hydrothermal discharge of Cl and S from the island associated with volcanic activity is estimated at ca. 20 t/d and 40 t/d, respectively, based on the measurements of flow rates of the draining streams and their chemistry. The chemical erosion of the island by surface and thermal waters is estimated at 27 and

  4. Aleutian Array of Arrays (A-cubed) to probe a broad spectrum of fault slip under the Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; LI, B.

    2016-12-01

    Alaska-Aleutian subduction zone is one of the most seismically active subduction zones in this planet. It is characterized by remarkable along-strike variations in seismic behavior, more than 50 active volcanoes, and presents a unique opportunity to serve as a natural laboratory to study subduction zone processes including fault dynamics. Yet details of the seismicity pattern, spatiotemporal distribution of slow earthquakes, nature of interaction between slow and fast earthquakes and their implication on the tectonic behavior remain unknown. We use a hybrid seismic network approach and install 3 mini seismic arrays and 5 stand-alone stations to simultaneously image subduction fault and nearby volcanic system (Makushin). The arrays and stations are strategically located in the Unalaska Island, where prolific tremor activity is detected and located by a solo pilot array in summer 2012. The hybrid network is operational between summer 2015 and 2016 in continuous mode. One of the three arrays starts in summer 2014 and provides additional data covering a longer time span. The pilot array in the Akutan Island recorded continuous seismic data for 2 months. An automatic beam-backprojection analysis detects almost daily tremor activity, with an average of more than an hour per day. We imaged two active sources separated by a tremor gap. The western source, right under the Unalaska Island shows the most prolific activity with a hint of steady migration. In addition, we are able to identify more than 10 families of low frequency earthquakes (LFEs) in this area. They are located within the tremor source area as imaged by the bean-backprojection technique. Application of a match filter technique reveals that intervals between LFE activities are shorter during tremor activity and longer during quiet time period. We expect to present new results from freshly obtained data. The experiment A-cubed is illuminating subduction zone processes under Unalaska Island in unprecedented

  5. Biological responses of Crested and Least auklets to volcanic destruction of nesting habitat in the Aleutian Islands, Alaska

    USGS Publications Warehouse

    Drew, Gary S.; Piatt, John F.; Williams, Jeffrey C.

    2018-01-01

    Crested Auklets (Aethia cristatella) and Least Auklets (A. pusilla) are crevice-nesting birds that breed in large mixed colonies at relatively few sites in the Aleutian Island archipelago, Bering Sea, Gulf of Alaska, and Sea of Okhotsk. Many of these colonies are located on active volcanic islands. The eruption of Kasatochi volcano, in the central Aleutians, on August 7, 2008, completely buried all crevice-nesting seabird habitat on the island. This provided an opportunity to examine the response of a large, mixed auklet colony to a major geological disturbance. Time-lapse imagery of nesting habitat indicated that both species returned to the largest pre-eruption colony site for several years, but subsequently abandoned it within 5 yr after the eruption. In 2010, a rockfall site in a cove north of the old colony site began to accumulate talus, and groups of auklets were observed using the site in 2011. Use of the new colony appeared to coincide with the abandonment of the old colony site by both species, though surface counts suggested that Least Auklets shifted to the new colony sooner than Crested Auklets. At-sea surveys of seabirds before and after the eruption indicated that both Crested and Least auklets shifted their at-sea distributions from the waters around Kasatochi Island to nearby Koniuji Island. In combination, at-sea counts and colony time-lapse imagery indicated that Crested and Least auklets using Kasatochi responded to the volcanic disturbance and complete loss of nesting habitat at the main colony on Kasatochi with dispersal either to newly created habitat on Kasatochi or to an alternate colony on a nearby island.

  6. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    PubMed

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  7. Mantle Metasomatism under Island Arcs, Magnetic Implications

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Ferre, E. C.; Arai, S.

    2013-12-01

    The wedge of upper mantle beneath oceanic and island arcs receives an abundant flux of fluids derived from dehydration of subducted slabs. These fluids may cause metasomatism, serpentinization or partial melting at increasing distance from the trench. Each one of these processes profoundly modifies the oxygen fugacity, mineral assemblage, rheology and seismic properties of mantle rocks. Mantle xenoliths in arcs are relatively rare compared to other tectonic settings yet, due to their rapid ascent, they provide the best record of mantle rocks at depth. Previous studies on the metasomatism of the arc mantle wedge focused on the geochemistry and mineralogy of these xenoliths. Here we present new rock magnetic and paleomagnetic results to track changes in the magnetic assemblage of mantle peridotites. Peridotites undergo a wide range of fluid-reactions that involve formation of magnetically remanent phases such as magnetite, maghemite, hematite or monosulfide solutions. Samples for this study originate from three localities displaying different degrees of metasomatism: a) Five samples from Ichinomegata crater, Megata volcano, in NE Japan are characteristically lherzolitic with metasomatic pargasite present; b) Six samples from Kurose, Hakata Bay, in SW Japan are mainly harzburgites that contain rare, late stage metasomatic sulfides; and c) Ten samples from the Iraya volcano, Batan Island, in the Philippines are lherzolites, harzburgites, and dunites that contain metasomatic olivine, orthopyroxene, clinopyroxene and pargasite. Both remanent and induced magnetizations of these mantle peridotites exhibit systematic variations as a function of the degrees of metasomatism. The contribution of these mantle peridotites to long wavelength magnetic anomalies might be significant.

  8. Volcanism and Subduction: The Kamchatka Region

    NASA Astrophysics Data System (ADS)

    Eichelberger, John; Gordeev, Evgenii; Izbekov, Pavel; Kasahara, Minoru; Lees, Jonathan

    The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in 1962. At its heart is the uniquely acute subduction cusp where the Kamchatka and Aleutian Arcs and Emperor Seamount Chain meet. Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American authors grapple with the dynamics of the cusp with perspectives from the west and east of it, respectively, while careful tephrostratigraphy yields a remarkably precise record of behavior of storied volcanoes such as Kliuchevskoi and Shiveluch. Towards the south, Japanese researchers elucidate subduction earthquake processes with unprecedented geodetic resolution. Looking eastward, new insights on caldera formation, monitoring, and magma ascent are presented for the Aleutians. This is one of the first books of its kind printed in the English language. Students and scientists beginning research in the region will find in this book a useful context and introduction to the region's scientific leaders. Others who wish to apply lessons learned in the North Pacific to their areas of interest will find the volume a valuable reference.

  9. A New Sulfur and Carbon Degassing Inventory for the Southern Central American Volcanic Arc: The Importance of Accurate Time-Series Data Sets and Possible Tectonic Processes Responsible for Temporal Variations in Arc-Scale Volatile Emissions

    NASA Astrophysics Data System (ADS)

    de Moor, J. M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. P.

    2017-12-01

    This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015-2016. We report ˜300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ˜500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972-2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015-2016 than in any period since ˜1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time-series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short-lived degassing events and arc systems likely display significant short-term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.

  10. A new sea star of the genus Leptasterias (Asteroidea: Asteriidae) from the Aleutian Islands.

    PubMed

    Clark, Roger N; Jewett, Stephen C

    2015-04-02

    A new species of asteriid sea star of the genus Leptasterias (Order Forcipulatida) is described from the nearshore waters of the Aleutian Islands. Leptaterias tatei sp. nov. is distinguished from Leptasterias stolacantha Fisher, 1930, by the characteristics of the spines and pedicellariae. Geographic distribution is discussed and a key to the five-rayed Leptasterias of the Aleutian Islands is provided.

  11. Generation of Silicic Melts in the Early Izu-Bonin Arc Recorded by Detrital Zircons in Proximal Arc Volcaniclastic Rocks From the Philippine Sea

    NASA Astrophysics Data System (ADS)

    Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.; Arculus, R. J.; Ishizuka, O.; Shukle, J. T.

    2017-10-01

    A 1.2 km thick Paleogene volcaniclastic section at International Ocean Discovery Program Site 351-U1438 preserves the deep-marine, proximal record of Izu-Bonin oceanic arc initiation, and volcano evolution along the Kyushu-Palau Ridge (KPR). Pb/U ages and trace element compositions of zircons recovered from volcaniclastic sandstones preserve a remarkable temporal record of juvenile island arc evolution. Pb/U ages ranging from 43 to 27 Ma are compatible with provenance in one or more active arc edifices of the northern KPR. The abundances of selected trace elements with high concentrations provide insight into the genesis of U1438 detrital zircon host melts, and represent useful indicators of both short and long-term variations in melt compositions in arc settings. The Site U1438 zircons span the compositional range between zircons from mid-ocean ridge gabbros and zircons from relatively enriched continental arcs, as predicted for melts in a primitive oceanic arc setting derived from a highly depleted mantle source. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic melts that evolved toward more Th and U-rich compositions with time. Th, U, and light rare earth element enrichments beginning about 35 Ma are consistent with detrital zircons recording development of regional arc asymmetry and selective trace element-enriched rear arc silicic melts as the juvenile Izu-Bonin arc evolved.

  12. Proceedings of the North Aleutian Basin information status and research planning meeting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGory, K. E.; Krummel, J. R.; Hayse, J. W.

    2007-10-26

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshoremore » area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1

  13. S-wave attenuation structure beneath the northern Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi

    2016-04-01

    To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.

  14. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: The importance of accurate time-series datasets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions

    USGS Publications Warehouse

    de Moor, Maarten; Kern, Christoph; Avard, Geoffroy; Muller, Cyril; Aiuppa, Sandro; Saballos, Armando; Ibarra, Martha; LaFemina, Peter; Protti, Mario; Fischer, Tobias

    2017-01-01

    This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015–2016. We report ∼300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ∼500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972–2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015–2016 than in any period since ∼1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time‐series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short‐lived degassing events and arc systems likely display significant short‐term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.

  15. Geologic Mapping of the Olympus Mons Volcano, Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  16. Weather as the Decisive Factor of the Aleutian Campaign, June 1942 - August 1943

    DTIC Science & Technology

    1993-01-01

    examine the effect of weather on the living and fighting conditions during the campaign. The Delimitations The study will not examine prewar...airstrip the engineers drained and filled a flooded tidal basin . 52 An innovation available to the Americans and not Japan or Germany was "Marston mat...p, 47. 30 See Aleutians Cawnpaign, p. 87; Army Air Force in World War II, Vol 4, p. 383. ൯ See Aleutians Campaign, pp. 88-89; Argy Air Force in

  17. Surface wind characteristics of some Aleutian Islands. [for selection of windpowered machine sites

    NASA Technical Reports Server (NTRS)

    Wentink, T., Jr.

    1973-01-01

    The wind power potential of Alaska is assessed in order to determine promising windpower sites for construction of wind machines and for shipment of wind derived energy. Analyses of near surface wind data from promising Aleutian sites accessible by ocean transport indicate probable velocity regimes and also present deficiencies in available data. It is shown that winds for some degree of power generation are available 77 percent of the time in the Aleutians with peak velocities depending on location.

  18. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The

  19. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    NASA Astrophysics Data System (ADS)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  20. Poly IC therapy in aleutian disease of mink.

    PubMed Central

    Russell, A S; Percy, J S; Cho, H J

    1975-01-01

    Twenty-four virgin female aleutian mink were infected with aleutian disease agent and after 24 hours, 12 of these were treated with a course of polyinosinic acid-polycytidilic acid (Poly IC) injections. After six weeks the gammaglobulin level was significantly lower in the treated group but at 12 weeks this difference was no longer present. Four of the treated mink had normal target organ histology when killed at 20 weeks. The untreated group all showed moderate to marked changes but this difference was not statistically significant. There was a marked increase in the reactive lymphocyte blastogenesis index during the first weeks of infection and the phytohaemagglutinin response was seen to fall progressively. The antiglobulin reaction usually became positive after infection but neither antinuclear nor antierythrocyte antibodies were found. Precipitating antibodies to several polynucleotides were frequently present and were unrelated to infection or to Poly IC treatment. Images Fig. 1. Fig. 2A Fig. 2B. PMID:1095164

  1. Could the Mantle Under Island Arcs Contribute to Long Wavelength Magnetic Anomalies?

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Ferre, E. C.; Martin-Hernandez, F.; Feinberg, J. M.; Conder, J. A.

    2016-12-01

    Some island arcs show significant long-wavelength positive magnetic anomalies with potential sources in the mantle wedge while others do not. Here we compare the magnetic properties of mantle xenoliths form metasomatized mantle wedges with counterparts from pristine unaltered mantle and we discuss the role mantle processes may play in producing these anomalies. Samples for this study originate from four localities displaying different degrees of metasomatism, as evidenced by the presence of phlogophite, pargasite, and secondary minerals (olv, cpx, opx): a) Five samples from Ichinomegata crater, Megata volcano, in NE Japan are characteristically lherzolitic with metasomatic pargasite present; b) Six samples from Kurose, SW Japan are mainly harzburgites that contain rare, late stage metasomatic sulfides; c) Ten samples from the Iraya volcano, Batan Island, in the Philippines are lherzolites, harzburgites, and dunites that contain metasomatic olivine, orthopyroxene, clinopyroxene and pargasite; and d) Ten samples from Avacha and Shiveluch volcanoes in Kamchatka, consists of unaltered harzburgites supported by an LOI <1%. Sample localities come from subduction zones of the western Pacific Ocean, where the angle of subduction varies (from 10° in SW Japan to 55° in the Kamchatka and Taiwan-Luzon arcs). When present, ferromagnetic minerals include stoichiometric magnetite with occasional pyrrhotite only in metasomatized samples. Ultimately, metasomatized mantle material has a Koenigsberger ratio less than 1.0 indicating it would not primarily contribute to satellite-altitude magnetic anomalies. While unaltered mantle material may produce a Koenigsberger ratio greater than 1.0, and would thus, contribute to long wavelength magnetic anomalies. The presence of both metasomatized and unaltered mantle material beneath island arcs would be supportive of the positive magnetic anomaly found in some subduction zones.

  2. 76 FR 68354 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    .... SUMMARY: NMFS issues regulations implementing Amendment 93 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area (FMP). These regulations amend the Bering Sea... Aleutian Islands Management Area; Limited Access Privilege Program AGENCY: National Marine Fisheries...

  3. Preliminary Geologic Map of Mount Pagan Volcano, Pagan Island, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Trusdell, Frank A.; Moore, Richard B.; Sako, Maurice K.

    2006-01-01

    Pagan Island is the subaerial portion of two adjoining Quaternary stratovolcanoes near the middle of the active Mariana Arc, [FAT1]north of Saipan. Pagan and the other volcanic islands that constitute part of the Arc form the northern half of the East Mariana Ridge[FAT2], which extends about 2-4 km above the ocean floor. The > 6-km-deep Mariana Trench adjoins the East Mariana Ridge on the east, and the Mariana Trough, partly filled with young lava flows and volcaniclastic sediment, lies on the west of the Northern Mariana Islands (East Mariana Ridge. The submarine West Mariana Ridge, Tertiary in age, bounds the western side of the Mariana Trough. The Mariana Trench and Northern Mariana Islands (East Mariana Ridge) overlie an active subduction zone where the Pacific Plate, moving northwest at about 10.3 cm/year, is passing beneath the Philippine Plate, moving west-northwest at 6.8 cm/year. Beneath the Northern Mariana Islands, earthquake hypocenters at depths of 50-250 km identify the location of the west-dipping subduction zone, which farther west becomes nearly vertical and extends to 700 km depth. During the past century, more than 40 earthquakes of magnitude 6.5-8.1 have shaken the Mariana Trench. The Mariana Islands form two sub-parallel, concentric, concave-west arcs. The southern islands comprise the outer arc and extend north from Guam to Farallon de Medinilla. They consist of Eocene to Miocene volcanic rocks and uplifted Tertiary and Quaternary limestone. The nine northern islands extend from Anatahan to Farallon de Pajaros and form part of the inner arc. The active inner arc extends south from Anatahan, where volcanoes, some of which are active, form seamounts west of the older outer arc. Other volcanic seamounts of the active arc surmount the East Mariana Ridge in the vicinity of Anatahan and Sarigan and north and south of Farallon de Pajaros. Six volcanoes (Farallon de Pajaros, Asuncion, Agrigan, Mount Pagan, Guguan, and Anatahan) in the northern islands

  4. Coccidia of Aleutian Canada geese

    USGS Publications Warehouse

    Greiner, E.C.; Forrester, Donald J.; Carpenter, J.W.; Yparraguirre, D.R.

    1981-01-01

    Fecal samples from 122 captive and 130 free-ranging Aleutian Canada geese (Branta canadensis leucopareia) were examined for oocysts of coccidia. Freeranging geese sampled on the spring staging ground near Crescent City, California were infected with Eimeria hermani, E. truncata, E. magnalabia, E. fulva, E. clarkei and Tyzzeria parvula. Except for E. clarkei, the same species of coccidia were found in geese on their breeding grounds in Alaska. Most of the coccidial infections in captive geese from Amchitka Island, Alaska and Patuxent Wildlife Research Center, Maryland, consisted of Tyzzeria.

  5. Multibeam Mapping of the West Andaman Fault, NW Sumatra Fault, Andaman Volcanic Arc and Their Tectonic and Magmatic Implications

    NASA Astrophysics Data System (ADS)

    Kattoju, K. A.; Mudholkar, A. V.; Murty, G.; Vadakkeyakath, Y.; Singh, S. C.; Kiranmai, S.; Moeremans, R.

    2012-12-01

    West Andaman Fault (WAF) is a major structural feature in the Andaman Offshore region that plays an important role in modulating the strain partitioning within the Andaman Sea, well known for its complex tectonics and seismic hazard potential. However, detailed configuration of the WAF and its interaction with the Sumatra fault system in the Andaman sector are not well understood. Here we present near complete coverage of about 800 km long section of the WAF with special emphasis on the zone of confluence of the WAF and the Sumatra Fault systems, and the adjacent volcanic arc in the offshore region of the Great Nicobar Island. We have examined the fault system, and the volcanic arc feature by combining the newly acquired multibeam bathymetry data with the available data northwest of Sumatra. New multibeam map revealed a pattern of faults that are formed in the region of joining of the Seulimeum (SEU) and Aceh strands (AS) of the Sumatra fault with the WAF off Great Nicobar Island. Sandwiched between these faults, at this location, is a 50 km long and 7 km wide conspicuous NS elongated block that rises to 500 m from an adjacent seafloor of about 2000 m. The surface of the block has a westward dipping topographic fabric. Serpentinites were recovered from the eastern cliff of this block, suggestive of mantle origin. A deformed zone with corrugated surface is documented southeast of this elongated block at water depth ranging from 1000 to 1500 m. The mantle block and the deformed zone are bifurcated by a fault, which might be a branch of the WAF. Further south the expression of the Sumatra platform, northern boundary of the Aceh basin pinching out to WAF, extension of the SEU, AS strands towards south, and the northern limit of Weh basin are observed. The other prominent feature that is documented for the first time is the expression of the Andaman volcanic arc. Twenty-three submarine volcanoes of varying sizes have been mapped between 6°30‧N to 8°15‧N. Magnetic

  6. Tracing crustal contamination along the Java segment of the Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Jolis, E. M.; Troll, V.; Deegan, F.; Blythe, L.; Harris, C.; Freda, C.; Hilton, D.; Chadwick, J.; Van Helden, M.

    2012-04-01

    Arc magmas typically display chemical and petrographic characteristics indicative of crustal input. Crustal contamination can take place either in the mantle source region or as magma traverses the upper crust (e.g. [1]). While source contamination is generally considered the dominant process (e.g. [2]), late-stage crustal contamination has been recognised at volcanic arcs too (e.g. [3]). In light of this, we aim to test the extent of upper crustal versus source contamination along the Java segment of the Sunda arc, which, due its variable upper crustal structure, is an exemplary natural laboratory. We present a detailed geochemical study of 7 volcanoes along a traverse from Anak-Krakatau in the Sunda strait through Java and Bali, to characterise the impact of the overlying crust on arc magma composition. Using rock and mineral elemental geochemistry, radiogenic (Sr, Nd and Pb) and, stable (O) isotopes, we show a correlation between upper crustal composition and the degree of upper crustal contamination. We find an increase in 87Sr/86Sr and δ18O values, and a decrease in 143Nd/144Nd values from Krakatau towards Merapi, indicating substantial crustal input from the thick continental basement present. Volcanoes to the east of Merapi and the Progo-Muria fault transition zone, where the upper crust is thinner, in turn, show considerably less crustal input in their isotopic signatures, indicating a stronger influence of the mantle source. Our new data represent a systematic and high-resolution arc-wide sampling effort that allows us to distinguish the effects of the upper crust on the compositional spectrum of individual volcanic systems along the Sunda arc. [1] Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A 2005. Crustal Forensics in Arc Magmas. J. Geotherm. Res. 140, 157-170; [2] Debaille, V., Doucelance, R., Weis, D., & Schiano, P. 2005. Geochim. Cosmochim. Acta, 70,723-741; [3] Gasparon, M., Hilton, D.R., & Varne, R. 1994. Earth Planet. Sci. Lett., 126, 15-22.

  7. 76 FR 5556 - Fisheries of the Exclusive Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... quota (IPQ) in the Western Aleutian Islands golden king crab fishery from the West regional delivery requirements. Federal regulations require West-designated golden king crab IFQ to be delivered to a processor... disruption to the Western Aleutian Islands golden king crab fishery, while providing for the sustained...

  8. 75 FR 7205 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... due to a recent unforeseen event, no processing facility is open in the West region. This emergency... Magnuson-Stevens Fishery Conservation and Management Act, the Fishery Management Plan for Bering Sea... and Aleutian Islands (BSAI) are managed under the Fishery Management Plan for Bering Sea/Aleutian...

  9. Clinopyroxene precursors to amphibole sponge in arc crust

    PubMed Central

    Smith, Daniel J.

    2014-01-01

    The formation of amphibole cumulates beneath arc volcanoes is a key control on magma geochemistry, and generates a hydrous lower crust. Despite being widely inferred from trace element geochemistry as a major lower crustal phase, amphibole is neither abundant nor common as a phenocryst phase in arc lavas and erupted pyroclasts, prompting some authors to refer to it as a ‘cryptic’ fractionating phase. This study provides evidence that amphibole develops by evolved melts overprinting earlier clinopyroxene—a near-ubiquitous mineral in arc magmas. Reaction-replacement of clinopyroxene ultimately forms granoblastic amphibole lithologies. Reaction-replacement amphiboles have more primitive trace element chemistry (for example, lower concentrations of incompatible Pb) than amphibole phenocrysts, but still have chemistries suitable for producing La/Yb and Dy/Yb ‘amphibole sponge’ signatures. Amphibole can fractionate cryptically as reactions between melt and mush in lower crustal ‘hot zones’ produce amphibole-rich assemblages, without significant nucleation and growth of amphibole phenocrysts. PMID:25002269

  10. Eruption Forecasting in Alaska: A Retrospective and Test of the Distal VT Model

    NASA Astrophysics Data System (ADS)

    Prejean, S. G.; Pesicek, J. D.; Wellik, J.; Cameron, C.; White, R. A.; McCausland, W. A.; Buurman, H.

    2015-12-01

    United States volcano observatories have successfully forecast most significant US eruptions in the past decade. However, eruptions of some volcanoes remain stubbornly difficult to forecast effectively using seismic data alone. The Alaska Volcano Observatory (AVO) has responded to 28 eruptions from 10 volcanoes since 2005. Eruptions that were not forecast include those of frequently active volcanoes with basaltic-andesite magmas, like Pavlof, Veniaminof, and Okmok volcanoes. In this study we quantify the success rate of eruption forecasting in Alaska and explore common characteristics of eruptions not forecast. In an effort to improve future forecasts, we re-examine seismic data from eruptions and known intrusive episodes in Alaska to test the effectiveness of the distal VT model commonly employed by the USGS-USAID Volcano Disaster Assistance Program (VDAP). In the distal VT model, anomalous brittle failure or volcano-tectonic (VT) earthquake swarms in the shallow crust surrounding the volcano occur as a secondary response to crustal strain induced by magma intrusion. Because the Aleutian volcanic arc is among the most seismically active regions on Earth, distinguishing distal VT earthquake swarms for eruption forecasting purposes from tectonic seismicity unrelated to volcanic processes poses a distinct challenge. In this study, we use a modified beta-statistic to identify pre-eruptive distal VT swarms and establish their statistical significance with respect to long-term background seismicity. This analysis allows us to explore the general applicability of the distal VT model and quantify the likelihood of encountering false positives in eruption forecasting using this model alone.

  11. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    NASA Astrophysics Data System (ADS)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  12. Continuous monitoring of diffuse CO2 degassing at Taal volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Padron, E.; Hernandez Perez, P. A.; Arcilla, C. A.; Lagmay, A. M. A.; Perez, N. M.; Quina, G.; Padilla, G.; Barrancos, J.; Cótchico, M. A.; Melián, G.

    2016-12-01

    Observing changes in the composition and discharge rates of volcanic gases is an important part of volcanic monitoring programs, because some gases released by progressive depressurization of magma during ascent are highly mobile and reach the surface well before their parental magma. Among volcanic gases, CO2 is widely used in volcano studies and monitoring because it is one of the earliest released gas species from ascending magma, and it is considered conservative. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front (facing the subduction zone along the Manila Trench) and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. In the period from 2010-2011, during a period of volcanic unrest, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). In the light of the excellent results obtained through diffuse degassing studies, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall

  13. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  14. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    USGS Publications Warehouse

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  15. Along and Across Arc Variation of the Central Andes by Single Crystal Trace Element Analaysis

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Sundell, T.; Wilder, A.; Salings, E. E.

    2017-12-01

    Along arc and across arc geochemical variations at continental volcanic arcs are influenced by a number of factors including the composition and thickness of the continental crust, mantle heterogeneity, and fluids from the subducted slab. Whole rock geochemical trends along and across the arc front of the Central Volcanic Zone (CVZ) have been suggested to be primarily influenced by the composition and thickness of the crust. In the CVZ, Pb isotopic domains relate volcanic rock compositions to the crustal basement and systematically varies with crustal age. It has been shown repeatedly that incompatible trace element trends and trace element ratios can be used to infer systematic geochemical changes. However, there is no rule linking magmatic process or chemical heterogeneity/ homogeneity as a result of large crustal magma storage reservoirs such as MASH zones to the observed variation. Here we present a combination of whole rock major- and trace element data, isotopic data and in situ single crystal data from plagioclase, pyroxene and olivine for six stratovolcanoes along the arc front and in the back arc of the CVZ. We compare geochemical trends at the whole and single crystal scale. These volcanoes include lava flows and domes from Cerro Uturuncu in the back-arc, Aucanquilcha, Ollagüe, San Pedro-San Pablo, Lascar, and Lazufre from the arc front. On an arc-wide scale, whole rock samples of silicic lavas from these six composite volcanoes display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front reflecting melting of young, mafic composition source rocks with the continental crust becoming increasingly older and more felsic toward the east. These trends are paralleled in the trace element compositions of plagioclase

  16. Seismicity and plate tectonics in south central Alaska

    NASA Technical Reports Server (NTRS)

    Van Wormer, J. D.; Davies, J.; Gedney, L.

    1974-01-01

    Hypocenter distribution shows that the Benioff zone associated with the Aleutian arc terminates in interior Alaska some 75 km north of the Denali fault. There appears to be a break in the subducting Pacific plate in the Yentna River-Prince William Sound area which separates two seismically independent blocks, similar to the segmented structure reported for the central Aleutian arc.

  17. Transient Volcano Deformation Event Detection over Variable Spatial Scales in Alaska

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Transient deformation events driven by volcanic activity can be monitored using increasingly dense networks of continuous Global Positioning System (GPS) ground stations. The wide spatial extent of GPS networks, the large number of GPS stations, and the spatially and temporally varying scale of deformation events result in the mixing of signals from multiple sources. Typical analysis then necessitates manual identification of times and regions of volcanic activity for further study and the careful tuning of algorithmic parameters to extract possible transient events. Here we present a computer-aided discovery system that facilitates the discovery of potential transient deformation events at volcanoes by providing a framework for selecting varying spatial regions of interest and for tuning the analysis parameters. This site specification step in the framework reduces the spatial mixing of signals from different volcanic sources before applying filters to remove interfering signals originating from other geophysical processes. We analyze GPS data recorded by the Plate Boundary Observatory network and volcanic activity logs from the Alaska Volcano Observatory to search for and characterize transient inflation events in Alaska. We find 3 transient inflation events between 2008 and 2015 at the Akutan, Westdahl, and Shishaldin volcanoes in the Aleutian Islands. The inflation event detected in the first half of 2008 at Akutan is validated other studies, while the inflation events observed in early 2011 at Westdahl and in early 2013 at Shishaldin are previously unreported. Our analysis framework also incorporates modelling of the transient inflation events and enables a comparison of different magma chamber inversion models. Here, we also estimate the magma sources that best describe the deformation observed by the GPS stations at Akutan, Westdahl, and Shishaldin. We acknowledge support from NASA AIST-NNX15AG84G (PI: V. Pankratius).

  18. The Effects of Varying Crustal Carbonate Composition on Assimilation and CO2 Degassing at Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Carter, L. B.; Holmes, A. K.; Dasgupta, R.; Tumiati, S.

    2015-12-01

    Magma-crustal carbonate interaction and subsequent decarbonation can provide an additional source of CO2 release to the exogenic system superimposed on mantle-derived CO2. Carbonate assimilation at present day volcanoes is often modeled by limestone consumption experiments [1-4]. Eruptive products, however, do not clearly display the characteristic ultracalcic melt compositions produced during limestone-magma interaction [4]. Yet estimated CO2outflux [5] and composition of volcanics in many volcanic systems may allow ~3-17% limestone- or dolostone-assimilated melt contribution. Crystallization may retain ultracalcic melts in pyroxenite cumulates. To extend our completed study on limestone assimilation, here we explore the effect of varying composition from calcite to dolomite on chemical and thermal decarbonation efficiency of crustal carbonates. Piston cylinder experiments at 0.5 GPa and 900-1200 °C demonstrate that residual mineralogy during interaction with magma shifts from CaTs cpx and anorthite/scapolite in the presence of calcite to Di cpx and Fo-rich olivine with dolomite. Silica-undersaturated melts double in magnesium content, while maintaining high (>30 wt.%) CaO values. At high-T, partial thermal breakdown of dolomite into periclase and CO2 is minimal (<5%) suggesting that in the presence of magma, CO2 is primarily released due to assimilation. Assimilated melts at identical P-T conditions depict similarly high volatile contents (10-20 wt.% by EMPA deficit at 0.5 GPa, 1150 °C with hydrous basalt) with calcite or dolomite. Analysis of the coexisting fluid phase indicates the majority of water is dissolved in the melt, while CO2 released from the carbonate is preferentially partitioned into the vapor. This suggests that although assimilated melts have a higher CO2 solubility, most of the CO2can easily degas from the vapor phase at arc volcanoes, possibly more so at volcanic plumbing systems traversing dolomite [8]. [1]Conte et al 2009 EuJMin (21) 763

  19. Sea otter population declines in the Aleutian Archipelago

    USGS Publications Warehouse

    Doroff, Angela M.; Estes, James A.; Tinker, M. Tim; Burn, Douglas M.; Evans, Thomas J.

    2003-01-01

    Sea otter (Enhydra lutris) populations were exploited to near extinction and began to recover after the cessation of commercial hunting in 1911. Remnant colonies of sea otters in the Aleutian archipelago were among the first to recover; they continued to increase through the 1980s but declined abruptly during the 1990s. We conducted an aerial survey of the Aleutian archipelago in 2000 and compared results with similar surveys conducted in 1965 and 1992. The number of sea otters counted decreased by 75% between 1965 and 2000; 88% for islands at equilibrial density in 1965. The population decline likely began in the mid-1980s and declined at a rate of 17.5%/year in the 1990s. The minimal population estimate was 8,742 sea otters in 2000. The population declined to a uniformly low density in the archipelago, suggesting a common and geographically widespread cause. These data are in general agreement with the hypothesis of increased predation on sea otters. These data chronicle one of the most widespread and precipitous population declines for a mammalian carnivore in recorded history.

  20. Tectonic context of moderate to large historical earthquakes in the Lesser Antilles and mechanical coupling with volcanoes

    NASA Astrophysics Data System (ADS)

    Feuillet, Nathalie; Beauducel, FrançOis; Tapponnier, Paul

    2011-10-01

    The oblique convergence between North American and Caribbean plates is accommodated in a bookshelf faulting manner by active, oblique-normal faults in the northern part of the Lesser Antilles arc. In the last 20 years, two M > 6 earthquakes occurred along a large, arc parallel, en echelon fault system, the 16 March 1985 in Redonda and 21 November 2004 in Les Saintes. A better understanding of active faulting in this region permit us to review the location and magnitude of historical earthquakes by using a regional seismic attenuation law. Several others moderate earthquakes may have occurred along the en echelon fault system implying a strong seismic hazard along the arc. These faults control the effusion of volcanic products and some earthquakes seem to be correlated in time with volcanic unrest. Shallow earthquakes on intraplate faults induced normal stress and pressure changes around neighboring volcano and may have triggered volcanic activity. The Redonda earthquake could have initiated the 1995 eruption of Montserrat's Soufrière Hills by compressing its plumbing system. Conversely, pressure changes under the volcano increased Coulomb stress changes and brought some faults closer to failure, promoting seismicity. We also discuss the magnitude of the largest 11 January 1839 and 8 February 1843 megathrust interplate earthquakes. We calculate that they have increased the stress on some overriding intraplate faults and the extensional strain beneath several volcanoes. This may explain an increase of volcanic and seismic activity in the second half of the 19th century culminating with the devastating, 1902 Mount Pelée eruption.

  1. Liquid and Emulsified Sulfur in Submarine Solfatara Fields of two Northern Mariana Arc Volcanoes.

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Embley, R. W.; Chadwick, W. W.; Butterfield, D. A.; Takano, B.; Resing, J. A.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Inagaki, F.

    2006-12-01

    Because elemental sulfur melting point is ca 100 deg C (depend on allotropes and heating rate, S8 triple point temperature: 115 deg C), the evidence of liquid sulfur has been known for many subaerial crater lakes and small ponds in geothermal regions throughout the world. But the milky nature of water (sulfur-in- water emulsion in limited water mass) prohibited the direct observation of on-going processes at the bottom of these subaerial lakes. In the passive degassing environment at the summit craters of Daikoku and Nikko Seamounts of the northern Mariana Arc, the continuous flushing of sulfur emulsion by seawater allowed us to observe on- going submarine solfatara processes and associated chemistry through dives with ROVs during the NT05-18 cruise (JAMSTEC R/V Natsushima and ROV hyper-Dolphin) and the Submarine Ring of Fire 2006 cruise (R/V Melville and ROV JASON II). A higher viscosity for liquid elemental sulfur relative to that of seawater, as well as a limited stability of sulfur emulsion (aqueous sulfur sol) at high temperatures in electrolyte solution (seawater), ensures limited mobility of liquid sulfur in the conduits of hydrothermal vents. The subseafloor boiling depth of hydrothermal fluid limits the locus of any liquid sulfur reservoir. It was observed in an exposed liquid sulfur pond that the penetration of gas bubbles (mostly CO2) created sulfur emulsion while collapsing liquid sulfur film between seawater and gas bubbles. Liquid sulfur pits, encrusted sulfur, liquid sulfur fountain structure, sulfur stalactites and stalagmites, mini-pillow lava-like sulfur flows, accretionary sulfur lapilli and sulfur deltas were also observed at the summits of two volcanoes. Note: Solfatara: Italian. A type of fumarole, the gases of which are characteristically sulfurous. In 'Glossary of geology.'

  2. 78 FR 17341 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    .... 120806311-3213-01] RIN 0648-BC25 Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and... Bering Sea/Aleutian Islands King and Tanner Crabs (FMP). If approved, these regulations would revise the... of the CR Program were analyzed in the Bering Sea/Aleutian Islands Crab Fisheries Final EIS. Due to...

  3. Calc-Alkaline Liquid Lines of Descent Produced Under Oxidizing Conditions: An Experimental and Petrologic Study of Basaltic Tephras from the Western Aleutians, AK

    NASA Astrophysics Data System (ADS)

    Waters, L. E.; Cottrell, E.; Kelley, K. A.; Coombs, M. L.

    2017-12-01

    Buldir, a volcano in the western Aleutian Arc, features eruptive products that form one of the most strongly calc-alkaline compositional trends observed in modern island arcs. Previous studies of Buldir and nearby submarine dredge samples suggest that Buldir's mineral phases and isotopic signatures may be introduced through mixing of two distinct magmas and/or melts, as no experimental study has been able to create a liquid line of descent (LLD) as calc-alkaline as Buldir's whole rock trend. To further test this hypothesis, we present new experimental results and petrographic analysis of tephras from the 2015 field season of the GeoPRISMS shared platform. Tephras (51.4-54.8 wt% SiO2) have a phenocryst assemblage of olivine + plagioclase + cpx + spinel ± hornblende (hbl). In natural samples, plagioclase comprises most of the crystal volume, followed by either olivine or hornblende. In samples that contain abundant hbl (Hbl Mg#=65-80), olivine and plagioclase span a range of compositions from Fo72-86 and An60-93, respectively. In samples without hbl, olivines are more forsteritic (Fo79-90), and plagioclase is less calcic (An65-83). Spinel is ubiquitous; with Cr- rich spinel inclusions in olivine and hbl, and magnetite in the groundmass. Our petrologic observations do not require magma mixing. To determine whether these observations could be consistent with the LLD of a single parental liquid, we conducted a series of phase equilibrium experiments at 100 MPa in a rapid-quench cold-seal (MHC) apparatus on the most primitive natural lava from Buldir (9.34 wt% MgO). Experiments were equilibrated in noble metal capsules pre-saturated with Fe, and buffered at Re-ReO2 under water-saturated conditions. Spinel [(Mg80, Fe2+20)(Fe3+52, Cr83, Al66)O4] is the liquidus phase, followed by olivine, then plagioclase, then cpx, and lastly, hbl. Once cpx and hbl saturate, spinel composition shifts to magnetite. Experimental run products demonstrate that all mineral phases observed in

  4. Volcano hazards in the San Salvador region, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  5. Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China

    NASA Astrophysics Data System (ADS)

    Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin

    2017-04-01

    Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water

  6. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  7. Modeling potential tsunami sources for deposits near Unalaska Island, Aleutian Islands

    NASA Astrophysics Data System (ADS)

    La Selle, S.; Gelfenbaum, G. R.

    2013-12-01

    In regions with little seismic data and short historical records of earthquakes, we can use preserved tsunami deposits and tsunami modeling to infer if, when and where tsunamigenic earthquakes have occurred. The Aleutian-Alaska subduction zone in the region offshore of Unalaska Island is one such region where the historical and paleo-seismicity is poorly understood. This section of the subduction zone is not thought to have ruptured historically in a large earthquake, leading some to designate the region as a seismic gap. By modeling various historical and synthetic earthquake sources, we investigate whether or not tsunamis that left deposits near Unalaska Island were generated by earthquakes rupturing through Unalaska Gap. Preliminary field investigations near the eastern end of Unalaska Island have identified paleotsunami deposits well above sea level, suggesting that multiple tsunamis in the last 5,000 years have flooded low-lying areas over 1 km inland. Other indicators of tsunami inundation, such as a breached cobble beach berm and driftwood logs stranded far inland, were tentatively attributed to the March 9, 1957 tsunami, which had reported runup of 13 to 22 meters on Umnak and Unimak Islands, to the west and east of Unalaska. In order to determine if tsunami inundation could have reached the runup markers observed on Unalaska, we modeled the 1957 tsunami using GeoCLAW, a numerical model that simulates tsunami generation, propagation, and inundation. The published rupture orientation and slip distribution for the MW 8.6, 1957 earthquake (Johnson et al., 1994) was used as the tsunami source, which delineates a 1200 km long rupture zone along the Aleutian trench from Delarof Island to Unimak Island. Model results indicate that runup and inundation from this particular source are too low to account for the runup markers observed in the field, because slip is concentrated in the western half of the rupture zone, far from Unalaska. To ascertain if any realistic

  8. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  9. 75 FR 8547 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... and Aleutian Islands (BSAI) exclusive economic zone according to the Fishery Management Plan for.... 0810141351-9087-02] RIN 0648-XU59 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS...

  10. Exotic Members of Southern Alaska's Jurassic Arc

    NASA Astrophysics Data System (ADS)

    Todd, E.; Jones, J. V., III; Karl, S. M.; Box, S.; Haeussler, P. J.

    2017-12-01

    The Jurassic Talkeetna arc and contemporaneous plutonic rocks of the Alaska-Aleutian Range batholith (ARB) are key components of the Peninsular terrane of southern Alaska. The Talkeetna arc, considered to be a type example of an intra-oceanic arc, was progressively accreted to northwestern North America in the Jurassic to Late Cretaceous, together with associated components of the Wrangellia Composite terrane. Older Paleozoic and Mesozoic rock successions closely associated with the ARB suggest that at least part of the Peninsular terrane might be an overlap succession built on pre-existing crust, possibly correlative with the Wrangellia terrane to the east. However, the relationship between the Talkeetna arc, ARB, and any pre-existing crust remains incompletely understood. Field investigations focused on the petrogenesis of the ARB near Lake Clark National Park show that Jurassic to Late Cretaceous plutonic rocks commonly host a diverse range of mineralogically distinct xenolith inclusions, ranging in size from several cm to hundreds of meters. The modal fraction of these inclusions ranges from <1% to >50% in some outcrops. They are generally mafic in composition and, with few exceptions, are more mafic than host plutonic rocks, although they are observed as both igneous (e.g., gabbro cumulate, diorite porphyry) and metamorphic types (e.g., amphibolite, gneiss and quartzite). Inclusion shapes range from angular to rounded with sharp to diffuse boundaries and, in some instances, are found as planar, compositionally distinct bands or screens containing high-temperature ductile shear fabrics. Other planar bands are more segmented, consistent with lower-temperature brittle behavior. Comparison of age, geochemical fractionation trends, and isotope systematics between the inclusions and host plutons provides a critical test of whether they are co-genetic with host plutons. Where they are related, mafic inclusions provide clues about magmatic evolution and fractionation

  11. Volcano hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.

    1997-01-01

    Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry

  12. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  13. Publications - MP 133 v. 2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Maps; Alaska, State of; Aleutian Arc; Aleutian Islands; Coastal and River; Coastal and River Hazards

  14. Towards Understanding the Sunda and Banda Arcs

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.

  15. Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Lupton, J.; Lilley, M.; Butterfield, D.; Evans, L.; Embley, R.; Olson, E.; Proskurowski, G.; Resing, J.; Roe, K.; Greene, R.; Lebon, G.

    2004-12-01

    In March/April 2004, submersible dives with the remotely-operated vehicle ROPOS discovered an unusual CO2-rich hydrothermal system near the summit of NW Eifuku, a submarine volcano located at 21.49° N, 144.04° E in the northern Mariana Arc. Although several sites of hydrothermal discharge were located on NW Eifuku, the most intense venting was found at 1600-m depth at the Champagne site, slightly west of the volcano summit. The Champagne site was found to be discharging two distinct fluids into the ocean: a) several small white chimneys were emitting milky 103° C gas-rich hydrothermal fluid with at least millimolar levels of H2S and b) cold (< 4° C) droplets coated with a milky skin were rising slowly from the sediment. These droplets were later determined to consist mainly of liquid CO2, with H2S as a probable secondary component. The droplets were sticky, and did not tend to coalesce into larger droplets, even though they adhered to the ROV like clumps of grapes. The film coating the droplets was assumed to be CO2 hydrate (or clathrate) which is known to form whenever liquid CO2 contacts water under these P,T conditions. Samples of the 103° C hydrothermal fluids were collected in special gas-tight titanium sampling bottles that were able to withstand the high internal pressures created by the dissolved gases. The Champagne hydrothermal fluids contained a surprising 2.3 moles/kg of CO2, an order of magnitude higher than any CO2 values previously reported for submarine hydrothermal fluids. The overall gas composition was 87% CO2, < 0.1% CH4, < 2 ppm H2, 0.012 mM/kg 4He, with the remaining 13% (322 mM/kg) assumed to be sulfur gases (H2S, SO2, etc.). (Additional analyses planned will confirm the speciation of this sulfur gas component). The helium had R/RA = 7.3, typical of subduction zone systems (R = 3He/4He and RA = Rair). Isotopic analysis of the CO2 yielded δ 13C = -1.75 ‰ , much heavier than the -6.0 ‰ typical for carbon in MOR vent fluids. The C/3He

  16. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  17. 78 FR 25878 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    .... 121018563-3148-02] RIN 0648-XC654 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS... Bering Sea and Aleutian Island management area (BSAI) by vessels participating in the BSAI trawl limited...

  18. 75 FR 3873 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    .... 0810141351-9087-02] RIN 0648-XT97 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS... and the Bering Sea subarea of the Bering Sea and Aleutian Islands management area (BSAI) for vessels...

  19. 75 FR 6129 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    .... 0810141351-9087-02] RIN 0648-XU22 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS... and the Bering Sea subarea of the Bering Sea and Aleutian Islands management area (BSAI) by vessels...

  20. 77 FR 39441 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    .... 111213751-2102-02] RIN 0648-XC083 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS... Bering Sea and Aleutian Islands management area (BSAI) by vessels participating in the BSAI trawl limited...

  1. 78 FR 29248 - Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    .... 121018563-3418-02] RIN 0648-XC687 Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS...: NMFS is prohibiting retention of Alaska plaice in the Bering Sea and Aleutian Islands management area...

  2. 75 FR 69597 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    .... 0910131363-0087-02] RIN 0648-XA038 Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS...: NMFS is prohibiting retention of Pacific cod in the Bering Sea and Aleutian Islands Management Area...

  3. 77 FR 26212 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    .... 111213751-2102-02] RIN 0648-XC013 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS... Bering Sea and Aleutian Island management area (BSAI) by vessels participating in the BSAI trawl limited...

  4. 78 FR 35771 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    .... 121018563-3148-02] RIN 0648-XC724 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS... Bering Sea and Aleutian Islands management area (BSAI) by vessels participating in the BSAI trawl limited...

  5. 76 FR 10780 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... economic zone according to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian.... 0910131363-0087-02] RIN 0648-XA252 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS...

  6. 76 FR 65975 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    .... 101126521-0640-02] RIN 0648-XA783 Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS... district (BS/EAI) of the Bering Sea and Aleutian Island management area (BSAI) by vessels participating in...

  7. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  8. Quantifying crustal thickness over time in magmatic arcs

    NASA Astrophysics Data System (ADS)

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; Decelles, Peter G.

    2015-12-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.

  9. Quantifying crustal thickness over time in magmatic arcs

    PubMed Central

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; DeCelles, Peter G.

    2015-01-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens. PMID:26633804

  10. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011-2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John J.; Kelly, Peter J.; Wallace, Kristi L.; Schneider, David J.; Wessels, Rick L.

    2017-05-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d- 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s- 1, and the total volume extruded from 2011 to 2015 was 1.9-5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth and explosive

  11. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  12. Volatile Abundances and Magma Geochemistry of Recent (2006) Through Ancient Eruptions (Less Than 2100 aBP) of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Webster, J. D.; Mandeville, C. W.; Gerard, T.; Goldoff, B.; Coombs, M. L.

    2006-12-01

    Augustine Volcano, Cook Inlet, Alaska, is a subduction-related Aleutian arc volcano located approximately 275 km southwest of Anchorage. During the past 200 years, Augustine volcano has shown explosive eruptive behavior seven times, with the most recent activity occurring in January through March 2006. Its ash and pumice eruptions pose a threat to commercial air traffic, the local fishing industry, and the inhabitants of the region. Following prior investigations on volatile abundances and processes of evolution for magmas associated with the 1976 (Johnston, 1978) and 1986 (Roman et al., 2005) eruptions of Augustine, we have analyzed phenocrysts, matrix glasses, and silicate melt inclusions in andesites formed during 5 pre-historic eruptions (ranging from 2100 to 1000 years in age) as well as the 1986 and recent 2006 eruptions. Outcrops of basaltic units on Augustine are rare, and basaltic melt inclusions are as well, so most melt inclusions studied range from andesitic to rhyolitic compositions. Comparison of the volatile abundances in felsic melt inclusion glasses shows few differences in H2O, CO2, S, and Cl, respectively, between eruptive materials of the pre- historic, 1976 (Johnston, 1978), and 1986 (Roman et al., 2005; our data) events. The magmas associated with these eruptions contained 1.6 to 8.0 wt.% H2O with 0.21 to 0.84 wt.% Cl, 100 to 1800 ppm CO2, and 100 to 400 ppm S. In contrast, preliminary research on rhyodacitic to rhyolitic melt inclusions in a single 2006 andesite sample collected from a lahar deposit indicates they contain somewhat lower H2O contents and higher Cl and S abundances than felsic melt inclusions from prior eruptions, and they exhibit geochemical trends consonant with magma mixing. Relationships involving H2O, CO2, S, and Cl in prehistoric through 1986 melt inclusions are consistent with fluid-saturated magma evolution of andesitic to rhyolitic melt compositions during closed-system ascent. The various batches of magma rose through

  13. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  14. Sedimentary processes in modern and ancient oceanic arc settings: evidence from the Jurassic Talkeetna Formation of Alaska and the Mariana and Tonga Arcs, western Pacific

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.

    2006-01-01

    Sediment deposited around oceanic volcanic ares potentially provides the most complete record of the tectonic and geochemical evolution of active margins. The use of such tectonic and geochemical records requires an accurate understanding of sedimentary dynamics in an arc setting: processes of deposition and reworking that affect the degree to which sediments represent the contemporaneous volcanism at the time of their deposition. We review evidence from the modern Mariana and Tonga arcs and the ancient arc crustal section in the Lower Jurassic Talkeetna Formation of south-central Alaska, and introduce new data from the Mariana Arc, to produce a conceptual model of volcaniclastic sedimentation processes in oceanic arc settings. All three arcs are interpreted to have formed in tectonically erosive margin settings, resulting in long-term extension and subsidence. Debris aprons composed of turbidites and debris flow deposits occur in the immediate vicinity of arc volcanoes, forming relatively continuous mass-wasted volcaniclastic records in abundant accommodation space. There is little erosion or reworking of old volcanic materials near the arc volcanic front. Tectonically generated topography in the forearc effectively blocks sediment flow from the volcanic front to the trench; although some canyons deliver sediment to the trench slope, most volcaniclastic sedimentation is limited to the area immediately around volcanic centers. Arc sedimentary sections in erosive plate margins can provide comprehensive records of volcanism and tectonism spanning < 10 My. The chemical evolution of a limited section of an oceanic arc may be best reconstructed from sediments of the debris aprons for intervals up to ~ 20 My but no longer, because subduction erosion causes migration of the forearc basin crust and its sedimentary cover toward the trench, where there is little volcaniclastic sedimentation and where older sediments are dissected and reworked along the trench slope.

  15. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  16. Lateral variation of H2O/K2O ratios in Quaternary Magma of the Northeastern Japan arc

    NASA Astrophysics Data System (ADS)

    Miyagi, I.

    2012-12-01

    Water plays a fundamental role in the magma genesis beneath subduction zones. In order to estimate a spatial distribution of the density of water flux in the wedge mantle of the Northeastern Japan arc, this study examines a lateral variation of pre-eruptive bulk rock H2O/K2O contents among volcanoes located both in the frontal and in back arc settings. The analytical targets are the frontal volcanoes Nigorikawa (N42.12 E140.45), Zenikame (N41.74 E140.85), Adachi (N38.22 E140.65), and Nanashigure (N40.07 E141.11), and the back arc ones Hijiori (N38.61 E140.17) and Kanpu (N39.93 E139.88). The bulk magmatic H2O content (TH2O) is calculated from a mass balance of hydrogen isotopic ratios among three phases in a batch of magma; dissolved water in melt, excess H2O vapor, and hydrous phenocrysts such as amphiboles (Miyagi and Matsubaya, 2003). Since the amount of H2O in hydrous phenocryst is negligible, the bulk magmatic H2O content can be written as TH2O = (30 XD CD) / (15 - dT + dMW), where dMW is the measured hydrogen isotopic ratio of hydrous phenocrysts, XD is a melt fraction of magma, CD is a water concentration of the melt, and dT is hydrogen isotopic ratios of a bulk magma (assumed to be -50 per-mil). Both XD and CD are estimated from bulk rock chemistry of the sample using the MELTS program (Ghiorso and Sack, 1995). Hydrogen isotopic fractionation factors are assumed to be -15 and -30 per-mil for vapor and hydrous mineral, and vapor and silicate melt, respectively. There observed a clear difference among the H2O/K2O ratios of bulk magmas from the frontal and back arc volcanoes. For instance higher H2O/K2O wt ratios was observed in the frontal volcanoes (Nigorikawa 5.3, Zenikame 11-12, Adachi 8-10, and Nanashigure 4-18), while lower H2O/K2O wt ratios was observed in the back arc ones (Kanpu 0-2.5 and Hijiori 1.4). The lateral variation of H2O/K2O ratios infer the higher water flux through the frontal side of wedge mantle, which can be a potential cause of the

  17. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  18. Hubble Space Telescope Resolves Volcanoes on Io

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.

    Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.

    Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.

    The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.

    The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the

  19. Climate program "stone soup": Assessing climate change vulnerabilities in the Aleutian and Bering Sea Islands of Alaska

    NASA Astrophysics Data System (ADS)

    Littell, J. S.; Poe, A.; van Pelt, T.

    2015-12-01

    Climate change is already affecting the Bering Sea and Aleutian Island region of Alaska. Past and present marine research across a broad spectrum of disciplines is shedding light on what sectors of the ecosystem and the human dimension will be most impacted. In a grassroots approach to extend existing research efforts, leveraging recently completed downscaled climate projections for the Bering Sea and Aleutian Islands region, we convened a team of 30 researchers-- with expertise ranging from anthropology to zooplankton to marine mammals-- to assess climate projections in the context of their expertise. This Aleutian-Bering Climate Vulnerability Assessment (ABCVA) began with researchers working in five teams to evaluate the vulnerabilities of key species and ecosystem services relative to projected changes in climate. Each team identified initial vulnerabilities for their focal species or services, and made recommendations for further research and information needs that would help managers and communities better understand the implications of the changing climate in this region. Those draft recommendations were shared during two focused, public sessions held within two hub communities for the Bering and Aleutian region: Unalaska and St. Paul. Qualitative insights about local concerns and observations relative to climate change were collected during these sessions, to be compared to the recommendations being made by the ABCVA team of researchers. Finally, we used a Structured Decision Making process to prioritize the recommendations of participating scientists, and integrate the insights shared during our community sessions. This work brought together residents, stakeholders, scientists, and natural resource managers to collaboratively identify priorities for addressing current and expected future impacts of climate change. Recommendations from this project will be incorporated into future research efforts of the Aleutian and Bering Sea Islands Landscape Conservation

  20. Environmental contaminants in bald eagle eggs from the Aleutian archipelago

    USGS Publications Warehouse

    Anthony, R.G.; Miles, A.K.; Ricca, M.A.; Estes, J.A.

    2007-01-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (??13C) and nitrogen (??15N). Concentrations of polychlorinated biphenyls (??PCBs), p,p???- dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of ??PCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (??13C) or nitrogen (??15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. ?? 2007 SETAC.

  1. Volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.; ,

    1998-01-01

    Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.

  2. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  3. Straddling the tholeiitic/calc-alkaline transition: the effects of modest amounts of water on magmatic differentiation at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Mandler, Ben E.; Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2014-01-01

    Melting experiments have been performed at 1 bar (anhydrous) and 1- and 2-kbar H2O-saturated conditions to study the effect of water on the differentiation of a basaltic andesite. The starting material was a mafic pumice from the compositionally zoned tuff deposited during the ~75 ka caldera-forming eruption of Newberry Volcano, a rear-arc volcanic center in the central Oregon Cascades. Pumices in the tuff of Newberry caldera (TNC) span a continuous silica range from 53 to 74 wt% and feature an unusually high-Na2O content of 6.5 wt% at 67 wt% SiO2. This wide range of magmatic compositions erupted in a single event makes the TNC an excellent natural laboratory in which to study the conditions of magmatic differentiation. Our experimental results and mineral–melt hygrometers/thermometers yield similar estimates of pre-eruptive H2O contents and temperatures of the TNC liquids. The most primitive (mafic) basaltic andesites record a pre-eruptive H2O content of 1.5 wt% and a liquidus temperature of 1,060–1,070 °C at upper crustal pressure. This modest H2O content produces a distinctive fractionation trend that is much more enriched in Na, Fe, and Ti than the calc-alkaline trend typical of wetter arc magmas, but slightly less enriched in Fe and Ti than the tholeiitic trend of dry magmas. Modest H2O contents might be expected at Newberry Volcano given its location in the Cascade rear arc, and the same fractionation trend is also observed in the rim andesites of the rear-arc Medicine Lake volcano in the southern Cascades. However, the Na–Fe–Ti enrichment characteristic of modest H2O (1–2 wt%) is also observed to the west of Newberry in magmas erupted from the arc axis, such as the Shevlin Park Tuff and several lava flows from the Three Sisters. This shows that modest-H2O magmas are being generated directly beneath the arc axis as well as in the rear arc. Because liquid lines of descent are particularly sensitive to water content in the range of 0–3 wt% H

  4. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    San Miguel volcano, also known as Chaparrastique, is a basaltic volcano along the Central American Volcanic Arc (CAVA). Volcanism is induced by the convergence of the Cocos Plate underneath the Caribbean Plate, along a 1200-km arc, extending from Guatemala to Costa Rica and parallel to the Central American Trench. The volcano is located in the eastern part of El Salvador, in proximity to the large communities of San Miguel, San Rafael Oriente, and San Jorge. Approximately 70,000 residents, mostly farmers, live around the crater and the city of San Miguel, the second largest city of El Salvador, ten km from the summit, has a population of ~180,000 inhabitants. The Pan-American and Coastal highways cross the north and south flanks of the volcano.San Miguel volcano has produced modest eruptions, with at least 28 VEI 1-2 events between 1699 and 1967 (datafrom Smithsonian Institution http://www.volcano.si.edu/volcano.cfm?vn=343100). It is characterized by visible milddegassing from a summit vent and fumarole field, and by intermittent lava flows and Strombolian activity. Since the last vigorous fire fountaining of 1976, San Miguel has only experienced small steam explosions and gas emissions, minor ash fall and rock avalanches. On 29 December 2013 the volcano erupted producing an eruption that has been classified as VEI 2. While eruptions tend to be low-VEI, the presence of major routes and the dense population in the surrounding of the volcano increases the risk that weak explosions with gas and/or ash emission may pose. In this study, we present the first inventory of SO2, CO2, HCl, and HF emission rates on San Miguel volcano, and an analysis of the hazard from volcanogenic SO2 discharged before, during, and after the December 2013 eruption. SO2 was chosen as it is amongst the most critical volcanogenic pollutants, which may cause acute and chronicle disease to humans. Data were gathered by the geochemical monitoring network managed by the Ministerio de Medio Ambiente

  5. Volcano Hazards Assessment for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

    2007-01-01

    Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

  6. Insights on volcanic behaviour from the 2015 July 23-24 T-phase signals generated by eruptions at Kick-'em-Jenny Submarine Volcano, Grenada, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Dondin, F. J. Y.; Latchman, J. L.; Robertson, R. E. A.; Lynch, L.; Stewart, R.; Smith, P.; Ramsingh, C.; Nath, N.; Ramsingh, H.; Ash, C.

    2015-12-01

    Kick-'em-Jenny volcano (KeJ) is the only known active submarine volcano in the Lesser Antilles Arc. Since 1939, the year it revealed itself, and until the volcano-seismic unrest of 2015 July 11-25 , the volcano has erupted 12 times. Only two eruptions breached the surface: 1939, 1974. The volcano has an average eruption cycle of about 10-11 years. Excluding the Montserrat, Soufrière Hills, KeJ is the most active volcano in the Lesser Antilles arc. The University of the West Indies, Seismic Research Centre (SRC) has been monitoring KeJ since 1953. On July 23 and 24 at 1:42 am and 0:02 am local time, respectively, the SRC recorded T-phase signals , considered to have been generated by KeJ. Both signals were recorded at seismic stations in and north of Grenada: SRC seismic stations as well as the French volcano observatories in Guadeloupe and Martinique, Montserrat Volcano Observatory, and the Puerto Rico Seismic Network. These distant recordings, along with the experience of similar observations in previous eruptions, allowed the SRC to confirm that two explosive eruptions occurred in this episode at KeJ. Up to two days after the second eruption, when aerial surveillance was done, there was no evidence of activity at the surface. During the instrumental era, eruptions of the KeJ have been identified from T-phases recorded at seismic stations from Trinidad, in the south, to Puerto Rico, in the north. In the 2015 July eruption episode, the seismic station in Trinidad did not record T-phases associated with the KeJ eruptions. In this study we compare the T-phase signals of 2015 July with those recorded in KeJ eruptions up to 1974 to explore possible causative features for the T-phase recording pattern in KeJ eruptions. In particular, we investigate the potential role played by the Sound Fixing and Ranging (SOFAR) layer in influencing the absence of the T-phase on the Trinidad seismic station during this eruption.

  7. Volcanoes

    MedlinePlus

    ... Oregon have the most active volcanoes, but other states and territories have active volcanoes, too. A volcanic eruption may involve lava and other debris that can flow up to 100 mph, destroying everything in their ...

  8. Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Villemant, Benoît; Friant, Anne Le; Paterne, Martine; Cortijo, Elsa

    2013-08-01

    Flank-collapse events are now recognized as common processes of destruction of volcanoes. They may occur several times on a volcanic edifice pulling out varying volumes of material from km3 to thousands of km3. In the Lesser Antilles Arc, a large number of flank-collapse events were identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée (Martinique), magma production rate has been sustained during several thousand years following a 32 ka old flank-collapse event. Basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows while significantly more acidic magmas were produced before the flank collapse. The rapid building of a new cone increased the load on magma bodies at depth and the density threshold. Magma production rate decreased and composition of the erupted products changed to more acidic compared to the preceding period of activity. These low density magma generated plinian and dome-forming eruptions up to the Present. In contrast at Soufrière Volcanic Centre of St. Lucia and at Pitons du Carbet in Martinique, the flank-collapses have an opposite effect: in both cases, the acidic magmas erupted immediately after the flank-collapses. These magmas are highly porphyritic (up to 60% phenocrysts) and much more viscous than the magmas erupted before the flank-collapses. They have been generally emplaced as voluminous and uptight lava domes (called “the Pitons”). Such magmas could not ascent without a significant decrease of the threshold effect produced by the volcanic edifice loading before the flank-collapse.

  9. Preliminary geologic map of Kanaga Volcano, Alaska

    USGS Publications Warehouse

    Miller, T.P.; Waythomas, C.F.; Nye, C.J.

    2003-01-01

    Kanaga Volcano is a 1,300 m (4,287-foot) high, historically active cone-shaped stratovolcano located on the north end of Kanaga Island in the Andreanof Islands Group of the Aleutian Islands. The volcano is undissected, symmetrical in profile, and is characterized by blocky andesitic lava flows, with well-developed levees and steep flow fronts, that emanate radially from, or near, the 200-m-wide summit crater. The lack of dissection of the cone suggests the entire edifice was constructed in post-glacial Holocene time. Historical eruptions were reported in 1791, 1827, 1829, 1904-1906, and 1993-95 (Miller and others, 1998); questionable eruptions occurred in 1763, 1768, 1786, 1790, and 1933. The upper flanks of the cone are very steep (>30°) and flows moving down these steep flows commonly fragment into breccias and lahars. A non-vegetated lahar, or group of lahars, extends from high on the southeast flank of the cone down to the northeast shore of the intracaldera lake. This lahar deposit was observed in 1999 but does not appear to be present on aerial photos taken in 1974 and is assumed to be part of the 1994-95 eruption. Most recent eruptions of Kanag a, including the 1994-95 eruption, were primarily effusive in character with a subordinate explosive component. Lava was extruded from, or near, the summit vent and moved down the flank of the cone in some cases reaching the ocean. In 1994, lava flows going down the very steep north and west flanks broke up into incandescent avalanches tumbling over steep truncated sea cliffs into the Bering Sea. A common feature of Kanaga central vent eruptions is the occurrence of widespread ballistics and accompanying craters. Steam and fine ash plumes rose to 7.5 km ASL and drifted a few tens of kilometers downwind. Plumes such as these are unlikely to deposit significant (i.e., sufficiently thick to leave a permanent record) tephras on other islands downwind.

  10. Oligocene and Miocene arc volcanism in northeastern California: evidence for post-Eocene segmentation of the subducting Farallon plate

    USGS Publications Warehouse

    Colgan, J.P.; Egger, A.E.; John, D.A.; Cousens, B.; Fleck, R.J.; Henry, C.D.

    2011-01-01

    The Warner Range in northeastern California exposes a section of Tertiary rocks over 3 km thick, offering a unique opportunity to study the long-term history of Cascade arc volcanism in an area otherwise covered by younger volcanic rocks. The oldest locally sourced volcanic rocks in the Warner Range are Oligocene (28–24 Ma) and include a sequence of basalt and basaltic andesite lava flows overlain by hornblende and pyroxene andesite pyroclastic flows and minor lava flows. Both sequences vary in thickness (0–2 km) along strike and are inferred to be the erosional remnants of one or more large, partly overlapping composite volcanoes. No volcanic rocks were erupted in the Warner Range between ca. 24 and 16 Ma, although minor distally sourced silicic tuffs were deposited during this time. Arc volcanism resumed ca. 16 Ma with eruption of basalt and basaltic andesite lavas sourced from eruptive centers 5–10 km south of the relict Oligocene centers. Post–16 Ma arc volcanism continued until ca. 8 Ma, forming numerous eroded but well-preserved shield volcanoes to the south of the Warner Range. Oligocene to Late Miocene volcanic rocks in and around the Warner Range are calc-alkaline basalts to andesites (48%–61% SiO2) that display negative Ti, Nb, and Ta anomalies in trace element spider diagrams, consistent with an arc setting. Middle Miocene lavas in the Warner Range are distinctly different in age, composition, and eruptive style from the nearby Steens Basalt, with which they were previously correlated. Middle to Late Miocene shield volcanoes south of the Warner Range consist of homogeneous basaltic andesites (53%–57% SiO2) that are compositionally similar to Oligocene rocks in the Warner Range. They are distinctly different from younger (Late Miocene to Pliocene) high-Al, low-K olivine tholeiites, which are more mafic (46%–49% SiO2), did not build large edifices, and are thought to be related to backarc extension. The Warner Range is ∼100 km east of the

  11. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes

    USGS Publications Warehouse

    Hinkley, T.K.; Lamothe, P.J.; Wilson, S.A.; Finnegan, David L.; Gerlach, T.M.

    1999-01-01

    Measurements of a large suite of metals (Pb, Cd, Cu, Zn and several others) and sulfur at Kilauea volcano over an extended period of time has yielded a detailed record of the atmospheric injection of ordinarily-rare metals from this quiescently degassing volcano, representative of an important type. We have combined the Kilauea data with data of recent studies by others (emissions from volcanoes in the Indonesian arc; the large Laki eruption of two centuries ago; Etna: estimates of total volcanic emissions of sulfur) to form the basis for a new working estimate of the rate of worldwide injection of metals to the atmosphere by volcanoes. The new estimate is that volcanoes inject a substantially smaller mass of ordinarily-rare metals into the atmosphere than was stated in a widely cited previous estimate [J.O. Nriagu, A global assessment of natural sources of atmospheric trace metals, Nature 338 (1989) 47-49]. Our estimate, which is an upper limit, is an annual injection mass of about 10,000 tons of the metals considered, versus the earlier estimate of about 23,000 tons. Also, the proportions of the metals are substantially different in our new estimate.

  12. Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano: A regional model study

    NASA Astrophysics Data System (ADS)

    Langmann, Baerbel; ZakšEk, Klemen; Hort, Matthias

    2010-01-01

    In August 2008, Kasatochi volcano on the Aleutian Islands erupted without much advance warning. Volcanic ash released during this eruption quickly settled out of the atmosphere, mainly into the NE Pacific Ocean. The amount of volcanic ash, as well as the ash fall area and volume into the NE Pacific Ocean, remains speculative, as only a limited number of measurements is available. We used a three-dimensional atmosphere/chemistry-aerosol model to determine the atmospheric distribution of SO2 and volcanic ash and its fallout after the eruption of Kasatochi volcano. In a first step, modeled atmospheric SO2 distributions are compared with satellite data, thereby evaluating the model capabilities to reasonably reproduce atmospheric transport patterns. For modeled volcanic ash mass a considerable reduction of the atmospheric content already occurred by 10 August, the second day after the eruption in accordance with satellite observations. Gravitational settling is the most efficient removal process for volcanic ash mass, exceeding dry and wet deposition by far. Assuming an ash volume of 0.3 km3 released during the eruption of Kasatochi volcano and a median ash particle diameter of 4 μm, the mass of volcanic ash removed at ground within the 0.1 mm isopach covers an area of 7.6 × 105 km2 over the NE Pacific Ocean and makes up 49% of the removed material out of the atmosphere. The amount of ash and that of iron attached to it is sufficient to explain measured seawater CO2 decrease at the ocean station Papa in August 2008 induced by iron fertilization and subsequent phytoplankton production.

  13. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open...

  14. View of an intact oceanic arc, from surficial to mesozonal levels: Cretaceous Alisitos arc, Baja California

    NASA Astrophysics Data System (ADS)

    Busby, Cathy; Fackler Adams, Benjamin; Mattinson, James; Deoreo, Stephen

    2006-01-01

    The Alisitos arc is an approximately 300 × 30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50 × 30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50 × 30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U-Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111-110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb / 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane. The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent

  15. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  16. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  17. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust

    USGS Publications Warehouse

    Witter, Robert C.; Carver, G.A.; Briggs, Richard; Gelfenbaum, Guy R.; Koehler, R.D.; La Selle, SeanPaul M.; Bender, Adrian M.; Engelhart, S.E.; Hemphill-Haley, E.; Hill, Troy D.

    2016-01-01

    Current models used to assess earthquake and tsunami hazards are inadequate where creep dominates a subduction megathrust. Here we report geological evidence for large tsunamis, occurring on average every 300–340 years, near the source areas of the 1946 and 1957 Aleutian tsunamis. These areas bookend a postulated seismic gap over 200 km long where modern geodetic measurements indicate that the megathrust is currently creeping. At Sedanka Island, evidence for large tsunamis includes six sand sheets that blanket a lowland facing the Pacific Ocean, rise to 15 m above mean sea level, contain marine diatoms, cap terraces, adjoin evidence for scour, and date from the past 1700 years. The youngest sheet, and modern drift logs found as far as 800 m inland and >18 m elevation, likely record the 1957 tsunami. Modern creep on the megathrust coexists with previously unrecognized tsunami sources along this part of the Aleutian Subduction Zone.

  18. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshoremore » area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize

  19. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679 Wildlife and... 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to...

  20. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  1. Palaeoproterozoic Volcanic Massive Sulphides (VMS) in the Lithuanian crystalline basement: evidences for a back-arc tectonic setting

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Siliauskas, Laurynas

    2014-05-01

    In the southwestern part of the East European Craton (EEC), several events of Palaeoproterozoic volcanic arc magmatic activity were recognized in the concealed crystalline basement. In Lithuania, the TTG suites of 1.89 Ga and 1.86-1.84 Ga were later metamorphosed in amphibolite and granulite facies conditions. Remnants of a volcano-sedimentary sequence metamorphosed in green schist and amphibolite facies conditions were discovered in central and southern Lithuania. In southern Lithuania, the upper part of the Lazdijai 13 (Lz13) drilling (at c. 493 m depth) consists of exhalitic quartz chlorite cherts mixed with andesitic rocks. The rocks are impregnated with magnetite in some places replacing calcite. Most of the magnetite grains are overgrown by a dendritic kovelite, which may have formed while magnetite was still in aqueous surrounding. Other accessory minerals are xenotime, zircon, apatite, Sr-Ba sulphates etc. The cherts are underlain by a metaandesite which volcanic structures were obscured by hydrothermal alteration, i.e. the idiomorphic magnetite crystals and porphyritic plagioclase grains were replaced by clay minerals and quartz or muscovite in many places. Thin metamorphosed mudstone layers turned into garnet, biotite (+/-staurolite) and chlorite schists. The rocks were affected by silicification, chloritization, argilitization and carbonatization. Taking into account the rock composition, micro and macro scale alteration zones and absence of breccia, the whole package resembles an outer part of the VMS stockwork. The lower boundary at 526 m is sharp, marked by a quartz vein, below which lies quartz, biotite (+/- chlorite) bearing schist with minor tremolite (former sandstone). It was intensely affected by silicification, and was enriched in Na, K and Ca. Accessory minerals are monazite, xenotime, apatite and detrital zircon. The schist exhibits fine mineral foliation, and is fine-grained. A 4 m thick granitic vein cuts the rock at 654 m depth, below

  2. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  3. Scaling laws of the size-distribution of monogenetic volcanoes within the Michoacán-Guanajuato Volcanic Field (Mexico)

    NASA Astrophysics Data System (ADS)

    Pérez-López, R.; Legrand, D.; Garduño-Monroy, V. H.; Rodríguez-Pascua, M. A.; Giner-Robles, J. L.

    2011-04-01

    The Michoacán-Guanajuato Volcanic Field displays about 1040 monogenetic volcanoes mainly composed of basaltic cinder cones. This monogenetic volcanic field is the consequence of a dextral transtensive tectonic regime within the Transmexican Volcanic Belt (TMVB), the largest intra continental volcanic arc around the world, related to the subduction of the Rivera and Cocos plates underneath the North American Plate. We performed a statistical analysis for the size-distribution of the basal diameter (Wco) for cinder cones. Dataset used here was compiled by Hasenaka and Carmichael (1985). Monogenetic volcanoes obey a power-law very similar to the Gutenberg-Richter law for earthquakes, with respect to their size-distribution: log 10 ( N >= Wco ) = α - β log10( Wco), with β = 5.01 and α = 2.98. Therefore, the monogenetic volcanoes exhibit a (Wco) size-distribution empirical power-law, suggesting a self-organized criticality phenomenon.

  4. Geochemical monitoring of Taal volcano (Philippines) by means of diffuse CO2 degassing studies

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Hernández, Pedro A.; Arcilla, Carlo; Pérez, Nemesio M.; Lagmay, Alfredo M.; Rodríguez, Fátima; Quina, Gerald; Alonso, Mar; Padilla, Germán D.; Aurelio, Mario A.

    2017-04-01

    Observing changes in the discharge rate of CO2 is an important part of volcanic monitoring programs, because it is released by progressive depressurization of magma during ascent and reach the surface well before their parental magma. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front facing the subduction zone along the Manila Trench and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. During the last period of volcanic unrest from 2010 to 2011, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates through the water surface reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). After the unrest period, diffuse CO2 emission has remained in the range 532-860 t/d in the period 2013-2016. In January 2016, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall, and barometric pressure. The 2016 time series show CO2 efflux values in the range 20-690 g m-2 d-1.Soil temperature, heavily influenced by rainfall, ranged between 74 and 96o

  5. Geochemistry and petrogenetic history of lavas from Sumaco Volcano, Northern Volcanic Zone, Ecuador

    NASA Astrophysics Data System (ADS)

    Escobar, R. D.; Garrison, J. M.; Sims, K. W.; Matthews, T. P.; Yogodzinski, G. M.

    2012-12-01

    Sumaco Volcano is located in the rear arc of the Northern Volcanic Zone (NVZ) of Ecuador, 105 km from the capital city of Quito. It is one of several volcanoes in the rear arc of the NVZ and is located south of El Reventador volcano. On the basis of summit morphology, Sumaco is believed to have erupted most recently in 1933, however there are few constraints on the timing of past eruptions and it is currently inactive. Lava flows on the steep, jungle-covered flanks are largely inaccessible and therefore few studies have been published for this volcano, and most representative samples are from the volcano summit. The goals of this research are 1) to use major and trace element data to obtain a better understanding of the petrogenetic history of Sumaco Volcano and 2) to use U-series isotopes to constrain the eruption ages and, if possible get information about magma storage times. We collected and sent 23 rock samples to Washington State University for analysis of major and trace elements using XRF and ICP, including six lavas from the summit and 17 from the southern flanks, including bread-crust bombs. A subgroup of samples was chosen for U-series disequilibrium measurements on whole rocks and minerals. Based on hand-sample observations and electron microprobe analyses, the primary mineral phases found in the Sumaco lavas include titanaugite, hauyne, olivine and plagioclase, with accessory apatite and hercynite. The plagioclase and apatite have seive textures consistent with magma mixing or recharge, and the titanaugite crystals are euhedral with oscillatory zoning that records repeated recharge events. On the basis of major and trace element data, the lavas are alkaline and range in composition from picro-basalt to tephri-phonolite; the picro basalt has MgO of 10 wt % and the summit samples are the most evolved with MgO of 2 wt %. The summit lavas (also presumed to be the youngest lavas) have the highest concentration of alkali elements with K2O content (> 4 wt

  6. GlobVolcano: Earth Observation Services for Global Monitroing of Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgstrom, S.; Bianchi, M.; Bronson, W.; Tampellini, M. L.; Ratti, R.; Seifert, F. M.; Komorowski, J. C.; Kaminski, E.; Peltier, A.; Van der Voet, P.

    2010-03-01

    The GlobVolcano project (2007-2010) is part of the Data User Element (DUE) programme of the European Space Agency (ESA).The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcano Observatories and other mandate users (Civil Protection, volcano scientific community) in their monitoring activities.The set of offered EO based information products is the following:- Deformation Mapping- Surface Thermal Anomalies- Volcanic Gas Emission- Volcanic Ash TrackingThe Deformation Mapping service is performed exploiting either PSInSARTM or Conventional DInSAR (EarthView® InSAR). The processing approach is selected according to the availability of SAR data and users' requests.The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site.In a first phase, the GlobVolcano Information System was designed, implemented and validated, involving a limited number of test areas and respective user organizations (Colima in Mexico, Merapi in Indonesia, Soufrière Hills in Montserrat Island, Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli and Volcano in Italy). In particular Deformation Mapping results obtained for Piton de la Fournaise were compared with deformation rates measured by the volcano observatory using GPS stations and tiltmeters. IPGP (Institut de Physique du Globe de Paris) is responsible for the validation activities.The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are monitored and as many user organizations are involved and cooperating with the project team.In addition to the proprietary tools mentioned before, in

  7. Eruption histories and hypotheses of magma genesis of Mt. Baegdu volcano

    NASA Astrophysics Data System (ADS)

    Lim, C.; Lee, I.

    2017-12-01

    The tephra or cryptotephra are principally composed of alkaline glass shards, and INAA of individual grains offers a way of distinguishing chemical characteristics. That may be used to discriminate different events age and to correlate separate deposits of the same source volcanoes. The identification of tephra or cryptotephra layers presents an opportunity to define time-parallel marker horizons. With using INAA scanning method three newly identified tephras (named B-J, B-Sado and B-Ym) were detected and eruption ages identified between AT (29.24 cal. ka) and Aso-4 (88 ka) in five cores based on microscopic observation and the stratigraphic correlations between cores of the Holocene sediments in the southeastern East Sea/Japan Sea. By the correlation with TL (dark layer) data, the approximate age of B-J, B-Sado and B-Ym tephras were calculated as to be 50.6 ka, 67.6 ka, 86.8 ka, respectively. The intraplate Baegdusan (Changbai) volcanoes located on the border of China and North Korea have been explained by either hotspots by mantle plumes or asthenospheric mantle upwelling (wet plume) caused by stagnation slab of the subducted Pacific plate. To understand the origin of the Baegdusan volcanism, we performed geochemical analyses on the volcanic rocks and tephra deposits erupted from the Baegdusan volcanoes. We propose that the intraplate alkaline volcanism associated with Baekdusan volcanic region is fed by a mantle upwelling originating below the discontinuity subducting slab. The upwelling is a result of a slab neck into the subducting slabs. The Baekdusan volcano relies on a slab neck within subducting slab at depth to allow for a focused upwelling. Therefore, the magmatic progression of back-arc magmatism in Baekdusan volcanoes can be explained by the interaction of this Philippine Sea Plate Slab and upwelling mantle.

  8. Why do magmas stall? Insights from petrologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.; Freymueller, J.; Hauri, E. H.; Larsen, J. F.; Nye, C. J.

    2007-12-01

    Magmas stall at various depths in the crust due to their internal properties (magma viscosity, buoyancy) and external crustal controls (local stress regime, wallrock strength). Annen et al. (JPet 2006) propose a petrological model in which buoyant magma ascends through the crust until the depth of water saturation, after which it crystallizes catastrophically and stalls due to the large increase in magma viscosity. Magmas may erupt from this storage region, or viscous death may result in pluton formation. In order to test this model, and constrain magma storage depths, we combine petrological and geodetic data for several active volcanoes along the Aleutian-Alaska arc. We analyzed glassy, primarily olivine-hosted melt inclusions by SIMS in tephra samples for their pre-eruptive volatile contents, which can be related to the depth of entrapment via pressure-dependent H2O-CO2 solubility models (e.g., VolatileCalc). Melt inclusions are not in equilibrium with pure water vapor (all will contain S and C species), but >50% of the inclusion population are in equilibrium with a vapor containing >85% H2O. Geodetic data (InSAR, GPS) record surface deformation related to volcano inflation/deflation, and can be inverted to solve for the depths of volume change (magma storage) in the crust. In the Aleutians, we find that the maximum melt inclusion trapping depths and geodetic depths correlate, suggesting both techniques record crustal magma storage and crystallization. Melt inclusions from the 1997 Okmok eruption are trapped at ≤3 km; deformation during the eruption and subsequent inflation occurred at 3±0.5 km (Miyagi et al., EPSL 2004; Lu & Masterlark, JGR 2005). At Akutan, melt inclusions and GPS data indicate magma storage at ~5-7 km. Inclusions from flank cones of Makushin yield depths of 7 km, similar to inflation observed beneath the main edifice (6.8 km, Lu et al., JGR 2002). Pleistocene inclusions from Augustine volcano indicate magma storage at 10-18 km, in accord

  9. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    NASA Astrophysics Data System (ADS)

    Fischer, T.

    2001-05-01

    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  10. Multi-segment earthquakes and tsunami potential of the Aleutian megathrust

    USGS Publications Warehouse

    Shennan, I.; Bruhn, R.; Plafker, G.

    2009-01-01

    Large to great earthquakes and related tsunamis generated on the Aleutian megathrust produce major hazards for both the area of rupture and heavily populated coastlines around much of the Pacific Ocean. Here we use paleoseismic records preserved in coastal sediments to investigate whether segment boundaries control the largest ruptures or whether in some seismic cycles segments combine to produce earthquakes greater than any observed since instrumented records began. Virtually the entire megathrust has ruptured since AD1900, with four different segments generating earthquakes >M8.0. The largest was the M9.2 great Alaska earthquake of March 1964 that ruptured ???800 km of the eastern segment of the megathrust. The tsunami generated caused fatalities in Alaska and along the coast as far south as California. East of the 1964 zone of deformation, the Yakutat microplate experienced two >M8.0 earthquakes, separated by a week, in September 1899. For the first time, we present evidence that earthquakes ???900 and ???1500 years ago simultaneously ruptured adjacent segments of the Aleutian megathrust and the Yakutat microplate, with a combined area ???15% greater than 1964, giving an earthquake of greater magnitude and increased tsunamigenic potential. ?? 2008 Elsevier Ltd. All rights reserved.

  11. GLORIA imagery links sedimentation in Aleutian Trench to Yakutat margin via surveyor channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Bruns, T.R.; Mann, D.M.

    1990-06-01

    GLORIA side-scan sonar imagery shows that the continental slope developing along the active margin of the Gulf of Alaska is devoid of large submarine canyons, in spite of the presence of large glacially formed sea valleys that cross the continental shelf. In the western and northern Gulf, discontinuous, actively growing deformation structures disrupt or divert the downslope transport of sediment into the Aleutian Trench. To the east of Middleton Island, the slope is intensively gullied and incised only by relatively small canyons. At the base of the gullied slope between Pamplona Spur and Alsek Valley, numerous small slope gullies coalescemore » into three turbidity current channels that merge to form the Surveyor deep-sea channel. About 350 km from the margin, the channel crosses the structural barrier formed by the Kodiak-Bowie Seamount chain and heads south for another 150 km where it bends northerly, perhaps influenced by the oceanic basement relief of the Patton Seamounts. The channel, now up to 5 km wide and deeply entrenched to 450 m, continues northerly for 200 km where it intercepts the Aleutian Trench, some 700 km from the Yakutat margin. South of Surveyor Channel, GLORIA imagery revealed evidence of another older channel. The older channel meanders through a gap in the seamount chain and eventually bends northwesterly. This now inactive, largely buried channel may have carried turbidity currents to the Aleutian Trench concurrent with the active Surveyor Channel.« less

  12. Infrasonic Influence of Volcanos

    NASA Astrophysics Data System (ADS)

    Hosman, Ashley

    2014-03-01

    My presentation will consist of a poster on the use of ring laser interferometers to detect infrasound. The research was performed during the summer of 2013 and it focused on the finding infrasound emissions created by volcanic activity. I will explain how a ring laser works and discuss how I analyze the collected data using Fast Fourier Transforms. Due to the extreme distances over which infrasound can travel, I will also stress the need to compare the detected responses to specific volcanic eruptions. Finally, I will purpose practical applications of my research. One of the more promising applications is to use ring lasers to detect volcanic activity in remote areas such as parts of the Aleutian Islands. There is considerable air traffic over the Aleutian Islands. Volcanic plumes are a significant aviation hazard and can damage jet engines to the extent that they will no longer operate. Thank you to the NSF ans NASA foundations for providing funding for this reseach.

  13. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  14. Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.

    2017-12-01

    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.

  15. Numerical modeling of magma-tectonic interactions at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Wauthier, C.

    2017-12-01

    Pacaya Volcano is composed of several volcanic cones located along the southern rim of the Amatitlan caldera, approximately 25 km south of Guatemala City. It is a basaltic volcano located in the Central American Volcanic Arc. The shallow magma plumbing system at Pacaya likely includes at least three magma reservoirs: a very shallow ( 0.2-0.4 km depth) reservoir located below and possibly within the MacKenney cone, a 4 km deep reservoir located northwest of the summit, and a shallow dike-like conduit below the summit which fed the recent flank eruptions. Pacaya's western flank is slipping in a stick-slip fashion, and the instability seems associated with larger volume eruptions. Flank instability phases indeed occurred in 2010 and 2014 in coincidence with major intrusive and eruptive phases, suggesting a positive feedback between the flank motion and major intrusions. Simple analytical models are insufficient to fit the geodetic observations and model the flank processes and their mechanical interactions with the magmatic system. Here, numerical modeling approaches are used to characterize the 2014 flank deformation episode and magma-tectonic interactions.

  16. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016

  17. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  18. Paleoseismicity and neotectonics of the Aleutian Subduction Zone—An overview

    NASA Astrophysics Data System (ADS)

    Carver, Gary; Plafker, George

    The Aleutian subduction zone is one of the most seismically active plate boundaries and the source of several of the world's largest historic earthquakes. The structural architecture of the subduction zone varies considerably along its length. At the eastern end is a tectonically complex collision zone where the allochthonous Yakutat terrane is moving northwest into mainland Alaska. West of the collision zone a shallow-dipping subducted plate beneath a wide forearc, nearly orthogonal convergence, and a continental-type subduction regime characterizes the eastern part of the subduction zone. In the central part of the subduction zone, convergence becomes increasingly right oblique and the forearc is divided into a series of large clockwise-rotated fault-bounded blocks. Highly oblique convergence and island arc tectonics characterize the western part of the subduction zone. At the extreme western end of the arc, the relative plate motion is nearly pure strike-slip. A series of great subduction earthquakes ruptured most of the 4000-km length of the subduction zone during a period of several decades in the mid 1900s. The majority of these earthquakes broke multiple segments as defined by the large-scale structure of the overriding plate margin and patterns of historic seismicity. Several of these earthquakes generated Pacific-wide tsunamis and significant damage in the southwestern and south-central regions of Alaska. Characterization of previous subduction earthquakes is important in assessing future seismic and tsunami hazards. However, at present such information is available only for the eastern part of the subduction zone. The 1964 Alaska earthquake (M 9.2) ruptured about ˜950 km of the plate boundary that encompassed the Kodiak and Prince William Sound (PWS) segments. Within this region, nine paleosubduction earthquakes in the past ˜5000 years are recognized on the basis of geologic evidence of sudden land level change and, at some sites, coeval tsunami

  19. The Aleutian Low and Winter Climatic Conditions in the Bering Sea. Part I: Classification

    NASA Astrophysics Data System (ADS)

    Rodionov, S. N.; Overland, J. E.; Bond, N. A.

    2005-01-01

    The Aleutian low is examined as a primary determinant of surface air temperature (SAT) variability in the Bering Sea during the winter (December-January-February-March (DJFM)) months. The Classification and Regression Tree (CART) method is used to classify five types of atmospheric circulation for anomalously warm months (W1-W5) and cold months (C1-C5). For the Bering Sea, changes in the position of the Aleutian low are shown to be more important than changes in its central pressure. The first two types, W1 and C1, account for 51% of the "warm" and 37% of the "cold" months. The W1-type pattern is characterized by the anomalously deep Aleutian low shifted west and north of its mean position. In this situation, an increased cyclonic activity occurs in the western Bering Sea. The C1-type pattern represents a split Aleutian low with one center in the northwestern Pacific and the other in the Gulf of Alaska. The relative frequency of the W1 to C1 types of atmospheric circulation varies on decadal time scales, which helps to explain the predominance of fluctuations on these time scales in the weather of the Bering Sea. Previous work has noted the prominence of multidecadal variability in the North Pacific. The present study finds multidecadal variations in frequencies of the W3 and C3 patterns, both of which are characterized by increased cyclonic activity south of 51°N. In general, the CART method is found to be a suitable means for characterizing the wintertime atmospheric circulation of the North Pacific in terms of its impact on the Bering Sea. The results show that similar pressure anomaly patterns for the North Pacific as a whole can actually result in different conditions for the Bering Sea, and that similar weather conditions in the Bering Sea can arise from decidedly different large-scale pressure patterns.

  20. Apparent episodicity of magmatic activity based on radiometric age determination: A section in The United States Geological Survey in Alaska: Accomplishments during 1980

    USGS Publications Warehouse

    Wilson, Frederic H.; Shew, Nora B.

    1982-01-01

    Results of recent potassium-argon age studies in the Chignik region, Alaska, (Wilson, 1980; Wilson and others, 1982) have suggested a distinct episodicity in igneous activity during Tertiary time. To date work on the Aleutian magmatic arc indicates that plutonic activity took place along the present outer Pacific margin and in the northern Alaska-Aleutian Range batholith (Reed and Lanphere, 1973; Kienle and Turner, 1976; DeLong and others, 1978) in latest Cretaceous and earliest Tertiary time (70-58 m.y.) and was followed by a hiatus lasting until late Eocene ( 45 m.y~) time. Late Eocene to earliest Miocene ( 45-20 m.y.) magmatic activity was followed by a middle Miocene hiatus (10 m.y.). Since that time, magmatic activity in the Aleutian arc has been continuous.

  1. Sustained long-period seismicity at Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Petersen, Tanja; Caplan-Auerbach, Jacqueline; McNutt, Stephen R.

    2006-01-01

    From September 1999 through April 2004, Shishaldin Volcano, Aleutian Islands, Alaska, exhibited a continuous and extremely high level of background seismicity. This activity consisted of many hundreds to thousands of long-period (LP; 1–2 Hz) earthquakes per day, recorded by a 6-station monitoring network around Shishaldin. The LP events originate beneath the summit at shallow depths (0–3 km). Volcano tectonic events and tremor have rarely been observed in the summit region. Such a high rate of LP events with no eruption suggests that a steady state process has been occurring ever since Shishaldin last erupted in April–May 1999. Following the eruption, the only other signs of volcanic unrest have been occasional weak thermal anomalies and an omnipresent puffing volcanic plume. The LP waveforms are nearly identical for time spans of days to months, but vary over longer time scales. The observations imply that the spatially close source processes are repeating, stable and non-destructive. Event sizes vary, but the rate of occurrence remains roughly constant. The events range from magnitude ∼0.1 to 1.8, with most events having magnitudes <1.0. The observations suggest that the conduit system is open and capable of releasing a large amount of energy, approximately equivalent to at least one magnitude 1.8–2.6 earthquake per day. The rate of observed puffs (1 per minute) in the steam plume is similar to the typical seismic rates, suggesting that the LP events are directly related to degassing processes. However, the source mechanism, capable of producing one LP event about every 0.5–5 min, is still poorly understood. Shishaldin's seismicity is unusual in its sustained high rate of LP events without accompanying eruptive activity. Every indication is that the high rate of seismicity will continue without reflecting a hazardous state. Sealing of the conduit and/or change in gas flux, however, would be expected to change Shishaldin's behavior.

  2. 78 FR 68390 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ...NMFS proposes regulations to implement Amendment 102 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area (BSAI FMP), and amend the Individual Fishing Quota Program for the Fixed-Gear Commercial Fisheries for Pacific Halibut and Sablefish in Waters in and off Alaska (IFQ Program). Amendment 102 and its proposed implementing regulations would create a Community Quota Entity (CQE) Program in halibut IFQ regulatory area 4B (Area 4B) and the sablefish Aleutian Islands regulatory area that is similar to the existing CQE Program in the Gulf of Alaska (GOA). Amendment 102 would also allow an eligible community in Area 4B and in the Aleutian Islands to establish a non-profit organization as a CQE to purchase halibut catcher vessel quota share (QS) assigned to Area 4B and sablefish QS assigned to the Aleutian Islands. The CQE could assign the resulting annual halibut and sablefish IFQ to participants according to defined CQE Program elements. An additional proposed revision to the IFQ Program regulations would allow IFQ derived from D share halibut QS to be fished on Category C vessels in Area 4B. These actions are necessary to provide additional fishing opportunities for residents of fishery dependent communities and sustain participation in the halibut and sablefish IFQ fisheries. These actions are intended to promote the goals and objectives of the Magnuson-Stevens Fishery Conservation and Management Act, the Northern Pacific Halibut Act of 1982, the BSAI FMP, and other applicable law.

  3. Hyperacid volcano-hydrothermal fluids from Copahue volcano, Argentina: Analogs for "subduction zone fluids"?

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.

    2007-12-01

    Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values <1, high concentrations of volcanogenic elements (S, Cl, F, As, B) and the main rock forming elements (Ca, Al, Mg, K, Na, P). Sulfur isotope data and Silica thermometry from such fluids sampled over a ten year period from the Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting

  4. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  5. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011–2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    USGS Publications Warehouse

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John; Kelly, Peter; Wallace, Kristi; Schneider, David; Wessels, Rick

    2017-01-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d− 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s− 1, and the total volume extruded from 2011 to 2015 was 1.9–5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth

  6. Preliminary Study on Ground-Magnetic Data Near the Active Volcanoes in Konga Bay, East Flores Indonesia

    NASA Astrophysics Data System (ADS)

    Laesanpura, Agus; Dahrin, Darharta; Nurseptian, Ivan

    2017-04-01

    East Flores is part of Nusa Tenggara island belongs to volcanic arc zone, hence the active volcanoes surround the area about 60 × 50 square km. It is located at latitude south 8° 30’, and longitude east 122° 45’. Geologically, the rock is mostly of volcanic material since Miocene age. The Intriguing question is where the volcanic feeder, pyroclastic, and how it vanish in subsurface. The magnetic data acquisitions were executed on land for 500 meter interval and denser through the bay surrounded by volcanoes. The combine reduction to pole and forward modelling is apply for serve interpretation using forward modelling technique. The two interpretation sections, show the body of magmatic may present at depth about 2 to 3 km. The observation show no significant decreasing or loosening of magnetic anomaly although near the active volcano. We suggest the thermal anomaly is just disturbing magnetic data in near surface but not in the depth one. Meanwhile the reduction to pole’s section could distinguish the two group of rock. In assuming the layer is flat. The inferred peak of magmatic body near the existing volcano; and the active demagnetization associated through evidence of hot spring and inferred fault structure.

  7. Is the seismicity swarm at long-dormant Jailolo volcano (Indonesia) a signature of a magmatic unrest?

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Cesca, Simone; Heryandoko, Nova; Lopez Comino, Jose Angel; Strollo, Angelo; Rivalta, Eleonora; Rohadi, Supryianto; Dahm, Torsten; Milkereit, Claus

    2017-04-01

    Magmatic unrest is challenging to detect when monitoring is sparse and there is little knowledge about the volcano. This is especially true for long-dormant volcanoes. Geophysical observables like seismicity, deformation, temperature and gas emission are reliable indicators of ongoing volcanic unrest caused by magma movements. Jailolo volcano is a Holocene volcano belonging to the Halmahera volcanic arc in the Northern Moluccas Islands, Indonesia. Global databases of volcanic eruptions have no records of its eruptive activity and no geological investigation has been carried out to better assess the past eruptive activity at Jailolo. It probably sits on the northern rim of an older caldera which now forms the Jailolo bay. Hydrothermal activity is intense with several hot-springs and steaming ground spots around the Jailolo volcano. In November 2015 an energetic seismic swarm started and lasted until late February 2016 with four earthquakes with M>5 recorded by global seismic networks. At the time of the swarm no close geophysical monitoring network was available around Jailolo volcano except for a broadband station at 30km distant. We installed last summer a local dense multi-parametric monitoring network with 36 seismic stations, 6 GPS and 2 gas monitoring stations around Jailolo volcano. We revised the focal mechanisms of the larger events and used single station location methods in order to exploit the little information available at the time of the swarm activity. We also combined the old sparse data with our local dense network. Migration of hypocenters and inversion of the local stress field derived by focal mechanisms analysis indicate that the Nov-Feb seismicity swarm may be related to a magmatic intrusion at shallow depth. Data from our dense network confirms ongoing micro-seismic activity underneath Jailolo volcano but there are no indications of new magma intrusion. Our findings indicate that magmatic unrest occurred at Jailolo volcano and call for a

  8. 76 FR 68161 - Proposed Information Collection; Comment Request; Aleutian Islands Pollock Fishery Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Aleutian Islands (AI) directed pollock fishery to the Aleut Corporation for economic development of Adak... necessary for conducting the AI directed pollock fishery. Management provisions for the AI directed pollock fishery include: restrictions on the harvest specifications for the AI directed pollock fishery...

  9. Specification of Tectonic Tsunami Sources Along the Eastern Aleutian Island Arc and Alaska Peninsula for Inundation Mapping and Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Freymueller, J. T.; Koehler, R.

    2013-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska along several segments of the Aleutian Megathrust, each having a unique seismic history and tsunami generation potential. Accurate identification and characterization of potential tsunami sources is a critical component of our project. As demonstrated by the 2011 Tohoku-oki tsunami, correct estimation of the maximum size event for a given segment of the subduction zone is particularly important. In that event, unexpectedly large slip occurred approximately updip of the epicenter of the main shock, based on seafloor GPS and seafloor pressure gage observations, generating a much larger tsunami than anticipated. This emphasizes the importance of the detailed knowledge of the region-specific subduction processes, and using the most up-to-date geophysical data and research models that define the magnitude range of possible future tsunami events. Our study area extends from the eastern half of the 1957 rupture zone to Kodiak Island, covering the 1946 and 1938 rupture areas, the Shumagin gap, and the western part of the 1964 rupture area. We propose a strategy for generating worst-case credible tsunami scenarios for locations that have a short or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. The potential tsunami scenarios are built based on a discretized plate interface model fit to the Slab 1.0 model geometry. We employ estimates of slip deficit along the Aleutian Megathrust from GPS campaign surveys, the Slab 1.0 interface surface, empirical magnitude-slip relationships, and a numerical code that distributes slip among the subfault elements, calculates coseismic deformations and solves the shallow water equations of tsunami propagation and runup. We define hypothetical asperities along the megathrust and in down-dip direction, and perform a set of sensitivity model runs to identify coseismic deformation

  10. Mantle source beneath Turrialba volcano (Costa Rica): a geochemical investigation

    NASA Astrophysics Data System (ADS)

    Di Piazza, A.; Rizzo, A. L.; Barberi, F.; Carapezza, M. L.; Sortino, F.; De Astis, G.; Romano, C.

    2014-12-01

    In this study we analysed rocks and noble gas composition of fluid inclusions (FIs) hosted in olivine crystals contained in a suite of eruptive products of the last 10ka of activity of Turrialba volcano, Cordillera Central, Costa Rica. The suite of analyzed rocks display a calc-alkaline affinity, ranging in composition from basaltic-andesite to dacite. Trace element patterns indicate a typical behavior of subduction-related magmas and also the clear contribution of an OIB-like signature at source. A group of andesites displays also adakite-like geochemical features, as evidenced by their constant depletion in HFSE elements. Sr isotope (0.703593 - 0.703678) and Nd isotope ratios (0.512960 - 0.512968) suggest that Turrialba magmas belong to one of the less contaminated mantle source of Central America. The 3He/4He ratio of fluid inclusions from the most mafic eruptive products (basaltic-andesites) varies from 7.86 to 8.07 Ra, while that from andesite lavas varies from 7.03 to 7.18 Ra. In order to understand the mantle source feeding Turrialba volcano, we performed a geochemical investigation on fumarolic gases of summit craters. The He isotope composition of dry gases of Turrialba volcano is characterized by extremely high R/Ra values (7.08-7.96 Ra). The highest 3He/4He ratios were measured at both West and Central Craters (7.93-7.96 Ra and 7.78-7.88 Ra, respectively), and are the highest values of the entire Central America. Despite the observed variability, the 3He/4He ratio of fumarolic gases and FIs from Turrialba volcano is well in the range of arc related volcanism (~7-8 Ra; Hilton et al., 2002), and represents the signature of a mantle wedge in which the contamination by crustal fluids is small to negligible. In addition the occurrence of recent adakite-like magmatism suggests the presence of an abnormal heating of the subducting lithosphere under Turrialba volcano, allowing even old or cold oceanic crust to melt.

  11. Volcano-tectonic structures and CO2-degassing patterns in the Laacher See basin, Germany

    NASA Astrophysics Data System (ADS)

    Goepel, Andreas; Lonschinski, Martin; Viereck, Lothar; Büchel, Georg; Kukowski, Nina

    2015-07-01

    The Laacher See Volcano is the youngest (12,900 year BP) eruption center of the Quarternary East-Eifel Volcanic Field in Germany and has formed Laacher See, the largest volcanic lake in the Eifel area. New bathymetric data of Laacher See were acquired by an echo sounder system and merged with topographic light detection and ranging (LiDAR) data of the Laacher See Volcano area to form an integrated digital elevation model. This model provides detailed morphological information about the volcano basin and results of sediment transport therein. Morphological analysis of Laacher See Volcano indicates a steep inner crater wall (slope up to 30°) which opens to the south. The Laacher See basin is divided into a deep northern and a shallower southern part. The broader lower slopes inclined with up to 25° change to the almost flat central part (maximum water depth of 51 m) with a narrow transition zone. Erosion processes of the crater wall result in deposition of volcaniclastics as large deltas in the lake basin. A large subaqueous slide was identified at the northeastern part of the lake. CO2-degassing vents (wet mofettes) of Laacher See were identified by a single-beam echo sounder system through gas bubbles in the water column. These are more frequent in the northern part of the lake, where wet mofettes spread in a nearly circular-shaped pattern, tracing the crater rim of the northern eruption center of the Laacher See Volcano. Additionally, preferential paths for gas efflux distributed concentrically inside the crater rim are possibly related to volcano-tectonic faults. In the southern part of Laacher See, CO2 vents occur in a high spatial density only within the center of the arc-shaped structure Barschbuckel possibly tracing the conduit of a tuff ring.

  12. Investigating the long-term geodetic response to magmatic intrusions at volcanoes in northern California

    NASA Astrophysics Data System (ADS)

    Parker, A. L.; Biggs, J.; Annen, C.; Houseman, G. A.; Yamasaki, T.; Wright, T. J.; Walters, R. J.; Lu, Z.

    2014-12-01

    Ratios of intrusive to extrusive activity at volcanic arcs are thought to be high, with estimates ranging between 5:1 and 30:1. Understanding the geodetic response to magmatic intrusion is therefore fundamental to large-scale studies of volcano deformation, providing insight into the dynamics of the inter-eruptive period of the volcano cycle and the building of continental crust. In northern California, we identify two volcanoes - Medicine Lake Volcano (MLV) and Lassen Volcanic Center (LaVC) - that exhibit long-term (multi-decadal) subsidence. We test the hypothesis that deformation at these volcanoes results from processes associated with magmatic intrusions. We first constrain the spatial and temporal characteristics of the deformation fields, establishing the first time-series of deformation at LaVC using InSAR data, multi-temporal analysis techniques and global weather models. Although the rates of deformation at the two volcanoes are similar (~1 cm/yr), our results show that the ratio of vertical to horizontal displacements is significantly different, suggesting contrasting source geometries. To test the origin of deformation, we develop modeling strategies to investigate thermal and viscoelastic processes associated with magmatic intrusions. The first model we develop couples analytical geodetic models to a numerical model of volume loss due to cooling and crystallization based upon temperature-melt fraction relationships from petrological experiments. This model provides evidence that magmatic intrusion at MLV has occurred more recently than the last eruption ~1 ka. The second model we test uses a finite element approach to simulate the time-dependent viscoelastic response of the crust to magmatic intrusion. We assess the magnitude and timescales of ground deformation that may result from these processes, exploring the model parameter space before applying the models to our InSAR observations of subsidence in northern California.

  13. Modeling post-eruptive deformation at Okmok volcano from GPS and InSAR using unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Xue, X.; Freymueller, J. T.

    2017-12-01

    Okmok, occupies most of northeastern Umnak Island in the Aleutian arc, started inflating soon after the 2008 eruption. Seven GPS sites have been operated after the eruption. Two of them are located within the caldera, three are around the rim of the caldera and two are out of the caldera. The InSAR timeseries have been generated using data from the C-band Envisat and X-band TerraSAR-X satellites (Qu et al., 2015). Both GPS and InSAR indicate more than 0.6 m uplift within the caldera and subtle subsidence outside the caldera. Based on single Mogi source, an unscented Kalman filter was successfully used to model the deformation at Okmok detected by GPS during 2000-2007. We have expanded it to be able to model multiple Mogi sources at different depths and integrate the InSAR observations. Before applying the Kalman filter, We remove a time-independent Mogi source and phase ramp from each InSAR image and obtain its variance-covariance information from the residual. We also determine the relative weight between GPS and InSAR data using variance component estimation. The GPS and InSAR timeseries can then be combined for the Kalman filter. Preliminary results show that two Mogi sources are more likely beneath Okmok volcano. The deep source is located at 8.5 km depth which deflated 0.016 km3 during the first 3 years after the eruption then reached a stable state. The deflating source explains the subsidence outside the caldera which can not be modeled with only one inflating source in any way. The shallow source, migrating 0.5 km from north to south, is located at 2 km depth within the caldera where is close to the source position before the eruption (Freymueller et al., 2010). The magma volume accumulation of the shallow source in the following 7 years from the 2008 eruption is 0.035 km3.

  14. An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth

    NASA Technical Reports Server (NTRS)

    Brian, A. W.; Smrekar, S. E.; Stofan, E. R.

    2004-01-01

    Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.

  15. The unusual mineralogy of the Hayes River rhyolite, Hayes Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Hayden, L. A.; Coombs, M. L.; McHugh, K.

    2013-12-01

    Hayes Volcano is an ice-covered volcanic massif located in the northern Cook Inlet region approximately 135 miles northwest of Anchorage, Alaska. The last major eruptive episode of Hayes, and the only known in any detail, occurred ~3,700 yr B.P. and produced the Hayes Tephra Set H, a series of dacitic fall deposits widespread throughout southcentral Alaska (Riehle et al., 1994, Quat. Res. 33, p. 91-108). An undated, early Holocene pyroclastic-flow deposit exposed beneath Tephra Set H in the Hayes River valley is unusual in the Aleutian-Alaska subduction zone in whole-rock composition and mineralogy. The deposit comprises rhyolite pumice (~75 wt% SiO2) that contain phenocrysts of plagioclase, sanidine, quartz, and biotite in vesicular, clear matrix glass, and <1% dense, white cognate inclusions with the same whole-rock composition and phenocryst assemblage as the pumice, but a crystalline matrix. Holocrystalline inclusions may represent portions of the magma body that rapidly quenched in the shallow subsurface as dikes or chamber rinds and were then excavated during explosive eruption. Rhyolite and inclusions are peraluminous (2-3 % normative corundum), high-K, enriched in incompatible elements, and depleted in Sr and Eu. In accord with its evolved and enriched composition the rhyolite pumice and inclusions contain an abundance of accessory phases, including apatite, monazite, xenotime, and zircon. Monazite are euhedral, as large as 500 um, ThO2-rich (up to 4 wt%) and contain significant amounts of Ag (200-500 ppm). Xenotime are generally smaller than the monazite and occur frequently as small blebs. Rhyolite pumices also contain Fe-sulfides, Cu, Sn, Ni, and barite. Sanidine phenocrysts in the pumice and inclusions are sharply zoned and highly enriched in the celsian component (up to 5 wt% BaO) and also show LREE enrichment. Inclusions contain abundant Mn-rich cordierite (~3 wt% Mn2O3) in the san-plag-qtz matrix, as well as Fe-Ti oxides that are relatively high in

  16. Reconstructing the plumbing system of Krakatau volcano

    NASA Astrophysics Data System (ADS)

    Troll, Valentin R.; Dahrén, Börje; Deegan, Frances M.; Jolis, Ester M.; Blythe, Lara S.; Harris, Chris; Berg, Sylvia E.; Hilton, David R.; Freda, Carmela

    2014-05-01

    Crustal contamination of ascending arc magmas is generally thought to be significant at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus eruptive behaviour. Distinguishing deep vs. shallow crustal assimilation processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3]. We employ rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). Coupled with tomographic evidence, the petrological and geochemical data place a significant element of magma-crust interaction (and hence magma storage) into the uppermost, sediment-rich crust beneath the volcano. Magma - sediment interaction in the uppermost crust offers a likely explanation for the compositional variations in recent Krakatau magmas and most probably provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.

  17. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  18. The Role of Crustal Tectonics in Volcano Dynamics (ROCTEVODY) along the Southern Andes: seismological study with emphasis on Villarrica Volcano

    NASA Astrophysics Data System (ADS)

    Mora-Stock, Cindy; Tassara, Andrés

    2016-04-01

    The Southern Andean margin is intrinsically related to the Liquiñe-Ofqui Fault Zone (LOFZ), a 1000 km-long dextral strike-slip arc-parallel fault on which most of the volcanic centers of the Southern Volcanic Zone (SCVZ) of the Andes are emplaced. At large spatial (102 - 103 km) and temporal (105 - 107 yr) scales, regional tectonics linked to partitioning of the oblique convergence controls the distribution of magma reservoirs, eruption rates and style, as well as the magma evolution. At small scales in space (< 102 km) and time (10-1 - 102 yr), stress transfer mechanisms between magma reservoirs and seismically-active faults are though to transiently change the regional stress field, thus leading to eruptions and fault (re)activation. However, the mechanisms by which the interaction between (megathrust and crustal) earthquakes and volcanic eruptions actually occur, in terms of generating the relationships and characteristics verified at the long term, are still poorly understood. Since 2007, the Southern Andean margin has presented an increase of its tectonic and eruptive activity with several volcanic crisis and eruptions taking place in association with significant seismicity clusters and earthquakes both in the megathrust and the LOFZ. This increased activity offers a unique opportunity to improve our understanding of the physical relation between contemporary tectono-volcanic processes and the long-term construction of the LOFZ-SVZ system. Taking advantage of this opportunity by means of an integrated analysis of geodetic and seismological data through finite element numerical modeling at the scale of the entire margin and for selected cases is the main goal of project Active Tectonics and Volcanism at the Southern Andes (ACT&VO-SA, see Tassara et al. this meeting). Into the framework of the ACT&VO-SA project, the complementary ROCTEVODY-Villarrica project concentrates on the role that inherited crustal structures have in the volcano dynamics. The focus is on

  19. Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu)

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Brandl, Philipp A.; Lima, Selma M.; Haase, Karsten M.

    2018-07-01

    We present here new bathymetric, petrological and geochemical whole rock, glass and mineral data from the submarine Epi volcano in the New Hebrides (Vanuatu) island arc. The structure has previously been interpreted to be part of a larger caldera structure but new bathymetric data reveal that the volcanic cones are aligned along shear zones controlled by the local tectonic stress field parallel to the recent direction of subduction. We aim to test if there is an interaction between local tectonics and magmatism and to what extent the compositions of island arc volcanoes may be influenced by their tectonic setting. Primitive submarine Epi lavas and those from the neighbouring Lopevi and Ambrym islands originate from a depleted mantle wedge modified by addition of subduction zone components. Incompatible element ratios sensitive to fluid input (e.g., Th/Nb, Ce/Yb) in the lavas are positively correlated with those more sensitive to mantle wedge depletion (e.g., Nb/Yb, Zr/Nb) amongst the arc volcanoes suggesting that fluids or melts from the subducting sediments have a stronger impact on the more depleted compositions of the mantle wedge. The whole rock, glass and mineral major and trace element compositions and the occurrence of exclusively normally zoned clinopyroxene and plagioclase crystals combined with the absence of inversely zoned crystals and water-bearing phases in both mafic and evolved lavas suggest that the erupted melt was relatively dry compared to other subduction zone melts and has experienced little disequilibrium modification by melt mixing or assimilation. Our data also imply that differentiation of amphibole is not required to explain the incompatible element patterns but may rather result from extensive clinopyroxene fractionation in agreement with petrographic observations. Thermobarometric calculations indicate that the melts fractionated continuously during ascent, contrasting with fractionation during stagnation in an established crustal magma

  20. Aniakchak Crater, Alaska Peninsula

    USGS Publications Warehouse

    Smith, Walter R.

    1925-01-01

    The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.

  1. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    NASA Astrophysics Data System (ADS)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    boundary, shallow level magma chamber is difficult to maintain for long time due to the large stress and deformation. Accordingly, the magma composition of Fuji volcano is buffered by the large AFC magma chamber in the lower crust (Takahashi et al., this conference). Fig.1 SiO2-K2O diagram for Fuji volcano products (diamonds) and volcanoes in Izu-arc. Melt compositional trend obtained by 4 kbar and 7 kbar experiments are shown with arrows.

  2. Syrian Volcano

    NASA Image and Video Library

    2006-07-23

    This MOC image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust

  3. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    article title:  Eyjafjallajökull, Iceland, Volcano Ash Cloud     View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...

  4. Geochemical Relationships between Middle- to Upper-Crustal Exposures of the Alisitos Oceanic Arc (Baja California, Mexico): An Outstanding Field Analog to Active Extensional Oceanic Arcs

    NASA Astrophysics Data System (ADS)

    Morris, R.; DeBari, S. M.; Busby, C.; Medynski, S.

    2016-12-01

    The southern volcano-bounded basin of the Rosario segment of the Cretaceous Alisitos oceanic arc provides outstanding 3-D exposures of an extensional arc, where crustal generation processes are recorded in the upper-crustal volcanic units and underlying middle-crustal plutonic rocks. Geochemical linkages between exposed crustal levels provide an analog for extensional arc systems such as the Izu-Bonin-Mariana (IBM) Arc. Upper-crustal units comprise a 3-5 km thick volcanic-volcaniclastic stratigraphy with hypabyssal intrusions. Deep-seated plutonic rocks intrude these units over a transition of <500m, where rafted volcanic blocks and evidence of magma mingling are exposed. Thermobarometry suggests <6 km emplacement depths. Compositional ranges (basalt to rhyolite) and mineral assemblages are similar in both middle-crustal and upper-crustal units, with striking compositional overlap. The most mafic compositions occur in upper-crustal hypabyssal units, and as amphibole cumulates in the plutonic rocks ( 51% SiO2). The most felsic compositions occur in welded ignimbrites and a tonalite pluton ( 71% SiO2). All units are low K with flat REE patterns, and show LILE enrichment and HFSE depletion. Trace element ratios show limited variation throughout the crustal section. Zr/Y and Nb/Y ratios are similar to the Izu active ( 3 Ma to present) zone of extension immediately behind the arc front, suggesting comparable mantle melt % during extension. Th/Zr ratios are more enriched in Alisitos compared to Izu, suggesting greater subducted sediment input. The Alisitos crustal section shows a limited range in ɛNd (5.7-7.1), but a wider range in 87Sr/86Sr (0.7035-0.7055) and 206Pb/204Pb (18.12-19.12); the latter is likely alteration effects. Arc magmas were derived from a subduction-modified MORB mantle source, less depleted than Izu arc front and less enriched than the rear arc, but is a good match with the zone of extension that lies between. Differentiation occurred in a closed

  5. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  6. Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks

    USGS Publications Warehouse

    Bacon, C.R.; Sison, T.W.; Mazdab, F.K.

    2007-01-01

    Mount Veniaminof volcano, Alaska Peninsula, provides an opportunity to relate Quaternary volcanic rocks to a coeval intrusive complex. Veniaminof erupted tholeiitic basalt through dacite in the past ???260 k.y. Gabbro, diorite, and miarolitic granodiorite blocks, ejected 3700 14C yr B.P. in the most recent caldera-forming eruption, are fragments of a shallow intrusive complex of cumulate mush and segregated vapor-saturated residual melts. Sensitive high-resolution ion microprobe (SHRIMP) analyses define 238U-230Th isochron ages of 17.6 ?? 2.7 ka, 5+11/-10 ka, and 10.2 ?? 4.0 ka (2??) for zircon in two granodiorites and a diorite, respectively. Sparse zircons from two gabbros give 238-230Th model ages of 36 ?? 8 ka and 26 ?? 7 ka. Zircons from granodiorite and diorite crystallized in the presence of late magmatic aqueous fluid. Although historic eruptions have been weakly explosive Strombolian fountaining and small lava effusions, the young ages of plutonic blocks, as well as late Holocene dacite pumice, are evidence that the intrusive complex remains active and that evolved magmas can segregate at shallow levels to fuel explosive eruptions. ?? 2007 The Geological Society of America.

  7. Small Tharsis Volcano

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano located southwest of the giant volcano, Pavonis Mons, near 2.5oS, 109.4oW. Lava flows can be seen to have emanated from the summit region, which today is an irregularly-shaped collapse pit, or caldera. A blanket of dust mantles this volcano. Dust covers most martian volcanoes, none of which are young or active today. This picture covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  8. Inferred Early Permian Arc Rifting in Bogda Mountain, Southernmost of the Central Asia Orogenic Belt: Evidence from a Peperite Bearing Volcano-Sedimentary Succession

    NASA Astrophysics Data System (ADS)

    Memtimin, M.; Guo, Z.

    2017-12-01

    Late Paleozoic tectonic history, especially Carboniferous-Permian periods, of the Central Asia Orogenic Belt (CAOB) is considered to be the turning point for the termination of terrane amalgamation and closure of the Paleoasian Ocean. However, the debate about the paleoenvironment and tectonic setting of the region during the period is still not resolved. In this study, we report a set of volcano-sedimentary sequence in the Bogda Mountain of the southernmost of CAOB, which is associated with contemporaneous subaqueous emplacement of and interaction between mafic lava and carbonate sediments. The succession contains four distinct facies including closely packed pillow basalts, pillow basalts with interstitial materials, hyaloclastites and peperites. We discuss their formation and emplacement mechanism, interaction between hot magma-water/unconsolidated sediments and thermal metamorphism during the interaction. Textural features of the sequence, especially hyaloclastites and peperites, provide clear evidence for in situ autofragmentation of lava flows, synvolcanic sedimentation of carbonates, fuel coolant interaction when hot magma bulldozed into wet unconsolidated sediments, and represent autochthonous origin of the succession. Lateral transition of the lithofacies indicate a progressively deepening subaqueous environment, resembling a stepwise evolution from early stage of volcanic intrusion with lower lava flux in shallower water level to increasingly subsiding basin with more lava flux in greater depth. Previous studies determined that the mafic magma was intruded around the Carboniferous-Permian boundary ( 300Ma), and geochemical studies showed the magma was originated from dry depleted mantle with little crustal contamination. Nevertheless, the succession was thought to be fault related allochthones formation which was transferred in as part of a Carboniferous intraplate arc. Combining our findings with the previous study results, we propose a new model to

  9. Ambient noise tomography of Ecuador: Fore- and back-arc velocity structure and radial anisotropy

    NASA Astrophysics Data System (ADS)

    Lynner, C.; Beck, S. L.; Porritt, R.; Meltzer, A.; Alvarado, A. P.; Gabriela, P.; Ruiz, M. C.; Hoskins, M.; Stachnik, J.; Rietbrock, A.; Leon-Rios, S.; Regnier, M. M.; Agurto-Detzel, H.; Font, Y.; Charvis, P.

    2017-12-01

    In northern South America, the oceanic Nazca plate subducts beneath the South American continent, giving rise to the high mountains of the northern Andes. The Ecuador subduction zone has a history of large megathrust earthquakes, most recently the Mw=7.8 April 16, 2016, Pedernales earthquake. The volcanic arc in Ecuador is broad with active volcanoes along both the western and eastern cordilleras. Many of these volcanoes surround the city of Quito putting millions of people at risk. A recent international broadband aftershock deployment was conducted for approximately one year after the Pedernales mainshock and this data combined with a sub-set of data from from the permanent IGEPN national network provide an ideal data set to use for ambient noise tomography (ANT) to constrain absolute Vsh and Vsv across Ecuador. ANT studies use noise-generated surface wave dispersion measurements to invert for 3D shear velocity in the crust. Having a precise understanding of crustal velocity structure is necessary to advance a number of projects, including better earthquake locations of the April 16, 2016 Pedernales-earthquake aftershock sequence and identifying large-scale partial melt zones associated with the active volcanic arc. The majority of ANT studies use only Rayleigh waves to constrain Vsv structure. Initial Rayleigh wave ANT results, using periods between 8 and 40 seconds, show a fast phase velocities for the forearc and much slower phase velocities for the high elevation volcanic arc. Including Love wave dispersion measurements can improve overall crustal velocity models, as well as provide constraints on radial anisotropy. Radial anisotropy can develop in a variety of ways but most typically arises from the deformation-induced alignment of anisotropic minerals. Radial anisotropy, therefore, can inform on patterns of ductile crustal flow. Strong radial anisotropy at mid-crustal depths from ANT has already been observed south of Ecuador, in the Central Andean Plateau

  10. Revisiting Jorullo volcano (Mexico): monogenetic or polygenetic volcano?

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Victoria Morales, A.; Pérez Bustamante, J. C.; Correa Olan, J. C.; Gutiérrez Jiménez, A. J.; Adán González, N.; Bravo Cardona, E. F.

    2007-05-01

    Jorullo volcano is located near the volcanic front of the westernmost part of the Trans-Mexican Volcanic Belt, which is related to the subduction of the Cocos plate beneath the North American plate. This part of the TMVB is known as the Michoacán-Guanajuato Volcanic Field, a region where widespread monogenetic volcanism is present although polygenetic volcanism is also recognized (i. e. Tancítaro volcano; Ownby et al., 2006). Jorullo volcano was born in the middle of crop fields. During its birth several lava flows were emitted and several cones were constructed. The main cone is the Jorullo proper, but there is a smaller cone on the north (Volcán del Norte), and three smaller cones aligned N-S on the south (Unnamed cone, UC; Volcán de Enmedio, VE; and Volcán del Sur, VS). The cone of Jorullo volcano is made up of tephra and lava flows erupted from the crater. The three southern cones show very interesting histories not described previously. VE erupted highly vesiculated tephras including xenoliths from the granitic basement. VS is made of spatter and bombs. A very well preserved hummocky morphology reveals that VE and VS collapsed towards the west. After the collapses, phreatomagmatic activity took place at the UC blanketing VE, VS and the southern flank of the Jorullo cone with sticky surge deposits. The excellent study by Luhr and Carmichael (1985) indicates that during the course of the eruption, lavas evolved from primitive basalt to basaltic andesite, although explosive products show a reverse evolution pattern (Johnson et al., 2006). We mapped lava flows not described by the observers in the 18th century nor considered in previous geologic reports as part of the Jorullo lavas. These lavas are older, distributed to the west and south, and some of them resemble the lava flows from La Pilita volcano, a cone older than Jorullo (Luhr and Carmichael, 1985). These lava flows were not considered before because they were not extruded during the 1759

  11. Volcanoes: observations and impact

    USGS Publications Warehouse

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  12. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... among harvesters, processors, and coastal communities and monitors the ``economic stability for... Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports... CR Program's mandatory economic data collection report (EDR) used to assess the efficacy of the CR...

  13. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    USGS Publications Warehouse

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  14. Seismicity and seismic structure at Okmok Volcano, Alaska

    USGS Publications Warehouse

    Ohlendorf, Summer J.; Thurber, Clifford H.; Pesicek, Jeremy D.; Prejean, Stephanie G.

    2014-01-01

    Okmok volcano is an active volcanic caldera located on the northeastern portion of Umnak Island in the Aleutian arc, with recent eruptions in 1997 and 2008. The Okmok area had ~900 locatable earthquakes between 2003 and June 2008, and an additional ~600 earthquakes from the beginning of the 2008 eruption to mid 2009, providing an adequate dataset for seismic tomography. To image the seismic velocity structure of Okmok, we apply waveform cross-correlation using bispectrum verification and double-difference tomography to a subset of these earthquakes. We also perform P-wave attenuation tomography using a spectral decay technique. We examine the spatio-temporal characteristics of seismicity in the opening sequence of the 2008 eruption to investigate the path of magma migration during the establishment of a new eruptive vent. We also incorporate the new earthquake relocations and three-dimensional (3D) velocity model with first-motion polarities to compute focal mechanisms for selected events in the 2008 pre-eruptive and eruptive periods. Through these techniques we obtain precise relocations, a well-constrained 3D P-wave velocity model, and a marginally resolved S-wave velocity model. We image a main low Vp and Vs anomaly directly under the caldera consisting of a shallow zone at 0–2 km depth connected to a larger deeper zone that extends to about 6 km depth. We find that areas of low Qp are concentrated in the central to southwestern portion of the caldera and correspond fairly well with areas of low Vp. We interpret the deeper part of the low velocity anomaly (4–6 km depth) beneath the caldera as a magma body. This is consistent with results from ambient noise tomography and suggests that previous estimates of depth to Okmok's magma chamber based only on geodetic data may be too shallow. The distribution of events preceding the 2008 eruption suggest that a combination of overpressure in the zone surrounding the magma chamber and the introduction of new material

  15. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  16. Magnesium Isotopic Composition of Kamchatka Sub-Arc Mantle Peridotites

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Teng, F. Z.; Ionov, D. A.

    2016-12-01

    Subduction of the oceanic slab may add a crustal isotopic signal to the mantle wedge. The highly variable Mg isotopic compositions (δ26Mg) of the subducted oceanic crust input[1] and arc lava output[2] imply a distinctive Mg isotopic signature of the mantle wedge. Magnesium isotopic data on samples from the sub-arc mantle are still limited, however. To characterize the Mg isotopic composition of typical sub-arc mantle, 17 large and fresh spinel harzburgite xenoliths from Avacha volcano were analyzed. The harzburgites were formed by 30% melt extraction at ≤ 1 2 GPa and fluid fluxing condition, and underwent possible fluid metasomatism as suggested by distinctively high orthopyroxene mode in some samples, the presence of accessory amphibole and highly variable Ba/La ratios[3]. However, their δ26Mg values display limited variation from -0.32 to -0.21, which are comparable to the mantle average at -0.25 ± 0.07[4]. The overall mantle-like and homogenous δ26Mg of Avacha sub-arc peridotites are consistent with their similar chemical compositions and high MgO contents (> 44 wt%) relative to likely crustal fluids. Furthermore, clinopyroxene (-0.24 ± 0.10, 2SD, n = 5), a late-stage mineral exsolved from high-temperature, Ca-rich residual orthopyroxene, is in broad Mg isotopic equilibrium with olivine (-0.27 ± 0.04, 2SD, n = 17) and orthopyroxene (-0.22 ± 0.06, 2SD, n = 17). Collectively, this study finds that the Kamchatka mantle wedge, as represented by the Avacha peridotites, has a mantle-like δ26Mg, and low-degree fluid-mantle interaction does not cause significant Mg isotope fractionation in sub-arc mantle peridotites. [1] Wang et al., EPSL, 2012 [2] Teng et al., PNAS, 2016 [3] Ionov, J. Petrol., 2010, [4] Teng et al., GCA, 2010.

  17. Record Of Both Tectonic Related Vertical Motions and Global Sea Level Rise by Marine Terraces along an Active Arc Volcano. Example of Basse-Terre, Lesser Antilles (French West-Indies).

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Moysan, M.; Graindorge, D.; Jean-Frederic, L.; Philippon, M. M.; Marcaillou, B.; Léticée, J. L.

    2015-12-01

    Volcano-tectonic history of the Caribbean plate provides direct insight onto the dynamic of the North American Plate westward subduction. Basse-Terre Island is a volcanic chain that belongs to the Lesser Antilles active volcanic arc with a southward decreasing age of volcanism from 3 Ma to present day.We investigate records of vertical motion along Basse-Terre through a morphostructural analysis of the Pleistocene-Holocene shallow-water carbonate platforms and associated terraces that surround Basse-Terre Island. This study is based on new high-resolution bathymetric and dense seismic data acquired during the GEOTREF oceanographic survey (2015, February). Our bathymetric and topographic Digital Terrain Model together with the "Litto3D" Lidar data (IGN/SHOM) images the island topography and the platform bathymetry to a depth of 200m with horizontal and vertical resolutions of 5m and ~cm respectively. This detailed study highlights the morphostructure of terraces built during the last transgression in order to identify and quantify their vertical motions. We analyze inherited morphology and structures of the forearc that affect the platform to discuss effects of the regional tectonics context. A particular emphasis is put on the influence of the NW-SE arc parallel transtensive Montserrat-Bouillante fault system onto the platform geometry. At last, the distribution of Basse-Terre terraces is compared with terraces distribution around other Lesser Antilles island and the Bahamas stable margin platform. We aim at discriminating the influence of the Pleistocene global sea-level rise from the one of tectonic vertical deformations.

  18. Extremely magnetized abyssal lavas erupted in active back-arc of the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Sato, H.; Okino, K.

    2017-12-01

    Although high-amplitude of marine magnetic anomalies have been utilized for understanding for seafloor dynamics, the causal link between intensity of natural remanent magnetization and physical and chemical processes of extrusive rocks are still unclear. In addition, we essentially lack rock magnetic data of arc-back-arc lavas, which potentially provide strong constraints for understanding time- and spatial-dependent diversity of lava magnetization including mid-ocean ridge basalts. Here, we present new rock magnetic data of strongly magnetized basaltic rocks, which rank among the most magnetized in known oceanic basaltic rocks, from active back-arc region of the Okinawa Trough. We analyzed 27 non-oxidized (fresh) basaltic rock samples obtained from the active back-arc volcanoes, located at the segment boundary along back-arc rift. Their natural remanent magnetization ranges 7 A/m to >200 A/m, and has clear nonlinear relationship with both magnetic hysteresis signatures and titanomagnetite amount. The strongly magnetized lavas show large contribution of appropriate amount of SD titanomagnetite grains formed in proper crystal growth environments. The high-temperature thermomagnetic experiments demonstrate reversible curves in both heating and cooling with single Curie temperature. The Curie temperature shows up to 480°C for strongly magnetized lavas, which is much higher than that of mid-ocean ridge basalts mainly containing TM60, indicating that rich Fe and low Ti contents of titanomagnetite grains are main magnetic carrier. These observations clearly demonstrate that intensity of natural remanent magnetization is primarily controlled by cooling rate of lavas and ratio of Fe to Ti of titanomagnetite grains as well as bulk iron contents, with important implications towards marine magnetic anomalies and arc-back-arc volcanism.

  19. Arc Voltage Between Deion Grid Affected by Division of Arc in Magnetic Driven Arc

    NASA Astrophysics Data System (ADS)

    Inuzuka, Yutaro; Yamato, Takashi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Magnetic driven arc has been applied to DC breaker and fault current limiters. However, it has not been researched, especially stagnation and re-strike of the arc. In this paper, the arc voltage between deion grid affected by division of arc in magnetic driven arc and arc behavior are measured by using the oscilloscope and HSVC (High Speed Video Camera). As a result, arc voltage increased because of division of the arc. The arc mean moving speed increases with increasing the external magnetic field. However, when the arc was not stalemate, the arc moving speed does not change so much. The arc re-strike time increases and stalemate time decreases with increasing the external magnetic field. Therefore, the anode spot moving speed increases 8 times because arc re-strike occurs easily with the external magnetic field. Thus, the erosion of electrodes decreases and the arc movement becomes the smooth. When the arc is divided, the arc voltage increased because of the electrode fall voltage. Therefore, the arc voltage increases with increasing the number of deion grid.

  20. An extended monitoring network for the volcanoes of St. Eustatius and Saba, the Caribbean Netherlands.

    NASA Astrophysics Data System (ADS)

    de Zeeuw-van Dalfsen, Elske; Sleeman, Reinoud; Evers, Läslo G.

    2017-04-01

    The volcanoes of the Quill (St. Eustatius) and Mt. Scenery (Saba) are part of the Lesser Antilles volcanic island arc in the West Indies, which hosts seventeen active volcanoes. The last eruptive activity at the Quill occurred 1600-1800 years ago but Mt. Scenery erupted as recent as in 1640. The existence of heated groundwater at St. Eustatius and hot springs at Saba indicate that both the Quill and Mt. Scenery are active, but quiet, rather than extinct. Volcanic hazard is therefore present and monitoring of these volcanoes of utmost importance. Especially considering the fact that Soufrière Hills volcano, at the neighbouring island of Montserrat and of comparable nature to Mt. Scenery, started to erupt in 1995 after 450 years of quietness. Currently, a network of four broadband seismometers is operational at each island. Seismic data are transmitted in real-time to the Royal Netherlands Meteorological Institute (KNMI), where they are (automatically) analysed. We plan to extend this monitoring effort by adding integrated geodetic observations (campaign and continuous GPS, InSAR) and temperature measurements of the hot springs. Furthermore we intend to improve our understanding of the terrain and surface geology by thorough analysis of a TanDEM-X DEM. An improved geophysical characterization of the islands is of great importance both for the population and local governments. These combined efforts will greatly improve the chance to observe the onset and follow the evolution of a future volcanic crisis.

  1. Aleutian Disease: An Emerging Disease in Free-Ranging Striped Skunks (Mephitis mephitis) From California.

    PubMed

    LaDouceur, E E B; Anderson, M; Ritchie, B W; Ciembor, P; Rimoldi, G; Piazza, M; Pesti, D; Clifford, D L; Giannitti, F

    2015-11-01

    Aleutian disease virus (ADV, Amdovirus, Parvoviridae) primarily infects farmed mustelids (mink and ferrets) but also other fur-bearing animals and humans. Three Aleutian disease (AD) cases have been described in captive striped skunks; however, little is known about the relevance of AD in free-ranging carnivores. This work describes the pathological findings and temporospatial distribution in 7 cases of AD in free-ranging striped skunks. All cases showed neurologic disease and were found in a 46-month period (2010-2013) within a localized geographical region in California. Lesions included multisystemic plasmacytic and lymphocytic inflammation (ie, interstitial nephritis, myocarditis, hepatitis, meningoencephalitis, pneumonia, and splenitis), glomerulonephritis, arteritis with or without fibrinoid necrosis in several organs (ie, kidney, heart, brain, and spleen), splenomegaly, ascites/hydrothorax, and/or encephalomalacia with cerebral microangiopathy. ADV infection was confirmed in all cases by specific polymerase chain reaction and/or in situ hybridization. The results suggest that AD is an emerging disease in free-ranging striped skunks in California. © The Author(s) 2014.

  2. State of the hydrothermal activity of Soufrière of Guadeloupe volcano inferred by VLF surveys

    NASA Astrophysics Data System (ADS)

    Zlotnicki, J.; Vargemezis, G.; Mille, A.; Bruère, F.; Hammouya, G.

    2006-04-01

    La Soufrière (1467 m) is the active island arc volcano of Guadeloupe Island in the Lesser Antilles arc. Its historical eruptions are more or less violent phreatic outbursts the last of which, in 1976-1977, led to the evacuation of nearly 70 000 persons. The subsurface structure of the volcano consists of calderas, craters, and avalanche amphitheatres nested within the composite pile of eruptive products. Since the last magmatic eruption, dated ca. 1440 AD, the four phreatic eruptions have developed radial fractures on Soufrière dome favouring the development of a huge active hydrothermal system emphasized by a tropical environment. After the eruptions, the thermal state and the stable ground water flow are completely disorganised during several years during which the slow mineralization of rocks is becoming again preponderant. Sealing of fractures and decay of rocks permeability act as a cap for upward thermal transfers. Therefore Soufrière dome operates as a valve, resealing the hydrothermal system underlying the volcano thus providing over pressurization that could lead to the next phreatic eruption. In 1992 new small seismic swarms have appeared. Several of them are recorded every year while the emission of acid gas slowly increases. In order to recognise the superficial electrical resistive and conductive zones (less than 100 m depth) as well as the cavities on Soufrière volcano, we have made Very Low Frequency (VLF) surveys in 2000. Electrical conductive zones are clearly associated with major radial faults starting from the summit in which the hydrothermal activity takes place. In the continuation of these active hydrothermal fractures hot springs are located down slope. Conversely some of the resistive zones are associated with inactive clayed and sealed or opened faults. The distribution of the conductive zones allows detailing the state of the superficial part of the hydrothermal system of La Soufrière. The distribution of vertical clayed zones

  3. Preliminary volcano-hazard assessment for Aniakchak Volcano, Alaska

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Miller, Thomas P.; Riehle, James R.; Waythomas, Christopher F.

    2000-01-01

    Aniakchak is an active volcano located on the Alaska Peninsula 670 kilometers southwest of Anchorage. The volcano consists of a dramatic, 10-kilometer-diameter, 0.5 to 1.0-kilometer-deep caldera that formed during a catastrophic eruption 3,500 years ago. Since then, at least a dozen separate vents within the caldera have erupted, often explosively, to produce lava flows and widespread tephra (ash) deposits. The most recent eruption at Aniakchak occurred in 1931 and was one of the largest explosive eruptions in Alaska in the last 100 years. Although Aniakchak volcano presently shows no signs of unrest, explosive and nonexplosive eruptions will occur in the future. Awareness of the hazards posed by future eruptions is a key factor in minimizing impact.

  4. Development of a Peptide ELISA for the Diagnosis of Aleutian Mink Disease

    PubMed Central

    Wang, Yang; Lu, Rongguang; Hu, Bo; Lv, Shuang; Xue, Xianghong; Li, Xintong; Ling, Mingyu; Fan, Sining; Zhang, Hailing; Yan, Xijun

    2016-01-01

    Aleutian disease (AD) is a common immunosuppressive disease in mink farms world-wide. Since the 1980s, counterimmunoelectrophoresis (CIEP) has been the main detection method for infection with the Aleutian Mink Disease Virus (AMDV). In this study, six peptides derived from the AMDV structural protein VP2 were designed, synthesized, and used as ELISA antigens to detect anti-AMDV antibodies in the sera of infected minks. Serum samples were collected from 764 minks in farms from five different provinces, and analyzed by both CIEP (a gold standard) and peptide ELISA. A peptide designated P1 (415 aa–433 aa) exhibited good antigenicity. A novel ELISA was developed using ovalbumin-linked peptide P1 to detect anti-AMDV antibodies in mink sera. The sensitivity and specificity of the peptide ELISA was 98.0% and 97.5%, respectively. Moreover, the ELISA also detected 342 early-stage infected samples (negative by CIEP and positive by PCR), of which 43.6% (149/342) were true positives. These results showed that the peptide ELISA had better sensitivity compared with CIEP, and therefore could be preferable over CIEP for detecting anti-AMDV antibodies in serological screening. PMID:27802320

  5. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  6. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  7. Optical satellite data volcano monitoring: a multi-sensor rapid response system

    USGS Publications Warehouse

    Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan

    2009-01-01

    response program described in this chapter also improves the temporal resolution of the ASTER instrument. ASTER has been acquiring images of volcanic eruptions since soon after its launch in December 1999. An early example included the observations of the large pyroclastic flow deposit emplaced at Bezymianny volcano in Kamchatka, Russia. The first images in March 2000, just weeks after the eruption, revealed the extent, composition, and cooling history of this large deposit and of the active lava dome (Ramsey and Dehn, 2004). The initial results from these early datasets spurred interest in using ASTER data for expanded volcano monitoring in the north Pacific. It also gave rise to the multi-year NASA-funded programs of rapid response scheduling and imaging throughout the Aleutian, Kamchatka and Kurile arcs. Since the formal establishment of the programs, the data have provided detailed descriptions of the eruptions of Augustine, Bezymianny, Kliuchevskoi and Sheveluch volcanoes over the past nine years (Wessels et al., in press; Carter et al., 2007, 2008; Ramsey et al., 2008; Rose and Ramsey, 2009). The initial research focus of this rapid response program was specifically on automating the ASTER sensor’s ability for targeted observational scheduling using the expedited data system. This urgent request protocol is one of the unique characteristics of ASTER. It provides a limited number of emergency observations, typically at a much-improved temporal resolution and quicker turnaround with data processing in the United States rather than in Japan. This can speed the reception of the processed data by several days to a week. The ongoing multi-agency research and operational collaboration has been highly successful. AVO serves as the primary source for status information on volcanic activity, working closely with the National Weather Service (NWS), Federal Aviation Administration (FAA), military and other state and federal emergency services. Collaboration with the Russian

  8. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry

    NASA Astrophysics Data System (ADS)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.

    2014-12-01

    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  9. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  10. Geochemical models of melting and magma storage conditions for basalt lava from Santorini Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Kimura, Jun-Ichi; Pantazidis, Avgoustinos; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2017-04-01

    Santorini volcano sits ˜150 km above the Wadati-Benioff zone of the Aegean arc, where the African plate subducts northward beneath the Eurasian continent (Papazachos et al. 2000). Santorini volcano has a long history: activity started ca. 650 ka (mainly rhyolites and rhyodacites), with active pulses following ca. 550 ka (basalt to rhyodacite) and ca. 360 ka (large explosive eruptions of andesite to rhyodacite and minor basalt), culminating in the caldera-forming Bronze-age Minoan event (Druitt et al. 1999). As in many arc volcanoes, scenarios of fractional crystallization with or without mixing between felsic and mafic magmas have been proposed to explain the compositions, textures, and eruptive styles of Santorini products (e.g., Huijsmans & Barton 1989; Montazavi & Sparks 2004; Andújar et al. 2015). Here we focus on a basalt lava from the southern part of Santorini volcano (Balos cove, 36˚ 21.7'N, 25˚ 23.8'E), one of the few basaltic localities in the Aegean arc. The goals are to infer constraints on the magma chamber conditions which lead to mafic eruption at Santorini Volcano and to evaluate the slab and mantle wedge conditions via geochemical and petrological mass balance modelling. We collected and characterised 20 samples for texture (SEM), mineral chemistry (FE-EPMA) and whole-rock chemistry (XRF). The basalts contain phenocrystic olivine (Ol) and clinopyroxene (Cpx) (<600 μm diameter) in a fine groundmass (<100 μm diameter) of Ol, Cpx, plagioclase (Pl) and magnetite (Mt) with minor glass and rare xenocrystic quartz. Santorini basalts exhibit a pilotaxitic to trachytic texture defined by randomly to flow-oriented tabular Pl, respectively. The predominant minerals are calcic Pl (core An78-85 and rim An60-76; 45-50 vol.%), Cpx (En36-48Wo41-44Fs11-21; 10-15 vol.%) and Ol (Fo74-88; 10-12 vol.%). Idiomorphic to subidiomorphic Mt (<10μm diameter) with variable TiO2 contents (1.9-16.5 wt%) is a minor constituent (˜1-2 vol.%) in the less mafic samples

  11. Role of crystallizational differention in the origin of island-arc andesitic melts: evidence from data on melt inclusions and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. P.; Portnyagin, M.; Bindeman, I. N.; Bazanova, L. I.

    2012-12-01

    Several recent studies of melt inclusions in island-arc rocks revealed a strong bimodality of the melt compositions at the predominance of basic and silicic melts and the scarcity of intermediate melts with SiO2=59-66 wt% (e.g. [1]). These observations were used to interpret the origin of island-arc andesites by magma mingling, crustal assimilation and crystal accumulation rather than by fractional crystallization of basaltic magmas. In this work we addressed the question about the scarcity of andesitic melts in island-arc setting by systematic study of bulk compositions, melt inclusions and oxygen isotopes in minerals from Avachinskiy volcano in Kamchatka. We studied ~500 melt inclusions in 6 different mineral phases (Ol, Cpx, Opx, Pl, Amph, Mt), and concentrated on rapidly-quenched tephra samples from 40 Holocene eruptions of andesites and basaltic andesites. The melt inclusions span a large range of compositions from basalts to rhyolites. In comparison with host bulk tephra samples, melt inclusions tend to have more silicic compositions (up to 10 wt% of SiO2), and this disparity tend to increase with increasing SiO2 content in the host rocks. Both melt inclusion and host rock compositions form trends along the line dividing low- and middle-K island-arc series, and variations of major elements are continuous, without apparent bimodality, which is observed in data set from [1]. The MI statistical distribution is rather three-modal with maxima at ~56-58, ~66 and 74 wt% of SiO2. Much of the major element variability in MI can be explained by fractional crystallization from parental basaltic melts using numerical modeling of crystallization path. Magnetite crystallization starts at ~58 wt% of SiO2 and affects significantly on the evolutional path of melts. Abundant crystallization of magnetite lead to formation of more silica rich coexistent melts and change of crystallizing assemblage occurred at ~60 wt% of SiO2, when Opx replaced Ol, and Amph and Ap become stable

  12. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.

    PubMed

    Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M

    2016-07-21

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  13. Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.

    2013-12-01

    Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this

  14. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu

  15. Heavy metals in fish from the Aleutians: Interspecific and locational differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna, E-mail: burger@biology.rutgers.edu; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ; Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN 37235

    The objectives of this study were to examine levels of arsenic, cadmium, lead, mercury and selenium in edible tissue of seven species of marine fish collected from several Aleutian islands (in 2004) to determine: (1) interspecific differences, (2) locational differences (among Aleutian Islands), (3) size-related differences in any metal levels within a species, and (4) potential risk to the fish or to predators on the fish, including humans. We also compared metals levels to those of three other fish species previously examined in detail, as well as examining metals in the edible tissue of octopus (Octopus dofleini). Octopus did notmore » have the highest levels of any metal. There were significant interspecific differences in all metal levels among the fish species, although the differences were less than an order of magnitude, except for arsenic (mean of 19,500 ppb in Flathead sole, Hippoglossoides elassodon). Significant intraisland variation occurred among the four sites on Amchitka, but there was not a consistent pattern. There were significant interisland differences for some metals and species. Mercury levels increased significantly with size for several species; lead increased significantly for only one fish species; and cadmium and selenium decreased significantly with size for halibut (Hippoglossus stenolepis). The Alaskan Department of Health and Social Services supports unrestricted consumption of most Alaskan fish species for all people, including pregnant women. Most mean metal concentrations were well below the levels known to adversely affect the fish themselves, or predators that consume them (including humans), except for mercury in three fish species (mean levels just below 0.3 ppm), and arsenic in two fish species. However, even at low mercury levels, people who consume fish almost daily will exceed guideline values from the Centers for Disease Control and the Environmental Protection Agency. - Highlights: • Cadmium, lead, mercury and

  16. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Smith, I. E.

    2015-12-01

    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only <550 km2. Inspired by local mythology of gods flying overhead with baskets of ash, and an analysis of the high-level wind distribution patterns, lake and wetland sites were investigated along the Tongan chain. In most cases former lagoon basins lifted above sea-level by a combination of tectonic rise and the lowering of mean sea levels by around 2 m since the Mid-Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of <6500 cal. years B.P., including several very large and regionally significant tephras. Erupted compositions range from basaltic to dacitic, with some showing compositional change during eruption. In addition, some large eruptions appear to have generated regionally significant tsunami, represented by characteristically mixed sandy layers with lithologies including shell fragment, foraminifera and volcanic particles.

  17. Structural control on arc volcanism: The Caviahue Copahue complex, Central to Patagonian Andes transition (38°S)

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel; Folguera, Andrés; Ramos, Victor A.

    2006-11-01

    This paper describes the volcanostratigraphy, structure, and tectonic implications of an arc volcanic complex in an oblique subduction setting: the Caviahue caldera Copahue volcano (CAC) of the Andean margin. The CAC is located in a first-order morphotectonic transitional zone, between the low and narrow Patagonian and the high and broad Central Andes. The evolution of the CAC started at approximately 4-3 Ma with the opening of the 20 × 15 km Caviahue pull-apart caldera; Las Mellizas volcano formed inside the caldera and collapsed at approximately 2.6 Ma; and the Copahue volcano evolved in three stages: (1) 1.2-0.7 Ma formed the approximately 1 km thick andesitic edifice, (2) 0.7-0.01 Ma erupted andesitic-dacitic subglacial pillow lavas, and (3) 0.01-0 Ma erupted basaltic-andesites and pyroclastic flows from fissures, aligned cones, and summit craters. Magma ascent has occurred along planes perpendicular to the least principal horizontal stress, whereas hydrothermal activity and hot springs also occur along parallel planes. At a regional scale, Quaternary volcanism concentrates along the NE-trending, 90 km long Callaqui-Copahue-Mandolegüe lineament, the longest of the southern volcanic zone, which is here interpreted as an inherited crustal-scale transfer zone from a Miocene rift basin. At a local scale within the CAC, effusions are controlled by local structures that formed at the intersection of regional fault systems. The Central to Patagonian Andes transition occurs at the Callaqui-Copahue-Mandolegüe lineament, which decouples active deformation from the intra-arc strike-slip Liquiñe-Ofqui fault zone to the south and the backarc Copahue-Antiñir thrust system.

  18. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  19. Imaging shallow magma chambers at Alaskan volcanoes with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.

    2009-05-01

    Ambient noise tomography/inversion (ANT) is an emerging technique in seismology with the ability to provide 3D images of subsurface volcanic structure using relatively sparse seismic networks. The method relies on the principle that the cross-correlation of noise recordings at two different seismic stations reproduces an experiment in which one of the stations acts as an active source. Ambient seismic noise in the frequency band from 0.1 to 1 Hz is mostly composed of fundamental mode surface waves, of both Love and Rayleigh type. As a result, noise cross-correlations are sensitive to shear-wave structure and complement compressional-wave images computed from phase arrivals of local earthquakes. At Okmok volcano in the Aleutian islands, a 3D image constructed from 40 days of noise recordings in 2005 on a 12 station network clearly shows two low velocity zones (LVZs) centered about the 10-km-wide caldera: a shallow zone in the upper 1-2 km and a deeper zone between 4-4.5 km. The shallow LVZ is interpreted to be weak, poorly-consolidated material within the caldera; the deeper LVZ is indicative of the shallow magma chamber at Okmok. That the chamber is imaged as an LVZ in 2005 points to it remaining in a molten state throughout the time period between the 1997 and 2008 eruptions. The existence of a shallow chamber at Okmok is consistent with independent studies based on GPS, InSAR, and petrologic data. A 3D image has also been determined for the Katmai group of volcanoes along the Alaska peninsula from 60 days of continuous recordings in 2005 and 2006. An LVZ at Katmai Pass, previously known from local earthquake tomography (LET), is evident in the 3D shear-wave velocity model at depths down to 2 km BSL. That the LVZ exists in compressional-wave velocity models suggests it is a shallow magma storage area for Trident volcano. In contrast, low shear-wave velocity under Martin volcano is likely fluid-related, given the lack of low compressional-wave velocities in images

  20. History of Red Crater volcano, Tongariro Volcanic Centre (New Zealand): Abrupt shift in magmatism following recharge and contrasting evolution between neighboring volcanoes

    NASA Astrophysics Data System (ADS)

    Shane, Phil; Maas, Roland; Lindsay, Jan

    2017-06-01

    also evident, larger volumes of magma with more radiogenic compositions were erupted and the history of activity extends farther back in time than that of Red Crater. This is consistent with the development of a larger silicic reservoir beneath Ngauruhoe that could have acted as a buoyancy filter preventing direct eruption of mafic magma. The eruptive products of the two volcanoes reveal the diverging development of adjacent magmatic reservoirs that lack lateral connectivity at a scale in the order of 102-103 m. There is limited literature on the comparative magmatic evolution of closely-spaced conduit/storage systems at arc volcanoes, reflecting the limitations of geochronological data at centennial and millennial timescales. However, such investigations provide insight into andesite assembly and the contrasting volcanism that could be expected in future activity.

  1. Klyuchevskaya Volcano

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Klyuchevskaya Volcano on Russia's Kamchatka Peninsula continued its ongoing activity by releasing another plume on May 24, 2007. The same day, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image, at 01:00 UTC. In this image, a hotspot marks the volcano's summit. Outlined in red, the hotspot indicates where MODIS detected unusually warm surface temperatures. Blowing southward from the summit is the plume, which casts its shadow on the clouds below. Near the summit, the plume appears gray, and it lightens toward the south. With an altitude of 4,835 meters (15,863 feet), Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) is both the highest and most active volcano on the Kamchatka Peninsula. As part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Klyuchevskaya is estimated to have experienced more than 100 flank eruptions in the past 3,000 years. Since its formation 6,000 years ago, the volcano has seen few periods of inactivity. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC. The Rapid Response Team provides daily images of this region.

  2. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes

    PubMed Central

    Bourne, A. J.; Abbott, P. M.; Albert, P. G.; Cook, E.; Pearce, N. J. G.; Ponomareva, V.; Svensson, A.; Davies, S. M.

    2016-01-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes. PMID:27445233

  3. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  4. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  5. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  6. Crustal evolution derived from the Izu-Bonin-Mariana arc velocity images

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Tatsumi, Y.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takahashi, T.; Noguchi, N.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.

    2010-12-01

    The Izu-Bonin-Mariana arc is known as one of typical oceanic island arcs, which has developed by subduction between oceanic crusts producing continental materials. Japan Agency for Marine-Earth Science and Technology has carried out seismic surveys using a multi-channel reflection survey system (MCS) and ocean bottom seismographs (OBSs) in the Izu-Bonin-Mariana (IBM) arc since 2002, and reported these crustal images. As the results, we identified the structural characteristics of whole Izu-Bonin-Mariana arc. Rough structural characteristics are, 1) middle crust with Vp of 6 km/s, 2) upper part of the lower crust with Vp of 6.5-6.8 km/s, 3) lower part of the lower crust with Vp of 6.8-7.5 km/s, and 4) lower mantle velocity beneath the arc crusts. In addition, structural variation along the volcanic front, for example, thickness variation of andesitic layers was imaged and the distributions is consistent with those of rhyolite volcanoes, that is, it suggested that the cause the structural variation is various degree of crustal growth (Kodaira et al., 2007). Moreover, crustal thinning with high velocity lower crust across arc was also imaged, and it is interpreted that such crust has been influenced backarc opening (Takahashi et al., 2009). According to Tatsumi et al. (2008), andesitic middle crust is produced by differentiation of basaltic lower crust and a part of the restites are transformed to the upper mantle. This means that region showing much crustal differentiation has large volume of transformation of dense crustal materials to the mantle. We calculated volume profiles of the lower crust along all seismic lines based on the petrologic model, and compared them with observed real volumes obtained by seismic images. If the real volume of the lower crust is large, it means that the underplating of dense materials to the crustal bottom is dominant rather than transformation of dense materials to the upper mantle. According to obtained profiles to judge if the

  7. The changing shapes of active volcanoes: History, evolution, and future challenges for volcano geodesy

    USGS Publications Warehouse

    Poland, Michael P.; Hamburger, Michael W.; Newman, Andrew V.

    2006-01-01

    At the very heart of volcanology lies the search for the 'plumbing systems' that form the inner workings of Earth’s active volcanoes. By their very nature, however, the magmatic reservoirs and conduits that underlie these active volcanic systems are elusive; mostly they are observable only through circumstantial evidence, using indirect, and often ambiguous, surficial measurements. Of course, we can infer much about these systems from geologic investigation of materials brought to the surface by eruptions and of the exposed roots of ancient volcanoes. But how can we study the magmatic processes that are occurring beneath Earth’s active volcanoes? What are the geometry, scale, physical, and chemical characteristics of magma reservoirs? Can we infer the dynamics of magma transport? Can we use this information to better forecast the future behavior of volcanoes? These questions comprise some of the most fundamental, recurring themes of modern research in volcanology. The field of volcano geodesy is uniquely situated to provide critical observational constraints on these problems. For the past decade, armed with a new array of technological innovations, equipped with powerful computers, and prepared with new analytical tools, volcano geodesists have been poised to make significant advances in our fundamental understanding of the behavior of active volcanic systems. The purpose of this volume is to highlight some of these recent advances, particularly in the collection and interpretation of geodetic data from actively deforming volcanoes. The 18 papers that follow report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide

  8. Toward Assessing the Causes of Volcanic Diversity in the Cascades Arc

    NASA Astrophysics Data System (ADS)

    Till, C. B.; Kent, A. J.; Abers, G. A.; Pitcher, B.; Janiszewski, H. A.; Schmandt, B.

    2017-12-01

    A fundamental unanswered question in subduction system science is the cause of the observed diversity in volcanic arc style at an arc-segment to whole-arc scale. Specifically, we have yet to distinguish the predominant mantle and crustal processes responsible for the diversity of arc volcanic phenomenon, including the presence of central volcanoes vs. dispersed volcanism; episodicity in volcanic fluxes in time and space; variations in magma chemistry; and differences in the extent of magmatic focusing. Here we present a thought experiment using currently available data to estimate the relative role of crustal magmatic processes in producing the observed variations in Cascades arc volcanism. A compilation of available major element compositions of Quaternary arc volcanism and estimates of eruptive volumes are used to examine variations in the composition of arc magmas along strike. We then calculate the Quaternary volcanic heat flux into the crust, assuming steady state, required to produce the observed distribution of compositions via crystallization of mantle-derived primitive magmas vs. crustal melting using experiment constraints on possible liquid lines of descent and crustal melting scenarios. For pure crystallization, heat input into the crust scales with silica content, with dacitic to rhyolite compositions producing significantly greater latent heat relative to basalts to andesites. In contrast, the heat required to melt lower crustal amphibolite decreases with increasing silica and is likely provided by the latent heat of crystallization. Thus we develop maximum and minimum estimates for heat added to the crust at a given SiO2 range. When volumes are considered, we find that the average Quaternary volcanic heat flux at latitudes south of South Sister to be more than twice that to the north. Distributed mafic volcanism produces only a quarter to half the heat flux calculated for the main edifices at a given latitude because of their lesser eruptive volumes

  9. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1.

    PubMed

    Lassak, Jürgen; Henche, Anna-Lena; Binnenkade, Lucas; Thormann, Kai M

    2010-05-01

    The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.

  10. Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.

    2014-12-01

    Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.

  11. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  12. Fluvial valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.

  13. Repeating coupled earthquakes at Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Caplan-Auerbach, J.; Petersen, T.

    2005-01-01

    Since it last erupted in 1999, Shishaldin Volcano, Aleutian Islands, Alaska, has produced hundreds to thousands of long-period (1-2 Hz; LP) earthquakes every day with no other sign of volcanic unrest. In 2002, the earthquakes also exhibited a short-period (4-7 Hz; SP) signal occurring between 3 and 15 s before the LP phase. Although the SP phase contains higher frequencies than the LP phase, its spectral content is still well below that expected of brittle failure events. The SP phase was never observed without the LP phase, although LP events continued to occur in the absence of the precursory signal. The two-phased events are termed "coupled events", reflecting a triggered relationship between two discrete event types. Both phases are highly repetitive in time series, suggestive of stable, non-destructive sources. Waveform cross-correlation and spectral coherence are used to extract waveforms from the continuous record and determine precise P-wave arrivals for the SP phase. Although depths are poorly constrained, the SP phase is believed to lie at shallow (<4 km) depths just west of Shishaldin's summit. The variable timing between the SP and LP arrivals indicates that the trigger mechanism between the phases itself moves at variable speeds. A model is proposed in which the SP phase results from fluid moving within the conduit, possibly around an obstruction and the LP phase results from the coalescence of a shallow gas bubble. The variable timing is attributed to changes in gas content within the conduit. The destruction of the conduit obstacle on November 21, 2002 resulted in the abrupt disappearance of the SP phase.

  14. Two mantle domains and the time scales of fluid transfer beneath the Vanuatu arc

    NASA Astrophysics Data System (ADS)

    Turner, Simon P.; Peate, David W.; Hawkesworth, Chris J.; Eggins, Stephen M.; Crawford, Anthony J.

    1999-11-01

    U-Th isotope disequilibria can provide constraints on the time elapsed since fluid addition to the mantle wedge beneath island arcs. The Vanuatu arc offers new insights into these processes because Pb isotopes there are not dominated by components from the subducting plate and so preserve the signatures of the mantle wedge. The Pb isotope data document the presence of separate Pacific and Indian mantle domains beneath the arc volcanoes. The Indian mantle was brought beneath the central part of the arc from the backarc by collision with the D'Entrecasteaux Ridge, resulting in a slowing of subduction there. The distinction in the mantle wedge composition is also uniquely apparent in U-Th isotope data, which define two subparallel arrays on the U-Th equiline diagram, one anchored to high U/Th Pacific mantle and the other to lower U/Th Indian mantle. These data provide clear evidence of the effects of variable mantle composition on U-Th isotope disequilibria. We argue that such arrays faithfully record the time elapsed since fluid release from the subducting plate. The data indicate that this occurred ca. 16 ka in the area of collision and slow subduction, but ca. 60 ka where the rate of subduction is substantially faster. This suggests a link between the rate of subduction and the time elapsed since fluid release.

  15. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    NASA Astrophysics Data System (ADS)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  16. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  17. A novel post-arc current measuring equipment based on vacuum arc commutation and arc blow

    NASA Astrophysics Data System (ADS)

    Liao, Minfu; Ge, Guowei; Duan, Xiongying; Huang, Zhihui

    2017-07-01

    The paper proposes a novel post-arc current measuring equipment (NPACME), which is based on the vacuum arc commutation and magnetic arc blow. The NPACME is composed of the vacuum circuit breaker (VCB), shunt resistor, protective gap, high-precision current sensor and externally applied transverse magnetic field (ETMF). The prototype of the NPACME is designed and controlled by optical fiber communications. The vacuum arc commutation between the vacuum arc and the shunt resistor with ETMF is investigated. The test platform is established in the synthetic short-circuit test and the vacuum arc is observed by the high speed CMOS camera. The mathematic description of the vacuum arc commutation is obtained. Based on the current commutation characteristic, the parameters of the NPACME are optimized and the post-arc current is measured. The measuring result of the post-arc current is accurate with small interference and the post-arc charge is obtained. The experimental results verify that the NPACME is correct and accurate, which can be used to measure the post-arc characteristic in breaking test.

  18. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  19. Geological and biological heterogeneity of the Aleutian margin (1965-4822 m)

    NASA Astrophysics Data System (ADS)

    Rathburn, A. E.; Levin, L. A.; Tryon, M.; Gieskes, J. M.; Martin, J. B.; Pérez, M. E.; Fodrie, F. J.; Neira, C.; Fryer, G. J.; Mendoza, G.; McMillan, P. A.; Kluesner, J.; Adamic, J.; Ziebis, W.

    2009-01-01

    Geological, biological and biogeochemical characterization of the previously unexplored margin off Unimak Island, Alaska between 1965 and 4822 m water depth was conducted to examine: (1) the geological processes that shaped the margin, (2) the linkages between depth, geomorphology and environmental disturbance in structuring benthic communities of varying size classes and (3) the existence, composition and nutritional sources of methane seep biota on this margin. The study area was mapped and sampled using multibeam sonar, a remotely operated vehicle (ROV) and a towed camera system. Our results provide the first characterization of the Aleutian margin mid and lower slope benthic communities (microbiota, foraminifera, macrofauna and megafauna), recognizing diverse habitats in a variety of settings. Our investigations also revealed that the geologic feature known as the “Ugamak Slide” is not a slide at all, and could not have resulted from a large 1946 earthquake. However, sediment disturbance appears to be a pervasive feature of this margin. We speculate that the deep-sea occurrence of high densities of Elphidium, typically a shallow-water foraminiferan, results from the influence of sediment redeposition from shallower habitats. Strong representation of cumacean, amphipod and tanaid crustaceans among the Unimak macrofauna may also reflect sediment instability. Although some faunal abundances decline with depth, habitat heterogeneity and disturbance generated by canyons and methane seepage appear to influence abundances of biota in ways that supercede any clear depth gradient in organic matter input. Measures of sediment organic matter and pigment content as well as C and N isotopic signatures were highly heterogeneous, although the availability of organic matter and the abundance of microorganisms in the upper sediment (1-5 cm) were positively correlated. We report the first methane seep on the Aleutian slope in the Unimak region (3263-3285 m), comprised of

  20. Earth's Volcanoes and their Eruptions; the 3rd edition of the Smithsonian Institution's Volcanoes of the World

    NASA Astrophysics Data System (ADS)

    Siebert, L.; Simkin, T.; Kimberly, P.

    2010-12-01

    The 3rd edition of the Smithsonian Institution’s Volcanoes of the World incorporates data on the world’s volcanoes and their eruptions compiled since 1968 by the Institution’s Global Volcanism Program (GVP). Published this Fall jointly by the Smithsonian and the University of California Press, it supplements data from the 1994 2nd edition and includes new data on the number of people living in proximity to volcanoes, the dominant rock lithologies at each volcano, Holocene caldera-forming eruptions, and preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions. The 3rd edition contains data on nearly 1550 volcanoes of known or possible Holocene age, including chronologies, characteristics, and magnitudes for >10,400 Holocene eruptions. The standard 20 eruptive characteristics of the IAVCEI volcano catalog series have been modified to include dated vertical edifice collapse events due to magma chamber evacuation following large-volume explosive eruptions or mafic lava effusion, and lateral sector collapse. Data from previous editions of Volcanoes of the World are also supplemented by listings of up to the 5 most dominant lithologies at each volcano, along with data on population living within 5, 10, 30, and 100 km radii of each volcano or volcanic field. Population data indicate that the most populated regions also contain the most frequently active volcanoes. Eruption data document lava and tephra volumes and Volcanic Explosivity Index (VEI) assignments for >7800 eruptions. Interpretation of VRF data has led to documentation of global eruption rates and the power law relationship between magnitude and frequency of volcanic eruptions. Data with volcanic hazards implications include those on fatalities and evacuations and the rate at which eruptions reach their climax. In recognition of the hazards implications of potential resumption of activity at pre-Holocene volcanoes, the 3rd edition includes very preliminary lists of Pleistocene

  1. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  2. Deformation associated with the 1997 eruption of Okmok volcano, Alaska

    USGS Publications Warehouse

    Mann, Dorte; Freymueller, Jeffrey T.; Lu, Z.

    2002-01-01

    Okmok volcano, located on Umnak Island in the Aleutian chain, Alaska, is the most eruptive caldera system in North America in historic time. Its most recent eruption occurred in 1997. Synthetic aperture radar interferometry shows deflation of the caldera center of up to 140 cm during this time, preceded and followed by inflation of smaller magnitude. The main part of the observed deformation can be modeled using a pressure point source model. The inferred source is located between 2.5 and 5.0 km beneath the approximate center of the caldera and ???5 km from the eruptive vent. We interpret it as a central magma reservoir. The preeruptive period features inflation accompanied by shallow localized subsidence between the caldera center and the vent. We hypothesize that this is caused by hydrothermal activity or that magma moved away from the central chamber and toward the later vent. Since all historic eruptions at Okmok have originated from the same cone, this feature may be a precursor that indicates an upcoming eruption. The erupted magma volume is ???9 times the volume that can be accounted for by the observed preeruptive inflation. This indicates a much longer inflation interval than we were able to observe. The observation that reinflation started shortly after the eruption suggests that inflation spans the whole time interval between eruptions. Extrapolation of the average subsurface volume change rate is in good agreement with the long-term eruption frequency and eruption volumes of Okmok.

  3. Intense magmatic degassing through the lake of Copahue volcano, 2013-2014

    NASA Astrophysics Data System (ADS)

    Tamburello, G.; Agusto, M.; Caselli, A.; Tassi, F.; Vaselli, O.; Calabrese, S.; Rouwet, D.; Capaccioni, B.; Di Napoli, R.; Cardellini, C.; Chiodini, G.; Bitetto, M.; Brusca, L.; Bellomo, S.; Aiuppa, A.

    2015-09-01

    Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d-1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d-1, CO2 ~ 638 t d-1, HCl ~ 66 t d-1, H2 ~ 3.3 t d-1, and HBr ~ 0.05 t d-1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d-1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.

  4. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Heliker, Christina C.; Griggs, J. D.; Takahashi, T. Jane; Wright, Thomas L.; Spall, Henry

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by frequent addition of new lava to its surface.  Because Hawaiian are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruptions.  The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary. has been in the forefront of volcanology since the 1900's.  This issue of Earthquakes and volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  5. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by the frequent addition of new lava to its surface. Because Hawaiian eruptions are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruption. The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary, has been in the forefront of volcanology since the early 1900s. This issue of Earthquakes and Volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  6. Presumed drowning of Aleutian Canada geese on the Pacific coast of California and Oregon

    USGS Publications Warehouse

    Springer, Paul F.; Lowe, Roy W.; Stroud, Richard K.; Gullett, Patricia A.

    1989-01-01

    Carcasses of 42 and 17 Aleutian Canada geese (Branta canadensis leucopareia), a federally listed endangered species, were found on ocean beaches near Crescent City, California, and near Pacific City, Oregon, respectively, following severe storms. Necropsies and other information suggest that the birds were flushed during the storms and somehow entered the water where they were washed into the surf and drowned.

  7. Control of arc length during gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementingmore » a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.« less

  8. Colima Volcano, Mexico

    NASA Image and Video Library

    1995-10-29

    STS073-E-5274 (3 Nov. 1995) --- Colima was photographed with a color Electronic Still Camera (ESC) onboard the Earth-orbiting space shuttle Columbia. The volcano lies due south of Guadalajara and Lake Chapala. It is considered to be one of Mexico's most active and most dangerous volcanoes, lying not far from heavily populated areas.

  9. Experimental Phase Relations of Hydrous, Primitive Melts: Implications for variably depleted mantle melting in arcs and the generation of primitive high-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2010-12-01

    There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with

  10. Volcanic hazards at Atitlan volcano, Guatemala

    USGS Publications Warehouse

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  11. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  12. The California Volcano Observatory: Monitoring the state's restless volcanoes

    USGS Publications Warehouse

    Stovall, Wendy K.; Marcaida, Mae; Mangan, Margaret T.

    2014-01-01

    Volcanic eruptions happen in the State of California about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and future volcanic eruptions are inevitable. The U.S. Geological Survey California Volcano Observatory monitors the State's potentially hazardous volcanoes.

  13. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  14. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  15. Dispersal and behavior of pacific halibut hippoglossus stenolepis in the bering sea and Aleutian islands region

    USGS Publications Warehouse

    Seitz, A.C.; Loher, Timothy; Norcross, Brenda L.; Nielsen, J.L.

    2011-01-01

    Currently, it is assumed that eastern Pacific halibut Hippoglossus stenolepis belong to a single, fully mixed population extending from California through the Bering Sea, in which adult halibut disperse randomly throughout their range during their lifetime. However, we hypothesize that hali but dispersal is more complex than currently assumed and is not spatially random. To test this hypo thesis, we studied the seasonal dispersal and behavior of Pacific halibut in the Bering Sea and Aleutian Islands (BSAI). Pop-up Archival Transmitting tags attached to halibut (82 to 154 cm fork length) during the summer provided no evidence that individuals moved out of the Bering Sea and Aleutian Islands region into the Gulf of Alaska during the mid-winter spawning season, supporting the concept that this region contains a separate spawning group of adult halibut. There was evidence for geographically localized groups of halibut along the Aleutian Island chain, as all of the individuals tagged there displayed residency, with their movements possibly impeded by tidal currents in the passes between islands. Mid-winter aggregation areas of halibut are assumed to be spawning grounds, of which 2 were previously unidentified and extend the species' presumed spawning range ~1000 km west and ~600 km north of the nearest documented spawning area. If there are indeed independent spawning groups of Pacific halibut in the BSAI, their dynamics may vary sufficiently from those of the Gulf of Alaska, so that specifically accounting for their relative segregation and unique dynamics within the larger population model will be necessary for correctly predicting how these components may respond to fishing pressure and changing environmental conditions.?? Inter-Research 2011.

  16. Volcano deformation and gravity workshop synopsis and outcomes: The 2008 volcano deformation and temporal gravity change workshop

    USGS Publications Warehouse

    Dzurisin, Daniel; Lu, Zhong

    2009-01-01

    A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.

  17. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  18. A geochemical study of Nea-Kameni hyalodacites (Santorini Volcano, Aegean island arc). Inferences concerning the origin and effects of solfataras and magmatic evolution

    NASA Astrophysics Data System (ADS)

    Briqueu, Louis; Lancelot, Joël R.

    1984-03-01

    Since the Santorini Volcano (Aegean arc, eastern Mediterranean Sea) collapsed, volcanic activity has been located at the center of the flooded caldera. Over the past 800 years, five lava flows have formed one of the central islets (Nea-Kameni). Since 1951, when the last eruption occurred, a permanent fumarolic activity has remained. We present chemical analyses (major elements, trace-elements and Sr isotopic ratios) of ten samples from the five hyalodacitic lava flows, showing different stages of alteration, from a completely fresh lava up to one bearing native sulfur and other sublimates. Only the macroscopic aspect of these hyalodacites is affected by fumarolic activity. The elements that are mobile as a result of hydrothermal processes, such as the alkaline (K, Rb) or the chalcophile elements (Zn, Pb), show great homogeneity; the same can be said for the Sr isotopic compositions which range from 0.7046 to 0.7049. None of the analyzed samples has an Sr isotopic composition as high as those reported by Puchelt and Hoefs (1971) for rock samples collected in the same lava flows. If we take into account the marine surroundings of Nea-Kameni islet, these observations put severe restraints on the different hypotheses regarding the origin of the halogens (seawater or meteoric water). The contamination processes of these dacitic lavas are clearly less important than assumed by other authors according to previous Sr isotopic data. Finally, the homogeneity of the elements with low partition coefficients is sufficient to show that the magma has not undergone any perceptible evolution during the last 300 years.

  19. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  20. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-04

    STS068-273-060 (4 October 1994) --- Astronauts aboard the Space Shuttle Endeavour recorded this follow-up 70mm frame of the Kliuchevskoi volcano on the Kamchatka Peninsula in Russia. The volcano was near its peak on launch day, five days earlier, but only a small steam plume was rising from the summit in this Day 5 photo. Tendrils of ash are airborne on the northern flank of the volcano. Scientists feel that the source of these plumes is from a flow down the mountain's northern flank. The entire summit region is covered in ash. As various members of the six-person crew were using handheld cameras to record the various stages of the volcano, hardware in Endeavour's cargo bay was taking radar data of the event in support of the Space Radar Laboratory (SRL-2) mission.

  1. USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; McCaffrey, R.

    2015-12-01

    Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier

  2. The New USGS Volcano Hazards Program Web Site

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.

    2008-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.

  3. Sheveluch Volcano, Kamchatka, Russia

    NASA Image and Video Library

    2010-04-05

    Sheveluch Volcano in Kamchatka, Siberia, is one of the frequently active volcanoes located in eastern Siberia. In this image from NASA Terra spacecraft, brownish ash covers the southern part of the mountain, under an ash-laden vertical eruption plume.

  4. 76 FR 80782 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... information collected during 2011, such as revised stock assessments and catch data. The Plan Team compiled... and socioeconomic data, including projected biomass trends, information on assumed distribution of..., skates, sculpins, and octopuses. Section 679.20(a)(5)(iii)(B)(1) requires the Aleutian Islands (AI...

  5. 75 FR 7403 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Trawl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS), National... fishery in the BSAI is 1,248,494 animals as established by the final 2009 and 2010 harvest specifications.... Emily H. Menashes, Acting Director, Office of Sustainable Fisheries, National Marine Fisheries Service...

  6. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early

  7. Fore- and Back-Arc Structures Along the Hikurangi-Kermadec Subduction Zone

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2009-04-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate is continental in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 degrees South. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper arc mantle are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. Here, arc volcanism is relatively active, with many large volcanoes directly on the ridge. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate

  8. The Nd-, Sr- and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: Implications for arc magma petrogenesis

    USGS Publications Warehouse

    Mukasa, S.B.; Flower, M.F.J.; Miklius, Asta

    1994-01-01

    Following the amalgamation of a collage of pre-Neogene terranes largely by strike-slip and convergence mechanisms to form the Philippine islands, volcanic chains, related to oppositely dipping subduction zones, developed along the eastern and western margins of the archipelago. There is ample field evidence that this volcanic activity, predominantly calc-alkaline in chemical character, had commenced by the Oligocene. Volcanoes resulting from subduction along the Manila-Negros trench in the west (e.g. Taal, Laguna de Bay and Arayat) form a high-angle linear array, trending away from the MORE field on Pb-isotopic covariation diagrams; have the highest Sr- and lowest Nd-isotopic compositions, of the two chains (but nevertheless plotting above bulk earth on the 87Sr/86Sr versus 143Nd/144Nd covariation diagram); and exhibit Sm/Nd and Rb/Sr values that are lower and higher, respectively, than the estimated values for bulk earth. While the Sm/Nd and Rb/Sr characteristics are common to both chains, volcanoes associated with the Philippine-East Luzon trench have Pb-isotopic compositions that fall in the Indian Ocean MORB field and that require time-integrated evolution in a high Th/U environment. They also have higher Nd- and lower Sr-isotopic ratios. The source materials of Philippine volcanoes, therefore, have undergone varied recent enrichments in LILE, as indicated by the decoupling of isotopic and elemental ratios. These enrichments, particularly for the western volcanoes, cannot be entirely due to small degrees of partial melting in the mantle wedge, considering that they were accompanied by elevations in radiogenic Pb. Elevated Pb ratios are best explained by the introduction of subducted, continentally derived sediments. The sedimentary component in the western volcanoes is probably the South China Sea sediments derived largely from Eurasia. That this component is not available in the Philippine-East Luzon trench is reflected by the fact that the eastern volcanoes

  9. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and

  10. For Kids | Volcano World | Oregon State University

    Science.gov Websites

    Volcanic Gases Volcanic Lightning Volcanic Sounds Volcanic Hazards Kids Only! Art Gallery Volcano Games Lightning Volcanic Sounds Volcanic Hazards Kids Only! Art Gallery Volcano Games Adventures and Fun Virtual volcano? Check out our games and fun section below! Kids' Volcano Art Gallery Games & Fun Stuff

  11. 75 FR 50716 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... West region of the Aleutian Islands. An emergency exists because, due to a recent unforeseen event, no... objectives of the Magnuson-Stevens Fishery Conservation and Management Act, the Fishery Management Plan for... and Management Act (Magnuson-Stevens Act) provides authority for rulemaking to address an emergency...

  12. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... endorsement for Norton Sound red king. More specifically, the reduction endorsement fisheries, and the crab... endorsement fisheries, are: (1) Bristol Bay red king (the corresponding crab rationalization fishery is Bristol Bay red king crab), (2) Bering Sea and Aleutian Islands Area C. opilio and C. bairdi (the...

  13. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... endorsement for Norton Sound red king. More specifically, the reduction endorsement fisheries, and the crab... endorsement fisheries, are: (1) Bristol Bay red king (the corresponding crab rationalization fishery is Bristol Bay red king crab), (2) Bering Sea and Aleutian Islands Area C. opilio and C. bairdi (the...

  14. GlobVolcano pre-operational services for global monitoring active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island

  15. Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study

    NASA Astrophysics Data System (ADS)

    Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano

    2017-08-01

    Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.

  16. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    PubMed

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  17. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  18. Hazards in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Sparks, S. R.

    2008-12-01

    Volcanic eruptions in arcs are complex natural phenomena, involving the movement of magma to the Earth's surface and interactions with the surrounding crust during ascent and with the surface environment during eruption, resulting in secondary hazards. Magma changes its properties profoundly during ascent and eruption and many of the underlying processes of heat and mass transfer and physical property changes that govern volcanic flows and magmatic interactions with the environment are highly non-linear. Major direct hazards include tephra fall, pyroclastic flows from explosions and dome collapse, volcanic blasts, lahars, debris avalanches and tsunamis. There are also health hazards related to emissions of gases and very fine volcanic ash. These hazards and progress in their assessment are illustrated mainly from the ongoing eruption of the Soufriere Hills volcano. Montserrat. There are both epistemic and aleatory uncertainties in the assessment of volcanic hazards, which can be large, making precise prediction a formidable objective. Indeed in certain respects volcanic systems and hazardous phenomena may be intrinsically unpredictable. As with other natural phenomena, predictions and hazards inevitably have to be expressed in probabilistic terms that take account of these uncertainties. Despite these limitations significant progress is being made in the ability to anticipate volcanic activity in volcanic arcs and, in favourable circumstances, make robust hazards assessments and predictions. Improvements in monitoring ground deformation, gas emissions and seismicity are being combined with more advanced models of volcanic flows and their interactions with the environment. In addition more structured and systematic methods for assessing hazards and risk are emerging that allow impartial advice to be given to authorities during volcanic crises. There remain significant issues of how scientific advice and associated uncertainties are communicated to provide effective

  19. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    USGS Publications Warehouse

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  20. Diffuse CO2 degassing monitoring of Cerro Negro volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Hernández, Pedro A.; Alonso, Mar; Ibarra, Martha; Rodríguez, Wesly; Melián, Gladys V.; Saballos, Armando; Barrancos, José; Pérez, Nemesio M.; Álvarez, Julio; Martínez, William

    2017-04-01

    We report the results of fourteen soil CO2 efflux surveys by the closed accumulation chamber method at Cerro Negro volcano, Nicaragua. The surveys were undertaken from 1999 to 2016 to constrain the diffuse CO2 emission from this volcano and to evaluate the spatial and temporal variations of CO2 degassing rate in relation to the eruptive cycle. Cerro Negro is an active basaltic volcano belonging to the active Central American Volcanic Arc which includes a 1,100 Km long chain of 41 active volcanoes from Guatemala to Panama. Cerro Negro first erupted in 1850 and has experienced 21 eruptive eruptions with inter eruptive average periods between 7 and 9 years. Since the last eruption occurred on 5 August 1999, with erupted lava flows and ash clouds together with gas emissions, a collaborative research program between INETER and ITER/INVOLCAN has been established for monitoring diffuse CO2 emissions from this volcano. The first survey carried out at Cerro Negro was in December 1999, just 3 months after the 1999 eruption, with a total diffuse CO2 emission output estimated on 1,869 ± 197 td-1. The second survey carried out in March 2003, three years after the eruption, yielded a value of 432 ± 54 td-1. Both values that can be considered within the post-eruptive phase. The last survey performed at Cerro Negro was in November 2016, with an estimated diffuse CO2 emission of 63 ± 14 tṡd-1and soil CO2 efflux values ranging from non-detectable (˜0.5 g m-2 d-1) up to 7264 g m-2 d-1. The long-term record of diffuse CO2 emissions at Cerro Negro shows small temporal variations in CO2 emissions with a peak in 2004 (256 ± 26 td-1) followed by a peak in seismicity. Except this value, the rest of estimated values can be considered within the inter-eruptive phase, period during which a decreasing trend on the total diffuse CO2 output has been observed, with estimates between 10 and 83 tṡd-1. Regarding to the spatial distribution of diffuse CO2 values, most of relatively high CO2