Science.gov

Sample records for aleutian arc volcanoes

  1. Massive edifice failure at Aleutian arc volcanoes

    USGS Publications Warehouse

    Coombs, M.L.; White, S.M.; Scholl, D. W.

    2007-01-01

    Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the

  2. Double Glacier Volcano, a 'new' Quaternary volcano in the eastern Aleutian volcanic arc

    USGS Publications Warehouse

    Reed, B.L.; Lanphere, M.A.; Miller, T.P.

    1992-01-01

    The Double Glacier Volcano (DGV) is a small dome complex of porphyritic hornblende andesite and dacite that is part of the Cook Inlet segment of Quaternary volcanoes of the eastern Aleutian arc. Its discovery reduces the previously described large volcano gap in Cook Inlet segment to a distance similar to that between other volcanoes in the area. DGV lavas are medium-K, calcalkaline andesites and dacites with concentrations of major and minor elements similar to the other Quaternary volcanoes of the Cook Inlet segment. Available K-Ar ages indicate that DGV was active 600-900 ka. ?? 1992 Springer-Verlag.

  3. Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989-2002

    USGS Publications Warehouse

    Power, J.A.; Stihler, S.D.; White, R.A.; Moran, S.C.

    2004-01-01

    Between October 12, 1989 and December 31, 2002, the Alaska Volcano Observatory (AVO) located 162 deep long-period (DLP) events beneath 11 volcanic centers in the Aleutian arc. These events generally occur at mid- to lower-crustal depths (10-45 km) and are characterized by emergent phases, extended codas, and a strong spectral peak between 1.0 and 3.0 Hz. Observed wave velocities and particle motions indicate that the dominant phases are P- and S-waves. DLP epicenters often extend over broad areas (5-20 km) surrounding the active volcanoes. The average reduced displacement of Aleutian DLPs is 26.5 cm2 and the largest event has a reduced displacement of 589 cm2 (or ML 2.5). Aleutian DLP events occur both as solitary events and as sequences of events with several occurring over a period of 1-30 min. Within the sequences, individual DLPs are often separated by lower-amplitude volcanic tremor with a similar spectral character. Occasionally, volcano-tectonic earthquakes that locate at similar depths are contained within the DLP sequences. At most, Aleutian volcanoes DLPs appear to loosely surround the main volcanic vent and occur as part of background seismicity. A likely explanation is that they reflect a relatively steady-state process of magma ascent over broad areas in the lower and middle portions of the crust. At Mount Spurr, DLP seismicity was initiated by the 1992 eruptions and then slowly declined until 1997. At Shishaldin Volcano, a short-lived increase in DLP seismicity occurred about 10 months prior to the April 19, 1999 eruption. These observations suggest a link between eruptive activity and magma flux in the mid- to lower-crust and uppermost mantle.

  4. Scrubbing masks magmatic degassing during repose at Cascade-Range and Aleutian-Arc volcanoes

    USGS Publications Warehouse

    Symonds, Robert B.; Janik, C.J.; Evans, William C.; Ritchie, B.E.; Counce, Dale; Poreda, R.J.; Iven, Mark

    2003-01-01

    Between 1992 and 1998, we sampled gas discharges from ≤173°C fumaroles and springs at 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA) including Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. For each site, we collected and analyzed samples to characterize the chemical (H2O, CO2, H2S, N2, CH4, H2, HCl, HF, NH3, Ar, O2, He) and isotopic (δ13C of CO2, 3He/4He, 40Ar/36Ar, δ34S, δ13C of CH4, δ15N, and δD and δ18O of water) compositions of the gas discharges, and to create baseline data for comparison during future unrest. The chemical and isotopic data show that these gases contain a magmatic component that is heavily modified from scrubbing by deep hydrothermal (150° - 350°C) water (primary scrubbing) and shallow meteoric water (secondary scrubbing). The impact of scrubbing is most pronounced in gas discharges from bubbling springs; gases from boiling-point fumaroles and superheated vents show progressively less impact from scrubbing. The most effective strategies for detecting gas precursors to future CRAA eruptions are to measure periodically the emission rates of CO2 and SO2, which have low and high respective solubilities in water, and to monitor continuously CO2 concentrations in soils around volcanic vents. Timely resampling of fumaroles can augment the geochemical surveillance program by watching for chemical changes associated with drying of fumarolic pathways (all CRAA sites), increases in gas geothermometry temperatures (Mount Mageik, Trident, Mount Baker, Mount Shasta), changes in δ13C of CO2 affiliated with magma movement (all CRAA site), and increases in 3He/4He coupled with intrusion of new magma (Mount Rainier, Augustine Volcano, Makushin, Mount Shasta). Repose magmatic degassing may discharge substantial amounts of S and Cl into the edifices of Mount Baker and several other CRAA

  5. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  6. Mount Dutton volcano, Alaska: Aleutian arc analog to Unzen volcano, Japan

    NASA Astrophysics Data System (ADS)

    Miller, T. P.; Chertkoff, D. G.; Eichelberger, J. C.; Coombs, M. L.

    1999-04-01

    Holocene eruptions from Mount Dutton, a small Late Quaternary volcano near the tip of the Alaska Peninsula, bear strong physical and petrologic similarities to the 1990-1995 Unzen Fugendake eruption in Japan. The volcano had a protracted phase of effusive calcalkaline andesitic (54-59 wt.% SiO 2) cone-building in the late Pleistocene followed by an abrupt switch to more silicic (˜65 wt.% SiO 2) lavas, emplaced as a central summit cluster of steep-sided domes beginning in the early Holocene. The flanks of the volcano are mantled by pyroclastic flows, debris flows, and talus formed as a result of gravitational dome collapse. Disequilibrium mineral assemblages, including coexisting quartz and olivine in eruptive episodes ranging from the initial cone-building basaltic andesite lavas to the latest Holocene dacite domes, suggest extensive magma mixing. In addition, up to meter-sized, pillow-like cognate mafic enclaves of hornblende+plagioclase+glass are common in the latest of the summit dacite domes. Mineralogical evidence and bulk chemical data indicate the enclaves represent a high-alumina basalt parent with variable and subordinate reservoir contaminant, and the host lava is reservoir magma with variable and subordinate basaltic contaminant. Mount Dutton's history and petrology can be interpreted as reflecting the monotonous repetitive intrusion of mantle-derived mafic magma into a silicic crystal-rich crustal reservoir. During the Holocene, these injections resulted in the extrusion of partially crystallized, viscous, `sticky' central domes which typically failed by collapse resulting in small volume Merapi-type flowage deposits. We speculate that slow introduction of mafic magma into the silicic chamber leads both to enclave formation and to the effusive eruption style. Mount Dutton volcano experienced severe shallow earthquake swarms in 1984, 1988, and to a lesser extent in 1991; although none of these swarms resulted in an eruption, their epicenter distribution

  7. Adakitic volcanism in the eastern Aleutian arc: Petrology and geochemistry of Hayes volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    McHugh, K.; Hart, W. K.; Coombs, M. L.

    2012-12-01

    are the result of partial melting of this slab where thermal erosion and weakening of the crust occurs along the Pacific plate-Yakutat terrane transition. Additionally, flat slab subduction may be responsible for producing adakitic magmas by equilibration of the hydrous slab with ambient mantle temperatures. In contrast, it is possible that the adakitic signature at Hayes is from underplated mafic lower crust that melted as the result of pooling mantle melt at depth. Two volcanoes within the WVF, Mt. Drum and Mt. Churchill, are adakitic with an abundance of biotite and amphibole similar to Hayes volcano and have been suggested to have slab melt origins. Mt. Drum lavas have less radiogenic 87Sr/86Sr but overlapping 206Pb/204Pb signatures while Mt. Churchill, which approximately overlies the eastern edge of the Yakutat terrane, has similar 87Sr/86Sr compositions, but more radiogenic 206Pb/204Pb than Hayes. Mt. Spurr, the nearest CIV to Hayes volcano (90 km south), does not share its adakitic signature but exhibits overlapping, more heterogeneous isotopic compositions. Thus, understanding the petrogenetic history of Hayes volcano is essential not only to explain the development of an adakitic volcanic system but how this relates to regional, arc-wide volcanism.

  8. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    USGS Publications Warehouse

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  9. Volcano-Ice Interactions During Recent Eruptions of Aleutian Arc Volcanoes and Implications for Melt Water Generation

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.

    2013-12-01

    Recent eruptions in Alaska (Redoubt 2009; Pavlof 2007, 2013; Veniaminof 2013) all involved ice eruptive-product interactions that led to variable amounts of melt water generation. Production of melt water during explosive eruptions is the primary mechanism for lahar generation, which is a significant and sometimes-deadly hazard at snow and ice clad volcanoes. During the 2009 eruption of Redoubt Volcano, pyroclastic flows produced by explosive destruction of lava domes swept across and eroded glacier ice and generated large quantities of melt water that formed correspondingly large lahars (107-109 m3) in the Drift River valley north of the volcano. Three of the twenty lahars generated during the eruption were large enough to threaten an oil storage facility 40 km from the volcano. During eruptions of Pavlof Volcano in 2007 and 2013 spatter-fed lava flows and minor pyroclastic flows descended over snow and ice on the upper flanks of the volcano and produced some melt water that generated lahars in the associated drainages. These lahars were smaller than those associated with the 2009 eruption of Redoubt Volcano because the melt water generation mechanism was different. At Veniaminof Volcano, a low-level eruption beginning in June 2013 produced small lava flows that flowed passively over glacier ice and produced only limited amounts of melt water. Although melt pits surrounding the lava flows eventually developed, the rate of melt water production was gradual and no significant outflows of water occurred. These eruptions and comparison with past events highlight the various mechanisms for melt water production during eruptive activity at snow and ice clad Alaskan volcanoes. Dynamic emplacement of eruptive products over glacier ice that involves significant erosion of ice and snow leads to production of large volumes of melt water. Less dynamic, but still energetic interactions such as those that have occurred at Pavlof Volcano, produce smaller amounts of melt and

  10. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  11. Parsing Aleutian Arc Magma Compositions

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2011-12-01

    The first-order subdivision of Aleutian arc magma compositions is based on SiO2, and the second-order subdivision is usually based on the change of FeOt/MgO as a function of SiO2, resulting in the additional twofold subdivision into (TH) and calcalkaline (CA) magmas. However, additional robust compositional variations exist. The two most important of these are (1) variation of the calcium number [Ca#; Ca/(Na+Ca)] as a function of SiO2, and (2) the Rate of Incompatible Trace-element Enrichment (RITE) at individual volcanic centers. Additionally, the data show that the low FeOt/MgO of CA andesite and dacite is more controlled by MgO excess than FeOt depletion. The Ca# of andesites and dacites is strongly bimodal. The low-Ca# group is "calc-alkalic", while the high-Ca# group is "calcic", using Peacock (1931) criteria. A continuum of Ca#s exists, but lavas intermediate between high-Ca# and low-Ca# are much less abundant. Ca#s merge below about 55% SiO2, and have a simple normal distribution. RITE, with rare but important exceptions, is generally constant at the temporal and spatial scale of a single volcano. Among high-RITE magmas LILE, LREE, HFSE, and Th increase ~3.5-fold, and HREE increase ~2.5-fold from basalt or basaltic-andesite through andesite to dacite. There is no strong indication that RITE is silica-dependant. High-RITE magmas develop a strong negative Eu anomaly, and are qualitatively compatible with an origin primarily involving fractionation of plagioclase-dominated mineral assemblages. Low-RITE magmas, in contrast, have nearly invariant REE and HFSE, and LILE and Th increase merely 1.5-fold over the same silica range. Low-RITE magmas are not compatible with fractionation of a plagioclase-dominant mineral assemblage. Alternative qualitatively plausible explanations (needing rigorous evaluation) include fractionation of an ultramafic mineral assemblage (Alaskan-type mafic-ultramafic bodies may be a model; see USGS Prof Paper 1564); that low-RITE basaltic

  12. Geologic Map and Eruptive History of Veniaminof Volcano Record Aleutian Arc Processing of Mantle-Derived Melts

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Sisson, T. W.; Calvert, A. T.; Nye, C. J.

    2009-12-01

    Mount Veniaminof, one of the largest volcanoes in the Aleutian arc, has a basal diameter of ~40 km, a volume of ~350 km3, an 8-km-diameter ice-filled caldera, and an active intracaldera cone. The geology of this tholeiitic basalt-to-dacite volcano has been mapped at 1:50,000 scale. Over 100 Quaternary volcanic map units are characterized by 600 chemical analyses of rocks and nearly 100 40Ar/39Ar and K-Ar ages. Throughout its history, lava flows from Veniaminof recorded alternately ice/melt-water chilling or ice-free conditions that are consistent with independent paleoclimatic records. Exposures from deep glacial valleys to the caldera rim reveal a long history dominated by basalt and basaltic andesite from ≥260 ka to 150 ka that includes compositions as primitive as 9.4% MgO and 130 ppm Ni at 50% SiO2. Basaltic andesite, common throughout Veniaminof's history, has low compatible-element contents that indicate an origin by fractionation of basaltic magma. Repeated eruption of more differentiated melts from a shallow intrusive complex, represented by granodiorite (crystallized dacitic magma) and cumulate gabbro and diorite xenoliths in pyroclastic deposits, has featured virtually aphyric andesite since 150 ka and dacite (to 69.5% SiO2) beginning ~110 ka. These variably differentiated liquids segregated from crystal mush, possibly by gas-driven filter pressing, and commonly vented but also solidified at depth. A large composite cone was present at least as early as 200 ka. Although asymmetric edifice morphology hints at early sector collapse to the southeast, coeval vents on northwest and southeast flanks and the distribution of extensive lava units indicate that a large cone (again) was present by 120 ka. Flank eruption of a wide variety of Veniaminof magmas was common from plate-convergence-parallel northwest-trending fissures from at least as early as ca. 80 ka. At 56 ka and at 46 ka, voluminous dacite lava erupted on both northwest and southeast flanks. A

  13. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    NASA Astrophysics Data System (ADS)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  14. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  15. Studies of Aleutian volcanoes based on two decades of SAR imagery

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Dzurisin, D.

    2015-12-01

    With its global coverage and all-weather imaging capability, interferometric synthetic aperture radar (InSAR) has become an increasingly important technique for studying magma dynamics at volcanoes in remote regions, such as the Aleutian Islands. The spatial distribution of surface deformation derived from InSAR data enables the construction of detailed mechanical models to aid the investigation of magmatic processes. We processed nearly 12,000 SAR images of Aleutian volcanoes acquired by ERS-1, JERS-1, ERS-2, Radarsat-1, Envisat, ALOS, and TerraSAR-X from the early 1990s to 2010. We combined these SAR images to produce about 25,000 interferograms, which we analyzed for evidence of surface deformation at most of the arc's Holocene volcanoes. This talk summarizes deformation processes at Aleutian volcanoes observed with InSAR, including: (1) time-varying volcanic inflation and magmatic intrusion, (2) deformation preceding and accompanying seismic swarms , (3) persistent volcano-wide subsidence at calderas that last erupted tens of years ago, (4) episodic magma intrusion and associated tectonic stress release, (5) subsidence caused by a decrease in pore fluid pressure in active hydrothermal systems, (6) subsidence of surface lava and pyroclastic flows, and (7) a lack of deformation at some volcanoes with recent eruptions, where deformation might be expected. Our work demonstrates that deformation patterns and associated magma supply mechanisms at Aleutian volcanoes are diverse and vary in both space and time. By combining InSAR results with information from the geologic record, accounts of historical eruptions, and data from seismology, petrology, gas geochemistry, and other sources, we have developed conceptual models for the magma plumbing systems and behaviors of many volcanoes in the Aleutian arc. We realize that these models are simplistic, but it is our hope that they will serve as foundations that will be refined as additional information becomes available.

  16. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C., Jr.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  17. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  18. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  19. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    SciTech Connect

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  20. Lithium Isotopic Composition of Aleutian Arc Magmas

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Park, Y.; Liu, X.; Kay, S. M.; Kay, R. W.

    2012-12-01

    The lithium isotopic compositions of inputs to subduction zones can be highly variable. For example, altered oceanic crust is isotopically heavy (δ7Li = 4 to 22, Chan et al., 1996; Bouman et al., 2004) due to uptake of seawater Li (32). Sea floor sediments can have highly variable compositions, ranging from isotopically heavy pelagic sediments (6 to 14) to isotopically light terrigneous clays (-1.5 to 5), derived from highly weathered continental crust (Chan et al., 2006). Despite this variability in inputs, arc outputs (magmatic rocks) typically have mantle-like δ7Li (e.g., 2 to 6; Tomascak et al., 2002; Walker et al., 2009). To explore the behavior of lithium and its isotopes in arcs, we have analyzed [Li] and δ7Li in 48 lavas and plutons from the Aleutian island arc, which span the temporal (0 to 38 Ma), geographical (165-184oW) and compositional variations (SiO2 = 46-70 wt.%) seen in this arc. Previous studies have indicated a systematic geographic change in lava chemistry related to changing sediment composition along the arc (terrigneous in the east, pelagic in the west, e.g., Kay and Kay, 1994; Yogodinski et al., 2010), as well as temporal changes that may also reflect changes in sedimentary input (Kay and Kay, 1994), and we wished to determine if Li isotopes also reflect such changes. Lithium concentration [Li] shows a generally positive correlation with SiO2, consistent with the expected incompatible behavior of Li during magmatic differentiation. Intrusive rocks (all from the Adak region) show more scatter than lavas on this plot, suggesting the influence of cumulate processes. The δ7Li of the rocks span an immense range from -1 to +29, well outside the values considered typical for the MORB-source mantle (e.g., 2-6). However, the majority of the samples (28 out of 48) have δ7Li falling within the range of typical mantle values. There is a general tendency for the lavas (all but one are <2 Ma) to have slightly lower δ7Li than intrusions (which range

  1. Subsidence at Kiska volcano, Western Aleutians, detected by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Masterlark, Timothy; Power, J.; Dzurisin, D.; Wicks, C.

    2002-01-01

    Sequential interferometric synthetic aperture radar images of Kiska, the westernmost historically active volcano in the Aleutian arc, show that a circular area about 3 km in diameter centered near the summit subsided by as much as 10 cm from 1995 to 2001, mostly during 1999 and 2000. An elastic Mogi-type deformation model suggests that the source is within 1 km of the surface. Based on the shallow source depth, the copious amounts of steam during recent eruptions, and recent field reports of vigorous steaming and persistent ground shaking near the summit area, we attribute the subsidence to decreased pore-fluid pressure within a shallow hydrothermal system beneath the summit area.

  2. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.

    2015-12-01

    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  3. Geologic implications of great interplate earthquakes along the Aleutian arc

    SciTech Connect

    Ryan, H.F.; Scholl, D.W.

    1993-12-01

    We present new marine geophysical observations and synthesize previous geologic interpretations of the Aleutian arc to show that the epicenters of these great thrust-type earthquakes coincide with upper plate segments of the arc characterized by a coherent forearc structural fabric. We propose that variations in upper plate structural strength and mobility affect the mechanical properties of the interplate thrust zone and need to be considered in localizing interplate asperities. Forearc tectonic segmentaion associated with the partitioning of strike-slip and thrust motions may exert long-term controls on the rates of seismic moment release.

  4. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  5. Unzipping of the volcano arc, Japan

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Smoot, N. C.; Rubin, M.

    1984-02-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin.

  6. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  7. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-01-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths

  8. Comprehensive study of the seismotectonics of the eastern Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Jacob, K.H.; Davies, J.N.; House, L.

    1981-01-01

    Refined hypocenter locations beneath the Shumagin Islands seismic network of the eastern Aleutian arc, Alaska, provide for the first time conclusive evidence for a double-sheeted dipping seismic (Benioff) zone in this arc. This refined seismicity structure was obtained in the arc section centered on the Shumagin seismic gap. A thorough review of three seismic gaps in the eastern Aleutian arc shows a high potential for great earthquakes within the next one to two decades in the Shumagin and Yakataga seismic gaps, and a less certain potential for a large or great earthquake in the possible Unalaska gap. A tilt reversal was geodetically observed to have occurred in 1978/79 in the forearc region of the Shumagin gap and could indicate the onset of a precursory strain relief episode prior to a great quake. A comparative study of the Pavlof volcano seismicity with that of other recently active volcanoes (i.e., Mt. St. Helens) indicates that island-arc (explosive-type) volcanoes respond to small ambient, periodic stress changes (i.e., tides). Stress drop measurements from earthquakes on the main thrust zone indicate high stress drops within the seismic gap regions of the Aleutian arc and low stress drops outside the gap region.

  9. Review of crustal seismicity in the Aleutian Arc and implications for arc deformation

    NASA Astrophysics Data System (ADS)

    Ruppert, Natalia A.; Kozyreva, Natalia P.; Hansen, Roger A.

    2012-02-01

    Central and eastern Aleutian Arc is characterized by oblique convergence between the subducting Pacific and overriding Bering Plates. This results in westward arc translation and formation of rotating crustal blocks in the forearc. In 2006-2010 several moderate, shallow crustal earthquakes (up to magnitude 6.7) occurred in the region. These events are located about 150 km away from the trench, on the volcanic axis, and have either strike-slip (west of 174°W) or normal (east of 174°W) faulting mechanisms. We improve aftershock locations by applying precise relocation methods to aid in identifying preferred fault planes. We also review similar earthquakes that occurred prior to 2006. For the central Aleutian Arc we conclude that, while some of these events occurred along the boundaries of the rotating blocks, the majority are left-lateral strike-slip events on NW- to N-oriented fault planes in the unrotated Bering massif. These manifest Riedel shearing in response slip partitioning due to the oblique convergence. Normal faulting events in eastern Aleutian Arc reflect along-arc extension.

  10. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes

    NASA Astrophysics Data System (ADS)

    Nielsen, Sune G.; Yogodzinski, Gene; Prytulak, Julie; Plank, Terry; Kay, Suzanne M.; Kay, Robert W.; Blusztajn, Jerzy; Owens, Jeremy D.; Auro, Maureen; Kading, Tristan

    2016-05-01

    Sediment transport from the subducted slab to the mantle wedge is an important process in understanding the chemical and physical conditions of arc magma generation. The Aleutian arc offers an excellent opportunity to study sediment transport processes because the subducted sediment flux varies systematically along strike (Kelemen et al., 2003) and many lavas exhibit unambiguous signatures of sediment addition to the sub-arc mantle (Morris et al., 1990). However, the exact sediment contribution to Aleutian lavas and how these sediments are transported from the slab to the surface are still debated. Thallium (Tl) isotope ratios have great potential to distinguish sediment fluxes in subduction zones because pelagic sediments and low-temperature altered oceanic crust are highly enriched in Tl and display heavy and light Tl isotope compositions, respectively, compared with the upper mantle and continental crust. Here, we investigate the Tl isotope composition of lavas covering almost the entire Aleutian arc a well as sediments outboard of both the eastern (DSDP Sites 178 and 183) and central (ODP Hole 886C) portions of the arc. Sediment Tl isotope compositions change systematically from lighter in the Eastern to heavier in the Central Aleutians reflecting a larger proportion of pelagic sediments when distal from the North American continent. Lavas in the Eastern and Central Aleutians mirror this systematic change to heavier Tl isotope compositions to the west, which shows that the subducted sediment composition is directly translated to the arc east of Kanaga Island. Moreover, quantitative mixing models of Tl and Pb, Sr and Nd isotopes reveal that bulk sediment transfer of ∼0.6-1.0% by weight in the Eastern Aleutians and ∼0.2-0.6% by weight in the Central Aleutians can account for all four isotope systems. Bulk mixing models, however, require that fractionation of trace element ratios like Ce/Pb, Cs/Tl, and Sr/Nd in the Central and Eastern Aleutians occurs after

  11. Roles of magmatic oxygen fugacity and water content in generating signatures of continental crust in the Alaska-Aleutian arc

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Cottrell, E.; Brounce, M. N.; Gentes, Z.

    2014-12-01

    Early depletion of Fe during magmatic differentiation is a characteristic of many arc magmas, and this may drive them towards the bulk composition of continental crust. In the Alaska-Aleutian arc, magmas are strongly Fe-depleted both in the east, where the arc sits atop pre-existing continental crust, and in the west, where the system is oceanic but convergence is highly oblique. Primary basaltic arc magmas may achieve early Fe depletion through a combination of high magmatic H2O, which delays silicate saturation, and high oxygen fugacity (fO2), which promotes early onset of Fe-oxide crystallization. Alternatively, low-Fe, high Mg# magmas may emerge directly from the arc mantle, possibly due to slab melting, driving mixing with Fe-rich basaltic magmas. Yet, the relative importance of H2O, fO2, and magmatic bulk composition in generating Fe-depletion is not clearly resolved. Here, we present new measurements of the oxidation state of Fe (Fe3+/∑Fe ratio; a proxy for magmatic fO2), in combination with major element and volatile data, of olivine-hosted melt inclusions from four Alaska-Aleutian arc volcanoes (Okmok, Seguam, Korovin, Augustine), acquired using XANES spectroscopy. We use the Tholeiitic Index (THI) of Zimmer et al., 2010 to quantify the behavior of Fe in each volcano magma series (<1 is Fe-depleted, >1 is Fe-enriched). These volcanoes span a range of THI, from 0.9-0.65. The Fe3+/∑Fe ratios of Aleutian basalts, corrected for fractional crystallization to 6 wt.% MgO (i.e., Fe3+/∑Fe6.0) range from 0.22-0.31 and correlate strongly with THI (r2>0.99), such that more Fe-depleted magmas contain a greater proportion of oxidized Fe. The maximum dissolved H2O contents of basaltic melt inclusions from these volcanoes also strongly correlate with THI (r2>0.96), and with measured Fe3+/∑Fe ratios (although H2O is not the direct cause of oxidation). These links point to a slab-derived origin of both H2O and oxidation and thus relate slab fluxes to the Fe

  12. August 2008 eruption of Kasatochi volcano, Aleutian Islands, Alaska-resetting an Island Landscape

    USGS Publications Warehouse

    Scott, W.E.; Nye, C.J.; Waythomas, C.F.; Neal, C.A.

    2010-01-01

    Kasatochi Island, the subaerial portion of a small volcano in the western Aleutian volcanic arc, erupted on 7-8 August 2008. Pyroclastic flows and surges swept the island repeatedly and buried most of it and the near-shore zone in decimeters to tens of meters of deposits. Several key seabird rookeries in taluses were rendered useless. The eruption lasted for about 24 hours and included two initial explosive pulses and pauses over a 6-hr period that produced ash-poor eruption clouds, a 10-hr period of continuous ash-rich emissions initiated by an explosive pulse and punctuated by two others, and a final 8-hr period of waning ash emissions. The deposits of the eruption include a basal muddy tephra that probably reflects initial eruptions through the shallow crater lake, a sequence of pumiceous and lithic-rich pyroclastic deposits produced by flow, surge, and fall processes during a period of energetic explosive eruption, and a fine-grained upper mantle of pyroclastic-fall and -surge deposits that probably reflects the waning eruptive stage as lake and ground water again gained access to the erupting magma. An eruption with similar impact on the island's environment had not occurred for at least several centuries. Since the 2008 eruption, the volcano has remained quiet other than emission of volcanic gases. Erosion and deposition are rapidly altering slopes and beaches. ?? 2010 Regents of the University of Colorado.

  13. Eocene to Pleistocene magmatic evolution of the Delarof Islands, Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Schaen, Allen J.; Jicha, Brian R.; Kay, Suzanne M.; Singer, Brad S.; Tibbetts, Ashley

    2016-03-01

    The Delarof Islands in the Aleutian Arc near 179º W record ˜37 million years of discontinuous arc magmatism along a SW-NE cross-arc transect from near the trench to the active volcanic front. Geochemical and geochronologic data from the pre-Pleistocene volcanic record in this region are limited and the 40Ar/39Ar, isotopic, and trace element data presented here are the first from units older than the Pleistocene-Holocene volcanoes (Tanaga, Gareloi). Twenty-two new 40Ar/39Ar ages establish a temporal framework for geochemical data and reveal that magmatism in the Delarof region was coincident with two arc-wide magmatic flare ups in the late Eocene/early Oligocene and latest Miocene/Pliocene. Mafic lavas and plutons in the southern Delarofs give 40Ar/39Ar plateau ages ranging from 36.8 ± 0.2 to 26.9 ± 0.6 Ma on Amatignak Island and 37.0 ± 0.2 to 29.3 ± 1.0 Ma on Ulak Island. To the north 25 km, 40Ar/39Ar ages from the central Delarof Islands, Kavalga, Ogliuga, and Skagul are late Miocene (6.28 ± 0.04 Ma) to Pliocene (4.77 ± 0.18 Ma) with younger ages to the northeast. A significant transition in arc chemistry occurs in the Pleistocene where lavas from active volcanoes Gareloi and Tanaga exhibit higher sediment and hydrous fluid signatures (Th/La, Cs/Ta, La/Sm, LILE abundances) and lower 143Nd/144Nd than older Delarof Island units closer to the trench. Similar findings from Eocene-Miocene lavas from Amchitka to Adak suggest that a previously minor sediment melt component became more pronounced in the Quaternary.

  14. Satellite magnetic anomalies over subduction zones - The Aleutian Arc anomaly

    NASA Technical Reports Server (NTRS)

    Clark, S. C.; Frey, H.; Thomas, H. H.

    1985-01-01

    Positive magnetic anomalies seen in MAGSAT average scalar anomaly data overlying some subduction zones can be explained in terms of the magnetization contrast between the cold subducted oceanic slab and the surrounding hotter, nonmagnetic mantle. Three-dimensional modeling studies show that peak anomaly amplitude and location depend on slab length and dip. A model for the Aleutian Arc anomaly matches the general trend of the observed MAGSAT anomaly if a slab thickness of 7 km and a relatively high (induced plus viscous) magnetization contrast of 4 A/m are used. A second source body along the present day continental margin is required to match the observed anomaly in detail, and may be modeled as a relic slab from subduction prior to 60 m.y. ago.

  15. Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas

    SciTech Connect

    Singer, B.S.; O'Neil, J.R. ); Brophy, J.G. )

    1992-04-01

    The first measurement of {sup 18}O/{sup 16}O ratios of plagioclase, clinopyroxene, orthopyroxene, and titanomagnetite phenocrysts from modern Aleutian island-arc lavas provides new insight and independent constraints on magma sources and intracrustal processes. Basalts are heterogeneous on the scale of the entire arc and individual volcanic centers. Combined with Sr isotope and trace element data {delta}{sup 18}O{sub plag} values suggest a variable magma source characterized by differences in the mantle wedge or the subducted sediment component along the volcanic front. Seven tholeiitic basalt to rhyodacite lavas from the Seguam volcanic center have nearly identical {delta}{sup 18}O{sub plag} values of 6.0{per thousand} {plus minus} 0.2{per thousand}, reflecting extensive closed-system plagioclase-dominated crystal fractionation. Oxygen isotope thermometry and pyroxene and oxide equilibria indicate that differentiation occurred between 1,150 {plus minus} 100C (basalt) and 950 {plus minus} 100C (rhyodacite). In contrast, {delta}{sup 18}O{sub plag} values of 12 calc-alkalic basaltic andesites and andesites from the smaller Kanaga volcanic center span a broader range of 5.9{per thousand}-6.6{per thousand}, and consist of mostly higher values. Isotopic disequilibrium in the Kanaga system is manifest in two ways: two types of basaltic inclusions with contrasting {delta}{sup 18}O values occur in one andesite, and in two other andesites plagioclase-titanomagnetite and clinopyroxene-titanomagnetite oxygen isotope temperatures are inconsistent.

  16. Paleomagnetic Evidence for Significant Rotations Within the Aleutian Island Arc.

    NASA Astrophysics Data System (ADS)

    Stone, D. B.; Krutikov, L.

    2006-12-01

    Present-day motion of the Pacific plate relative to the North American plate changes along the Aleutian arc from normal convergence in the east to transform motion in the west. It was postulated by Geist et al. (Tectonics 7, 327-341, 1988) that strain partitioning could result in tectonic segmentation of the lithosphere, caused by increasing obliquity of plate convergence and characterized by clockwise rotation and westward translation of discrete blocks. Their analysis of the present day morphology and tectonic setting of the western half of the arc suggests the presence of rotated blocks, and implies that the rotation is ongoing. Published high-quality paleomagnetic data from the far western end of the arc show rotations that are compatible with this model. This result is based on rocks of Eocene (Bering and Medny Islands) and Miocene (Shemya Island) age, thus the magnetically observed rotations could have occurred at any time since their origin. New paleomagnetic and geochronologic data from Miocene age volcanic rocks on Amchitka Island also indicate clockwise rotation at some time since the rocks were formed (13.8+/-0.2 Ma). However, two other high-quality paleomagnetic data sets from Eocene/Oligocene aged sediments from the eastern part of the arc (Atka and Umnak Islands) are significantly rotated in the same clockwise sense as the western end. Since plate convergence at these two eastern sites has been roughly normal since mid-Eocene time, strain partitioning related to oblique convergence is unlikely to be the cause of the rotation. Models involving rotation of the entire island arc to explain the similarity in magnitude and sense of the rotations seen in the paleomagnetic data require large relative latitude changes between the two ends of the arc. Though possible, such a model would put serious constraints on scenarios for the tectonic development of the Bering Sea Plate required to accommodate the degree of rotation suggested by the data. The answer may

  17. Mantle and Crustal Sources of Carbon, Nitrogen, and Noble gases in Cascade-Range and Aleutian-Arc Volcanic gases

    USGS Publications Warehouse

    Symonds, Robert B.; Poreda, Robert J.; Evans, William C.; Janik, Cathy J.; Ritchie, Beatrice E.

    2003-01-01

    Here we report anhydrous chemical (CO2, H2S, N2, H2, CH4, O2, Ar, He, Ne) and isotopic (3He/4He, 40Ar/36Ar, δ13C of CO2, δ13C of CH4, δ15N) compositions of virtually airfree gas samples collected between 1994 and 1998 from 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA). Sample sites include ≤173°C fumaroles and springs at Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. The chemical and isotopic data generally point to magmatic (CO2, Ar, He), shallow crustal sedimentary (hereafter, SCS) (CO2, N2, CH4), crustal (He), and meteoric (N2, Ar) sources of volatiles. CH4 clearly comes from SCS rocks in the subvolcanic systems because CH4 cannot survive the higher temperatures of deeper potential sources. Further evidence for a SCS source for CH4 as well as for non-mantle CO2 and non-meteoric N2 comes from isotopic data that show wide variations between volcanoes that are spatially very close and similar isotopic signatures from volcanoes from very disparate areas. Our results are in direct opposition to many recent studies on other volcanic arcs (Kita and others, 1993; Sano and Marty, 1995; Fischer and others, 1998), in that they point to a dearth of subducted components of CO2 and N2 in the CRAA discharges. Either the CRAA volcanoes are fundamentally different from volcanoes in other arcs or we need to reevaluate the significance of subducted C and N recycling in convergent-plate volcanoes.

  18. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery

    USGS Publications Warehouse

    Wang, Teng; Poland, Michael; Lu, Zhong

    2016-01-01

    Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.

  19. Physical volcanology of the submarine Mariana and Volcano Arcs

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Smoot, N. Christian

    1989-05-01

    Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50 70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50 70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10 20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50 70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

  20. Pyroxenite is a possible cause of enriched magmas in island arc settings: Gorely volcano (Kamchatka)

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Carr, M. J.; Herzberg, C. T.; Ozerov, A.

    2013-12-01

    Kamchatka peninsula (Russia) is an island-arc with a complex geological history and structure. It has three distinct volcanic fronts, whose origins are still debated. Moreover, a junction with the Aleutian Arc (at ~56oN) complicates the understanding of geodynamics at the region. The process of magma generation in Kamchatka involves several components: N-MORB mantle wedge (variably depleted), slab fluids and melts, and enriched mantle [Churikova et al. 2001, 2007; Yogodzinsky et al. 2001; Volynets et al. 2010]. Two of these end members (mantle wedge, slab fluids) are well studied [Portnyagin et al. 2007; Duggen et al. 2007]. However, the nature/genesis of the enriched magmas is unclear. In the standard model of arc volcanism depleted mantle peridotite in the mantle wedge partially melts to form parental basalts. However, evidence for pyroxenite melting in the arc environment was reported for the Mexican Volcanic Belt [Straub et al, 2008; Straub et al, 2013] and for Kamchatka [Portnyagin, 2009; Portnyagin, 2011; Bryant et al., 2011; Gavrilenko, 2012]. High precision Ni, Ca, and Mn contents of olivines from Gorely volcano confirm the existence of pyroxenite source in the mantle wedge [Gavrilenko, 2013]. Our forward modeling using Arc Basalt Simulator 4.0 (ABS) by [Kimura et al. 2011]) shows that we have primitive mantle as a source for Gorely volcano, a mantle more enriched than the DMM in the standard model for arc magmatism) REE inverse modeling [after Feigenson et al, 1983] agrees with the ABS forward model, returning the same REE pattern for the source. In contrast, ABS modeling for Mutnovsky volcano (next to Gorely, but closer to the trench) shows standard DMM as the source for the volcano. We conclude that DMM is the composition for the mantle wedge rocks beneath Gorely volcano, but the enrichment of the parental melts at Gorely volcano is caused by reaction of DMM peridotite with slab melts/fluids to produce pyroxenite.

  1. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.

    2014-12-01

    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  2. Low pressure fractionation in arc volcanoes: an example from Augustine Volcano, Alaska

    SciTech Connect

    Daley, E.E.; Swanson, S.E.

    1985-01-01

    Augustine Volcano, situated between the Cook and Katmai segments of the Eastern Aleutian Volcanic Arc, has erupted 5 times since its discovery in 1778. Eruptions are characterized by early vent-clearing eruptions with accompanying pyroclastic flows followed by dome-building and more pyroclastic flows. Bulk rock chemistry of historic and prehistoric lavas shows little variability. The lavas are calc-alkaline, low to medium K, porphyritic acid andesites, rare basalt, and minor dacite pumice. FeO*/MgO averages 1.6 over this silica range. Plagioclase phenocrysts show complicated zoning patterns, but olivine, orthopyroxene, and clinopyroxene phenocrysts show little compositional variation. Hornblende, where present, is ubiquitously oxidized and was clearly out of equilibrium during the last stages of fractionation. Evolved liquid compositions of vitriophyric domes are rhyolitic, and of pumices are slightly less evolved suggesting that individual eruptions become more fractionated with time. Comparison of glass compositions with experimental results is consistent with low pressure fractionation of a relatively dry silicate melt. Disequilibrium of amphiboles and the evolved nature of glasses indicate that shallow level fractionation plays a significant role in the evolution of Augustine magmas. This model is consistent with a shallow magma chamber inferred from geophysical models of the Augustine system and also with its simple, predictable eruption pattern.

  3. Petrogenesis of Mafic and Ultramafic Enclaves from the Central Aleutian Arc, and Implications for the Formation of New Crust

    NASA Astrophysics Data System (ADS)

    Nadin, E. S.; Kentner, A. E.; Nye, C. J.; Izbekov, P. E.

    2014-12-01

    Mafic and ultramafic enclaves from the 2008 eruption of Kasatochi volcano, central Aleutians, provide insight into the sub-arc structure in this section of the subduction zone. Textural, mineralogical, and chemical similarities between these enclaves and those from neighboring Adak Island volcanoes suggest that sub-arc conditions are similar enough to form the same igneous "strata" in this part of the arc. Kasatochi gabbroic enclaves are undeformed cumulates of 0.1-11 cm euhedral plagioclase and pargasitic hornblende crystals, with minor clinopyroxene and magnetite and cryptocrystalline interstitial glass. Adak gabbro inclusions also contain plagioclase, pargasitic hornblende, clinopyroxene, and magnetite. Gabbroic enclaves from both volcanic islands typically have elongate and aligned minerals, in contrast with the granular textures of the ultramafic suite. Kasatochi ultramafic samples include wehrlite, clinopyroxenite, and olivine clinopyroxenite with Fo83-84 olivine, Mg- and Ca- rich clinopyroxene, and spinel, and pargasitic hornblende present only as a secondary, interstitial phase. Similarly, wehrlite and clinopyroxenite samples from Adak also contain forsteritic olivine, clinopyroxene, spinel, and interstitial pargasitic hornblende. The presence of hornblende and the lack of deformation textures in the cumulate gabbros from both islands suggest that these rocks were stored under similar pressure, temperature, and host-magma conditions prior to eruption. Kasatochi gabbro enclaves are compositionally related to their host basaltic andesite, as suggested by fractionation trends. There is no apparent chemical relationship between the ultramafic enclaves and the 2008 basaltic andesite, nor are these samples ever found within their host rock. Based on compositional similarities to ultramafic xenoliths from Adak Island, the Kasatochi ultramafic suite could have formed by the fractionation of spinel-lherzolite in the upper mantle. Whole-rock REE analyses show

  4. Geology and 40Ar/39Ar Geochronology of Akutan Volcano, Eastern Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Jicha, B. R.

    2013-12-01

    40Ar/39Ar dating and new whole-rock geochemical analyses are used to establish an eruptive chronology for Akutan volcano, Akutan Island, in the eastern Aleutian island arc. Akutan Island (166° W, 54.1° N) is the site of long-lived volcanism and the entire island comprises volcanic rocks as old as 3.3 Ma (Richter et al., 1998, USGS Open-File 98-135). Our current focus is on the 225 km2 western half of the island, which is home to the Holocene active cone, Holocene to latest Pleistocene satellite vents, and underlying middle Pleistocene volcanic basement rocks. Eruptive products span the tholeiitic-calc-alkaline boundary, are medium-K, and range from basalt to dacite. Furnace incremental heating experiments on groundmass separates of 38 samples resulted in 29 40Ar/39Ar ages. The remainder did not yield radiogenic 40Ar contents and are likely Holocene in age. The oldest ages (1251×10 and 1385×12 ka) are from a wedge of flat-lying dissected lavas north of the Holocene cone; these likely represent the upper part of the volcanic basement that underlies the entire island. Above a major unconformity lie basaltic andesite to dacite lavas that range from 765× 4 to 522×8 ka. The eroded remnants of the source volcano for these flows appears to crop out as a series of variably hydrothermally altered breccias and domes 5 km east-northeast of the current summit. A 625 m-tall eroded basaltic center, Lava Peak, sits 6 km northwest of the summit; its deeply incised western flank exposes lava flows and a plug. Two flows are dated at 598×16 and 602×15 ka. A high ridge 1.5 km south of the summit is made of oxidized, mostly andesitic lavas 284-249 ka old; these are presumably the remnants of an eruptive center located near the current cone. Flat Top Peak, 3.5 km southwest of the summit, produced almost exclusively basalts and six dated lavas range from 155×8 to 98×18 ka. Lavas from Flat Top (1065 m asl) are deeply eroded suggesting extensive ice cover during marine isotope

  5. Geothermal Drilling In The Aleutians Reveals New Insights On Volcanic History Of Akutan Volcano

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.

    2013-12-01

    In 2010, two thermal gradient wells were drilled in the Hot Springs Bay Valley geothermal resource area on Akutan Island, Alaska. Well TG-2 was drilled in the region of hot springs occurrence near the mouth of the valley and reached a depth of 253 m (833'). Well TG-4 was drilled near the head of the valley, closer to the current volcano, and reached a depth of 457 m (1500'). The core recovered from these wells represent the only drill core extracted from an Aleutian volcano to date and reveals an important missing piece of the surficial eruptive and erosional history of the volcano that cannot be determined from surface evaluation of recent eruptive deposits laid down on 500 ka bedrock outcrops. No intrusive rocks were encountered, indicating a rich history of surficial activity. The core is dominated (46% of recovered core) by basaltic lava flow deposits (49-52 wt% SiO2), consistent with other observed deposits on the island. These flows are interspersed with andesite lava flows (20% of core, ranging from 53-58 wt% SiO2), abundant mass wasting deposits (27% of core) and a series of ash and ash tuff layers that are some of the most silicic deposits identified at Akutan (up to 66 wt% SiO2). Ash deposits are restricted to the upper 125 m in both wells, are significantly thicker in TG-4, and are difficult to correlate between the two wells. Mass wasting deposits are diverse, including a subset characterized by matrix-supported heterolithologic breccias enclosed in a crystalline basaltic lava host. A shell-rich zone at 273 meters depth indicates that the transition between sub-marine and sub-aerial activity may be recorded in the core.

  6. The 7-8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.; Scott, William E.; Prejean, Stephanie G.; Schneider, David J.; Izbekov, Pavel; Nye, Christopher J.

    2010-12-01

    Kasatochi volcano in the central Aleutian Islands erupted unexpectedly on 7-8 August 2008. Kasatochi has received little study by volcanologists and has had no confirmed historical eruptions. The island is an important nesting area for seabirds and a long-term biological study site of the U.S. Fish and Wildlife Service. After a notably energetic preeruptive earthquake swarm, the volcano erupted violently in a series of explosive events beginning in the early afternoon of 7 August. Each event produced ash-gas plumes that reached 14-18 km above sea level. The volcanic plume contained large amounts of SO2 and was tracked around the globe by satellite observations. The cumulative volcanic cloud interfered with air travel across the North Pacific, causing many flight cancelations that affected thousands of travelers. Visits to the volcano in 2008-2009 indicated that the eruption generated pyroclastic flows and surges that swept all flanks of the island, accumulated several tens of meters of pyroclastic debris, and increased the diameter of the island by about 800 m. Pyroclastic flow deposits contain abundant accidental lithic debris derived from the inner walls of the Kasatochi crater. Juvenile material is crystal-rich silicic andesite that ranges from slightly pumiceous to frothy pumice. Fine-grained pyroclastic surge and fall deposits with accretionary lapilli cover the lithic-rich pyroclastic flow deposits and mark a change in eruptive style from episodic explosive activity to more continuous ash emission with smaller intermittent explosions. Pyroclastic deposits completely cover the island, but wave erosion and gully development on the flanks have begun to modify the surface mantle of volcanic deposits.

  7. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    Augustine volcano in Cook Inlet, Alaska, the number of calls to Ops, emails to the webmaster, and the amount of data served via the AVO website greatly increased during elevated volcanic activity designated by the USGS aviation color code and volcano alert level. Lessons learned include, Ops staffing requirements during periods of high call volume, the need for ash fall hazard information in multiple languages, and the value of real-time observations of remote Aleutian eruptions made by local mariners. An important theme of public inquiries concerned the amount and potential climate impacts of the significant sulfur dioxide gas and ash plumes emitted by Okmok and Kasatochi, including specific questions on the amount of sulfur dioxide discharged during each eruption. The significant plumes produced at the onset of the Okmok and Kasatochi eruptions also had lengthy national and international aviation impacts and yet-to-be resolved hemispherical or possible global, climactic effects.

  8. Insights Into Aleutian Volcanism from Insar Observations

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Dzurisin, D.

    2013-12-01

    With its global coverage and all-weather imaging capability, interferometric synthetic aperture radar (InSAR) has become an increasingly important technique for studying magma dynamics at volcanoes in remote regions, such as the Aleutian Islands. The spatial distribution of surface deformation derived from InSAR data enables the construction of detailed mechanical models to enhance the study of magmatic processes. To study Aleutian volcanism, we processed nearly 12,000 SAR images acquired by ERS-1, JERS-1, ERS-2, Radarsat-1, Envisat, ALOS, and TerraSAR-X from the early 1990s to 2010. We combined these SAR images to produce about 25,000 interferograms, which we analyzed for evidence of surface deformation at most of the arc's Holocene volcanoes. Where surface displacements were sufficiently strong, we used analytical models to estimate the location, shape, and volume change of deformation sources. This paper summarizes deformation processes at Aleutian volcanoes observed with InSAR, including: (1) time-variant volcanic inflation and magmatic intrusion, (2) deformation preceding and accompanying seismic swarms , (3) persistent volcano-wide subsidence at calderas that last erupted tens of years ago, (4) episodic magma intrusion and associated tectonic stress release, (5) subsidence caused by a decrease in pore fluid pressure in active hydrothermal systems, (6) subsidence of surface lava and pyroclastic flows, and (7) a lack of deformation at some volcanoes with recent eruptions, where deformation might be expected. Among the inferred mechanisms are magma accumulation in and withdrawal from crustal magma reservoirs, pressurization/depressurization of hydrothermal systems, and thermo-elastic contraction of young lava flows. Our work demonstrates that deformation patterns and associated magma supply mechanisms at Aleutian volcanoes are diverse and vary in both space and time. By combining InSAR results with information from the geologic record, accounts of historical

  9. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: Subduction melts sediments and dehydrates serpentine

    NASA Astrophysics Data System (ADS)

    Singer, Brad S.; Jicha, Brian R.; Leeman, William P.; Rogers, Nick W.; Thirlwall, Matthew F.; Ryan, Jeff; Nicolaysen, Kirsten E.

    2007-06-01

    Trace element and Sr-Nd-Pb isotope compositions of basaltic lavas from 11 volcanoes spanning 1300 km of the Aleutian Island arc provide new constraints on the recycling of elements in melts and fluids derived from subducted oceanic crust and sediment. Despite a nearly twofold variation in the flux of sediment subducted along the Aleutians, proxies indicating the presence of sediment melt in the magma source, including Th/La and Th/Nd, do not vary systematically along strike. In contrast, ratios including B/La, B/Nb, B/Be, Cs/La, Pb/Ce, and Li/Y suggest that the quantity or composition of fluid transferred from the slab into the mantle wedge varies an order of magnitude along strike and is apparently correlated with sediment flux. However, the most distinctive fluid addition corresponds spatially with subduction of the Amlia Fracture Zone (AFZ), a likely repository for H2O-rich serpentinite. Sr, Nd, and Pb isotope ratios, together with Th/Nd and B/La ratios, show that the majority of these basalts reflect a common baseline metasomatism of the mantle that accumulated, perhaps over millions of years, via small additions of both slab fluids and partially melted sediment. The paradox of requiring slab surface temperatures high enough to melt a layer of sediment, while lower-temperature dehydration reactions that supply water occur sufficiently deep to flux melting >80 km beneath the volcanoes is reconciled in a four-stage model: (1) as sediment and altered ocean crust is carried to ˜60 km depth and temperatures increase to ˜650°C, metamorphic dehydration reactions release most of the fluid and B to the shallow mantle wedge beneath the fore arc, but some of this mantle is metasomatized and flows downward; (2) the uppermost layer of sediment begins to melt at ˜750°C and >60 km depth; this small volume of melt physically mingles with the overlying metasomatized mantle wedge as it flows further downdip; (3) below the sediment veneer, the uppermost 1 km of ocean crust

  10. Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge

    USGS Publications Warehouse

    Geist, E.L.; Childs, J. R.; Scholl, D. W.

    1987-01-01

    Amlia and Amukta Basins are the largest of many intra-arc basins formed in late Cenozoic time along the crest of the Aleutian Arc. Both basins are grabens filled with 2-5 km of arc-derived sediment. A complex system of normal faults deformed the basinal strata. Although initial deposits of late Micocene age may be non-marine in origin, by early Pliocene time, most of the basinfill consisted of pelagic and hemipelagic debris and terrigenous turbidite deposits derived from wavebase and subaerial erosion of the arc's crestal areas. Late Cenozoic volcanism along the arc commenced during or shortly after initial subsidence and greatly contributed to active deposition in Amlia and Amukta Basins. Two groups of normal faults occur: major boundary faults common to both basins and 'intra-basin' faults that arise primarily from arc-parallel extension of the arc. The most significant boundary fault, Amlia-Amukta fault, is a south-dipping growth fault striking parallel to the trend of the arc. Displacement across this fault forms a large half-graben that is separated into the two depocentres of Amlia and Amukta Basins by the formation of a late Cenozoic volcanic centre, Seguam Island. Faults of the second group reflect regional deformation of the arc and offset the basement floor as well as the overlying basinal section. Intra-basin faults in Amlia Basin are predominantly aligned normal to the trend of the arc, thereby indicating arc-parallel extension. Those in Amukta basin are aligned in multiple orientations and probably indicate a more complex mechanism of faulting. Displacement across intra-basin faults is attributed to tectonic subsidence of the massif, aided by depositional loading within the basins. In addition, most intra-basin faults are listric and are associated with high growth rates. Although, the hydrocarbon potential of Amlia and Amukta Basins is difficult to assess based on existing data, regional considerations imply that an adequate thermal history conducive

  11. Systematic variation in the depths of slabs beneath arc volcanoes

    USGS Publications Warehouse

    England, P.; Engdahl, R.; Thatcher, W.

    2004-01-01

    The depths to the tops of the zones of intermediate-depth seismicity beneath arc volcanoes are determined using the hypocentral locations of Engdahl et al. These depths are constant, to within a few kilometres, within individual arc segments, but differ by tens of kilometres from one arc segment to another. The range in depths is from 65 km to 130 km, inconsistent with the common belief that the volcanoes directly overlie the places where the slabs reach a critical depth that is roughly constant for all arcs. The depth to the top of the intermediate-depth seismicity beneath volcanoes correlates neither with age of the descending ocean floor nor with the thermal parameter of the slab. This depth does, however, exhibit an inverse correlation with the descent speed of the subducting plate, which is the controlling factor both for the thermal structure of the wedge of mantle above the slab and for the temperature at the top of the slab. We interpret this result as indicating that the location of arc volcanoes is controlled by a process that depends critically upon the temperature at the top of the slab, or in the wedge of mantle, immediately below the volcanic arc.

  12. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  13. The 2008 Eruption of Kasatochi Volcano, Central Aleutian Islands, Alaska: Reconnaissance Observations and Preliminary Physical Volcanology

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Schneider, D. J.; Prejean, S. G.

    2008-12-01

    The August 7, 2008 eruption of Kasatochi volcano was the first documented historical eruption of this small (3 x 3 km) island volcano with a 1 km2 lake filled crater in the central Aleutian Islands of Alaska. Reports of previous Kasatochi eruptions are unconfirmed and lacking in detail and little is known about the eruptive history. Three explosively-generated ash plumes reaching altitudes of 15 to 20 km were observed in satellite data and were preceded by some of the most intense seismicity yet recorded by the Alaska Volcano Observatory (AVO) seismic network. Eruptive products on Kasatochi Island observed on August 22 and 23 consist of pumice-bearing, lithic-rich pyroclastic-flow deposits overlain by a 1-2 m thick sequence of fine- grained pyroclastic-surge, and -fall deposits all exposed at the coastline. These deposits completely blanket Kasatochi Island to a depth of many meters. Pyroclastic flows entered the sea and extended the coastline 300-400 m beyond prominent wave cut cliffs and sea stacks. Tide gauge data from Adak Island, 80 km to the west, indicate a small tsunami with maximum water amplitude of 20 cm, was initiated during the eruption. Kasatochi volcano lacks a real-time seismic monitoring network. Seismic activity was detected by AVO instruments on Great Sitkin Island 40 km to the west, and thus the timing of eruptive events is approximate. The eruption began explosively at 2201 UTC on August 7, and was followed by at least two additional strong eruptive bursts at 0150 UTC and 0435 UTC, August 8. Satellite data show a significant ash cloud associated with the 0435 UTC event followed by at least 14 hours of continuous ash emission. The lack of a strong ash signature in satellite data suggest that the first two plumes were ash poor. Satellite data also show a large emission of SO2 that entered the stratosphere. Correlation of eruptive periods with deposits on the island is not yet possible, but it appears that pyroclastic flows were emplaced during

  14. Transpressional Strain Partitioning and the Compatibility of GPS Velocities and Earthquakes Focal Mechanisms in the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Apel, E. V.; Oldow, J. S.; Lewis, D. S.; Hans, A.

    2002-12-01

    Oblique plate convergence is commonly partitioned into boundary normal and parallel components resulting in displacement of the frontal portion of the overriding plate with respect to the backarc region along arc-parallel strike-slip faults. In the Aleutian Islands, the east to west increase in relative plate motion between the North American and Pacific plates from 65 mm/yr to 75 mm/yr is accompanied by a change from normal convergence to boundary parallel displacement. The convergence obliquity increases from near zero to ~80 degrees along strike together with an observed increase in velocities based on GPS measurements from 1996, 1998, 1999, and 2000. GPS velocities have a strong arc-parallel orientation and systematically increase around the curved arc from 4 mm/yr in the east (Unalaska), to 7-10 mm/yr in the center (Atka and Adak), and 25-31 mm/yr in the west (Shemya and Attu). In all cases, GPS velocities record a small arc-normal component of displacement. The orientation of the incremental shortening axis derived from earthquake focal mechanisms on the Aleutian megathrust has an obliquity that varies systematically from zero (normal to the plate boundary) in the east to ~35 degrees in the west. The variation in incremental shortening axes, however, does not document displacement field partitioning but rather is a consequence of transpressional nonplane strain. Existence of displacement partitioning can only be assessed by direct measurement. Unfortunately, GPS velocities record permanent and recoverable strain, necessitating determination of the elastic strain component in the velocity field. The incremental shortening axis related to megathrust deformation constrains the azimuth of the elastic component of the GPS velocity field and yields minimum arc-parallel displacement components of 4 mm/yr in the east, 5-6 mm/yr in the central Aleutian chain, and 22-27 mm/yr in the west. GPS velocities along the Aleutian chain record a lateral variation in

  15. Cascades/Aleutian Play Fairway Analysis: Data and Map Files

    SciTech Connect

    Lisa Shevenell

    2015-11-15

    Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.

  16. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  17. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    SciTech Connect

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  18. SAR-based Estimation of Glacial Extent and Velocity Fields on Isanotski Volcano, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Sousa, D.; Lee, A.; Parker, O. P.; Pressler, Y.; Guo, S.; Osmanoglu, B.; Schmidt, C.

    2012-12-01

    Global studies show that Earth's glaciers are losing mass at increasing rates, creating a challenge for communities that rely on them as natural resources. Field observation of glacial environments is limited by cost and inaccessibility. Optical remote sensing is often precluded by cloud cover and seasonal darkness. Synthetic aperture radar (SAR) overcomes these obstacles by using microwave-frequency electromagnetic radiation to provide high resolution information on large spatial scales and in remote, atmospherically obscured environments. SAR is capable of penetrating clouds, operating in darkness, and discriminating between targets with ambiguous spectral signatures. This study evaluated the efficacy of two SAR Earth observation methods on small (< 7 km2) glaciers in rugged topography. The glaciers chosen for this study lie on Isanotski Volcano in Unimak Island, Aleutian Archipelago, USA. The local community on the island, the City of False Pass, relies on glacial melt for drinking water and hydropower. Two methods were used: (1) velocity field estimation based on Repeat Image Feature Tracking (RIFT) and (2) glacial boundary delineation based on interferometric coherence mapping. NASA Uninhabited Aerial Vehicle SAR (UAVSAR) single-polarized power images and JAXA Advanced Land Observing Satellite Phased Array type L-band SAR (ALOS PALSAR) single-look complex images were analyzed over the period 2008-2011. UAVSAR image pairs were coregistered to sub-pixel accuracy and processed with the Coregistration of Optically Sensed Images and Correlation (COSI-Corr) feature tracking module to derive glacial velocity field estimates. Maximum glacier velocities ranged from 28.9 meters/year to 58.3 meters/year. Glacial boundaries were determined from interferometric coherence of ALOS PALSAR data and subsequently refined with masking operations based on terrain slope and segment size. Accuracy was assessed against hand-digitized outlines from high resolution UAVSAR power images

  19. Neotectonics and recent uplift at Kamchatka and Aleutian arc junction, Kamchatka Cape area, NE Russia

    NASA Astrophysics Data System (ADS)

    Pflanz, Dorthe; Gaedicke, Christoph; Freitag, Ralf; Krbetschek, Matthias; Tsukanov, Nikolay; Baranov, Boris

    2013-04-01

    The tectonic position of the Kamchatka Cape Peninsula at the junction of the active Kuril-Kamchatka and Aleutian arcs exposes the coastline of the peninsula to strong neotectonic activities. Fracture zones have variable influence on uplift of the Kamchatka Cape Peninsula. Relevant morphologic indicators of neotectonic activity are multilevel, highly uplifted marine terraces and terraces displaced along active faults. Recent uplift rates of coastal sediments are determined by remote sensing via ASTER and SRTM DEM combined with optically stimulated luminescence dating (OSL). On the Kamchatka Cape Peninsula, terraces from the same generation are mapped at different elevations by remote sensing methods. After defining different areas of uplifted terraces, four neotectonic blocks are identified. According to apatite fission track data, the mean differential exhumation rates range from 0.2 to 1.2 mm year-1 across the blocks since Late Miocene. The OSL data presented point to significant higher uplift rates of up to 3 ± 0.5 and 4.3 ± 1 mm year-1, which indicates an acceleration of the vertical movement along the coast of Kamchatka Cape Peninsula in Upper Pleistocene and Holocene times.

  20. An assessment of the mantle and slab components in the magmas of an oceanic arc volcano: Raoul Volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Smith, Ian E. M.; Price, Richard C.; Stewart, Robert B.; Worthington, T. J.

    2009-07-01

    Raoul Volcano occupies a simple oceanic subduction setting in the northern part of the Kermadec arc on the Pacific-Australian convergent plate boundary. The primary inputs to the magmatic system that feeds the volcano are a subduction component derived from the subducting old Pacific oceanic lithosphere and its veneer of pelagic sediment, and the overlying peridotitic mantle wedge. Conservative trace elements that are very incompatible during mantle melting are relatively depleted in Raoul lavas indicating a source that has been depleted during an earlier melting event. Major element co-variations indicate magma genesis by 25% near fractional melting of a mantle source that is weakly depleted (2% melt extraction) relative to a fertile MORB source. An important influence on the composition of the mantle component is progressive melt extraction coupled with minimal advection of fresh material into the sub-arc zone followed by melt extraction from a melting column beneath the spreading centre of an adjacent back arc basin. High field strength element and rare earth element systematics indicate involvement of a subduction-related component of constant composition. Two fluid components can be distinguished, one enriched in large ion lithophile elements inferred to be an aqueous fluid that is continuously added to the ascending melt column and the other a less mobile fluid that transfers Th. A homogeneous subduction-related component of constant composition and magnitude arises if the slab-derived flux migrates from the slab-mantle interface to the sub-arc melting column by repeated episodes of amphibole formation and decomposition its composition is then governed by the distribution coefficients of pyroxene and its magnitude by the degree of amphibole saturation of mantle peridotite. The results from Raoul Volcano are comparable to those from other oceanic subduction-related arcs such as South Sandwich and Marianas suggesting that this is a general model for oceanic

  1. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc

    NASA Astrophysics Data System (ADS)

    Cai, Yue; Rioux, Matthew; Kelemen, Peter B.; Goldstein, Steven L.; Bolge, Louise; Kylander-Clark, Andrew R. C.

    2015-12-01

    Cenozoic calc-alkaline plutons that comprise the middle crust of the central and eastern Aleutians have distinct isotopic and elemental compositions compared to Holocene tholeiitic lavas in the same region, including those from the same islands. Therefore the Holocene lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Compared to the lavas, the Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks show higher SiO2 at a given Fe/Mg ratio, and have higher εNd-εHf values and lower Pb-Sr isotope ratios. However, the plutonic rocks strongly resemble calc-alkaline Holocene volcanics with more "depleted" isotope ratios in the western Aleutians, whose composition has been attributed to significant contributions from partial melting of subducted basaltic oceanic crust. These data could reflect a temporal variation of central and eastern Aleutian magma source compositions, from predominantly calc-alkaline compositions with more "depleted" isotope ratios in the Paleogene, to tholeiitic compositions with more "enriched" isotopes more recently. Alternatively, the differences between central Aleutian plutonic and volcanic rocks may reflect different transport and emplacement processes for the magmas that form plutons versus lavas. Calc-alkaline parental magmas, with higher SiO2 and high viscosity, are likely to form plutons after extensive mid-crustal degassing of initially high water contents. This conclusion has overarching importance because the plutonic rocks are chemically similar to bulk continental crust. Formation of similar plutonic rocks worldwide may play a key role in the genesis and evolution of continental crust.

  2. Displacement Partitioning, Boundary-Parallel Terrane Migration, and Arc-Parallel Extension in the Aleutian Islands Based on Structural Analysis and GPS Geodesy

    NASA Astrophysics Data System (ADS)

    Ave Lallemant, H. G.; Oldow, J. S.; Lewis, D. S.

    2001-12-01

    Structural analysis of the deformed rocks on several Aleutian Islands (Attu, Adak, Atka, and Unalaska) combined with published bathymetric and seismic reflection data support the existence of displacement partitioning along the Aleutian arc. Brittle structures are remarkably consistent among all islands studied and record arc-normal contraction, arc-parallel transcurrent motion, and arc-parallel extension. This process is still active as shown by earthquake-focal mechanisms and a GPS velocity field determined from five Aleutian Islands (Attu, Shemya, Adak, Atka, and Unalaska). GPS site velocities determined from campaigns in 1996, 1998, 1999, and 2000 increase from east to west along the island arc. Primary GPS sites on five islands were occupied for three-weeks each during two to four campaigns. In a North American reference frame the sites show a systematic increase in arc-parallel motion from Unalaska (4 mm/yr) in the east to Shemya (25 mm/yr) and Attu (31 mm/yr) in the west. Velocities for Adak and Atka near the center of the Aleutian arc are 10 mm/yr and 7 mm/yr, respectively and show a greater component of arc-normal displacement than sites at the eastern and western ends of the island chain. Secondary sites occupied for several days during alternating campaigns on Attu, Adak, and Unalaska have velocities consistent with the primary GPS sites for each island. On Atka, secondary site velocities record a significant divergence from the velocity of the primary site and indicate either transtensional deformation within the island or contamination of the primary site velocity by local strain accumulation. These results indicate that convergence between the North American and Pacific plates is partitioned into arc-normal and arc-parallel components. The arc-normal component causes shortening (thrusting and folding) along an axis oriented at a high-angle to the plate boundary and the arc-parallel component causes displacements along several arc

  3. Hydrothermal Helium Plumes over Submarine Volcanoes of the Marianas Arc

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Baker, E. T.; Embley, R. W.; Resing, J. E.; Massoth, G. J.; Nakamura, K.; Greene, R.; Walker, S.; Lebon, G.

    2003-12-01

    During February-March, 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, the R/V T.G. Thompson conducted a comprehensive survey of hydrothermal activity along 1200 km of the Mariana Arc from 13.5° N to 22.5° N [see Embley et al., EOS Trans. AGU, 2003]. Plume surveys were conducted in the water-column above ~50 submarine volcanoes using a CTD/rosette system. A total of 70 CTD casts were completed, and discrete water samples were collected for analysis of a variety of hydrothermal tracers, including 3He, CH4, CO2, H2S, Fe, Mn, pH, and suspended particles. Although shorebased analysis of the samples is still underway, preliminary results indicate that about 11 of the 50 submarine volcanoes surveyed are hydrothermally active. Because many of the Marianas Arc volcanoes rise to within 500 m of the sea surface, hydrothermal plume signals such as light attenuation (suspended particles) and temperature anomaly have limited utility due to masking by near surface effects. For this reason 3He, an unambiguous hydrothermal tracer, has been particularly useful for identifying which of the shallow arc volcanoes are hydrothermally active. Our expectation was that the water-column helium signal might be reduced at shallow depths due to ventilation into the atmosphere. However, we observed very high 3He enrichments at shallow depths both at Maug Islands and at NW Rota #1 (14° 36'N; 144° 46.5'E). The 3He enrichments were strongly correlated with changes in pH, Mn, and other hydrothermal tracers. The three Maug Islands mark the perimeter of a caldera formed by an explosive eruption, and a single hydrocast in the center of the caldera detected a robust helium plume at 120-200 m depth with δ 3He reaching a maximum of 250% at 150m depth. Analysis of the co-variation of [3He] vs. [4He] at Maug gave R/Ra = 6.6 for an estimate of the end-member helium isotope ratio (R = 3He/4He and Ra = Rair). This value falls well within the range of R

  4. Controls on the location of arc volcanoes: an Andean study

    NASA Astrophysics Data System (ADS)

    Scott, Erin; Allen, Mark B.; McCaffrey, Kenneth J. W.; Macpherson, Colin G.; Davidson, Jon P.; Saville, Christopher

    2016-04-01

    Depth corrected data of earthquake hypocentres from South America are used to generate new models of depth to the subducting Nazca slab. This new slab model shows a general correlation between the 100 km depth to the slab, the western edge of the Altiplano-Puna Plateau (defined by the 3500 m elevation contour) and the frontal volcanic arc. Across the entire Altiplano-Puna Plateau, volcanic centres are found to be either at or above the 3500 m critical elevation contour, which also defines the cut off for seismogenic thrusting. Normal faults are only found above this critical elevation contour, suggesting that there may be a change in the stress regime associated with high elevations in the plateau. The Salar de Atacama basin (23-24oS) defines a major break in topography on the west side of the Puna Plateau. Here, the volcanism deviates around the eastern edge of the basin, approximately 80 km inland from the general trend of the arc, remaining above the 3500 m elevation contour. The volcanoes bordering the Salar de Atacama have a depth to slab approximately 30 km deeper than those in the adjacent arc segment 200 km to the north of the basin. Across this distance there is no significant difference in subduction parameters such as the slab dip, subduction rate and age of the oceanic plate entering the trench. It is likely, therefore, that melt forms at the same depth in both locations, as the factors affecting the melt source are constant. However, in the case of the Salar de Atacama region, magma is diverted to the east due to preferential emplacement under the higher elevations of the plateau. We suggest that although mantle and subduction processes have a primary control on the location of arc volcanoes, shaping the general trend of the arc, they cannot explain anomalies from the trend. Such anomalies, such as the arc deviation around the Atacama basin, can be explained by the influence of structures and stress regime within the overriding plate.

  5. Submarine Volcano Collapses in the Tonga-Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Arculus, R. J.; Wright, I. C.; de Ronde, C. E.

    2005-12-01

    In the last few years, discoveries by multibeam swath and hydrothermal plume mapping plus rock dredging during several research voyages (NZAPLUME I to III, Sonne 135 and 167, TELVE and NoToVE) include about 70 new major volcanic edifices, most with basal diameters >15 km, spaced approximately 30 km apart along the length (2,500 km) of the Tonga-Kermadec arc. About 40 percent of these are hydrothermally active. The edifices comprise stratovolcanoes of variable complexity, and steep-walled calderas with diameters <12 km. Large-scale sector collapses occur on many of these structures, and concentric ridges on the outer flanks of some calderas appear to be mega-bedforms associated with mass flows and edifice failures. Topographic rims of many calderas are capped by numerous conical vents; cones are also present within many calderas. Overall relationships exist along arc between depth of basement, nature of volcanic structures, and magma composition; more felsic (dacite to rhyolite) lavas are associated with higher basement elevation, multi-vent stratovolcanoes, and caldera complexes, but the exact relationship between formerly contiguous arc-remnant arc basement prior to formation of the Havre Trough-Lau Basin and establishment of the current arc edifices is complex. The predominant mode of formation of felsic magma-dominated calderas is interpreted to be mass pyroclastic discharge with syn-eruptive caldera collapse in water depths <1000 m. Other types of edifice failure are: sector collapses extending for full volcano flank heights that feed debris fields, and in some cases expose radial fissure dikes; mega-bedforms comprising a series of ridges striking parallel to adjacent projected caldera margins. Close to the caldera, these ridges have relative relief of about 150m decreasing to <10m at distances >20 km from the caldera. Terrain between many adjacent submarine volcanic edifices is blanketed by degraded and subdued equivalents of these mega-bedforms. Overall

  6. Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2012-04-01

    Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on

  7. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  8. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Ming; Song, Sheng-Rong

    2013-09-01

    Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.

  9. Towards a Network Matched Filter Observatory for Alaska/Aleutian Volcano Monitoring and Research.

    NASA Astrophysics Data System (ADS)

    Holtkamp, S. G.

    2015-12-01

    Network Matched Filtering (NMF, commonly referred to as template matching), is a procedure which utilizes waveforms recorded from a cataloged seismic event (the "template event") to find additional seismic events by cross-correlating the template event with continuous seismic data over the time period of interest. NMF has been successfully used to populate seismic catalogs for a wide variety of seismic signals which are difficult to identify, such as tectonic low frequency earthquakes, early or triggered aftershocks, and small magnitude induced seismic sequences. NMF provides robust event detection of signals with signal to noise ratios near one, and the output of the filter is largely independent of unrelated seismic noise, making it an ideal technique for identifying events during noisy time periods, such as immediately following a large earthquake or during a volcanic eruption. We also show how NMF can be used over longer time periods, with dynamic seismic network status, to more robustly compare time periods with disparate network geometries. Here, we present efforts to develop processing infrastructure for semi-automated execution of the NMF technique applied to volcanoes in the state of Alaska. We present a series of case studies involving both monitored and unmonitored volcanoes. Given the large scope of this endeavor, we focus our preliminary efforts on cataloging deep long period (DLP) seismicity, as DLP's have high scientific interest (as well as providing a reasonable benchmark), have been cataloged at many of Alaska's volcanoes, and yet are rare enough to speed up code development and testing. At Redoubt, for example, we use NMF to develop a catalog of ~300 DLP's from 2008 through July 2015. Most cataloged DLP's and new matches from NMF occurred close in time to the 2009 eruption, but we find that DLP activity has continued through July 2015. At Kasatochi, an unmonitored volcano which erupted in 2008, we show that NMF is more effective at cataloging

  10. Geochemical and petrological observations of gas transport at arc volcanoes

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Herd, R. A.; Humphreys, M.; Aiuppa, A.; Giudice, G.; Guida, R.; Moretti, R.; Christopher, T. E.; Rawson, H.

    2010-12-01

    Understanding the abundance and composition of vapour in magma chambers and the mechanisms of vapour transport in volcanic systems is of immense importance. Exsolved vapour in a magma storage area affects eruption style and duration, and influences ground deformation and other geophysical manifestations owing to its compressibility. Ultimately, we wish to understand how much pre-eruptive exsolved vapour exists and what role mafic magma supply at depth plays in supplying it. Soufriere Hills Volcano, Montserrat, has become an exceptionally well-monitored volcanic system and there is now an abundance of detailed geochemical and petrological information regarding magma degassing and gas transport processes. The eruption provides a unique opportunity to study the effects of open system mafic magma injection, mingling and degassing, which is occurring on the same time scale as eruption. We examine the geochemical and petrological evidence for magma mingling, degassing and gas fluxing at Soufriere Hills Volcano. We use measurements of gas flux and composition, using DOAS and a multigas sensor. We examine petrological and textural evidence for mafic magma supplying volatiles to the system, including evidence from phenocryst zoning and composition. We show that the mafic magma supplies volatiles as well as heat to the overlying resident andesite. Due to the strong partitioning of sulphur into a vapour phase at depth under oxidising conditions, the sulphur dissolved in the intruding mafic magma becomes segregated into vapour, along with carbon dioxide and water. The vapour is transported to the surface during both eruptive and non-eruptive periods, implying either that significant permeability exists within the system, or that magma convection operates. There is some evidence for gas fluxing, which suggests that gas may be transported through the magma. We draw comparisons with other recent studies of volatile transport in arc systems to show that some observations may be

  11. Long-range Receiver Function Profile of Crustal and Mantle Discontinuities From the Aleutian Arc to Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Sawade, Lucas

    2016-04-01

    The Circum-Pacific belt, also called the Pacific Ring of Fire, is the most seismically active region on Earth. Multiple plate boundaries form a zone characterized by frequent volcanic eruptions and seismicity. While convergent plate boundaries such as the Peru-Chile trench dominate the Circum-Pacific belt, divergent and transform boundaries are present as well. The eastern section of the Circum-Pacific belt extends from the Aleutian arc, through the Cascadia subduction zone, San Andreas Fault, middle America trench and the Andean margin down to Tierra del Fuego. Due to the significant hazards posed by this tectonic activity, the region has been densely instrumented by thousands of seismic stations deployed across fifteen countries, over a distance of more than 15000 km. Various seismological studies, including receiver function analyses, have been carried out to investigate the crustal and mantle structure beneath local segments of the eastern Circum-Pacific belt (i.e., at ~100-500 km scale). However, to the best of our knowledge, no study to date has ever attempted to combine all available seismic data from the eastern Circum-Pacific belt to generate a continuous profile of seismic discontinuities extending from the Aleutians to Tierra del Fuego. Here, we use results from the "Global Imaging using Earthquake Records" (GLImER) P-wave receiver function database to create a long-range profile of crustal and upper mantle discontinuities across the entire eastern portion of the Circum-Pacific belt. We image intermittent crustal and mantle discontinuities along the profile, and examine them with regard to their behaviour and properties across transitions between different tectonic regimes.

  12. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

    2013-12-01

    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  13. Data on Holocene Tephra (Volcanic Ash) Deposits in the Alaska Peninsula and Lower Cook Inlet Region of the Aleutian Volcanic Arc, Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Meyer, C.E.; Miyaoka, Ronny T.

    1999-01-01

    Introduction This site provides information about the number, thickness, and grainsize of Holocene volcanic ash deposits at 50 localities in the eastern Aleutian volcanic arc. In addition, the major-element compositions of the glasses separated from more than 350 samples of tephra from these localities, determined by electron microprobe, are presented as a basis for correlating samples. Where known with reasonable certainty, the source of an analyzed sample is also identified for use in comparative studies of magma chemistry.

  14. Shoshonitic magmas in nascent arcs: New evidence from submarine volcanoes in the northern Marianas

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Bloomer, Sherman H.; Lin, Ping-Nan; Ito, Emi; Morris, Julie

    1988-05-01

    Volcanoes in the northern Mariana arc between Uracas (lat 20°N) and Minami Iwo Jima (24°N) are very active yet entirely submarine. In contrast to the predominantly low-K basaltic magmas of the central Mariana arc, the northern Mariana arc is dominated by more siliceous melts in the south and by shoshonites in the north. The northern arc melts have enrichments in Ba (<800 ppm), Rb (<70 ppm), Sr (<1000 ppm), Ce (<50 ppm), and (Ce/Yb)n (<24) which increase to the north as far as Iwo Jima. Lavas from volcanoes north of Iwo Jima lack these enrichments and are indistinguishable from those of the central Maranas. The shoshonites are unusual in occurring along the magmatic front of a primitive, intra-oceanic arc. We hypothesize that they represent the reconstruction of a magmatic arc following melting of enriched mantle due to the propagation of the Mariana Trough spreading center northward through the Volcano arc. Shoshonites thus may characterize the initial stages of arc construction after an episode of back-arc rifting and need not be restricted to the mature stages of arc evolution. This situation contrasts with subduction-zone initiation, where first melts may be boninites or low-K tholeiites. These differing initial melts converge toward tholeiitic and calc-alkaline compositions as arcs evolve.

  15. Detection and characterization of transient forcing episodes affecting earthquake activity in the Aleutian Arc system

    NASA Astrophysics Data System (ADS)

    Reverso, T.; Marsan, D.; Helmstetter, A.

    2015-02-01

    Crustal, slow deformation transients can be caused by fluid or magmatic intrusions, and by slow slip on faults. They can affect earthquake dynamics, if they occur close to or within seismically active zones. We here further develop, and test, a statistical method for detecting and characterizing seismicity anomalies that is only based on earthquake occurrence times and locations. We make use of this method to analyze the 2004-2013 seismicity at mc = 3.5 in the Aleutian subduction system, to find six statistically significant anomalies, with typical 1 day duration and 30 to 50 km size, that are likely related to slow deformation transients. They tend to be located in zones characterized by intermediate seismic coupling, and to mark the termination of past large to mega-thrust earthquakes. These anomalies account for a non-negligible (9%) part of the total activity, proving that non-stationary aseismic loading plays an important role in the dynamics of crustal deformation.

  16. Linear volcanic segments in the central Sunda Arc, Indonesia, identified using Hough Transform analysis: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Pacey, Adam; Macpherson, Colin G.; McCaffrey, Ken J. W.

    2013-05-01

    Hough Transform analysis is used as an objective means to constrain volcano distribution in the central Sunda Arc, Indonesia. Most volcanoes in the arc define four en echelon, linear segments, each of 500-700 km length. Javan volcanoes that do not lie on these segments either (i) formed at an early stage in the history of the arc and erupted products that are petrologically and geochemically distinct from typical arc magma, or (ii) lie along other mapped structures. The en echelon distribution of volcanoes in the central Sunda Arc is best explained as originating from two possible sources. First, interaction with the subducting Indo-Australian Plate may induce stress in the arc lithosphere generating pathways for magma to exploit. Second, downward flexure of the arc lithosphere, as a result of mantle flow or loading by the arc, would also establish arc-normal tension towards the base of the lithosphere, where magma is supplied to volcanic systems. To the west and east of the central Sunda Arc deviations from the distribution of long, en echelon, linear segments can be understood as responses to specific stress fields in the arc lithosphere of Sumatra and eastern Nusa Tenggara, respectively. Control of volcano distribution by arc lithosphere explains why there are large variations in the depth from volcanoes to the zone of slab seismicity in the central Sunda Arc, where there is little variation in slab geometry or the rate of plate convergence.

  17. Andesite Magmas are Produced along Oceanic Arcs where the Crust is Thin: Evidence from Nishinoshima Volcano, Ogasawara Arc, Japan

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Ishizuka, O.; Sato, T.; Nichols, A. R.

    2015-12-01

    The incentive for this study is the ongoing explosive eruption of Nishinoshima volcano, located about 1,000 km south of Tokyo along the Ogasawara (Bonin) Arc. The straightforward but unexpected relationship presented here relates crustal thickness and magma type in the Izu-Ogasawara Oceanic Arc. Volcanoes along the Ogasawara segment of the arc, which include Nishinoshima, are underlain by thin crust (16-21 km)—in contrast to those along the Izu segment, where the crust is ~35 km thick. Interestingly, andesite magmas are dominant products from the former volcanoes and mostly basaltic lavas erupt from the latter. Why and how do volcanoes on the thin crust erupt andesite magmas? An introductory petrology textbook might answer this question by suggesting that, under decreasing pressure and hydrous conditions, the liquidus field of forsterite expands relative to that of enstatite, with the result that, at some point, enstatite melts incongruently to produce primary andesite melt. According to the hypothesis presented here, however, rising mantle diapirs stall near the base of the oceanic arc crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, as along the Ogasawara segment of the arc, pressures are relatively low, and magmas produced in the mantle wedge tend to be andesitic. Where the crust is thick, as along the Izu segment, pressures are greater, and only basaltic magmas tend to be produced. To examine this hypothesis, JAMSTEC cruise NT15-E02 on the R/V Natsushima took place from 11 June to 21 June 2015 to Nishinoshima. It's present island has an elevation of only ~150 m, but its submarine flanks extend to ocean depths of 2,000-3,000 m, so the great bulk of the volcano is submarine and yet-to-be explored. We present the new hypothesis and its evidence from Nishinoshima based on the primitive lavas collected from the submarine parts of the volcano.

  18. Stratigraphy, petrology, and geochemistry of the Spurr Volcanic Complex, eastern Aleutian Arc, Alaska. [(Appendix for geothermal fluid chemistry)

    SciTech Connect

    Nye, C.J.

    1987-12-01

    The Spurr Volcanic Complex (SVC) is a calcalkaline, medium-K, sequence of andesites erupted over the last quarter of a million years by the easternmost currently active volcanic center in the Aleutian Arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58 to 60% SiO/sub 2/), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent Bezyianny-type avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) was emplaced in the caldera. Both the ashflows and dome are made of acid andesite more silicic than any analyzed lavas from the ancestral Mt. Spurr (60 to 63% SiO/sub 2/), yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53 to 57% SiO/sub 2/) erupted during and after dome emplacement, forming proto-Crater Peak and Crater Peak. Hybrid pyroclastic flows and lavas were also produced. Proto-Crater Peak underwent glacial dissection prior to the formation of Crater Peak in approximately the same location. Appendices II through VIII contain a summary of mineral compositions; Appendix I contains geochemical data. Appendix IX by R.J. Motyka and C.J. Nye describes the chemistry of geothermal fluids. 78 refs., 16 figs., 3 tabs.

  19. Boron isotopic composition of fumarolic condensates from some volcanoes in Japanese island arcs

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kanzaki, Tadao; Ozawa, Takejiro; Okamoto, Makoto; Kakihana, Hidetake

    1982-11-01

    Boron samples from 40 fumarolic condensates from volcanoes in the Ryukyu arc (Satsuma Iwo-jima and Shiratori Iwo-yama) and the North-east Japan arc (Usu-shinzan, Showa-shinzan, Esan and Issaikyo-yama) all have 11B /10B ratios close to 4.07. Higher values, from 4.09 to 4.13, were only observed in condensates from volcanoes in the southernmost end of the North-east Japan arc (Nasu-dake), the northern part of the Izu-Bonin arc (Hakone), and the North Mariana arc (Ogasawara Iwo-jima). These higher values suggest geological interaction of the magmas with sea-water enriched in 11B.

  20. Observations of Seafloor Outcrops in the Oblique Subduction Setting of Adak Canyon: Implications for Understanding the Early History of the Aleutian Island Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G.; Scholl, D.; Jicha, B.; Wyatt, C.; Singer, B.; Kelemen, P.

    2004-12-01

    Submarine canyons in the western Aleutians (west of 177°W) are formed by oblique subduction, which has broken crustal blocks away from the arc massif and rotated them in clockwise sense, resulting in the formation of triangular-shaped summit basins and deep, structurally controlled submarine canyons (Geist et al., Tectonics v7, p327, 1988). A series of dives with the ROV Jason II on July 28-30, 2004 on Adak Canyon has provided the first-ever view of seafloor outcrops in an Aleutian canyon formed by this process. Two dives on the canyon's steep eastern wall revealed extensive exposures of blocky outcrops of volcanic rock at depths of 2900-1500 m. Samples of these units collected by the Jason II are a mixture of dark, pyroxene and plagioclase-phyric lavas and volcaniclastics. Degree of weathering/alteration is highly variable but some samples appear fresh. We anticipate that these rocks are offshore-equivalents of the Finger Bay Volcanics, which represent the earliest phase of Aleutian volcanism exposed on nearby Adak Island (e.g., Coats, 1956, USGS Bull. 1028-C). Exposures of granitic rock in Adak Canyon form low ledges of exfoliating outcrop interspersed with spheroidally weathered, bouldery sub-crop, in the depth range of 1800-1600 meters. Obtaining in-situ samples from these massive and subrounded exposures was not possible with the Jason II, but recovery of large, sub-angular slabs that litter the surface included samples of fresh diorite, fine-grained felsic intrusives and hydrothermally altered volcanic country rock. The stratigraphically highest exposures observed in Adak Canyon are gently dipping, poorly lithified `Middle Series' sedimentary rocks of probable Miocene-Oligocene age. All outcrop surfaces in Adak Canyon are covered with a uniformly dark brown, opaque coating of Mn oxide less than 1mm thick. Well-rounded cobbles and boulders interpreted to be glacial drift are largely free of Mn oxide coatings. Thick pavements of Mn-oxide were not observed

  1. Isotopic and trace element geochemistry of lavas from the northern Mariana and southern volcano arcs

    SciTech Connect

    Lin Pingnan.

    1989-01-01

    Samples from submarine volcanoes and islands were analyzed for concentrations of K, Rb, Sr, Ba, REE, {sup 87}Sr/{sup 86}Sr and some selected samples for {sup 143}Nd/{sup 144}Nd. These data show strong variations along the arc, being relatively depleted in the tholeiitic and low-K calc-alkaline volcanoes of the Volcano Arc (VA) and the Mariana Central Island Province (CIP). All of the Mariana Northern Seamount Province (NSP) and Volcano arc Iwo Jima (IJ) are enriched in LIL and LREE, particularly in the northern half, where the lavas have strong shoshonitic affinities. Chemical characteristics of these lavas suggest source- or melt-mixing, with the NSP shoshonites being derived from a LIL- and LREE-enriched OIB-like source or melt, while Mariana CIP and Volcano Arc melts are derived from a depleted MORB-like mangle that has been recharged with K, Rb, Sr and Ba by hydrous fluids. Neodymium and strontium isotopic data reveal {var epsilon}{sub Nd} values ranging from +2.4 to +9.5 and {sup 87}Sr/{sup 86}Sr from 0.70320 to 0.70405. Anomalous trends of {sup 87}Sr/{sup 86}Sr and Ba/La found in some S-NSP lavas suggest that the addition of a sedimentary component may be superimposed on the two component mixing. The lavas from the Mariana and Volcano arcs, therefore, are interpreted as resulting from mixing of at least three components. The bulk of the lavas derive from an OIB-like mantle source (or melt) mixing with various proportions of a metasomatized depleted mantle source (or melt). These hybrid sources may be contaminated with minor amounts of subducted sediment and fluxed by multistage-fractionated metasomatic fluid which is derived from subducted sediment and slab after the mixing of the first two components.

  2. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.; Lanphere, Marvin A.; Champion, Duane E.; Ramsey, David W.

    2008-10-01

    together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H 2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.

  3. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    basalts erupted together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.

  4. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    NASA Astrophysics Data System (ADS)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano

  5. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    PubMed

    Kersting; Arculus; Gust

    1996-06-01

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts. PMID:8662469

  6. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  7. Rapid rates of growth and collapse of Monowai submarine volcano in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Peirce, C.; Grevemeyer, I.; Paulatto, M.; Stratford, W.; Bassett, D.; Hunter, J. A.; Kalnins, L. M.; de Ronde, C. E. J.

    2012-07-01

    Most of Earth's volcanoes are under water. As a result of their relative inaccessibility, little is known of the structure and evolution of submarine volcanoes. Advances in navigation and sonar imaging techniques have made it possible to map submarine volcanoes in detail, and repeat surveys allow the identification of regions where the depth of the sea floor is actively changing. Here we report the results of a bathymetric survey of Monowai submarine volcano in the Tonga-Kermadec Arc, which we mapped twice within 14 days. We found marked differences in bathymetry between the two surveys, including an increase in seafloor depth up to 18.8m and a decrease in depth up to 71.9m. We attribute the depth increase to collapse of the volcano summit region and the decrease to growth of new lava cones and debris flows. Hydroacoustic T-wave data reveal a 5-day-long swarm of seismic events with unusually high amplitude between the surveys, which directly link the depth changes to explosive activity at the volcano. The collapse and growth rates implied by our data are extremely high, compared with measured long-term growth rates of the volcano, demonstrating the pulsating nature of submarine volcanism and highlighting the dynamic nature of the sea floor.

  8. Volcano flank instability in the Lesser Antilles Arc: Diversity of scale, processes, and temporal recurrence

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Le Friant, Anne; Komorowski, Jean-Christophe; Deplus, Christine; Semet, Michel P.

    2007-08-01

    The 1997 Boxing Day collapse, a remarkable feature of the ongoing eruption of Soufrière Hills on Montserrat, has prompted new interest in the study of volcano stability in the Lesser Antilles. Building on a few cases documented in the literature, we have now identified at least 47 flank collapse events on volcanoes of the Caribbean arc where this type of behavior is characteristic and repetitive. About 15 events occurred on active volcanoes within the last 12,000 years. In the northern part of the arc, flank collapses are repetitive, do not exceed 1 km3 in volume, occur in all directions, and are promoted by intense hydrothermal alteration and well-developed fracturing of the summit part of the edifices. In contrast, infrequent but large sector collapses, with volumes up to tens of km3, are typical of the southern volcanoes. They are always directed to the west as a result of the high overall slopes of the islands toward the deep back-arc Grenada Basin. Because Caribbean islands are small, a large part of the resulting debris avalanches have flowed into the sea thus contributing voluminous and sudden inputs of volcaniclastic sediments to the Grenada Basin. Deposits from such submarine flows have been identified during the recent AGUADOMAR and CARAVAL oceanographic cruises and traced to their source structures on land. Edifice collapses have a major influence on subsequent volcanic activity but also are of high concern because of their tsunamigenic potential.

  9. Fractionation and Assimilation Processes Dominate in the Generation of Silicic Magmas from Four Kermadec Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Barker, S. J.; Wilson, C. J.; Baker, J.; Wysoczanski, R. J.; Rotella, M. D.; Millet, M.; Wright, I. C.

    2010-12-01

    Recent work has shown that silicic volcanism can be abundant in intra-oceanic subduction settings, and is often associated with large explosive caldera forming eruptions. Several major petrogenic questions arise from the generation and eruption of large silicic magma bodies in such a simple subduction setting, where continental crust is absent. We have investigated the geochemistry of pyroclasts collected from four volcanoes along the Kermadec arc; a relatively young (<2 Ma) oceanic subduction zone. Raoul, Macauley and a newly discovered volcano in the northern Kermadec arc, and Healy volcano in the southern Kermadec arc have all erupted dacite-rhyolite pumice within the last 10 kyr. Examination of whole-rock, mineral and glass major and trace element chemical data shows patterns which indicate that evolved magmas are primarily generated through crystal fractionation and not by partial melting of lower crustal lithologies, particularly amphibolite. Silicic magmas and co-eruptive mafic enclaves show sub-parallel REE patterns, and crystal zonation suggests that mafic and silicic magmas are closely related, spatially and temporally. However, distinctive crystal populations in both pumice samples and plutonic xenoliths suggest that many of the crystals did not grow in the evolved magmas, but were mixed in from other sources including gabbros and tonalites. Such open system mixing is ubiquitous in magmas from the four Kermadec volcanoes. Although crystallization is the dominant process driving melt evolution in the Kermadec volcanoes, the magmatic systems are open to contributions from both newly arriving melts and previously crystallized plutonic bodies. Such contributions occur in variable proportions between magma batches, reflected by the chemical variations observed between eruption units in subaerial sequences on Raoul Island and between clustered pumice chemical compositions in dredged samples from the submarine volcanoes.

  10. Plutonic xenoliths from Raoul Volcano, Kermadec Arc, south-west Pacific: a window on sub-arc processes

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Smith, I. E.; Stewart, R. B.

    2013-12-01

    Raoul Island, in the Kermadec island group, south west Pacific, is the summit of a large arc-type volcano located in one of the simplest oceanic subduction settings on Earth (Smith and Price, 2006). Intra-oceanic volcanic arcs develop in tectonic, structural and chemical contexts that are simpler than is the case for their continental counterparts. However, because of the oceanic setting, sampling is commonly restricted to the subaerial summits of the volcanic edifices. Consequently, the temporal perspective is severely limited and the plutonic record is commonly inaccessible. Well rounded boulders of gabbro, diorite, quartz diorite and tonalite up to several meters in diameter are found along the northern coast of Raoul Island. Gabbroic boulders are orthocumulates composed of plagioclase, augite and orthopyroxene partly replaced by actinolite, magnetite and ilmenite. They have geochemical and petrological features indicating an affinity with young basaltic lavas erupted from Raoul Volcano but their chondrite normalized REE patterns are characterized by strong positive Eu anomalies indicative of plagioclase accumulation or crystallization under more reducing conditions. The alteration mineral assemblage, together with subtle mineralogical and geochemical differences compared with Raoul lavas, suggests that these rocks are representative of an earlier stage in the evolution of the volcano. Tonalitic boulders found with the gabbros are orthocumulates composed of plagioclase, quartz, magnesiohornblende, magnetite, ilmenite and titanite. Actinolite and epidote are alteration minerals. The tonalities have a wide range of compositions and in comparison with volcanic rocks and the gabbroic xenoliths suite, they show subtle mineralogical and compositional differences indicating that they represent a separate and different phase in the evolution of the volcano. The Raoul xenolith suite provides insights into the nature of magmatic processes by which intra-oceanic volcanic

  11. Long-distance magma transport from arc volcanoes inferred from the submarine eruptive fissures offshore Izu-Oshima volcano, Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Geshi, Nobuo; Kawanabe, Yoshihisa; Ogitsu, Itaru; Taylor, Rex N.; Tuzino, Taqumi; Sakamoto, Izumi; Arai, Kohsaku; Nakano, Shun

    2014-09-01

    Long-distance lateral magma transport away from volcanic centers in island arcs is emerging as a common phenomenon where the regional stress regime is favorable. It should also be recognized as an important factor in the construction and growth of island arcs, and a potential trigger for devastating eruptions. In this contribution, we report on recent investigations into the magma dynamics of Izu-Oshima volcano, an active basaltic volcano with an extensive fissure system. Izu-Oshima is flanked by numerous, subparallel NW-SE trending submarine ridges extending up to 22 km to the NW and the SE from the central vent. During a recent submersible survey we have identified that these ridges are fissures which erupted basaltic spatter and lava flows. Furthermore, lavas are petrographically similar along each ridge, while there are noticeable differences between ridges. The subparallel ridges are observed to transect a series of seamounts - the Izu-Tobu monogenetic volcanoes - which are dispersed across this area of the rear-arc. However, there are consistent petrographic and chemical differences between these seamounts and the ridges, indicating that they have different magma sources, yet, they are essentially bounding each other in dive tracks. The most appropriate scenario for their development is one where the Izu-Tobu Volcanoes are fed by an "in-situ" underlying source, while the NW-SE ridges are fed by lateral magma transport from Izu-Oshima. Magma erupted from each ridge is of a consistent geochemistry along its length, but has experienced crystal fractionation and some plagioclase accumulation. Compositions of the ridges are also very similar to lavas from the subaerial cones that can be traced down the flanks of Izu-Oshima. This implies that pairs of subaerial cones and submarine ridges represent the locus of magma transport events away from the storage system beneath Izu-Oshima. Hence, magma from this crustal reservoir moved upward to feed the on-edifice cones

  12. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.

    PubMed

    Reubi, Olivier; Blundy, Jon

    2009-10-29

    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records. PMID:19865169

  13. Kinematic variables and water transport control the formation and location of arc volcanoes.

    PubMed

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes. PMID:19494913

  14. Volcano seismicity in Alaska

    NASA Astrophysics Data System (ADS)

    Buurman, Helena

    I examine the many facets of volcano seismicity in Alaska: from the short-lived eruption seismicity that is limited to only the few weeks during which a volcano is active, to the seismicity that occurs in the months following an eruption, and finally to the long-term volcano seismicity that occurs in the years in which volcanoes are dormant. I use the rich seismic dataset that was recorded during the 2009 eruption of Redoubt Volcano to examine eruptive volcano seismicity. I show that the progression of magma through the conduit system at Redoubt could be readily tracked by the seismicity. Many of my interpretations benefited greatly from the numerous other datasets collected during the eruption. Rarely was there volcanic activity that did not manifest itself in some way seismically, however, resulting in a remarkably complete chronology within the seismic record of the 2009 eruption. I also use the Redoubt seismic dataset to study post-eruptive seismicity. During the year following the eruption there were a number of unexplained bursts of shallow seismicity that did not culminate in eruptive activity despite closely mirroring seismic signals that had preceded explosions less than a year prior. I show that these episodes of shallow seismicity were in fact related to volcanic processes much deeper in the volcanic edifice by demonstrating that earthquakes that were related to magmatic activity during the eruption were also present during the renewed shallow unrest. These results show that magmatic processes can continue for many months after eruptions end, suggesting that volcanoes can stay active for much longer than previously thought. In the final chapter I characterize volcanic earthquakes on a much broader scale by analyzing a decade of continuous seismic data across 46 volcanoes in the Aleutian arc to search for regional-scale trends in volcano seismicity. I find that volcanic earthquakes below 20 km depth are much more common in the central region of the arc

  15. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  16. The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile

    NASA Astrophysics Data System (ADS)

    Rawson, Harriet; Mather, Tamsin A.; Pyle, David M.; Smith, Victoria C.; Fontijn, Karen; Lachowycz, Stefan; Naranjo, José A.; Watt, Sebastian F. L.

    2016-04-01

    Volcanism exerts a major influence on Earth's atmosphere and surface environments. Understanding feedbacks between climate and long-term changes in rates or styles of volcanism is important, but unresolved. For example, it has been proposed that a pulse of activity at once-glaciated volcanoes contributed to increasing atmospheric carbon dioxide accelerating early Holocene climate change. In plate-tectonic settings where magmatism is driven by decompression melting there is convincing evidence that activity is modulated by changes in ice- or water-loading across glacial/interglacial cycles. The response of subduction-related volcanoes, where the crust is typically thicker and mantle melting is dominated by flux melting, remains unclear. Since arc volcanoes account for 90% of subaerial eruptions, they are the most significant sources of volcanic gases and tephra directly to the atmosphere. Testing the response of arc volcanoes to deglaciation requires careful work to piece together eruption archives. Records of effusive eruptions from long-lived, arc stratovolcanoes are challenging to obtain and date; while deposits from the explosive eruptions, which dominate arc records, are prone to erosion and reworking. Our new high-resolution post-glacial (<18 ka) eruption record from a large stratovolcano in southern Chile (Mocho Choshuenco) provides new insight into the magmatic response following the removal of a regional ice load. We observe significant variations in eruptive flux, eruption size and magma composition across three distinct phases of post-glacial volcanic activity. Phase 1, shortly after deglaciation, was dominated by large explosive eruptions of dacite and rhyolite. During Phase 2 (7.3 - 2.9 ka) eruption rates and eruptive fluxes were lower, and activity was dominated by moderate-scale basaltic-andesite eruptions. For the past 2.4 kyr (Phase 3), eruptive fluxes have been elevated, and dominated by explosive eruptions of intermediate magmas. We propose that

  17. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  18. Evolution and geochemistry of the Tertiary calc-alkaline plutons in the Adak Island region of the central Aleutian oceanic island arc

    NASA Astrophysics Data System (ADS)

    Kay, Suzanne; Citron, Gary P.; Kay, Robert W.; Jicha, Brian; Tibbetts, Ashley

    2014-05-01

    Calc-alkaline plutons are major crustal building blocks of continental margin mountain belts like the Mesozoic to Tertiary Andes and the Sierra Nevada, but are rare in oceanic island arcs. Some of the most calc-alkaline I-type island arc plutons are in the Central Aleutians with the most extreme signatures, as indicated by FeO/MgO ratios of < ~2 at 48-70% wt. % SiO2, in the ~10 km wide Oligocene Hidden Bay pluton on southern Adak Island and the 10 km wide Miocene Kagalaska pluton to the north on eastern Adak and the adjacent Kagalaska Island. Although small compared to most continental plutons, similarities in intrusive units, mineralogy and chemistry suggest common formation processes. The Aleutian calc-alkaline plutonic rocks mainly differ from continental plutons in having more oceanic like isotopic (87Sr/86Sr = 0.703-0.7033; Epsilon Nd = 9-7.8) and LIL (e.g., higher K/Rb) ratios. The Adak region plutons differ from Tertiary plutons on Unalaska Island further east in being more K-rich and in having a more oxidized and lower-temperature mineralogy. From a regional perspective, the Adak area plutons intrude Eocene/Oligocene Finger Bay Formation mafic volcanic and sedimentary rocks and postdate the small ~38 Ma tholeiitic Finger Bay pluton. The chemistry of these older magmatic rocks is basically similar to that of young Central Aleutian magmatic rocks with boninites and arc tholeiitic magmas seemingly being absent. The formation of the calc-alkaline plutons seems to require a sufficient crustal thickness, fluid concentration and contractional stress such that magma chambers can stabilize significant amounts of pargasitic hornblende. Seismic receiver function analyses (Janiszewski et al., 2013) indicate the modern Adak crust is ~ 37 km thick. Existing and new hornblende, plagioclase and biotite Ar/Ar ages from 16 Hidden Bay pluton and Gannet Lake stock gabbro, porphyritic diorite, diorite, granodiorite, leucogranodiorite and aplite samples range from 34.6 to 30

  19. Submarine venting of liquid carbon dioxide on a Mariana Arc volcano

    NASA Astrophysics Data System (ADS)

    Lupton, John; Butterfield, David; Lilley, Marvin; Evans, Leigh; Nakamura, Ko-Ichi; Chadwick, William; Resing, Joseph; Embley, Robert; Olson, Eric; Proskurowski, Giora; Baker, Edward; de Ronde, Cornel; Roe, Kevin; Greene, Ronald; Lebon, Geoff; Young, Conrad

    2006-08-01

    Although CO2 is generally the most abundant dissolved gas found in submarine hydrothermal fluids, it is rarely found in the form of CO2 liquid. Here we report the discovery of an unusual CO2-rich hydrothermal system at 1600-m depth near the summit of NW Eifuku, a small submarine volcano in the northern Mariana Arc. The site, named Champagne, was found to be discharging two distinct fluids from the same vent field: a 103°C gas-rich hydrothermal fluid and cold (<4°C) droplets composed mainly of liquid CO2. The hot vent fluid contained up to 2.7 moles/kg CO2, the highest ever reported for submarine hydrothermal fluids. The liquid droplets were composed of ˜98% CO2, ˜1% H2S, with only trace amounts of CH4 and H2. Surveys of the overlying water column plumes indicated that the vent fluid and buoyant CO2 droplets ascended <200 m before dispersing into the ocean. Submarine venting of liquid CO2 has been previously observed at only one other locality, in the Okinawa Trough back-arc basin (Sakai et al., 1990a), a geologic setting much different from NW Eifuku, which is a young arc volcano. The discovery of such a high CO2 flux at the Champagne site, estimated to be about 0.1% of the global MOR carbon flux, suggests that submarine arc volcanoes may play a larger role in oceanic carbon cycling than previously realized. The Champagne field may also prove to be a valuable natural laboratory for studying the effects of high CO2 concentrations on marine ecosystems.

  20. The geomorphology of an Aleutian volcano following a major eruption: The 7-8 August 2008 eruption of Kasatochi Volcano, Alaska, and its aftermath

    USGS Publications Warehouse

    Waythomas, C.F.; Scott, W.E.; Nye, C.J.

    2010-01-01

    Analysis of satellite images of Kasatochi volcano and field studies in 2008 and 2009 have shown that within about one year of the 78 August 2008 eruption, significant geomorphic changes associated with surface and coastal erosion have occurred. Gully erosion has removed 300,000 to 600,000 m3 of mostly fine-grained volcanic sediment from the flanks of the volcano and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins on the south and west flanks of the volcano, with drainage areas of 0.7 and 0.5 km2, are about 104 m3 km-2 yr-1 and are comparable to sediment yields documented at other volcanoes affected by recent eruptive activity. Estimates of the retreat of coastal cliffs also made from analysis of satellite images indicate average annual erosion rates of 80 to 140 m yr-1. If such rates persist it could take 35 years for wave erosion to reach the pre-eruption coastline, which was extended seaward about 400 m by the accumulation of erupted volcanic material. As of 13 September 2009, the date of the most recent satellite image of the island, the total volume of material eroded by wave action was about 106 m3. We did not investigate the distribution of volcanic sediment in the near shore ocean around Kasatochi Island, but it appears that erosion and sediment dispersal in the nearshore environment will be greatest during large storms when the combination of high waves and rainfall runoff are most likely to coincide. ?? 2010 Regents of the University of Colorado.

  1. The origin of the potassic rock suite from Batu Tara volcano (East Sunda Arc, Indonesia)

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Vroon, P. Z.; Varekamp, J. C.; Poorter, R. P. E.

    1992-11-01

    atu Tara is an active potassic volcano in the eastern Sunda arc. Its leucite-bearing rock suite can be subdivided into two groups, one less evolved with Th<20 ppm, the other more evolved with Th>20 ppm. 87Sr/ 86Sr, δ18O and trace-element systematics in the less evolved group suggests that existence of parental magmas with different mantle origins. The mantle below Batu Tara is most likely heterogeneous and several source components are involved in magma genesis. Trace element and isotopic compositions of Batu Tara and adjacent volcanoes are consistent with the involvement of a subducted sedimentary/crustal component as well as MORB and OIB mantle, the latter with geochemical characteristics comparable to the mantle underlying Muriah (Java). Melt extraction from this complex mixture is envisioned as a two-stage process: partial melts of the crust-contaminated MORB mantle mix in the mantle wedge with partial melts of OIB domains. Different mixtures of these two melts provide the parental magmas that enter the volcanic plumbing system, where crystallization, hybridization and refilling processes occur. The calcalkaline volcanoes in the arc segment show stronger signatures for a subducted crustal component than Batu Tara, which displays a greater influence from the OIB mantle source. The potassium enrichment can therefore be attributed to contributions both from the enriched mantle and from subducted crustal material. Mantle-type δ18O values of the Batu Tara magmas indicate that the mantle wedge below potassic orogenic volcanoes is not necessarily strongly enriched in 18O.

  2. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Hanson, M.; Beaulieu, S.; Tunnicliffe, V.; Chadwick, W.; Breuer, E. R.

    2015-12-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both

  3. Tsunami recurrence in the eastern Alaska-Aleutian arc: A Holocene stratigraphic record from Chirikof Island, Alaska

    USGS Publications Warehouse

    Nelson, Alan R.; Briggs, Richard; Dura, Tina; Engelhart, Simon E.; Gelfenbaum, Guy; Bradley, Lee-Ann; Forman, S.L.; Vane, Christopher H.; Kelley, K.A.

    2015-01-01

    Despite the role of the Alaska-Aleutian megathrust as the source of some of the largest earthquakes and tsunamis, the history of its pre–twentieth century tsunamis is largely unknown west of the rupture zone of the great (magnitude, M 9.2) 1964 earthquake. Stratigraphy in core transects at two boggy lowland sites on Chirikof Island’s southwest coast preserves tsunami deposits dating from the postglacial to the twentieth century. In a 500-m-long basin 13–15 m above sea level and 400 m from the sea, 4 of 10 sandy to silty beds in a 3–5-m-thick sequence of freshwater peat were probably deposited by tsunamis. The freshwater peat sequence beneath a gently sloping alluvial fan 2 km to the east, 5–15 m above sea level and 550 m from the sea, contains 20 sandy to silty beds deposited since 3.5 ka; at least 13 were probably deposited by tsunamis. Although most of the sandy beds have consistent thicknesses (over distances of 10–265 m), sharp lower contacts, good sorting, and/or upward fining typical of tsunami deposits, the beds contain abundant freshwater diatoms, very few brackish-water diatoms, and no marine diatoms. Apparently, tsunamis traveling inland over low dunes and boggy lowland entrained largely freshwater diatoms. Abundant fragmented diatoms, and lake species in some sandy beds not found in host peat, were probably transported by tsunamis to elevations of >10 m at the eastern site. Single-aliquot regeneration optically stimulated luminescence dating of the third youngest bed is consistent with its having been deposited by the tsunami recorded at Russian hunting outposts in 1788, and with the second youngest bed being deposited by a tsunami during an upper plate earthquake in 1880. We infer from stratigraphy, 14C-dated peat deposition rates, and unpublished analyses of the island’s history that the 1938 tsunami may locally have reached an elevation of >10 m. As this is the first record of Aleutian tsunamis extending throughout the Holocene, we

  4. The Denham Caldera on Raoul Volcano: dacitic volcanism in the Tonga Kermadec arc

    NASA Astrophysics Data System (ADS)

    Worthington, Tim J.; Gregory, Murray R.; Bondarenko, Vladislav

    1999-05-01

    Denham Caldera, on Raoul Volcano in the Tonga-Kermadec arc, is a simple collapse structure. It is 6.5×4 km 2 across, >0.3 km deep, represents an erupted magma volume of 8-16 km 3, and is considerably larger than previously estimated. Caldera formation was contemporaneous with an eruption of homogeneous dacitic magma at 2.2 ka. Tephra from this event is preserved as a pumice fall and pyroclastic flow sequence up to 120 m thick on Raoul Island. Offshore, this sequence forms a submarine deposit diminishing in thickness from 120 m near the northern caldera rim to 80 m at a distance of 3.5 km, where it rests upon an erosional planation surface of 17-20 ka age incised into older volcaniclastic rocks. Both the caldera volume and ejecta distribution of the 2.2 ka eruption are comparable to the caldera volume and ejecta distribution of the 1883 Krakatau eruption. Resurgent volcanism has built at least six submarine pyroclastic cones along a north-northeast trending lineament crossing Denham Caldera. Redistribution of pumiceous dacite from these cones, including ephemeral islands that emerged during the 1814 and 1870 eruptions, has contributed to recent shoaling in Denham Bay. A smaller eruption occurred in 1964-65, and hydrothermal activity persists at several sites along the lineament. Voluminous felsic volcanism at intra-oceanic arcs is usually associated with crustal extension, and was unexpected in the Tonga-Kermadec arc. However, because the tectonic fabric within the active back-arc Havre Trough is oblique to the Kermadec arc, rifts within the trough apparently propagate to the volcanic front and transfer extensional strain to the arc, thereby promoting the ascent of felsic magma. The orientation of Denham Caldera, as well as that of Macauley Caldera 110 km further south, thus reflect the stress field of the Havre Trough and not the predominant field of the arc.

  5. Hydrothermal Systems on Kermadec Arc Volcanoes Revealed by PISCES V Submersible Dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; de Ronde, C. E.; Massoth, G. J.; Wright, I. C.; Butterfield, D. A.; Clark, M. R.; Chadwick, W. W.; Lupton, J. E.; Malahoff, A.; Rowden, A. A.; Stott, M.; Evans, L. J.; Greene, R. R.; Opatkiewicz, A.; Roe, K.

    2005-12-01

    An interdisciplinary team of scientists from New Zealand and the United States conducted seventeen dives with the PISCES V at eight Kermadec arc volcanoes (seven were the first exploration) in April and May of 2005. The dive sites were selected based on the results of water column and multibeam surveys conducted by the New Zealand research vessel Tangaroa between 1999 and 2004. Five of the sites (Monowai, Macauley, "W", Brothers and Healy) were in calderas or on young cones within calderas. Two sites were on the summits of stratovolcanoes (Rumble V and Clark) without calderas and one site was in a summit crater (Giggenbach). A planned dive site on Monowai Cone was cancelled due to safety concerns based on its history of recent volcanic activity from hydroacoustic monitoring, mass-wasting and surface observations of sulfur slicks and CO2 bubble columns made in the October 2004. Hydrothermal systems were found at all of the sites but they differed in the style of venting. Three factors appear to determine the character of venting on the Kermadec Arc volcanoes. First, depth exerts important boundary conditions on the style of venting because of its control of the boiling point of seawater. The sites range in depth from less than 100 m (Giggenbach) to 1800 m (Brothers caldera wall). At the shallowest depths, degassing and boiling were observed (Giggenbach Volcano at 180 m) commonly accompanied by the precipitation of elemental sulfur (340 m at the bottom of the summit crater at Macauley Cone). At greater depths such as the northwest wall of Brother's volcano, higher temperature vent fluids alter near-surface country rock and have precipitated massive sulfides on the seafloor. Second, some of the volcanoes (Monowai, Brothers and Macauley cones and Giggenbach crater) have likely had recent magmatic/eruptive activity which could result in the enhanced degassing. Finally, outcrop-scale fracturing that mimics larger-scale regional tectonic lineaments appears to focus the

  6. The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Rawson, H. L.; Smith, V.; Fontijn, K.; Lachowycz, S.; Pyle, D. M.; Naranjo, J. A.; Watt, S. F.

    2015-12-01

    In plate-tectonic settings where magmatism is driven by decompression melting there is convincing evidence that activity is modulated by changes in ice- or water-loading across glacial/interglacial cycles. In contrast, the response of subduction-related volcanoes, where the crust is typically thicker and mantle melting is dominated by flux melting, remains unclear. The large areas spanned by arcs, and the typical activity at subduction zone volcanoes present particular challenges when compiling regional eruption archives. Records of effusive eruptions from long-lived, arc stratovolcanoes are challenging to obtain, and date; while deposits from the explosive eruptions, which dominate arc records, are prone to erosion and reworking. Here we use a rare high-resolution post-glacial (<18 ka) eruption record from a large stratovolcano (Mocho-Choshuenco) in southern Chile to gain new insight into the magmatic response to removal of an ice load; variation in eruptive flux, eruption size and magma composition are observed and divided into three distinct phases based on style of activity and erupted composition. Phase 1, shortly after deglaciation, was dominated by large explosive eruptions of dacite and rhyolite. During Phase 2 (7.3 - 2.9 ka) eruption rates and eruptive fluxes were lower, and activity was dominated by moderate-scale basaltic-andesite eruptions. Since 2.4 ka (Phase 3) eruptive fluxes have been elevated, and dominated by explosive eruptions of more intermediate magmas. This time-varying behaviour reflects changes in crustal plumbing systems, and magma storage timescales. During glaciations, magmas stall and differentiate to form large, evolved crustal reservoirs. After the load is removed, much of this stored magma is erupted (Phase 1). Subsequently, less-differentiated melts infiltrate the shallow crust (Phase 2). Then, as storage timescales increase, volcanism returns to more evolved compositions (Phase 3). On short (<10 kyr) timescales these variations are

  7. Venting of a separate CO2-rich gas phase from submarine arc volcanoes: Examples from the Mariana and Tonga-Kermadec arcs

    NASA Astrophysics Data System (ADS)

    Lupton, John; Lilley, Marvin; Butterfield, David; Evans, Leigh; Embley, Robert; Massoth, Gary; Christenson, Bruce; Nakamura, Ko-Ichi; Schmidt, Mark

    2008-08-01

    Submersible dives on 22 active submarine volcanoes on the Mariana and Tonga-Kermadec arcs have discovered systems on six of these volcanoes that, in addition to discharging hot vent fluid, are also venting a separate CO2-rich phase either in the form of gas bubbles or liquid CO2 droplets. One of the most impressive is the Champagne vent site on NW Eifuku in the northern Mariana Arc, which is discharging cold droplets of liquid CO2 at an estimated rate of 23 mol CO2/s, about 0.1% of the global mid-ocean ridge (MOR) carbon flux. Three other Mariana Arc submarine volcanoes (NW Rota-1, Nikko, and Daikoku), and two volcanoes on the Tonga-Kermadec Arc (Giggenbach and Volcano-1) also have vent fields discharging CO2-rich gas bubbles. The vent fluids at these volcanoes have very high CO2 concentrations and elevated C/3He and δ13C (CO2) ratios compared to MOR systems, indicating a contribution to the carbon flux from subducted marine carbonates and organic material. Analysis of the CO2 concentrations shows that most of the fluids are undersaturated with CO2. This deviation from equilibrium would not be expected for pressure release degassing of an ascending fluid saturated with CO2. Mechanisms to produce a separate CO2-rich gas phase at the seafloor require direct injection of magmatic CO2-rich gas. The ascending CO2-rich gas could then partially dissolve into seawater circulating within the volcano edifice without reaching equilibrium. Alternatively, an ascending high-temperature, CO2-rich aqueous fluid could boil to produce a CO2-rich gas phase and a CO2-depleted liquid. These findings indicate that carbon fluxes from submarine arcs may be higher than previously estimated, and that experiments to estimate carbon fluxes at submarine arc volcanoes are merited. Hydrothermal sites such as these with a separate gas phase are valuable natural laboratories for studying the effects of high CO2 concentrations on marine ecosystems.

  8. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  9. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  10. Application of AUVs in the Exploration for and Characterization of Arc Volcano Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Walker, S. L.; Caratori Tontini, F.; Baker, E. T.; Embley, R. W.; Yoerger, D.

    2014-12-01

    The application of Autonomous Underwater Vehicles (AUVs) in the search for, and characterization of, seafloor hydrothermal systems associated with arc volcanoes has provided important information at a scale relevant to the study of these systems. That is, 1-2 m resolution bathymetric mapping of the seafloor, when combined with high-resolution magnetic and water column measurements, enables the discharge of hydrothermal vent fluids to be coupled with geological and structural features, and inferred upflow zones. Optimum altitude for the AUVs is ~70 m ensuring high resolution coverage of the area, maximum exposure to hydrothermal venting, and efficency of survey. The Brothers caldera and Clark cone volcanoes of the Kermadec arc have been surveyed by ABE and Sentry. At Brothers, bathymetric mapping shows complex features on the caldera walls including embayment's, ridges extending orthogonal to the walls and the location of a dominant ring fault. Water column measurements made by light scattering, temperature, ORP and pH sensors confirmed the location of the known vent fields on the NW caldera wall and atop the two cones, and discovered a new field on the West caldera wall. Evidence for diffuse discharge was also seen on the rim of the NW caldera wall; conversely, there was little evidence for discharge over an inferred ancient vent site on the SE caldera wall. Magnetic measurements show a strong correlation between the boundaries of vent fields determined by water column measurements and observed from manned submersible and towed camera surveys, and donut-shaped zones of magnetic 'lows' that are focused along ring faults. A magnetic low was also observed to cover the SE caldera site. Similar surveys over the NW edifice of Clark volcano also show a strong correlation between active hydrothermal venting and magnetic lows. Here, the survey revealed a pattern resembling Swiss cheese of magnetic lows, indicating more widespread permeability. Moreover, the magnetic survey

  11. Collapse and Re-growth of Monowai Submarine Volcano, Kermadec Arc, 1998-2004

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Wright, I. C.; de Ronde, C. E.; Reymond, D.; Hyvernaud, O.; Bannister, S.; Stoffers, P.

    2005-12-01

    Monowai submarine volcano is located at 25°53.5'S/177°11.1'W, about 1400 km NNE of New Zealand along the Kermadec arc, and consists of a shallow symmetrical cone with a summit depth of ~100 m. Monowai is one of the most active submarine volcanoes in the Kermadec arc, based on visual reports from overflights, oceanographic surveys of hydrothermal plumes, and seismoacoustic monitoring from French Polynesia and elsewhere. Since the late 1970's, Monowai has been the source of frequent swarms of acoustic T-wave events every few years. On 24 May 2002 there was a particularly large seismoacoustic event with a duration of 6-8 minutes and an exceptional amplitude that was 4-5 times larger than any other T-wave signal recorded from Monowai. Bathymetric surveys of Monowai that bracket this event were collected with multibeam sonars in 1998 and 2004 by R/V Sonne (Hydrosweep) and R/V Tangaroa (EM300), respectively. A new collapse feature is apparent on the SE side of the volcano in the 2004 bathymetry. The two surveys were compared using a quantitative technique that has been used for documenting depth changes due to volcanic eruptions on mid-ocean ridges. The results of this comparison show that the summit depth of Monowai changed from 69 m below sealevel in 1998 to 135 m in 2004, a difference of -66 m, and the location of the shallowest point moved ~200 m to the NNW. However, the maximum depth change between the surveys is -105 m and is located near the 1998-summit, which in 2004 is south of the new headwall scarp on the SE flank of the volcano. The total area of significant depth change is 1.26 x 106 m2, and the decrease in volume is 6.12 x 107 m3 (or 0.06 km3). From the distribution of the depth changes it is also clear that two things occurred between the surveys: removal of volume from slope failure and the subsequent addition of volume from an eruptive vent within the new slide scar. Therefore, the volume removed by slope failure was probably closer to 0.1 km3 whereas

  12. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  13. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  14. Specification of Tectonic Tsunami Sources Along the Eastern Aleutian Island Arc and Alaska Peninsula for Inundation Mapping and Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Freymueller, J. T.; Koehler, R.

    2013-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska along several segments of the Aleutian Megathrust, each having a unique seismic history and tsunami generation potential. Accurate identification and characterization of potential tsunami sources is a critical component of our project. As demonstrated by the 2011 Tohoku-oki tsunami, correct estimation of the maximum size event for a given segment of the subduction zone is particularly important. In that event, unexpectedly large slip occurred approximately updip of the epicenter of the main shock, based on seafloor GPS and seafloor pressure gage observations, generating a much larger tsunami than anticipated. This emphasizes the importance of the detailed knowledge of the region-specific subduction processes, and using the most up-to-date geophysical data and research models that define the magnitude range of possible future tsunami events. Our study area extends from the eastern half of the 1957 rupture zone to Kodiak Island, covering the 1946 and 1938 rupture areas, the Shumagin gap, and the western part of the 1964 rupture area. We propose a strategy for generating worst-case credible tsunami scenarios for locations that have a short or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. The potential tsunami scenarios are built based on a discretized plate interface model fit to the Slab 1.0 model geometry. We employ estimates of slip deficit along the Aleutian Megathrust from GPS campaign surveys, the Slab 1.0 interface surface, empirical magnitude-slip relationships, and a numerical code that distributes slip among the subfault elements, calculates coseismic deformations and solves the shallow water equations of tsunami propagation and runup. We define hypothetical asperities along the megathrust and in down-dip direction, and perform a set of sensitivity model runs to identify coseismic deformation

  15. Bubble Plumes above erupting NW Rota-1 submarine volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Merle, S. G.; Embley, R. W.; Buck, N.; Resing, J. A.; Leifer, I.

    2013-12-01

    NW Rota-1 is a submarine volcano in the Mariana volcanic arc with a summit depth of 517 m, located ~100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed here in 2004 and the volcano has remained persistently active ever since. During a March 2010 expedition to NW Rota-1 with the remotely operated vehicle Jason, we observed intermittent explosive activity at five distinct eruptive vents along a line 100-m long near the summit of the volcano (550-590 m depth). The continuous but variable eruptive activity produced CO2 bubble plumes that rose in the water column over the volcano and could be readily imaged by sonar because they provide excellent acoustic reflectors. This study compares the manifestations of NW Rota's eruptive activity as measured by several independent methods, including: (1) an EM122 multibeam sonar system (12 kHz) on the R/V Kilo Moana that imaged bubble plumes in the water column over the volcano, (2) hydrophone data that recorded the sounds of the variable eruptive activity, and (3) visual observations of the activity at the eruptive vents on the seafloor from Jason. Throughout the 2010 expedition numerous passes were made over the volcano's summit to image the bubble plumes with the EM122 multibeam sonar, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar dataset totals >95 hours of observations over a 12-day period. Analysis of the EM122 dataset shows: (1) bubble plumes were visible in the water column on every pass over the summit, (2) separate plumes were resolvable from up to 4 of the 5 eruptive vents at times, (3) plume heights and intensities were variable with time, (4) the highest observed bubble plume rise height was 415 meters above the seafloor to within 175 m of the ocean surface, while lower amplitude wisps rose to heights <100 m from the surface, (5) most of the bubble plumes were deflected to the WSW

  16. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  17. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Neal, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analyzed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analyzed using data from the European Remote Sensing Satellites (ERS), Japanese Earth Resources Satellite (JERS) and the U. S. Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  18. Investigation of the Influence of the Amlia Fracture Zone on the Islands of Four Mountains Region of the Aleutian Arc, AK

    NASA Astrophysics Data System (ADS)

    Nicolaysen, K. P.; Myers, J. D.; Weis, D.

    2013-12-01

    Regional isotopic and trace element investigations of the magmatic source characteristics of the Aleutian arc have attributed regional patterns to variations in the contribution of eclogite through slab melting, to increased proportions of sediment melts, and to variation in the amount of fluid derived by progressive metamorphism of the downgoing slab. Currently the Amlia Fracture Zone (AFZ) is located between the islands of Atka and Seguam and marks a prominent boundary between subduction of large quantities of trench sediments to the east versus sediment impoverished subduction to the west of the AFZ. This boundary is not stationary through time. Instead oblique subduction of the Pacific plate moves the AFZ westward along the arc front, causing sequential subduction beneath the islands of Chuginadak, Yunaska and Seguam circa 5, 2.5 and 1 million years ago, respectively. Lavas from Atka Island, which has not yet received the sediment and fluid spike from the AFZ, act as reference compositions. Comparison of bulk rock trace element ratios and Sr, Nd, Hf, and Pb isotopic compositions for lavas from these islands relative to Atka show that contributions from melted subducted sediment are important in the genesis of Holocene and Pleistocene lavas erupted in the Islands of Four Mountains region of the arc. Sr and Pb isotopic compositions for Yunaska and Chuginadak lavas are as high or higher than Seguam values and trend in the direction of sediment values. La/Nb ratios similarly indicate sediment melting is important for all these lavas. Comparison of values for Holocene relative to Pleistocene values indicate that once sediments are introduced to the magma source, they persist in affecting magma compositions. Comparison of higher Mg# lavas (molar Mg#>50) shows that a group of the oldest sampled lavas on Chuginadak have much lower 208Pb/204Pb, 206Pb/204Pb, and 87Sr/86Sr and higher 143Nd/144Nd, Zr/Y and Zn/Mn relative to all sampled Holocene and Pleistocene lavas from

  19. Geochemical variability of hydrothermal emissions between three Pacific volcanic arc systems: Alaskan-Aleutian and Cascadian, North America and Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Blackstock, J. M.; Horton, T. W.; Gravley, D. M.; Deering, C. D.

    2013-12-01

    Knowledge of the source, transport, and fate of hydrothermal fluids in the upper crust informs our understanding and interpretation of ore-forming processes, volcanogenic hazards, geothermal resources, and volatile cycling. Co-variation between fluid inclusion CO2/CH4 and N2/Ar ratios is an established tracer of magmatic, meteoric, and crustal fluid end-members. Yet, this tracer has had limited application to macroscopic fluid reservoirs accessible via geothermal wells and hydrothermal features (e.g. pools). In this study, we compared the covariance CO2/CH4 and N2/Ar ratios of gases collected throughout the Taupo Volcanic Zone, New Zealand (TVZ), the Alaska-Aleutian Volcanic Arc, USA (AAVA), and the Cascadian Volcanic Arc, USA (CVA) with corresponding δ13C and 3He/4He values. Our findings show that there is good agreement between these proxies for different end-member contributions at coarse scales. However, some samples classified as meteoric water according to the CO2/CH4 and N2/Ar ratios also show more positive δ13C values (~ -7.0 per mil) and relatively higher 3He/4He ratios indicative of magmatic input from primarily mantle sources. This unexpected result may be related to magmatic fluids, CO2 in particular, mixing with predominantly meteoric derived waters. The potential to identify magmatic CO2 in groundwater samples overlying geothermal systems in differing volcanic arc settings using simple and cost-effective gas ratios is a promising step forward in the search for ';surface blind' but developable geothermal systems and volcanic monitoring. 3He/4He anomalies also support this inference and underscore the potential decoupling of thermal anomalies and magmatic-derived fluids in the Earth's crust. The general agreement between the co-variation of CO2/CH4 and N2/Ar ratios with other isotope and geochemical proxies for magmatic, meteoric, and crustal end-members is encouraging to employ expanded use of these ratios for both the exploration and monitoring of

  20. Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians

    USGS Publications Warehouse

    Jicha, Brian R.; Coombs, Michelle L.; Calvert, Andrew T.; Singer, Brad S.

    2012-01-01

    We used geologic mapping and geochemical data augmented by 40Ar/39Ar dating to establish an eruptive chronology for the Tanaga volcanic cluster in the western Aleutian arc. The Tanaga volcanic cluster is unique in comparison to other central and western Aleutian volcanoes in that it consists of three closely spaced, active, volumetrically significant edifices (Sajaka, Tanaga, and Takawangha), the eruptive products of which have unusually high K2O contents. Thirty-five new 40Ar/39Ar ages obtained in two different laboratories constrain the duration of Pleistocene–Holocene subaerial volcanism to younger than 295 ka. The eruptive activity has been mostly continuous for the last 150 k.y., unlike most other well-characterized arc volcanoes, which tend to grow in discrete pulses. More than half of the analyzed Tanaga volcanic cluster lavas are basalts that have erupted throughout the lifetime of the cluster, although a considerable amount of basaltic andesite and basaltic trachyandesite has also been produced since 200 ka. Major- and trace-element variations suggest that magmas from Sajaka and Tanaga volcanoes are likely to have crystallized pyroxene and/or amphibole at greater depths than the older Takawangha magmas, which experienced a larger percentage of plagioclase-dominated fractionation at shallower depths. Magma output from Takawangha has declined over the last 86 k.y. At ca. 19 ka, the focus of magma flux shifted to the west beneath Tanaga and Sajaka volcanoes, where hotter, more mafic magma erupted.

  1. Exploring Paleoclimatic and -Oceanographic Consequences for Arctic Beringia by the Eocene Formation and Progressive E-W Lengthening of the Aleutian Ridge (arc) Across the North Pacific Basin

    NASA Astrophysics Data System (ADS)

    Scholl, D. W.

    2013-12-01

    INTRODUCTION: During the past ~50 Myr, magmatic growth of the offshore Aleutian Ridge (AR) or arc and its progressive tectonic lengthening to the west cordoned off the NW corner of the Pacific Basin to formed the deep water (3000-4000 m), marginal sea of the Bering Sea Basin (BSB). Cordoning continuously altered the paths, depths, and locations of water-exchange passes controlling the circulation of waters between the north Pacific and the Bering Sea (BS), and, via the fixed Bering Strait, that entering the Pacific sector of the Arctic Basin. PRESENT PATTERN OF PACIFIC-BERING-ARCTIC WATER EXCHANGE: Cool, low salinity water of the Alaska Stream flowing west along the Pacific side of the AR crosses northward into the BS via tectonically controlled, inter-island passes. The largest volume (~9 SV) enters near the western end of the AR via Near Pass. Flow turns back to the east and CCW northward over the BSB. Surface water exits southward around the western end of the AR through the far western, deep-water (~4000 m) pass of Kamchatka Strait. Because water salinity is low, vertical thermohaline circulation (THC) does not occur over the BSB. However, the deposition of the larger Meiji Drift body, which is charged with Bering-sourced, detritus, on the Pacific side of Kamchatka Strait implies THC may have occurred in the past. Deep-water circulation is presently linked to the inflow of Pacific abyssal water via Kamchatka Strait. A small volume (~0.8 SV) of cool, low salinity water entering the BS mainly through eastern, shallow-silled passes continues northward across the broad Beringian shelf to enter the Arctic Ocean via the Bering Strait. EVOLUTION OF ALEUTIAN RIDGE: At it's inception, the arc massif of the AR likely extended only about 1200 km west of Alaska. Because convergence is increasingly oblique to the west, plate-boundary-driven, right-lateral strike-slip faulting extensionally fragmented the AR and progressively rotated and transported blocks and slivers

  2. Intensive hydration of the wedge mantle at the Kuril arc - NE Japan arc junction: implications from mafic lavas from Usu Volcano, northern Japan

    NASA Astrophysics Data System (ADS)

    Kuritani, T.; Tanaka, M.; Yokoyama, T.; Nakagawa, M.; Matsumoto, A.

    2015-12-01

    The southwestern part of Hokkaido, northern Japan, is located at the junction of the NE Japan arc and the Kuril arc. The subducting Pacific plate under this region shows a hinge-like shape due to the dip change of the subducting plate along the trench. Because of the interest in this unique tectonic setting, this arc-arc junction has been the focus of extensive geophysical studies (e.g. Kita et al., 2010, Morishige and van Keken, 2014; Wada et al., 2015). This region is also known as an area in which magmatism has been intense; there are many active volcanoes such as Usu, Tarumae, and Komagatake, and large calderas including Toya, Shikotsu, and Kuttara. In this region, the temporal and spatial evolution of the volcanism and the chemical compositions of the volcanic rocks are well characterized (e.g. Nakagawa, 1992). However, the generation conditions of magmas have not been estimated for these volcanoes, probably because of the scarcity of basaltic products. Therefore, a possible link between the tectonic setting and the intense magmatism is still unclear. In this study, we carried out a petrological and geochemical study on mafic lavas (49.6-51.3 wt.% SiO2) from Usu Volcano, and estimated the conditions under which the magmas were generated. By application of a plagioclase-melt hygrometer to the plagioclase and the host magma, the water content of ~6.5 wt.% was obtained for the basaltic magma. Using this information, as well as the olivine maximum fractionation model (Tatsumi et al., 1983), the composition of the primary magma is estimated to be 47.9 wt.% SiO2, 15.1 wt.% MgO, and 4.1 wt.% H2O. Analyses using the multi-component thermodynamics suggest that the primary magma was generated in the source mantle with 0.9 wt.% H2O at 1310ºC and at 1.6 GPa. The water content of 0.9 wt.% of the source mantle is significantly higher than the estimates for the source mantle in the main NE Japan arc (<0.7 wt.% H2O); this implies that the flux of slab-derived fluids is

  3. Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: implications for the origin of island arc melts

    NASA Astrophysics Data System (ADS)

    Lin, P. N.; Stern, R. J.; Morris, J.; Bloomer, S. H.

    1990-09-01

    Nd- and Sr-isotopic data are reported for lavas from 23 submarine and 3 subaerial volcanoes in the northern Mariana and southern Volcano arcs. Values of ɛNd range from +2.4 to +9.5 whereas 87Sr/86Sr ranges from 0.70319 to 0.70392; these vary systematically between and sometimes within arc segments. The Nd-and Sr-isotopic compositions fall in the field of ocean island basalt (OIB) and extend along the mantle array. Lavas from the Volcano arc, Mariana Central Island Province and the southern part of the Northern Seamount Province have ɛNd to +10 and 87Sr/86Sr=0.7032 to 0.7039. These are often slightly displaced toward higher 87Sr/86Sr at similar ɛNd. In contrast, those lavas from the northern part of the Mariana Northern Seamount Province as far north as Iwo Jima show OIB isotopic characteristics, with ɛNd and 87Sr/86Sr=0.7035 to 0.7039. Plots of 87Sr/86Sr and ɛNd versus Ba/La and (La/Yb)n support a model in which melts from the Mariana and Volcano arcs are derived by mixing of OIB-type mantle (or melts therefrom) and a metasomatized MORB-type mantle (or melts therefrom). An alternate interpretation is that anomalous trends on the plots of Nd- and Sr-isotopic composition versus incompatible-element ratios, found in some S-NSP lavas, suggest that the addition of a sedimentary component may be locally superimposed on the two-component mixing of mantle end-members.

  4. Characteristics of Cu isotopes from chalcopyrite-rich black smoker chimneys at Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau basin

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E. J.; Paul, B. T.; Gemmell, J. B.

    2015-10-01

    We analysed primary chalcopyrite from modern seafloor `black smoker' chimneys to investigate high-temperature hydrothermal Cu isotope fractionation unaffected by metamorphism. Samples came from nine chimneys collected from Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau backarc basin. This is the first known study of Cu isotopes from submarine intraoceanic arc/backarc volcanoes, with both volcanoes discharging significant amounts of magmatic volatiles. Our results ( n = 22) range from δ65Cu = -0.03 to 1.44 ± 0.18 ‰ (2 sd), with the majority of samples between ˜0.00 and 0.50 ‰. We interpret this cluster ( n = 17) of lower δ65Cu values as representing a mantle source for the chimney Cu, in agreement with δ65Cu values for mantle rocks. The few higher δ65Cu values (>0.90 ‰) occur (1) within the same chimneys as lower values, (2) randomly distributed within the chimneys (i.e. near the top and bottom, interior and exterior), and (3) within chalcopyrite of approximately the same age (<1 year). This suggests the higher δ65Cu values are not related to oxidation by mixing with ambient seawater, but to isotopic variation within the vent fluids over a relatively short time. Theoretical studies demonstrate significant isotopic fractionation can occur between aqueous and vapourous complexing species. When combined with evidence for periodic release of magmatic volatiles at Brothers, we believe vapour transport of Cu is responsible for the observed isotopic fractionation. When compared to global δ65Cu data for primary chalcopyrite, volcanic arc chimneys are most similar to porphyry copper deposits that also form from magmatic-hydrothermal processes in convergent tectonic settings.

  5. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    NASA Astrophysics Data System (ADS)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  6. The effect of changing regional tectonics on an arc volcano: Methana, Greece

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.

    2013-06-01

    The peninsula of Methana has the longest recorded volcanic history of any volcanic centre in the South Aegean Arc. Regional fault patterns in the arc changed during the Pliocene-Quaternary, with E-W-striking listric faulting increasingly important through the Quaternary, as recorded in well-dated sedimentary basins. This study investigates how the geochemistry and eruptive style of volcanic products is influenced by regional tectonics. The volcanic stratigraphy of Methana was refined using radiometric dating, lithogeochemistry and field observations that included recording deformational structures and enclave abundance. Small N-S-striking Pliocene domes and a central volcano of uncertain type (phase A) were eroded to produce a widespread volcaniclastic apron (phase B). In the early Quaternary, an explosive central volcano with flank eruptions of andesite developed (phase C). Dacite domes and small andesitic stratovolcanoes formed throughout the mid and late Quaternary (phases D-H). Basaltic andesite and andesite of phase C are the least evolved rocks, characterised by high TiO2. Rocks that have experienced important assimilation and fractional crystallisation in the crust have a high abundance of enclaves, Th, U and alkalies (Na, K). Ni and Cr are abundant in phase A andesites, due to crystallisation and entrainment of olivine and pyroxene, whereas phase H andesites have the highest relative abundance of Ba, Rb and Sr from crystallisation and entrainment of hornblende and biotite. Pliocene domes of phase A were emplaced on N-S-striking listric faults during regional E-W extension. Onset of NE-SW faulting, arguably crustal scale and strike slip in character, led to the eruption of the least evolved rocks of phase C. Thereafter, E-W-striking faults controlled the location of volcanism. Volcanism in phases F and G was particularly voluminous and was synchronous with the onset of steep normal faulting in the Gulf of Corinth, 150 km west of Methana. These steep faults

  7. Ambrym Basaltic Volcano (Vanuatu Arc): Volatile Fluxes, Magma Degassing Rate and Chamber Depth

    NASA Astrophysics Data System (ADS)

    Allard, P.; Aiuppa, A.; Bani, P.; Metrich, N.; Bertagnini, A.; Gauthier, P. G.; Parello, F.; Sawyer, G. M.; Shinohara, H.; Bagnato, E.; Mariet, C.; Garaebiti, E.; Pelletier, B.

    2009-12-01

    Basaltic magma continuously erupts and degases during lava lake and/or Strombolian explosive activity at Marum and Benbow cones, the two active vents of Ambrym arc volcano in Vanuatu (800 m asl), generating a huge volcanic plume. Here we report the first complete budget for the volatile emissions of major, trace and radioactive species, as well as the first data for dissolved volatiles in the erupted basalt (Fo83-74 olivine-hosted melt inclusions, MIs), which allows us to assess the depth and degassing rate of the magma reservoir feeding Ambrym volcano. Real-time multi-gas measurements, coupled with lab analysis of filtered-pack plume samples, demonstrate that gas emissions from Marum and Benbow cones are uniform in their water content (90 mol%), SO2/HCl (5), SO2/HF (11) and trace metals/SO2 ratios but differ in their CO2/SO2 ratio (5.6 and 1.0, respectively), suggesting a deeper (CO2-enriched) gas derivation at Marum. Airborne measurements of SO2 flux (8000 tons/day) and the bulk plume CO2/SO2 ratio (3.7) verify that Marum cone produces 60% of the overall emissions, while Benbow only 40%. Ambrym ranks among the strongest volcanic emitters on Earth not only for SO2 (this work and a), but also for H2O, CO2, HCl, HF and HBr (2x105, 2x104, 800, 180 and 7 tons/day, respectively), for several volatile to mildly-volatile trace elements (Se, As, Sn, Tl, Cu, Pb, Rb, Cd, Ag) and for radioactive 210Po (~8.5% of the global volcanic flux). The aphyric nature of the basalt and the quite low dissolved wt% of H2O (≤1.5), CO2 (≤0.1) and S (≤0.15) in MIs of Fo83-olivine point to shallow melt entrapment in a gas-rich magma reservoir emplaced at ~3.6 km depth beneath the caldera. This depth is in good agreement with inference from available VLPT-seismic data (b). The magma degassing rate - from 2.7x108 kg/d (based on S data) to 1.3x109 kg/d (using the Pb’s output, melt content and vapour-melt partition coefficient) - largely exceeds the production of ash (~106 kg/d) and

  8. On the time-scales of magmatism at island-arc volcanoes.

    PubMed

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less. PMID

  9. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Petterson, M. G.; Saunders, A. D.; Millar, I. L.; Jenkin, G. R. T.; Toba, T.; Naden, J.; Cook, J. M.

    2009-12-01

    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase-clinopyroxene-magnetite ± amphibole ± olivine) and trachytes (plagioclase-amphibole-magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.

  10. Mission Immiscible: Distinct subduction components generate two primary magmas of Pagan Volcano, Mariana arc

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Ishizuka, O.; Stern, R. J.; Nunokawa, A.; Shukuno, H.; Kawabata, H.; Hirahara, Y.; Chang, Q.; Miyazaki, T.; Kimura, J.; Embley, R. W.; Bloomer, S. H.; Tatsumi, Y.

    2012-12-01

    Pagan is one of the largest (2,160 km3; Bloomer et al., 1989) volcanoes along the Mariana arc magmatic front. Pagan has a maximum elevation of 570 m (Mt. Pagan), but its submarine flanks descend to 2,000-3,000 m, and most of the volcano is submarine and unexplored. Bathymetric mapping and ROV Hyper-Dolphin (HPD1147) dive on the NE submarine flank of Pagan were carried out during NT10-12 (R/V Natsushima) in July 2010. There are no systematic differences between subaerial and submarine lavas with > 52 wt % SiO2, suggesting derivation from the same magmatic system. Twenty least-fractionated basalts (48.5-50 wt % SiO2) extend to higher MgO (10-11 wt %) and Mg# (66-70) than subaerial lavas. Compositions of olivine (up to Fo94) and spinels (Cr# up to 0.8) suggest that Pagan primitive magmas formed from high degrees of mantle melting. Two geochemical groups of basalts can be distinguished at similar 10-11 wt % MgO; these erupted about the same time, 500 m apart. Both contain clinopyroxene and olivine phenocrysts, thus, these two groups are referred to as COB1 and COB2. Lower TiO2, FeO, Na2O, K2O, incompatible trace element abundances, and Nb/Yb suggest that COB1 formed from higher degrees of mantle melting. In addition, LREE-enrichment and higher Th/Nb in COB2 contrast with LREE-depletion and lower Th/Nb in COB1. Higher Ba/Th and Ba/Nb and lower Th/Nb indicate that main subduction addition in COB1 was dominated by hydrous fluid, whereas that in COB2 was dominated by sediment melt. Sr-Nd-Pb-Hf isotopes are also consistent with this scenario. Importantly, the subduction addition, that caused more melting of the COB1 source was mostly hydrous fluid. In contrast to Pagan, we observed two primary magmas (COB and POB) in the NW Rota-1 volcano (NWR1), ~40 km behind the volcanic front. NWR1 COB has a greater subduction component, both hydrous fluid and sediment melt, than POB, perhaps reflecting that the subducting slab below NWR1 is > 100 km deeper than that beneath Pagan. At

  11. U-series disequilibrium in rear-arc volcanoes from the Northern Volcanic Zone in Ecuador; along-arc variation and implications for petrogenetic processes

    NASA Astrophysics Data System (ADS)

    Garrison, J. M.; Matthews, T. P.; Sims, K. W.; Escobar, R. D.; Yogodzinski, G. M.; Waters, C. L.

    2012-12-01

    Ecuador has been the focus of several studies that document the across-arc geochemical variation in the Northern Volcanic Zone (NVZ), and these studies have been useful in illustrating that from west to east, the lavas are higher in alkali and the fluid mobile elements. Of less focus has been the north to south along-arc variation that is illustrated by volcanoes including Sumaco, Pan de Azucar and El Reventador. Reventador is the northernmost volcano in the rear-arc of the NVZ and has been active since a renewed cycle of activity began in November 2002. Sumaco is located 30 km to the south and has been inactive since at least 1933, although no historic eruptions have been recorded for this volcano. Located between these two volcanoes is the inactive Pan de Azucar volcano, for which there exists no data on the eruptive history. The goal of this research is to document changes in geochemical variation from north to south in the rear-arc of Ecuador and to link this to a petrogenetic process or processes. During a 2010 expedition we collected samples from Sumaco and Reventador Volcanoes, and obtained samples from Pan de Azucar volcano from our colleagues at the IGEPN in Quito. Samples were analyzed for U-series isotopes in addition to major and trace elements. In terms of major and trace elements, El Reventador lavas are weakly alkaline and contain plagioclase, pyroxene and olivine as the major phases, whereas the Sumaco lavas are strongly alkaline and contain titanian augite and hauyne as major phases. The Pan de Azucar samples are compositionally intermediate between the two. Generally speaking, from north to south Ba/Nb decreases from a maximum of 150 at Reventador to 50 at Sumaco, whereas the La/Yb increases from 30 to 50. Other systematic N-S changes include decreasing Ba/Th, which is negatively correlated with Sr concentrations that range from 1000 (Reventador) to 4000 (Sumaco). This is consistent with lower fluid input from N-S that generates smaller degrees of

  12. The Effects of Varying Crustal Carbonate Composition on Assimilation and CO2 Degassing at Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Carter, L. B.; Holmes, A. K.; Dasgupta, R.; Tumiati, S.

    2015-12-01

    Magma-crustal carbonate interaction and subsequent decarbonation can provide an additional source of CO2 release to the exogenic system superimposed on mantle-derived CO2. Carbonate assimilation at present day volcanoes is often modeled by limestone consumption experiments [1-4]. Eruptive products, however, do not clearly display the characteristic ultracalcic melt compositions produced during limestone-magma interaction [4]. Yet estimated CO2outflux [5] and composition of volcanics in many volcanic systems may allow ~3-17% limestone- or dolostone-assimilated melt contribution. Crystallization may retain ultracalcic melts in pyroxenite cumulates. To extend our completed study on limestone assimilation, here we explore the effect of varying composition from calcite to dolomite on chemical and thermal decarbonation efficiency of crustal carbonates. Piston cylinder experiments at 0.5 GPa and 900-1200 °C demonstrate that residual mineralogy during interaction with magma shifts from CaTs cpx and anorthite/scapolite in the presence of calcite to Di cpx and Fo-rich olivine with dolomite. Silica-undersaturated melts double in magnesium content, while maintaining high (>30 wt.%) CaO values. At high-T, partial thermal breakdown of dolomite into periclase and CO2 is minimal (<5%) suggesting that in the presence of magma, CO2 is primarily released due to assimilation. Assimilated melts at identical P-T conditions depict similarly high volatile contents (10-20 wt.% by EMPA deficit at 0.5 GPa, 1150 °C with hydrous basalt) with calcite or dolomite. Analysis of the coexisting fluid phase indicates the majority of water is dissolved in the melt, while CO2 released from the carbonate is preferentially partitioned into the vapor. This suggests that although assimilated melts have a higher CO2 solubility, most of the CO2can easily degas from the vapor phase at arc volcanoes, possibly more so at volcanic plumbing systems traversing dolomite [8]. [1]Conte et al 2009 EuJMin (21) 763

  13. Volcanic construction of submarine Kermadec arc volcanoes from near-bottom sidescan sonar data collected by the Sentry AUV

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; de Ronde, C. E.; Leybourne, M. I.; Caratori Tontini, F.; Kaiser, C. L.; Kurras, G. J.; Kinsey, J. C.; Yoerger, D. R.

    2011-12-01

    Seafloor mapping in the deep ocean has benefitted greatly from the advent and now routine use of autonomous underwater vehicles (AUVs) to collect areally extensive near-bottom bathymetric, photographic, hydrographic, and magnetic data. For geologic investigations, AUV-derived data is often supplemented by near-bottom sidescan sonar backscatter data that provides information on seafloor substrate (e.g., sediment/bare rock) and roughness. High-frequency sidescan sonar data with comparable resolution to AUV-derived bathymetry is typically collected by deep-towed instruments at altitudes <100 m. This approach has limited use in rough terrain as rapid depth changes in towed-vehicles can significantly degrade sidescan sonar data quality. This limitation certainly applies to arc volcanoes where regional slopes in excess of 25 degrees are present on volcano flanks and much greater local slopes due steep-walled calderas and resurgent domes are common. Here we report the first deployment of a dual-frequency sidescan sonar system (Edgetech 2200M 120/410 kHz) on the National Deep Submergence Facility AUV Sentry, which can easily operate in rough terrain. Sidescan sonar data was collected over three submarine volcanoes in the Kermadec Arc (Brothers, Healy, Rumble III) on a cruise sponsored by the Institute of Geological and Nuclear Science, New Zealand. Sentry operated at ~40 m altitude with track spacing of 50-100 m. Sonar imagery from the 410 kHz channel has a spatial resolution of ~20 cm/pixel. To our knowledge, these are the first near-bottom, high-frequency sidescan sonar data collected at submarine arc volcanoes. We use these data to evaluate the type (explosive, effusive), size, and relative age of the deposits that make up these volcanic edifices based on acoustic backscatter intensity, along with ground-truthing from deep-towed photographic surveys. Relative to existing multibeam and sidescan sonar backscatter data in similar settings, the Sentry-collected sidescan

  14. New Sonar evidence of the rates of growth and collapse of Monowai Volcano, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Peirce, C.; Grevemeyer, I.; Pauletto, M.; Stratford, W. R.; Bassett, D.; Hunter, J.; Kalnins, L. M.; de Ronde, C. E.; Lamarche, G.

    2011-12-01

    Monowai cone and caldera on the northern end of the Kermadec arc is one of the world's most active submarine volcanoes with a 60+ year history of visual observations and seismic activity. Swath bathymetry surveys in 1986 (R/V Thomas Washington), 1998 (R/V SONNE), 2004 (R/V Tangaroa) and 2007 (R/V SONNE) document the morphological evolution of the volcano and reveal significant cone growth, flank doming and slope collapse. We have extended this record to 2011 after re-surveying Monowai on May 14 using a 12 kHz EM-120 SIMRAD swath bathymetry system onboard R/V SONNE. When differenced against the 2007 survey, we observed a negative depth change of up to -58.3 m associated with a sector collapse of the northwest flank of the cone and a positive depth change of up to +91.4 m associated with a doming of the southwest flank. Towards the end of the survey, we observed an approximately 500 m long, 100 m wide, plume of discolored water and gas bubbles ~40 m south of the cone summit. On May 17, three days after the swath survey, the Rarotonga and Raoul Island Seismic Networks recorded a swarm of high-amplitude hydroacoustic T-wave events, indicative of explosive activity at Monowai. The swarm lasted ~4.6 days, prompting us to return and conduct a second swath survey of the cone region on June 2. When differenced against our first survey, we found dramatic changes: a negative depth change of up to -84.8 m associated with a collapse of the north flank of the volcano, and a positive depth change of up to +68.5 m associated with the growth of new cones and domes on the south, north and west flanks. The collapse structure includes a triangular-shaped crater bounded by inward-facing normal faults with dips of up to 47o. The growth structures include a ~100 m wide, ~40 m high, cone with slopes of up to 50o and an associated flow deposit up to 8 m thick that extends >1 km down-slope. Backscatter data suggest that the new cone has high reflectivity, indicative of lava, while the flow

  15. Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Cashman, K. V.; Embley, R. W.; Matsumoto, H.; Dziak, R. P.; de Ronde, C. E. J.; Lau, T. K.; Deardorff, N. D.; Merle, S. G.

    2008-08-01

    Extraordinary video and hydrophone observations of a submarine explosive eruption were made with a remotely operated vehicle in April 2006 at a depth of 550-560 m on NW Rota-1 volcano in the Mariana arc. The observed eruption evolved from effusive to explosive, while the eruption rate increased from near zero to 10-100 m3/h. During the peak in activity, cyclic explosive bursts 2-6 min long were separated by shorter non-eruptive pauses lasting 10-100 s. The size of the ejecta increased with the vigor of the explosions. A portable hydrophone deployed near the vent recorded sounds correlated with the explosive bursts; the highest amplitudes were ˜50 dB higher than ambient noise at frequencies between 10 and 50 Hz. The acoustic data allow us to quantify the durations, amplitudes, and evolution of the eruptive events over time. The low eruption rate, high gas/lava ratio, and rhythmic eruptive behavior at NW Rota-1 are most consistent with a Strombolian eruptive style. We interpret that the eruption was primarily driven by the venting of magmatic gases, which was also the primary source of the sound recorded during the explosive bursts. The rhythmic nature of the bursts can be explained by partial gas segregation in the conduit and upward migration in a transitional regime between bubbly flow and fully developed slug flow. The strongest explosive bursts were accompanied by flashes of red glow and oscillating eruption plumes in the vent, apparently caused by magma-seawater interaction and rapid steam formation and condensation. This is the first time submarine explosive eruptions have been witnessed with simultaneous near-field acoustic recordings.

  16. Island-arc magmatic processes beneath South Pagan Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Trusdell, F. A.; Garcia, M. O.; Pietruszka, A. J.

    2007-12-01

    The island-arc volcanoes that make up the Northern Mariana Islands are among the most historically active stratovolcanoes along the Pacific plate, yet they have been poorly studied due to their remote location and difficult accessibility. One of the least studied areas in the Northern Mariana Islands is Pagan Island, located near the center of the Mariana ridge. Pagan Island consists of two Holocene stratovolcanoes, Mount Pagan and South Pagan. Remarkably little is known about South Pagan including its eruptive history, potential volcanic hazards, and geochemical evolution due to a small population of inhabitants, a short and intermittent recorded history, and few geological studies. There is abundant evidence that eruption of South Pagan could pose significant hazards to both residents of the Northern Mariana Islands and to aircraft flying in the western Pacific. For example, following Mount Pagan's most recent explosive eruption (VEI = 4) in 1981, destructive rain-triggered volcanic debris flows buried large tracts of land, including the site of a village that contained a school, dispensary, church, and power generating buildings. Preliminary field studies in May 2006 by the USGS showed that a full spectrum of hazardous phenomena originated from South Pagan in the past, including pyroclastic flows and surges, caldera collapses, and volcanic debris flows. Two previously unrecognized active fumaroles near the summit of South Pagan were discovered suggesting that potential volcanic hazards currently exist in this area. A majority of the new lava samples are vesicular, clinopyroxene-plagioclase basalts with minor plagioclase xenocrysts and gabbroic xenoliths. The purpose of this study is to understand the compositional history of South Pagan and how it relates to the crustal and mantle magmatic processes beneath the central Northern Mariana Islands. Pb, Sr and Nd isotope ratios, major and trace element abundances, and mineral chemistry were determined and will be

  17. The Geologic Setting of Hydrothermal Vents at Mariana Arc Submarine Volcanoes: High-Resolution Bathymetry and ROV Observations

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Stern, R. J.; Hein, J.; Merle, S.; Ristau, S.

    2004-12-01

    Remotely operated vehicle (ROV) dives were made at 7 submarine volcanoes between 14-23° N in the Mariana Arc in April 2004 with the ROPOS ROV. Six of these volcanoes were known to be hydrothermally active from CTD data collected during a previous expedition in March 2003: NW Rota-1, E Diamante, NW Eifuku, Daikoku, Kasuga-2, and Maug, a partly submerged caldera. The physical setting of hydrothermal venting varies widely from volcano to volcano. High-resolution bathymetric surveys of the summits of NW Rota-1 and NW Eifuku volcanoes were conducted with an Imagenex scanning sonar mounted on ROPOS. Near bottom observations during ROPOS dives were recorded with digital video and a digital still camera and the dives were navigated acoustically from the R/V Thompson using an ultra-short baseline system. The mapping and dive observations reveal the following: (1) The summits of some volcanoes have pervasive diffuse venting (NW Rota-1, Daikoku, NW Eifuku) suggesting that hydrothermal fluids are able to circulate freely within a permeable edifice. At other volcanoes, the hydrothermal venting is more localized (Kasuga-2, Maug, E Diamante), suggesting more restricted permeability pathways. (2) Some volcanoes have both focused venting at depth and diffuse venting near the summit (E Diamante, NW Eifuku). Where the hydrothermal vents are focused, fluid flow appears to be localized by massive lava outcrops that form steep cliffs and ridges, or by subsurface structures such as dikes. High-temperature (240° C) venting was only observed at E Diamante volcano, where the "Black Forest" vent field is located on the side of a constructional cone near the middle of E Diamante caldera at a depth of 350 m. On the side of an adjacent shallower cone, the venting style changed to diffuse discharge and it extended all the way up into the photic zone (167 m). At NW Eifuku, the pattern of both deep-focused and shallow-diffuse venting is repeated. "Champagne vent" is located at 1607 m, ~150 m

  18. Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Lupton, J.; Lilley, M.; Butterfield, D.; Evans, L.; Embley, R.; Olson, E.; Proskurowski, G.; Resing, J.; Roe, K.; Greene, R.; Lebon, G.

    2004-12-01

    In March/April 2004, submersible dives with the remotely-operated vehicle ROPOS discovered an unusual CO2-rich hydrothermal system near the summit of NW Eifuku, a submarine volcano located at 21.49° N, 144.04° E in the northern Mariana Arc. Although several sites of hydrothermal discharge were located on NW Eifuku, the most intense venting was found at 1600-m depth at the Champagne site, slightly west of the volcano summit. The Champagne site was found to be discharging two distinct fluids into the ocean: a) several small white chimneys were emitting milky 103° C gas-rich hydrothermal fluid with at least millimolar levels of H2S and b) cold (< 4° C) droplets coated with a milky skin were rising slowly from the sediment. These droplets were later determined to consist mainly of liquid CO2, with H2S as a probable secondary component. The droplets were sticky, and did not tend to coalesce into larger droplets, even though they adhered to the ROV like clumps of grapes. The film coating the droplets was assumed to be CO2 hydrate (or clathrate) which is known to form whenever liquid CO2 contacts water under these P,T conditions. Samples of the 103° C hydrothermal fluids were collected in special gas-tight titanium sampling bottles that were able to withstand the high internal pressures created by the dissolved gases. The Champagne hydrothermal fluids contained a surprising 2.3 moles/kg of CO2, an order of magnitude higher than any CO2 values previously reported for submarine hydrothermal fluids. The overall gas composition was 87% CO2, < 0.1% CH4, < 2 ppm H2, 0.012 mM/kg 4He, with the remaining 13% (322 mM/kg) assumed to be sulfur gases (H2S, SO2, etc.). (Additional analyses planned will confirm the speciation of this sulfur gas component). The helium had R/RA = 7.3, typical of subduction zone systems (R = 3He/4He and RA = Rair). Isotopic analysis of the CO2 yielded δ 13C = -1.75 ‰ , much heavier than the -6.0 ‰ typical for carbon in MOR vent fluids. The C/3He

  19. Bubble development in explosive silicic eruptions: insights from pyroclast vesicularity textures from Raoul volcano (Kermadec arc)

    NASA Astrophysics Data System (ADS)

    Rotella, Melissa D.; Wilson, Colin J. N.; Barker, Simon J.; Cashman, Katharine V.; Houghton, Bruce F.; Wright, Ian C.

    2014-08-01

    Critical to understanding explosive eruptions is establishing how accurately representative pyroclasts are of processes during magma vesiculation and fragmentation. Here, we present data on densities, and vesicle size and number characteristics, for representative pyroclasts from six silicic eruptions of contrasting size and style from Raoul volcano (Kermadec arc). We use these data to evaluate histories of bubble nucleation, coalescence, and growth in explosive eruptions and to provide comparisons with pumiceous dome carapace material. Density/vesicularity distributions show a scarcity of pyroclasts with ˜65-75 % vesicularity; however, pyroclasts closest to this vesicularity range have the highest bubble number density (BND) values regardless of eruptive intensity or style. Clasts with vesicularities greater than this 65-75 % "pivotal" vesicularity range have decreasing BNDs with increasing vesicularities, interpreted to reflect continuing bubble growth and coalescence. Clasts with vesicularities less than the pivotal range have BNDs that decrease with decreasing vesicularity and preserve textures indicative of processes such as stalling and open system degassing prior to vesiculation in a microlite-rich magma, or vesiculation during slow ascent of degassing magma. Bubble size distributions (BSDs) and BNDs show variations consistent with 65-75 % representing the vesicularity at which vesiculating magma is most likely to undergo fragmentation, consistent with the closest packing of spheres. We consider that the observed vesicularity range may reflect the development of permeability in the magma through shearing as it flows through the conduit. These processes can act in concert with multiple nucleation events, generating a situation of heterogeneous bubble populations that permit some regions of the magma to expand and bubbles to coalesce with other regions in which permeable networks are formed. Fragmentation preserves the range in vesicularity seen as well as

  20. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  1. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  2. Open-Vent Degassing of CO2 from Typical Andesitic Volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Aiuppa, A.; Rotolo, S.; Giudice, G.; Moretti, R.; Conde, V.; Galle, B.; Tamburello, G.

    2014-12-01

    The collection of H2O-CO2-SO2 volcanic gas datasets at open-vent basaltic volcanoes has increased since the introduction of electrochemical/NDIR (Multi-GAS) instruments in the field. An open problem remains to understand the degassing regime of volcanoes of intermediate compositions, which is complicated by wide range of eruption styles. We propose here to initiate the study of the degassing regime of Telica and San Cristobal (Nicaragua), two constantly monitored volcanoes in the Central American Volcanic Arc (CAVA). We calculated the CO2 flux sustained by summit plume degassing at Telica and San Cristobal as the product of the CO2/SO2 ratio of Multi-GAS technique with parallel SO2 flux measurements, made by using scanning UV-DOAS instruments in 2013. At Telica, the CO2 flux was evaluated at 166±76 t/d and at San Cristobal we measured 520±260 t/d. Degassing activity at Telica volcano consists in surface gas discharges dominated by H2O (70-98 mol%; mean of 92 mol%), and by CO2 (1-23 mol%; mean of 6 mol%) and SO2 (0.5-7.4 mol%; mean of 2.9 mol%). San Cristobal gas is dominated by H2O (85-97 mol%; mean of 92 mol%), and by CO2 (2-12 mol%; mean of 6 mol%) and SO2 (3-5 mol%; mean of 3.8 mol%). These values are typical of volcanic arc regions and the volcanoes were in a stage of quiescent degassing without excess of CO2 output relatively to the other major gases. By interpreting our recent gas measurements in tandem with preliminary melt inclusion records of pre-eruptive dissolved volatile abundances, we hope to build a conceptual degassing model taking into account the active degassing regimes during past volcanic eruptions. Finally, we hope to refine the CO2 budget estimates along the CAVA.

  3. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  4. Twenty years of Alaska Volcano Observatory's contributions to seismology

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; McNutt, S. R.; Power, J. A.; West, M.

    2008-12-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys observed its 20th anniversary in 2008. The AVO seismic network, inherited from AVO partners in 1988, consisted of three small-aperture subnetworks on Mount Spurr, Redoubt Volcano and Augustine Volcano and regional stations for a total of 23 short-period instruments (two with three-components). Twenty years later, the AVO network has expanded to 192 stations (23 three-component short-period, and 15 broadband) on 33 volcanoes spanning 2500 km across the Aleutian arc in one of the most remote and challenging environments in the world. The AVO seismic network provides for a unique data set. Within the seismically active Aleutian Arc, there are instrumented volcanoes which exhibit a variety of chemical compositions and eruptive styles. With each individual volcanic center similarly instrumented and all data analyzed in a consistent manner AVO has produced a data set suitable for making seismic comparisons across a wide suite of volcanoes. In twenty years, the AVO has captured data sets for eruptions at Augustine, Kasatochi, Okmok, Pavlof, Redoubt, Shishaldin, Spurr, and Venianinof. AVO data set also includes several volcanic-tectonic swarms, most notably at Akutan, Iliamna, Mageik, Martin, Shishaldin, and Tanaga. This broad approach to volcano seismology has led to a better understanding of precursory earthquake swarms, variations in background rates, triggered seismicity, the structure of volcanoes, volcanic tremor and deep long period earthquakes, among numerous other topics. The AVO also incorporates data from seismic stations operated by both the Alaska Earthquake Information Center and West Coast and Alaska Tsunami Warning Center to help locate some of the 70,000 earthquakes in the AVO catalog. In exchange AVO provides dense seismic data from the

  5. The temporal evolution of back-arc magmas from the Auca Mahuida shield volcano (Payenia Volcanic Province, Argentina)

    NASA Astrophysics Data System (ADS)

    Pallares, Carlos; Quidelleur, Xavier; Gillot, Pierre-Yves; Kluska, Jean-Michel; Tchilinguirian, Paul; Sarda, Philippe

    2016-09-01

    In order to better constrain the temporal volcanic activity of the back-arc context in Payenia Volcanic Province (PVP, Argentina), we present new K-Ar dating, petrographic data, major and trace elements from 23 samples collected on the Auca Mahuida shield volcano. Our new data, coupled with published data, show that this volcano was built from about 1.8 to 1.0 Ma during five volcanic phases, and that Auca Mahuida magmas were extracted from, at least, two slightly different OIB-type mantle sources with a low partial melting rate. The first one, containing more garnet, was located deeper in the mantle, while the second contains more spinel and was thus shallower. The high-MgO basalts (or primitive basalts) and the low-MgO basalts (or evolved basalts), produced from the deeper and shallower lherzolite mantle sources, respectively, are found within each volcanic phase, suggesting that both magmatic reservoirs were sampled during the 1 Myr lifetime of the Auca Mahuida volcano. However, a slight increase of the proportion of low-MgO basalts, as well as of magmas sampled from the shallowest source, can be observed through time. Similar overall petrological characteristics found in the Pleistocene-Holocene basaltic rocks from Los Volcanes and Auca Mahuida volcano suggest that they originated from the same magmatic source. Consequently, it can be proposed that the thermal asthenospheric anomaly is probably still present beneath the PVP. Finally, our data further support the hypothesis that the injection of hot asthenosphere with an OIB mantle source signature, which was triggered by the steepening of the Nazca subducting plate, induced the production of a large volume of lavas within the PVP since 2 Ma.

  6. Hydrothermal mineralization at Kick'em Jenny submarine volcano in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Olsen, R.; Carey, S.; Sigurdsson, H.; Cornell, W. C.

    2011-12-01

    Kick 'em Jenny (KeJ) is an active submarine volcano located in the Lesser Antilles island arc, ~7.5 km northwest of Grenada. Of the twelve eruptions detected since 1939, most have been explosive as evidenced by eyewitness accounts in 1939, 1974, and 1988 and the dominance of explosive eruption products recovered by dredging. In 2003, vigorous hydrothermal activity was observed in the crater of KeJ. Video footage taken by a remotely operated vehicle (ROV) during the cruise RB-03-03 of the R/V Ronald Brown documented the venting of a vapor phase in the form of bubbles that ascended through the water column and a clear fluid phase in the form of shimmering water. The shimmering water generally ascended through the water column but can also been seen flowing down gradient from a fissure at the top of a fine-grained sediment mound. These fine-grained sediment mounds are the only structure associated with hydrothermal venting; spire or chimney structures were not observed. Hydrothermal venting was also observed coming from patches of coarse-grained volcaniclastic sediment on the crater floor and from talus slopes around the perimeter of the crater. Samples were collected from these areas and from areas void of hydrothermal activity. XRD and ICPMS analyses of bulk sediment were carried out to investigate the geochemical relationships between sediment types. Sediment samples from the hydrothermal mound structures are comprised of the same components (plagioclase, amphibole, pyroxene, and scoria) as sediment samples from areas void of hydrothermal activity (primary volcaniclastic sediment) in the 500-63 μm size range. High resolution grain size analyses show that >78% of sediment in the hydrothermal mound samples are between 63-2 μm with 6-20% clay sized (<2 μm) whereas <40% of the primary volcaniclastic sediment is between 63-2 μm with ~2% clay sized. The presence of clay minerals (smectite, illite, talc, and I/S mixed layer) in the hydrothermal mound samples was

  7. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves

    USGS Publications Warehouse

    De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David

    2012-01-01

    In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.

  8. Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians)

    NASA Astrophysics Data System (ADS)

    Kiss, Balázs; Harangi, Szabolcs; Ntaflos, Theodoros; Mason, Paul R. D.; Pál-Molnár, Elemér

    2014-03-01

    Ciomadul is the youngest volcano in the Carpathian-Pannonian region produced crystal-rich high-K dacites that contain abundant amphibole phenocrysts. The amphiboles in the studied dacites are characterized by large variety of zoning patterns, textures, and a wide range of compositions (e.g., 6.4-15 wt% Al2O3, 79-821 ppm Sr) often in thin-section scale and even in single crystals. Two amphibole populations were observed in the dacite: low-Al hornblendes represent a cold (<800 °C) silicic crystal mush, whereas the high-Al pargasites crystallized in a hot (>900 °C) mafic magma. Amphibole thermobarometry suggests that the silicic crystal mush was stored in an upper crustal storage (~8-12 km). This was also the place where the erupted dacitic magma was formed during the remobilization of upper crustal silicic crystal mush body by hot mafic magma indicated by simple-zoned and composite amphiboles. This includes reheating (by ~200 °C) and partial remelting of different parts of the crystal mush followed by intensive crystallization of the second mineral population (including pargasites). Breakdown textures of amphiboles imply that they were formed by reheating in case of hornblendes, suggesting that pre-eruptive heating and mixing could take place within days or weeks before the eruption. The decompression rim of pargasites suggests around 12 days of magma ascent in the conduit. Several arc volcanoes produce mixed intermediate magmas with similar bimodal amphibole cargo as the Ciomadul, but in our dacite the two amphibole population can be found even in a single crystal (composite amphiboles). Our study indicates that high-Al pargasites form as a second generation in these magmas after the mafic replenishment into a silicic capture zone; thus, they cannot unambiguously indicate a deeper mafic storage zone beneath these volcanoes. The simple-zoned and composite amphiboles provide direct evidence that significant compositional variations of amphiboles do not necessarily

  9. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse

  10. Observations of Local Seismicity and Harmonic Tremor Using an Ocean Bottom Hydrophone Array at Brothers Volcano, South Kermadec Arc.

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Lau, T. K.; Matsumoto, H.

    2005-12-01

    The submarine Brothers volcano is an important link in the volcanic chain of the southern Kermadec Arc system in the Southwest Pacific Ocean north of New Zealand. The 3-3.5 km wide caldera has a center depth of 1850m and steep surrounding walls of 300-450m. Active hydrothermal venting distinguished Brothers as a point of focus for the New Zealand American Submarine Ring of Fire (NZASRoF) expeditions in 2004 and 2005. Due to its remote location, moderate to small magnitude seismicity around the Brothers area is largely unknown. In late September 2004, four ocean bottom hydrophones (OBHs) were deployed on the caldera floor. In April 2005, three of the four instruments were recovered intact. These three OBHs continuously recorded, for seven months, the low frequency (0-110Hz) acoustic field around Brothers volcano, in particular seismic P- and S-waves propagating through the crust and acoustic T-waves in the water column . Preliminary analysis reveals seismicity rates on the order of 106 earthquakes per month. In addition to seismic arrivals, low frequency harmonic tremor is frequently and independently observed on each of the OBH instruments, often occurring subsequent to the larger seismic events. Qualitative comparisons of these signals with tremor observed from the Volcano Islands south of Japan (Dziak and Fox, 2002) show them to be nearly equivalent in frequency structure, suggesting the origin of the tremor observed at Brothers may also be attributed to resonance of a magma-gas mixture in a large chamber or conduit near the water/ seafloor boundary.

  11. A Potential Field and Geomorphological Study of Monowai Volcano: Interplay Between Volcanism and Tectonics on the Tonga-Kermadec arc

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Watts, A. B.; Peirce, C.

    2013-12-01

    The dynamics of caldera formation is affected by internal factors, such as magma chamber properties, and regional tectonic stresses. Understanding their inter-relation is important for assessing volcanic hazard and reconstructing volcano and arc evolution. We present a combined analysis of swath bathymetry and potential field data from the Monowai volcanic centre, Kermadec arc, acquired during cruise SO215 on the R/V Sonne, in April-June 2011. Monowai comprises an active stratovolcano and a large caldera, both submarine. The caldera is associated with a 25 mGal Bouguer gravity anomaly high and a broad positive magnetic anomaly. Short-wavelength magnetic anomalies of up to +1400 and -800 nT are observed along the caldera rim and on the summit of Monowai cone. Inversion of the Bouguer gravity anomaly shows that the caldera high is caused by a dense body with density contrast of +450 kg/m^3. The body has a volume of ~250 km^3 and consist of a main massive unit at 3-6 km depth and a shallower ring structure underlying the caldera rim. The density of the main body is 2650-2850 kg/m^3, compatible with a mafic composition. The ring structure is interpreted as set of ring dykes and the main unit as a solidified or partly solidified magma chamber system (the Monowai pluton). Geomorphological analysis suggests that the caldera's complex structure can be attributed to protracted activity on a single caldera structure and to multiple cycles of inflation and collapse. The underlying pluton might have grown incrementally as a series of sill-like intrusions. It remains unclear whether the current eruption at Monowai cone is fed directly from a small underlying magma chamber, or laterally from the Monowai pluton. Observations of radial fissure ridges on the flanks suggest that a shallow magma body was recently emplaced beneath the summit causing inflation and extensional cracks. Monowai lies inside a 20 km wide graben, part of an en-echelon, left-stepping horst and graben system

  12. Degassing dynamics of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano, Vanuatu arc

    NASA Astrophysics Data System (ADS)

    Allard, Patrick; Burton, Mike; Sawyer, Georgina; Bani, Philipson

    2016-08-01

    Persistent lava lakes are rare on Earth and provide volcanologists with a remarkable opportunity to directly investigate magma dynamics and degassing at the open air. Ambrym volcano, in Vanuatu, is one of the very few basaltic arc volcanoes displaying such an activity and voluminous gas emission, but whose study has long remained hampered by challenging accessibility. Here we report the first high temporal resolution (every 5 s) measurements of vigorous lava lake degassing inside its 300 m deep Benbow crater using OP-FTIR spectroscopy. Our results reveal a highly dynamic degassing pattern involving (i) recurrent (100-200 s) short-period oscillations of the volcanic gas composition and temperature, correlating with pulsated gas emission and sourced in the upper part of the lava lake, (ii) a continuous long period (∼8 min) modulation probably due to the influx of fresh magma at the bottom of the lake, and (iii) discrete CO2 spike events occurring in coincidence with the sequential bursting of meter-sized bubbles, which indicates the separate ascent of large gas bubbles or slugs in a feeder conduit with estimated diameter of 6 ± 1 m. This complex degassing pattern, measured with unprecedented detail and involving both coupled and decoupled magma-gas ascent over short time scales, markedly differs from that of quieter lava lakes at Erebus and Kilauea. It can be accounted for by a modest size of Benbow lava lake and its very high basalt supply rate (∼20 m3 s-1), favouring its rapid overturn and renewal. We verify a typical basaltic arc signature for Ambrym volcanic gas and, based on contemporaneous SO2 flux measurements, we evaluate huge emission rates of 160 Gg d-1 of H2O, ∼10 Gg d-1 of CO2 and ∼8 Gg d-1 of total acid gas (SO2, HCl and HF) during medium activity of the volcano in 2008. Such rates make Ambrym one of the three most powerful volcanic gas emitters at global scale, whose atmospheric impact at local and regional scale may be considerable.

  13. Continuous, Long-term, Cyclic, Varied Eruptive Activity Observed at NW Rota-1 Submarine Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Dziak, R. P.; Baker, E. T.; Cashman, K. V.; Embley, R. W.; Ferrini, V.; de Ronde, C. E.; Butterfield, D. A.; Deardorff, N.; Haxel, J. H.; Matsumoto, H.; Fowler, M. J.; Walker, S. L.; Bobbitt, A. M.; Merle, S. G.

    2009-12-01

    NW Rota-1 is a conical, basaltic-andesite submarine volcano in the Mariana arc with a summit depth of 520 m. Eruptive activity was first witnessed here during remotely operated vehicle (ROV) dives in 2004, and was also observed during all four subsequent ROV expeditions in 2005, 2006, and 2009. Cyclic explosive bursts were documented by a portable hydrophone during the 2006 ROV dives. More recently, a year of instrumental monitoring data from a moored hydrophone and plume sensor show that the volcano was continuously active from February 2008 to February 2009, and that the cyclic character of the eruptions occurred with variable intensity and periodicity. The 2008-2009 hydrophone record includes explosive bursts every 1-2 minutes, with high acoustic amplitudes in the first half of the year and lower more variable amplitudes in the second half. In contrast, the moored turbidity sensor recorded major eruptive plumes on a time scale of every few days to weeks, and at approximately the same frequency throughout the year. This apparent disparity may be explained by the most recent ROV and portable hydrophone observations at NW Rota-1 in April 2009, which confirmed continuous and diverse eruptive activity with cyclicity over several time scales, from minutes to days. Visual observations at the eruptive vent provided new insight into the process of very slow lava extrusion on the seafloor. During slow extrusion (at rates of 1-2 m3/hr), lava spines rose in the eruptive vent, then gradually disintegrated into angular blocks as they cooled and were shoved aside by the next lava to emerge. Freshly erupted lava blocks periodically tumbled down the sides of a growing cone (40-m high and 300-m wide) that had been constructed by this process since the last visit in 2006. Thus auto-brecciation during slow lava extrusion underwater produces primary deposits that could easily be mistaken as secondary, and can construct substantial landforms on submarine arc volcanoes. Even during

  14. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  15. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    PubMed

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate. PMID:23939372

  16. Petrography of volcaniclastic rocks in intra-arc volcano-bounded to fault-bounded basins of the Rosario segment of the Lower Cretaceous Alisitos oceanic arc, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Barone, M.; Critelli, S.; Busby, C.; Fackler-Adams, B.

    2016-05-01

    The Rosario segment of the Early Cretaceous Alisitos oceanic magmatic arc in Baja California displays a record of arc-axis sedimentation and volcanism that is well preserved in outcrops within a southern volcano-bounded and a northern fault-bounded basin that flanked an intervening subaerial edifice. This record includes volcanic and volcaniclastic rocks that range from felsic to mafic in composition. Volcaniclastic/tuffaceous sandstone samples from two previously published measured sections are mainly composed of volcanic clasts with moderate plagioclase content. Locally quartz and/or potassium feldspar are present in trace to moderate amounts. The proportions of volcanic lithic types exhibiting vitric, microlitic, lathwork, and felsitic textures are highly variable with no distinct stratigraphic trends, likely as a function of the mixed styles of eruption and magma compositions that produced pyroclasts, as well as erosion-produced epiclastic debris. The volcaniclastic fill of the basins is consistent with an oceanic arc setting, except for the relatively high felsitic volcanic lithic content, likely associated with subaerial, as opposed to the more common submarine felsic magmatism associated with arc extension in oceanic settings. There are no major differences in compositional modes of tuff and sandstone between the fault-bounded and volcano-bounded basin strata, even though they exhibit distinctly different volcaniclastic facies. This suggests that proximal arc-axis basins of varying types around a single major subaerial edifice provide a faithful record of volcanic trends in the arc segment, regardless of variation in transport and depositional processes.

  17. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia

    NASA Astrophysics Data System (ADS)

    Elburg, Marlina A.; van Bergen, Manfred; Hoogewerff, Jurian; Foden, John; Vroon, Pieter; Zulkarnain, Iskandar; Nasution, Asnawir

    2002-09-01

    Four volcanoes in the Pantar Strait, the westernmost part of the extinct sector of the east Sunda arc, show remarkable across-arc variation in elemental abundances (K 2O: 1.2 to 4.3%), trace element ratios (Pb/Ce: 0.4 to 0.18; Ce/Yb: 20 to 55) and isotope ratios ( 143Nd/ 144Nd: 0.51263 to 0.51245; 87Sr/ 86Sr: 0.7053 to 0.7068; 206Pb/ 204Pb: 19.29 to 19.15). Pb isotopes are decoupled from Sr and Nd isotopes, with the frontal volcanoes showing the higher Nd and Pb and lower Sr isotopic ratios. The isotopic and trace element ratios of the volcanic samples are best explained by modification of a MORB-type source (with Indian Ocean island basalt-type Pb isotopic characteristics) by a fluid and a partial melt of subducted continental material (SCM). The frontal volcano contains the highest proportion of the fluid component, with a small contribution of partial melt. The source of the rear-arc volcano is strongly influenced by a partial melt of SCM that had undergone a previous dehydration event, by which it lost most of its fluid-mobile elements such as Pb. The SCM partial melt was in equilibrium with both rutile and garnet, whereas mantle melting took place in the presence of residual mica. The relatively large across-arc increase in incompatible elements can be explained by a combination of increasing addition of SCM partial melt, changing mantle wedge fertility and smaller degrees of partial melting toward the rear of the arc. Comparison with a more westerly across-arc transect shows that the relatively low 143Nd/ 144Nd ratios of the frontal volcano, and the decoupling of Pb from Sr and Nd isotopes are unique to the Pantar Strait volcanoes. This is likely to reflect magma generation in a collisional environment, where the leading edge of the Australian continent, rather than subducted sediment, contributes to the magma source.

  18. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data

  19. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  20. Aseismic inflation of Westdahl volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C.; Dzurisin, D.; Thatcher, W.; Freymueller, J.T.; McNutt, S.R.; Mann, Dorte

    2000-01-01

    Westdahl volcano, located at the west end of Unimak Island in the central Aleutian volcanic arc, Alaska, is a broad shield that produced moderate-sized eruptions in 1964, 1978-79, and 1991-92. Satellite radar interferometry detected about 17 cm of volcano-wide inflation from September 1993 to October 1998. Multiple independent interferograms reveal that the deformation rate has not been steady; more inflation occurred from 1993 to 1995 than from 1995 to 1998. Numerical modeling indicates that a source located about 9 km beneath the center of the volcano inflated by about 0.05 km3 from 1993 to 1998. On the basis of the timing and volume of recent eruptions at Westdahl and the fact that it has been inflating for more than 5 years, the next eruption can be expected within the next several years.

  1. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  2. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  3. Comprehensive study of the seismotectonics of the eastern Aleutian ARC and associated volcanic systems. Annual progress report, March 1, 1981-February 28, 1982

    SciTech Connect

    Jacob, K. H.; Hauksson, E.; Sykes, L. R.

    1981-01-01

    Assessment of the seismic potential for occurrence of great earthquakes in three seismic gaps (Shumagin Islands, Unalaska Island, and Yakataga-Kayak regions) has been completed. In the best-instrumented seismic gap in the Shumagin Islands region, the likelihood for a great earthquake within the next two decades is high. Analysis of earthquake data collected from a telemetered network operated in the Shumagin seismic gap shows near-quiescence in the shallow portion of the main thrust zone. Installation of digital recording equipment at the central station of the Shumagin network, combined with interactive computer analysis at Lamont-Doherty of either digitally recorded or digitized analog seismic data has provided new research possibilities for studying seismic source properties, wave propagation in a laterally heterogeneous velocity structure of the subduction zone, and for seismically screening the root-zone and volcanic pile of Pavlof volcano. High time-resolution data (0.01 sec), and wider frequency band-pass data (0.5 to 30 Hz) are now being collected. Seismic data for two eruptive sequences of Pavlof-volcano have been obtained.

  4. Are arc-type rocks the products of magma crystallisation? Observations from a simple oceanic arc volcano: Raoul Island, Kermadec Arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Smith, Ian E. M.; Stewart, Robert B.; Price, Richard C.; Worthington, Timothy J.

    2010-02-01

    Raoul Island is the emergent summit of a large intra-oceanic strato-volcano in what is globally one of the simplest of subduction settings. In this simple setting erupted magmas span the compositional range from basalt to dacite but none have the high Mg-numbers and high Ni and Cr expected of primitive mantle-derived melts. The lavas range from aphyric to highly porphyritic and are characterised by phenocryst assemblages dominated by plagioclase accompanied by clinopyroxene, olivine, orthopyroxene and spinel. Phenocryst core compositions and zoning profiles are remarkably uniform irrespective of total phenocryst content or geochemical composition, indicating a decoupling of melt and crystal components in the system. A consistent model for the Raoul magmatic system is that primitive high-Mg magma generated in a melt column within the underlying mantle wedge is transformed into a series of derivative low-Mg magmas by fractional crystallisation within the lower crust. Low-Mg magma accumulates variable quantities of crystal cargo as it ascends toward the surface through a crystal mush zone. These processes are essentially those that characterise continental subduction-related magmatic systems but differ only in the absence of an evolved crustal component.

  5. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in

  6. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate

    NASA Astrophysics Data System (ADS)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh

    2015-06-01

    Little was known about the nature and origin of the deep crust beneath the Andaman Island Arc in spite of the fact that it formed part of the highly active Indonesian volcanic arc system, one of the important continental crust forming regions in Southeast Asia. This arc, formed as a result of subduction of the Indian Plate beneath the Burma Microplate (a sliver of the Eurasian Plate), contains only one active subaerial magmatic center, Barren Island volcano, whose evolutional timeline had remained uncertain. In this work, we present results of the first successful attempt to date crustal xenoliths and their host lava flows from the island, by incremental heating 40Ar/39Ar method, in an attempt to understand the evolutionary histories of the volcano and its basement. Based on concordant plateau and isochron ages, we establish that the oldest subaerial lava flows of the volcano are 1.58 ± 0.04 (2σ) Ma, and some of the plagioclase xenocrysts have been derived from crustal rocks of 106 ± 3 (2σ) Ma. Mineralogy (anorthite + Cr-rich diopside + minor olivine) and isotopic compositions (87Sr/86Sr < 0.7040; ɛNd > 7.0) of xenoliths not only indicate their derivation from a lower (oceanic) crustal olivine gabbro but also suggest a genetic relationship between the arc crust and the ophiolitic basement of the Andaman accretionary prism. We speculate that the basements of the forearc and volcanic arc of the Andaman subduction zone belong to a single continuous unit that was once attached to the western margin of the Eurasian Plate.

  7. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes

    PubMed Central

    Bourne, A. J.; Abbott, P. M.; Albert, P. G.; Cook, E.; Pearce, N. J. G.; Ponomareva, V.; Svensson, A.; Davies, S. M.

    2016-01-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes. PMID:27445233

  8. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.

    PubMed

    Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M

    2016-01-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes. PMID:27445233

  9. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Bourne, A. J.; Abbott, P. M.; Albert, P. G.; Cook, E.; Pearce, N. J. G.; Ponomareva, V.; Svensson, A.; Davies, S. M.

    2016-07-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  10. Distribution of trace elements including tellurium, gallium, indium, and select REE in sulfide chimneys from Brothers submarine volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2011-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are <5 μm in size, although columnar crystals up to 80 μm long have been observed. The tellurides commonly form in bands, cluster in patches, or occur along internal grain boundaries within chalcopyrite. They also are found at the contact between chalcopyrite and pyrite grains. In sulfate layers adjacent to the chalcopyrite zones tellurides can occur as inclusions in anhydrite, barite or pyrite and/or occupy void space within the chimney. One Cu

  11. Melt-Rock Reactions in the Uppermost Sub-Arc Mantle Beneath Kamchatka: Evidence from Peridotite Xenoliths from Shiveluch Volcano

    NASA Astrophysics Data System (ADS)

    Bryant, J.; Yogodzinski, G. M.; Churikova, T. G.

    2005-12-01

    Ultramafic xenoliths from Shiveluch Volcano are predominantly spinel harzburgites with 55-90 modal percent olivine and 7-45 percent orthopyroxene (OPX). Abundant kink-banded olivine and textures that vary from protogranular to porphyroclastic, and granuloblastic, are consistent with a history of plastic deformation under conditions of mantle flow. Metasomatic OPX, phlogopite, clinopyroxene and amphibole, crosscut the xenoliths in mm-scale veins and form irregular patches that appear to replace the olivine-dominant primary mineralogy. Textural features suggest that high modal OPX in the harzburgites was produced by melt-rock reactions involving the replacement of olivine by OPX (e.g., OPX occurs mostly along grain boundaries between coarse olivine crystals). Primary mineral compositions are refractory, with olivine from FO89-94 and Cr# (Cr*100/Al+Cr) in spinel from 40-80. Equilibration temperatures and pressures, calculated using two-pyroxene thermometry and Ca-in-olivine barometry, are between 800-1000°C and 10-25kb. Our best estimate for the temperature and pressure of equilibration of the xenoliths, based on results from samples that have well developed two-pyroxene + olivine mineral assemblages, is approximately 900°C and 12-14kb. Oxygen barometry shows that the xenoliths are strongly oxidized (log (fO2)FMQ from 2.5-4.5) compared to abyssal and continental peridotites. This high fO2 may also reflect a history of melt-rock interaction beneath Shiveluch (e.g., Parkinson and Arculus, Chem. Geol., 1999). These results suggest that melt-rock reactions may play a strong role in creating and modifying the uppermost mantle and deepest crust beneath active subduction-related volcanic arcs.

  12. The duration, magnitude, and frequency of subaerial volcano deformation events: New InSAR results from Latin America and a global synthesis

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Fournier, T.; Riddick, S.; Jay, J.; Henderson, S. T.

    2009-12-01

    We combine new observations of volcano deformation in Latin America with more than 100 previous deformation studies in other areas of the world to constrain the frequency, magnitude, and duration of subaerial volcano deformation events. We discuss implications for eruptive hazards from a given deformation event and the optimum repeat interval for proposed InSAR satellite missions. We use L-band (23.6 cm wavelength) satellite-based interferometric synthetic aperture radar (InSAR) to make the first systematic search for deformation in all volcanic arcs of Latin America (including Mexico, Central America, the Caribbean, and the northern and southern Andes), spanning 2006-2008. We combine L- and C-band (5.6 cm wavelength) InSAR observations over the southern Andes volcanoes to extend the time series from 2002-2008 and assess the capabilities of the different radars -- L-band gives superior results in highly vegetated areas. Our observations reveal 11 areas of volcano deformation, some of them in areas that were thought to be dormant. There is a lack of deformation at several erupting volcanoes, probably due to temporal aliasing. The total number of deforming volcanoes in the central and southern Andes now totals 15, comparable to the Alaska/Aleutian arc. Globally, volcanoes deform across a variety of timescales (from seconds to centuries) often without eruption, and with no apparent critical observation timescale, although observations made every minute are sometimes necessary to see precursors to eruption.

  13. Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis

    NASA Astrophysics Data System (ADS)

    Fournier, T. J.; Pritchard, M. E.; Riddick, S. N.

    2010-01-01

    We combine new observations of volcano deformation in Latin America with more than 100 previous deformation studies in other areas of the world to constrain the frequency, magnitude, and duration of subaerial volcano deformation events. We discuss implications for eruptive hazards from a given deformation event and the optimum repeat interval for proposed InSAR satellite missions. We use L band (23.6 cm wavelength) satellite-based interferometric synthetic aperture radar (InSAR) to make the first systematic search for deformation in all volcanic arcs of Latin America (including Mexico, Central America, the Caribbean, and the northern and southern Andes), spanning 2006-2008. We combine L and C band (5.6 cm wavelength) InSAR observations over the southern Andes volcanoes to extend the time series from 2002 to 2008 and assess the capabilities of the different radars: L band gives superior results in highly vegetated areas. Our observations reveal 11 areas of volcano deformation, some of them in areas that were thought to be dormant. There is a lack of observed deformation at several erupting volcanoes, probably due to temporal aliasing. The total number of deforming volcanoes in the central and southern Andes now totals 15 (from observations between 1992 and 2008), comparable to the Alaska/Aleutian arc. Globally, volcanoes deform across a variety of time scales (from seconds to centuries) often without eruption and with no apparent critical observation time scale, although observations made every minute are sometimes necessary to see precursors to eruption.

  14. Is uplift of volcano clusters in the Tohoku Volcanic Arc, Japan, driven by magma accumulation in hot zones? A geodynamic modeling study

    NASA Astrophysics Data System (ADS)

    George, Ophelia A.; Malservisi, Rocco; Govers, Rob; Connor, Charles B.; Connor, Laura J.

    2016-06-01

    In many volcanic arcs, the rate of tectonic uplift cannot be explained by lithospheric plate motion alone but may be associated with dynamic uplift. Buoyant forces associated with underplated magma bodies lift the upper crust and leads to relatively high rates of topographic change. One such region is northern Honshu, Japan, where Quaternary volcano clusters are spatially associated with uplifted crust and isostatic gravity anomalies. Axisymmetric inversion of Bouguer gravity data for the Sengan volcano cluster shows that these gravity anomalies can be modeled by 30 km radius bodies emplaced at ˜15 km depth. Axisymmetric, finite element models, generated using GTECTON, of a layered Earth representative of the Tohoku crust indicate that the deformation of these midcrustal intrusions produces elevated topography on the surface directly above the intrusion that is bounded by a shallow peripheral trough. The wavelengths of vertical deformation produced by these bodies are sensitive to the thickness of the models' elastic layer and relatively insensitive to the models' rheology. This suggests that the amplitude of the vertical deformation represents a trade-off between the size of the intrusion and the thickness of the elastic layer and is less strongly influenced by the rheology of the lithosphere into which the bodies are emplaced. Our results are consistent with hot zone and hot finger models for the arc and indicate that Tohoku Volcanic Arc features such as gravity anomalies and uplifted basement are related to crustal magma intrusions and hot zones rather than directly related to mantle processes.

  15. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  16. Petroleum potential of volcanogenic and volcano-sedimentary rocks in ancient and recent island arcs: Caucasus, Komandorskie, and Kuril islands, eastern Kamchatka

    SciTech Connect

    Levin, L.E. )

    1993-09-01

    In the Late Cretaceous-Eocene, subduction of the Tethys oceanic plate under the island arc of the lesser Caucasus contributed to the appearance of the special conditions favorable for petroleum occurrence: (1) tectono-magmatic destruction of the crust of the Transcaucasus median massif and formation of hydrocarbon traps of different types and origins, and (2) high heat flow lasting until the recent epoch. These led flow-intensive generation of hydrocarbons in the shallow-water sediments of the paleoshelf of the Transcaucasus massif and accumulation of hydrocarbons not only in the sedimentary but also in the volcanogenic and volcano-sedimentary reservoirs (Samgori-Patardzeuli, Muradhanly fields, etc.). At the end of the Oligocene, the geodynamic setting in the northwestern margins of the Pacific Ocean was mainly similar to that within the Transcaucasus median massif. At the end of Oligocene-Miocene, such conditions determined the tectono-magmatic destruction of the continental crust and formation of the series of interarc rifts. The main fields of Japan, with accumulations in the volcanogenic and volcano-sedimentary rocks, are concentrated here. Its analog is the rift located in the southern part of a single east Kuril basin, where petroleum occurrence is only inferred. In the separate troughs, the thickness of the volcano-sedimentary cover is 4-6 km. The stratigraphic section of the cover contains the volcanic and volcano-sedimentary sediments of the Neogene-Pleistocene. The studies of the sections of the Komandorskie islands, eastern Kamchatka, Kuril Islands, and western Sakhalin indicate that distribution of reservoirs depends on the stage of evolution of the rifts and adjacent island arcs.

  17. Spatial and volumetric distribution of Quaternary volcanoes and growth rate of the Izu-Bonin Arc A trial for the volume estimation by bathymetry -

    NASA Astrophysics Data System (ADS)

    Fujioka, K.; Kido, M.

    2004-12-01

    The Izu-Bonin Arc (IBA), one of an oceanic island arc that was formed by the subduction of the Pacific Plate under the Philippine Sea Plate, which lies south of Japanese Islands from Izu Peninsula down to Iwo-jima island connecting to the Mariana arc. The IBA forms an arcuate structure with its length of almost 1200 km and width of maximum 400 km in the northern segment and is grown up by the magmatic accretion due to the subduction of Pacific and North New Guinea Plates since Eocene Time. The IBA is not a simple and a single arc and is morphologically divided into three segments, North, Central and South, respectively by two major tectonic lines, Aogashima Tectonic Line (ATL) and Sofugan Tectonic Line (STL) based on various kind of geophysical parameters. We report here volcano spacing and volume of volcanic materials of the Quaternary volcanoes (2Ma >) of the IBA based on a new and a high resolution bathymetric map. The volcano spacing along the volcanic front of the IBA has a paired interval in the North Segment and a short regular interval at the northern part and a long interval at the southern part of the South Segment. The Central Segment has no regular spacing. The estimated volume of the volcanic materials has maximum peak on the volcanic front and decreases toward backarc region. The regular spacing in the Southern Segment reflects a little reaction between crust and melts which rise from the upper mantle by a kind of Rayleigh-Taylor Instability. However, melts react with thick crust causes bimodal and caldera forming volcanism both in Central and North segments. The spacing and volume in relation to the other geophysical parameters demonstrate that the IBA has the different evolving stages, from south to north due to the different duration of magma formation that had been caused by partial melting of the mantle wedge mantle by the addition of fluids from the subducting Pacific and North New Guinea Plates since the Eocene time. The growth rate of IBM is

  18. Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination

    NASA Astrophysics Data System (ADS)

    Luhr, James F.; Haldar, Dhanapati

    2006-01-01

    Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ˜2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ˜400 km 3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ˜1.3 km 3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994-1995. A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994-1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb-Ta and enrichments of K-Rb-Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile. BI basalts and basaltic andesites have variable abundances of phenocrystic-microphenocrystic olivine plus Cr-Al-Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of

  19. The Fukuyama volcanic rocks: Submarine composite volcano in the Late Miocene to Early Pliocene Akita-Yamagata back-arc basin, northeast Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Yagi, Masahiko; Ohguch, Takeshi; Akiba, Fumio; Yoshida, Takeyoshi; Tiba, Tokiko

    2009-10-01

    The Fukuyama Volcanic Rocks are composed of pyroxene andesite (FKV-1), hornblende-pyroxene andesite (FKV-2), biotite-hornblende dacite (FKV-3) and volcaniclastic debris-flow deposits and/or turbidites. FKV-1, FKV-2 and FKV-3 are medium-K calc-alkaline rocks depleted in Nd, similar to other back-arc volcanic rocks of the northeast Japan arc and constitute a dome cluster at Fukuyama. Volcaniclastic beds surround the dome cluster and thin and fine upwards. The predominant clast type in the volcaniclastic beds changes upwards from pyroxene andesite, through hornblende-pyroxene andesite, to biotite-hornblende dacite, consistent with the stratigraphic relationships of FKV-1, FKV-2 and FKV-3 lavas. All the siltstones inter-bedded with the volcaniclastic beds and overlying the whole succession contain diatom fossils indicative of the lower part of the Thalassionema schraderi zone (7.8 Ma to 8.5 Ma), compatible with the isotopic ages of FKV-1, FKV-2 and FKV-3. The Fukuyama volcano has a total eruption volume of 60-100 km 3, with a lifetime of the order of 10 5 years, as typically observed for volcanoes in the present back-arc region of northeast Honshu. FKV-1 erupted in deep water and partly disintegrated into hyaloclastite breccias due to direct contact with water. FKV-2 lava repeatedly effused over the FKV-1 lava and produced a volcanic apron of breccias that eventually grew above wave base and was eroded by wave action. The magma of FKV-3 was probably hydrous as it contains biotite and hornblende. The FKV-3 magma could have explosively erupted from a shallow-water dome or vent emergent above the wave base, followed by growth of a degassing lava dome. Repose between eruptions allowed accumulation of silt, and after the Fukuyama eruptions ceased silt entirely mantled the volcano. A small magma supply rate perhaps allowed a relatively long period of quiescence between eruptions of FKV-1, FKV-2 and FKV-3 magmas, resulting in abrasion and reworking of volcanic fragments and

  20. Gabbroic and Peridotitic Enclaves from the 2008 Kasatochi Eruption, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Kentner, A.; Nadin, E. S.; Izbekov, P. E.; Nye, C. J.; Neill, O. K.

    2012-12-01

    Kasatochi volcano of the Andreanof Islands in the western Aleutian Arc violently erupted over a two day period from August 7-8, 2008. The eruption involved multiple explosive events generating pyroclastic flows, which included abundant mafic and ultramafic enclaves that have since weathered out and accumulated in talus along the coast. These and other mafic enclaves sampled by modern island arc lavas provide insight into subduction magmatism because they emerge from a section of the subduction system that is less likely than shallower zones to be modified by magmatic processes such as mixing, assimilation, or fractionation. We present new whole rock, clinopyroxene, amphibole, plagioclase, and melt compositions from Kasatochi enclaves of the 2008 eruption. The highly crystalline (~40 vol. % phenocryst content), medium-K basaltic andesite host rock contains ~52-55 wt. % SiO2 and 0.6-0.9 wt. % K2O, and is composed of plagioclase, ortho- and clinopyroxene, amphibole, and Ti-magnetite in a microlite-rich groundmass. Upon eruption, this magma sampled two distinct enclave populations: gabbro and peridotite. The gabbro has abundant amphibole (mostly magnesio-hastingsite) and plagioclase with minor clinopyroxene, olivine, and magnetite, while the peridotite is composed of olivine with minor amounts of clinopyroxene and orthopyroxene. There is little textural variation amongst the peridotitic samples collected, but the gabbroic samples vary from layered to massive and cover a range in grain size from fine-grained to pegmatitic. The layered gabbros display centimeter-scale bands of alternating plagioclase- and amphibole-rich layers, with a strong preferential alignment of the amphibole grains. The coarser-grained samples are very friable, with ~10% pore space; disaggregation of these upon host-magma ascent likely formed the amphibole and plagioclase xenocrysts in the andesitic host. Based on the textural and compositional differences, we divide the enclaves into four groups

  1. Andesites/Dacites of the Oceanic Narcondam Volcano, Andaman Sea: Modification of Tholeiitic Arc Basalts by Crustal Contamination and Amphibole-Dominated Fractionation

    NASA Astrophysics Data System (ADS)

    Gillam, A. N.; Streck, M. J.; Ramos, F. C.; Bindeman, I. N.; Hart, G. L.

    2008-12-01

    The active Barren Island volcano and its 140 km distant northern neighbor, the Pleistocene Narcondam volcano, are the only two subaerially exposed arc volcanoes, which rise from the 1000-2300 m deep seafloor of the Andaman Sea, that result of the subduction of the Indian plate beneath the Burma plate. Lavas of Barren Island volcano range from basalt to andesite while lavas from Narcondam volcano range from andesite to silicic andesite/dacite. Similarities in the geochemistry of both lava suites include strong and comparable depletion in Nb and Ta (K2O/Nb ~0.7; Ba/Nb 130-250); low, MORB-like Nb/Zr (0.01- 0.03); and nearly constant U/Th (0.15-0.22). These characteristics suggest a genetic link between both magma suites. Distinct geochemical differences, however, include isotopic ratios which for Barren Island are: 87Sr/86Sr ~0.7039-0.7041, 143Nd/144Nd 0.51285-0.51296, and δ18O plagioclase 5.81-5.89, and for Narcondam are: 87Sr/86Sr 0.7049-0.7053, 143Nd/144Nd ~0.51270, and δ18O plagioclase 6.78-7.44. Other geochemical parameters (e.g. Sr/Y, Th/La, U/La, Ba/La) of Narcondam lavas positively correlate with increasing SiO2 but are anchored at the mafic end within compositions observed at Barren Island volcano. Narcondam magmas evolved through a multi-stage evolution characterized by fractional crystallization, contamination, and magma mixing. Prior to eruption, the latest event was marked by mixing of a silicic lava with a Barren Island-type basaltic magma that lowered the 87Sr/86Sr from values of 0.7053-0.7054 as observed in single plagioclase and amphibole phenocrysts to values of bulk rock and caused juxtaposition of mineral populations. The generally more-incompatible trace element enriched silicic Narcondam magmas are best explained by amphibole-dominated fractionation of a Barren Island-type basalt; being consistent with an increase of Sr/Y with increased silica of samples containing abundant amphibole. The shift in isotopic values from Barren Island to Narcondam

  2. The sources of volatile and fluid-mobile elements in the Sunda arc: A melt inclusion study from Kawah Ijen and Tambora volcanoes, Indonesia

    NASA Astrophysics Data System (ADS)

    Vigouroux, Nathalie; Wallace, Paul J.; Williams-Jones, Glyn; Kelley, Katherine; Kent, Adam J. R.; Williams-Jones, Anthony E.

    2012-09-01

    Subduction zone recycling of volatiles (H2O, Cl, S, F) is controlled by the nature of subducted materials and the temperature-pressure profile of the downgoing slab. We investigate the variability in volatile and fluid-mobile trace element enrichment in the Sunda arc using melt inclusion data from Kawah Ijen and Tambora volcanoes, together with published data from Galunggung, Indonesia. Combining our results with data from other arcs, we investigate the mobility of these elements during slab dehydration and melting. We observe correlations between Sr, H2O and Cl contents, indicating coupling of these elements during subduction zone recycling. Sulfur is more variable, and fluorine contents generally remain at background mantle values, suggesting decoupling of these elements from H2O and Cl. Partial melting and dehydration models constrain the source of Sr and the volatiles and suggest that the altered oceanic crust (AOC) is the main source of the hydrous component that fluxes into the mantle wedge, in agreement with thermo-mechanical models. Sediment melt remains an important component for other elements such as Ba, Pb, Th and the LREE. The Indonesian volcanoes have variable concentrations of volatile and fluid-mobile elements, with Kawah Ijen recording higher AOC-derived fluid fluxes (Sr/Nd and H2O/Nd) compared to Galunggung and Tambora. Kawah Ijen has H2O/Ce ratios that are comparable to some of the most volatile-rich magmas from other cold slab subduction zones worldwide, and the highest yet measured in the Sunda arc.

  3. Preliminary Results of a Near-Bottom Integrated Seafloor and Water Column survey of Brothers volcano, Kermadec arc, Using the Autonomous Vehicle ABE

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; de Ronde, C.; Davy, B.; Baker, E. T.; Resing, J. A.; Yoerger, D. R.; Merle, S. G.; Walker, S. L.

    2007-12-01

    Brothers volcano, located about 310 km NE of New Zealand along the magmatic front of the Kermadec arc, is one of the best studied intraoceanic arc submarine volcanoes. Its 3.0 x 3.5 km caldera is slightly elliptical, with the long axis oriented about N320°E and has more than 300 m relief from a rim at ~1500 m to a maximum depth of 1880 m in its NW corner. Two major hydrothermal systems were discovered on it in the late 1990s, a high temperature field (up to 302°C) on the NW wall and a lower temperature gas-rich system on the summits of a pair of dacitic cones that occupy the SE half of the caldera. Although the caldera and cones were partly explored by submersibles in 2004 and 2005, the base map, made with a surface ship multibeam, was not detailed enough to understand the context of the seafloor observations. We used the autonomous vehicle ABE launched and recovered from the R/V SONNE in July-August 2007 to conduct high resolution near-bottom surveys of the caldera and its hydrothermal systems using a multibeam sonar, magnetometer, and CTD. The caldera wall, the dacite cones and part of the flat caldera rim were mapped in 96 hours of survey time over 8 dives. In addition, very detailed water column surveys at lower altitude and closer line spacing were conducted over the two most intense hydrothermal sites (i.e., the NW caldera wall and the smaller dacite cone). Although the results are preliminary, there are obvious correlations between hydrothermal activity, wall geomorphology, structural lineations, and the magnetic signature. New hydrothermal sites were discovered on the uppermost NW rim of the caldera and on the SW wall. This new map, along with the previously collected suites of fluid, mineral and seafloor observations, provides a baseline for future monitoring of Brothers' hydrothermal and volcanic activity. It will also provide a better understanding of how the long-term interplay of hydrothermal and volcanic activity affects the geomorphic evolution of

  4. The Influence of Crystal Mush on Magmatism Under Arc Volcanoes Recorded in Zircon from the Lassen Volcanic Center, California and Mount Hood, Oregon

    NASA Astrophysics Data System (ADS)

    Klemetti, E. W.; Clynne, M. A.; Kent, A. J.; Bertolett, E. M.; Hernandez, L. D.; Coble, M. A.

    2015-12-01

    Many arc volcanoes are constructed by repeated tapping of complex subvolcanic magmatic plumbing containing new and inherited crystals and liquids that interact in the hours to millennia prior to an eruption. This process is often modulated by long-lived (10-100 k.y.) shallow (<5 km) silicic crystal mush. Constraining the development and growth of mush zones is therefore essential in predicting a volcano's future behavior. The Lassen Volcanic Center (LVC) in California and Mount Hood (MH) in Oregon are two of the most recently active Cascade volcanoes, with last major eruptions in 1915 and ~1780-81 respectively. We performed U-Th/U-Pb dating of LVC and MH zircon from lavas and tephras erupted between 0.1-825 ka. In the LVC, the Rockland Tephra (611 ka; Ar/Ar) contains zircon from 800-520 ka, spanning the age of the Rockland caldera complex (825-611 ka eruption ages). During the Lassen Domefield (315-0.1 ka eruption ages), zircon ages vary from secular equilibrium to 15 ka, overlapping with the Bumpass Sequence (315-190 ka eruption ages) and an eruptive hiatus (190-90 ka eruption ages). Nine of 116 Lassen Domefield zircon are in secular equilibrium (>350 ka). These data support a model of long-lived zircon-saturated silicic mushes existing under the LVC during the Rockland caldera complex stage and since the end of the Brokeoff Volcano stage (590-385 ka eruption ages). Preliminary zircon data from the Old Maid stage (~0.2 ka eruption age) at MH indicate two broad age groups. Younger zircon (<10 ka) suggest reactivation and/or expansion of mush following Polallie phase (20-12 ka eruption ages), Timberline (~1.5 ka eruption age), and Old Maid eruptions. Older zircon (>100 ka) are generally consistent with U-Th ages from plagioclase (~120 ka U-Th), indicating a long-lived zircon-saturated crystal mush tapped by Timberline and Old Maid lavas. At both of these volcanoes, silicic crystal mushes interact with intruding mafic magma, producing monotonous mixed andesite

  5. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  6. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  7. Lava Textures, Magma Crystallization History, and the Dynamics of Merapi and Aleutian Mush Columns

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.; Del Marmol, M. A.

    2014-12-01

    The subsurface dynamics of magma in mush columns beneath arc volcanoes is recorded in the textures of the basic lavas. A detailed comparison of lava textures from large mature volcanoes in Indonesia (Merapi) and the Aleutian Islands (Adak and Atka), shows remarkably similar, often indistinguishable, textures of high alumina basalts (HAB) and basaltic andesites (BA). We suggest a systematic characterization of these distinctive textures into a few simple categories reflecting the subsurface history of crystallization within solidification fronts (SFs) and subsequent transport dynamics. The HABs are strongly plagioclase-phyric and of two main groups: A1 consists of large, idiomorphic, mildly zoned, plagioclase (20-30 vol.%) with small amounts of olivine (2-8%) set in a finely crystalline groundmass of these same phases; A2 is similar, but contains an additional pervasive population of large 'old' plagioclase, rounded, often highly zoned, and sometimes broken; A1+ is a subclass of A1 where traces of 'old' plagioclase are present. Similar categories exist in the BA lavas except overall crystallinity is higher and olivine is replaced by large clinopyroxenes containing or mantled with magnetite. In a temporal stratigraphic sense, the early lavas are generally HAB A1 types and transition into, sometimes alternating, HAB A2 types followed by BA types. The initial establishment of the mush column is by hot, highly mobile primary magmas, followed by increasingly more thermally mature magmas containing debris from disrupted SFs. The detailed nature of this debris, its variation in time, and the volumes give important insights on the size and vigor of the mush column staging chambers.

  8. High-Resolution Distribution of Temperature, Particle and Oxidation/Reduction Potential Anomalies From a Submarine Hydrothermal System: Brothers Volcano, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; de Ronde, C. E.; Yoerger, D.; Embley, R. W.; Davy, B.; Merle, S. G.; Resing, J. A.; Nakamura, K.

    2008-12-01

    The complex relationships between geological setting and hydrothermal venting have, to date, largely been explored with ship-based surveys that effectively examine regional relationships, or with remotely operated vehicles (ROV) and manned submersibles which allow close examination of individual vent fields. Higher- resolution surveys than are possible with ship-based techniques and broader surveys than are practical with ROVs and manned submersibles are necessary for more thoroughly understanding hydrothermal systems and their impact on ocean ecosystems. Autonomous vehicles (AUVs), such as the WHOI Autonomous Benthic Explorer (ABE) can be programmed to conduct high-resolution surveys that systematically cover a broad area of seafloor. Brothers volcano, a hydrothermally active submarine caldera volcano located on the Kermadec arc northwest of New Zealand, was surveyed in July-August 2007 using ABE. Brothers caldera is ~3 km in diameter with a floor depth of 1850 m and walls that rise 290-530 m above the caldera floor. A dacite cone with a summit depth of ~1200 m sits within the caldera, partially merging with the southern caldera wall. Prior to the survey, active hydrothermal vents were known to be perched along the NW caldera wall and located at three sites on the cone. The enclosed caldera, presence of known vent fields with differing geochemical characteristics, and existence of at least one currently inactive site made Brothers volcano an ideal site for a high-resolution survey to explore in greater detail the mass, thermal and geochemical exchanges of hydrothermal systems. During our expedition, the caldera walls and dacite cone (~7 km2) were completely surveyed by ABE with 50-60 m trackline spacing at an altitude of 50 m above the seafloor. Hydrothermal plumes were mapped with ABE's integrated CTD (conductivity- temperature-depth) and sensors measuring optical backscatter (particle concentrations) and oxidation- reduction potential (ORP; indicating the

  9. Volatile-induced transport of HFSE, REE, Th and U in arc magmas: evidence from zirconolite-bearing vesicles in potassic lavas of Lewotolo volcano (Indonesia)

    NASA Astrophysics Data System (ADS)

    de Hoog, Jan C. M.; van Bergen, Manfred J.

    Potassium-rich calc-alkaline lavas of Lewotolo volcano, situated in the East Sunda Arc, Indonesia, contain the rare mineral zirconolite (CaZrTi2O7). Samples in which tiny grains of this mineral (3-25μm in size) were found span the entire range of lava compositions (47-62wt% SiO2). To the best of our knowledge, this is the first record of primary zirconolite in juvenile arc volcanics. The mineral forms part of a vesicle-filling assemblage consisting of a network of quenched feldspar crystals and an SiO2 phase, probably cristobalite. High contents of Th, U and REE (up to 9.3, 4.3 and 15.6wt% oxide respectively) and very high Fe contents (up to 13.5wt% Fe2O3) distinguish these zirconolites from those of other rock types. The extraction of volatile-rich phases with changing compositions in successive stages is considered to be responsible for the zirconolite formation. We hypothesise that a fluid capable of transporting HFSE, REE, Th and U was extracted from the magma and (partly) crystallised within voids which had formed earlier upon saturation of an aqueous fluid. Assuming that zirconolite compositions largely reflect trace metal contents of the coexisting fluid phase, significant amounts of `immobile' elements must have been transported on a macroscopic scale. Our findings thus point to a late-stage transfer of HFSE, REE, Th and U between different domains in a cooling magma body. Such a volatile-induced redistribution of trace elements at shallow levels of high-K volcanic systems may be significant for conventional geochemical modelling of magma evolution and for Th-U disequilibrium studies.

  10. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommodation space increased arcward of a large outer-arc high that formed, in part, by a thickening of arc basement. This difference in deformation is interpreted to be the result of a variation in interplate coupling across the Amlia fracture zone that was facilitated by increasing subduction obliquity, a change in orientation of the subducting Amlia fracture zone, and late Quaternary intensification of glaciation. The change in coupling is manifested by a possible tear in the subducting slab along the Amlia fracture zone. Differences in coupling across the Amlia fracture zone have important implications for the location of maximum slip during future great earthquakes. In addition, shaking during a great earthquake could trigger large mass failures of the summit platform, as evidenced by the presence of thick mass transport deposits of primarily Quaternary age that are found in the forearc basin west of the Amlia fracture zone.

  11. Field Vectors to Metamorphosed Ores: A Prelude to Finding Currently Concealed Volcano-Plutonic Arc Settings and Their Mineral Deposits in The Grenville Province

    NASA Astrophysics Data System (ADS)

    Corriveau, L.; Bonnet, A.; van Breemen, O.

    2004-05-01

    development of 10 km-spaced hydrothermal centres in the La Romaine 1520-1495 Ma intra-arc volcano-sedimentary belt augurs well for mineral exploration throughout Pinwarian crust of the Grenville Province.

  12. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  13. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  14. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  15. Post-2008 Inflation of Okmok Volcano, Alaska, from InSAR

    NASA Astrophysics Data System (ADS)

    Lu, Z.; QU, F.; Dzurisin, D.; Kim, J.

    2014-12-01

    Okmok Volcano, a dominantly basaltic volcanic complex that occupies most of the northeastern end of Umnak Island, is among the most active volcanoes in the Aleutian arc (Lu and Dzurisin, 2014). Minor ash eruptions were reported a dozen times since the 1930s. Blocky basalt flows were extruded during dominantly effusive eruptions in 1945, 1958, and 1997, together with minor amounts of ash. From the 1930s to 1997, all of Okmok's eruptions originated from Cone A within the summit caldera. The most recent eruption at Okmok during July-August 2008 was by far the largest and most explosive eruption since at least the early 19th century. The eruption issued from a new vent in the northeast part of the caldera near Cone D, about 5 km northeast of Cone A. The eruption was strongly hydrovolcanic in nature and produced a new tuff cone roughly 240 m high, dramatically altering the landscape inside the caldera. Interferometric synthetic aperture radar (InSAR) observations suggest that a magma reservoir, probably an interconnected network of magma bodies of varying sizes located beneath the caldera and centered ~3 km BSL, was responsible for volcano-wide deformation during 1992-2008, including the 1997 and 2008 eruptions (Lu and Dzurisin, 2014). The reservoir inflated at a variable rate before the 1997 and 2008 eruptions, and withdrawal of magma during both eruptions depressurized the reservoir, causing rapid volcano-wide subsidence. In this study, we report re-inflation of the Okmok reservoir from 2008 to 2014. InSAR imagery from X-band TerraSAR-X, C-band Envisat and L-band ALOS PALSAR satellites indicate that Okmok started inflating soon after the end of 2008 eruption at a rate of 5-10 cm/year, which is confirmed by GPS measurements. Deformation modeling suggests the inflation source is located beneath the center of Okmok caldera at ~3 km BSL, which is essentially the same location responsible for uplift and subsidence during 1992-2008. Lu, Z., and Dzurisin, D., 2014. "In

  16. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground

  17. Buldir Depression - A Late Tertiary graben on the Aleutian Ridge, Alaska

    USGS Publications Warehouse

    Marlow, M. S.; Scholl, D. W.; Buffington, E.C.; Boyce, R.E.; Alpha, T.R.; Smith, P.J.; Shipek, C.J.

    1970-01-01

    Buldir Depression is a large, rectilinear basin that lies on the northern edge of the Aleutian Ridge and is aligned with the arcuate chain of active volcanoes on the ridge crest. The depression appears to be a volcanic-tectonic feature, which began to form in Late Tertiary time and which is still forming. It is a graben formed by extensional rifting and accompanied by contemporaneous volcanism on the Aleutian Ridge. Subsidence rates for the depression are estimated at 20-70 cm/1,000 years. Sediments in the depression are 300 m thick and are probably pelagic and turbidite deposits of Pleistocene age. The turbidites were apparently derived from the plateau area of the Aleutian Ridge surrounding the depression. Older sediments on the northern slope of the Aleutian Ridge have a maximum thickness of 550 m and are deformed and slumped toward the Bering Sea. These sediments are postulated to overlie a mid-flank terrace on the northern Aleutian Ridge that titled to the north during the formation of Buldir Depression. ?? 1970.

  18. Surficial Geologic Map of Mount Veniaminof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Miller, T. P.; Wallace, K.

    2015-12-01

    Mount Veniaminof volcano is a >300 km3 andesite to dacite stratovolcano, characterized by an 8 x 11 km diameter ice-filled summit caldera. Veniaminof is one of the most active volcanoes in the Aleutian arc and has erupted at least 15 times in the past 200 years. The volcano is located on the Alaska Peninsula (56.1979° N, 159.3931° W) about 780 km SW of Anchorage. Our geologic investigations have documented two large (>VEI 5) caldera-forming or -modifying eruptions (V1, V2) of Holocene age whose eruptive products make up most of the surficial deposits around the volcano. These deposits and other unconsolidated glacial, fluvial, and colluvial deposits are depicted on the accompanying map. The the V2 eruption occurred 4.1-4.4 ka (cal 2-sigma age range) and produced an extensive landscape-mantling sequence of pyroclastic deposits >50 km3 in volume that cover or partly obscure older unconsolidated eruptive products. The V1 eruption occurred 8-9 ka and its deposits lie stratigraphically below the pyroclastic deposits associated with the V2 eruption and a prominent, widespread tephra fall deposit erupted from nearby Black Peak volcano 4.4-4.6 ka. The V2 pyroclastic-flow deposits range from densely welded, columnar jointed units exposed along the main valley floors, to loose, unconsolidated, blanketing accumulations of scoriaceous (55-57% SiO2) and lithic material found as far as 75 km from the edifice. Large lahars also formed during the V2 eruption and flowed as far as 50 km from the volcano. The resulting deposits are present in all glacial valleys that head on the volcano and are 10-15 m thick in several locations. Lahar deposits cover an area of about 800-1000 km2, have an approximate volume of 1-2 km3, and record substantial inundation of the major valleys on all flanks of the edifice. Significant amounts of water are required to form lahars of this size, which suggests that an ice-filled summit caldera probably existed when the V2 eruption occurred.

  19. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  20. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.

    1998-05-01

    An ion probe study of trace elements in Mg-rich clinopyroxene phenocrysts in primitive Aleutian lavas provides constraints on the genesis of Aleutian adakites, and possible insights into the source of common Aleutian magmas. Clinopyroxene (cpx) phenocrysts in the primitive adakites have high Sr and Nd/Yb compared to cpx in Aleutian basalts. In the adakites, Sr and Nd/Yb are highest for high Mg# cpx, and these concentrations decrease toward lower Mg# compositions. These trends are the opposite of those seen in basalt cpx which generally show increasing incompatible trace element contents with decreasing Mg#, and are unlike antithetic compatible-incompatible trace element trends produced by chemical or kinetic effects of crystal growth. Petrographic observations and major and trace element zonation in cpx phenocrysts indicate that primitive Aleutian adakites are in part the product of mixing between primitive and relatively evolved magmas. The adakite trace element signature (high Sr, Nd/Yb) is clearly associated with the primitive mixing end-member. This observation supports the idea that adakites are derived by equilibration of slab melts with mantle olivine, and appears to rule out an origin by melting in the lower crust. Adakites are relatively rare in the Aleutians, but arc-wide correlations between Sr and La/Yb indicates that an adakite-type slab melt component may be present in the magmatic source throughout the arc.

  1. Tephra Studies by the Alaska Volcano Observatory: Present and Future Research

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Tephra from Aleutian arc volcanoes constitutes an important volcanic hazard for Alaska, western Canada, and some parts of the conterminous U.S. where even small amounts of airborne ash may have dire consequences for jet aircraft traversing North Pacific and western U.S. air routes. Motivated by the need to address volcanic ash hazards on a regional scale, we have initiated a program of tephra studies within the auspices of the Alaska Volcano Observatory (AVO) of the U.S. Geological Survey. A concentrated focus on tephra problems and a new laboratory facility within AVO will help facilitate studies of Quaternary age tephra at Alaskan volcanoes by providing a regional center for laboratory analyses of volcanic ash and standardized web-based reporting and archiving of tephra data. In its first year of operation, the laboratory has been engaged in research at Veniaminof, Mt. Spurr, and Augustine volcanoes, has sponsored research on Holocene tephra deposits of upper Cook Inlet, and has initiated analytical studies of tephra deposits on Adak and Kanaga Islands in the western Aleutians. The objective of these studies is to develop multiparameter techniques for characterization and correlation of tephra deposits, establish radiocarbon-controlled tephrostratigraphic frameworks, and to evaluate the magnitude and frequency of tephra-producing eruptions. In the upper Cook Inlet region of Alaska, we and our colleagues have begun developing a comprehensive record of ash fall by systematically selecting and coring shallow lakes and evaluating the tephra preserved in the lacustrine sediment. Sediment cores from these lakes contain numerous tephra deposits of Holocene age in datable context that can be correlated with proximal tephra deposits on the flanks of their source volcanoes. By combining tephra data from lacustrine deposits and natural exposures we hope to develop a robust geologic catalog of tephra deposits that will enable long-distance correlation of tephras, provide

  2. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  3. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Haney, Matthew; De Angelis, Silvio; Thurber, Clifford H.; Freymueller, Jeffrey

    2015-08-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok's caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. The magnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/or magmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation source may be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  4. Volatile constraints on the magma supply, dynamics and plumbing system of a top-ranking basaltic gas emitter: Ambrym volcano, Vanuatu Arc

    NASA Astrophysics Data System (ADS)

    Allard, Patrick

    2016-04-01

    P. Allard1,2, A. Aiuppa3,4, P. Bani5, N. Métrich1,6, A. Bertagnini6, M. Burton7, P-J. Gauthier5, F. Parello3, H. Shinohara8, G. Sawyer9, E. Bagnato3, E. Garaebiti10 1IPGP, UMR7154 CNRS, Paris France; 2INGV, Sezione di Catania, Italy; 3DiSTEM, Palermo University, Italy; 4INGV, Sezione di Palermo, Italy; 5LMV-OPGC, Clermont-Ferrand, France; 6INGV, Sezione di Pisa, Italy; 7SEAES, University of Manchester, UK; 8Geological Survey of Japan, Tsukuba, Japan; 9Department of Geography, University of Cambridge, UK; 10GEOHAZARD, Port Vila, Vanuatu. Ambrym basaltic volcano (central Vanuatu arc) is one of the most active volcanic systems of the Southwest Pacific region, where recurrent lava lake activity sustains voluminous gas release from two main cones, Benbow and Marum, in a 12 km-wide summit caldera. In 2007-2008 we could perform the first detailed investigations of gas emissions from this very active but remote and hardly accessible intra-oceanic arc volcano, combining ground-based and airborne measurements and using both in situ and remote sensing tools. The degassing budget of major, minor, trace and radioactive volatile species reveals that Ambrym ranks amongst the three most powerful persistent emitters of magmatic volatiles at global scale [1]. Coupled with the analysis of dissolved volatiles in the feeding basalt (olivine-hosted melt inclusions), the gas emission rates imply a very high average magma supply/degassing rate of 25 m3/s - 6 times the rate at Mount Etna - from a reservoir emplaced at about 4 km depth beneath the caldera floor. The chemical composition of emitted volcanic gases is compatible with dominant closed-system ascent and degassing of the basalt, followed by open degassing at shallow depth as water exsolution becomes extensive. The modest time-averaged extrusion rate, estimated from caldera infilling over the past 2 ka, requires convective downward recycling of the denser degassed magma in conduits with diameter of order 10 m. High resolution OP

  5. Trace element distribution, with a focus on gold, in copper-rich and zinc-rich sulfide chimneys from Brothers submarine volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2012-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are <5 μm in size and they commonly form in bands, cluster in patches, or occur along internal grain boundaries within chalcopyrite. In sulfate layers adjacent to the chalcopyrite zones tellurides can occur as inclusions in anhydrite, barite or pyrite and/or occupy void space within the chimney. The occurrence of specular hematite and Bi- or Au-tellurides associated with chalcopyrite are consistent with magmatic contributions to the NW Caldera vent site

  6. Population ecology of the tonguefish Symphurus thermophilus (Pisces; Pleuronectiformes; Cynoglossidae) at sulphur-rich hydrothermal vents on volcanoes of the northern Mariana Arc

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Verena; Tyler, Jennifer; Dower, John F.

    2013-08-01

    Flatfish are a major component of the hydrothermal vent community on three seamounts of the northern Mariana Volcanic Arc in the northwest Pacific. Nikko, Kasuga-2 and Daikoku seamounts host vent fields between 375 and 480 m depth where high temperature vents release molten sulphur. The small cynoglossid tonguefish, Symphurus thermophilus Munroe and Hashimoto, is ubiquitous in all vent habitats observed on these seamounts: among extensive fields of tubeworms and mussels and on solid sulphur surfaces on Nikko; on sulphur-rich sediments and barnacle-covered boulders on Kasuga-2; and on recent sulphur flows and on broad areas of loose and semi-consolidated sediments on Daikoku. We recorded repeated forays by individuals onto flows of molten sulphur as these surfaces cooled. Based on observations using ROVs, the mean density is 90 fish/m2 with maximum counts over 200 fish/m2 on Daikoku sediments. Compared to collected tonguefish from Daikoku and Kasuga-2, those from Nikko have significantly greater lengths and, on average, six times the mass. Otolith data indicate upper ages of 13 years with Nikko tonguefish growing significantly faster. Diets of tonguefish on the three seamounts reflect the different habitats and prey availability; in Daikoku specimens, small crustaceans and polychaetes are most common while on Nikko, gut contents are predominantly larger shrimp. We made the unusual observation of stunned midwater fish falling to the seafloor near the vents where S. thermophilus immediately attacked them. This tonguefish has a wide diet range and foraging behaviour that likely influence the differing growth rates and sizes of fish inhabiting the different vent sites. Limited genetic data suggest that larval exchange probably occurs among sites where the common habitat factor is high levels of elemental sulphur forming hard and partly unconsolidated substrata. Here, in the northern range of the Mariana Trench Marine National Monument, S. thermophilus, despite having an

  7. Osmium isotope binary mixing arrays in arc volcanism

    NASA Astrophysics Data System (ADS)

    Alves, Sophie; Schiano, Pierre; Capmas, Françoise; Allègre, Claude J.

    2002-05-01

    Os isotope ratios and Os and Re concentrations were measured in 56 lavas coming from 10 different subduction zones. Samples span a large range of major element concentrations (from basalts to dacites) and Mg# (from 0.32 to 0.81). The 10 subduction zones, namely the Lesser Antilles, Java, Papua New Guinea, the Philippines, Izu-Bonin, Kamchatka, the Aleutians, Mexico, Colombia and Peru-Chile, have a range of geodynamic settings. Measured 187Os/ 188Os ratios range from 0.130 to 1.524 and Os concentrations range from 0.05 to 46 ppt. Re concentrations range from 24 to 915 ppt. Os initial isotope ratios are systematically positively and linearly correlated with the inverse of Os concentrations in arc lavas from a given volcano, indicating that the Os isotopic compositions always reflect a binary mixing process. Similar mixing relationships are also seen at the sample scale. All trends converge towards unradiogenic compositions similar to those of upper mantle peridotites. These mixing relationships might be ascribed to a general contamination process; however, a single shallow-level process of crustal assimilation is hardly reconciled with the diversity of basements (from oceanic crust to continental crust compositions) of the selected arc volcanoes, the occurrence of the mixing lines for both primary and differentiated samples, and the absence of covariations between Os contents, isotope ratios, and indices of contamination and differentiation. On the other hand, because subducted components are very radiogenic and differ from one zone to another, the radiogenic components may be explained by varying amounts and natures of oceanic crust and sediments in the source of arc lavas. However, this explanation implies two disequilibrium processes, first during magma formation in order to produce heterogeneous lavas, and second during magma ascent to the surface to preserve slab signatures.

  8. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C., Jr.; Power, J.A.; Dzurisin, D.

    2000-01-01

    In March 1996 an intense swarm of volcano-tectonic earthquakes (???3000 felt by local residents, Mmax = 5.1, cumulative moment of 2.7 ??1018 N m) beneath Akutan Island in the Aleutian volcanic arc, Alaska, produced extensive ground cracks but no eruption of Akutan volcano. Synthetic aperture radar interferograms that span the time of the swarm reveal complex island-wide deformation: the western part of the island including Akutan volcano moved upward, while the eastern part moved downward. The axis of the deformation approximately aligns with new ground cracks on the western part of the island and with Holocene normal faults that were reactivated during the swarm on the eastern part of the island. The axis is also roughly parallel to the direction of greatest compressional stress in the region. No ground movements greater than 2.83 cm were observed outside the volcano's summit caldera for periods of 4 years before or 2 years after the swarm. We modeled the deformation primarily as the emplacement of a shallow, east-west trending, north dipping dike plus inflation of a deep, Mogi-type magma body beneath the volcano. The pattern of subsidence on the eastern part of the island is poorly constrained. It might have been produced by extensional tectonic strain that both reactivated preexisting faults on the eastern part of the island and facilitated magma movement beneath the western part. Alternatively, magma intrusion beneath the volcano might have been the cause of extension and subsidence in the eastern part of the island. We attribute localized subsidence in an area of active fumaroles within the Akutan caldera, by as much as 10 cm during 1992-1993 and 1996-1998, to fluid withdrawal or depressurization of the shallow hydrothermal system. Copyright 2000 by the American Geophysical Union.

  9. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  10. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  11. Strain Accommodation Along an Oblique Subduction Zone: Integrating Paleomagnetic Data and Stress Patterns in the Central Aleutian Forearc

    NASA Astrophysics Data System (ADS)

    Krutikov, L.; Reynolds, J. R.; Stone, D. B.

    2005-12-01

    Present day motion of the Pacific plate relative to the North American plate shifts along the Aleutian arc from normal convergence in the east to transform motion in the west. Oblique subduction, partitioned into an arc-normal component and an arc-parallel component, creates a spatially complex pattern of deformation in the overriding plate. Strain partitioning results in tectonic segmentation of the forearc region, caused by increasing obliquity of plate convergence and apparently characterized by clockwise rotation and westward translation of discrete blocks in the central and western Aleutian arc [e.g., Geist et al., Tectonics 7, 327-341, 1988]. Archived cores collected from islands in the central Aleutian arc for previous paleomagnetic studies are being remeasured and reanalyzed using modern thermal demagnetization techniques that were not available at the time of collection. These new measurements indicate counterclockwise rotation or less significant clockwise rotations than those predicted by the block rotation model. Paleomagnetic results are presented for Tertiary and Quaternary volcanic rocks from Adak and Amchitka Islands in the central Aleutians. Results range from no statistically significant rotation in young intrusives, to a number of paleomagnetic vectors in the Finger Bay volcanics (~55 Ma) that suggest clockwise rotation since the time of original magnetization. Paleomagnetic results are combined with analyses of seafloor lineations in high-resolution multibeam sonar data collected in 2003 and 2004 of representative sites between 173W and 179E along the central Aleutian arc. Major fault lineations and joint patterns observed in the bathymetry data are analyzed to estimate the direction of maximum horizontal stress. Lineations in rocks of different stratigraphic ages and paleomagnetic results are being compared with 0-5Ma regional stress patterns [Scholl et al., 1989] to constrain the style and timing of deformation.

  12. The Eruptive Behavior of Klyuchevskoy Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Rose, S.; Ramsey, M.

    2008-12-01

    Klyuchevskoy volcano, one of the most active volcanoes in the northern Pacific, is located on the Kamchatka Peninsula in eastern Russia at the junction between the Kurile-Kamchatka and Aleutian Island Arcs. Its remote location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor was launched in December 1999 on the NASA Terra satellite and has proven effective for the detection and monitoring of volcanic eruptions and their associated products. The goal of this investigation is to determine how well data from a broad spectral range at spatial resolutions under 100m/pixel can be used to characterize the 2005 and 2007 eruptions of a remote volcano during the harsh northern Pacific winter. The ASTER data presented here are supplemented by hand samples collected from the 2005 basaltic lava flows as well as high-spatial resolution thermal infrared data collected by a Forward Looking Infrared (FLIR) camera during field campaigns in August 2005 and 2007. Collectively, these data provide details regarding the composition, eruption rate, and eruptive mechanisms. Analysis of the data from all three ASTER subsystems reveals four main eruptive phases: a precursory, explosive, explosive-effusive, and cooling phase. These phases correlate to a gradual increase in maximum brightness temperatures followed by a rapid decrease. Close examination of FLIR data and digital photographs reveal the presence of a breakout point approximately 90 m below the rim of the nested summit crater, indicating a flow had breached the nested crater and traveled down the Krestovsky channel during both eruptions. Laboratory- derived TIR spectral data of the 2005 hand samples indicate good agreement with those obtained by ASTER after being reduced to the same spectral resolution. However, inherent errors of the spectra at longer wavelength indicate the

  13. Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993-2000

    USGS Publications Warehouse

    Lu, Zhiming; Power, J.A.; McConnell, V.S.; Wicks, C., Jr.; Dzurisin, D.

    2002-01-01

    Pilot reports in January 1995 and geologic field observations from the summer of 1996 indicate that a relatively small explosive eruption of Makushin, one of the more frequently active volcanoes in the Aleutian arc of Alaska, occured on 30 January 1995. Several independent radar interferograms that each span the time period from October 1993 to September 1995 show evidence of ???7 cm of uplift centered on the volcano's east flank, which we interpret as preeruptive inflation of a ???7-km-deep magma source (??V = 0.022 km3). Subsequent interferograms for 1995-2000, a period that included no reported eruptive activity, show no evidence of additional ground deformation. Interferometric coherence at C band is found to persist for 3 years or more on lava flow and other rocky surfaces covered with short grass and sparsely distributed tall grass and for at least 1 year on most pyroclastic deposits. On lava flow and rocky surfaces with dense tall grass and on alluvium, coherence lasts for a few months. Snow and ice surfaces lose coherence within a few days. This extended timeframe of coherence over a variety of surface materials makes C band radar interferometry an effective tool for studying volcano deformation in Alaska and other similar high-latitude regions.

  14. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    C faster, and in larger volumes at a given time. Subduction erosion rarely, if ever, transports significant amounts of buoyant material deep into the convecting mantle. Because buoyant material can remain part of the crust, it may often be a mistake to add all of the eroded material to the observed arc volume to derive crustal growth rates. Buoyancy instabilities during subduction erosion or arc-arc collision will accumulate felsic arc crust. For example, > 50% of Aleutian arc lavas and exposed plutons are more buoyant than mantle peridotite at 700-800°C, 3-4 GPa. The buoyant material has an average of 60-62 wt% SiO2, molar Mg/(Mg+Fe) 0.4-0.5, and trace elements identical to bulk continental crust, though western Aleutian lavas have the most depleted Sr, Nd and Pb isotope ratios of all arc lavas worldwide. In general, density sorting of arc lithologies, and subsequent partial melting as buoyant rocks rise through the mantle wedge or along a subduction channel, could lead to a kind of double and triple distillation. Incompatible elements such as Th would be enriched in arc crust, retaining correlations with isotopic indicators of a recycled sediment component, while Th-poor, dense, mafic lavas and lower crustal cumulates return to the convecting mantle.

  15. Coccidia of Aleutian Canada geese

    USGS Publications Warehouse

    Greiner, E.C.; Forrester, Donald J.; Carpenter, J.W.; Yparraguirre, D.R.

    1981-01-01

    Fecal samples from 122 captive and 130 free-ranging Aleutian Canada geese (Branta canadensis leucopareia) were examined for oocysts of coccidia. Freeranging geese sampled on the spring staging ground near Crescent City, California were infected with Eimeria hermani, E. truncata, E. magnalabia, E. fulva, E. clarkei and Tyzzeria parvula. Except for E. clarkei, the same species of coccidia were found in geese on their breeding grounds in Alaska. Most of the coccidial infections in captive geese from Amchitka Island, Alaska and Patuxent Wildlife Research Center, Maryland, consisted of Tyzzeria.

  16. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  17. Structural and stratigraphic evolution of Aleutian convergent-margin basins - Ridge crest to trench floor

    SciTech Connect

    Scholl, D.W.; Ryan, H.F.; Geist, E.L.; Vallier, T.L.

    1988-01-01

    The Aleutian Ridge lies along nearly 2,000 km of the north Pacific's obliquely converging plate boundary with North America. Since middle Eocene time, convergent-margin basins have repeatedly formed here, typically as summit basins along the ridge crest, and as forecarc basins on the landward trench slope. Thick (1-4 km) sequences of terrigenous, hemipelagic, and biogenic debris have accumulated in these depressions, which are mostly intra-arc structures floored by arc-basement rocks. Summit and forearc basins formed as a consequence of plate-boundary coupling and the application of compressional and right-lateral shear stresses to the arc massif. Basins typically evolved along shear zones in response to transtensional processes, and as trailing-edge grabens behind rotating blocks of arc massif. In the late Cenozoic, high rates of trench sedimentation led to the growth of an accretionary complex that underthrust forearc basement. Wedging and improved plate coupling elevated and laterally shifted blocks of outer forearc rocks, creating much of the structural framework of the regionally extensive Aleutian Terrace forearc basin. Changes in plate-boundary conditions that affected the ridge's volcanic activity and regional elevation importantly influenced basinal sedimentation. Changes of greatest significant were a major shift in convergence direction and rate about 42 Ma (reduced volcanism), ridge underthrusting by increasingly younger ocean crust in Oligocena and Miocene time (arc elevation), and the combination of more orthogonal underthrusting and the subduction of a dead spreading center 5-120 Ma (arc subsidence).

  18. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    USGS Publications Warehouse

    Lu, Zhiming; Masterlark, Timothy; Dzurisin, D.

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr-1 during 1992-1993 to 2 ??? 3 cm yr-1 during 1993-1995 and then to about -1 ??? -2 cm yr-1 during 1995-1996. The posteruption inflation rate generally decreased with time during 1997-2001, but increased significantly during 2001-2003. By the summer of 2003, 30 ??? 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  19. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore

  20. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    USGS Publications Warehouse

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  1. A tectonic earthquake sequence preceding the April-May 1999 eruption of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Stihler, S.D.; Power, J.A.

    2002-01-01

    On 4 March 1999, a shallow ML 5.2 earthquake occurred beneath Unimak Island in the Aleutian Arc. This earthquake was located 10-15 km west of Shishaldin Volcano, a large, frequently active basaltic-andesite stratovolcano. A Strombolian eruption began at Shishaldin roughly 1 month after the mainshock, culminating in a large explosive eruption on 19 April. We address the question of whether or not the eruption caused the mainshock by computing the Coulomb stress change caused by an inflating dike on fault planes oriented parallel to the mainshock focal mechanism. We found Coulomb stress increases of ???0.1 MPa in the region of the mainshock, suggesting that magma intrusion prior to the eruption could have caused the mainshock. Satellite and seismic data indicate that magma was moving upwards beneath Shishaldin well before the mainshock. indicating that, in an overall sense, the mainshock cannot be said to have caused the eruption. However, observations of changes at the volcano following the mainshock and several large aftershocks suggest that the earthquakes may, in turn, have influenced the course of the eruption.

  2. Multiple Sources In Ultrapotassic Arc Magmas Inferred From Combined Microthermometry And In-Situ Chemical Analysis Of Melt Inclusions In Olivine And Clinopyroxene Phenocrysts From Batu Tara Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Herrin, J. S.; Nikogosian, I. K.; van Bergen, M. J.; Mason, P. R.

    2001-12-01

    Batu Tara is an active, leucite-normative, ultrapotassic volcano located approximately 75 km behind the main magmatic front of the eastern Sunda arc, Indonesia. Clinopyroxene, olivine, plagioclase, leucite, Ti-magnetite, minor apatite and occasional biotite occur as phenocrysts. The exact mechanism for genesis of ultrapotassic arc rocks remains elusive, particularly in island arc settings. Concise determination of primary magma chemistry is often impeded by complex histories of crystallization and magma mixing. Melt inclusions in olivine and pyroxene phenocrysts from Batu Tara have been investigated by high-temperature microthermometry, EPMA, and LA-ICP-MS to constrain parent magma composition and shed light on the genesis of ultrapotassic magmas in island arc settings. Variation in homogenization temperature, major and trace element composition, and volatile content correlate with petrographic observation of three distinct populations of olivine phenocrysts which can be distinguished by the presence or absence of apatite mineral inclusions and CO2 fluid inclusions. Clinopyroxenes commonly exhibit pronounced chemical zonation with individual zones preserving melt inclusions of unique composition, indicating that these phenocrysts were involved in complex mixing processes and repeatedly subject to end-member magma compositions. Melt inclusions preserve a record of; (1) Early spinel, olivine and clinopyroxene crystallization, followed by later crystallization of abundant apatite; (2) Exsolution of volatile species (S, CO2, Cl, H2O) during magma degassing; (3) Mixing of multiple magmas, originating from chemically and likely genetically distinct sources, and; (4) A significant but variable component of fluid addition to the magma source inferred from systematics of incompatible trace elements.

  3. Rock magnetic and petrographical-mineralogical studies of the dredged rocks from the submarine volcanoes of the Sea-of-Okhotsk slope within the northern part of the Kuril Island Arc

    NASA Astrophysics Data System (ADS)

    Rashidov, V. A.; Pilipenko, O. V.; Petrova, V. V.

    2016-07-01

    The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.

  4. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  5. Airborne Gas Surveillance of Volcanoes in Western USA and Alaska

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.; McGee, K. A.; Doukas, M. P.

    2002-05-01

    of <200 metric tons/day (t/d) CO2 and <10 t/d H2S are easily detected and suggest that scrubbing is widespread in Cascade and Aleutian arc volcanoes.

  6. The Nd-, Sr- and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: Implications for arc magma petrogenesis

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; Flower, Martin F. J.; Miklius, Asta

    1994-07-01

    Following the amalgamation of a collage of pre-Neogene terranes largely by strike-slip and convergence mechanisms to form the Philippine islands, volcanic chains, related to oppositely dipping subduction zones, developed along the eastern and western margins of the archipelago. There is ample field evidence that this volcanic activity, predominantly calc-alkaline in chemical character, had commenced by the Oligocene. Volcanoes resulting from subduction along the Manila-Negros trench in the west (e.g. Taal, Laguna de Bay and Arayat) form a high-angle linear array, trending away from the MORE field on Pb-isotopic covariation diagrams; have the highest Sr- and lowest Nd-isotopic compositions, of the two chains (but nevertheless plotting above bulk earth on the 87Sr/ 86Sr versus 143Nd/ 144Nd covariation diagram); and exhibit Sm/Nd and Rb/Sr values that are lower and higher, respectively, than the estimated values for bulk earth. While the Sm/Nd and Rb/Sr characteristics are common to both chains, volcanoes associated with the Philippine-East Luzon trench have Pb-isotopic compositions that fall in the Indian Ocean MORB field and that require time-integrated evolution in a high Th/U environment. They also have higher Nd- and lower Sr-isotopic ratios. The source materials of Philippine volcanoes, therefore, have undergone varied recent enrichments in LILE, as indicated by the decoupling of isotopic and elemental ratios. These enrichments, particularly for the western volcanoes, cannot be entirely due to small degrees of partial melting in the mantle wedge, considering that they were accompanied by elevations in radiogenic Pb. Elevated Pb ratios are best explained by the introduction of subducted, continentally derived sediments. The sedimentary component in the western volcanoes is probably the South China Sea sediments derived largely from Eurasia. That this component is not available in the Philippine-East Luzon trench is reflected by the fact that the eastern volcanoes

  7. The Nd-, Sr- and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: Implications for arc magma petrogenesis

    USGS Publications Warehouse

    Mukasa, S.B.; Flower, M.F.J.; Miklius, Asta

    1994-01-01

    Following the amalgamation of a collage of pre-Neogene terranes largely by strike-slip and convergence mechanisms to form the Philippine islands, volcanic chains, related to oppositely dipping subduction zones, developed along the eastern and western margins of the archipelago. There is ample field evidence that this volcanic activity, predominantly calc-alkaline in chemical character, had commenced by the Oligocene. Volcanoes resulting from subduction along the Manila-Negros trench in the west (e.g. Taal, Laguna de Bay and Arayat) form a high-angle linear array, trending away from the MORE field on Pb-isotopic covariation diagrams; have the highest Sr- and lowest Nd-isotopic compositions, of the two chains (but nevertheless plotting above bulk earth on the 87Sr/86Sr versus 143Nd/144Nd covariation diagram); and exhibit Sm/Nd and Rb/Sr values that are lower and higher, respectively, than the estimated values for bulk earth. While the Sm/Nd and Rb/Sr characteristics are common to both chains, volcanoes associated with the Philippine-East Luzon trench have Pb-isotopic compositions that fall in the Indian Ocean MORB field and that require time-integrated evolution in a high Th/U environment. They also have higher Nd- and lower Sr-isotopic ratios. The source materials of Philippine volcanoes, therefore, have undergone varied recent enrichments in LILE, as indicated by the decoupling of isotopic and elemental ratios. These enrichments, particularly for the western volcanoes, cannot be entirely due to small degrees of partial melting in the mantle wedge, considering that they were accompanied by elevations in radiogenic Pb. Elevated Pb ratios are best explained by the introduction of subducted, continentally derived sediments. The sedimentary component in the western volcanoes is probably the South China Sea sediments derived largely from Eurasia. That this component is not available in the Philippine-East Luzon trench is reflected by the fact that the eastern volcanoes

  8. Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States

    USGS Publications Warehouse

    Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.

    2014-01-01

    Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  9. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The

  10. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  11. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    USGS Publications Warehouse

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100??y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous

  12. Structural and stratigraphic evolution of Aleutian convergent-margin basins - ridge crest to trench floor

    SciTech Connect

    Scholl, D.W.; Ryan, H.F.; Geist, E.L.; Vallier, T.L.; Stevenson, A.J.; Childs, J.R. )

    1988-02-01

    The Aleutian Ridge lies along nearly 2000 km of the north Pacific's obliquely converging plate boundary with North America. Since middle Eocene time, convergent-margin basins have repeatedly formed here, typically as summit basins along the ridge crest, and as forearc basins on the landward trench slope. Summit and forearc basins formed as a consequence of plate-boundary coupling and the application of compressional and right-lateral shear stresses to the arc massif. Basins typically evolved along shear zones in response to transtensional processes, and as trailing-edge grabens behind rotating blocks of arc massif. In the late Cenozoic, high rates of trench sedimentation led to the growth of an accretionary complex that underthrust forearc basement. Wedging and improved plate coupling elevated and laterally shifted blocks of outer forearc rocks, creating much of the structural framework of the regionally extensive Aleutian Terrace forearc basin. Changes in plate-boundary conditions that affected the ridge's volcanic activity and regional elevation importantly influenced basinal sedimentation. Changes of greatest significance were a major shift in convergence direction and rate about 42 Ma (reduced volcanism), ridge underthrusting by increasingly younger ocean crust in Oligocene and Miocene time (arc elevation), and the combination of more orthogonal underthrusting and the subduction of a dead spreading center 5-10 Ma (arc subsidence).

  13. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  14. The Pathogenesis of Aleutian Disease of Mink

    PubMed Central

    Porter, David D.; Larsen, Austen E.; Porter, Helen G.

    1973-01-01

    Mink chronically infected with Aleutian disease virus develop a severe necrotizing arteritis affecting muscular arteries. Acute, subacute and healing lesions may be found. Extracellular deposits of host immunoglobulin and complement and, after acid elution, viral antigen can be shown by immunofluorescence technics in areas of fibrinoid necrosis and between proliferating endothelial cells. No intracellular viral antigen was found, indicating that the virus probably does not replicate in vascular structures. The arteritis of Aleutian disease appears to be the result of immune complex deposits in vessel walls. Imagesp[341]-aFig 4p[343]-aFig 1Fig 2Fig 3 PMID:4576760

  15. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  16. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    NASA Astrophysics Data System (ADS)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias

  17. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  18. Material culture across the Aleutian archipelago.

    PubMed

    Hatfield, Virginia L

    2010-12-01

    The material evidence from sites across the Aleutian Islands reflects colonization events, subsequent adaptations, and influxes of ideas and/or people from the east. The occurrence in the eastern Aleutians of bifacial technology around 7000 BP, of artifacts similar to the Arctic Small Tool tradition between 4000 and 3500 BP, and of slate and jet objects around 1000 BP reflects repeated surges of influence or movement of peoples from further east into the eastern end of the chain. In the central and western Aleutians, influence or perhaps colonization from east of the Aleutians is also marked by the occurrence of bifacial technology about 6500 BP and the appearance of slate artifacts after 1000 BP, suggesting the movement of ideas or people from further east. Basic trends across the archipelago include a decrease in formal chipped-stone tools, an increase in the use and the complexity of bone technology, and the increase in use and variety of ground-stone tools. In addition, increasing village site sizes and denser midden deposits are seen later in time throughout the archipelago. The similarity in sites and assemblages, albeit with regional variations, reflects trends that are seen across the chain and indicates that these island communities were not isolated from one another or from mainland Alaska. PMID:21417883

  19. Introduction to Augustine Volcano and Overview of the 2006 Eruption

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2006-12-01

    This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week

  20. Record Of Both Tectonic Related Vertical Motions and Global Sea Level Rise by Marine Terraces along an Active Arc Volcano. Example of Basse-Terre, Lesser Antilles (French West-Indies).

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Moysan, M.; Graindorge, D.; Jean-Frederic, L.; Philippon, M. M.; Marcaillou, B.; Léticée, J. L.

    2015-12-01

    Volcano-tectonic history of the Caribbean plate provides direct insight onto the dynamic of the North American Plate westward subduction. Basse-Terre Island is a volcanic chain that belongs to the Lesser Antilles active volcanic arc with a southward decreasing age of volcanism from 3 Ma to present day.We investigate records of vertical motion along Basse-Terre through a morphostructural analysis of the Pleistocene-Holocene shallow-water carbonate platforms and associated terraces that surround Basse-Terre Island. This study is based on new high-resolution bathymetric and dense seismic data acquired during the GEOTREF oceanographic survey (2015, February). Our bathymetric and topographic Digital Terrain Model together with the "Litto3D" Lidar data (IGN/SHOM) images the island topography and the platform bathymetry to a depth of 200m with horizontal and vertical resolutions of 5m and ~cm respectively. This detailed study highlights the morphostructure of terraces built during the last transgression in order to identify and quantify their vertical motions. We analyze inherited morphology and structures of the forearc that affect the platform to discuss effects of the regional tectonics context. A particular emphasis is put on the influence of the NW-SE arc parallel transtensive Montserrat-Bouillante fault system onto the platform geometry. At last, the distribution of Basse-Terre terraces is compared with terraces distribution around other Lesser Antilles island and the Bahamas stable margin platform. We aim at discriminating the influence of the Pleistocene global sea-level rise from the one of tectonic vertical deformations.

  1. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  2. Volcano spacing and plate rigidity

    SciTech Connect

    Brink, U. )

    1991-04-01

    In-plane stresses, which accompany the flexural deformation of the lithosphere under the load adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.

  3. Beryllium Isotope and Combined Be and U-series Isotope Studies of Volcanic Arcs: Implications for Fluid and Melt Transport Through the Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Morris, J. D.; Ryan, J. G.

    2004-12-01

    Beryllium isotope and combined studies of 10Be/9Be and U-series isotopes in volcanic arcs can 1) map transport of demonstrably slab derived elements through the mantle wedge; 2) certify the relationship of U series isotopes to slab derivation; 3) identify multiple stages in subduction modification of the mantle and constrain their timescales; and 4) speak to element partitioning into fluids and melts from the slab. In the Kurile, Aleutian and Bismarck arcs, 10Be/9Be ratios for lavas from behind the volcanic front are often comparable to, and sometimes greater than, those at the volcanic front, despite the longer path to rear-arc locations, along which 10Be is decaying in transit. Be/Zr ratios show a similar pattern of across-arc increase, without increases in enrichments of Mo and Sn, species which would be mobilized with Be if F-bearing fluids were present. The simplest interpretation is that sediment melting, and its contribution to the mantle wedge, is greater behind the front than at the volcanic front. Despite evidence for an increasing sediment melt contribution behind the front, volcanoes from the Kuriles contain progressively less B, Pb, As and Sb with increasing depth to the slab, indicating that fluid processes updip of about 180 km (beginning in the shallow forearc) strip these elements nearly quantitatively from the sedimentary portion of the downgoing slab. For studies published to date (Aleutians, Central America, S. Chile, Bismarck, Mariana) 10Be/9Be ratios are generally highest for samples plotting furthest from the 238U-230Th equiline (i.e. highest 238U/232Th, 230Th/232Th, or both). In lavas from the Southern Volcanic Zone (SVZ) of S. Chile (Sigmarsson et al., EPSL 2002), U excess (Uxs), Ra excess (Raxs) and 10Be/9Be are strongly correlated (r2=0.81-0.94). This argues that U enrichment and in some cases Ra enrichment in arc lavas is related to slab processes that are capable of mobilizing 10Be out of the sediment column, rather than reflecting only

  4. Shallow submarine volcano group in the early stage of island arc development: Geology and petrology of small islands south off Hahajima main island, the Ogasawara Islands

    NASA Astrophysics Data System (ADS)

    Kanayama, Kyoko; Umino, Susumu; Ishizuka, Osamu

    2014-05-01

    Small Islands south off Hahajima, the southernmost of the Ogasawara Archipelago, consist of primitive basalts (<12 wt.% MgO) to dacite erupted during the transitional stage immediately following boninite volcanism on the incipient arc to sustained typical oceanic arc. Strombolian to Hawaiian fissure eruptions occurring on independent volcanic centers for the individual islands under a shallow sea produced magnesian basalt to dacite fall-out tephras, hyaloclastite and a small volume of pillow lava, which were intruded by NE-trending dikes. These volcanic strata are correlated to the upper part (<40 Ma) of the Hahajima main island. Volcanic rock samples have slightly lower FeO*/MgO ratios than the present volcanic front lavas, and are divided into three types with high, medium and low La/Yb ratios. Basalt to dacite of high- and medium-La/Yb types show both tholeiitic (TH) and calc-alkaline (CA) differentiation trends. Low-La/Yb type belongs only to TH basalt. The multiple magma types are coexistence on the each island. TH basalts have phenocrysts of olivine, clinopyroxene and plagioclase, while CA basalts are free from plagioclase phenocrysts.

  5. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... plume from the April 22, 2003, eruption of the Chikurachki volcano is portrayed in these views from the Multi-angle Imaging ... the volcanically active Kuril Island group, the Chikurachki volcano is an active stratovolcano on Russia's Paramushir Island (just south of ...

  6. Systematic Osmium Isotope Binary Mixing Arrays in Arc Volcanism

    NASA Astrophysics Data System (ADS)

    Alves, S.; Alves, S.; Schiano, P.; Capmas, F.; Allegre, C. J.

    2001-12-01

    Isotopic and geochemical studies on subduction-related lavas aim at constraining the nature of their mantle sources and the respective roles of source heterogeneity and petrogenetic processes in their compositions. Many components are potentially involved in producing the geochemical signatures of arc lavas: depleted mantle, subducted oceanic crust and sediments, and the overlying continental or oceanic crust. A further complication in characterizing mantle sources of arc lavas is complex mixing of some component parts via derivative fluids or melts released from the slab. Os isotope ratios are potential tracers of slab contribution in arc lavas because 1) subducted sediments are very radiogenic in Os compared to the upper mantle, and 2) Re behaves as a moderately incompatible element during mantle partial melting, whereas Os is highly compatible. Therefore, MORB have much higher Re/Os ratios than peridotites. Consequently, old oceanic crust is likely to be extremely more radiogenic than the depleted upper mantle so that recycled basaltic components should be identified by their elevated 187Os/188Os ratios. Os isotope ratios and Os and Re concentrations have been measured in 55 lavas coming from 10 different subduction zones. Samples span a large range of major element concentrations (from basalts to dacites) and Mg# (from 0.32 to 0.81). The 10 subduction zones, namely the Lesser Antilles, Java, Papua-New Guinea, the Philippines, Izu-Bonin, Kamchatka, the Aleutians, Mexico, Colombia and Peru-Chile, have a range of basement nature and thickness, as well as a range of age and sediment cover of the subducting plate. Measured 187Os/188Os ratios range from 0.130 to 1.524 and Os concentrations range from 0.048 to 46 ppt. Re concentrations range from 37 to 915 ppt. Os initial isotope ratios are systematically positively and linearly correlated with the inverse of Os concentrations in arc lavas from a given volcano, indicating that the Os isotopic compositions always

  7. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Zhiming

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995-1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993-2003 time interval. All interferograms lack coherence within ???5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5-15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ???14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1-2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from >10 km depth, and that the intrusion-eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  8. Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran

    NASA Astrophysics Data System (ADS)

    Asiabanha, Abbas; Foden, John

    2012-09-01

    The Alborz Magmatic Assemblage (AMA) is an Eocene volcanic complex in northern Iran, and is situated at the site of the closure of the Tethyan basin. The magmatic rocks of the Alborz assemblage exhibit a distinct progression in style, from shallow submarine explosive eruptions to more effusive sub-aerial eruptions. Their chemical compositions indicate that they belong to the high-K calc-alkaline (shoshonitic) suite, and are related to either a subduction regime or continental collision. This conclusion is verified by major and trace element abundances, such as enrichments in Light Rare Earth Elements (LREEs) and Large Ion Lithophile Elements (LILEs) (e.g., K, U, and Sr) and depletion in High Field Strength Elements (HFSEs) (e.g., Nb, Ta, Ti, and Zr). However, HFSE plots suggest that the source region of the AMA magmas was affected by multiple processes, including deeply subducted lithosphere and the partial melts of extensional lithosphere in a back-arc environment. The isotopic composition of this suite and their trace element ratios suggest that the primary magmas were derived from a depleted mantle source and were subsequently affected by both fractional crystallization (ol + cpx in basic magmas and plg + bio ± hbl in intermediate magmas) and assimilation during magmatic evolution. Assimilation and fractional crystallization modeling, based on isotopic and trace element ratios, indicates that the ascending magmas were contaminated by approximately 40% continental crust. The petrography and geochemical composition of the Eocene Alborz magmatic assemblage indicate that it developed in a back-arc basin, in which explosive eruptions produced various pyroclastic and epiclastic deposits. A subsequent stage of volcanism then produced more effusive sub-aerial eruptions, as well as sporadic explosions that generated ignimbritic sheets.

  9. THE EXTENT OF SEA FLOOR VOLCANISM AND NATURE OF PRIMITIVE MAGMAS IN THE WESTERN ALEUTIANS

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Turka, J.; Portnyagin, M.; Kelemen, P. B.; Vervoort, J. D.; Sims, K. W.; Bindeman, I. N.

    2009-12-01

    Results of the 2005 Western Aleutian Volcano Expedition (WAVE) and the June 2009 cruise of the German-Russian KALMAR project (Kamchatka-Aleutian Margin) include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts located 300 km west of Buldir Island, the westernmost emergent volcano in the Aleutians. The newly discovered features fall on a volcanic line connecting Buldir and other emergent volcanoes to Piip Seamount, which is located in the far west. These discoveries suggest that the surface expression of Aleutian volcanism slips below sea level at 175°E, but is otherwise continuous from 170°W to 167°E. Geochemical results from the Ingenstrem Depression (60 km west of Buldir) define two compositional groups, which provide insight into the nature of primitive Aleutian magmatism. Low-Sr lavas (<700 ppm Sr) are basalts and andesites with moderately enriched trace element patterns (La/Yb 4-8, Sr/Y<30) and relatively radiogenic Sr (87/86=0.7031-0.7033), typical of IAB. High-Sr lavas (>700 ppm) are plagioclase and hornblende-phyric andesites and dacites with fractionated trace element patterns (Sr/Y>50) and low Y (<12 ppm) and HREE. Sr isotopes for all lavas are inversely correlated with Sr/Y and SiO2, so the most felsic samples (65-67% SiO2), which have the highest Sr abundances and most fractionated trace element patterns (Sr/Y>120) are also the most isotopically depleted (87/86<0.7028). Major and trace elements are well correlated with isotopes defining primitive end-members at 87/86<0.7027 (high-Sr), and >0.7032 (low Sr). The narrow range for Nd isotopes (8.5-9.5 epsNd) suggests that the main source of Sr and Nd may be seawater-altered subducted oceanic crust; however, oxygen isotopes on olivine and hornblende separates are similar to MORB for both groups (delta18O=5.1-5.6 per-mil, olivine-equ). Available data do not identify a high-Sr lava with whole-rock Mg# and olivine phenocryst compositions appropriate for equilibration

  10. U.S. Geological Survey (USGS) Western Region Kasatochi Volcano Coastal and Ocean Science

    USGS Publications Warehouse

    DeGange, Anthony

    2010-01-01

    Alaska is noteworthy as a region of frequent seismic and volcanic activity. The region contains 52 historically active volcanoes, 14 of which have had at least one major eruptive event since 1990. Despite the high frequency of volcanic activity in Alaska, comprehensive studies of how ecosystems respond to volcanic eruptions are non-existent. On August 7, 2008, Kasatochi Volcano, in the central Aleutian Islands, erupted catastrophically, covering the island with ash and hot pyroclastic flow material. Kasatochi Island was an annual monitoring site of the U.S. Fish and Wildlife Service, Alaska Maritime National Wildlife Refuge (AMNWR); therefore, features of the terrestrial and nearshore ecosystems of the island were well known. In 2009, the U.S. Geological Survey (USGS), AMNWR, and University of Alaska Fairbanks began long-term studies to better understand the effects of the eruption and the role of volcanism in structuring ecosystems in the Aleutian Islands, a volcano-dominated region with high natural resource values.

  11. Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt

    NASA Astrophysics Data System (ADS)

    Ushioda, Masashi; Takahashi, Eiichi; Hamada, Morihisa; Suzuki, Toshihiro

    2014-12-01

    The variation in water content of arc basaltic magmas in the Northeast Japan arc and the Izu arc was estimated using a simple plagioclase phenocryst hygrometer. In order to construct a plagioclase phenocryst hygrometer optimized for arc basalt magmas, we have conducted high-pressure melting experiments of relatively primitive basalt from the Miyakejima volcano, a frontal-arc volcano in the Izu arc. As a result of the experiments, we found that the Ca/Na partition coefficient between plagioclase and hydrous basaltic melt increases linearly with an increase in H2O content in the melts. We then selected from literature geochemical data sets of relatively primitive basaltic rocks with no evidence of magma mixing and the most frequent Ca-rich plagioclase phenocrysts from 15 basaltic arc volcanoes including both frontal-arc and rear-arc volcanoes. In the 15 volcanoes studied, plagioclase phenocrysts of high anorthite content (An > 90) were commonly observed, whereas plagioclase phenocrysts in rear arc volcanoes usually had a lower anorthite content (90 > An > 80). In all volcanoes studied, the estimated H2O content of basaltic magma was at least 3 wt.% H2O or higher. The magmas of volcanoes located on the volcanic front have about 5 wt.% H2O in magma whereas those from the rear-arc side are slightly lower in H2O content.

  12. Characterization of the Low-Temperature Pyroclastic Surge Occurred from AD1888 to 1900 in the volcanoes of Northeastern Japan Arc

    NASA Astrophysics Data System (ADS)

    Fujinawa, A.; Ban, M.; Kontani, K.

    2006-12-01

    Phreatic explosion and its accompanying low-temperature pyroclastic surge are, in general, good natural examples to examine the usefulness of the simulation results of the explosion experiments. Several phreatic explosions have been recorded at the volcanoes in the southern part of the NE Japan within a short period. We selected the Bandai 1888 and Adatara 1900, and additionally, Zao 1895 eruptions, to re-examine and to restructure the sequence and detailed nature of the eruption phenomena, by combining the old documents including the reports of newspapers with detailed field survey and facies analyses of the surge. Common geological and stratigraphical features among these pyroclastic surge deposits are revealed. These include: 1) the thickness of the deposits near the eruption center reaches several meters, whereas it decreases abruptly, resulting in apron-like deposits, only the deposit may last more than 1 km restrictedly along the valley, 2) massive facies are dominant in the proximal area with or without wood, broken chinaware and/or regolith at the base of the deposits, 3) fine and in some cases laminated ash deposits are dominant, and also in some cases pisolites are recognized in the distal area. These indicate that the presently studied surge events are essentially high-velocity, low-density, low-temperature and wet members of the pyroclastic density current clan. The estimated explosion energies and the volumes of the surge deposits are 2x1016 J and 10-2 km3 for Bandai 1888, and 6x1013 J and 3x10-4 km3 for Adatara 1900 eruptions, respectively, suggesting that the volume of pyroclastic surge originated from phreatic explosion roughly correlate positively with the explosion energy.

  13. Chemical characteristics of magma and related seafloor sulfide deposits on back-arc spreading center and off-ridge volcanoes in Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Urabe, T.; Kanamori, S.; Ishibashi, J.; Kentaro, K.; Sato, H.; Kato, S.; Toyoda, S.

    2012-12-01

    The back-arc basalt in Mariana Trough is characterized by fluid-dominated components (Stolper and Newman, 1994). They suggested that the H2O-enriched magma of the Mariana Trough is formed as melting mixture between MORB-type mantle source and H2O-rich component which is likely to be derived from the subducting slab. Four active and one inactive hydrothermal sites were found within a distance of 5 km in Southern Mariana Trough; that is, Snail site (12o57.19'N, 143o37.16'E, depth:2861m) and Yamanaka site (12o56.64'N, 143o36.80'E, depth: 2823m) on the spreading-axis, Archean site (12o56.35'N, 143o37.89'E, depth: 2986m), and Pika+Urashima sites (12o55.13'N, 143o38.92'E, depth: 2773m) on the off-axis seamount, respectively. We conducted nine BMS (Benthic Multi-coring System) drillings during the Hakurei-Maru No.2 cruise of TAIGA project (see below) in June 2010. Both basalt glasses and associated seafloor massive sulfide ores from these sites are cored and served for ICP-MS analyses. Multi-element plot of basalt glass indicates that both on-axis and off-axis basalts have similar pattern and are categorized as differentiated MORB and basaltic andesite which cannot be produced by fractionation of MORB, respectively. Sulfide ores at on-axis and off-axis sites show similar mineral assemblage of pyrite/marcasite, sphalerite, chalcopyrite, barite, and limited occurrence of galena only at on-axis site. Fluid-mobile elements such as As, Ba, Pb and others in sulfide ores show systematic increase at off-axis sites which reflect the influence of subduction zone fluids towards the Mariana arc. The sulfur isotope composition of pyrite/marcasite from on-axis sites shows values (+6.4 - +7.9 permil) typically observed in arc magma-related hydrothermal deposits (Suzuki, unpubl. data). On the other hand, those observed at off-axis sites (Archean; +3.6 - +6.9 permil, Pika; +0.8 - +3.5 permil) are similar to the composition of sulfides on mid-ocean ridges where the influence of sulfur

  14. Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile

    NASA Astrophysics Data System (ADS)

    Morgado, E.; Parada, M. A.; Contreras, C.; Castruccio, A.; Gutiérrez, F.; McGee, L. E.

    2015-11-01

    Most of the small eruptive centers of the Andean Southern Volcanic Zone are built over the Liquiñe-Ofqui Fault Zone (LOFZ), a NS strike-slip (> 1000 km length) major structure, and close to large stratovolcanoes. This contribution compares textural features, compositional parameters, and pre- and syn-eruptive P,T conditions, between basaltic lavas of the Caburgua-Huelemolle Small Eruptive Centers (CHSEC) and the 1971 basaltic andesite lava of the Villarrica Volcano located 10 km south of the CHSEC. Olivines and clinopyroxenes occur as phenocrysts and forming crystal clots of the studied lavas. They do not markedly show compositional differences, except for the more scattered composition of the CHSEC clinopyroxenes. Plagioclase in CHSEC lavas mainly occur as phenocrysts or as microlites in a glass-free matrix. Two groups of plagioclase phenocrysts were identified in the 1971 Villarrica lava based on crystal size, disequilibrium features and zonation patterns. Most of the CHSEC samples exhibit higher LaN/YbN and more scattered Sr-Nd values than 1971 Villarrica lava samples, which are clustered at higher 143Nd/144Nd values. Pre-eruptive temperatures of the CHSEC-type reservoir between 1162 and 1165 ± 6 °C and pressures between 10.8 and 11.4 ± 1.7 kb consistent with a deep-seated reservoir were obtained from olivine-augite phenocrysts. Conversely, olivine-augite phenocrysts of 1971 Villarrica lava samples record pre-eruptive conditions of two stages or pauses in the magma ascent to the surface: 1208 ± 6 °C and 6.3-8.1 kb ± 1.7 kb (deep-seated reservoir) and 1164-1175 ± 6 °C and ≤ 1.4 kb (shallow reservoir). At shallow reservoir conditions a magma heating prior to the 1971 Villarrica eruption is recorded in plagioclase phenocrysts. Syn-eruptive temperatures of 1081-1133 ± 6 °C and 1123-1148 ± 6 °C were obtained in CHSEC and 1971 Villarrica lava, respectively using equilibrium olivine-augite microlite pairs. The LOFZ could facilitate a direct transport to

  15. Dante's volcano

    NASA Astrophysics Data System (ADS)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  16. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  17. Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska

    USGS Publications Warehouse

    Lu, Zhiming; Freymueller, J.T.

    1998-01-01

    The feasibility of measuring volcanic deformation or monitoring deformation of active volcanoes using space-borne synthetic aperture radar (SAR) interferometry depends on the ability to maintain phase coherence over appropriate time intervals. Using ERS 1 C band (?? = 5.66 cm) SAR imagery, we studied the seasonal and temporal changes of the interferometric SAR coherence for fresh lava, weathered lava, tephra with weak water reworking, tephra with strong water reworking, and fluvial deposits representing the range of typical volcanic surface materials in the Katmai volcano group, Alaska. For interferograms based on two passes with 35 days separation taken during the same summer season, we found that coherence increases after early June, reaches a peak between the middle of July and the middle of September, and finally decreases until the middle of November when coherence is completely lost for all five sites. Fresh lava has the highest coherence, followed by either weathered lava or fluvial deposits. These surfaces maintain relatively high levels of coherence for periods up to the length of the summer season. Coherence degrades more rapidly with time for surfaces covered with tephra. For images taken in different summers, only the lavas maintained coherence well enough to provide useful interferometric images, but we found only a small reduction in coherence after the first year for surfaces with lava. Measurement of volcanic deformation is possible using summer images spaced a few years apart, as long as the surface is dominated by lavas. Our studies suggest that in order to make volcanic monitoring feasible along the Aleutian arc or other regions with similar climatic conditions, observation intervals of the satellite with C band SAR should be at least every month from July through September, every week during the late spring/early summer or late fall, and every 2-3 days during the winter. Copyright 1998 by the American Geophysical Union.

  18. Rejuvenation of shallow-crustal silicic magma bodies at Augustine and Hayes volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Vazquez, J. A.; Hayden, L. A.; Calvert, A. T.; Lidzbarski, M. I.; Andersen, N. L.; Till, C. B.

    2015-12-01

    Rejuvenation of crystal-rich magma bodies leading to eruption can occur on a variety of scales and in varied tectonic settings. Two examples from the Aleutian arc highlight 1) segregation of silicic melt from an intermediate mush, and 2) "defrosting" of a shallowly emplaced intrusion. Augustine Volcano erupted a late Pleistocene rhyolite pumice fall that we link through zircon geochronology to cumulate dioritic blocks, ripped from Augustine's shallow magmatic plumbing system and ejected during the 2006 eruption. Unpolished zircon rims from the rhyolite yield a U-Th age of ~25 ka, and interiors yield a dominant age population of ~26 ka. Zircons from diorites have interior ages and compositions indistinguishable from those of the rhyolite. The diorites, rhyolite, and early Holocene dacites define whole-rock linear unmixing trends consistent with melt (rhyolite) extraction from a mush (dacites), leaving behind a cumulate residue (diorites). A volatile-rich basalt erupted just prior to the rhyolite likely facilitated melt extraction from the mush. The rhyolitic Hayes River ignimbrite, erupted from Hayes volcano, contains dense porphyry blocks that match pumices in composition and phenocryst content and are samples of a shallow intrusion. Autocrystic monazite accommodated up to several weight % Th and significantly affected the U-Th ratio of the magma during differentiation. An isochron for early melt and low-U monazites yields an age of ~67 ka, whereas one for late melt and high-U monazites yields ~42 ka. This younger age is indistinguishable from the laser single crystal Ar-Ar age for sanidine of 41±2 ka (1 sigma). We interpret the apparent ~25 k.y. crystallization interval to represent the assembly and differentiation timescale associated with the Hayes magma body. Sharp reverse zoning in sanidine from pumice (but not porphyry) records a thermal pulse not seen in the more slowly reacting phases, suggesting that a rejuvenation event occurred just prior to eruption.

  19. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  20. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  1. Arc Magma Genesis from Melting of Mélange Diapirs

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.

    2015-12-01

    Alkaline basalts occur in many subduction-related volcanic settings, including the Sunda, Izu-Bonin, Honshu, Aeolian, and Aleutian arcs, yet their origin continues to be debated. Recent studies have suggested that buoyant material (mélange) from the slab-wedge interface may rise into the hot corner of the mantle wedge as low-density plumes or diapirs, where it will melt or induce mantle melting due to dehydration. High-pressure mélange rocks represent a mixture of mafic, ultramafic, and sedimentary components, and are often dominated by chlorite. Mélange rocks are also enriched in accessory phases such as monazite, zircon, and rutile, which host a variety of trace elements. We present results from experimental melting of chlorite-rich mélange material at mantle wedge conditions that reproduce many of the compositional features of subduction-related lavas. Piston cylinder experiments were performed at conditions appropriate for mantle wedge diapirs (1030-1280 °C, 1.5-2.5 GPa) using natural mélange rocks from Syros, Greece. Experimental melts derived from omphacite-epidote-phengite bearing chlorite schists range in composition from basaltic trachyandesites to trachydacites to more alkaline melt compositions (50.7-60.73 wt% SiO2, 7.48-12.93 wt% Na2O+K2O). All of the experimental melts are characterized by high alumina contents (16.79-21.36 wt% Al2O3). Minerals coexisting with these melts include clinopyroxene, amphibole (at lower T) or olivine (at higher T), garnet (at higher P), ilmenite and/or rutile, and zircon. Trace element patterns in our experimentally produced melts are similar to those from arc volcanoes worldwide. Experimental melts are enriched in large ion lithophile elements (Cs, Rb, Ba, K, Pb, Sr) and depleted in high field strength elements (Nb, Ta, and Ti). Zirconium and Hf are enriched relative to the rare earth elements (REE), which show flat to heavy REE depleted patterns depending on the presence of residual garnet. Thorium is fractionated

  2. Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt

    NASA Astrophysics Data System (ADS)

    Ushioda, M.; Takahashi, E.; Hamada, M.; Suzuki, T.

    2015-12-01

    The variation in water content of arc basaltic magmas in the Northeast Japan arc and the Izu arc was estimatedusing a simple plagioclase phenocryst hygrometer. In order to construct a plagioclase phenocryst hygrometeroptimized for arc basalt magmas, we have conducted hydrous melting experiments of relatively primitive basaltfrom the Miyakejima volcano, a frontal-arc volcano in the Izu arc. As a result of the experiments, we found that theCa/Na partition coefficient between plagioclase and hydrous basaltic melt increases linearly with an increase in H2Ocontent in the melts. We then compiled published geochemical data sets of relatively primitive basaltic rocks with no evidence of magma mixing and the most frequent Ca-rich plagioclase phenocrysts from 15 basaltic arc volcanoesincluding both frontal-arc and rear-arc volcanoes. In the 15 volcanoes studied, plagioclase phenocrysts of high anorthitecontent (An > 90) were commonly observed, whereas plagioclase phenocrysts in rear arc volcanoes usually had a loweranorthite content (90 > An > 80). In all volcanoes studied, the estimated H2O content of basaltic magma was at least3 wt.% H2O or higher. The magmas of volcanoes located on the volcanic front have about 5 wt.% H2O in magmawhereas those from the rear-arc side are slightly lower in H2O content.

  3. Newberry Volcano (Oregon, USA) Revised

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, J. M.; Grove, T. L.

    2015-12-01

    Newberry Volcano (NV) located E. of the Cascades arc axis is often interpreted as (1) a High Lava Plains (NW Basin & Range -- B&R) volcano hosting rhyolites generated by a traveling plume, (2) a shield volcano built of basalt, or (3) an enigma unrelated to the adjacent High Cascades. Recent work shows that these interpretations are incorrect. Petrologic, geochemical, isotopic, drill hole, & seismic data indicate that the NV magma system results from arc-related processes at the NW corner of the B&R, where this major extensional province impinges on the Cascades arc. NV rhyolites are geochemically distinct and lower in SiO2 than those to the east where a general NW-younging trend of rhyolite ages has suggested a traveling hotspot -- a consequence instead of propagation of B&R extension. NV lies ~90 km above the downgoing slab based on seismic evidence (McCrory et al. 2012), ~15 km deeper than under the Three Sisters (TS) volcanic complex 60 km to the NW on the arc axis. NV & TS exhibit a range of compositions and both have generated rhyodacite with unusually high Na2O contents (~7 wt. %; Mandler et al. 2014), exhibiting similar petrogenetic processes. Silicic lavas and tuffs of the caldera-centric NV make up a significant component (~20% of drill core) of its 600 km3, although basaltic andesite is the dominant composition. Basalts of calcalkaline affinity erupted on the edifice as recently as early Holocene time. These basalts contain petrologic evidence for high pre-eruptive H2O contents, have strong arc-like trace element signatures, and are isotopically Cascadian and distinct from basalts to the east in the B&R that have much higher 3/4He (Graham et al. 2009). NV is one variety of Cascades arc volcano among which are a range of stratovolcanoes including Mt. Baker (15 km3) and Mt. Shasta (500 km3), a Holocene caldera (Crater Lake), and the many basaltic andesite shield volcanoes that make up most of the Oregon High Cascades.

  4. Avian mortality associated with a volcanic gas seep at Kiska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Bond, Alexander L.; Evans, William C.; Jones, Ian L.

    2012-01-01

    We identified natural pits associated with avian mortality at the base of Kiska Volcano in the western Aleutian Islands, Alaska in 2007. Living, moribund, and dead birds were regularly found at low spots in a canyon between two lava flows during 2001–2006, but the phenomenon was attributed to natural trapping and starvation of fledgling seabirds (mostly Least Auklets, Aethia pusilla) at a colony site with >1 million birds present. However, 302 birds of eight species, including passerines, were found dead at the site during 2007–2010, suggesting additional factors were involved. Most carcasses showed no signs of injury and concentrations of dead birds had accumulated in a few distinctive low pits in the canyon. Gas samples from these locations showed elevated CO2 concentrations in late 2010. Analysis of carcasses indicated no evidence of blunt trauma or internal bleeding. Volcanic gases accumulating at these poorly ventilated sites may have caused the observed mortality, but are temporally variable. Most auklets breeding in the Aleutian Islands do so in recent lava flows that provide breeding habitat; our study documents a cost of this unusual habitat selection.

  5. Spreading Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Delaney, Paul T.; Denlinger, Roger P.

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  6. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  7. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    midlatitude or high-latitude volcanoes; (c) safety factors during unrest, which can limit where new instrumentation can safely be installed (particularly at near-vent sites that can be critical for precursor detection and eruption forecasting); and (d) the remoteness of many U.S. volcanoes (particularly those in the Aleutians and the Marianas Islands), where access is difficult or impossible most of the year. Given these difficulties, it is reasonable to anticipate that ground-based monitoring of eruptions at U.S. volcanoes will likely be performed primarily with instruments installed before unrest begins. 2. Given a growing awareness of previously undetected 2. phenomena that may occur before an eruption begins, at present the types and (or) density of instruments in use at most U.S. volcanoes is insufficient to provide reliable early warning of volcanic eruptions. As shown by the gap analysis of Ewert and others (2005), a number of U.S. volcanoes lack even rudimentary monitoring. At those volcanic systems with monitoring instrumentation in place, only a few types of phenomena can be tracked in near-real time, principally changes in seismicity, deformation, and large-scale changes in thermal flux (through satellite-based remote sensing). Furthermore, researchers employing technologically advanced instrumentation at volcanoes around the world starting in the 1990s have shown that subtle and previously undetectable phenomena can precede or accompany eruptions. Detection of such phenomena would greatly improve the ability of U.S. volcano observatories to provide accurate early warnings of impending eruptions, and is a critical capability particularly at the very high-threat volcanoes identified by Ewert and others (2005). For these two reasons, change from a reactive to a proactive volcano-monitoring strategy is clearly needed at U.S. volcanoes. Monitoring capabilities need to be expanded at virtually every volcanic center, regardless of its current state of

  8. Case study: Bioremediation in the Aleutian Islands

    SciTech Connect

    Steward, K.J.; Laford, H.D.

    1995-12-31

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m{sup 3} of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations.

  9. Chilean Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On the border between Chile and the Catamarca province of Argentina lies a vast field of currently dormant volcanoes. Over time, these volcanoes have laid down a crust of magma roughly 2 miles (3.5 km) thick. It is tinged with a patina of various colors that can indicate both the age and mineral content of the original lava flows. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 15, 1999. This is a false-color composite image made using shortwave infrared, infrared, and green wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  10. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  11. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    ... of which are so thick that they block the penetration of light from CALIPSO's lidar to the surface. The yellow layer near the surface over France is believed to be primarily air pollution, but could also contain ash from the volcano. Highlighting its ...

  12. Deciphering Okmok Volcano's restless years (2002-2005)

    NASA Astrophysics Data System (ADS)

    Reyes, Celso Guillermo

    Okmok Volcano is an active island-arc shield volcano located in the central Aleutian islands of Alaska. It is defined by a 10-km-diameter caldera that formed in two cataclysmic eruptions, the most recent being ˜2050 years ago. Subsequent eruptions created several cinder cones within the caldera. The youngest of these, Cone A, was the active vent from 1815 through its 1997 eruption. On July 12 2008 Okmok erupted from new vents located northwest of Cone D. Between 2001 and 2004, geodetic measurements showed caldera inflation. These studies suggested that new magma might be entering the system. In 2002, a newly installed seismic network recorded quasi-periodic ("banded") seismic tremor signals occurring at the rate of two or more episodes per hour. This tremor was a near-continuous signal from the day the seismic network was installed. Although the volcano was not erupting, it was clearly in a state of unrest. This unrest garnered considerable attention because the volcano had erupted just six years prior. The seismic tremor potentially held insight as to whether the unrest was a remnant of the 1997 eruption, or whether it signaled a possible rejuvenation of activity and the potential for eruption. To determine the root cause and implications of this remarkable seismic tremor sequence, I created a catalog of over ˜17,000 tremor events recorded between 2003 and mid-2005. Tremor patterns evolved on the scale of days, but remained the dominant seismic signal. In order to facilitate the analysis of several years of data I created a MATLAB toolbox, known as "The Waveform Suite". This toolbox made it feasible for me to work with several years of digital data and forego my introductory analyses that were based on paper "helicorder" records. I first attempted to locate the tremor using the relative amplitudes of the seismograms to determine where the tremor was being created. Candidate tremor locations were constrained to a few locations along a corridor between Cone A and

  13. Hydrothermal Monitoring in a Quiescent Volcanic Arc: Cascade Range, Northwestern United States

    NASA Astrophysics Data System (ADS)

    Gelwick, K.; Randolph-Flagg, N. G.; Crankshaw, I. M.; McCulloch, C. L.; Lundstrom, E. A.; Murveit, A. M.; Bergfeld, D.; Spicer, K.; Tucker, D.; Schmidt, M. E.; Mariner, R. H.; Evans, W.; Ingebritsen, S.

    2013-12-01

    response to the 1980-present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  14. Mercury concentrations of a resident freshwater forage fish at Adak Island, Aleutian Archipelago, Alaska.

    PubMed

    Kenney, Leah A; von Hippel, Frank A; Willacker, James J; O'Hara, Todd M

    2012-11-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ(13)C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. PMID:22912068

  15. MERCURY CONCENTRATIONS OF A RESIDENT FRESHWATER FORAGE FISH AT ADAK ISLAND, ALEUTIAN ARCHIPELAGO, ALASKA

    PubMed Central

    Kenney, Leah A.; von Hippel, Frank A.; Willacker, James J.; O’Hara, Todd M.

    2015-01-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ13C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. PMID:22912068

  16. Peninsular terrane basement ages recorded by Paleozoic and Paleoproterozoic zircon in gabbro xenoliths and andesite from Redoubt volcano, Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Vazquez, Jorge A.; Wooden, Joseph L.

    2012-01-01

    Historically Sactive Redoubt volcano is an Aleutian arc basalt-to-dacite cone constructed upon the Jurassic–Early Tertiary Alaska–Aleutian Range batholith. The batholith intrudes the Peninsular tectonostratigraphic terrane, which is considered to have developed on oceanic basement and to have accreted to North America, possibly in Late Jurassic time. Xenoliths in Redoubt magmas have been thought to be modern cumulate gabbros and fragments of the batholith. However, new sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages for zircon from gabbro xenoliths from a late Pleistocene pyroclastic deposit are dominated by much older, ca. 310 Ma Pennsylvanian and ca. 1865 Ma Paleoproterozoic grains. Zircon age distributions and trace-element concentrations indicate that the ca. 310 Ma zircons date gabbroic intrusive rocks, and the ca. 1865 Ma zircons also are likely from igneous rocks in or beneath Peninsular terrane basement. The trace-element data imply that four of five Cretaceous–Paleocene zircons, and Pennsylvanian low-U, low-Th zircons in one sample, grew from metamorphic or hydrothermal fluids. Textural evidence of xenocrysts and a dominant population of ca. 1865 Ma zircon in juvenile crystal-rich andesite from the same pyroclastic deposit show that this basement has been assimilated by Redoubt magma. Equilibration temperatures and oxygen fugacities indicated by Fe-Ti–oxide minerals in the gabbros and crystal-rich andesite suggest sources near the margins of the Redoubt magmatic system, most likely in the magma accumulation and storage region currently outlined by seismicity and magma petrology at ∼4–10 km below sea level. Additionally, a partially melted gabbro from the 1990 eruption contains zircon with U-Pb ages between ca. 620 Ma and ca. 1705 Ma, as well as one zircon with a U-Th disequilibrium model age of 0 ka. The zircon ages demonstrate that Pennsylvanian, and probably Paleoproterozoic, igneous rocks exist in, or possibly beneath, Peninsular

  17. Bayesian probabilities for Mw 9.0+ earthquakes in the Aleutian Islands from a regionally scaled global rate

    NASA Astrophysics Data System (ADS)

    Butler, Rhett; Frazer, L. Neil; Templeton, William J.

    2016-05-01

    We use the global rate of Mw ≥ 9.0 earthquakes, and standard Bayesian procedures, to estimate the probability of such mega events in the Aleutian Islands, where they pose a significant risk to Hawaii. We find that the probability of such an earthquake along the Aleutians island arc is 6.5% to 12% over the next 50 years (50% credibility interval) and that the annualized risk to Hawai'i is about $30 M. Our method (the regionally scaled global rate method or RSGR) is to scale the global rate of Mw 9.0+ events in proportion to the fraction of global subduction (units of area per year) that takes place in the Aleutians. The RSGR method assumes that Mw 9.0+ events are a Poisson process with a rate that is both globally and regionally stationary on the time scale of centuries, and it follows the principle of Burbidge et al. (2008) who used the product of fault length and convergence rate, i.e., the area being subducted per annum, to scale the Poisson rate for the GSS to sections of the Indonesian subduction zone. Before applying RSGR to the Aleutians, we first apply it to five other regions of the global subduction system where its rate predictions can be compared with those from paleotsunami, paleoseismic, and geoarcheology data. To obtain regional rates from paleodata, we give a closed-form solution for the probability density function of the Poisson rate when event count and observation time are both uncertain.

  18. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  19. International Volcanological Field School in Kamchatka and Alaska: Experiencing Language, Culture, Environment, and Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Gordeev, E.; Ivanov, B.; Izbekov, P.; Kasahara, M.; Melnikov, D.; Selyangin, O.; Vesna, Y.

    2003-12-01

    aptitude for the physical sciences, not necessarily volcanology. It will also serve as an entry point for students wishing to make extended exchange visits to the Russian Far East or Alaska, and to graduate students in volcanology wishing to undertake thesis research in North Pacific volcanism. The school represents the first educational effort of the newly established Japan Kamchatka Alaska Subduction Project (JKASP), which seeks to bring scientists of our three nations together in the study of one shared geophysical province, the Kuril-Kamchatka-Aleutian Arcs.

  20. Geologic map of Medicine Lake volcano, northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  1. 76 FR 3089 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Region Bering Sea & Aleutian Islands Crab Permits AGENCY: National Oceanic and Atmospheric Administration... of a currently approved collection. The Crab Rationalization Program allocates Bering Sea and Aleutian Islands (BSAI) crab resources among harvesters, processors, and coastal communities through...

  2. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  3. Mt. St. Augustine, Alaska: Geochemical evolution of an eastern Aleutian volcanic center

    SciTech Connect

    Johnson, K.E. . Dept. of Geology); Harmon, R.S. . Kingsley Dunham Centre); Moorbath, S. . Dept. of Earth Sciences); Sigmarsson, O. )

    1993-04-01

    Mt. St. Augustine is a calc-alkaline Quaternary volcano, situated within Cook Inlet, Alaska. The island is composed of low- to medium-K andesite and dacite domes and pyroclastic flows. Major element variations indicate the magmatic evolution is dominantly influenced by fractionation and magma-mixing processes. Incompatible element and isotopic compositions suggest that despite its continental location, crustal assimilation is not significant factor in magmatic evolution. Alkali contents for Augustine are generally lower than elsewhere in the Aleutians (e.g. Augustine Cs/Rb = 0.016--0.024, K/Rb = 372--553; Aleutians Cs/Rb = 0.016--0.17, K/Rb = 231--745). Sr- and Nd-isotope ratios encompass narrow ranges ([sup 87]Sr/[sup 86]Sr = 0.70317--0.70343; [sup 143]Nd/[sup 144]Nd = 0.513011--0.513085), characteristic of uncontaminated mantle-derived melts. U-Th disequilibrium isotopic values also indicate little or no assimilation of evolved continental crust. Pb-isotopic ranges are also relatively restricted ([sup 206]Pb/[sup 204]Pb = 18.62--18.82; [sup 207]Pb/[sup 204]Pb = 15.54--15.57; [sup 208]Pb/[sup 204]Pb = 38.18--38.34) and comparison with north Pacific enriched (OIB) and depleted (MORB) mantle sources suggest the incorporation of only a small percentage of subducted terrigenous sediments. A model for Augustine magma genesis is proposed where parental magmas are generated by 5--20% partial melting of a lherzolite mantle with up to a 5% subducted terrigenous sediment component. The major influence of the thickened continental crust is to prevent the ascent and eruption of basaltic magma. The data exhibit no temporal variations, indicating that the magmatic system which produced the historic eruptions is well established.

  4. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Bering Sea and Aleutian Islands (BSAI... Aleutian Islands (BSAI) Crab species program. (a) Purpose. This section's purpose is to implement the... Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs pursuant to § 679.2...

  5. Non-volcanic tremor in the Aleutian Islands captured by a mini-seismic array

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Prejean, S. G.

    2013-12-01

    The Aleutian Islands are an interesting place to study because of the presence of abundant seismicity, both subduction and volcano related. In addition to regular earthquakes, the Islands host both volcanic and non-volcanic tremor. To capture this rich variety of seismicity, we designed and installed a mini-seismic array on Akutan Island in 2012. Akutan is located in the eastern Aleutians just off the tip of the Alaska Peninsula, near the eastern edge of the 1957 Mw8.6 earthquake rupture zone. A mini-seismic array is particularly useful in this logistically challenging environment where land cover is limited. We recorded and analyzed about 2 months of data, and found both volcanic and non-volcanic events. Here we focus on non-volcanic tremor and its characteristics as captured by the Akutan array. Akutan Island and the surrounding area turn out to be prolific producers of tremor. An automatic beam-backprojection algorithm [Ghosh et al., 2009] detects almost daily tremor activity with durations ranging from several minutes to more than 3.5 hours. On average, beam-backprojection detects 1.3 hours of tremor activity per day and in total, it detects about 5 times more duration of tremor activity compared to a visual check for tremor signal using the existing seismic network. We observe tremor sources both west and east of the Akutan array. Western sources are the most active ones and their slowness parameters are consistent with the locations of low-frequency earthquakes detected by Brown et al., 2013. The eastern source area has not been identified previously and appears to be active for only a few times during this study, but shows continuous activity for several hours. In addition, we observe temporal evolution of slowness parameters consistent with steady tremor migration. Moreover, low frequency earthquakes with impulsive body wave phases are identified within the tremor signal. They show S-minus-P times consistent with their being located at the model plate

  6. Evidence for a Great Aleutian Paleotsunami on Kaua`i

    NASA Astrophysics Data System (ADS)

    Butler, R.; Bai, Y.; Burney, D. A.; Cheung, K.; Yamazaki, Y.

    2013-12-01

    The Hawaiian Islands location amid the Pacific Ocean is threatened by tsunamis from great earthquakes in nearly all directions. Historical great earthquakes Mw>8.5 in the last 100 years have produced large inundations and loss of life in the Islands, but have not accounted for a substantial (>100 m^3) paleotsunami deposit in the Makauwahi sinkhole at Maha`ulepu on the Island of Kaua`i. High-resolution, digital elevation models of bathymetry and topography have been used in conjunction with a non-linear, hydrostatic tsunami model to simulate inundations from giant earthquakes in the Aleutian Islands and elsewhere to estimate the extent of tsunami threats to the State of Hawaii. We model the inundation of the sinkhole by an earthquake with a minimum moment-magnitude of Mw 9.2 located within the eastern Aleutians, where the tsunami energy is focused toward Hawaii. An alternative hypothesis wherein the deposit entered through a small cave entrance is not consistent with fine speleothems, intact in the cave, that pre-date the deposit. The results indicate that a giant earthquake in the eastern Aleutian Islands circa 1425-1665 AD, located between the source regions of the 1946 and 1957 great tsunamigenic earthquakes, generated a tsunami in Hawaii much larger than the historical record. A tsunami deposit in the Aleutians dated circa ~1550 AD is consistent with this eastern Aleutian source region.

  7. Characterization of Aleutian disease virus as a parvovirus.

    PubMed Central

    Bloom, M E; Race, R E; Wolfinbarger, J B

    1980-01-01

    We characterized a strain of Aleutian disease virus adapted to growth in Crandall feline kidney cells at 31.8 degrees C. When purified from infected cells, Aleutian disease virus had a density in CsCl of 1.42 to 1.44 g/ml and was 24 to 26 nm in diameter. [3H]thymidine could be incorporated into the viral genome, and the viral DNA was then studied. In alkaline sucrose gradients, Aleutian disease virus DNA was a single species that cosedimented at 15.5S with single-stranded DNA from adeno-associated virus. When the DNA was analyzed on neutral sucrose gradients, a single species was again observed, which sedimented at 21S and was clearly distinct from 16S duplex adeno-associated virus DNA. A similar result was obtained even after incubation under annealing conditions, implying that the bulk of Aleutian disease virus virions contained a single non-complementary strand with a molecular weight of about 1.4 X 10(6). In addition, two major virus-associated polypeptides with molecular weights of 89,100 and 77,600 were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of virus purified from infected cultures labeled with [35S]methionine. These data suggest that Aleutian disease virus is a nondefective parvovirus. Images PMID:6252342

  8. Patterns of seismogenesis for giant plate-boundary earthquakes in island-arc-type subduction systems

    NASA Astrophysics Data System (ADS)

    Kirby, S. H.

    2006-12-01

    The global record of giant earthquake occurrence in subduction zones during the instrumental and historical eras is woefully short; only about 16 events with magnitudes above 8.4 are reasonably well documented since 1700. We find no examples of giant (M > 8.4) interplate thrust events and/or wide-ranging tsunamis sourced in the classic island arcs with fast backarc spreading (Bonin, Marianas, Tonga-Kermadec, Vanuatu, and South Scotia). The Sumatra-Andaman Earthquake of 2004 (SAE) ruptured a sector of the INDIA-BURMA subduction boundary and evidently had no known historical antecedents, suggesting that the return time may be many centuries to millennia and consistent with low convergence rates. Moreover, the persistence of rupture to the north in the weakly volcanic Nicobar/Andaman sector gives one pause to reflect on the assumption that island arcs, especially those with active back-arc spreading such as the Marianas, do not produce great interplate- thrust earthquakes. The Andaman/Nicobar subduction segment is an unusual island arc. Only two arc volcanoes occur between the convergent plate boundary west of the Andamans and the backarc ridge/transform system to the east. Backarc spreading in the Andaman/ Nicobar segment is unusual because the NNW spreading directions are nearly parallel to the trench/deformation-front as do the INDIA-BURMA plate motions across it. This geometry suggests that arc-normal extension, trench migration and associated slab normal motions may not mechanically decouple this subduction system. The Nicobar sector of the rupture for the 2004 event is roughly 200 km wide judging from the aftershock distribution; a distribution that persists to the east under the Nicobar Islands, suggesting that the plate-boundary dip is very shallow in that latitude range. If this is correct, then the down-dip limitation on seismogenic slip set by serpentinized forearc mantle (Hyndman et al., 2003) may not control rupture width as it apparently does for many

  9. The northern edge of Pacific plate position near Kamchatka-Aleutian junction

    NASA Astrophysics Data System (ADS)

    Gordeychik, Boris; Churikova, Tatiana; Volynets, Anna; Wörner, Gerhard; Layer, Paul

    2010-05-01

    Two geochemical transects were carried out through Kamchatka: one previously studied SE-NW across the arc and one SW-NE trending along the Sredinny Range (SR) back arc zone. These data with Ar-Ar dating constrain magma source in space and time and allows us to relate these to tectonic position setting of the region at a given time. The cross arc transect from Gamchen volcano in Eastern Volcanic Front (EVF) through Central Kamchatka Depression (CKD) to Ichinsky volcano in SR based on Quaternary rocks showed continuous geochemical zonation from arc front to back arc of present subduction zone, including strong and gradual increase in LILE, LREE and HFSE in whole rocks. The transect along the SR from the Achtang lava field to Tekletunup volcano (the back arc zone) comprises two age groups of volcanic rocks each with uniform in geochemical features. Late Miocene-Pliocene rocks (3-6 Ma) represent voluminous plateau lavas of depleted basalts with low HFSE and HREE. Fluid-mobile elements are enriched and enrichment patterns are in fact similar to the typical arc front lavas. The younger group of Quaternary rocks (<1 Ma) is represented by monogenetic cones and stratovolcanoes that combine the typical LILE/HFSE-enrichment of a subduction setting with enrichment in all incompatible elements. In Eocene-Miocene times SR represented the active volcanic front of the Proto-Kamchatka subduction zone. In later times Kamchatka arc system has been modified by the accretion of the Kronotsky terranes. The time of accretion and the SE-outward 200 km shift of the subduction zone to the presently active EVF has been estimated from 40 to 2 Ma. Our data can help to better constrain the timing of this event by arguing that the systematic change in SR rock geochemistry with time is the result of this arc shift and has been facilitated by a massive slab roll-back event. In this scenario the SR plateau lavas represent the volcanic front until as recently as 3 Ma. The younger Quaternary rocks at

  10. Petrogenesis of a voluminous Quaternary adakitic volcano: the case of Baru volcano

    NASA Astrophysics Data System (ADS)

    Hidalgo, Paulo J.; Rooney, Tyrone O.

    2014-09-01

    The origin of adakite magmas remains controversial because initially the term adakite had petrogenetic significance implying an origin by direct melting of the eclogitized subducting oceanic crust. Many models have been produced for their origin, and until now there has not been a straightforward method to discriminate between these models in a given adakite suite. Here, we use detailed chronological and geochemical studies of selected adakitic edifices that allows for the determination of the magmatic output rate parameter (Qe), which has been correlated with the rates of magma generation deep within subduction zones. By providing temporal and eruption rate estimates, we provide constraints on the possible petrogenetic processes involved in the generation of adakite-like signatures. Adakite magmas derived from the melting of the subducting slab should be volumetrically insignificant when compared to the adakite-like magmas produced by typical arc magma generation processes. In this study, we use this observation and the extraordinary stratigraphic exposure from Miocene to present in an adakitic volcano in Panama and to study the temporal and chemical variation in erupted magmas to estimate rates of magma generation. Detailed chemical and geochronological analyses of Baru volcano indicate that the volcanic edifice was constructed in its entirety during the Quaternary and magmas display adakite-like features such as steep rare earth elements patterns, pronounced depletions in the heavy rare earth elements, low Y, high Sr, and high Sr/Y. The magmatic output rates (Qe) that we have calculated show that compared to other typical adakitic volcanoes, most of the volcanic edifice of Baru volcano was constructed extremely rapidly (<~213 k.a.) and in time frames that are similar to typical arc volcanoes. The observed chemical and mineralogical variation, coupled with the high magma production rates, indicate that Baru volcano is more representative of a typical arc volcano

  11. Studies of volcanoes of Alaska by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C., Jr.; Dzurisin, D.; Thatcher, W.; Power, J.

    2000-01-01

    Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite

  12. Episodes of Aleutian Ridge explosive volcanism

    USGS Publications Warehouse

    Hein, J.R.; Scholl, D. W.; Miller, J.

    1978-01-01

    Earlier workers have overlooked deep-sea bentonite beds when unraveling the Cenozoic volcanic history of an area. In the North Pacific, identification of Miocene and older volcanic episodes is possible only if both altered (bentonite) and unaltered ash beds are recognized. Our study, which includes bentonite beds, shows that volcanism on the Aleutian Ridge and Kamchatka Peninsula has been cyclic. Volcanic activity seems to have increased every 2.5 ?? 10 6 years for the past 10 ?? 106 years and every 5.0 ?? 106 years for the time span from 10 to 20 ?? 10 6 years ago. The middle and late Miocene and the Quaternary were times of greatly increased volcanic activity in the North Pacific and elsewhere around the Pacific Basin. The apparent absence of a volcanic record before the late Miocene at Deep Sea Drilling Project site 192 is the result not of plate motion, as suggested by Stewart and by Ninkovich and Donn, but rather of the diagenesis of ash layers. Major, apparently global volcanic episodes occurred at least twice in the last 20 ?? 106 years. Yet, only one major glacial epoch (the Pleistocene) has occurred. Therefore, even though glaciation coincided with an increase in Quaternary volcanism, the increased volcanism itself may not have been the primary cause of global cooling. Copyright ?? 1978 AAAS.

  13. Criconematina (nematoda: tylenchida) from the Aleutian Islands

    SciTech Connect

    Bernard, E.C.

    1982-01-01

    A new genus (Cerchnotocriconema) and three new species (C. psephinum, Hemicycliophora anchitkaensis, and Paratylenchus amundseni) are described from Adak and Amchitka Islands in the Aleutian chain. The new genus differs from all other criconematid genera in having irregular, convex sculpturing consisting of small, oval plates on the anterior and posterior regions of each annule, with the mid-annular region minutely punctate or dentate. H. amchitkaensis n. sp. resembles H. sinilis Thorne and H. zuckermani Brzeski, but has only one head annule, instead of two. P. amundseni n. sp., which has a stylet 17 to 19 ..mu..m long, is similar to P. tatea Wu and Townsend and P. labiosus Anderson and Kimpinski, but differs by the presence of males and the possession of conoid-truncate lip region, functional spermatheca, and long male tail (c = 8.5 to 9.5). Seriespinula seymouri Wu (Mehta and Raski), Nothocriconema longulum (Gunhold) De Grisse and Loof, and Macroposthonia xenoplax (Raski) De Grisse and Loof are also reported from the islands.

  14. Volcanic Eruptions, Landscape Disturbance, and Potential Impacts to Marine and Terrestrial Ecosystems in Alaska: An Example from the August 2008 Eruption of Kasatochi Volcano

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Drew, G. S.

    2011-12-01

    The magnitude, style, and sometimes-prolonged nature of volcanic activity in Alaska has had significant impact on ecological habitat. The accumulation of volcaniclastic deposits during eruptions have destroyed or altered areas important to the success of various species and it may take years to decades for landforms and surfaces to recover and become habitable again. Kasatochi volcano, in the Aleutian Islands of Alaska, erupted explosively on August 7-8, 2008 and the rich nesting habitat for several species of seabirds on the island was completely destroyed. The eruption produced thick pyroclastic fall and flow deposits and several SO2 rich ash-gas plumes that reached 14 to 18 km above sea level. Pyroclastic deposits are several tens of meters thick, blanket the entire island, and initially extended seaward to increase the diameter of the island by about 800 m. Wave and gully erosion have modified these deposits and have exhumed some pre-eruption surfaces. Analysis of surface erosional features observed in satellite and time-lapse camera images and field studies have shown that by September 2009, gully erosion removed 300,000-600,000 m3 of mostly fine-grained volcanic sediment from the volcano flanks and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins are about 104 m3km-2yr-1 and are comparable to sediment yields at other active volcanoes outside of Alaska. Coastal erosion rates at Kasatochi are as high as 80-140 myr-1 and parts of the northern coastline have already been eroded back to pre-eruption positions. As of March, 2011 about 72% of the material emplaced beyond the pre-eruption coastline on the northern sector of the island has been removed by wave erosion. Parts of the southern coastline have prograded beyond the post-eruption shoreline as a result of long-shore transport of sediment from north to south. As of March 2011, the total volume of material eroded by wave action was about 107 m3. The preferred

  15. Cranial suture biology of the Aleutian Island inhabitants.

    PubMed

    Cray, James; Mooney, Mark P; Siegel, Michael I

    2011-04-01

    Research on cranial suture biology suggests there is biological and taxonomic information to be garnered from the heritable pattern of suture synostosis. Suture synostosis along with brain growth patterns, diet, and biomechanical forces influence phenotypic variability in cranial vault morphology. This study was designed to determine the pattern of ectocranial suture synostosis in skeletal populations from the Aleutian Islands. We address the hypothesis that ectocranial suture synostosis pattern will differ according to cranial vault shape. Ales Hrdlicka identified two phenotypes in remains excavated from the Aleutian Island. The Paleo-Aleutians, exhibiting a dolichocranic phenotype with little prognathism linked to artifacts distinguished from later inhabitants, Aleutians, who exhibited a brachycranic phenotype with a greater amount of prognathism. A total of 212 crania representing Paleo-Aleuts and Aleutian as defined by Hrdlicka were investigated for suture synostosis pattern following standard methodologies. Comparisons were performed using Guttmann analyses. Results revealed similar suture fusion patterns for the Paleo-Aleut and Aleutian, a strong anterior to posterior pattern of suture fusion for the lateral-anterior suture sites, and a pattern of early termination at the sagittal suture sites for the vault. These patterns were found to differ from that reported in the literature. Because these two populations with distinct cranial shapes exhibit similar patterns of suture synostosis it appears pattern is independent of cranial shape in these populations of Homo sapiens. These findings suggest that suture fusion patterns may be population dependent and that a standardized methodology, using suture fusion to determine age-at-death, may not be applicable to all populations. PMID:21328563

  16. Copahue volcano and its regional magmatic setting

    USGS Publications Warehouse

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  17. Quartenary Gede Salak volcanic complex, Banten area, at the junction between Sumatra arc and Java arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Kurniawan, I.; Hasenaka, T.; Suparka, E.

    2011-12-01

    Pleistocene Gede Salak volcanic complex is located at Banten, northwestern edge of Java island (NWJ), forming a part of Sunda arc. The volcanism is associated with the subduction of the India-Australia plate beneath Eurasian plate at the rate of 7 cm/y. This volcanic complex consists of Gede, Salak, Batur and Wadas volcanoes. To southeast is located Pinang volcano, and to south is volcanic complex of Rawa Dano. These volcanoes are located near Sunda Strait, a transitional zone between Java arc and Sumatera arc where oblique subduction is observed. The distance of all these volcanoes from Java trench varies from 250 km to 300 km. This study is the first geochemical study of volcanic rocks characterizing across-arc variation of Java-Sumatra junction. Gede Salak volcanic complex consists of pyroclastic flow deposits in the western part and lava flows in the eastern part. The later development of dome Wadas formation is probably associated with fault structures trending northwest to southeast. Pinang volcano mainly consists of basaltic lavas. Rawa Dano volcanic complex consists of two caldera, Anyer caldera and Dano caldera, which produced large amount of volcanic tuff called Tufa Banten. Samples from this volcanic complex include basaltic to trachytic rocks, in the range of medium-K to high-K. MgO content is less than 3 %. Elements of Rb, Zr, Ce, and La increase with increasing SiO2. Chondrite-normalized REE patterns are similar to those of island arc basalts. When compared to volcanic samples from western Java volcanoes (WJ), REE pattern is similar to those from back-arc volcanoes. Gede Salak volcano is slightly enriched in the subduction component, as illustrated by the low Nb/Zr and elevated Ba/Zr ratios. B/Nb and B/Zr ratios are in the range of 1.5 - 5.4 and 0.03 - 0.10 respectively, which are higher than those of the back arc volcano in central Java (CJ), but lower than those of the frontal volcanoes there. Across arc variation of NWJ including GSVC, Pinang and

  18. Spatial geochemical variations of arc volcanism around the Banda Sea

    NASA Astrophysics Data System (ADS)

    Van Bergen, M. J.; Erfan, R. D.; Sriwana, T.; Suharyono, K.; Poorter, R. P. E.; Varekamp, J. C.; Vroon, P. Z.; Wirakusumah, A. D.

    Active volcanoes of the eastern Sunda Arc and Banda Arc occur 100 to 250 km above the Benioff zone. These volcanoes have erupted an extremely wide range of lavas, from arc-tholeiitic (low-K) to leucite-bearing (alkaline) suites. Major and trace element results for ten volcanoes show systematic spatial variations along and across the arc system. For volcanoes with similar distance to the Benioff zone (100 to 150 km) on both sides of the inactive Alor-Romang segment the concentrations of potassium and other incompatible elements progressively increase in a direction towards the collision area near Timor. In the Adonara-Pantar segment close to Timor there is a further increase in these elements for volcanoes with increasing distance to the Benioff zone (100 to 250 km), i.e. in a northward direction away from the collision. No systematic correlations exist with the typical isotopic signatures that are indicative for the subduction of continent-derived material in this region. It is suggested that the arc-continent collision area near Timor is a local tectonic anomaly where arc volcanism is influenced not only by continental sediment/crust subduction but also by the geodynamic response to the collision event.

  19. Geology of Medicine Lake Volcano, Northern California Cascade Range

    USGS Publications Warehouse

    Donnelly-Nolan, Julie

    1990-01-01

    Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

  20. Are There Spatial or Temporal Patterns to Holocene Explosive Eruptions in the Aleutian Archipelago? A Work in Progress

    NASA Astrophysics Data System (ADS)

    Martin, C.; Nicolaysen, K. P.; McConville, K.; Hatfield, V.; West, D.

    2013-12-01

    By examining the existing geological and archeological record of radiocarbon dated Aleutian tephras of the last 12,000 years, this study sought to determine whether there were spatial or temporal patterns of explosive eruptive activity. The Holocene tephra record has important implications because two episodes of migration and colonization by humans of distinct cultures established the Unangan/Aleut peoples of the Aleutian Islands concurrently with the volcanic activity. From Aniakchak Volcano on the Alaska Peninsula to the Andreanof Islands (158 to 178° W longitude), 55 distinct tephras represent significant explosive eruptions of the last 12,000 years. Initial results suggest that the Andreanof and Fox Island regions of the archipelago have had frequent explosive eruptions whereas the Islands of Four Mountains, Rat, and Near Island regions have apparently had little or no eruptive activity. However, one clear result of the investigation is that sampling bias strongly influences the apparent spatial patterns. For example field reconnaissance in the Islands of Four Mountains documents two Holocene calderas and a minimum of 20 undated tephras in addition to the large ignimbrites. Only the lack of significant explosive activity in the Near Islands seems a valid spatial result as archeological excavations and geologic reports failed to document Holocene tephras there. An intriguing preliminary temporal pattern is the apparent absence of large explosive eruptions across the archipelago from ca. 4,800 to 6,000 yBP. To test the validity of apparent patterns, a statistical treatment of the compiled data grappled with the sampling bias by considering three confounding variables: larger island size allows more opportunity for geologic preservation of tephras; larger magnitude eruption promotes tephra preservation by creating thicker and more widespread deposits; the comprehensiveness of the tephra sampling of each volcano and island varies widely because of logistical and

  1. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  2. Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana

    USGS Publications Warehouse

    Du Bray, E.A.; Harlan, Stephen S.

    1998-01-01

    The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.

  3. Seasonal and distributional patterns of seabirds along the Aleutian Archipelago

    USGS Publications Warehouse

    Renner, M.; Hunt, G.L., Jr.; Piatt, J.F.; Byrd, G.V.

    2008-01-01

    The Aleutian Archipelago is of global importance to seabirds during the northern summer, but little is known about seabird use of these waters during winter. We compare summer and winter abundances of seabirds around 3 islands: Buldir in the western, Kasatochi in the central, and Aiktak in the eastern Aleutians. The density of combined seabird biomass in nearshore marine waters was higher in summer than in winter at Buldir and Kasatochi, but was higher in winter at Aiktak, despite the departure of abundant migratory species. Comparing foraging guilds, we found that only piscivores increased at the western and central sites in winter, whereas at the eastern site several planktivorous species increased as well. The only planktivore remaining in winter at the central and western sites in densities comparable to summer densities was whiskered auklet Aethia pygmaea. Crested auklet Aethia cristatella and thick-billed murre Uria lomvia showed the greatest proportional winter increase at the eastern site. The seasonal patterns of the seabird communities suggest a winter breakdown of the copepod-based food web in the central and western parts of the archipelago, and a system that remains rich in euphausiids in the eastern Aleutians. We suggest that in winter crested auklets take the trophic role that short-tailed shearwaters Puffinus tenuirostris occupy during summer. We hypothesize that advection of euphausiids in the Aleutian North Slope Current is important for supporting the high biomass of planktivores that occupy the Unimak Pass region on a year-round basis. ?? Inter-Research 2008.

  4. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  5. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  6. Focus: alien volcanos

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Lopes, Rosaly

    2007-03-01

    Part 1: Volcanoes on Earth - blowing their top; Part 2: Volcanoes of the inner Solar System - dead or alive: the Moon, Mercury, Mars, Venus; Part 3: Volcanoes of the outer Solar System - fire and ice: Io, Europa, Ganymede and Miranda, Titan, Triton, Enceladus.

  7. Generation of continental crust in intra-oceanic arcs

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Hayes, J. L.; Kelemen, P. B.; Everson, E. D.; Holbrook, W. S.; Vance, E.

    2014-12-01

    The origin of continental crust is still an unsolved mystery in the evolution of our planet. Although the best candidates to produce juvenile continental crust are intra-oceanic arcs these systems are dominated by basaltic lavas, and when silicic magmas are produced, the incompatible-element compositions are generally too depleted to be a good match for continental crust estimates. Others, such as the W. Aleutians, are dominated by andesitic melts with trace element compositions similar to average continental crust. In order to evaluate which intra-oceanic arcs produced modern continental crust, we developed a geochemical continental index (CI) through a statistical analysis that compared all available data from modern intra-oceanic arcs with global estimates of continental crust. Our results suggest that magmas from Costa Rica (<10 Ma) have a CI <50, closer to the CI (~20) computed from available average continental crust estimates. Transitional CI values of 50-100 were found in the Aleutians, the Iwo-Jima segment of Izu-Bonin, the L. Antilles, Panama, Nicaragua, and Vanuatu. The geochemical signature of the Costa Rican lavas is controlled by melts from the subducting Galapagos tracks. Iwo-Jima and Vanuatu are in a similar tectonic scenario with subducting intraplate seamounts. Melts from the subducting oceanic crust are thought to significantly control the geochemical signature in the W. Aleutians and Panama. In the L. Antilles and E. Aleutians the continental signature may reflect recycling of a component derived from subducting continental sediments. Most of Izu-Bonin, Marianas, S. Scotia and Tonga arcs with a CI >100 have the least continent-like geochemical signatures. In these arcs the subducting plate is old (>100 Ma), not overprinted by enriched intraplate volcanism and the geochemistry may be dominated by slab-derived, aqueous fluids. We also found a strong correlation between the CI and average crustal P-wave velocity, validating the geochemical index

  8. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and

  9. Interactive Volcano Studies and Education Using Virtual Globes

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2006-12-01

    Internet-based virtual globe programs such as Google Earth provide a spatial context for visualization of monitoring and geophysical data sets. At the Alaska Volcano Observatory, Google Earth is being used to integrate satellite imagery, modeling of volcanic eruption clouds and seismic data sets to build new monitoring and reporting tools. However, one of the most useful information sources for environmental monitoring is under utilized. Local populations, who have lived near volcanoes for decades are perhaps one of the best gauges for changes in activity. Much of the history of the volcanoes is only recorded through local legend. By utilizing the high level of internet connectivity in Alaska, and the interest of secondary education in environmental science and monitoring, it is proposed to build a network of observation nodes around local schools in Alaska and along the Aleutian Chain. A series of interactive web pages with observations on a volcano's condition, be it glow at night, puffs of ash, discolored snow, earthquakes, sounds, and even current weather conditions can be recorded, and the users will be able to see their reports in near real time. The database will create a KMZ file on the fly for upload into the virtual globe software. Past observations and legends could be entered to help put a volcano's long-term activity in perspective. Beyond the benefit to researchers and emergency managers, students and teachers in the rural areas will be involved in volcano monitoring, and gain an understanding of the processes and hazard mitigation efforts in their community. K-12 students will be exposed to the science, and encouraged to participate in projects at the university. Infrastructure at the university can be used by local teachers to augment their science programs, hopefully encouraging students to continue their education at the university level.

  10. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  11. Potential for generation of natural gas in sediments of the convergent margin of the Aleutian Trench Area

    SciTech Connect

    Kvenvolden, K.A.; von Huene, R.

    1983-01-01

    Sediment being subducted in the eastern part of the convergent margin of the Aleutian Trench has a potential to generate large volumes of natural gas, perhaps as much as 2.8 x 10/sup 6/ m/sup 3/ of methane per km/sup 3/ of sediment, even though the content of organic carbon in the sediment is very low, averaging about 0.4%. This high potential for gas generation results primarily from the enormous volume of sediment undergoing subduction. Along the eastern Aleutian Arc-Trench system a 3-km thick sheet of sediment is being subducted at a rate of about 60 km per million years. We estimate, based on considerations of the stability requirements for gas hydrates observed as anomalous reflectors in some of our seismic records, and on one measurement in a deep well, that the geothermal gradient in this region is about 30/sup 0/C/km. Such a gradient suggests a temperature regime in which the maximum gas generation in the subducting sediment occurs beneath the upper slope. Thus the sediment of the upper slope, as opposed to that of the shelf and lower slope, could be the most prospective for gas accumulation if suitable reservoirs are present. 40 refs., 11 figs., 3 tabs.

  12. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  13. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    SciTech Connect

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L. ); Underwood, M.B. )

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench. The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.

  14. Identification of a nonvirion protein of Aleutian disease virus: mink with Aleutian disease have antibody to both virion and nonvirion proteins.

    PubMed Central

    Bloom, M E; Race, R E; Wolfinbarger, J B

    1982-01-01

    We studied Aleutian disease virus polypeptides in Crandall feline kidney (CRFK) cells. When CRFK cells labeled with [35S]methionine at 60 h postinfection were studied by immunoprecipitation with sera from infected mink, the major Aleutian disease virus virion polypeptides (p85 and p75) were consistently identified, as was a 71,000-dalton nonvirion protein (p71). The peptide maps of p85 and p75 were similar, but the map of p71 was different. p85, p75, and p71 were all precipitated by sera from Aleutian disease virus-infected mink, including those with signs of progressive disease, but heterologous sera raised against purified Aleutian disease virus did not precipitate the nonvirion p71. These results indicated that the nonvirion p71 was unrelated to p85 and p75 and further suggested that mink infected with Aleutian disease virus develop antibody to nonvirion, as well as structural, viral proteins. Images PMID:6287034

  15. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  16. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  17. The Global Array of Primitve Arc Melts

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  18. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  19. Galactic Super Volcano Similar to Iceland Volcano

    NASA Video Gallery

    This composite image from NASAs Chandra X-ray Observatory with radio data from the Very Large Array shows a cosmic volcano being driven by a black hole in the center of the M87 galaxy. This eruptio...

  20. Subsurface hydrographic structures and the temporal variations of Aleutian eddies

    NASA Astrophysics Data System (ADS)

    Saito, Rui; Yasuda, Ichiro; Komatsu, Kosei; Ishiyama, Hiromu; Ueno, Hiromichi; Onishi, Hiroji; Setou, Takeshi; Shimizu, Manabu

    2016-05-01

    Aleutian eddies are mesoscale anticyclonic eddies formed within the Alaskan Stream region between 180° meridian and 170° E south of the Aleutian Islands. They propagate southwestward after the isolation from the Alaskan Stream and pass through the Western Subarctic Gyre. We compared hydrographic structures of three Aleutian eddies observed during summer, west of 170° E (Eddy A) and east of 170° E (Eddies B and C). In each eddy, a subsurface dichothermal water (3.0-4.0 °C) was observed above a subsurface mesothermal water (4.0-4.5 °C). The minimum temperature in the dichothermal water at around a depth of 100 m was colder in Eddy A (2.8 °C) than in Eddies B and C (3.0-3.2 °C). This difference could be ascribed to wintertime cooling and influence of surrounding waters during spring warming period. The wintertime cooling makes the dichothermal water colder for eddies isolated from the Alaskan Stream region for a longer time. Particle-tracking experiments using re-analysis products from a data-assimilative eddy resolving ocean model suggested that the dichothermal water within Eddy A was cooled by the entrainment of surrounding colder water even during the spring warming period. The mesothermal waters at depth around 250 m demonstrated similarity among the observed eddies, and the maximum temperature in the mesothermal water within Eddy A (4.3 °C) was close to that of Eddies B and C (4.2 °C) in the in situ observations. These results indicated that the dichothermal water of Aleutian eddies modifies over time, whereas the mesothermal water maintains the original feature as they propagate southwestward from the Alaskan Stream region to the Western Subarctic Gyre.

  1. Sedimentation and deformation in the Amlia Fracture Zone sector of the Aleutian Trench

    USGS Publications Warehouse

    Scholl, D. W.; Vallier, T.L.; Stevenson, A.J.

    1982-01-01

    subducting oceanic crust. Up-to-arc extensional faulting can be attributed to the downbending of the Pacific plate into the Aleutian subduction zone. The rupturing direction and dip is controlled by zones of crustal weakness that parallel north Pacific magnetic anomalies, which were formed south of a late Cretaceous-early Tertiary spreading center (Kula-Pacific Ridge). The strike of these anomalies is fortuitously nearly parallel to the Amlia sector. The up-to-arc fracturing style may locally assist in elevating blocks of trench deposits to form the toe of the trench's landward slope, which is in part underlain by a compressionally thickened accretionary mass of older trench deposits. Compressional structures that can be related to underthrusting are only indistinctly recorded in the turbidite wedge that underlies the trench floor. ?? 1982.

  2. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Goff, Fraser

    2005-05-01

    Adventure travels to volcanoes offer chance encounters with danger, excitement, and romance, plus opportunities to experience scientific enlightenment and culture. To witness a violently erupting volcano and its resulting impacts on landscape, climate, and humanity is a powerful personal encounter with gigantic planetary forces. To study volcano processes and products during eruptions is to walk in the footsteps of Pliny himself. To tour the splendors and horrors of 25 preeminent volcanoes might be the experience of a lifetime, for scientists and nonscientists alike. In The Volcano Adventure Guide, we now have the ultimate tourist volume to lead us safely to many of the world's famous volcanoes and to ensure that we will see the important sites at each one.

  3. Mineral chemistry and U-series geochronology reveal timescales of differentiation for late Pleistocene peraluminous rhyolite erupted from Hayes Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Vazquez, J. A.; Hayden, L. A.; Calvert, A. T.

    2014-12-01

    The Hayes River ignimbrite is a recently recognized deposit from Hayes volcano, the northernmost and easternmost volcano in the Aleutian-Alaskan arc, with unusual whole-rock composition (peraluminous rhyolite; 74.2‒75.5 wt% SiO2, 1.14 to 1.18 ASI) and phenocryst mineralogy (biotite-sanidine-plagioclase-quartz) compared to the Quaternary arc. The accessory minerals zircon, monazite [(LREE)PO4], and xenotime [(Y,HREE)PO4] are also present. We use ion microprobe 238U-230Th ages and trace-element geochemistry of unpolished rims and sectioned interiors of individual zircon and monazite grains to track differentiation of the silicic magma body. Core-to-rim zoning in zircon indicates that the parent melt became progressively enriched with U, HREEs, P, and Sc, and depleted in Th and LREEs due to monazite crystallization. Zircon (238U/232Th) values reach as high as 110 in the most differentiated rims. Monazite rims exhibit similar differentiation trends with lower LREE, higher M-HREEs, and higher U than crystal interiors, which eventually led to co-precipitation of monazite and xenotime. Monazite grains form a curved array on an activity ratio plot, with unpolished rims at the higher end. The unusual abundance of monazite, which can accommodate up to several weight percent Th, in the crystallizing assemblage significantly affected the U-Th ratio of the magma as differentiation progressed. 238U/232Th values ranges from 2.6 for early melt, represented by the whole-rock value, to 7.4 for groundmass glass. Assuming monazite fractionation alone is responsible for this change, it would take ~0.12 wt% monazite crystallization, using partition coefficients of 120 and 1000 for U and Th, respectively. This amount of monazite is consistent with that observed in the samples. An isochron for early melt and low-238U/232Th monazites yields an age of 67.0±2.8 ka, whereas one for late melt and high-238U/232Th monazites yields 42.5±0.9 ka. This younger age is indistinguishable from the

  4. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  5. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  6. The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction

    NASA Astrophysics Data System (ADS)

    Martin, E.; Bindeman, I.; Grove, T. L.

    2011-11-01

    We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9-6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.

  7. 75 FR 4491 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY... mackerel in the Eastern Aleutian District and the Bering Sea subarea of the Bering Sea and Aleutian Islands... necessary to fully use the 2010 A season total allowable catch (TAC) of Atka mackerel in these...

  8. 78 FR 42023 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... under Sec. 679.2(d)(1)(iii) on June 11, 2013 (78 FR 35771, June 14, 2013). As of July 8, 2013, NMFS has... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY... mackerel in the Central Aleutian district (CAI) of the Bering Sea and Aleutian Islands Management...

  9. 75 FR 69600 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Eastern Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  10. 77 FR 34262 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2012 allocation of Pacific ocean perch in this...

  11. 76 FR 43933 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2011 allocation of Pacific ocean perch in this...

  12. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Central Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  13. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  14. 77 FR 39440 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Central Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2012 allocation of Pacific ocean perch in this...

  15. 76 FR 65972 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Eastern Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2011 allocation of Pacific ocean perch in this...

  16. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border

    NASA Astrophysics Data System (ADS)

    Liu, Jia-qi; Chen, Shuang-shuang; Guo, Zheng-fu; Guo, Wen-feng; He, Huai-yu; You, Hai-tao; Kim, Hang-min; Sung, Gun-ho; Kim, Haenam

    2015-11-01

    The intense Cenozoic volcanism of Mt. Changbai provides a natural laboratory for investigating the characteristics of volcanism and the dynamical evolution of the Northeast Asian continental margin. Mt. Changbai volcanoes predominantly consist of Wangtian'e volcano in China, Tianchi volcano spanning China and DPR Korea, and Namphothe volcano in DPR Korea. Geochronology data and historical records of volcanism indicate that the three eruption centers were formed in the following sequence: Wangtian'e volcano to Namphothe and Tianchi volcano, advancing temporally and spatially from southwest to northeast. The three eruption centers of Mt. Changbai volcano are located close together, have similar magma evolution trends, bimodal volcanic rock distribution, and an enriched mantle source, etc. Although the Cenozoic volcanism in Mt. Changbai is thought to be somewhat related to the subduction of the Western Pacific Plate, the regularity of volcanic activity and petrography characteristics have continental rift affinity. We therefore conclude that the occurrence of synchronous and similar volcanic activity on both sides of the Japan Sea (i.e., the Japan Arc and Northeast China) likely respond to the rift expansion and the back-arc spreading of Japan Sea. From many perspectives, Mt. Changbai volcano is a giant active volcano with hidden potentially eruptive risks.

  17. Volcanism and tectonics in the Eastern Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Van Bergen, M. J.; Vroon, P. Z.; Poorter, R. P. E.; Wirakusumah, A. D.; Erfan, R.; Suharyono, K.; Sriwana, T.

    The Indonesian volcanic are consists of four segments which can be recognized in the Sr isotopic signatures of their arc volcanics and by the nature of the material subducted below them. We present data from the east Sunda Arc with the volcanoes Sirung, Lewotolo, Boleng and Batu Tara, which span the compositional spectrum from arctholeiitic to high-potassium undersaturated volcanics. The studied volcanoes show typical arc trace-element patterns with high Sr and Pb isotopic signatures. These volcanics show characteristics that are transitional between the Western Banda Arc volcanics and the Bali-Lombok segment further west. The variations along the arc are interpreted as a result of increasing contributions of subducted crustal/sedimentary material towards the zone of collision between the Australian continental margin and the Banda Arc. Chemical and isotopic variations in the studied segment suggest decreasing contributions of subducted material at greater depths in the Benioff zone, and the presence of an enriched mantle domain below the potassium-rich volcano Batu Tara. We speculate that zones with cross-arc tectonic disturbances are conducive to sediment subduction.

  18. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports AGENCY: National Oceanic and... Fisheries Service (NMFS) manages the crab fisheries in the waters off the coast of Alaska under the Fishery Management Plan (FMP) for the Bering Sea and Aleutian Islands (BSAI) Crab. The Magnuson-Stevens...

  19. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  20. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  1. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  2. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  3. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  4. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  5. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  6. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  7. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  8. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  9. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  10. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  11. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  12. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  13. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  14. History of earthquakes and tsunamis along the eastern Aleutian-Alaska megathrust, with implications for tsunami hazards in the California Continental Borderland

    USGS Publications Warehouse

    Ryan, Holly F.; von Huene, Roland; Wells, Ray E.; Scholl, David W.; Kirby, Stephen; Draut, Amy E.

    2012-01-01

    the trench. Large slip on the updip part of the eastern Aleutian-Alaska megathrust is a viable possibility owing to the small frontal accretionary prism and the presence of arc basement relatively close to the trench along most of the megathrust.

  15. Uptaking of plagioclase xenocryst into H2O-rich rear-arc basaltic magma

    NASA Astrophysics Data System (ADS)

    Hamada, M.

    2015-12-01

    Kuritani et al. (2013, Mineral. Petrol.) and Kuritani et al. (2014, Contrib. Mineral. Petrol.) estimated genetic conditions of primary arc magmas beneath the Iwate volcano (a frontal arc volcano in the northeast Japan arc) and the Sannome-gata volcano (a rear-arc volcano in the northeast Japan arc) based on analyses of volcanic rocks and numerical simulation. They estimated that H2O concentrations of primary melts are 4-5 wt.% beneath the Iwate volcano and 6-7 wt.% beneath the Sannnome-gata volcano, respectively. Their arguments mean that primary melts beneath frontal-arc volcanoes and rear-arc volcanoes are both H2O-rich, yet there has been no direct evidence to support their arguments at the Sannnome-gata volcano because volcanic rocks are either almost aphyric and/or almost no melt inclusions were found. Hydrogen concentration in nominally anhydrous minerals serves as a hygrometer of arc basaltic melts (e.g., Hamada et al. 2013, Earth Planet. Sci. Lett.). In this study, hydrogen concentration of plagioclase as a crustal xenocryst was analyzed to estimate H2O concentration of basaltic melt coexisted with plagioclase before the eruption. Plagioclase xenocrists were separated from crushed scoria which erupted from the Sannome-gata volcano 20,000-24,000 years ago. Composition of the plagioclase core is homogeneous and ranges from An30 through An35. The rim is 150 to 200-μm-thick dusty zone whose composition is around An60, suggesting that the rim crystallized rapidly from degassed basaltic melt. The profiles of infrared absorption area per unit thickness across the plagioclase core were obtained using Fourier Transform InfraRed spectrometer (FTIR). The inner core contains hydrogen of about 60 wt. ppm H2O, and hydrogen concentration elevates at outer core. Hydrogen concentration at the outermost core of plagioclase is >200 wt. ppm H2O, suggesting that plagioclase xenocrists were taken by hydrous melt (H2O>5 wt.%; Hamada et al. 2014, Earth Planet. Sci. Lett.) and

  16. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and ... is now quite weak and on meeting the undisturbed air it can rise again slightly - possibly assisting in the formation of new small cumulus ...

  17. Eruption Forecasting: Success and Surprise at Kasatochi and Okmok Volcanoes

    NASA Astrophysics Data System (ADS)

    Prejean, S.; Power, J.; Brodsky, E.

    2008-12-01

    In the summer of 2008, the Alaska Volcano Observatory (AVO) successfully forecast eruption at an unmonitored volcano, Kasatochi, and was unable to forecast eruption at a well monitored volcano, Okmok. We use these case studies to explore the limitations and opportunities of seismically monitored and unmonitored systems and to evaluate situations when we can expect to succeed and when we must expect to fail in eruption forecasting. Challenges in forecasting eruptions include interpreting seismicity in context of volcanic history, developing a firm understanding of distance scales over which pre- and co-eruptive seismic signals are observed, and improving our ability to discriminate processes causing tremor. Kasatochi Volcano is a 3 km wide island in the central Aleutian Islands with no confirmed historical activity. Little is known about the eruptive history of the volcano. It was not considered an immediate threat until 3 days prior to eruption. A report of ground shaking by a biology field crew on the island on August 4 was the first indication of unrest. On August 6 a vigorous seismic swarm became apparent on the nearest seismic stations 40 km distant. The aviation color code/volcano alert level at Kasatochi was increased to Yellow/Advisory in response to increasing magnitude and frequency of earthquakes. The color code/alert level was increased to Orange/Watch on August 7 when volcanic tremor was observed in the wake of the largest earthquake in the sequence, a M 5.6. Three hours after the onset of volcanic tremor, eruption was confirmed by satellite data and the color code/alert level increased to Red/Warning. Eruption forecasting was possible only due to the exceptionally large moment release of pre-eruptive seismicity. The key challenge in evaluating the situation was distinguishing between tectonic activity and a volcanic swarm. It is likely there were weeks to months of precursory seismicity, however little instrumental record exists due to the lack of a

  18. Environmental contaminants in bald eagle eggs from the Aleutian archipelago.

    PubMed

    Anthony, Robert G; Miles, A Keith; Ricca, Mark A; Estes, James A

    2007-09-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (delta13C) and nitrogen (delta15N). Concentrations of polychlorinated biphenyls (SigmaPCBs), p,p'-dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of SigmaPCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (delta13C) or nitrogen (delta15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. PMID:17702538

  19. Environmental contaminants in bald eagle eggs from the Aleutian archipelago

    USGS Publications Warehouse

    Anthony, R.G.; Miles, A.K.; Ricca, M.A.; Estes, J.A.

    2007-01-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (??13C) and nitrogen (??15N). Concentrations of polychlorinated biphenyls (??PCBs), p,p???- dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of ??PCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (??13C) or nitrogen (??15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. ?? 2007 SETAC.

  20. Preliminary geology of the Tanaga Island volcanic cluster, western Aleutians (Alaska)

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Browne, B. L.; Larsen, J. F.

    2004-12-01

    During 2003, the northwestern portion of Tanaga Island (178° W) was mapped in detail for the first time during fieldwork by Alaska Volcano Observatory geologists in conjunction with the installation of a volcano monitoring seismic network. The northern half of the island is approximately 20 km across and comprises four discrete volcanic centers, from west to east: Sajaka (area = 22 km2), Tanaga (20 km2), East Tanaga (15 km2), and Takawangha (54 km2). The three western centers are steep-sided cones of Holocene age, and have grown in the scar formed by a catastrophic Pleistocene sector collapse directed to the northwest. To the east, a >300 m-thick sequence of volcanic and volcaniclastic rocks (Pre-Tanaga unit) underlies Takawangha, which has been active throughout the Pleistocene and Holocene. Holocene eruptive products from all four centers are predominantly lava flows, with minor explosive activity recorded in tephra sections. Additionally, Sajaka experienced a relatively young (mid-Holocene?) sector collapse of its west flank, accompanied by eruption of laterally-directed pyroclastic flows. A morphologically young cone of scoria and thin basalt flows has grown in the collapse scar. Whole-rock geochemical data on 130 samples of lava and scoria from the four centers and the Pre-Tanaga unit are basalts through low-SiO2 andesites. All but ten lavas have molar Mg# between 0.35 and 0.5 and the remainder are between 0.5 and 0.61; no primitive lavas were discovered on Tanaga Island. Lava flows of Holocene age from Tanaga and East Tanaga follow medium-K trends, all lavas from Takawangha are high-K, and Sajaka and Pre-Tanaga lavas fall along both trends. High-K lavas are enriched in other LILE (Rb, Ba, Pb) as well, and fall near or above the high end of published Aleutian lavas for these elements. The lavas exhibit petrographic as well as compositional diversity: mafic phases in Tanaga lavas are olivine, two pyroxenes, and amphibole, at East Tanaga lavas contain two

  1. Across-arc variation of Magma Composition in Central Sunda Arc, Indonesia: A test of slab influence to mantle source

    NASA Astrophysics Data System (ADS)

    Wibowo, H.; Hasenaka, T.; Handini, E.; Harijoko, A.

    2011-12-01

    Sunda arc, a part of Pacific ring of fire, extends from West Java to Flores. The arc developed since Tertiary period at a convergent tectonic plate margin, where India-Australian plate is subducted northward beneath Eurasian plate. Central Sunda Arc (CSA) is represented by a series of Quartenary volcanoes from the fore arc toward the back arc including Merapi, Merbabu, Telomoyo, Ungaran and Muria. Estimated depth of Wadati-Benioff zone beneath CSA ranges from 190 km for Merapi to 350 km for Muria. Field works have been conducted for brief geologic observation and rock sample collection from Merbabu, Telomoyo, Muria, including Genuk on the north and Patiayam on the south of Muria. Data from Merapi is compiled from previous studies. X-Ray Fluorescence, Prompt Gamma Ray and Instrumental Neutron Activation Analyses were used to obtain whole rock compositions. Previously reported trace element of Altered Oceanic Crust (AOC) and Indian Ocean sediment are employed to estimate the derived fluid composition, by considering mobility of the elements and assuming 1.5% weight fraction of hydrous fluid extracted from them. By applying subduction component elements, we tried to estimate the slab influence to mantle source in magma genesis of CSA. High Al2O3 (~18 wt%), low Cr (~29 ppm) and Ni (~27 ppm) of the volcanic rocks characterize CSA. K2O content increases gradually with the depth of Benioff zone from each volcano. Most samples from Merapi, Merbabu, Telomoyo and Ungaran are classified as subalkaline, whereas Muria samples fall on both alkaline and subalkaline fields. In detail, Merapi samples could be divided into medium-K and high-K, Merbabu medium-K, Telomoyo and Ungaran high-K, and Muria samples range from high-K to shosonitic. We only selected unfractionated lavas to avoid assimilation, including basalt, basaltic andesite, basanite, and trachy basaltic andesite. We also exclude samples with hornblende, micas, and K-feldspar to avoid boron fractionation and assimilation

  2. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  3. Shallow Submarine Hydrothermal Systems in the Aeolian Volcanic Arc, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Lackschewitz, Klas; Hügler, Michael; Hannington, Mark D.; Gemmell, J. Bruce

    2009-03-01

    The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at <1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoes.

  4. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    SciTech Connect

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.; Karl, H.A.; Marlow, M.S.; Stevenson, A.J.; Huggett, Q.; Kenyon, N.; Parson, L.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slides and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.

  5. Wet melting along the Tonga Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Cooper, L. B.; Plank, T.; Arculus, R. J.; Hauri, E. H.; Hall, P.

    2010-12-01

    Melting in the mantle at convergent margins is driven by water from the subducting slab. Previous work has found a strong role for water-fluxed melting from correlations between the concentration of water in the mantle source, (H2O)o, and the extent of melting beneath backarcs, Fba. Here we explore how wet melting beneath the Lau Backarc Basin relates to that beneath the Tonga Arc, Farc, by providing the first systematic study of water contents in Tonga arc magmas. We have measured volatiles and major and trace elements in melt inclusions, glasses, and whole rocks obtained from recently sampled submarine and subaerial Tonga arc volcanoes. The compositions are varied and range mostly between andesite and basalt/boninite, and least-degassed water contents range from 2 to 5 wt%. We estimate (H2O)o and Farc independently by combining pressure (P) and temperature (T) estimates from an olivine-orthopyroxene-melt thermobarometer with a wet melting productivity model. When P, T, and (H2O)o are known, Farc is uniquely constrained. Results for the volcanoes in the Tonga Arc are bimodal with respect to T: volcanoes located near active backarc spreading centers reflect cooler melting (~1275°C) than those located far from active spreading centers (~1365°C). The cooler primary T’s may result from removal of the heat of fusion during prior melting beneath the Lau backarc, Fba. In the northern portion of the arc, the warmest primary T’s may be due to proximity to the Samoan mantle plume. Farc varies non-systematically along-strike, indicating that Fba is the primary driver of along-arc variability in primary melt compositions. Farc can also be used to calculate the TiO2 concentration of the arc mantle source, (TiO2)o (a proxy for source depletion), which varies monotonically along the Tonga Arc. Arc volcanoes adjacent to the Southern Lau Rifts and Valu Fa Ridge melt mantle with a fertile N-MORB TiO2, while those adjacent to the northern extent of the Eastern Lau Spreading

  6. A burial cave in the western Aleutian Islands, Alaska.

    PubMed

    West, Dixie; Lefèvre, Christine; Corbett, Debra; Crockford, Susan

    2003-01-01

    During the 1998 field season, the Western Aleutians Archaeological and Paleobiological Project (WAAPP) team located a cave in the Near Islands, Alaska. Near the entrance of the cave, the team identified work areas and sleeping/sitting areas surrounded by cultural debris and animal bones. Human burials were found in the cave interior. In 2000, with permission from The Aleut Corporation, archaeologists revisited the site. Current research suggests three distinct occupations or uses for this cave. Aleuts buried their dead in shallow graves at the rear of the cave circa 1,200 to 800 years ago. Aleuts used the front of the cave as a temporary hunting camp as early as 390 years ago. Finally, Japanese and American military debris and graffiti reveal that the cave was visited during and after World War II. Russian trappers may have also taken shelter there 150 to 200 years ago. This is the first report of Aleut cave burials west of the Delarof Islands in the central Aleutians. PMID:21755641

  7. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  8. Seismicity of the Earth 1900-2007, Kuril-Kamchatka Arc and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Benz, Harley

    2010-01-01

    This map shows details of the Kuril-Kamchatka arc not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. The arc extends about 2,100 km from Hokkaido, Japan, along the Kuril Islands and the pacific coast of the Kamchatka, Russia, peninsula to its intersection with the Aleutian arc near the Commander Islands, Russia. It marks the region where the Pacific plate subducts into the mantle beneath the Okhotsk microplate, a part of the larger North America plate. This subduction is responsible for the generation of the Kuril Islands chain and the deep offshore Kuril-Kamchatka trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that decreases from 83 mm per year at the arc's southern end to 75 mm per year near its northern edge.

  9. Numerical simulation of tsunami generation by pryoclastic flow at Aniakchak Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.

    2003-01-01

    Pyroclastic flows entering the sea are plausible mechanisms for tsunami generation at volcanic island arcs worldwide. We evaluate tsunami generation by pyroclastic flow using an example from Aniakchak volcano in Alaska where evidence for tsunami inundation coincident with a major, caldera-forming eruption of the volcano ca. 3.5 ka has been described. Using a numerical model, we simulate the tsunami and compare the results to field estimates of tsunami run up.

  10. Mineralized microbes from Giggenbach submarine volcano

    NASA Astrophysics Data System (ADS)

    Jones, Brian; de Ronde, C. E. J.; Renaut, Robin W.

    2008-08-01

    The Giggenbach submarine volcano, which forms part of the Kermadec active arc front, is located ˜780 km NNE of the North Island of New Zealand. Samples collected from chimneys associated with seafloor hydrothermal vents on this volcano, at a depth of 160-180 m, contain silicified microbes and microbes entombed in reticular Fe-rich precipitates. The mineralized biota includes filamentous, rod-shaped, and rare coccoid microbes. In the absence of organic carbon for rDNA analysis or preserved cells, the taxonomic affinity of these microbes, in terms of extant taxa, remains questionable because of their architectural simplicity and the paucity of taxonomically significant features. The three-dimensional preservation of the microbes indicates rapid mineralization with a steady supply of supersaturated fluids to the nucleation sites present on the surfaces of the microbes. The mineralization styles evident in the microbes from the Giggenbach submarine volcano are similar to those associated with mineralized microbes found in terrestrial hot spring deposits in New Zealand, Iceland, Yellowstone, and Kenya. These similarities exist even though the microbes are probably different and the fluids become supersaturated with respect to opal-A by different mechanisms. For ancient rocks it means that interpretations of the depositional settings cannot be based solely on the silicified microbes or their style of silicification.

  11. Changing conditions of mantle wedge melting across arc as illustrated by changing iron isotopes compositions

    NASA Astrophysics Data System (ADS)

    Foden, J. D.; Halverson, G. P.; Sossi, P.; Elburg, M. A.

    2009-12-01

    Active volcanoes in the eastern Sunda Arc , Indonesia are distributed across a wide range of position above the active Benioff Zone. These include the near fore-arc tholeiite suite from Ija volcano on Flores Island which is about 100 Km above the slab. Then at successively greater depths are the archetypal calcalkaline suites of Rinjani and Batur volcanoes on Lombok and Bali and then the rear arc alkalic suites from Tambora, Sangeang Api and Batu Tara. The latter approaching 200km above the slab. The fore-arc volcano Ija is clearly influenced by hydrous fluid flux from the slab, having high Ba/Th and U/Nb ratios. The strongly undersaturated alkalic suites from Tambora and Batu Tara are highly enriched in LIL incompatible elements, but do not have sufficiently anomalously high 87Sr/86Sr or Pb isotopic ratios or low 143Nd/144Nd ratios to explain this anomaly as entirely due to significantly larger components of subducted sediment. This implies that these rear arc volcanoes are the product of smaller percentage melting of the supra-slab mantle wedge. This is also consistent with the determined lower water content of Tambora basalts compared with Ija fore-arc basalts. δ56Fe values were determined and show a systematic increase across the arc that is equivalent to that determined by other workers between some global MORB and OIB suites the bulk earth. This is like across arc variation described elsewhere (New Britain; Dauphas et al., 2009). It appears that this stable isotope fractionation results from the changed mode of melt percolation and extraction from the deeper, rear arc mantle wedge domains compared to the shallow fore-arc.

  12. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    USGS Publications Warehouse

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  13. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii

    SciTech Connect

    Dzurisin, D.

    1980-11-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.

  14. Identifying potential habitat for the endangered Aleutian shield fern using topographical characteristics

    USGS Publications Warehouse

    Duarte, Adam; Wolcott, Daniel M.; Chow, T. Edwin, Ricca, Mark A.

    2012-01-01

    The Aleutian shield fern Polystichum aleuticum is endemic to the Aleutian archipelago of Alaska and is listed as endangered pursuant to the U.S. Endangered Species Act. Despite numerous efforts to discover new populations of this species, only four known populations are documented to date, and information is needed to prioritize locations for future surveys. Therefore, we incorporated topographical habitat characteristics (elevation, slope, aspect, distance from coastline, and anthropogenic footprint) found at known Aleutian shield fern locations into a Geographical Information System (GIS) model to create a habitat suitability map for the entirety of the Andreaonof Islands. A total of 18 islands contained 489.26 km2 of highly suitable and moderately suitable habitat when weighting each factor equally. This study reports a habitat suitability map for the endangered Aleutian shield fern using topographical characteristics, which can be used to assist current and future recovery efforts for the species.

  15. 76 FR 3090 - Proposed Information Collection; Comment Request; Alaska Region; Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Region; Bering Sea and Aleutian Islands Crab Arbitration AGENCY: National Oceanic and Atmospheric... for Gulf of Alaska groundfish fisheries, arbitration system, monitoring, economic data collection, and cost recovery fee collection. The Crab Rationalization Program Arbitration System is established by...

  16. Intra-arc sedimentation in a low-lying marginal arc, Eocene Clarno Formation, central Oregon

    SciTech Connect

    White, J.D.L.; Robinson, P.T. . Centre for Marine Geology)

    1993-04-01

    The largely Eocene Clarno Formation consists of andesitic volcaniclastic rocks interstratified with clayey paludal sediments and lava flows, and cut locally by irregular hypabyssal stocks, dikes and sills. Lateral lithofacies variations are pronounced, and intrusive and extrusive volcanic rocks appear haphazardly emplaced throughout the formation. A range of sedimentary environments is represented, including near-vent flow and breccia accumulations, bouldery high-gradient braided streams, and relatively low-gradient sandy-tuff braidplains associated with paludal deposits. The authors infer that the coarse-grained volcaniclastic rocks of the Clarno Formation accumulated largely in volcanic flank and apron settings. The stratigraphy of the formation indicates that it was formed in sedimentary lowlands into which many small volcanoes erupted; only a few, scattered remnants of large central vent volcanoes are known. The absence of systematic variation across the unit's large outcrop belt argues against the derivation of the succession from a line of volcanoes beyond the reaches of the present outcrop. The authors infer that the arc was composed of small to medium-sized volcanoes arranged non-systematically over a broad area. The sedimentary succession most probably accumulated in a series of shallow intra-arc depressions formed by crustal stretching and diffuse block rotation driven by oblique subduction during the Eocene.

  17. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    SciTech Connect

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  18. Surface wind characteristics of some Aleutian Islands. [for selection of windpowered machine sites

    NASA Technical Reports Server (NTRS)

    Wentink, T., Jr.

    1973-01-01

    The wind power potential of Alaska is assessed in order to determine promising windpower sites for construction of wind machines and for shipment of wind derived energy. Analyses of near surface wind data from promising Aleutian sites accessible by ocean transport indicate probable velocity regimes and also present deficiencies in available data. It is shown that winds for some degree of power generation are available 77 percent of the time in the Aleutians with peak velocities depending on location.

  19. Volcanoes: Coming Up from Under.

    ERIC Educational Resources Information Center

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  20. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    PubMed Central

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-01-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink. PMID:6193063

  1. Hubble Space Telescope Resolves Volcanoes on Io

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.

    Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.

    Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.

    The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.

    The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the

  2. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  3. Shaded Relief Mosaic of Umnak Island, Aleutian Islands, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a shaded relief mosaic of Umnak Island in Alaska's Aleutian Islands.

    It was created with Airsar data that was geocoded and combined into this mosaic as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  4. The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.

    2014-12-01

    The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc

  5. Repeating coupled earthquakes at Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Caplan-Auerbach, J.; Petersen, T.

    2005-01-01

    Since it last erupted in 1999, Shishaldin Volcano, Aleutian Islands, Alaska, has produced hundreds to thousands of long-period (1-2 Hz; LP) earthquakes every day with no other sign of volcanic unrest. In 2002, the earthquakes also exhibited a short-period (4-7 Hz; SP) signal occurring between 3 and 15 s before the LP phase. Although the SP phase contains higher frequencies than the LP phase, its spectral content is still well below that expected of brittle failure events. The SP phase was never observed without the LP phase, although LP events continued to occur in the absence of the precursory signal. The two-phased events are termed "coupled events", reflecting a triggered relationship between two discrete event types. Both phases are highly repetitive in time series, suggestive of stable, non-destructive sources. Waveform cross-correlation and spectral coherence are used to extract waveforms from the continuous record and determine precise P-wave arrivals for the SP phase. Although depths are poorly constrained, the SP phase is believed to lie at shallow (<4 km) depths just west of Shishaldin's summit. The variable timing between the SP and LP arrivals indicates that the trigger mechanism between the phases itself moves at variable speeds. A model is proposed in which the SP phase results from fluid moving within the conduit, possibly around an obstruction and the LP phase results from the coalescence of a shallow gas bubble. The variable timing is attributed to changes in gas content within the conduit. The destruction of the conduit obstacle on November 21, 2002 resulted in the abrupt disappearance of the SP phase.

  6. Origins of linguistic diversity in the Aleutian Islands.

    PubMed

    Berge, Anna

    2010-12-01

    The Aleut language, currently spoken along the Aleutian chain and the Pribilof and Commander islands, is the only language in its branch of the Eskimo-Aleut language family, and traditional methods of linguistic reconstruction have neither satisfactorily explained its relationship with languages on the Asian continent nor its development from Proto-Eskimo-Aleut. Linguistic reconstruction has always been important in understanding the prehistory and history of the Aleuts, and new approaches in comparative linguistics, more comprehensive information on typological features of neighboring languages, and continuing language documentation allow us to propose a rich and continuous history of contact with various groups of people. I evaluate evidence that the Aleut language may have been shaped by contact with neighbors in Asia and Alaska, eventually giving rise to its differentiation from the Eskimo languages. I look at dialect differentiation along the Aleutian chain and what this differentiation reveals about the migration trends of the Aleut along the chain. I look at the colonial expansion of the Aleut-speaking area and resulting additional varieties of Aleut in the historical period. Finally, I review the effects of the Russian and American colonial periods on the Aleut language and the severe endangerment that the language faces today as a result. I conclude that there is evidence of possible Aleut contact with both neighboring peoples; however, much of this evidence has not yet been subjected to systematic comparative reconstructions. Linguistic evidence supports theories of at least two westward expansions of Aleuts along the island chain, but it is not yet clear what motivated the dialect differentiations. Finally, I offer some thoughts on directions for future dialect studies and the continuing documentation of Aleut. PMID:21417884

  7. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  8. Volcano Near Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-549, 19 November 2003

    The volcanic plains to the east, southeast, and south of the giant Tharsis volcano, Pavonis Mons, are dotted by dozens of small volcanoes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 2.1oS, 109.1oW. The elongate depression in the lower left (southwest) quarter of the image is the collapsed vent area for this small, unnamed volcano. A slightly sinuous, leveed channel runs from the depression toward the upper right (north-northeast); this is the trace of a collapsed lava tube. The entire scene has been mantled by dust, such that none of the original volcanic rocks are exposed--except minor occurrences on the steepest slopes in the vent area. The scene is 3 km (1.9 mi) wide and illuminated by sunlight from the left/upper left.

  9. The unusual mineralogy of the Hayes River rhyolite, Hayes Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Hayden, L. A.; Coombs, M. L.; McHugh, K.

    2013-12-01

    Hayes Volcano is an ice-covered volcanic massif located in the northern Cook Inlet region approximately 135 miles northwest of Anchorage, Alaska. The last major eruptive episode of Hayes, and the only known in any detail, occurred ~3,700 yr B.P. and produced the Hayes Tephra Set H, a series of dacitic fall deposits widespread throughout southcentral Alaska (Riehle et al., 1994, Quat. Res. 33, p. 91-108). An undated, early Holocene pyroclastic-flow deposit exposed beneath Tephra Set H in the Hayes River valley is unusual in the Aleutian-Alaska subduction zone in whole-rock composition and mineralogy. The deposit comprises rhyolite pumice (~75 wt% SiO2) that contain phenocrysts of plagioclase, sanidine, quartz, and biotite in vesicular, clear matrix glass, and <1% dense, white cognate inclusions with the same whole-rock composition and phenocryst assemblage as the pumice, but a crystalline matrix. Holocrystalline inclusions may represent portions of the magma body that rapidly quenched in the shallow subsurface as dikes or chamber rinds and were then excavated during explosive eruption. Rhyolite and inclusions are peraluminous (2-3 % normative corundum), high-K, enriched in incompatible elements, and depleted in Sr and Eu. In accord with its evolved and enriched composition the rhyolite pumice and inclusions contain an abundance of accessory phases, including apatite, monazite, xenotime, and zircon. Monazite are euhedral, as large as 500 um, ThO2-rich (up to 4 wt%) and contain significant amounts of Ag (200-500 ppm). Xenotime are generally smaller than the monazite and occur frequently as small blebs. Rhyolite pumices also contain Fe-sulfides, Cu, Sn, Ni, and barite. Sanidine phenocrysts in the pumice and inclusions are sharply zoned and highly enriched in the celsian component (up to 5 wt% BaO) and also show LREE enrichment. Inclusions contain abundant Mn-rich cordierite (~3 wt% Mn2O3) in the san-plag-qtz matrix, as well as Fe-Ti oxides that are relatively high in

  10. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  11. A new species of Copepoda Harpacticoida, Xylora calyptogenae spec. n., with a carnivorous life-style from a hydrothermally active submarine volcano in the New Ireland Fore-Arc system (Papua New Guinea) with notes on the systematics of the Donsiellinae Lang, 1948

    NASA Astrophysics Data System (ADS)

    Willen, Elke

    2006-12-01

    A new species of harpacticoid copepods, Xylora calyptogenae spec. n., from Edison Seamount, a hydrothermally active submarine volcano in the New Ireland Fore-Arc system (Papua New Guinea) is described. The new species belongs to the Donsiellinae Lang, 1944, a highly specialised taxon, the members of which have previously been encountered only in association with decaying wood and/or wood-boring isopods. A closer relationship of the Donsiellinae with the Pseudotachidiidae Lang, 1936, can be stated on the basis of characteristics concerning the setation and/or segmentation of A1, A2, Mxl, Mxp, the shape of the female P5, anal somite, sexual dimorphisms on P2 and P3 and missing caudal seta I. Within the Pseudotachidiidae, the Donsiellinae again can be well characterized, e.g. by the setation and segmentation of A2, Mxl, swimming-legs, the shape of P1, female P5, male P2, sexual dimorphism and male P5. The Donsiellinae share some apomorphies with the pseudotachidiid subtaxon Paranannopinae Por, 1986: setation/segmentation of Mx, P1, A1. X. calyptogenae spec. n. is more closely related to Xylora bathyalis Hicks 1988 living in the deep sea wood substrata in New Zealand waters. Some traits of the evolutionary history of the Donsiellinae become evident, probably starting from the more primitive deep sea taxa X .calyptogenae spec. n., which lives in the hydrothermal seafloor in the absence of decaying wood, and X. bathyalis, which is found in decaying wood but not necessarily associated with the wood-boring isopod Limnoria Leach, 1814, towards the more advanced genera such as Donsiella Stephensen, 1936, which invades shallow waters and, further, clings to Limnoria, forming a close and, for the copepod, probably obligatory association. The specialised mouthparts of X. calyptogenae spec. n. seem to facilitate the grabbing and fixing of larger and/or active food items. This is confirmed by the presence of a large prey organism, presumably a copepod, consumed either alive or

  12. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  13. Formation of lower continental crust by relamination of buoyant arc lavas and plutons

    NASA Astrophysics Data System (ADS)

    Kelemen, Peter B.; Behn, Mark D.

    2016-03-01

    The formation of the Earth's continents is enigmatic. Volcanic arc magmas generated above subduction zones have geochemical compositions that are similar to continental crust, implying that arc magmatic processes played a central role in generating continental crust. Yet the deep crust within volcanic arcs has a very different composition from crust at similar depths beneath the continents. It is therefore unclear how arc crust is transformed into continental crust. The densest parts of arc lower crust may delaminate and become recycled into the underlying mantle. Here we show, however, that even after delamination, arc lower crust still has significantly different trace element contents from continental lower crust. We suggest that it is not delamination that determines the composition of continental crust, but relamination. In our conceptual model, buoyant magmatic rocks generated at arcs are subducted. Then, upon heating at depth, they ascend and are relaminated at the base of the overlying crust. A review of the average compositions of buoyant magmatic rocks -- lavas and plutons -- sampled from the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs reveals that they fall within the range of estimated major and trace elements in lower continental crust. Relamination may thus provide an efficient process for generating lower continental crust.

  14. Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Leat, Philip T.; Day, Simon J.; Tate, Alex J.; Martin, Tara J.; Owen, Matthew J.; Tappin, David R.

    2013-09-01

    New multibeam bathymetry data are presented for the South Sandwich intra-oceanic arc which occupies the small Sandwich plate in the South Atlantic, and is widely considered to be a simple end-member in the range of intra-oceanic arc types. The images show for the first time the distribution of submarine volcanic, tectonic and erosional-depositional features along the whole length of the 540 km long volcanic arc, allowing systematic investigation of along-arc variations. The data confirm that the volcanic arc has a simple structure composed of large volcanoes which form a well-defined volcanic front, but with three parallel cross-cutting seamount chains extending 38-60 km from near the volcanic front into the rear-arc. There is no evidence for intra-arc rifting or extinct volcanic lines. Topographic evidence for faulting is generally absent, except near the northern and southern plate boundaries. Most of the volcanic arc appears to be built on ocean crust formed at the associated back-arc spreading centre, as previously proposed from magnetic data, but the southern part of the arc appears to be underlain by older arc or continental crust whose west-facing rifted margin facing the back-arc basin is defined by the new bathymetry. The new survey shows nine main volcanic edifices along the volcanic front and ca. 20 main seamounts. The main volcanoes form largely glaciated islands with summits 3.0-3.5 km above base levels which are 2500-3000 m deep in the north and shallower at 2000-2500 m deep in the south. Some of the component seamounts are interpreted to have been active since the last glacial maximum, and so are approximately contemporaneous with the volcanic front volcanism. Seven calderas, all either submarine or ice-filled, have been identified: Adventure volcano, a newly discovered submarine volcanic front caldera volcano is described for the first time. All but one of the calderas are situated on summits of large volcanoes in the southern part of the arc, and

  15. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies

    NASA Astrophysics Data System (ADS)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2009-12-01

    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  16. Volcanoes and the Environment

    NASA Astrophysics Data System (ADS)

    Marti, Edited By Joan; Ernst, Gerald G. J.

    2005-10-01

    Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards. An all-inclusive text that goes beyond the geological working of volcanoes to consider their environmental and sociological impacts Each chapter is written by one of the world's leading authorities on the subject Accessible to students and researchers from a wide variety of backgrounds

  17. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  18. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, R.I.

    1980-01-01

    One of the most spectacular, awesomely beautiful, and at times, most destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of feet into the atmoshpehere and pouring out red-hot molten lava in fountains and streams. 

  19. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly

    2005-02-01

    This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.

  20. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  1. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  2. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  3. Three-dimensional inversion of regional P and S arrival times in the East Aleutians and sources of subduction zone gravity highs

    NASA Astrophysics Data System (ADS)

    Abers, Geoffrey A.

    1994-03-01

    Free-air gravity highs over forearcs represent a large fraction of the power in the Earth's anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivals for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25-0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m-3)/(km s-1), when a 50-km-thick slab is included with a density of 0.055±0.005 Mg m-3. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed. The inclusion of upper-plate velocity anomalies predicts the correct width of

  4. Helium isotope, C/3He, and Ba-Nb-Ti signatures in the northern Lau Basin: Distinguishing arc, back-arc, and hotspot affinities

    NASA Astrophysics Data System (ADS)

    Lupton, John; Rubin, Ken H.; Arculus, Richard; Lilley, Marvin; Butterfield, David; Resing, Joseph; Baker, Edward; Embley, Robert

    2015-04-01

    The northern Lau Basin hosts a complicated pattern of volcanism, including Tofua Arc volcanoes, several back-arc spreading centers, and individual "rear-arc" volcanoes not associated with these structures. Elevated 3He/4He ratios in lavas of the NW Lau Spreading Center suggest the influence of a mantle plume, possibly from Samoa. We show that lavas from mid-ocean ridges, volcanic arcs, and hotspots occupy distinct, nonoverlapping fields in a 3He/4He versus C/3He plot. Applied to the northern Lau Basin, this approach shows that most of Lau back-arc spreading systems have mid-ocean ridge 3He/4He-C/3He characteristics, except the NW Lau spreading center, which has 3He/4He-C/3He similar to "high 3He" hotspots such as Loihi, Kilauea, and Yellowstone, but with slightly lower C/3He. Niua seamount, on the northern extension of the Tofua Arc, falls squarely in the arc field. All the NE Lau rear-arc volcanoes, including the recently erupting West Mata, also have arc-like 3He/4He-C/3He characteristics. Ba-Nb-Ti contents of the lavas, which are more traditional trace element indicators of mantle source enrichment, depletion, and subduction input, likewise indicate arc and hot spot influences in the lavas of the northern Lau Basin, but in a more ambiguous fashion because of a complex prior history. This verifies that 3He/4He-C/3He systematics are useful for differentiating between mid-ocean ridge, arc, and hotspot affinities in submarine volcanic systems, that all three of these affinities are expressed in the northern Lau Basin, and provides additional support for the Samoan plume influence in the region.

  5. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  6. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  7. High-Mg# andesites and basalts from the Kamchatka-Kurile subduction system: Implications for primitive arc magma genesis and mantle wedge processes

    NASA Astrophysics Data System (ADS)

    Bryant, J. A.; Yogodzinski, G. M.; Churikova, T. G.; Volynets, O. N.

    2007-12-01

    Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high Mg# (Mg/Mg+Fe>0.65) basalts and andesites from the Kurile-Kamchatka subduction system. The primitive andesites are from the Shisheisky complex (Portnyagin et al., AGU Monograph 172, 2007), a field of Quaternary-age, monogenetic cones located in the Aleutian-Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite cone in Kamchatka. The Shisheisky lavas are similar to primitive andesites from Mt. Shasta, Piip Volcano, and Setouchi, Japan. They have Mg# of 0.66-0.73 at intermediate SiO2 (54-58 wt%), low CaO/Al2O3 (<0.54), and high Ni (184-243 ppm) and Cr (418-880 ppm). Olivine phenocryst core compositions of ~FO90 appear to be in equilibrium with whole-rock `melts', consistent with the aphyric to sparsely phyric nature of these lavas. Compared to the Shishiesky andesites, primitive basalts from the region (Alaid, Tolbachik, Kharchinsky) have higher CaO/Al2O3 (0.69-0.86), and lower whole-rock Ni (105-182 ppm), Cr (395-531 ppm), and Ni/MgO (10-17) at similar Mg# (0.66-.70). Olivine phenocrysts in the basalts have similarly higher CaO, lower Ni, and lower Ni/MgO at ~FO88 compared to the andesites. The absence of plagioclase phenocrysts from the primitive andesites strongly contrasts petrographic observations of the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the andesites compared to the basalts. Petrographic and mineral composition data suggest that the Shisheisky primitive andesites were liquids in equilibrium with mantle peridotite, and were not produced by mixing between primitive basalts and evolved felsic magmas or from contamination by xenocrystic olivine. The key features of the Shisheisky primitive andesites (e.g., low CaO/Al2O3 and high Ni/MgO at high Mg#) appear to have been acquired at sub-moho depths, by processes and under physical conditions in the mantle wedge (lower

  8. Towards Understanding the Sunda and Banda Arcs

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.

  9. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  10. 76 FR 43658 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2011/2012 crab fishing year so...

  11. 76 FR 44297 - Fisheries of the Exclusive Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands King and Tanner Crab Fishery Resources.... SUMMARY: The Bering Sea/Aleutian Islands (BSAI) Crab Rationalization Program (CR Program) allocates BSAI crab resources among harvesters, processors, and coastal communities. Amendment 30 would amend...

  12. 75 FR 43147 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2010/2011 crab fishing year so...

  13. 77 FR 44216 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... recovery under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2012/2013 crab fishing year....

  14. 78 FR 46577 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2013/2014 crab fishing year so...

  15. 78 FR 24362 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... the final 2013 and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1, 2013... Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands Subarea of the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  16. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL..., Subpt. E, Fig. 6 Figure 6 to Subpart E of Part 300—Alaska Peninsula and Aleutian Islands Rural and...

  17. 76 FR 49417 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...NMFS proposes regulations that would implement Amendment 93 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area (FMP). This proposed rule would amend the Bering Sea and Aleutian Islands Amendment 80 Program to modify the criteria for forming and participating in a harvesting cooperative. This action is necessary to encourage greater......

  18. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  19. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  20. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  1. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  2. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    NASA Astrophysics Data System (ADS)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  3. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  4. Far-field simulation of the 1946 Aleutian tsunami

    NASA Astrophysics Data System (ADS)

    Okal, Emile A.; Hébert, Hélène

    2007-06-01

    We present hydrodynamic far-field simulations of the Aleutian tsunami of 1946 April 1, using both a dislocation source representing a slow earthquake and a dipolar one modelling a large landslide. The earthquake source is derived from the recent seismological study by López and Okal, while the landslide source was previously used to explain the exceptional run-up at Scotch Cap in the near field. The simulations are compared to a field data set previously compiled from testimonies of elderly witnesses at 27 far-field locations principally in the Austral and Marquesas Islands, with additional sites at Pitcairn, Easter and Juan Fernández. We find that the data set is modelled satisfactorily by the dislocation source, while the landslide fails to match the measured amplitudes, and to give a proper rendition of the physical interaction of the wavefield with the shore, in particular at Nuku Hiva, Marquesas. The emerging picture is that the event involved both a very slow earthquake, responsible for the far-field tsunami, and a major landslide explaining the near-field run-up, but with a negligible contribution in the far field.

  5. Three new species of heteroderoidea (nematoda) from the Aleutian Islands

    SciTech Connect

    Bernard, E.C.

    1981-10-01

    Three new species of Heteroderoidea are described from Adak and Amchitka Islands in the Aleutian chain. Second-stage juveniles of Thecavermiculatus crassicrustata, n. sp., differ from those of T. gracililancea Robbins by having longer stylets (40 to 50 ..mu..m vs 19 to 22 ..mu..m). The female of T. crassicrustata has a longer neck, a more posterior excretory pore, and lacks a posterior protuberance. Meloidodera eurytyla, n. sp., differs from other Meloidodera spp. in that second-stage juveniles have longer stylets (32 to 35 ..mu..m) and much more massive styletknobs, while males have a longitudinally striated basal head annule. Meloidogyne subarctica, n. sp., can be separated from other Meloidogyne spp. by combinations of the following characteristics: perineal pattern with large oval areas in the tail region devoid of striae, arch with few unbroken striae; female excretory pore 1.5 to 2.5 x the stylet length from the anterior end; haploid chromosome number = 18; the spermatheca filled with sperm; stylet length of second-stage juveniles 13.5 to 15.4 ..mu..m.

  6. Hair methylmercury levels of mummies of the Aleutian Islands, Alaska

    SciTech Connect

    Egeland, G.M. Ponce, Rafael Bloom, Nicolas S. Knecht, Rick Loring, Stephen Middaugh, John P.

    2009-04-15

    Ancient human hair specimens can shed light on the extent of pre-historic exposures to methylmercury and provide valuable comparison data with current-day exposures, particularly for Indigenous Peoples who continue to rely upon local traditional food resources. Human hair from ancient Aleutian Island Native remains were tested for total and methylmercury (Hg, MeHg) and were radiocarbon dated. The remains were approximately 500 years old (1450 A.D.). For four adults, the mean and median total hair mercury concentration was 5.8 ppm (SD=0.9). In contrast, MeHg concentrations were lower with a mean of 1.2 ppm (SD=1.8) and a median of 0.54 ppm (0.12-3.86). For the five infants, the mean and median MeHg level was 1.2 ppm (SD=1.8) and 0.20 ppm (0.007-4.61), respectively. Segmental analyses showed variations in MeHg concentrations in 1-cm segments, consistent with fluctuations in naturally occurring exposure to mercury through dietary sources. The levels are comparable to or lower than those found in fish and marine mammal-eating populations today who rely far less on subsistence food than pre-historic humans. The findings are, therefore, compatible with increased anthropogenic release of trace metals during the past several centuries.

  7. Clinical Chemical Studies in Aleutian Disease of Mink

    PubMed Central

    Gershbein, Leon L.; Spencer, Kathryn L.

    1964-01-01

    Clinical chemical determinations were carried out on blood removed by cardiac puncture from 49 mink affected with Aleutian disease and 25 normal animals and the respective differences tested for statistical significance. Blood urea nitrogen, serum total protein and globulin, thymol turbidity, glutamic oxalacetic and glutamic pyruvic transaminases and amylase were definitely elevated in the affected animals whereas serum calcium, albumin and A/G ratio were depressed. No statistically significant difference was apparent between the two groups in the comparison of inorganic phosphorus, alkaline and acid phosphatases, bilirubin, total cholesterol and esters, cephalin-cholesterol flocculation (3+ in each case), sodium, potassium, chloride, CO2-combining power, leucine aminopeptidase and lactic dehydrogenase (means: over 2,000 u./ml.). For both the control and affected mink, the distribution of serum lactic dehydrogenase isozymes resembled that of human homologous serum hepatitis. Electrophoresis of serum proteins confirmed earlier findings of hypergammaglobulinemia in the diseased animals but a fast-moving or pre-albumin component, averaging 4% of the total protein, occurred in both the diseased and normal mink. ImagesFigure 1. PMID:17649484

  8. Detailed transcription map of Aleutian mink disease parvovirus.

    PubMed Central

    Alexandersen, S; Bloom, M E; Perryman, S

    1988-01-01

    We studied the transcription program of Aleutian mink disease parvovirus (ADV) by using a combination of cDNA cloning and sequencing, primer extension, and Northern (RNA) blot hybridization with splice-specific oligonucleotides. The 4.8-kilobase ADV genome was transcribed in the rightward direction, yielding plus-sense polyadenylated transcripts of 4.3 (R1 RNA), 2.8 (R2), 2.8 (R3), 1.1 (RX), and 0.85 (R2') kilobases. Each RNA transcript had potential translation initiation sites within open reading frames, suggesting protein translation, and a scheme encompassing ADV structural and nonstructural proteins is proposed. Each of the five RNA transcripts had a characteristic set of splices and originated from a promoter at nucleotide 152 (map unit 3 [R1, R2, R2', and RX]) or at nucleotide 1729 (map unit 36 [R3]). The transcripts terminated with a poly(A) tail at one of two positions: either at map unit 53 (R2' and RX) or at map unit 92 (R1, R2, and R3). Similarities with and differences from the transcription maps of other parvoviruses are discussed, and possible roles of the unique features found in ADV transcription are related to the special pathogenic features of this virus. Images PMID:2843669

  9. Multi-centennial reconstruction of Aleutian climate from coralline algae

    NASA Astrophysics Data System (ADS)

    Williams, B.; Halfar, J.; DeLong, K. L.; Smith, E.; Steneck, R.; Lebednik, P.; Jacob, D. E.; Fietzke, J.; Moore, K.

    2015-12-01

    Long-lived encrusting coralline algae yield robust reconstructions of mid-to-high latitude environmental change from their annually-banded high-magnesium calcite skeleton. The magnesium to calcium ratio measured in their skeleton reflects ambient seawater temperature at the time of formation. Thus, reconstructions from these algae are important to understanding the role of natural modes of climate variability versus that of external carbon dioxide in controlling climate in data sparse regions such as the northern North Pacific Ocean/southern Bering Sea. Here, we reconstruct regional seawater temperature from the skeletons of nine algae specimens from two islands in the Aleutian Archipelago. We find that seawater temperature increased ~1.4°C degrees over the past 350 years. The detrended seawater reconstruction correlates with storminess because storms moving across the North Pacific Ocean bring warmer water to the archipelago. Comparison of the algal seawater temperature reconstruction with instrumental and terrestrial proxy reconstructions reveals that atmospheric teleconnections to North America via the North Pacific storm tracks are not robust before the 20th century. This indicates that North Pacific climate processes inferred from the instrumental records should be cautiously extrapolated when describing earlier non-analogous climates or future climate change.

  10. Detailed seismic attenuation structure beneath Hokkaido, northeastern Japan: Arc-arc collision process, arc magmatism, and seismotectonics

    NASA Astrophysics Data System (ADS)

    Kita, Saeko; Nakajima, Junichi; Hasegawa, Akira; Okada, Tomomi; Katsumata, Kei; Asano, Youichi; Kimura, Takeshi

    2014-08-01

    In this study, we imaged a detailed seismic attenuation structure (frequency-independent Q-1) beneath Hokkaido, Japan, by merging waveform data from a dense permanent seismic network with those from a very dense temporary network. Corner frequency of each event used for t* estimation was determined by the S coda wave spectral ratio method. The seismic attenuation (Qp-1) structure is clearly imaged at depths down to about 120 km. For the fore-arc side of Hokkaido, high-Qp zones are imaged at depths of 10 to 80 km in the crust and mantle wedge above the Pacific slab. Low-Qp zones are clearly imaged in the mantle wedge beneath the back-arc areas of eastern and southern Hokkaido. These low-Qp zones, extending from deeper regions, extend to the Moho beneath volcanoes, the locations of which are consistent with those of seismic low-velocity regions. These results suggest that the mantle wedge upwelling flow occurs beneath Hokkaido, except in the area where there is a gap in the volcano chain. In contrast, an inhomogeneous seismic attenuation structure is clearly imaged beneath the Hokkaido corner. A broad low-Qp zone is located at depths of 0-60 km to the west of the Hidaka main thrust. The location almost corresponds to that of the seismic low-velocity zone in the collision zone. The fault planes of the 1970 M6.7 and 1982 M7.1 earthquakes are located at the edges of this broad low-Qp zone. Observations in this study indicate that our findings contribute to understanding the detailed arc-arc collision process, magmatism, and seismotectonics beneath Hokkaido.

  11. Multiple Active Volcanoes in the Northeast Lau Basin

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Resing, J. A.; Lupton, J. E.; Walker, S. L.; Embley, R. W.; Rubin, K. H.; Buck, N.; de Ronde, C. E.; Arculus, R. J.

    2010-12-01

    The northeast Lau Basin occupies a complex geological area between the Tafua arc front, the E-W trending Tonga Trench, and the Northeast Lau Spreading Center. These boundaries create multiple zones of extension and thus provide abundant opportunities for magma to invade the crust. The 25-km-long chain of “Mata” volcanoes lies near the center of this area, separated from both the arc front and the spreading ridge. In 2008 we discovered hydrothermal venting on the largest and most southerly of these volcanoes, W and E Mata. In 2010 we visited the 7 smaller volcanoes that form a 15-km-long arcuate sweep to the north from W and E Mata (the “North Matas”). We also revisited W and E Mata. Over each volcano we conducted CTD tows to map plumes and collect water samples. Based on the CTD results, camera tows searched for seafloor sources on three volcanoes. The N Mata volcanoes, extending from Mata Taha (1) in the south to Mata Fitu (7) in the north, lie within a prominent gap in the shallow bathymetry along the southern border of the Tonga trench. Northward from E Mata the Mata volcanoes degrade from large symmetrical cones to smaller and blocky volcanic edifices. Summit depths range from 1165 m (W Mata) to 2670 m (Mata Nima (5)). The most active volcano in the chain is the erupting W Mata, with an intense plume that extended 250 m above the summit. Hydrothermal temperature anomalies (Δθ, corrected for hydrographic masking effects) reached ˜1.7°C, with light-scattering values as high as 2-5 ΔNTU. The 2010 surveys now show that 6 of the 7 N Mata volcanoes are also hydrothermally active. Along the N Matas, Δθ and ΔNTU signals ranged from robust to weak, but distinct oxidation-reduction potential (aka Eh) anomalies confirmed active venting in each case. The most concentrated plumes were found near Mata Ua (2) and Mata Fitu (7), with Δθ and ΔNTU maxima of 0.1-0.17°C and 0.3, respectively. Despite the variability in plume strength, however, ΔNTU/Δθ ratios

  12. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Reconstructing the plumbing system of Krakatau volcano

    NASA Astrophysics Data System (ADS)

    Troll, Valentin R.; Dahrén, Börje; Deegan, Frances M.; Jolis, Ester M.; Blythe, Lara S.; Harris, Chris; Berg, Sylvia E.; Hilton, David R.; Freda, Carmela

    2014-05-01

    Crustal contamination of ascending arc magmas is generally thought to be significant at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus eruptive behaviour. Distinguishing deep vs. shallow crustal assimilation processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3]. We employ rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). Coupled with tomographic evidence, the petrological and geochemical data place a significant element of magma-crust interaction (and hence magma storage) into the uppermost, sediment-rich crust beneath the volcano. Magma - sediment interaction in the uppermost crust offers a likely explanation for the compositional variations in recent Krakatau magmas and most probably provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.

  14. Deep structure and origin of active volcanoes in China

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2010-12-01

    Recent geophysical studies have provided important constraints on the deep structure and origin of the active intraplate volcanoes in Mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab (e.g., Zhao et al., 2009a), while the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well (Zhao et al., 2009b). The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate) (Lei et al., 2009a). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and Indian slab's deep subduction in the west down to the lower mantle (Lei et al., 2009b; Zhao, 2009). The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions (Zhao, 2009). References Lei, J., D. Zhao, Y. Su, 2009a. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302. Lei, J., D. Zhao, B. Steinberger et al., 2009b. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 173, 33-50. Zhao, D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15, 297-323. Zhao, D., Z. Wang, N. Umino, A. Hasegawa, 2009a. Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89-106. Zhao, D., Y. Tian, J. Lei, L. Liu, 2009b. Seismic

  15. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  16. Shiveluch and Klyuchevskaya Volcanoes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.

  17. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Taylor, Rex N.; Yuasa, Makoto; Ohara, Yasuhiko

    2011-05-01

    The Kyushu-Palau Ridge (KPR) is a 2600 km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc by a series of spreading and rift basins. We present 40Ar/39Ar ages and geochemical data for the entire length of the Kyushu-Palau arc as well as for the conjugate arc which is stranded within the IBM fore arc. New 40Ar/39Ar ages indicate that the KPR was active between 25 and 48 Ma, but the majority of the exposed volcanism occurred in the final phase, between 25 and 28 Ma. Rifting of the Kyushu-Palau arc to form the Shikoku and Parece Vela basins occurred simultaneously along the length of the arc (circa 25 Ma), and at a similar distance from the trench. Unlike the IBM, the KPR has only limited systematic along-arc geochemical trends. Two geochemical components within the KPR indicate an origin in the suprasubduction mantle. First, EM-1-like lavas are identified in a restricted section of the arc, suggesting a localized heterogeneity. Second, EM-2-like arc volcanoes formed on juvenile West Philippine Basin crust, potentially reflecting ingress of mantle from the then active EM-2 province which lies in the west. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where the arc developed on preexisting Cretaceous Daito Ridge crust. The geochemical characteristics at this intersection likely result from the involvement of sub-Daito Ridge lithospheric mantle. Subduction flux beneath the KPR generally matches post-45 Ma Eocene/Oligocene lavas in the IBM fore arc, involving fluids and melts derived from altered igneous crust.

  18. Volcanoes and climate

    NASA Technical Reports Server (NTRS)

    Toon, O. B.

    1982-01-01

    The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between volcanoes and climate, a good theoretical understanding exists. The magnitude of the climatic changes anticipated following volcanic explosions agrees well with the observations. Volcanoes affect climate because volcanic particles in the atmosphere upset the balance between solar energy absorbed by the Earth and infrared energy emitted by the Earth. These interactions can be observed. The most important ejecta from volcanoes is not volcanic ash but sulfur dioxide which converts into sulfuric acid droplets in the stratosphere. For an eruption with its explosive magnitude, Mount St. Helens injected surprisingly little sulfur into the stratosphere. The amount of sulfuric acid formed is much smaller than that observed following significant eruptions and is too small to create major climatic shifts. However, the Mount St. Helens eruption has provided an opportunity to measure many properties of volcanic debris not previously measured and has therefore been of significant value in improving our knowledge of the relations between volcanic activity and climate.

  19. Volcanoes generate devastating waves

    SciTech Connect

    Lockridge, P. )

    1988-01-01

    Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

  20. Diffuse degassing through magmatic arc crust (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Ingebritsen, S.

    2013-12-01

    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  1. Hf isotope and concentration systematics of the Mariana arc

    NASA Astrophysics Data System (ADS)

    Tollstrup, D. L.; Gill, J. B.

    2004-12-01

    Negative Hf concentration anomalies are common but little-discussed geochemical features of island arcs. Because both light rare earth elements (LREE) and Hf may be mobile even in `fluid-dominated' island arcs, it is important to relate their isotopic and elemental ratios to models of slab-mantle mixing. We report new Hf isotope and trace element data for K-rich submarine basalts from the Kasuga seamounts located 10-20 km behind the volcanic front of the southern Northern Seamount Province (NSP) of the Mariana arc. These data, when combined with published data for other Mariana samples, span the full range from low-K tholeiites to high-K shoshonites. Rear-arc Kasuga seamounts seamounts of the NSP have lower 143Nd/144Nd and 176Hf/177Hf ratios than arc-front volcanoes of the Mariana Central Island Province (CIP). Within the CIP, Hf concentration anomalies correlate positively with 176Hf/177Hf ratios. Radiogenic Hf and little or no concentration anomalies characterize samples from fluid-dominated volcanoes (Guguan and Maug), whereas samples from sediment-melt dominated volcanoes (Anatahan and Sarigan) have less radiogenic Hf and larger concentration anomalies. Samples from the Kasuga and Hiyoshi seamounts have even larger negative concentration anomalies and less radiogenic Hf, although the two are not always correlated. These data are consistent with mixing between a depleted mantle and a partial melt of subducted sediment that is saturated with trace accessory phases including zircon, rutile, and monazite. A more volcaniclastic source is needed for the NSP than the CIP. Implications of these findings are three-fold. Partial melts of subducting sediment affect the HFSE and REE budgets of even fluid-dominated island arcs. Slab temperatures must be high enough for a peraluminous melt to be present, even where old, cold slabs are subducting. Refractory accessory phases have the potential to become exotic "nuggets" in the convecting mantle, potentially controlling the

  2. Sr-Nd-Pb isotope systematics of the Banda Arc, Indonesia: Combined subduction and assimilation of continental material

    NASA Astrophysics Data System (ADS)

    Vroon, P. Z.; van Bergen, M. J.; White, W. M.; Varekamp, J. C.

    1993-12-01

    We present Sr, Nd, and Pb isotope results and SiO2, Rb, Sr, Sm, Nd, U, Th, and Pb data for six active volcanoes and one extinct volcanic island distributed over the whole length of the Banda Arc. Rock types range from low-K tholeiitic in the NE to high-K calc-alkaline in the SW. The volcanoes in the NE have 'normal' arc signatures, whereas those in the SW have extreme values. Serua, situated in the central part, is the most anomalous volcano with regard to its Sr and Nd isotopic composition but not with regard to Pb isotopes. The inactive island of Romang in the SW overlaps the Serua trends. The volcanoes display variable within-suite ranges in Sr-87/Sr-86 and Nd-143/Nd-144. Large ranges (e.g., at Nila) are consistent with assimilation (10-20%) of carbonate-bearing sediments from the arc crust. Despite the evidence for assimilation, it cannot explain all of the Sr-Nd isotopic trends found, and Banda Arc magmas must have already obtained a 'continental' signature at depth before they reached the arc crust. Within-suit trends of Pb isotopes are virtually absent. We found an extreme range in the volcanics along the arc which coincide with a similar trend in sediments in front of the arc and consider this as strong evidence for the contribution of subducted continent-derived material to magma sources.

  3. Shoshonitic volcanism in the Northern Mariana Arc: 1. Mineralogic and major and trace element characteristics

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Fisk, Elisha; Geschwind, C. H.

    1989-04-01

    Petrographic and geochemical characteristics of samples dredged from 23 submarine volcanic edifices in the northern Mariana and southern Volcano arcs define two distinct rock series. The central and northern Mariana Arc (to 23°N) and the northern Volcano Arc (north of Iwo Jima) are characterized by plagioclase-clinopyroxene-orthopyroxene-titantomagnetite bearing subalkaline rocks, including both low-K and medium-K series. The northern Mariana Arc and southern Volcano Arc, from 23°N to Iwo Jima, are erupting rocks of a shoshonitic series with phenocrysts of plagioclase, clinopyroxene, olivine, and biotite. These rocks are less saturated than those of the subalkaline provinces and are substantially enriched in Ba (400-900 ppm), Sr (600-1000 ppm), K2O (1-4.5%), and K2O/Na2O (0.4-1.2) relative to the subalkaline lavas. Ba/Y and Ba/Zr increase by a factor of 3 to 4 in the shoshonitic rocks, but K/Rb, Ba/Sr, and K/Ba are relatively constant throughout the arc. There is no relationship between degree of enrichment and volcano volume or degree of fractionation: seamounts and islands within each province have the same range of compositions. Much of the intra-edifice variation in lava composition can be modeled by 10-70% crystallization of plagioclase and clinopyroxene, with smaller amounts of olivine, orthopyroxene, and titanomagnetite, or by accumulation of 10-40% phenocrysts, dominantly plagioclase. The differences between parental lavas in the alkalic and subalkalic provinces require melting of two distinct mantle sources. The occurrence of this enriched mantle in the northern Marianas may be a consequence of the propagation of the Mariana Trough spreading center into the Volcano Arc.

  4. Magma generation process beneath volcanic front of Kyushu arc, southwest Japan

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Hasenaka, T.; Wallace, P. J.; Yasuda, A.; Mori, Y.

    2015-12-01

    We presents data for major and volatile (H2O, CO2, S, Cl) elements in olivine-hosted melt inclusions from Quaternary volcanoes (Aso, Kuju, Kirishima and Kaimon) along volcanic front of Kyushu arc, southwest Japan. Melt inclusion data are corrected for post-entrapment modifications including diffusive Fe-loss, H2O loss and post-entrapment crystallization. The primitive magma compositions calculated from corrected melt inclusion data are used to estimate the degree of partial melting and compositions of slab-derived fluids beneath Kyushu volcanic front. The result show that magmatism of four volcanoes in Kyushu arc is divided into two groups (Group A and B). Group A indicates high K2O contents in primitive magmas and in fluids at Aso and Kuju volcanoes, northern Kyushu arc. Group B indicates low K2O contents in primitive magmas and in fluids at Kirishima and Kaimon volcanoes, southern Kyushu arc. K2O contents of Group A and B are impossible of explaining by degree of partial melting and the origin of hydrous mantle. High K2O content in fluids is attributed to dehydration of phengite-bearing slab at deep depth (about 140 km) in Group A compared with shallow depth (about 100 km) in Group B. Phengite is dehydrated from submerging plate beneath 110 km depth. This study suggests that compositions of primitive magmas beneath Kyushu arc are reflected by the depth of slab and the kind of dehydrating hydrous minerals.

  5. Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands region in 1982

    SciTech Connect

    Bakkala, R.G.; Low, L.; Ito, D.H.; Narita, R.E.; Ronholt, L.L.

    1983-03-01

    This report contains an assessment of the condition of groundfish and squid in the eastern Bering Sea and Aleutian Islands region through 1982. The assessments are based on species-by-species analyses of the data collected from the commercial fishery and research vessel surveys. Most of the resources in the Bering Sea-Aleutians management region are in good condition, including walleye pollock, Pacific cod, the flatfishes, and Atka mackerel. Pacific cod and yellowfin sole are in excellent condition and at historic high levels of abundance.

  6. A magmatic model of Medicine Lake Volcano, California ( USA).

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.

    1988-01-01

    Medicine Lake volcano is a Pleistocene and Holocene shield volcano of the southern Cascade Range. It is located behind the main Cascade arc in an extensional tectonic setting where high-alumina basalt is the most commonly erupted lava. This basalt is parental to the higher-silica calc-alkaline and tholeiitic lavas that make up the bulk of the shield. The presence of late Holocene, chemically identical rhyolites on opposite sides of the volcano led to hypotheses of a large shallow silicic magma chamber and of a small, deep chamber that fed rhyolites to the surface via cone sheets. Subsequent geophysical work has been unable to identify a large silicic magma body, and instead a small one has apparently been recognized. Some geologic data support the geophysical results. Tectonic control of vent alignments and the dominance of mafic eruptions both in number of events and volume throughout the history of the volcano indicate that no large silicic magma reservoir exists. Instead, a model is proposed that includes numerous dikes, sills and small magma bodies, most of which are too small to be recognized by present geophysical methods.-Author

  7. Elevation of volcanoes and their edifice heights at subduction zones

    SciTech Connect

    Ben-Avraham, Z.; Nur, A.

    1980-08-10

    The elevation above sea level of circum-Pacific volcanoes situated on continental crust varies greatly, not only between various chains but also within chains. Their edifice heights, however, are essentially constant with each chain. This pattern is reversed for oceanic volcanoes: The elevation circum-Pacific volcanoes situated on oceanic curst is constant within arcs, while edifice heights are greatly variable. In continents the depth to the root zones of volcanoes may be within the elastic part of the lithosphere, whereas in the oceans it may be well below the elastic part of the lithosphere. We suggest that melting, or the onset of the volcanic uprising, may be controlled in both cases primarily by pressure: in the continental lithosphere by the overburden pressure determined by depth below the local surface and in the oceanic lithosphere by the isostatically compensated pressure zone controlled by depth below sea level. The pattern seems to hold even in complex geological regions and may be used to identify the nature of the crust in such regions.

  8. Deformation associated with the 1997 eruption of Okmok volcano, Alaska

    USGS Publications Warehouse

    Mann, Dorte; Freymueller, Jeffrey T.; Lu, Zhiming

    2002-01-01

    Okmok volcano, located on Umnak Island in the Aleutian chain, Alaska, is the most eruptive caldera system in North America in historic time. Its most recent eruption occurred in 1997. Synthetic aperture radar interferometry shows deflation of the caldera center of up to 140 cm during this time, preceded and followed by inflation of smaller magnitude. The main part of the observed deformation can be modeled using a pressure point source model. The inferred source is located between 2.5 and 5.0 km beneath the approximate center of the caldera and ???5 km from the eruptive vent. We interpret it as a central magma reservoir. The preeruptive period features inflation accompanied by shallow localized subsidence between the caldera center and the vent. We hypothesize that this is caused by hydrothermal activity or that magma moved away from the central chamber and toward the later vent. Since all historic eruptions at Okmok have originated from the same cone, this feature may be a precursor that indicates an upcoming eruption. The erupted magma volume is ???9 times the volume that can be accounted for by the observed preeruptive inflation. This indicates a much longer inflation interval than we were able to observe. The observation that reinflation started shortly after the eruption suggests that inflation spans the whole time interval between eruptions. Extrapolation of the average subsurface volume change rate is in good agreement with the long-term eruption frequency and eruption volumes of Okmok.

  9. Petrographic and Geochemical Investigation of Andesitic Arc Volcanism: Mount Kerinci, Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.

    2014-12-01

    Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for

  10. New Field Surveys of The Great 1946 Aleutian Tsunami

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Synolakis, C. E.; Plafker, G.

    We seek to reopen the case of the 1946 Aleutian tsunami, which was the most destruc- tive transpacific event in the past century, despite the relatively moderate size of its parent earthquake. As a result, the exact nature of its source, and in particular whether it requires a submarine landslide, remains controversial. In 1999, we started a system- atic effort to build a modern database of runup and inundation values for the 1946 event throughout the Pacific Basin. At teleseismic distances, we rely on interviews from elderly witnesses whose testimony is then quantified using standard surveying techniques. As of early 2002, we were able to gather about 60 such measurements in the Marquesas, Society and Austral Islands, French Polynesia; and at Easter and Juan Fernandez Islands. They point out to the concentration of high runup values (8 m or more) in a narrow band of epicentral azimuths including Hawaii, the Marque- sas and Easter, but excluding Juan Fernandez. In the near field, we surveyed in 2001 the islands of Unimak and Sanak, based on available Coast Guard reports at Scotch Cap, and on subsisting watermarks such as large logs of driftwood deposited on these unforrested islands. We obtain a maximum runup height of 42 m on the Southern coast of Unimak and of 22 m at Sanak. These preliminary results suggest the combi- nation of a slow earthquake dislocation responsible for the strong far-field directivity of the tsunami, and of a co-seismic underwater landslide necessary to account for the exceptional near-field amplitudes, which are many times larger than the seismic dis- placement at the source for any acceptable seismological model of the dislocation. The existence of a large landslide is also suggested by anectodal reports of post-quake changes in local bathymetry and diminished fisheries productivity, and a preliminary confirmation is found on post-1946 bathymetric charts of the continental slope around 53.75 deg.N and 163.75 deg.W.

  11. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  12. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geo