Science.gov

Sample records for aleutian islands erupted

  1. August 2008 eruption of Kasatochi volcano, Aleutian Islands, Alaska-resetting an Island Landscape

    USGS Publications Warehouse

    Scott, W.E.; Nye, C.J.; Waythomas, C.F.; Neal, C.A.

    2010-01-01

    Kasatochi Island, the subaerial portion of a small volcano in the western Aleutian volcanic arc, erupted on 7-8 August 2008. Pyroclastic flows and surges swept the island repeatedly and buried most of it and the near-shore zone in decimeters to tens of meters of deposits. Several key seabird rookeries in taluses were rendered useless. The eruption lasted for about 24 hours and included two initial explosive pulses and pauses over a 6-hr period that produced ash-poor eruption clouds, a 10-hr period of continuous ash-rich emissions initiated by an explosive pulse and punctuated by two others, and a final 8-hr period of waning ash emissions. The deposits of the eruption include a basal muddy tephra that probably reflects initial eruptions through the shallow crater lake, a sequence of pumiceous and lithic-rich pyroclastic deposits produced by flow, surge, and fall processes during a period of energetic explosive eruption, and a fine-grained upper mantle of pyroclastic-fall and -surge deposits that probably reflects the waning eruptive stage as lake and ground water again gained access to the erupting magma. An eruption with similar impact on the island's environment had not occurred for at least several centuries. Since the 2008 eruption, the volcano has remained quiet other than emission of volcanic gases. Erosion and deposition are rapidly altering slopes and beaches. ?? 2010 Regents of the University of Colorado.

  2. The 7-8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.; Scott, William E.; Prejean, Stephanie G.; Schneider, David J.; Izbekov, Pavel; Nye, Christopher J.

    2010-12-01

    Kasatochi volcano in the central Aleutian Islands erupted unexpectedly on 7-8 August 2008. Kasatochi has received little study by volcanologists and has had no confirmed historical eruptions. The island is an important nesting area for seabirds and a long-term biological study site of the U.S. Fish and Wildlife Service. After a notably energetic preeruptive earthquake swarm, the volcano erupted violently in a series of explosive events beginning in the early afternoon of 7 August. Each event produced ash-gas plumes that reached 14-18 km above sea level. The volcanic plume contained large amounts of SO2 and was tracked around the globe by satellite observations. The cumulative volcanic cloud interfered with air travel across the North Pacific, causing many flight cancelations that affected thousands of travelers. Visits to the volcano in 2008-2009 indicated that the eruption generated pyroclastic flows and surges that swept all flanks of the island, accumulated several tens of meters of pyroclastic debris, and increased the diameter of the island by about 800 m. Pyroclastic flow deposits contain abundant accidental lithic debris derived from the inner walls of the Kasatochi crater. Juvenile material is crystal-rich silicic andesite that ranges from slightly pumiceous to frothy pumice. Fine-grained pyroclastic surge and fall deposits with accretionary lapilli cover the lithic-rich pyroclastic flow deposits and mark a change in eruptive style from episodic explosive activity to more continuous ash emission with smaller intermittent explosions. Pyroclastic deposits completely cover the island, but wave erosion and gully development on the flanks have begun to modify the surface mantle of volcanic deposits.

  3. The 2008 Eruption of Kasatochi Volcano, Central Aleutian Islands, Alaska: Reconnaissance Observations and Preliminary Physical Volcanology

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Schneider, D. J.; Prejean, S. G.

    2008-12-01

    The August 7, 2008 eruption of Kasatochi volcano was the first documented historical eruption of this small (3 x 3 km) island volcano with a 1 km2 lake filled crater in the central Aleutian Islands of Alaska. Reports of previous Kasatochi eruptions are unconfirmed and lacking in detail and little is known about the eruptive history. Three explosively-generated ash plumes reaching altitudes of 15 to 20 km were observed in satellite data and were preceded by some of the most intense seismicity yet recorded by the Alaska Volcano Observatory (AVO) seismic network. Eruptive products on Kasatochi Island observed on August 22 and 23 consist of pumice-bearing, lithic-rich pyroclastic-flow deposits overlain by a 1-2 m thick sequence of fine- grained pyroclastic-surge, and -fall deposits all exposed at the coastline. These deposits completely blanket Kasatochi Island to a depth of many meters. Pyroclastic flows entered the sea and extended the coastline 300-400 m beyond prominent wave cut cliffs and sea stacks. Tide gauge data from Adak Island, 80 km to the west, indicate a small tsunami with maximum water amplitude of 20 cm, was initiated during the eruption. Kasatochi volcano lacks a real-time seismic monitoring network. Seismic activity was detected by AVO instruments on Great Sitkin Island 40 km to the west, and thus the timing of eruptive events is approximate. The eruption began explosively at 2201 UTC on August 7, and was followed by at least two additional strong eruptive bursts at 0150 UTC and 0435 UTC, August 8. Satellite data show a significant ash cloud associated with the 0435 UTC event followed by at least 14 hours of continuous ash emission. The lack of a strong ash signature in satellite data suggest that the first two plumes were ash poor. Satellite data also show a large emission of SO2 that entered the stratosphere. Correlation of eruptive periods with deposits on the island is not yet possible, but it appears that pyroclastic flows were emplaced during

  4. Gabbroic and Peridotitic Enclaves from the 2008 Kasatochi Eruption, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Kentner, A.; Nadin, E. S.; Izbekov, P. E.; Nye, C. J.; Neill, O. K.

    2012-12-01

    Kasatochi volcano of the Andreanof Islands in the western Aleutian Arc violently erupted over a two day period from August 7-8, 2008. The eruption involved multiple explosive events generating pyroclastic flows, which included abundant mafic and ultramafic enclaves that have since weathered out and accumulated in talus along the coast. These and other mafic enclaves sampled by modern island arc lavas provide insight into subduction magmatism because they emerge from a section of the subduction system that is less likely than shallower zones to be modified by magmatic processes such as mixing, assimilation, or fractionation. We present new whole rock, clinopyroxene, amphibole, plagioclase, and melt compositions from Kasatochi enclaves of the 2008 eruption. The highly crystalline (~40 vol. % phenocryst content), medium-K basaltic andesite host rock contains ~52-55 wt. % SiO2 and 0.6-0.9 wt. % K2O, and is composed of plagioclase, ortho- and clinopyroxene, amphibole, and Ti-magnetite in a microlite-rich groundmass. Upon eruption, this magma sampled two distinct enclave populations: gabbro and peridotite. The gabbro has abundant amphibole (mostly magnesio-hastingsite) and plagioclase with minor clinopyroxene, olivine, and magnetite, while the peridotite is composed of olivine with minor amounts of clinopyroxene and orthopyroxene. There is little textural variation amongst the peridotitic samples collected, but the gabbroic samples vary from layered to massive and cover a range in grain size from fine-grained to pegmatitic. The layered gabbros display centimeter-scale bands of alternating plagioclase- and amphibole-rich layers, with a strong preferential alignment of the amphibole grains. The coarser-grained samples are very friable, with ~10% pore space; disaggregation of these upon host-magma ascent likely formed the amphibole and plagioclase xenocrysts in the andesitic host. Based on the textural and compositional differences, we divide the enclaves into four groups

  5. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    Augustine volcano in Cook Inlet, Alaska, the number of calls to Ops, emails to the webmaster, and the amount of data served via the AVO website greatly increased during elevated volcanic activity designated by the USGS aviation color code and volcano alert level. Lessons learned include, Ops staffing requirements during periods of high call volume, the need for ash fall hazard information in multiple languages, and the value of real-time observations of remote Aleutian eruptions made by local mariners. An important theme of public inquiries concerned the amount and potential climate impacts of the significant sulfur dioxide gas and ash plumes emitted by Okmok and Kasatochi, including specific questions on the amount of sulfur dioxide discharged during each eruption. The significant plumes produced at the onset of the Okmok and Kasatochi eruptions also had lengthy national and international aviation impacts and yet-to-be resolved hemispherical or possible global, climactic effects.

  6. Case study: Bioremediation in the Aleutian Islands

    SciTech Connect

    Steward, K.J.; Laford, H.D.

    1995-12-31

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m{sup 3} of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations.

  7. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  8. Criconematina (nematoda: tylenchida) from the Aleutian Islands

    SciTech Connect

    Bernard, E.C.

    1982-01-01

    A new genus (Cerchnotocriconema) and three new species (C. psephinum, Hemicycliophora anchitkaensis, and Paratylenchus amundseni) are described from Adak and Amchitka Islands in the Aleutian chain. The new genus differs from all other criconematid genera in having irregular, convex sculpturing consisting of small, oval plates on the anterior and posterior regions of each annule, with the mid-annular region minutely punctate or dentate. H. amchitkaensis n. sp. resembles H. sinilis Thorne and H. zuckermani Brzeski, but has only one head annule, instead of two. P. amundseni n. sp., which has a stylet 17 to 19 ..mu..m long, is similar to P. tatea Wu and Townsend and P. labiosus Anderson and Kimpinski, but differs by the presence of males and the possession of conoid-truncate lip region, functional spermatheca, and long male tail (c = 8.5 to 9.5). Seriespinula seymouri Wu (Mehta and Raski), Nothocriconema longulum (Gunhold) De Grisse and Loof, and Macroposthonia xenoplax (Raski) De Grisse and Loof are also reported from the islands.

  9. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  10. 76 FR 3089 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Region Bering Sea & Aleutian Islands Crab Permits AGENCY: National Oceanic and Atmospheric Administration... of a currently approved collection. The Crab Rationalization Program allocates Bering Sea and Aleutian Islands (BSAI) crab resources among harvesters, processors, and coastal communities through...

  11. Are There Spatial or Temporal Patterns to Holocene Explosive Eruptions in the Aleutian Archipelago? A Work in Progress

    NASA Astrophysics Data System (ADS)

    Martin, C.; Nicolaysen, K. P.; McConville, K.; Hatfield, V.; West, D.

    2013-12-01

    By examining the existing geological and archeological record of radiocarbon dated Aleutian tephras of the last 12,000 years, this study sought to determine whether there were spatial or temporal patterns of explosive eruptive activity. The Holocene tephra record has important implications because two episodes of migration and colonization by humans of distinct cultures established the Unangan/Aleut peoples of the Aleutian Islands concurrently with the volcanic activity. From Aniakchak Volcano on the Alaska Peninsula to the Andreanof Islands (158 to 178° W longitude), 55 distinct tephras represent significant explosive eruptions of the last 12,000 years. Initial results suggest that the Andreanof and Fox Island regions of the archipelago have had frequent explosive eruptions whereas the Islands of Four Mountains, Rat, and Near Island regions have apparently had little or no eruptive activity. However, one clear result of the investigation is that sampling bias strongly influences the apparent spatial patterns. For example field reconnaissance in the Islands of Four Mountains documents two Holocene calderas and a minimum of 20 undated tephras in addition to the large ignimbrites. Only the lack of significant explosive activity in the Near Islands seems a valid spatial result as archeological excavations and geologic reports failed to document Holocene tephras there. An intriguing preliminary temporal pattern is the apparent absence of large explosive eruptions across the archipelago from ca. 4,800 to 6,000 yBP. To test the validity of apparent patterns, a statistical treatment of the compiled data grappled with the sampling bias by considering three confounding variables: larger island size allows more opportunity for geologic preservation of tephras; larger magnitude eruption promotes tephra preservation by creating thicker and more widespread deposits; the comprehensiveness of the tephra sampling of each volcano and island varies widely because of logistical and

  12. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Bering Sea and Aleutian Islands (BSAI... Aleutian Islands (BSAI) Crab species program. (a) Purpose. This section's purpose is to implement the... Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs pursuant to § 679.2...

  13. Shaded Relief Mosaic of Umnak Island, Aleutian Islands, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a shaded relief mosaic of Umnak Island in Alaska's Aleutian Islands.

    It was created with Airsar data that was geocoded and combined into this mosaic as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  14. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and

  15. Cranial suture biology of the Aleutian Island inhabitants.

    PubMed

    Cray, James; Mooney, Mark P; Siegel, Michael I

    2011-04-01

    Research on cranial suture biology suggests there is biological and taxonomic information to be garnered from the heritable pattern of suture synostosis. Suture synostosis along with brain growth patterns, diet, and biomechanical forces influence phenotypic variability in cranial vault morphology. This study was designed to determine the pattern of ectocranial suture synostosis in skeletal populations from the Aleutian Islands. We address the hypothesis that ectocranial suture synostosis pattern will differ according to cranial vault shape. Ales Hrdlicka identified two phenotypes in remains excavated from the Aleutian Island. The Paleo-Aleutians, exhibiting a dolichocranic phenotype with little prognathism linked to artifacts distinguished from later inhabitants, Aleutians, who exhibited a brachycranic phenotype with a greater amount of prognathism. A total of 212 crania representing Paleo-Aleuts and Aleutian as defined by Hrdlicka were investigated for suture synostosis pattern following standard methodologies. Comparisons were performed using Guttmann analyses. Results revealed similar suture fusion patterns for the Paleo-Aleut and Aleutian, a strong anterior to posterior pattern of suture fusion for the lateral-anterior suture sites, and a pattern of early termination at the sagittal suture sites for the vault. These patterns were found to differ from that reported in the literature. Because these two populations with distinct cranial shapes exhibit similar patterns of suture synostosis it appears pattern is independent of cranial shape in these populations of Homo sapiens. These findings suggest that suture fusion patterns may be population dependent and that a standardized methodology, using suture fusion to determine age-at-death, may not be applicable to all populations. PMID:21328563

  16. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  17. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  18. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  19. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  20. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  1. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect

    Nye, C.J. . Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK . Div. of Geological and Geophysical Surveys); Motyka, R.J. . Div. of Geological and Geophysical Surveys); Turner, D.L. . Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  2. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports AGENCY: National Oceanic and... Fisheries Service (NMFS) manages the crab fisheries in the waters off the coast of Alaska under the Fishery Management Plan (FMP) for the Bering Sea and Aleutian Islands (BSAI) Crab. The Magnuson-Stevens...

  3. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  4. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  5. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  6. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  7. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  8. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  9. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  10. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  11. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  12. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  13. A burial cave in the western Aleutian Islands, Alaska.

    PubMed

    West, Dixie; Lefèvre, Christine; Corbett, Debra; Crockford, Susan

    2003-01-01

    During the 1998 field season, the Western Aleutians Archaeological and Paleobiological Project (WAAPP) team located a cave in the Near Islands, Alaska. Near the entrance of the cave, the team identified work areas and sleeping/sitting areas surrounded by cultural debris and animal bones. Human burials were found in the cave interior. In 2000, with permission from The Aleut Corporation, archaeologists revisited the site. Current research suggests three distinct occupations or uses for this cave. Aleuts buried their dead in shallow graves at the rear of the cave circa 1,200 to 800 years ago. Aleuts used the front of the cave as a temporary hunting camp as early as 390 years ago. Finally, Japanese and American military debris and graffiti reveal that the cave was visited during and after World War II. Russian trappers may have also taken shelter there 150 to 200 years ago. This is the first report of Aleut cave burials west of the Delarof Islands in the central Aleutians. PMID:21755641

  14. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea and Aleutian Islands... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... Islands and straight lines between the islands connecting the following coordinates in the order...

  15. 76 FR 3090 - Proposed Information Collection; Comment Request; Alaska Region; Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Region; Bering Sea and Aleutian Islands Crab Arbitration AGENCY: National Oceanic and Atmospheric... for Gulf of Alaska groundfish fisheries, arbitration system, monitoring, economic data collection, and cost recovery fee collection. The Crab Rationalization Program Arbitration System is established by...

  16. Origins of linguistic diversity in the Aleutian Islands.

    PubMed

    Berge, Anna

    2010-12-01

    The Aleut language, currently spoken along the Aleutian chain and the Pribilof and Commander islands, is the only language in its branch of the Eskimo-Aleut language family, and traditional methods of linguistic reconstruction have neither satisfactorily explained its relationship with languages on the Asian continent nor its development from Proto-Eskimo-Aleut. Linguistic reconstruction has always been important in understanding the prehistory and history of the Aleuts, and new approaches in comparative linguistics, more comprehensive information on typological features of neighboring languages, and continuing language documentation allow us to propose a rich and continuous history of contact with various groups of people. I evaluate evidence that the Aleut language may have been shaped by contact with neighbors in Asia and Alaska, eventually giving rise to its differentiation from the Eskimo languages. I look at dialect differentiation along the Aleutian chain and what this differentiation reveals about the migration trends of the Aleut along the chain. I look at the colonial expansion of the Aleut-speaking area and resulting additional varieties of Aleut in the historical period. Finally, I review the effects of the Russian and American colonial periods on the Aleut language and the severe endangerment that the language faces today as a result. I conclude that there is evidence of possible Aleut contact with both neighboring peoples; however, much of this evidence has not yet been subjected to systematic comparative reconstructions. Linguistic evidence supports theories of at least two westward expansions of Aleuts along the island chain, but it is not yet clear what motivated the dialect differentiations. Finally, I offer some thoughts on directions for future dialect studies and the continuing documentation of Aleut. PMID:21417884

  17. The nearshore benthic community of Kasatochi Island, one year after the 2008 volcanic eruption

    USGS Publications Warehouse

    Jewett, S.C.; Bodkin, J.L.; Chenelot, H.; Esslinger, G.G.; Hoberg, M.K.

    2010-01-01

    A description is presented of the nearshore benthic community of Kasatochi Island 1012 months after a catastrophic volcanic eruption in 2008. The eruption extended the coastline of the island approximately 400 m offshore, mainly along the south, southeast, and southwest shores, to roughly the 20 m isobath. Existing canopy kelp of Eualaria (Alaria) fistulosa, as well as limited understory algal species and associated fauna (e.g., urchin barrens) on the hard substratum were apparently buried following the eruption. Samples and observations revealed the substrate around the island in 2009 was comprised almost entirely of medium and coarse sands with a depauperate benthic community, dominated by opportunistic pontogeneiid amphipods. Comparisons of habitat and biological communities with other nearby Aleutian Islands, as well as with the Icelandic volcanic island of Surtsey, confirm dramatic reductions in flora and fauna consistent with an early stage of recovery from a large-scale disturbance event. ?? 2010 Regents of the University of Colorado.

  18. Modeling potential tsunami sources for deposits near Unalaska Island, Aleutian Islands

    NASA Astrophysics Data System (ADS)

    La Selle, S.; Gelfenbaum, G. R.

    2013-12-01

    In regions with little seismic data and short historical records of earthquakes, we can use preserved tsunami deposits and tsunami modeling to infer if, when and where tsunamigenic earthquakes have occurred. The Aleutian-Alaska subduction zone in the region offshore of Unalaska Island is one such region where the historical and paleo-seismicity is poorly understood. This section of the subduction zone is not thought to have ruptured historically in a large earthquake, leading some to designate the region as a seismic gap. By modeling various historical and synthetic earthquake sources, we investigate whether or not tsunamis that left deposits near Unalaska Island were generated by earthquakes rupturing through Unalaska Gap. Preliminary field investigations near the eastern end of Unalaska Island have identified paleotsunami deposits well above sea level, suggesting that multiple tsunamis in the last 5,000 years have flooded low-lying areas over 1 km inland. Other indicators of tsunami inundation, such as a breached cobble beach berm and driftwood logs stranded far inland, were tentatively attributed to the March 9, 1957 tsunami, which had reported runup of 13 to 22 meters on Umnak and Unimak Islands, to the west and east of Unalaska. In order to determine if tsunami inundation could have reached the runup markers observed on Unalaska, we modeled the 1957 tsunami using GeoCLAW, a numerical model that simulates tsunami generation, propagation, and inundation. The published rupture orientation and slip distribution for the MW 8.6, 1957 earthquake (Johnson et al., 1994) was used as the tsunami source, which delineates a 1200 km long rupture zone along the Aleutian trench from Delarof Island to Unimak Island. Model results indicate that runup and inundation from this particular source are too low to account for the runup markers observed in the field, because slip is concentrated in the western half of the rupture zone, far from Unalaska. To ascertain if any realistic

  19. Three new species of heteroderoidea (nematoda) from the Aleutian Islands

    SciTech Connect

    Bernard, E.C.

    1981-10-01

    Three new species of Heteroderoidea are described from Adak and Amchitka Islands in the Aleutian chain. Second-stage juveniles of Thecavermiculatus crassicrustata, n. sp., differ from those of T. gracililancea Robbins by having longer stylets (40 to 50 ..mu..m vs 19 to 22 ..mu..m). The female of T. crassicrustata has a longer neck, a more posterior excretory pore, and lacks a posterior protuberance. Meloidodera eurytyla, n. sp., differs from other Meloidodera spp. in that second-stage juveniles have longer stylets (32 to 35 ..mu..m) and much more massive styletknobs, while males have a longitudinally striated basal head annule. Meloidogyne subarctica, n. sp., can be separated from other Meloidogyne spp. by combinations of the following characteristics: perineal pattern with large oval areas in the tail region devoid of striae, arch with few unbroken striae; female excretory pore 1.5 to 2.5 x the stylet length from the anterior end; haploid chromosome number = 18; the spermatheca filled with sperm; stylet length of second-stage juveniles 13.5 to 15.4 ..mu..m.

  20. Hair methylmercury levels of mummies of the Aleutian Islands, Alaska

    SciTech Connect

    Egeland, G.M. Ponce, Rafael Bloom, Nicolas S. Knecht, Rick Loring, Stephen Middaugh, John P.

    2009-04-15

    Ancient human hair specimens can shed light on the extent of pre-historic exposures to methylmercury and provide valuable comparison data with current-day exposures, particularly for Indigenous Peoples who continue to rely upon local traditional food resources. Human hair from ancient Aleutian Island Native remains were tested for total and methylmercury (Hg, MeHg) and were radiocarbon dated. The remains were approximately 500 years old (1450 A.D.). For four adults, the mean and median total hair mercury concentration was 5.8 ppm (SD=0.9). In contrast, MeHg concentrations were lower with a mean of 1.2 ppm (SD=1.8) and a median of 0.54 ppm (0.12-3.86). For the five infants, the mean and median MeHg level was 1.2 ppm (SD=1.8) and 0.20 ppm (0.007-4.61), respectively. Segmental analyses showed variations in MeHg concentrations in 1-cm segments, consistent with fluctuations in naturally occurring exposure to mercury through dietary sources. The levels are comparable to or lower than those found in fish and marine mammal-eating populations today who rely far less on subsistence food than pre-historic humans. The findings are, therefore, compatible with increased anthropogenic release of trace metals during the past several centuries.

  1. Paleomagnetic Evidence for Significant Rotations Within the Aleutian Island Arc.

    NASA Astrophysics Data System (ADS)

    Stone, D. B.; Krutikov, L.

    2006-12-01

    Present-day motion of the Pacific plate relative to the North American plate changes along the Aleutian arc from normal convergence in the east to transform motion in the west. It was postulated by Geist et al. (Tectonics 7, 327-341, 1988) that strain partitioning could result in tectonic segmentation of the lithosphere, caused by increasing obliquity of plate convergence and characterized by clockwise rotation and westward translation of discrete blocks. Their analysis of the present day morphology and tectonic setting of the western half of the arc suggests the presence of rotated blocks, and implies that the rotation is ongoing. Published high-quality paleomagnetic data from the far western end of the arc show rotations that are compatible with this model. This result is based on rocks of Eocene (Bering and Medny Islands) and Miocene (Shemya Island) age, thus the magnetically observed rotations could have occurred at any time since their origin. New paleomagnetic and geochronologic data from Miocene age volcanic rocks on Amchitka Island also indicate clockwise rotation at some time since the rocks were formed (13.8+/-0.2 Ma). However, two other high-quality paleomagnetic data sets from Eocene/Oligocene aged sediments from the eastern part of the arc (Atka and Umnak Islands) are significantly rotated in the same clockwise sense as the western end. Since plate convergence at these two eastern sites has been roughly normal since mid-Eocene time, strain partitioning related to oblique convergence is unlikely to be the cause of the rotation. Models involving rotation of the entire island arc to explain the similarity in magnitude and sense of the rotations seen in the paleomagnetic data require large relative latitude changes between the two ends of the arc. Though possible, such a model would put serious constraints on scenarios for the tectonic development of the Bering Sea Plate required to accommodate the degree of rotation suggested by the data. The answer may

  2. 76 FR 43658 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2011/2012 crab fishing year so...

  3. 76 FR 44297 - Fisheries of the Exclusive Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands King and Tanner Crab Fishery Resources.... SUMMARY: The Bering Sea/Aleutian Islands (BSAI) Crab Rationalization Program (CR Program) allocates BSAI crab resources among harvesters, processors, and coastal communities. Amendment 30 would amend...

  4. 75 FR 43147 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2010/2011 crab fishing year so...

  5. 77 FR 44216 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... recovery under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2012/2013 crab fishing year....

  6. 78 FR 46577 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2013/2014 crab fishing year so...

  7. 78 FR 24362 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... the final 2013 and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1, 2013... Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands Subarea of the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  8. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL..., Subpt. E, Fig. 6 Figure 6 to Subpart E of Part 300—Alaska Peninsula and Aleutian Islands Rural and...

  9. 76 FR 49417 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...NMFS proposes regulations that would implement Amendment 93 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area (FMP). This proposed rule would amend the Bering Sea and Aleutian Islands Amendment 80 Program to modify the criteria for forming and participating in a harvesting cooperative. This action is necessary to encourage greater......

  10. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  11. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  12. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  13. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  14. Spawning phenology and geography of Aleutian Islands and eastern Bering Sea Pacific cod (Gadus macrocephalus)

    NASA Astrophysics Data System (ADS)

    Neidetcher, Sandra K.; Hurst, Thomas P.; Ciannelli, Lorenzo; Logerwell, Elizabeth A.

    2014-11-01

    Pacific cod (Gadus macrocephalus) is an economically and ecologically important species in the southeastern Bering Sea and Aleutian Islands, yet little is known about the spawning dynamics of Pacific cod in these regions. To address this knowledge gap, we applied a gross anatomical maturity key for Pacific cod to describe temporal and spatial patterns of reproductive status over three winter spawning seasons: 2005, 2006, and 2007. Maturity status of female Pacific cod was assessed by fishery observers during sampling of commercial catches and used to construct maps showing spawning activity in the Bering Sea and Aleutian Islands. Most spawning activity was observed on the Bering Sea shelf and Aleutian Island plateaus between 100 and 200 m depth. Data for those days when a high percentage of spawning stage fish were observed were used to identify areas with concentrations of spawning fish. Spawning concentrations were identified north of Unimak Island, in the vicinity of the Pribilof Islands, at the shelf break near Zhemchug Canyon, and adjacent to islands in the central and western Aleutian Islands along the continental shelf. The spawning season was found to begin in the last days of February or early March and extend through early to mid-April. Variation in spawning time (averaging ~10 days between years) may have been associated with a change from warm (2005) to cold (2007) climate conditions during the study period. Our information on Pacific cod spawning patterns will help inform fishery management decisions, models of spawning and larval dispersal and the spatial structure of the stock.

  15. Geology and 40Ar/39Ar Geochronology of Akutan Volcano, Eastern Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Jicha, B. R.

    2013-12-01

    40Ar/39Ar dating and new whole-rock geochemical analyses are used to establish an eruptive chronology for Akutan volcano, Akutan Island, in the eastern Aleutian island arc. Akutan Island (166° W, 54.1° N) is the site of long-lived volcanism and the entire island comprises volcanic rocks as old as 3.3 Ma (Richter et al., 1998, USGS Open-File 98-135). Our current focus is on the 225 km2 western half of the island, which is home to the Holocene active cone, Holocene to latest Pleistocene satellite vents, and underlying middle Pleistocene volcanic basement rocks. Eruptive products span the tholeiitic-calc-alkaline boundary, are medium-K, and range from basalt to dacite. Furnace incremental heating experiments on groundmass separates of 38 samples resulted in 29 40Ar/39Ar ages. The remainder did not yield radiogenic 40Ar contents and are likely Holocene in age. The oldest ages (1251×10 and 1385×12 ka) are from a wedge of flat-lying dissected lavas north of the Holocene cone; these likely represent the upper part of the volcanic basement that underlies the entire island. Above a major unconformity lie basaltic andesite to dacite lavas that range from 765× 4 to 522×8 ka. The eroded remnants of the source volcano for these flows appears to crop out as a series of variably hydrothermally altered breccias and domes 5 km east-northeast of the current summit. A 625 m-tall eroded basaltic center, Lava Peak, sits 6 km northwest of the summit; its deeply incised western flank exposes lava flows and a plug. Two flows are dated at 598×16 and 602×15 ka. A high ridge 1.5 km south of the summit is made of oxidized, mostly andesitic lavas 284-249 ka old; these are presumably the remnants of an eruptive center located near the current cone. Flat Top Peak, 3.5 km southwest of the summit, produced almost exclusively basalts and six dated lavas range from 155×8 to 98×18 ka. Lavas from Flat Top (1065 m asl) are deeply eroded suggesting extensive ice cover during marine isotope

  16. Avian mortality associated with a volcanic gas seep at Kiska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Bond, Alexander L.; Evans, William C.; Jones, Ian L.

    2012-01-01

    We identified natural pits associated with avian mortality at the base of Kiska Volcano in the western Aleutian Islands, Alaska in 2007. Living, moribund, and dead birds were regularly found at low spots in a canyon between two lava flows during 2001–2006, but the phenomenon was attributed to natural trapping and starvation of fledgling seabirds (mostly Least Auklets, Aethia pusilla) at a colony site with >1 million birds present. However, 302 birds of eight species, including passerines, were found dead at the site during 2007–2010, suggesting additional factors were involved. Most carcasses showed no signs of injury and concentrations of dead birds had accumulated in a few distinctive low pits in the canyon. Gas samples from these locations showed elevated CO2 concentrations in late 2010. Analysis of carcasses indicated no evidence of blunt trauma or internal bleeding. Volcanic gases accumulating at these poorly ventilated sites may have caused the observed mortality, but are temporally variable. Most auklets breeding in the Aleutian Islands do so in recent lava flows that provide breeding habitat; our study documents a cost of this unusual habitat selection.

  17. Preliminary geology of the Tanaga Island volcanic cluster, western Aleutians (Alaska)

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Browne, B. L.; Larsen, J. F.

    2004-12-01

    During 2003, the northwestern portion of Tanaga Island (178° W) was mapped in detail for the first time during fieldwork by Alaska Volcano Observatory geologists in conjunction with the installation of a volcano monitoring seismic network. The northern half of the island is approximately 20 km across and comprises four discrete volcanic centers, from west to east: Sajaka (area = 22 km2), Tanaga (20 km2), East Tanaga (15 km2), and Takawangha (54 km2). The three western centers are steep-sided cones of Holocene age, and have grown in the scar formed by a catastrophic Pleistocene sector collapse directed to the northwest. To the east, a >300 m-thick sequence of volcanic and volcaniclastic rocks (Pre-Tanaga unit) underlies Takawangha, which has been active throughout the Pleistocene and Holocene. Holocene eruptive products from all four centers are predominantly lava flows, with minor explosive activity recorded in tephra sections. Additionally, Sajaka experienced a relatively young (mid-Holocene?) sector collapse of its west flank, accompanied by eruption of laterally-directed pyroclastic flows. A morphologically young cone of scoria and thin basalt flows has grown in the collapse scar. Whole-rock geochemical data on 130 samples of lava and scoria from the four centers and the Pre-Tanaga unit are basalts through low-SiO2 andesites. All but ten lavas have molar Mg# between 0.35 and 0.5 and the remainder are between 0.5 and 0.61; no primitive lavas were discovered on Tanaga Island. Lava flows of Holocene age from Tanaga and East Tanaga follow medium-K trends, all lavas from Takawangha are high-K, and Sajaka and Pre-Tanaga lavas fall along both trends. High-K lavas are enriched in other LILE (Rb, Ba, Pb) as well, and fall near or above the high end of published Aleutian lavas for these elements. The lavas exhibit petrographic as well as compositional diversity: mafic phases in Tanaga lavas are olivine, two pyroxenes, and amphibole, at East Tanaga lavas contain two

  18. 76 FR 68161 - Proposed Information Collection; Comment Request; Aleutian Islands Pollock Fishery Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... signed into law on January 23, 2004. Section 803 of this law allocates the Aleutian Islands (AI) directed... Aleut Corporation to authorize one or more agents for activities necessary for conducting the AI directed pollock fishery. Management provisions for the AI directed pollock fishery include:...

  19. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Sound blue king crab. NVDC means the U.S. Coast Guard's National Vessel Documentation Center located in...) Crab species program. 600.1103 Section 600.1103 Wildlife and Fisheries FISHERY CONSERVATION AND... Aleutian Islands (BSAI) Crab species program. (a) Purpose. This section's purpose is to implement...

  20. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Bering Sea and Aleutian Islands (BSAI) Crab species program. 600.1103 Section 600.1103 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Specific Fishery or Program...

  1. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Bering Sea and Aleutian Islands (BSAI) Crab species program. 600.1103 Section 600.1103 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Specific Fishery or Program...

  2. Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands region in 1982

    SciTech Connect

    Bakkala, R.G.; Low, L.; Ito, D.H.; Narita, R.E.; Ronholt, L.L.

    1983-03-01

    This report contains an assessment of the condition of groundfish and squid in the eastern Bering Sea and Aleutian Islands region through 1982. The assessments are based on species-by-species analyses of the data collected from the commercial fishery and research vessel surveys. Most of the resources in the Bering Sea-Aleutians management region are in good condition, including walleye pollock, Pacific cod, the flatfishes, and Atka mackerel. Pacific cod and yellowfin sole are in excellent condition and at historic high levels of abundance.

  3. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  4. SURFACE REMEDIATION IN THE ALEUTIAN ISLANDS: A CASE STUDY OF AMCHITKA ISLAND, ALASKA

    SciTech Connect

    Giblin, M. O.; Stahl, D. C.; Bechtel, J. A.

    2002-02-25

    Amchitka Island, Alaska, was at one time an integral player in the nation's defense program. Located in the North Pacific Ocean in the Aleutian Island archipelago, the island was intermittently inhabited by several key government agencies, including the U.S. Army, the U.S. Atomic Energy Commission (predecessor agency to the U.S. Department of Energy), and the U.S. Navy. Since 1993, the U.S. Department of Energy (DOE) has conducted extensive investigations on Amchitka to determine the nature and extent of contamination resulting from historic nuclear testing. The uninhabited island was the site of three high-yield nuclear tests from 1965 to 1971. These test locations are now part of the DOE's National Nuclear Security Administration Nevada Operations Office's Environmental Management Program. In the summer of 2001, the DOE launched a large-scale remediation effort on Amchitka to perform agreed-upon corrective actions to the surface of the island. Due to the lack of resources available on Amchitka and logistical difficulties with conducting work at such a remote location, the DOE partnered with the Navy and U.S. Army Corps of Engineers (USACE) to share certain specified costs and resources. Attempting to negotiate the partnerships while organizing and implementing the surface remediation on Amchitka proved to be a challenging endeavor. The DOE was faced with unexpected changes in Navy and USACE scope of work, accelerations in schedules, and risks associated with construction costs at such a remote location. Unfavorable weather conditions also proved to be a constant factor, often slowing the progress of work. The Amchitka Island remediation project experience has allowed the DOE to gain valuable insights into how to anticipate and mitigate potential problems associated with future remediation projects. These lessons learned will help the DOE in conducting future work more efficiently, and can also serve as a guide for other agencies performing similar work.

  5. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    SciTech Connect

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  6. Abundance, trends and distribution of baleen whales off Western Alaska and the central Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Zerbini, Alexandre N.; Waite, Janice M.; Laake, Jeffrey L.; Wade, Paul R.

    2006-11-01

    Large whales were extensively hunted in coastal waters off Alaska, but current distribution, population sizes and trends are poorly known. Line transect surveys were conducted in coastal waters of the Aleutian Islands and the Alaska Peninsula in the summer of 2001-2003. Abundances of three species were estimated by conventional and multiple covariate distance sampling (MCDS) methods. Time series of abundance estimates were used to derive rates of increase for fin whales ( Balaenoptera physalus) and humpback whales ( Megaptera novaeangliae). Fin whales occurred primarily from the Kenai Peninsula to the Shumagin Islands, but were abundant only near the Semidi Islands and Kodiak. Humpback whales were found from the Kenai Peninsula to Umnak Island and were more abundant near Kodiak, the Shumagin Islands and north of Unimak Pass. Minke whales ( B. acutorostrata) occurred primarily in the Aleutian Islands, with a few sightings south of the Alaska Peninsula and near Kodiak Island. Humpback whales were observed in large numbers in their former whaling grounds. In contrast, high densities of fin whales were not observed around the eastern Aleutian Islands, where whaling occurred. Average abundance estimates (95% CI) for fin, humpback and minke whales were 1652 (1142-2389), 2644 (1899-3680), and 1233 (656-2315), respectively. Annual rates of increase were estimated at 4.8% (95% CI=4.1-5.4%) for fin and 6.6% (5.2-8.6%) for humpback whales. This study provides the first estimate of the rate of increase of fin whales in the North Pacific Ocean. The estimated trends are consistent with those of other recovering baleen whales. There were no sightings of blue or North Pacific right whales, indicating the continued depleted status of these species.

  7. A new population of Aleutian shield fern (Polystichum aleuticum C. Christens.) on Adak Island, Alaska

    USGS Publications Warehouse

    Talbot, S.L.; Talbot, S. S.

    2002-01-01

    We report and describe a new population of the endangered Aleutian shield fern (Polystichum aleuticum C. Christens.) discovered on Mount Reed, Adak Island, Alaska. The new population is located at a lower elevation than the other known populations, placing the species' known elevational range between 338 m and 525 m. The discovery of this population is significant because it increases the total number of known populations and individuals for the species.

  8. Four new species of Haplosclerida (Porifera, Demospongiae) from the Aleutian Islands, Alaska.

    PubMed

    Lehnert, Helmut; Stone, Robert P

    2013-01-01

    Four new species of Haplosclerida are described from the Aleutian Islands, Alaska: Callyspongia mucosa n.sp., Cladocroce infundibulum n. sp., Cladocroce attu n. sp. and Cladocroce kiska n. sp. The new species are described and compared to congeners of the region. This is the northernmost record of the genus Callyspongia and the first record of the subgenus Callyspongia from the North Pacific Ocean. To accommodate Cladocroce kiska in its genus the definition has to be broadened to allow sigmas. PMID:26106744

  9. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    NASA Astrophysics Data System (ADS)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  10. Mercury concentrations of a resident freshwater forage fish at Adak Island, Aleutian Archipelago, Alaska.

    PubMed

    Kenney, Leah A; von Hippel, Frank A; Willacker, James J; O'Hara, Todd M

    2012-11-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ(13)C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. PMID:22912068

  11. MERCURY CONCENTRATIONS OF A RESIDENT FRESHWATER FORAGE FISH AT ADAK ISLAND, ALEUTIAN ARCHIPELAGO, ALASKA

    PubMed Central

    Kenney, Leah A.; von Hippel, Frank A.; Willacker, James J.; O’Hara, Todd M.

    2015-01-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ13C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. PMID:22912068

  12. 77 FR 74161 - Fisheries of the Exclusive Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Program. Regulations implementing these amendments were published on March 2, 2005 (70 FR 10174), and are... blue king crab, and Pribilof Islands red and blue king crab. The North Region is north of 54 20' N... Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands King and Tanner Crab Fishery...

  13. Dispersal and behavior of pacific halibut hippoglossus stenolepis in the bering sea and Aleutian islands region

    USGS Publications Warehouse

    Seitz, A.C.; Loher, T.; Norcross, B.L.; Nielsen, J.L.

    2011-01-01

    Currently, it is assumed that eastern Pacific halibut Hippoglossus stenolepis belong to a single, fully mixed population extending from California through the Bering Sea, in which adult halibut disperse randomly throughout their range during their lifetime. However, we hypothesize that hali but dispersal is more complex than currently assumed and is not spatially random. To test this hypo thesis, we studied the seasonal dispersal and behavior of Pacific halibut in the Bering Sea and Aleutian Islands (BSAI). Pop-up Archival Transmitting tags attached to halibut (82 to 154 cm fork length) during the summer provided no evidence that individuals moved out of the Bering Sea and Aleutian Islands region into the Gulf of Alaska during the mid-winter spawning season, supporting the concept that this region contains a separate spawning group of adult halibut. There was evidence for geographically localized groups of halibut along the Aleutian Island chain, as all of the individuals tagged there displayed residency, with their movements possibly impeded by tidal currents in the passes between islands. Mid-winter aggregation areas of halibut are assumed to be spawning grounds, of which 2 were previously unidentified and extend the species' presumed spawning range ~1000 km west and ~600 km north of the nearest documented spawning area. If there are indeed independent spawning groups of Pacific halibut in the BSAI, their dynamics may vary sufficiently from those of the Gulf of Alaska, so that specifically accounting for their relative segregation and unique dynamics within the larger population model will be necessary for correctly predicting how these components may respond to fishing pressure and changing environmental conditions.?? Inter-Research 2011.

  14. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679 Wildlife and... 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open...

  15. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  16. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  17. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  18. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  19. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  20. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies

    USGS Publications Warehouse

    Maron, J.L.; Estes, J.A.; Croll, D.A.; Danner, E.M.; Elmendorf, S.C.; Buckelew, S.L.

    2006-01-01

    The ramifying effects of top predators on food webs traditionally have been studied within the framework of trophic cascades. Trophic cascades are compelling because they embody powerful indirect effects of predators on primary production. Although less studied, indirect effects of predators may occur via routes that are not exclusively trophic. We quantified how the introduction of foxes onto the Aleutian Islands transformed plant communities by reducing abundant seabird populations, thereby disrupting nutrient subsidies vectored by seabirds from sea to land. We compared soil and plant fertility, plant biomass and community composition, and stable isotopes of nitrogen in soil, plants, and other organisms on nine fox-infested and nine historically fox-free islands across the Aleutians. Additionally, we experimentally augmented nutrients on a fox-infested island to test whether differences in plant productivity and composition between fox-infested and fox-free islands could have arisen from differences in nutrient inputs between island types. Islands with historical fox infestations had soils low in phosphorus and nitrogen and plants low in tissue nitrogen. Soils, plants, slugs, flies, spiders, and bird droppings on these islands had low d15N values indicating that these organisms obtained nitrogen from internally derived sources. In contrast, soils, plants, and higher trophic level organisms on fox-free islands had elevated d15N signatures indicating that they utilized nutrients derived from the marine environment. Furthermore, soil phosphorus (but not nitrogen) and plant tissue nitrogen were higher on fox-free than fox-infested islands. Nutrient subsidized fox-free islands supported lush, high biomass plant communities dominated by graminoids. Fox-infested islands were less graminoid dominated and had higher cover and biomass of low-lying forbs and dwarf shrubs. While d15N profiles of soils and plants and graminoid biomass varied with island size and distance from

  1. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early

  2. Post-eruption legacy effects and their implications for long-term recovery of the vegetation on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Talbot, S. S.; Talbot, S.L.; Walker, L.R.

    2010-01-01

    We studied the vegetation of Kasatochi Island, central Aleutian Islands, to provide a general field assessment regarding the survival of plants, lichens, and fungi following a destructive volcanic eruption that occurred in 2008. Plant community data were analyzed using multivariate methods to explore the relationship between pre- and post-eruption plant cover; 5 major vegetation types were identified: Honckenya peploides beach, Festuca rubra cliff shelf, Lupinus nootkatensisFestuca rubra meadow, Leymus mollis bluff ridge (and beach), and Aleuria aurantia lower slope barrens. Our study provided a very unusual glimpse into the early stages of plant primary succession on a remote island where most of the vegetation was destroyed. Plants that apparently survived the eruption dominated early plant communities. Not surprisingly, the most diverse post-eruption community most closely resembled a widespread pre-eruption type. Microhabitats where early plant communities were found were distinct and apparently crucial in determining plant survival. Comparison with volcanic events in related boreal regions indicated some post-eruption pattern similarities. ?? 2010 Regents of the University of Colorado.

  3. 1980 volcanic eruption reported on Marion Island

    NASA Astrophysics Data System (ADS)

    Verwoerd, Wilhelm J.; Russell, Shaun; Berruti, Aldo

    1981-06-01

    The first volcanic eruption in the recorded history of Marion Island (46°54'S, 37°45'E) occurred between February and October 1980 at a locality on the west coast. It was a minor event that passed unnoticed at the meteorological station 20 km distant. The discovery was made on November 4, by five expedition members who walked around the island. When examined in more detail on November 25, the lava was still warm in places and numerous fumaroles existed. Three blocky flows emanated from two adjacent cinder cones built-up on a pre-existing phreatomagmatic tuff cone known as Kaalkoppie. The largest flow covers an area of about seven hectares and a further two hectares have been inundated by ash. Another flow poured seawards to form a new beach front, blocking access to what was previously the largest elephant seal wallowing ground on the island. No earth tremors were felt and the activity seems to have ended for the time being.

  4. Non-volcanic tremor in the Aleutian Islands captured by a mini-seismic array

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Prejean, S. G.

    2013-12-01

    The Aleutian Islands are an interesting place to study because of the presence of abundant seismicity, both subduction and volcano related. In addition to regular earthquakes, the Islands host both volcanic and non-volcanic tremor. To capture this rich variety of seismicity, we designed and installed a mini-seismic array on Akutan Island in 2012. Akutan is located in the eastern Aleutians just off the tip of the Alaska Peninsula, near the eastern edge of the 1957 Mw8.6 earthquake rupture zone. A mini-seismic array is particularly useful in this logistically challenging environment where land cover is limited. We recorded and analyzed about 2 months of data, and found both volcanic and non-volcanic events. Here we focus on non-volcanic tremor and its characteristics as captured by the Akutan array. Akutan Island and the surrounding area turn out to be prolific producers of tremor. An automatic beam-backprojection algorithm [Ghosh et al., 2009] detects almost daily tremor activity with durations ranging from several minutes to more than 3.5 hours. On average, beam-backprojection detects 1.3 hours of tremor activity per day and in total, it detects about 5 times more duration of tremor activity compared to a visual check for tremor signal using the existing seismic network. We observe tremor sources both west and east of the Akutan array. Western sources are the most active ones and their slowness parameters are consistent with the locations of low-frequency earthquakes detected by Brown et al., 2013. The eastern source area has not been identified previously and appears to be active for only a few times during this study, but shows continuous activity for several hours. In addition, we observe temporal evolution of slowness parameters consistent with steady tremor migration. Moreover, low frequency earthquakes with impulsive body wave phases are identified within the tremor signal. They show S-minus-P times consistent with their being located at the model plate

  5. 76 FR 55276 - Fisheries of the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... of the BSAI (76 FR 11139, March 1, 2011) and an apportionment from the non-specified reserve of groundfish (76 FR 17360, March 29, 2011). In accordance with Sec. 679.20(d)(2), the Administrator, Alaska... Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands AGENCY: National Marine...

  6. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  7. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  8. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  9. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  10. 76 FR 47155 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...NMFS has requested the Center for Independent Experts (CIE) to conduct a peer review of the agency's economic data collection program for the Bering Sea/Aleutian Islands crab fisheries managed under the BSAI Crab Rationalization program. The CIE, operated by Northern Taiga Ventures, Inc., provides independent peer reviews of NMFS's fisheries stock assessments and other science products. The......

  11. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system. 600.1104 Section 600.1104 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS...

  12. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system. 600.1104 Section 600.1104 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS...

  13. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pribilof blue king (the corresponding crab rationalization fishery is Pribilof red king and blue king crab), and (6) St. Matthew blue king (the corresponding crab rationalization fishery is also St. Matthew blue... Aleutian Islands red king, $237,588.04; (5) For Pribilof red king and Pribilof blue king,...

  14. 78 FR 16195 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-XC311 Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and 2014 Harvest Specifications...

  15. 75 FR 11778 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; Final 2010...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ...NMFS announces final 2010 and 2011 harvest specifications and prohibited species catch allowances for the groundfish fishery of the Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to establish harvest limits for groundfish during the 2010 and 2011 fishing years, and to accomplish the goals and objectives of the Fishery Management Plan for Groundfish of the BSAI......

  16. Evolution and geochemistry of the Tertiary calc-alkaline plutons in the Adak Island region of the central Aleutian oceanic island arc

    NASA Astrophysics Data System (ADS)

    Kay, Suzanne; Citron, Gary P.; Kay, Robert W.; Jicha, Brian; Tibbetts, Ashley

    2014-05-01

    Calc-alkaline plutons are major crustal building blocks of continental margin mountain belts like the Mesozoic to Tertiary Andes and the Sierra Nevada, but are rare in oceanic island arcs. Some of the most calc-alkaline I-type island arc plutons are in the Central Aleutians with the most extreme signatures, as indicated by FeO/MgO ratios of < ~2 at 48-70% wt. % SiO2, in the ~10 km wide Oligocene Hidden Bay pluton on southern Adak Island and the 10 km wide Miocene Kagalaska pluton to the north on eastern Adak and the adjacent Kagalaska Island. Although small compared to most continental plutons, similarities in intrusive units, mineralogy and chemistry suggest common formation processes. The Aleutian calc-alkaline plutonic rocks mainly differ from continental plutons in having more oceanic like isotopic (87Sr/86Sr = 0.703-0.7033; Epsilon Nd = 9-7.8) and LIL (e.g., higher K/Rb) ratios. The Adak region plutons differ from Tertiary plutons on Unalaska Island further east in being more K-rich and in having a more oxidized and lower-temperature mineralogy. From a regional perspective, the Adak area plutons intrude Eocene/Oligocene Finger Bay Formation mafic volcanic and sedimentary rocks and postdate the small ~38 Ma tholeiitic Finger Bay pluton. The chemistry of these older magmatic rocks is basically similar to that of young Central Aleutian magmatic rocks with boninites and arc tholeiitic magmas seemingly being absent. The formation of the calc-alkaline plutons seems to require a sufficient crustal thickness, fluid concentration and contractional stress such that magma chambers can stabilize significant amounts of pargasitic hornblende. Seismic receiver function analyses (Janiszewski et al., 2013) indicate the modern Adak crust is ~ 37 km thick. Existing and new hornblende, plagioclase and biotite Ar/Ar ages from 16 Hidden Bay pluton and Gannet Lake stock gabbro, porphyritic diorite, diorite, granodiorite, leucogranodiorite and aplite samples range from 34.6 to 30

  17. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    SciTech Connect

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  18. Climate program "stone soup": Assessing climate change vulnerabilities in the Aleutian and Bering Sea Islands of Alaska

    NASA Astrophysics Data System (ADS)

    Littell, J. S.; Poe, A.; van Pelt, T.

    2015-12-01

    Climate change is already affecting the Bering Sea and Aleutian Island region of Alaska. Past and present marine research across a broad spectrum of disciplines is shedding light on what sectors of the ecosystem and the human dimension will be most impacted. In a grassroots approach to extend existing research efforts, leveraging recently completed downscaled climate projections for the Bering Sea and Aleutian Islands region, we convened a team of 30 researchers-- with expertise ranging from anthropology to zooplankton to marine mammals-- to assess climate projections in the context of their expertise. This Aleutian-Bering Climate Vulnerability Assessment (ABCVA) began with researchers working in five teams to evaluate the vulnerabilities of key species and ecosystem services relative to projected changes in climate. Each team identified initial vulnerabilities for their focal species or services, and made recommendations for further research and information needs that would help managers and communities better understand the implications of the changing climate in this region. Those draft recommendations were shared during two focused, public sessions held within two hub communities for the Bering and Aleutian region: Unalaska and St. Paul. Qualitative insights about local concerns and observations relative to climate change were collected during these sessions, to be compared to the recommendations being made by the ABCVA team of researchers. Finally, we used a Structured Decision Making process to prioritize the recommendations of participating scientists, and integrate the insights shared during our community sessions. This work brought together residents, stakeholders, scientists, and natural resource managers to collaboratively identify priorities for addressing current and expected future impacts of climate change. Recommendations from this project will be incorporated into future research efforts of the Aleutian and Bering Sea Islands Landscape Conservation

  19. Genetic differentiation of the Kittlitz's Murrelet Brachyramphus brevirostris in the Aleutian Islands and Gulf of Alaska

    USGS Publications Warehouse

    Birt, T.P.; Mackinnon, D.; Piatt, J.F.; Friesen, V.L.

    2011-01-01

    Information about the distribution of genetic variation within and among local populations of the Kittlitz's Murrelet Brachyramphus brevirostris is needed for effective conservation of this rare and declining species. We compared variation in a 429 base pair fragment of the mitochondrial control region and 11 microsatellite loci among 53 Kittlitz's Murrelets from three sites in the western Aleutian Islands (Attu Island) and Gulf of Alaska (Glacier Bay and Kachemak Bay). We found that birds in these two regions differ genetically in three assessments: (1) global and pairwise indices of genetic differentiation were significantly greater than zero, (2) mitochondrial haplotypes differed by a minimum of nine substitutions, and (3) molecular assignments indicated little gene flow between regions. The data suggest that birds in these regions have been genetically isolated for an extended period. We conclude that Kittlitz's Murrelets from Attu Island and from the Gulf of Alaska represent separate evolutionarily significant units, and should be treated as such for conservation. Genetic data for Kittlitz's Murrelets from the remainder of the breeding range are urgently needed.

  20. Eocene to Pleistocene magmatic evolution of the Delarof Islands, Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Schaen, Allen J.; Jicha, Brian R.; Kay, Suzanne M.; Singer, Brad S.; Tibbetts, Ashley

    2016-03-01

    The Delarof Islands in the Aleutian Arc near 179º W record ˜37 million years of discontinuous arc magmatism along a SW-NE cross-arc transect from near the trench to the active volcanic front. Geochemical and geochronologic data from the pre-Pleistocene volcanic record in this region are limited and the 40Ar/39Ar, isotopic, and trace element data presented here are the first from units older than the Pleistocene-Holocene volcanoes (Tanaga, Gareloi). Twenty-two new 40Ar/39Ar ages establish a temporal framework for geochemical data and reveal that magmatism in the Delarof region was coincident with two arc-wide magmatic flare ups in the late Eocene/early Oligocene and latest Miocene/Pliocene. Mafic lavas and plutons in the southern Delarofs give 40Ar/39Ar plateau ages ranging from 36.8 ± 0.2 to 26.9 ± 0.6 Ma on Amatignak Island and 37.0 ± 0.2 to 29.3 ± 1.0 Ma on Ulak Island. To the north 25 km, 40Ar/39Ar ages from the central Delarof Islands, Kavalga, Ogliuga, and Skagul are late Miocene (6.28 ± 0.04 Ma) to Pliocene (4.77 ± 0.18 Ma) with younger ages to the northeast. A significant transition in arc chemistry occurs in the Pleistocene where lavas from active volcanoes Gareloi and Tanaga exhibit higher sediment and hydrous fluid signatures (Th/La, Cs/Ta, La/Sm, LILE abundances) and lower 143Nd/144Nd than older Delarof Island units closer to the trench. Similar findings from Eocene-Miocene lavas from Amchitka to Adak suggest that a previously minor sediment melt component became more pronounced in the Quaternary.

  1. Late Holocene coastal stratigraphy of Sitkinak Island reveals Aleutian-Alaska megathrust earthquakes and tsunamis southwest of Kodiak Island

    NASA Astrophysics Data System (ADS)

    Nelson, A. R.; Briggs, R. W.; Kemp, A.; Haeussler, P. J.; Engelhart, S. E.; Dura, T.; Angster, S. J.; Bradley, L.

    2012-12-01

    Uncertainty in earthquake and tsunami prehistory of the Aleutian-Alaska megathrust westward of central Kodiak Island limit assessments of southern Alaska's earthquake hazard and forecasts of potentially damaging tsunamis along much of North America's west coast. Sitkinak Island, one of the Trinity Islands off the southwest tip of Kodiak Island, lies at the western end of the rupture zone of the 1964 Mw9.2 earthquake. Plafker reports that a rancher on the north coast of Sitkinak Island observed ~0.6 m of shoreline uplift immediately following the 1964 earthquake, and the island is now subsiding at about 3 mm/yr (PBO GPS). Although a high tsunami in 1788 caused the relocation of the first Russian settlement on southwestern Kodiak Island, the eastern extent of the megathrust rupture accompanying the tsunami is uncertain. Interpretation of GPS observations from the Shumagin Islands, 380 km southwest of Kodiak Island, suggests an entirely to partially creeping megathrust in that region. Here we report the first stratigraphic evidence of tsunami inundation and land-level change during prehistoric earthquakes west of central Kodiak Island. Beneath tidal and freshwater marshes around a lagoon on the south coast of Sitkinak Island, 27 cores and tidal outcrops reveal the deposits of four to six tsunamis in 2200 years and two to four abrupt changes in lithology that may correspond with coseismic uplift and subsidence over the past millennia. A 2- to 45-mm-thick bed of clean to peaty sand in sequences of tidal sediment and freshwater peat, identified in more than one-half the cores as far inland as 1.5 km, was probably deposited by the 1788 tsunami. A 14C age on Scirpus seeds, double 137Cs peaks at 2 cm and 7 cm depths (Chernobyl and 1963?), a consistent decline in 210Pb values, and our assumption of an exponential compaction rate for freshwater peat, point to a late 18th century age for the sand bed. Initial 14C ages suggest that two similar extensive sandy beds, identified

  2. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  3. Soil microbial structure and function post-volcanic eruption on Kasatochi Island and regional controls on microbial heterogeneity

    NASA Astrophysics Data System (ADS)

    Zeglin, L. H.; Rainey, F.; Wang, B.; Waythomas, C.; Talbot, S. L.

    2013-12-01

    Microorganisms are abundant and diverse in soil and their integrated activity drives nutrient cycling on the ecosystem scale. Organic matter (OM) inputs from plant production support microbial heterotrophic life, and soil geochemistry constrains microbial activity and diversity. As vegetation and soil develops over time, these factors change, modifying the controls on microbial heterogeneity. Following a volcanic eruption, ash deposition creates new surfaces where both organismal growth and weathering processes are effectively reset. The trajectory of microbial community development following this disturbance depends on both organic matter accumulation and geochemical constraints. Also, dispersal of microbial cells to the sterile ash surface may determine microbial community succession. The Aleutian Islands (Alaska, USA) are a dynamic volcanic region, with active and dormant volcanoes distributed across the volcanic arc. One of these volcanoes, Kasatochi, erupted violently in August 2008, burying a small lush island in pryoclastic flows and fine ash. Since, plants and birds are beginning to re-establish on developing surfaces, including legacy soils exposed by rapid erosion of pyroclastic deposits, suggesting that recovery of microbial life is also proceeding. However, soil microbial diversity and function has not been examined on Kasatochi Island or across the greater Aleutian region. The project goal is to address these questions: How is soil microbial community structure and function developing following the Kasatochi eruption? What is the relative importance of dispersal, soil OM and geochemistry to microbial community heterogeneity across the Aleutians? Surface mineral soil (20-cm depth) samples were collected from Kasatochi Island in summer 2013, five years after the 2008 eruption, and from eight additional Aleutian islands. On Kasatochi, pryoclastic deposits, exposed legacy soils supporting regrowth of remnant dune wild-rye (Leymus mollis) and mesic meadow

  4. Science, policy, and stakeholders: developing a consensus science plan for Amchitka Island, Aleutians, Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Kosson, David S; Powers, Charles W; Friedlander, Barry; Eichelberger, John; Barnes, David; Duffy, Lawrence K; Jewett, Stephen C; Volz, Conrad D

    2005-05-01

    With the ending of the Cold War, the US Department of Energy is responsible for the remediation of radioactive waste and disposal of land no longer needed for nuclear material production or related national security missions. The task of characterizing the hazards and risks from radionuclides is necessary for assuring the protection of health of humans and the environment. This is a particularly daunting task for those sites that had underground testing of nuclear weapons, where the radioactive contamination is currently inaccessible. Herein we report on the development of a Science Plan to characterize the physical and biological marine environment around Amchitka Island in the Aleutian chain of Alaska, where three underground nuclear tests were conducted (1965-1971). Information on the ecology, geology, and current radionuclide levels in biota, water, and sediment is necessary for evaluating possible current contamination and to serve as a baseline for developing a plan to ensure human and ecosystem health in perpetuity. Other information required includes identifying the location of the salt water/fresh water interface where migration to the ocean might occur in the future and determining groundwater recharge balances, as well as assessing other physical/geological features of Amchitka near the test sites. The Science Plan is needed to address the confusing and conflicting information available to the public about radionuclide risks from underground nuclear blasts in the late 1960s and early 1970s, as well as the potential for volcanic or seismic activity to disrupt shot cavities or accelerate migration of radionuclides into the sea. Developing a Science Plan involved agreement among regulators and other stakeholders, assignment of the task to the Consortium for Risk Evaluation with Stakeholder Participation, and development of a consensus Science Plan that dealt with contentious scientific issues. Involvement of the regulators (State of Alaska), resource

  5. Organochlorine contaminants in fishes from coastal waters west of Amukta Pass, Aleutian Islands, Alaska, USA.

    PubMed

    Miles, A Keith; Ricca, Mark A; Anthony, Robert G; Estes, James A

    2009-08-01

    Organochlorines were examined in liver and stable isotopes in muscle of fishes from the western Aleutian Islands, Alaska, in relation to islands or locations affected by military occupation. Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and rock greenling (Hexagrammos lagocephalus) were collected from nearshore waters at contemporary (decommissioned) and historical (World War II) military locations, as well as at reference locations. Total (Sigma) polychlorinated biphenyls (PCBs) dominated the suite of organochlorine groups (SigmaDDTs, Sigmachlordane cyclodienes, Sigmaother cyclodienes, and Sigmachlorinated benzenes and cyclohexanes) detected in fishes at all locations, followed by SigmaDDTs and Sigmachlordanes; dichlorodiphenyldichloroethylene (p,p'DDE) composed 52 to 66% of SigmaDDTs by species. Organochlorine concentrations were higher or similar in cod compared to halibut and lowest in greenling; they were among the highest for fishes in Arctic or near Arctic waters. Organochlorine group concentrations varied among species and locations, but SigmaPCB concentrations in all species were consistently higher at military locations than at reference locations. Moreover, all organochlorine group concentrations were higher in halibut from military locations than those from reference locations. A wide range of molecular weight organochlorines was detected at all locations, which implied regional or long-range transport and deposition, as well as local point-source contamination. Furthermore, a preponderance of higher-chlorinated PCB congeners in fishes from contemporary military islands implied recent exposure. Concentrations in all organochlorine groups increased with delta15N enrichment in fishes, and analyses of residual variation provided further evidence of different sources of SigmaPCBs and p,p'DDE among species and locations. PMID:19374473

  6. Detection and location of earthquakes in the central Aleutian subduction zone using island and ocean bottom seismograph stations

    SciTech Connect

    Frohlich, C.; Billington, S.; Engdahl, E.R.; Malahoff, A.

    1982-08-10

    A network of eight University of Texas ocean bottom seismographs (OBS) operated for 6 weeks in 1978 about 50 km offshore of Adak Island, Alaska, and nearly islands. In 1979 a similar network of nine instruments was deployed for 7 weeks farther offshore within and up to 100 km seaward of the Aleutian trench. For shallow earthquakes on the outer trench slope, for shallow earthquakes in the thrust zone, and for intermediate-depth events we have analyzed the OBS and island-based network data and evaluated the island network's capabilities for earthquake detection and location and for focal mechanism determination. Our three major conclusions are presented. The first concerns shallow earthquakes on the outer trench slope. In 1979 about 30 earthquakes occurred within the Aleutian trench and up to 60 km seaward of the trench axis. The island network located none of these events and detected P phases for only three of them. Ray tracing shows that the islands lie in a geometric shadow zone for events on the outer trench slope. The best located events are shallower than 20 km and exhibit first motions consistent with normal faulting. Several authors have suggested that these events are caused by bending of the oceanic lithosphere at the outer rise prior to subduction. If so, then the event locations reported here show that the bending stresses exceed the strength of lithosphere only in a narrow zone extending about 10 km landward and 60 km seaward of the trench axis. The second conclusion concerns shallow earthquakes in the thrust zone. Epicenters determined by island stations alone are virtually identical to epicenters determined using data from both island and OBS stations. The third conclusion concerns earthquakes deeper than 70 km. Epicenters determined using island network stations alone lie 10 to 80 km south of those determined using OBS and island stations, with the differences between epicenters depending both on event depth and on the velocity model used.

  7. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska.

    PubMed

    Kaler, Robb S A; Kenney, Leah A; Bond, Alexander L; Eagles-Smith, Collin A

    2014-05-15

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz's murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands. PMID:24656750

  8. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    Kaler, Robb S.A.; Kenney, Leah A.; Bond, Alexander L.; Eagles-Smith, Collin A.

    2014-01-01

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz’s murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands.

  9. New species of sponges (Porifera, Demospongiae) from the Aleutian Islands and Gulf of Alaska.

    PubMed

    Lehnert, Helmut; Stone, Robert P

    2015-01-01

    Ten new species of demosponges, assigned to the orders Poecilosclerida, Axinellida and Dictyoceratida, discovered in the Gulf of Alaska and along the Aleutian Island Archipelago are described and compared to relevant congeners. Poecilosclerida include Cornulum globosum n. sp., Megaciella lobata n. sp., M. triangulata n. sp., Artemisina clavata n. sp., A. flabellata n. sp., Coelosphaera (Histodermion) kigushimkada n. sp., Stelodoryx mucosa n. sp. and S. siphofuscus n. sp. Axinellida is represented by Raspailia (Hymeraphiopsis) fruticosa n. sp. and Dictyoceratida is represented by Dysidea kenkriegeri n. sp. The genus Cornulum is modified to allow for smooth tylotes. We report several noteworthy biogeographical observations. We describe only the third species within the subgenus Histodermion and the first from the Indo-Pacific Region. Additionally, the subgenus Hymerhaphiopsis was previously represented by only a single species from Antarctica. We also report the first record of a dictyoceratid species from Alaska. The new collections further highlight the richness of the sponge fauna from the region, particularly for the Poecilosclerida. PMID:26624419

  10. Near-field survey of the 1946 Aleutian tsunami on Unimak and Sanak Islands

    USGS Publications Warehouse

    Okal, E.A.; Plafker, G.; Synolakis, C.E.; Borrero, J.C.

    2003-01-01

    The 1946 Aleutian earthquake stands out among tsunamigenic events because it generated both very high run-up near the earthquake source region and a destructive trans-Pacific tsunami. We obtained new data on the distribution of its tsunami in the near field along south-facing coasts between Unimak Pass on the west and Sanak Island on the east by measuring the height of driftwood and beach materials that were deposited by the tsunami above the extreme storm tide level. Our data indicate that (1) the highest measured run-up, which is at the Scotch Cap lighthouse, was 42 m above tide level or about 37 m above present storm tide elevation; (2) run-up along the rugged coast from Scotch Cap for 12 km northwest to Sennett Point is 12-18 m, and for 30 km east of Scotch Cap to Cape Lutke it is 24-42 m; (3) run-up along the broad lowlands bordering Unimak Bight is 10-20 m, and in-undation is locally more than 2 km; (5) run-up diminishes to 8 m or less at the southeast corner of Unimak Island; (6) no evidence was found for run-up above present storm tides (about 4-5 m above MLLW) on the Ikatan Peninsula or areas along the coast to the west; and (7) run-up above storm tide level in the Sanak Island group is restricted to southwest-facing coasts of Sanak, Long, and Clifford Islands, where it is continuous and locally up to 24 m high. Generation of the tsunami by one or more major earthquake-triggered submarine landslides near the shelf edge south of Unimak Island seems to be the only viable mechanism to account for the data on wave arrival time, run-up heights, and distribution, as well as for unconfirmed anecdotal reports of local postquake increases in water depth and diminished bottom-fisheries productivity. A preliminary hydrodynamic simulation of the local tsunami propagation and run-up using a dipolar model of a possible landslide off Davidson Bank provides an acceptable fit to the characteristics of the distribution of local run-up, with a value at 34 m at the Scotch Cap

  11. Bayesian probabilities for Mw 9.0+ earthquakes in the Aleutian Islands from a regionally scaled global rate

    NASA Astrophysics Data System (ADS)

    Butler, Rhett; Frazer, L. Neil; Templeton, William J.

    2016-05-01

    We use the global rate of Mw ≥ 9.0 earthquakes, and standard Bayesian procedures, to estimate the probability of such mega events in the Aleutian Islands, where they pose a significant risk to Hawaii. We find that the probability of such an earthquake along the Aleutians island arc is 6.5% to 12% over the next 50 years (50% credibility interval) and that the annualized risk to Hawai'i is about $30 M. Our method (the regionally scaled global rate method or RSGR) is to scale the global rate of Mw 9.0+ events in proportion to the fraction of global subduction (units of area per year) that takes place in the Aleutians. The RSGR method assumes that Mw 9.0+ events are a Poisson process with a rate that is both globally and regionally stationary on the time scale of centuries, and it follows the principle of Burbidge et al. (2008) who used the product of fault length and convergence rate, i.e., the area being subducted per annum, to scale the Poisson rate for the GSS to sections of the Indonesian subduction zone. Before applying RSGR to the Aleutians, we first apply it to five other regions of the global subduction system where its rate predictions can be compared with those from paleotsunami, paleoseismic, and geoarcheology data. To obtain regional rates from paleodata, we give a closed-form solution for the probability density function of the Poisson rate when event count and observation time are both uncertain.

  12. Geologic Map and Eruptive History of Veniaminof Volcano Record Aleutian Arc Processing of Mantle-Derived Melts

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Sisson, T. W.; Calvert, A. T.; Nye, C. J.

    2009-12-01

    Mount Veniaminof, one of the largest volcanoes in the Aleutian arc, has a basal diameter of ~40 km, a volume of ~350 km3, an 8-km-diameter ice-filled caldera, and an active intracaldera cone. The geology of this tholeiitic basalt-to-dacite volcano has been mapped at 1:50,000 scale. Over 100 Quaternary volcanic map units are characterized by 600 chemical analyses of rocks and nearly 100 40Ar/39Ar and K-Ar ages. Throughout its history, lava flows from Veniaminof recorded alternately ice/melt-water chilling or ice-free conditions that are consistent with independent paleoclimatic records. Exposures from deep glacial valleys to the caldera rim reveal a long history dominated by basalt and basaltic andesite from ≥260 ka to 150 ka that includes compositions as primitive as 9.4% MgO and 130 ppm Ni at 50% SiO2. Basaltic andesite, common throughout Veniaminof's history, has low compatible-element contents that indicate an origin by fractionation of basaltic magma. Repeated eruption of more differentiated melts from a shallow intrusive complex, represented by granodiorite (crystallized dacitic magma) and cumulate gabbro and diorite xenoliths in pyroclastic deposits, has featured virtually aphyric andesite since 150 ka and dacite (to 69.5% SiO2) beginning ~110 ka. These variably differentiated liquids segregated from crystal mush, possibly by gas-driven filter pressing, and commonly vented but also solidified at depth. A large composite cone was present at least as early as 200 ka. Although asymmetric edifice morphology hints at early sector collapse to the southeast, coeval vents on northwest and southeast flanks and the distribution of extensive lava units indicate that a large cone (again) was present by 120 ka. Flank eruption of a wide variety of Veniaminof magmas was common from plate-convergence-parallel northwest-trending fissures from at least as early as ca. 80 ka. At 56 ka and at 46 ka, voluminous dacite lava erupted on both northwest and southeast flanks. A

  13. The geomorphology of an Aleutian volcano following a major eruption: The 7-8 August 2008 eruption of Kasatochi Volcano, Alaska, and its aftermath

    USGS Publications Warehouse

    Waythomas, C.F.; Scott, W.E.; Nye, C.J.

    2010-01-01

    Analysis of satellite images of Kasatochi volcano and field studies in 2008 and 2009 have shown that within about one year of the 78 August 2008 eruption, significant geomorphic changes associated with surface and coastal erosion have occurred. Gully erosion has removed 300,000 to 600,000 m3 of mostly fine-grained volcanic sediment from the flanks of the volcano and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins on the south and west flanks of the volcano, with drainage areas of 0.7 and 0.5 km2, are about 104 m3 km-2 yr-1 and are comparable to sediment yields documented at other volcanoes affected by recent eruptive activity. Estimates of the retreat of coastal cliffs also made from analysis of satellite images indicate average annual erosion rates of 80 to 140 m yr-1. If such rates persist it could take 35 years for wave erosion to reach the pre-eruption coastline, which was extended seaward about 400 m by the accumulation of erupted volcanic material. As of 13 September 2009, the date of the most recent satellite image of the island, the total volume of material eroded by wave action was about 106 m3. We did not investigate the distribution of volcanic sediment in the near shore ocean around Kasatochi Island, but it appears that erosion and sediment dispersal in the nearshore environment will be greatest during large storms when the combination of high waves and rainfall runoff are most likely to coincide. ?? 2010 Regents of the University of Colorado.

  14. Surface wind characteristics of some Aleutian Islands. [for selection of windpowered machine sites

    NASA Technical Reports Server (NTRS)

    Wentink, T., Jr.

    1973-01-01

    The wind power potential of Alaska is assessed in order to determine promising windpower sites for construction of wind machines and for shipment of wind derived energy. Analyses of near surface wind data from promising Aleutian sites accessible by ocean transport indicate probable velocity regimes and also present deficiencies in available data. It is shown that winds for some degree of power generation are available 77 percent of the time in the Aleutians with peak velocities depending on location.

  15. New glass sponges (Porifera: Hexactinellida) from deep waters of the central Aleutian Islands, Alaska.

    PubMed

    Reiswig, Henry M; Stone, Robert P

    2013-01-01

    Hexactinellida from deep-water communities of the central Aleutian Islands, Alaska, are described. They were mostly collected by the remotely operated vehicle 'Jason II' from 494–2311 m depths during a 2004 RV 'Roger Revelle' expedition, but one shallow-water species collected with a shrimp trawl from 155 m in the same area is included. The excellent condition of the ROV-collected specimens enabled valuable redescription of some species previously known only from badly damaged specimens. New taxa include one new genus and eight new species in five families. Farreidae consist of two new species, Farrea aleutiana and F. aspondyla. Euretidae consists of only Pinulasma fistulosum n. gen., n. sp. Tretodictyidae include only Tretodictyum amchitkensis n. sp. Euplectellidae consists of only the widespread species Regadrella okinoseana Ijima, reported here over 3,700 km from its closest previously known occurrence. The most diverse family, Rossellidae, consists of Aulosaccus ijimai (Schulze), Aulosaccus schulzei Ijima, Bathydorus sp. (young stage not determinable to species), Caulophacus (Caulophacus) adakensis n. sp., Acanthascus koltuni n. sp., Staurocalyptus psilosus n. sp., Staurocalyptus tylotus n. sp. and Rhabdocalyptus mirabilis Schulze. We present argument for reinstatement of the abolished rossellid subfamily Acanthascinae and return of the subgenera  Staurocalyptus Ijima and Rhabdocalyptus Schulze to their previous generic status. These fauna provides important complexity to the hard substrate communities that likely serve as nursery areas for the young stages of commercially important fish and crab species, refuge from predation for both young and adult stages, and also as a focal source of prey for juvenile and adult stages of those same species. PMID:25325089

  16. SAR-based Estimation of Glacial Extent and Velocity Fields on Isanotski Volcano, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Sousa, D.; Lee, A.; Parker, O. P.; Pressler, Y.; Guo, S.; Osmanoglu, B.; Schmidt, C.

    2012-12-01

    Global studies show that Earth's glaciers are losing mass at increasing rates, creating a challenge for communities that rely on them as natural resources. Field observation of glacial environments is limited by cost and inaccessibility. Optical remote sensing is often precluded by cloud cover and seasonal darkness. Synthetic aperture radar (SAR) overcomes these obstacles by using microwave-frequency electromagnetic radiation to provide high resolution information on large spatial scales and in remote, atmospherically obscured environments. SAR is capable of penetrating clouds, operating in darkness, and discriminating between targets with ambiguous spectral signatures. This study evaluated the efficacy of two SAR Earth observation methods on small (< 7 km2) glaciers in rugged topography. The glaciers chosen for this study lie on Isanotski Volcano in Unimak Island, Aleutian Archipelago, USA. The local community on the island, the City of False Pass, relies on glacial melt for drinking water and hydropower. Two methods were used: (1) velocity field estimation based on Repeat Image Feature Tracking (RIFT) and (2) glacial boundary delineation based on interferometric coherence mapping. NASA Uninhabited Aerial Vehicle SAR (UAVSAR) single-polarized power images and JAXA Advanced Land Observing Satellite Phased Array type L-band SAR (ALOS PALSAR) single-look complex images were analyzed over the period 2008-2011. UAVSAR image pairs were coregistered to sub-pixel accuracy and processed with the Coregistration of Optically Sensed Images and Correlation (COSI-Corr) feature tracking module to derive glacial velocity field estimates. Maximum glacier velocities ranged from 28.9 meters/year to 58.3 meters/year. Glacial boundaries were determined from interferometric coherence of ALOS PALSAR data and subsequently refined with masking operations based on terrain slope and segment size. Accuracy was assessed against hand-digitized outlines from high resolution UAVSAR power images

  17. The 2011 submarine volcanic eruption of El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    López, C.; Blanco, M. J.

    2012-04-01

    On 10 October 2011 a submarine volcanic eruption began 2 km SW of La Restinga village in the South coast of El Hierro Island (Spain). It became the first submarine eruption reported in 500 years of historical record in the Canary Islands. The eruption took place after three months of intensive seismic activity and ground deformation. The first signal evidencing the eruption was a harmonic tremor signal, located somewhere in the South sector of El Hierro Island and registered in every seismic station on the island. On the following day, the tremoŕs amplitude increased up enough to be felt by the residents of La Restinga. The first visual evidence of the eruption was observed during the afternoon of 12 October, a large light-green coloured area on the sea surface, 2 km to the SW of La Restinga. Three days later, steaming lava fragments were observed floating on the sea, in the area where the vent was supposed to be located. These fragments had a bomb-like shape and their sizes ranged between 10 and 40 cm long. They were bicoloured, a black outer part with a basaltic composition, and a white inner part, highly vesiculated and rich in silica content (>60%). This type of fragments was only observed during the first days of the eruption. Within the next two months further emission episodes have been observed with turbulent water, foam rings and large bubbles on the sea surface. On the 27th of November new lava fragments were observed while floating and degassing on the sea surface. Most of them were "lava balloons" or hollow fragments of lavas, with sizes between 30 and 200 cm, and highly vesiculated outer crust of basaltic-basanitic and sideromelane composition. The emission of these products continues intermitently up to date (January 2012) During the eruption, the GPS monitoring network detected episodes of inflation-deflation and a maximum vertical deformation of 4 cm. The horizontal deformation, which had reached up to 5 cm before the eruption, remains stable. The

  18. Insights Into Aleutian Volcanism from Insar Observations

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Dzurisin, D.

    2013-12-01

    With its global coverage and all-weather imaging capability, interferometric synthetic aperture radar (InSAR) has become an increasingly important technique for studying magma dynamics at volcanoes in remote regions, such as the Aleutian Islands. The spatial distribution of surface deformation derived from InSAR data enables the construction of detailed mechanical models to enhance the study of magmatic processes. To study Aleutian volcanism, we processed nearly 12,000 SAR images acquired by ERS-1, JERS-1, ERS-2, Radarsat-1, Envisat, ALOS, and TerraSAR-X from the early 1990s to 2010. We combined these SAR images to produce about 25,000 interferograms, which we analyzed for evidence of surface deformation at most of the arc's Holocene volcanoes. Where surface displacements were sufficiently strong, we used analytical models to estimate the location, shape, and volume change of deformation sources. This paper summarizes deformation processes at Aleutian volcanoes observed with InSAR, including: (1) time-variant volcanic inflation and magmatic intrusion, (2) deformation preceding and accompanying seismic swarms , (3) persistent volcano-wide subsidence at calderas that last erupted tens of years ago, (4) episodic magma intrusion and associated tectonic stress release, (5) subsidence caused by a decrease in pore fluid pressure in active hydrothermal systems, (6) subsidence of surface lava and pyroclastic flows, and (7) a lack of deformation at some volcanoes with recent eruptions, where deformation might be expected. Among the inferred mechanisms are magma accumulation in and withdrawal from crustal magma reservoirs, pressurization/depressurization of hydrothermal systems, and thermo-elastic contraction of young lava flows. Our work demonstrates that deformation patterns and associated magma supply mechanisms at Aleutian volcanoes are diverse and vary in both space and time. By combining InSAR results with information from the geologic record, accounts of historical

  19. Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions

    NASA Astrophysics Data System (ADS)

    Stone, R. P.

    2006-05-01

    The first in situ exploration of Aleutian Island coral habitat was completed in 2002 to determine the distribution of corals, to examine fine-scale associations between targeted fish species and corals, and to investigate the interaction between the areas’ diverse fisheries and coral habitat. Corals, mostly gorgonians and hydrocorals, were present on all 25 seafloor transects and at depths between 27 and 363 m, but were most abundant between 100 and 200 m depth. Mean coral abundance (1.23 colonies m-2) far exceeded that reported for other high-latitude ecosystems and high-density coral gardens (3.85 colonies m-2) were observed at seven locations. Slope and offshore pinnacle habitats characterized by exposed bedrock, boulders, and cobbles generally supported the highest abundances of coral and fish. Overall, 85% of the economically important fish species observed on transects were associated with corals and other emergent epifauna. Disturbance to the seafloor from bottom-contact fishing gear was evident on 88% of the transects, and approximately 39% of the total area of the seafloor observed had been disturbed. Since cold-water corals appear to be a ubiquitous feature of seafloor habitats in the Aleutian Islands, fisheries managers face clear challenges integrating coral conservation into an ecosystem approach to fisheries management.

  20. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    SciTech Connect

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  1. Investigation of the Influence of the Amlia Fracture Zone on the Islands of Four Mountains Region of the Aleutian Arc, AK

    NASA Astrophysics Data System (ADS)

    Nicolaysen, K. P.; Myers, J. D.; Weis, D.

    2013-12-01

    Regional isotopic and trace element investigations of the magmatic source characteristics of the Aleutian arc have attributed regional patterns to variations in the contribution of eclogite through slab melting, to increased proportions of sediment melts, and to variation in the amount of fluid derived by progressive metamorphism of the downgoing slab. Currently the Amlia Fracture Zone (AFZ) is located between the islands of Atka and Seguam and marks a prominent boundary between subduction of large quantities of trench sediments to the east versus sediment impoverished subduction to the west of the AFZ. This boundary is not stationary through time. Instead oblique subduction of the Pacific plate moves the AFZ westward along the arc front, causing sequential subduction beneath the islands of Chuginadak, Yunaska and Seguam circa 5, 2.5 and 1 million years ago, respectively. Lavas from Atka Island, which has not yet received the sediment and fluid spike from the AFZ, act as reference compositions. Comparison of bulk rock trace element ratios and Sr, Nd, Hf, and Pb isotopic compositions for lavas from these islands relative to Atka show that contributions from melted subducted sediment are important in the genesis of Holocene and Pleistocene lavas erupted in the Islands of Four Mountains region of the arc. Sr and Pb isotopic compositions for Yunaska and Chuginadak lavas are as high or higher than Seguam values and trend in the direction of sediment values. La/Nb ratios similarly indicate sediment melting is important for all these lavas. Comparison of values for Holocene relative to Pleistocene values indicate that once sediments are introduced to the magma source, they persist in affecting magma compositions. Comparison of higher Mg# lavas (molar Mg#>50) shows that a group of the oldest sampled lavas on Chuginadak have much lower 208Pb/204Pb, 206Pb/204Pb, and 87Sr/86Sr and higher 143Nd/144Nd, Zr/Y and Zn/Mn relative to all sampled Holocene and Pleistocene lavas from

  2. Storage conditions and eruptive dynamics of central versus flank eruptions in volcanic islands: The case of Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Andújar, Joan; Costa, Fidel; Scaillet, Bruno

    2013-06-01

    We report the results of phase equilibrium experiments on a phonolite produced during one of the most voluminous flank eruptions (ca. 1 km3) of the Teide-Pico Viejo complex (Tenerife Island). Combined with previous experimental and volcanological data we address the factors that control the structure of the phonolitic plumbing system of Teide-Pico Viejo stratovolcanoes. The Roques Blancos phonolite erupted ca 1800 BP and contains ~ 14 wt.% phenocrysts, mainly anorthoclase, biotite, magnetite, diopside and lesser amounts of ilmenite. Crystallization experiments were performed at temperatures of 900 °C, 850 °C and 800 °C, in the pressure range 200 MPa to 50 MPa. The oxygen fugacity (fO2) was varied between NNO + 0.3 (0.3 log units above to the Ni-NiO solid buffer) to NNO-2, whilst dissolved water contents varied from 7 wt.% to 1.5 wt.%. The comparison between natural and experimental phase proportions and compositions, including glass, indicates that the phonolite magma was stored prior to eruption at 900 ± 15 °C, 50 ± 15 MPa, with about 2.2 wt.% H2O dissolved in the melt, at an oxygen fugacity of NNO-0.5 (± 0.5). The difference in composition between the rim and the cores of the natural anorthoclase phenocrysts suggests that the phonolite was heated by about 50 °C before the eruption, upon intrusion of a hotter tephriphonolitic magma. The comparison between the storage conditions of Roques Blancos and those inferred for other phonolites of the Teide-Pico Viejo volcanic complex shows that flank eruptions are fed by reservoirs located at relatively shallow depths (1-2 km) compared to those feeding Teide central eruptions (5 km).

  3. Observing the Historic Eruption of Northern Mariana Islands Volcano

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas A.; Shore, Patrick J.; Sauter, Allan; Hilton, David R.; Fischer, Tobias; Camacho, Juan T.

    2004-01-01

    Anatahan volcano erupted for the first time in recorded history at about 7:30 GMT on 10 May 2003, covering the island of Anatahan, in the Commonwealth of the Northern Mariana Islands (CNMI), with ash, and providing scientists with important opportunities to study this volcano. The eruption was first reported by the National Oceanic and Atmospheric Administration's Volcanic Ash Advisory Center at 12:32 GMT, based on satellite images of the ash cloud. At about the same time, unusual light flares were observed from an approaching small ship, the Super Emerald, which was carrying a group of seismologists from Washington University in St. Louis, Scripps Institution of Oceanography, and the CNMI Emergency Management Office. As morning broke, the ship was approximately 10 km from the island, and those on board witnessed billowing ash and gas rise from the volcano's caldera to form a great cloud exceeding 6 km in altitude (Figure 1). The scientists were in the region installing land seismographs for the Mariana Subduction Factory Imaging Experiment, a joint U.S.-Japanese deployment of 20 land broadband seismographs and 58 ocean bottom seismographs funded (on the U.S. side) by the Margins program of the National Science Foundation. The experiment has the goal of imaging the magma production regions and mantle flow patterns within the upper mantle beneath the Mariana arc and backarc (see http://epsc.wustl.edu/seismology/MARIANA).

  4. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  5. The 2014 Submarine Eruption of Ahyi Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Chadwick, W.; Merle, S. G.; Buck, N. J.; Butterfield, D. A.; Coombs, M. L.; Evers, L. G.; Heaney, K. D.; Lyons, J. J.; Searcy, C. K.; Walker, S. L.; Young, C.; Embley, R. W.

    2014-12-01

    On April 23, 2014, Ahyi Volcano, a submarine cone in the Northern Mariana Islands (NMI), ended a 13-year-long period of repose with an explosive eruption lasting over 2 weeks. The remoteness of the volcano and the presence of several seamounts in the immediate area posed a challenge for constraining the source location of the eruption. Critical to honing in on the Ahyi area quickly were quantitative error estimates provided by the CTBTO on the backazimuth of hydroacoustic arrivals observed at Wake Island (IMS station H11). T-phases registered across the NMI seismic network at the rate of approximately 10 per hour until May 8 and were observed in hindsight at seismic stations on Guam and Chichijima. After May 8, sporadic T-phases were observed until May 17. Within days of the eruption onset, reports were received from NOAA research divers of hearing explosions underwater and through the hull on the ship while working on the SE coastline of Farallon de Pajaros (Uracas), a distance of 20 km NW of Ahyi. In the same area, the NOAA crew reported sighting mats of orange-yellow bubbles on the water surface and extending up to 1 km from the shoreline. Despite these observations, satellite images showed nothing unusual throughout the eruption. During mid-May, a later cruise leg on the NOAA ship Hi'ialakai that was previously scheduled in the Ahyi area was able to collect some additional data in response to the eruption. Preliminary multibeam sonar bathymetry and water-column CTD casts were obtained at Ahyi. Comparison between 2003 and 2014 bathymetry revealed that the minimum depth had changed from 60 m in 2003 to 75 m in 2014, and a new crater ~95 m deep had formed at the summit. Extending SSE from the crater was a new scoured-out landslide chute extending downslope to a depth of at least 2300 m. Up to 125 m of material had been removed from the head of the landslide chute and downslope deposits were up to 40 m thick. Significant particle plumes were detected at all three

  6. Man against volcano: The eruption on Heimaey, Vestmann Islands, Iceland

    USGS Publications Warehouse

    Williams, R.S., Jr.; Moore, J.G.

    1976-01-01

    The U.S. Geological Survey carries out scientific studies in the geological, hydrological, and cartographic sciences generally within the 50 states, but also in cooperation with scientific organizations in many foreign countries for the investigation of unusual earth science phenomena throughout the world. The following material discusses the impact of the 1973 volcanic eruption of Eldfell on the fishing port of Vestmannaeyjar on the island of Heimaey, Iceland. Before the eruption was over, approximately one-third of the town of Vestmannaeyjar had been obliterated but, more importantly, the potential damage had been reduced markedly by the spraying of seawater onto the advancing lava flows, causing them to be slowed, stopped, or diverted from the undamaged portion of the town. The Survey's interest and involvement in the Heimaey eruption in Iceland was occasioned by the possibility that the procedures used to control the course of the flowing lava and to reduce the damage in a modern town may some day be needed in Hawaii and possibly even in the continental United States. This publication is based on the observations of two USGS geologists, Richard S. Williams, Jr. and James G. Moore, as well as on information from the Icelandic Ministry for Foreign Affairs, Icelandic scientists' reports through the Center for Short-Lived Phenomena, and other published scientific reports. A number of Icelandic scientists studied the scientific aspects of the eruption and the engineering aspects of the control of lava flows, in particular, Professors Thorbjb'rn Sigurgeirsson and Sigurdur Thorarinsson of the University of Iceland Science Institute. Also, Icelandic governmental officials provided logistical and other support, in particular, Mr. Steingnmur Hermannsson, Director, Icelandic National Research Council and Professor Magnus Magnusson, Director, University of Iceland Science Institute.

  7. Displacement Partitioning, Boundary-Parallel Terrane Migration, and Arc-Parallel Extension in the Aleutian Islands Based on Structural Analysis and GPS Geodesy

    NASA Astrophysics Data System (ADS)

    Ave Lallemant, H. G.; Oldow, J. S.; Lewis, D. S.

    2001-12-01

    Structural analysis of the deformed rocks on several Aleutian Islands (Attu, Adak, Atka, and Unalaska) combined with published bathymetric and seismic reflection data support the existence of displacement partitioning along the Aleutian arc. Brittle structures are remarkably consistent among all islands studied and record arc-normal contraction, arc-parallel transcurrent motion, and arc-parallel extension. This process is still active as shown by earthquake-focal mechanisms and a GPS velocity field determined from five Aleutian Islands (Attu, Shemya, Adak, Atka, and Unalaska). GPS site velocities determined from campaigns in 1996, 1998, 1999, and 2000 increase from east to west along the island arc. Primary GPS sites on five islands were occupied for three-weeks each during two to four campaigns. In a North American reference frame the sites show a systematic increase in arc-parallel motion from Unalaska (4 mm/yr) in the east to Shemya (25 mm/yr) and Attu (31 mm/yr) in the west. Velocities for Adak and Atka near the center of the Aleutian arc are 10 mm/yr and 7 mm/yr, respectively and show a greater component of arc-normal displacement than sites at the eastern and western ends of the island chain. Secondary sites occupied for several days during alternating campaigns on Attu, Adak, and Unalaska have velocities consistent with the primary GPS sites for each island. On Atka, secondary site velocities record a significant divergence from the velocity of the primary site and indicate either transtensional deformation within the island or contamination of the primary site velocity by local strain accumulation. These results indicate that convergence between the North American and Pacific plates is partitioned into arc-normal and arc-parallel components. The arc-normal component causes shortening (thrusting and folding) along an axis oriented at a high-angle to the plate boundary and the arc-parallel component causes displacements along several arc

  8. Tsunami recurrence in the eastern Alaska-Aleutian arc: A Holocene stratigraphic record from Chirikof Island, Alaska

    USGS Publications Warehouse

    Nelson, Alan R.; Briggs, Richard; Dura, Tina; Engelhart, Simon E.; Gelfenbaum, Guy; Bradley, Lee-Ann; Forman, S.L.; Vane, Christopher H.; Kelley, K.A.

    2015-01-01

    cannot estimate source earthquake locations or magnitudes for most tsunami-deposited beds. We infer that no more than 3 of the 23 possible tsunamis beds at both sites were deposited following upper plate faulting or submarine landslides independent of megathrust earthquakes. If so, the Semidi segment of the Alaska-Aleutian megathrust near Chirikof Island probably sent high tsunamis southward every 180–270 yr for at least the past 3500 yr.                   

  9. Volcano-Ice Interactions During Recent Eruptions of Aleutian Arc Volcanoes and Implications for Melt Water Generation

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.

    2013-12-01

    Recent eruptions in Alaska (Redoubt 2009; Pavlof 2007, 2013; Veniaminof 2013) all involved ice eruptive-product interactions that led to variable amounts of melt water generation. Production of melt water during explosive eruptions is the primary mechanism for lahar generation, which is a significant and sometimes-deadly hazard at snow and ice clad volcanoes. During the 2009 eruption of Redoubt Volcano, pyroclastic flows produced by explosive destruction of lava domes swept across and eroded glacier ice and generated large quantities of melt water that formed correspondingly large lahars (107-109 m3) in the Drift River valley north of the volcano. Three of the twenty lahars generated during the eruption were large enough to threaten an oil storage facility 40 km from the volcano. During eruptions of Pavlof Volcano in 2007 and 2013 spatter-fed lava flows and minor pyroclastic flows descended over snow and ice on the upper flanks of the volcano and produced some melt water that generated lahars in the associated drainages. These lahars were smaller than those associated with the 2009 eruption of Redoubt Volcano because the melt water generation mechanism was different. At Veniaminof Volcano, a low-level eruption beginning in June 2013 produced small lava flows that flowed passively over glacier ice and produced only limited amounts of melt water. Although melt pits surrounding the lava flows eventually developed, the rate of melt water production was gradual and no significant outflows of water occurred. These eruptions and comparison with past events highlight the various mechanisms for melt water production during eruptive activity at snow and ice clad Alaskan volcanoes. Dynamic emplacement of eruptive products over glacier ice that involves significant erosion of ice and snow leads to production of large volumes of melt water. Less dynamic, but still energetic interactions such as those that have occurred at Pavlof Volcano, produce smaller amounts of melt and

  10. The First Historical Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Hilton, D. R.; Demoor, J.; Jaffe, L.; Spilde, M. N.; Counce, D.; Camacho, J. T.

    2003-12-01

    The first historical eruption of Anatahan volcano occurred on May 10, 2003. The MARGINS office responded by authorizing helicopter surveillance and ship deployment to visit the volcano. The helicopter flight on May 19 allowed visual observations and identification of the east crater as the source of the eruption. The top of the plume was estimated to be at 10,000 ft - significantly less than the 30,000 ft of the initial blast. No bombs were ejected out of the east crater at this time but were falling back into the crater. The bombs looked irregular in shape, massive and were estimated to be a few m in diameter. Bombs and tephra samples were collected from the eastern side of the island when blasts were occurring at a rate of approx. 1 per 5min. The ship visit followed on May 21 to the western side of the island for collection of samples and SO2 flux measurements, along with maintenance of a previously deployed seismometer. Volcanic samples collected on Anatahan consisted of bombs, ash and scoria from the present eruption and old lavas (age unknown). The ash section on the western shore was 25 cm thick and consisted of the following sequence (bottom to top): 0-5 inversely? graded dark ash with scoria and pumice clasts (1-2 cm), 20-25 cm: well sorted clast-supported scoria (max 2 cm) with some fine ash. The maximum total thickness measured at a site 6 km from the east crater was approximately 45 cm. The sequence is interpreted as 1) initial blast 2) interaction of magma with water (from pre-existing hydrothermal system) as evidenced by accretionary lapilli 3) magmatic phase of the eruption producing juvenile material. Electron microprobe analyses of the pumice and scoria show uniform compositions of ~ 60wt% SiO2 in the glass; zoned plagioclase with average composition of 61% An, 37.7% Ab, 1.2% Or; pyroxenes (19.4% Wo, 53.4% En, 26.7% Fs) and Fe-Ti oxides. Sulfur and Cl contents are approx. 100 and 1500 ppm, respectively. Water content of the glass may be several wt

  11. Erupted cumulate fragments in rhyolites from Lipari (Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Ellis, Ben S.; Bachmann, Olivier; Lucchi, Federico; Tranne, Claudio A.; Agostini, Samuele; Dallai, Luigi

    2015-12-01

    Over the last ~267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest ≤30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An38-21 plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require ~2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50-1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world.

  12. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    USGS Publications Warehouse

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  13. Final Report: Weatherization and Energy Conservation Education and Home Energy and Safety Review in the Aleutian Islands

    SciTech Connect

    Bruce Wright

    2011-08-30

    Aleutian/Pribilof Islands Association, Inc. (APIA) hired three part-time local community members that desire to be Energy Technicians. The energy technicians were trained in methods of weatherization assistance, energy conservation and home safety. They developed a listing of homes in the region that required weatherization, and conducted on-site weatherization and energy conservation education and a home energy and safety reviews in the communities of Akutan, False Pass, King Cove and Nelson Lagoon. Priority was given to these smaller communities as they tend to have the residences most in need of weatherization and energy conservation measures. Local residents were trained to provide all three aspects of the project: weatherization, energy conservation education and a home energy and safety review. If the total energy saved by installing these products is a 25% reduction (electrical and heating, both of which are usually produced by combustion of diesel fuel), and the average Alaska home produces 32,000 pounds of CO2 each year, so we have saved about: 66 homes x 16 tons of CO2 each year x .25 = 264 tons of CO2 each year.

  14. MORPHOLOGY AND MOLECULAR PHYLOGENY OF AUREOPHYCUS ALEUTICUS GEN. ET SP. NOV. (LAMINARIALES, PHAEOPHYCEAE) FROM THE ALEUTIAN ISLANDS(1).

    PubMed

    Kawai, Hiroshi; Hanyuda, Takeaki; Lindeberg, Mandy; Lindstrom, Sandra C

    2008-08-01

    A previously unknown species of kelp was collected on Kagamil Island, Aleutian Islands. The species can be easily distinguished from any known laminarialean alga: the erect sporophytic thallus is composed of a thin lanceolate blade attaining ∼2 m in height and ∼0.50 m in width, without midrib, and the edge of the blade at the transition zone is thickened to form a V-shape; the stipe is solid and flattened, slightly translucent, attaining ∼1 m in length; the holdfast is semidiscoidal and up to 0.15 m in diameter. Anatomically, the blade has the typical trumpet-shaped hyphae characteristic of the Chordaceae and derived foliose laminarialean species (i.e., Alariaceae/Laminariaceae/Lessoniaceae). No hair pits or mucilaginous structures were observed on the blade or stipe. No fertile sporophytes were collected, but abundant juvenile sporophytes were observed in the field. In the molecular phylogenetic analyses using chloroplast rbcL gene, nuclear ITS1-5.8S-ITS2 rDNA, and mitochondria nad6 DNA sequences, the new species (Aureophycus aleuticus gen. et sp. nov.) showed a closer relationship with Alariaceae of conventional taxonomy, or the "Group 1" clade of Lane et al. (2006) including Alaria and related taxa than with other groups, although the species was not clearly included in the group. Aureophycus may be a key species in elucidating the evolution of the Alariaceae within the Laminariales. Because of the lack of information on reproductive organs and insufficient resolution of the molecular analyses, we refrain from assigning the new species to a family, but we place the new species in a new genus in the Laminariales. PMID:27041620

  15. Massive edifice failure at Aleutian arc volcanoes

    USGS Publications Warehouse

    Coombs, M.L.; White, S.M.; Scholl, D. W.

    2007-01-01

    Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the

  16. Geological and petrological aspects of the ongoing submarine eruption at El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Meletlidis, S.; Di Roberto, A.; Iribarren, I.; Pompilio, M.; Bertagnini, A.; Torres, P. A.; Felpeto, A.; Lopez, C.; Blanco, M. J.

    2012-04-01

    The Canarian Archipelago comprises seven major and three minor islands, all of them of volcanic origin. The distribution of the islands forms an east-west volcanic chain, starting about 90 km west of the northwest African continental margin. The canary volcanism is unique among ocean islands (long lifetime, multiple periods of volcanic activity, extensive range of magma compositions) and various theories were developed in order to explain that specific volcanism, with such a variety of volcanic phases and chemical diversity. El Hierro, located at the SW end of this island group, is the youngest island with the oldest subaerial rocks dated at 1.12 Ma and is still in juvenile stage of shield growth. The island is the emergent summit of a 280 km2 volcanic shield which rises from a 3800-4000m depth and grows up to 1500 m above sea level. Although the whole island has been constructed by the volcanic material of two major volcanic edifices, Tiñor in the NE (0.8 -1.2 Ma) and El Golfo edifice in the NW (550 ka-130 ka), rift volcanism (134 ka - AD1793) has been very active after the second major tectonic event (gravitational collapse of El Golfo edifice), specially along the South ridge. Till July 2011 the most recent eruption was the Volcán de Lomo Negro (AD1793) located at the western part of the island. The products of the Tiñor and El Golfo edifice, massive lava flows, are typical mafic basalts with phenocrystals of olivine and only in El Golfo sequence evolved lava flows (trachytes with phenocrystals of plagioclase feldspars) could be observed. However, the recent rift lavas present varied compositional and textural features. During the eruption of 2011-2012 a variety of volcanic material has been observed and sampled. On 15 October, bicoloured lava fragments were observed floating on the sea with a bomb-like shape and sizes between 10 and 40 cm. The outer part, black, vesiculated and no more than 1 cm thick, had a basaltic composition, while the inner part was

  17. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  18. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  19. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  20. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  1. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  2. Eruption of soufriere volcano on st. Vincent island, 1971-1972.

    PubMed

    Aspinall, W P; Sigurdsson, H; Shepherd, J B

    1973-07-13

    The Soufrière volcano in St. Vincent erupted from October 1971 to March 1972, as 80 x 10(6) m(3) of basaltic andesite lava was quietly extruded inside the mile-wide crater. The eruption was largely subaqueous, taking place in the 180-m-deep crater lake, and resulted in the emergence of a steep-sided island. The mild character of the eruption and the absence of seismic activity stand in direct contrast to the highly explosive character of the eruption of 1902 to 1903. PMID:17746610

  3. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study.

    PubMed

    Burger, Joanna

    2007-11-01

    World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide

  4. Modeling the impacts of bottom trawling and the subsequent recovery rates of sponges and corals in the Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Wilkins, Mark E.; Rose, Craig S.; Coon, Catherine

    2011-11-01

    The abundance of some marine fish species are correlated to the abundance of habitat-forming benthic organisms such as sponges and corals. A concern for fisheries management agencies is the recovery of these benthic invertebrates from removal or mortality from bottom trawling and other commercial fisheries activities. Using a logistic model, observations of available substrate and data from bottom trawl surveys of the Aleutian Islands, Alaska, we estimated recovery rates of sponges and corals following removal. The model predicted the observed sponge and coral catch in bottom trawl surveys relatively accurately ( R2=0.38 and 0.46). For sponges, the results show that intrinsic growth rates were slow ( r=0.107 yr -1). Results show that intrinsic growth rates of corals were also slow ( r=0.062 yr -1). The best models for corals and sponges were models that did not include the impacts of commercial fishing removals. Subsequent recovery times for both taxa were also predicted to be slow. Mortality of 67% of the initial sponge biomass would recover to 80% of the original biomass after 20 years, while mortality of 67% of the coral biomass would recover to 80% of the original biomass after 34 years. The modeled recovery times were consistent with previous studies in estimating that recovery times were of the order of decades, however improved data from directed studies would no doubt improve parameter estimates and reduce the uncertainty in the model results. Given their role as a major ecosystem component and potential habitat for marine fish, damage and removal of sponges and corals must be considered when estimating the impacts of commercial bottom trawling on the seafloor.

  5. Levels of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska

    PubMed Central

    Hardell, Sara; Tilander, Hanna; Welfinger-Smith, Gretchen; Burger, Joanna; Carpenter, David O.

    2010-01-01

    Background Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and chlorinated pesticides, have been shown to have many adverse human health effects. These contaminants therefore may pose a risk to Alaska Natives that follow a traditional diet high in marine mammals and fish, in which POPs bioaccumulate. Methods and Findings This study examined the levels of PCBs and three pesticides [p, p′-DDE, mirex, and hexachlorobenzene (HCB)] in muscle tissue from nine fish species from several locations around the Aleutian Islands of Alaska. The highest median PCB level was found in rock sole (Lepidopsetta bilineata, 285 ppb, wet weight), while the lowest level was found in rock greenling (Hexagrammos lagocephalus, 104 ppb, wet weight). Lipid adjusted PCB values were also calculated and significant interspecies differences were found. Again, rock sole had the highest level (68,536 ppb, lipid weight). Concerning the PCB congener patterns, the more highly chlorinated congeners were most common as would be expected due to their greater persistence. Among the pesticides, p, p′-DDE generally dominated, and the highest level was found in sockeye salmon (Oncorhynchus nerka, 6.9 ppb, wet weight). The methodology developed by U.S. Environmental Protection Agency (USEPA) was used to calculate risk-based consumption limits for the analyzed fish species. For cancer health endpoints for PCBs, all species would trigger strict advisories of between two and six meals per year, depending upon species. For noncancer effects by PCBs, advisories of between seven and twenty-two meals per year were triggered. None of the pesticides triggered consumption limits. Conclusion The fish analyzed, mainly from Adak, contain significant concentrations of POPs, in particular PCBs, which raises the question whether these fish are safe to eat, particularly for sensitive populations. However when assessing any risk of the traditional diet, one must also consider the many health

  6. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study

    SciTech Connect

    Burger, Joanna

    2007-11-15

    World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide

  7. Post-eruptive morphological evolution of island volcanoes: Surtsey as a modern case study

    NASA Astrophysics Data System (ADS)

    Romagnoli, C.; Jakobsson, S. P.

    2015-12-01

    Surtsey is a small volcanic island in the Vestmannaeyjar archipelago, off the south coast of Iceland. The eruption leading to the island's emersion lasted for 3.5 yr (1963-1967) while destructive forces have been active for over 50 yr (1963-present-day) during which Surtsey has suffered rapid subaerial and submarine erosion and undergone major morphological changes. Surtsey is a well-documented modern example of the post-eruptive degradational stage of island volcanoes, and has provided the unique opportunity to continuously observe and quantify the effects of intense geomorphic processes. In this paper we focus on coastal and marine processes re-shaping the shoreline and shallow-water portions of the Surtsey complex since its formation and on the related geomorphological record. Analogies with the post-eruptive morphological evolution of recently active island volcanoes at the emerging stage, encompassing different climatic conditions, wave regimes and geological contexts, are discussed.

  8. Specification of Tectonic Tsunami Sources Along the Eastern Aleutian Island Arc and Alaska Peninsula for Inundation Mapping and Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Freymueller, J. T.; Koehler, R.

    2013-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska along several segments of the Aleutian Megathrust, each having a unique seismic history and tsunami generation potential. Accurate identification and characterization of potential tsunami sources is a critical component of our project. As demonstrated by the 2011 Tohoku-oki tsunami, correct estimation of the maximum size event for a given segment of the subduction zone is particularly important. In that event, unexpectedly large slip occurred approximately updip of the epicenter of the main shock, based on seafloor GPS and seafloor pressure gage observations, generating a much larger tsunami than anticipated. This emphasizes the importance of the detailed knowledge of the region-specific subduction processes, and using the most up-to-date geophysical data and research models that define the magnitude range of possible future tsunami events. Our study area extends from the eastern half of the 1957 rupture zone to Kodiak Island, covering the 1946 and 1938 rupture areas, the Shumagin gap, and the western part of the 1964 rupture area. We propose a strategy for generating worst-case credible tsunami scenarios for locations that have a short or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. The potential tsunami scenarios are built based on a discretized plate interface model fit to the Slab 1.0 model geometry. We employ estimates of slip deficit along the Aleutian Megathrust from GPS campaign surveys, the Slab 1.0 interface surface, empirical magnitude-slip relationships, and a numerical code that distributes slip among the subfault elements, calculates coseismic deformations and solves the shallow water equations of tsunami propagation and runup. We define hypothetical asperities along the megathrust and in down-dip direction, and perform a set of sensitivity model runs to identify coseismic deformation

  9. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: Subduction melts sediments and dehydrates serpentine

    NASA Astrophysics Data System (ADS)

    Singer, Brad S.; Jicha, Brian R.; Leeman, William P.; Rogers, Nick W.; Thirlwall, Matthew F.; Ryan, Jeff; Nicolaysen, Kirsten E.

    2007-06-01

    Trace element and Sr-Nd-Pb isotope compositions of basaltic lavas from 11 volcanoes spanning 1300 km of the Aleutian Island arc provide new constraints on the recycling of elements in melts and fluids derived from subducted oceanic crust and sediment. Despite a nearly twofold variation in the flux of sediment subducted along the Aleutians, proxies indicating the presence of sediment melt in the magma source, including Th/La and Th/Nd, do not vary systematically along strike. In contrast, ratios including B/La, B/Nb, B/Be, Cs/La, Pb/Ce, and Li/Y suggest that the quantity or composition of fluid transferred from the slab into the mantle wedge varies an order of magnitude along strike and is apparently correlated with sediment flux. However, the most distinctive fluid addition corresponds spatially with subduction of the Amlia Fracture Zone (AFZ), a likely repository for H2O-rich serpentinite. Sr, Nd, and Pb isotope ratios, together with Th/Nd and B/La ratios, show that the majority of these basalts reflect a common baseline metasomatism of the mantle that accumulated, perhaps over millions of years, via small additions of both slab fluids and partially melted sediment. The paradox of requiring slab surface temperatures high enough to melt a layer of sediment, while lower-temperature dehydration reactions that supply water occur sufficiently deep to flux melting >80 km beneath the volcanoes is reconciled in a four-stage model: (1) as sediment and altered ocean crust is carried to ˜60 km depth and temperatures increase to ˜650°C, metamorphic dehydration reactions release most of the fluid and B to the shallow mantle wedge beneath the fore arc, but some of this mantle is metasomatized and flows downward; (2) the uppermost layer of sediment begins to melt at ˜750°C and >60 km depth; this small volume of melt physically mingles with the overlying metasomatized mantle wedge as it flows further downdip; (3) below the sediment veneer, the uppermost 1 km of ocean crust

  10. Observations of Seafloor Outcrops in the Oblique Subduction Setting of Adak Canyon: Implications for Understanding the Early History of the Aleutian Island Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G.; Scholl, D.; Jicha, B.; Wyatt, C.; Singer, B.; Kelemen, P.

    2004-12-01

    Submarine canyons in the western Aleutians (west of 177°W) are formed by oblique subduction, which has broken crustal blocks away from the arc massif and rotated them in clockwise sense, resulting in the formation of triangular-shaped summit basins and deep, structurally controlled submarine canyons (Geist et al., Tectonics v7, p327, 1988). A series of dives with the ROV Jason II on July 28-30, 2004 on Adak Canyon has provided the first-ever view of seafloor outcrops in an Aleutian canyon formed by this process. Two dives on the canyon's steep eastern wall revealed extensive exposures of blocky outcrops of volcanic rock at depths of 2900-1500 m. Samples of these units collected by the Jason II are a mixture of dark, pyroxene and plagioclase-phyric lavas and volcaniclastics. Degree of weathering/alteration is highly variable but some samples appear fresh. We anticipate that these rocks are offshore-equivalents of the Finger Bay Volcanics, which represent the earliest phase of Aleutian volcanism exposed on nearby Adak Island (e.g., Coats, 1956, USGS Bull. 1028-C). Exposures of granitic rock in Adak Canyon form low ledges of exfoliating outcrop interspersed with spheroidally weathered, bouldery sub-crop, in the depth range of 1800-1600 meters. Obtaining in-situ samples from these massive and subrounded exposures was not possible with the Jason II, but recovery of large, sub-angular slabs that litter the surface included samples of fresh diorite, fine-grained felsic intrusives and hydrothermally altered volcanic country rock. The stratigraphically highest exposures observed in Adak Canyon are gently dipping, poorly lithified `Middle Series' sedimentary rocks of probable Miocene-Oligocene age. All outcrop surfaces in Adak Canyon are covered with a uniformly dark brown, opaque coating of Mn oxide less than 1mm thick. Well-rounded cobbles and boulders interpreted to be glacial drift are largely free of Mn oxide coatings. Thick pavements of Mn-oxide were not observed

  11. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska.

    PubMed

    Stewart, Nathan L; Konar, Brenda; Tinker, M Tim

    2015-03-01

    Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands. PMID:25416538

  12. Experimental constraints on steam-driven eruptions at White Island volcano (New Zealand)

    NASA Astrophysics Data System (ADS)

    Scheu, Bettina; Mayer, Klaus; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    The recent activity at White Island volcano is primarily characterized by strong hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions, down to micro-eruptions through a mud-rich crater lake. We analyzed the response of various sample types to rapid decompression caused by steam-flashing and/or gas expansion, mimicking steam-driven (phreatic) eruptions. The samples investigated comprise unconsolidated ash/lapilli as well as consolidated ash tuffs with different degree of alteration. All sample sets underwent, where possible, microstructural, geochemical and petrophysical characterization (as porosity, permeability and uniaxial compressive strength (UCS)). This allowed us to assess the role of following factors for phreatic eruptions: (1) PT-conditions leading to either steam-flashing or steam expansion (2) the behavior of loose versus consolidated material, as the influence of fragmentation, ejection velocity, grain size reduction (3) the porosity and its changes, (4) the alteration of the samples, leading to changes in UCS, porosity, and permeability. Besides their role during the short moment of a phreatic eruption itself, the strength and the permeability of rocks of the entire White Island volcanic complex and in detail above the hydrothermal system in the crater area are key factors for the recent activity at White Island. They crucially influence the distribution of fluids and gases; strong and low-permeable layers can act as pressure seals, defining the area and overpressure of a steam-driven eruption.

  13. Vesiculation Characteristics in Pyroclasts of the 3.1 ka Oneraki Eruption, Raoul Island, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Rotella, M. D.; Barker, S. J.; Wilson, C. J.; Wright, I. C.; Houghton, B. F.

    2008-12-01

    Raoul Island is the emergent 30 square km portion of a > 200 cubic km volcanic edifice which rises 900 m from the sea floor along the Kermadec ridge. Although the island is composed mainly of basalt and basaltic andesite, the last 4000 years has seen several dacitic explosive eruptions associated with caldera formation [Lloyd & Nathan, N.Z. Geol. Surv. Bull., 1981; Smith et al., J.Volc. Geotherm. Res. v. 156, 2006]. Fall deposits of the 3.1 ka Oneraki eruption, of possible plinian dispersal, were sampled at five stratigraphic levels. The 16-32 mm size pumice clasts of the lower four levels display narrow, unimodal density ranges. The upper level fall deposit shows a bimodal density distribution, reflecting a change in eruption characteristics as dense, degassed fragments were also ejected, but without other signs of any interaction with external water. For this study, qualitative and quantitative vesicularity data have been collected from 16- 32 mm clasts from three of the stratigraphic levels to provide insights to the various processes involved in vesiculation and fragmentation of this magma. Future work will include comparisons of vesicle textures in this eruption to other dry and wet subaerially erupted Raoul deposits, and to submarine deposits of similar composition at Macauley and Healy volcanoes. By characterizing eruption products from these volcanoes and using constraints provided by the different degrees of interaction with water (and at different water depths in submarine examples) we hope to better understand the dynamics of the violent degassing processes driving these eruptions.

  14. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand

    NASA Astrophysics Data System (ADS)

    Chardot, Lauriane; Jolly, Arthur D.; M. Kennedy, Ben; Fournier, Nicolas; Sherburn, Steven

    2015-09-01

    Eruption forecasting is a challenging task because of the inherent complexity of volcanic systems. Despite remarkable efforts to develop complex models in order to explain volcanic processes prior to eruptions, the material Failure Forecast Method (FFM) is one of the very few techniques that can provide a forecast time for an eruption. However, the method requires testing and automation before being used as a real-time eruption forecasting tool at a volcano. We developed an automatic algorithm to issue forecasts from volcanic tremor increase episodes recorded by Real-time Seismic Amplitude Measurement (RSAM) at one station and optimised this algorithm for the period August 2011-January 2014 which comprises the recent unrest period at White Island volcano (Whakaari), New Zealand. A detailed residual analysis was paramount to select the most appropriate model explaining the RSAM time evolutions. In a hindsight simulation, four out of the five small eruptions reported during this period occurred within a failure window forecast by our optimised algorithm and the probability of an eruption on a day within a failure window was 0.21, which is 37 times higher than the probability of having an eruption on any day during the same period (0.0057). Moreover, the forecasts were issued prior to the eruptions by a few hours which is important from an emergency management point of view. Whereas the RSAM time evolutions preceding these four eruptions have a similar goodness-of-fit with the FFM, their spectral characteristics are different. The duration-amplitude distributions of the precursory tremor episodes support the hypothesis that several processes were likely occurring prior to these eruptions. We propose that slow rock failure and fluid flow processes are plausible candidates for the tremor source of these episodes. This hindsight exercise can be useful for future real-time implementation of the FFM at White Island. A similar methodology could also be tested at other

  15. Studies of Aleutian volcanoes based on two decades of SAR imagery

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Dzurisin, D.

    2015-12-01

    With its global coverage and all-weather imaging capability, interferometric synthetic aperture radar (InSAR) has become an increasingly important technique for studying magma dynamics at volcanoes in remote regions, such as the Aleutian Islands. The spatial distribution of surface deformation derived from InSAR data enables the construction of detailed mechanical models to aid the investigation of magmatic processes. We processed nearly 12,000 SAR images of Aleutian volcanoes acquired by ERS-1, JERS-1, ERS-2, Radarsat-1, Envisat, ALOS, and TerraSAR-X from the early 1990s to 2010. We combined these SAR images to produce about 25,000 interferograms, which we analyzed for evidence of surface deformation at most of the arc's Holocene volcanoes. This talk summarizes deformation processes at Aleutian volcanoes observed with InSAR, including: (1) time-varying volcanic inflation and magmatic intrusion, (2) deformation preceding and accompanying seismic swarms , (3) persistent volcano-wide subsidence at calderas that last erupted tens of years ago, (4) episodic magma intrusion and associated tectonic stress release, (5) subsidence caused by a decrease in pore fluid pressure in active hydrothermal systems, (6) subsidence of surface lava and pyroclastic flows, and (7) a lack of deformation at some volcanoes with recent eruptions, where deformation might be expected. Our work demonstrates that deformation patterns and associated magma supply mechanisms at Aleutian volcanoes are diverse and vary in both space and time. By combining InSAR results with information from the geologic record, accounts of historical eruptions, and data from seismology, petrology, gas geochemistry, and other sources, we have developed conceptual models for the magma plumbing systems and behaviors of many volcanoes in the Aleutian arc. We realize that these models are simplistic, but it is our hope that they will serve as foundations that will be refined as additional information becomes available.

  16. Evolution of the Phreatomagmatic Cova de Paul Eruption, Santo Antao, Cape Verde Islands: Links Between Eruption Development and Crater Growth

    NASA Astrophysics Data System (ADS)

    Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.

    2013-12-01

    Episodes of phreatomagmatic explosive activity that excavate large deep craters occur at high-elevation vents on many oceanic island volcanoes. The water driving these explosions is sourced from freshwater aquifers within the volcanic edifices, whose location and other characteristics will influence crater growth and final geometry. Here we describe phreatomagmatic deposits from the single eruption that formed the large Cova de Paul crater on the island of Santo Antao, Cape Verde Islands. These deposits, emplaced after an initial Strombolian phase of activity, record wide fluctuations in the intensity of phreatomagmatic explosivity. The largest explosions produced low-temperature, indurated lithic-rich phreatomagmatic ignimbrites and surge deposits; these occur as isolated and often erosive-based units in more distal areas but are interbedded in proximal outcrops with airfall to mixed fall and flow breccia and ash beds containing varying proportions of lithic and juvenile clasts, pointing to a series of climactic explosions within an extended period of milder phreatomagmatic explosive activity. We find that whereas the lithic clasts in the mixed units can be matched with the varied rock units in the exposed crater walls, the ignimbrite and surge units also contain hydrothermally altered clasts that appear to have originated from deeper in the volcanic edifice. They imply that during the climactic explosions the crater was excavated to several hundred meters depth below the surface. The phreatomagmatic explosive phase of the CDPC eruption was initiated by shattering of the chilled margins of the eruptive conduit, which had formed during the early Strombolian activity. The remains of these chilled margins form a distinctive bed of large flow-banded angular sub-glassy juvenile clasts that separates the Strombolian deposits from the later phreatomagmatic deposits. At this point water inflow from pressurized aquifers into the conduit attained a critical coolant input

  17. Magnetic-island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-03-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  18. Mercury, arsenic, cadmium, chromium lead, and selenium in feathers of pigeon guillemots (Cepphus columba) from Prince William Sound and the Aleutian Islands of Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Sullivan, Kelsey; Irons, David

    2007-11-15

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of pigeon guillemots (Cepphus columba) from breeding colonies in Prince William Sound and in the Aleutian Islands (Amchitka, Kiska) to test the null hypothesis that there were no differences in metal levels as a function of location, gender, or whether the birds were from oiled or unoiled areas in Prince William Sound. Birds from locations with oil from the Exxon Valdez Oil Spill in the environment had higher levels of cadmium and lead than those from unoiled places in Prince William Sound, but otherwise there were no differences in metal levels in feathers. The feathers of pigeon guillemots from Prince William Sound had significantly higher levels of cadmium and manganese, but significantly lower levels of mercury than those from Amchitka or Kiska in the Aleutians. Amchitka had the lowest levels of chromium, and Kiska had the highest levels of selenium. There were few gender-related differences, although females had higher levels of mercury and selenium in their feathers than did males. The levels of most metals are below the known effects levels, except for mercury and selenium, which are high enough to potentially pose a risk to pigeon guillemots and to their predators. PMID:17765292

  19. Psychological aspects in a volcanic crisis: El Hierro Island eruption (October, 2011).

    NASA Astrophysics Data System (ADS)

    Lopez, P.; Llinares, A.; Garcia, A.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The recent eruption on the El Hierro Island (Canary Islands, Spain) has shown that Psychology plays an important role in the emergence management of a natural phenomenon. However, Psychology continues to have no social coverage it deserves in the mitigation of the effects before, during and after the occurrence of a natural phenomenon. Keep in mind that an unresolved psychological problem involves an individual and collective mismatch may become unrecoverable. The population of El Hierro has been under a state of alert since July 2011, when seismic activity begins, until the occurrence of submarine eruption in October 2011 that is held for more than three months. During this period the inhabitants of the small island have gone through different emotional states ranging from confusion to disappointment. A volcanic eruption occurs not unexpectedly, allowing to have a time of preparation / action before the disaster. From the psychological point of view people from El Hierro Island have responded to different stages of the same natural process. Although the island of El Hierro is of volcanic origin, the population has no historical memory since the last eruption occurred in 1793. Therefore, the educational system does not adequately address the formation in volcanic risk. As a result people feel embarrassment when the seismovolcanic crisis begins, although no earthquakes felt. As an intermediate stage, when the earthquakes are felt by the population, scientists and operational Emergency Plan care to inform and prepare actions in case of a possible eruption. The population feel safe despite the concerns expressed by not knowing where, how and when the eruption will occur. Once started the submarine eruption, taking into account that all the actions (evacuation, relocation, etc.) have worked well and that both their basic needs and security are covered there are new states of mind. These new emotional states ranging from disenchantment with the phenomenology of the

  20. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    PubMed

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID

  1. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    PubMed Central

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed

  2. Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Martí, Joan; Geyer, Adelina

    2013-07-01

    The tuff cone of El Golfo on the western coast of Lanzarote (Canary Islands) is a typical hydrovolcanic edifice. Along with other edifices of the same age, it was constructed along a fracture oriented NEE-SWW that coincides with the main structural trend of recent volcanism in this part of the island. We conducted a detailed stratigraphic study of the succession of deposits present in this tuff cone and here interpret them in light of the depositional processes and eruptive dynamics that we were able to infer. The eruptive sequence is represented by a succession of pyroclastic deposits, most of which were emplaced by flow, plus a number of air-fall deposits and ballistic blocks and bombs. We distinguished five different eruptive/depositional stages on the basis of differences in inferred current flow regimes and fragmentation efficiencies represented by the resulting deposits; the different stages may be related to variations in the explosive energy. Eight lithofacies were identified based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms. The volcanic edifice was constructed very rapidly around the vent, and this is inferred to have controlled the amount of water that was able to enter the eruption conduit. The sedimentological characteristics of the deposits and the nature and distribution of palagonitic alteration suggest that most of the pyroclastic succession in El Golfo was deposited in a subaerial environment. This type of hydrovolcanic explosive activity is common in the coastal zones of Lanzarote and the other Canary Islands and is one of the main potential hazards that could threaten the human population of this archipelago. Detailed studies of these hydrovolcanic eruptions such as the one we present here can help volcanologists understand the hazards that this type of eruption can generate and provide essential information for undertaking risk assessment in similar volcanic environments.

  3. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    SciTech Connect

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  4. Carbon-14 ages of the past 20 ka of eruptive activity of Teide volcano, Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Guillou, H.; Paterne, M.; Pérez Torrado, F. J.; Paris, R.; Badiola, E. R.

    2003-04-01

    Teide volcano, the highest volcano on earth (3718 m a.s.l., >7 Km high) after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the Island of Tenerife. Its most recent eruptive activity (last 20 Ka) is associated with the very active NW branch of the 120º triple rift system of the island. Most of the eruptions of Tenerife during the past 20 ka have occurred along this volcanic feature, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon-14 ages, obtained via coupled mass spectrometer, and others in process, provide important time constraints on the evolution of Teide's volcanic system, the frequency and distribution of its eruptions, and the associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1240 ± 60 years BP, but to the Pico Viejo volcano (17570 ± 150 years BP), flank parasitic vents (Mña. Abejera upper vent, 5170 ± 110 years BP; Mña. Abejera lower vent, 4790 ± 70 years BP; Mancha Ruana, 2420 ± 70 years BP; Mña. La Angostura, 2010 ± 60 years BP and Roques Blancos, 1790 ± 60 years BP) and the NW rift (Mña. Chío, 3620 ± 70 years BP). Although the volcanic activity during the past 20 ka included the involvement of at least 7 voluminous phonolitic flank vents in the northern, more unstable slopes of the Teide, it took place without any apparent response of the volcano; on the contrary, these eruptions seemed to progressively buttress and

  5. Contrasting andesitic magmatic systems in adjacent North Island volcanoes, New Zealand: implications for predicting eruptions

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Smith, I. E.; Gamble, J. A.; Moebis, A.; Cronin, S. J.

    2011-12-01

    For active or dormant andesite volcanoes, detailed, stratigraphically controlled, geochemical and petrological information enables an understanding of the magma supply and plumbing system feeding eruptions at the surface. This can establish a basis for predictive eruption models and thus for hazard prediction and management. The potential for petrography to inform volcanic hazard management is demonstrated by comparing two andesitic volcanoes located at the southern end of the Taupo Volcanic Zone in New Zealand's North Island. Ngauruhoe has been constructed over the past 3-5 ka and last erupted in 1975. Nearby Ruapehu has a much longer eruptive history extending back beyond 230 ka B.P. Despite their close spatial proximity, the two volcanoes show geochemical contrasts suggesting that each magmatic system has operated separately. The petrology and geochemistry (major and trace element chemistry, U-series isotopes, Sr and Nd isotopes) of eruptives from each volcano reflect magma evolution in a complex magma storage and plumbing system with magma chemistry strongly influenced by fractional crystallisation and crustal assimilation but in the case of Ngauruhoe there is evidence for cyclicity in the evolution of magma batches and this appears to be driven by periodic replenishment of the magmatic system from the mantle. In contrast, the past 2 ka of eruptive history at Ruapehu reflects random tapping of shallow, volume magma reservoirs.

  6. Floating sandstones off El Hierro (Canary Islands, Spain): the peculiar case of the October 2011 eruption

    NASA Astrophysics Data System (ADS)

    Troll, V. R.; Klügel, A.; Longpré, M.-A.; Burchardt, S.; Deegan, F. M.; Carracedo, J. C.; Wiesmaier, S.; Kueppers, U.; Dahren, B.; Blythe, L. S.; Hansteen, T.; Freda, C.; Budd, D. A.; Jolis, E. M.; Jonsson, E.; Meade, F.; Berg, S.; Mancini, L.; Polacci, M.

    2011-12-01

    The eruption that started off the south coast of El Hierro, Canary Islands, in October 2011 has emitted intriguing eruption products found floating in the sea. These specimens appeared as floating volcanic "bombs" that have in the meantime been termed "restingolites" (after the close-by village of La Restinga) and exhibit cores of white and porous pumice-like material. Currently the nature and origin of these "floating stones" is vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have collected and analysed the structure and composition of samples and compared the results to previous work on similar rocks found in the archipelago. Based on their high silica content, the lack of igneous trace element signatures, and the presence of remnant quartz crystals, jasper fragments and carbonate relicts, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary rocks that were picked up and heated by the ascending magma causing them to partially melt and vesiculate. They hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies in the Canary Islands as well as in similar Atlantic islands that rest on sediment/covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of these "restingolites" does therefore not indicate the presence of an explosive high-silica magma that is involved in the ongoing eruption.

  7. Ash Deposition Mechanisms and Plume Scrubbing in the 2008 Okmok Eruption, Umnak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Unema, J. A.; Ort, M. H.; Larsen, J. F.; Neal, C. A.; Schaefer, J. R.; Webley, P.

    2010-12-01

    Okmok volcano, Aleutian Arc, Alaska, produced five weeks of explosive eruption in July and August 2008 from vents in a 10-km-wide caldera. Water was available in the caldera in lakes and aquifers, and its interaction with erupting magma (~56% SiO2) is evidenced by observations of white steam clouds throughout the eruption, fine grain size of deposits, and consumption of caldera lakes during eruption. The opening sequence on July 12 produced the eruption’s highest column, 16 km above sea level. Basal deposits from this opening sequence, divided into 3 units, are present in the caldera and on the north-east (NE), east (E), and south-east (SE) flanks and are clast-supported coarse ash to medium lapilli at proximal and medial sites. Unit 1 is made up of vitric coarse ash and lapilli. Fine and medium ash form a matrix in the upper half. Unit 2 is open-framework coarse ash and lapilli, similar in componentry but finer than Unit 1. The uppermost unit of the opening sequence, Unit 3, is poorly sorted ash with scattered lapilli, ash pellets, and cored lapilli. The axes of Units 1 and 2 are oriented NE, while that of Unit 3 has two lobes, one NE and the other east-south-east (ESE), recording a wind shift during Unit 3 deposition. Infrared satellite imagery show a NE-directed plume at 21:45 UTC July 12 and an ESE plume 14:00 UTC July 13, the first visible wind shift during the eruption. A column sufficient to carry the large clasts in Unit 3 was present during July 12-13, not later in the eruption, so this wind shift places the timing of Unit 3 deposition between 21:45 UTC July 12 and 14:00 UTC July 13. Wind direction during the rest of the eruption, as seen in infrared satellite images, varied, sending most plumes NE, E, and SE, with southwest-directed plumes on July 30-August 4. Deposits above Units 1-3 within 7 km of vents are dominated by fine and medium ash with several distinct structures. Facies include layers (cm-dm thick) of 2-6-mm pellets of fine ash, medium ash

  8. Numerical Modeling of Sound from the Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Park, M.; Dziak, R. P.; Byun, S.; Fox, C. G.; Matsumoto, H.

    2003-12-01

    NOAA VENTS Program deployed an array of five autonomous underwater hydrophones within the SOFAR channel along the Mariana chain in February 2003 to monitor seafloor volcanic eruptions and submarine earthquakes (sponsored by NOAA's Ocean Exploration Program). These five hydrophones will be recovered in September 2003 using KORDI R/V Onnuri. The first historical eruption of Anatahan volcano in the Mariana Islands began on 10 May 2003. It is expected that the hydrophone data will include the hydroacoustic records of the eruption of Anatahan Volcano. The signals recorded from the eruption will be numerically modeled using a T-wave excitation mechanism developed from the mode scattering theory of Park et al. (2001). They found that scattering from the rough seabottom converts the acoustic energy of seafloor earthquakes from the directly excited ocean crustal/water column modes to the propagating acoustic modes of T-waves, and developed an algorithm to numerically model oceanic earthquake's T-waves. We modified this numerical model of Park et al. (2001) to predict the T-waves generated from volcanic sources by adopting a buried magmatic pipe model (Chouet, 1985). We derived a moment-tensor representation of a volcano-seismic source that is governed by the geometry of the source and the physical properties of magma. Numerical modeling of the sound from the eruption requires us to determine governing factors such as the pipe radius and magma viscosity that will enable us to grasp the inward nature of Anatahan volcano.

  9. Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands.

    PubMed

    Zaczek, Kirsten; Troll, Valentin R; Cachao, Mario; Ferreira, Jorge; Deegan, Frances M; Carracedo, Juan Carlos; Soler, Vicente; Meade, Fiona C; Burchardt, Steffi

    2015-01-01

    The origin and life cycle of ocean islands have been debated since the early days of Geology. In the case of the Canary archipelago, its proximity to the Atlas orogen led to initial fracture-controlled models for island genesis, while later workers cited a Miocene-Quaternary east-west age-progression to support an underlying mantle-plume. The recent discovery of submarine Cretaceous volcanic rocks near the westernmost island of El Hierro now questions this systematic age-progression within the archipelago. If a mantle-plume is indeed responsible for the Canaries, the onshore volcanic age-progression should be complemented by progressively younger pre-island sedimentary strata towards the west, however, direct age constraints for the westernmost pre-island sediments are lacking. Here we report on new age data obtained from calcareous nannofossils in sedimentary xenoliths erupted during the 2011 El Hierro events, which date the sub-island sedimentary rocks to between late Cretaceous and Pliocene in age. This age-range includes substantially younger pre-volcanic sedimentary rocks than the Jurassic to Miocene strata known from the older eastern islands and now reinstate the mantle-plume hypothesis as the most plausible explanation for Canary volcanism. The recently discovered Cretaceous submarine volcanic rocks in the region are, in turn, part of an older, fracture-related tectonic episode. PMID:25609055

  10. Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands

    PubMed Central

    Zaczek, Kirsten; Troll, Valentin R.; Cachao, Mario; Ferreira, Jorge; Deegan, Frances M.; Carracedo, Juan Carlos; Soler, Vicente; Meade, Fiona C.; Burchardt, Steffi

    2015-01-01

    The origin and life cycle of ocean islands have been debated since the early days of Geology. In the case of the Canary archipelago, its proximity to the Atlas orogen led to initial fracture-controlled models for island genesis, while later workers cited a Miocene-Quaternary east-west age-progression to support an underlying mantle-plume. The recent discovery of submarine Cretaceous volcanic rocks near the westernmost island of El Hierro now questions this systematic age-progression within the archipelago. If a mantle-plume is indeed responsible for the Canaries, the onshore volcanic age-progression should be complemented by progressively younger pre-island sedimentary strata towards the west, however, direct age constraints for the westernmost pre-island sediments are lacking. Here we report on new age data obtained from calcareous nannofossils in sedimentary xenoliths erupted during the 2011 El Hierro events, which date the sub-island sedimentary rocks to between late Cretaceous and Pliocene in age. This age-range includes substantially younger pre-volcanic sedimentary rocks than the Jurassic to Miocene strata known from the older eastern islands and now reinstate the mantle-plume hypothesis as the most plausible explanation for Canary volcanism. The recently discovered Cretaceous submarine volcanic rocks in the region are, in turn, part of an older, fracture-related tectonic episode. PMID:25609055

  11. Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands

    NASA Astrophysics Data System (ADS)

    Zaczek, Kirsten; Troll, Valentin R.; Cachao, Mario; Ferreira, Jorge; Deegan, Frances M.; Carracedo, Juan Carlos; Soler, Vicente; Meade, Fiona C.; Burchardt, Steffi

    2015-01-01

    The origin and life cycle of ocean islands have been debated since the early days of Geology. In the case of the Canary archipelago, its proximity to the Atlas orogen led to initial fracture-controlled models for island genesis, while later workers cited a Miocene-Quaternary east-west age-progression to support an underlying mantle-plume. The recent discovery of submarine Cretaceous volcanic rocks near the westernmost island of El Hierro now questions this systematic age-progression within the archipelago. If a mantle-plume is indeed responsible for the Canaries, the onshore volcanic age-progression should be complemented by progressively younger pre-island sedimentary strata towards the west, however, direct age constraints for the westernmost pre-island sediments are lacking. Here we report on new age data obtained from calcareous nannofossils in sedimentary xenoliths erupted during the 2011 El Hierro events, which date the sub-island sedimentary rocks to between late Cretaceous and Pliocene in age. This age-range includes substantially younger pre-volcanic sedimentary rocks than the Jurassic to Miocene strata known from the older eastern islands and now reinstate the mantle-plume hypothesis as the most plausible explanation for Canary volcanism. The recently discovered Cretaceous submarine volcanic rocks in the region are, in turn, part of an older, fracture-related tectonic episode.

  12. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    NASA Astrophysics Data System (ADS)

    Banks, Norman G.; Koyanagi, Robert Y.; Sinton, John M.; Honma, Kenneth T.

    1984-10-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10°E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 × 10 6 m 3 in volume (75 × 10 6 m 3 of magma) on land and at least 70-100 × 60 6 m 3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in

  13. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    USGS Publications Warehouse

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  14. 75 FR 4491 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY... mackerel in the Eastern Aleutian District and the Bering Sea subarea of the Bering Sea and Aleutian Islands... necessary to fully use the 2010 A season total allowable catch (TAC) of Atka mackerel in these...

  15. 78 FR 42023 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... under Sec. 679.2(d)(1)(iii) on June 11, 2013 (78 FR 35771, June 14, 2013). As of July 8, 2013, NMFS has... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY... mackerel in the Central Aleutian district (CAI) of the Bering Sea and Aleutian Islands Management...

  16. The May 2010 submarine eruption from South Sarigan seamount, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Neal, C. A.; Searcy, C. K.; Camacho, J. T.; Aydlett, W. B.; Embley, R. W.; Trusdell, F.; Paskievitch, J. F.; Schneider, D. J.

    2010-12-01

    A sudden submarine explosive eruption occurred on May 29, 2010, from a seamount south of Sarigan Island in the Northern Mariana Islands, propelling a diffuse steam and ash cloud to high altitude. Pre-eruptive seismicity was recorded in early April by stations located on Sarigan and Anatahan Island, 42 km to the south, and indicated a source ~12-16 km south of Sarigan. On May 27-28, a change in seismicity—the appearance of tremor-like waveforms—may have marked the onset of volcanic activity. Also on May 27, an elongate patch of discolored ocean water and possible light-colored floating debris about 8-11 km south of Sarigan was observed from a helicopter. This material was likely produced during low-intensity eruptive activity, and an Information Statement from the Commonwealth of the Northern Mariana Islands (CNMI) Emergency Management Office (EMO) and USGS issued at 2353 UTC May 28 described the observation. The Guam Weather Forecast Office of the National Weather Service reported that the area of discoloration, visible on satellite images at 2313 and 2330 UTC on May 28, was about 10 km2, about twice the size of Sarigan Island. Pulses of tremor merged into a nearly continuous signal by 0305 UTC on May 29, lasting for ~4.5 hours followed by nearly 4.5 hours of quiescence. The EMO issued a declaration closing the region south of Sarigan to all local boating traffic and issued an advisory to aircraft. The explosive onset of the main plume-producing event occurred at ~1148 UTC as confirmed by seismic records on Anatahan Island, with the strongest phase ending ~1200 UTC. Soon after, the Washington Volcanic Ash Advisory Center reported an eruption cloud reaching an estimated 40,000 feet (12 km) ASL that diminished rapidly on satellite imagery suggesting it was water-vapor dominated. Winds carried the cloud southwest over Guam, and although no ash fall was reported, the cloud was visible and was detected in Aura/OMI aerosol index imagery. Biologists on Sarigan Island

  17. Geothermal resource assessment in the Aleutian Islands and Alaska peninsula: Quarterly progress report, January 1--March 30, 1989

    SciTech Connect

    Turner, D.L.; Nye, C.J.

    1989-03-30

    In this report the authors have now completed dating work on 20 rock samples. Analytical results for the dated samples are given in the enclosed table. The results are generally in good agreement with observed stratigraphic relationships and provide a well-constrained time framework for the eruptive history of this volcanic area. The argon extraction and potassium analyses are completed and the argon sample is awaiting mass spectrometry. In addition to documenting the eruptive history of Umnak volcanoes, the K-Ar ages will provide a time framework for the chemical evolution of the magmatic system, when combined with the rock chemistry analyses presently in progress at U.C., Santa Cruz. 1 tab.

  18. Post 19 ka B.P. eruptive history of Ulleung Island, Korea, inferred from an intra-caldera pyroclastic sequence

    NASA Astrophysics Data System (ADS)

    Kim, G. B.; Cronin, S. J.; Yoon, W. S.; Sohn, Y. K.

    2014-04-01

    Ulleung Island is a Quaternary volcanic island located in the mid-western part of the East Sea (Sea of Japan) back-arc basin, which has erupted from the Pliocene until the late Holocene. This study focuses on reconstructing the latest eruptive history of the island by describing the sedimentological and stratigraphic characteristics of the most recent, trachytic/phonolitic pyroclastic sequence, named the Nari Tephra Formation. This formation is preserved as a succession of unwelded pyroclastic and epiclastic deposits within an embayed margin of the Nari Caldera. The embayment acted as a topographic trap for proximal pyroclastic deposits, and contains a complete record of the past 19,000 years of eruption history. The formation includes evidence for five separate eruptive episodes (Member N-1 to N-5), with intervening weathered and/or soil horizons indicating hundreds to thousands of years of repose between each eruption. Eruption styles and depositional mechanisms varied between and during individual episodes, reflecting changing dynamics of the magma plumbing system, magmatic gas coupling, and a variable role of external water. Extra-caldera sequences show that only a few of these eruptions generated sustained eruption columns or pyroclastic density currents (PDCs) large enough to overtop the caldera wall. Thus tephra sequences outside the caldera provide an underestimate of eruption frequency, and care needs to be taken in the interpretation and correlation to distal tephra sequences recognized in marine and terrestrial records. In addition, topographic effects of caldera structures should be considered for the assessment of PDC-related hazards in such moderately sized pyroclastic eruptions.

  19. Spatio-temporal occurrence of eruptions in El Hierro (Canary Islands). Sequential steps for long-term volcanic hazard assessment.

    NASA Astrophysics Data System (ADS)

    Becerril, Laura; Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan; María Morales, José; Galindo, Inés; Geyer, Adelina

    2014-05-01

    Long term volcanic hazard assessment requires the attainment of several sequential steps, including the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios to get qualitative and representative results. Volcanic hazard assessment has not been yet systematically conducted in the Canary Islands, in spite of being a densely populated active volcanic region that receives millions of visitors per year. In this paper we focus our attention on El Hierro, the youngest and latest island affected by an eruption in the Canary Islands. We analyze the past eruptive activity (how), the spatial probability (where), and the temporal probability (when) on the island. Looking at the past eruptive behavior of the island, and assuming future eruptive patterns will be similar, we try to identify the most likely set of volcanic scenarios and corresponding hazards that could occur in the future (eg. lava flows, pyroclastic fallout, and pyroclastic density currents) and estimate their probability of occurrence. The final result shows the first volcanic hazard map of the island. This study represents a step forward in the evaluation of long term volcanic hazard at El Hierro Island with regard to previous studies. The obtained results should represent the main pillars on which to build risk mitigation programs as it is required for territorial planning and to develop emergency plans. This research was partially funded by IGME, CSIC and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO"), and MINECO grant GL2011-16144-E.

  20. Chronology of the 2014 volcanic eruption on the island of Fogo, Cape Verde

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Cardoso, Nadir; Alfama, Vera; Cabral, Jeremias; Semedo, Helio; Pérez, Nemesio M.; Dionis, Samara; Hernández, Pedro A.; Barrancos, José; Melián, Gladys V.; Pereira, José Manuel; Rodríguez, Fátima

    2015-04-01

    Twenty seven historical eruptions have ocurred at Fogo Island since its discovery and settlement (Ribeiro, 1960; Torres et al., 1997). This summary covers the events of the 27th eruption, which started on November 23, 2014, in Cha das Caldeiras, Fogo Island, along a NNE-SSW fissure on the east flank of the 1995 Pico Novo vent with the appearance of four eruptive vents and emissions of gases, pyroclastic rocks and lava. The eruptive column reached an estimated altitude of 6000 m, with aa lavas spilled over and ash fall in Cha das Caldeiras and other locations in the islands of Fogo and Brava (which lies 17km from Fogo). The Hawaiian style fissural stage originated about seven craters with gas and lava emission, that formed two lava flows of aa and pahoehoe style who started the destruction of Portela village, with average speeds of 1-3 meters/hour to 8-10 meters/hour with faster paces up to 1 meter/3 minutes, with thicknesses ranging between 1.5 meters to 10 meters, and temperatures of around 800 ° C. The Strombolian stage, gave rise to a main crater (from the coalescence of small craters) and three small craters or emmision vents, which released aa lava flows with development of lava fronts from one or two lava tubes at the base of the volcanic cone which also reached maximum lengths of 300 to 500 meters at estimated speeds of 20-30 meters/minute to 8-10 meters/minute, that destroyed the Portela and Bangaeira villages. Loud explosions and strong rumbling was also heard at the eruption site. A pahoehoe lava flow developed to the Ilhéu de Losna site, at an average speed of 1 meter/2minutes and a width of about 3 m which was divided into two fronts (north and south of this location) having buried all crop fields (vineyards and other crops) and some houses. The eruption is ongoing in the main vent, with the emission of gases and ash (dark color fumaroles), scorias, spatter and ballistics up to 30-40 feet high, forming eruptive columns with height of 200-1000 meters

  1. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    PubMed Central

    Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  2. Deformation associated with the 1997 eruption of Okmok volcano, Alaska

    USGS Publications Warehouse

    Mann, Dorte; Freymueller, Jeffrey T.; Lu, Zhiming

    2002-01-01

    Okmok volcano, located on Umnak Island in the Aleutian chain, Alaska, is the most eruptive caldera system in North America in historic time. Its most recent eruption occurred in 1997. Synthetic aperture radar interferometry shows deflation of the caldera center of up to 140 cm during this time, preceded and followed by inflation of smaller magnitude. The main part of the observed deformation can be modeled using a pressure point source model. The inferred source is located between 2.5 and 5.0 km beneath the approximate center of the caldera and ???5 km from the eruptive vent. We interpret it as a central magma reservoir. The preeruptive period features inflation accompanied by shallow localized subsidence between the caldera center and the vent. We hypothesize that this is caused by hydrothermal activity or that magma moved away from the central chamber and toward the later vent. Since all historic eruptions at Okmok have originated from the same cone, this feature may be a precursor that indicates an upcoming eruption. The erupted magma volume is ???9 times the volume that can be accounted for by the observed preeruptive inflation. This indicates a much longer inflation interval than we were able to observe. The observation that reinflation started shortly after the eruption suggests that inflation spans the whole time interval between eruptions. Extrapolation of the average subsurface volume change rate is in good agreement with the long-term eruption frequency and eruption volumes of Okmok.

  3. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano)

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Dingwell, Donald B.

    2015-09-01

    Vigorous hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions occur at Whakaari (White Island volcano), New Zealand. Here, we investigate the influence of sample type (hydrothermally altered cemented ash tuffs and unconsolidated ash/lapilli) and fragmentation mechanism (steam flashing versus gas expansion) on fragmentation and ejection velocities as well as on particle-size and shape. Our rapid decompression experiments show that fragmentation and ejection speeds of two ash tuffs, cemented by alunite and amorphous opal, increase with increasing porosity and that both are significantly enhanced in the presence of steam flashing. Ejection speeds of unconsolidated samples are higher than ejection speeds of cemented tuffs, as less energy is consumed by fragmentation. Fragmentation dominated by steam flashing results in increased fragmentation energy and a higher proportion of fine particles. Particle shape analyses before and after fragmentation reveal that both steam flashing and pure gas expansion produce platy or bladed particles from fracturing parallel to the decompression front. Neither fragmentation mechanisms nor sample type show a significant influence on the shape. Our results emphasize that, under identical pressure and temperature conditions, eruptions accompanied by the process of liquid water flashing to steam are significantly more violent than those driven simply by gas expansion. Therefore, phase changes during decompression and cementation are both important considerations for hazard assessment and modeling of eruptions in hydrothermally active environments.

  4. Cone morphologies associated with shallow marine eruptions: east Pico Island, Azores

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.; Stretch, Rachelle; Oppenheimer, Clive; Kay, Daniel; Beier, Christoph

    2012-12-01

    Eruptions in shallow water typically produce cones of volcaniclastic material. In order to identify any systematic effects of water depth and other environmental parameters on cone morphology, we have measured the heights and widths of cones in multibeam echo-sounder data from a submarine ridge extending southeast from Pico Island, Azores. XRF analyses of dredged samples show that lavas here vary compositionally from alkali basalt to trachybasalt and trachyandesite. Cones in deeper water are generally steep-sided with upper flanks close to 30°, the dip of talus at the angle of repose. However, height/width ratios of cones vary more in shallow water (200-400-m summit depth) with extreme values below 0.1; while some shallow-water cones are steep-sided as in deep water, others are much flatter. Three such cones lie on a bench at 300-m depth immediately east of Pico Island and have flank slopes of only 10-20°. We speculate that exceptionally shallow cone slopes here were produced by forced spreading of the erupting columns on reaching the water-air density barrier.

  5. Petrological insights into the 1976-2000 eruption episode of White Island, New Zealand: an eruption fuelled by repeated mafic recharge

    NASA Astrophysics Data System (ADS)

    Kilgour, Geoff; Moune, Severine; Della Pasqua, Fernando; Christenson, Bruce

    2016-04-01

    White Island is a partially submerged volcano located ~ 50 km to the NE of North Island, New Zealand. It is New Zealand's most active volcano and the island is a popular tourist destination. Surprisingly, little is known about the magmatic processes that led to historical eruptions given the potential vulnerability of tourists and its high level of historical activity. In addition, the volcano has been monitored with an array of methods since 1967; from geodetic surveying techniques to geochemical analyses of fluids and gases. Access to an excellent sample record has allowed us to examine a temporal record of magmatic processes, through the careful analysis of scoria clasts. We have then been able to compare apparent timescales of magmatic events to monitored signals. In this work we examine an extended eruptive episode (1976-2000) in order to determine the causes of signals produced throughout this sequence. Previous petrological and geophysical analysis of the 1976-2000 eruptive episode suggested that magma resided at a very shallow depth (i.e., ~ 500 m) for extended periods. This was primarily based on the focussed deformation signal and the low H2O (< 0.5 wt %) contents of phenocryst-hosted melt inclusions. We have examined a suite of samples during that eruption episode and analysed melt inclusions, groundmass glass and all major mineral phases. We find that throughout the eruption episode, mafic injections have occurred at least 5 times. Evidence of these mafic injections includes mingled groundmass glass (mafic and dacitic) in the early part of the sequence, with euhedral olivine present in the mafic portion, and variably resorbed olivine phenocrysts in distinct scoria through time. Our analysis of phenocryst-hosted melt inclusions exhibits a range in the H2O contents (between 0 and ~ 3 wt %) using the volatiles by difference method. Furthermore, when we compare the composition of the phenocryst rims and the groundmass glass with petrological modelling, it

  6. Precursory diffuse CO2 emission signature of the 2011 El Hierro submarine eruption, Canary Islands

    NASA Astrophysics Data System (ADS)

    Pérez, N. M.; Padilla, G. D.; Padrón, E.; Hernández, P. A.; Melián, G. V.; Barrancos, J.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Calvo, D.; Hernández, I.; Peraza, M. D.

    2012-04-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 on 10 October, followed on the afternoon of 12 October by a green discolouration of seawater, strong bubbling and degassing, and abundant bombs on a decimetre scale found floating on the ocean surface offshore, southwest of La Restinga village, indicating the occurrence of a submarine volcanic eruption at approximately 2 km far the coast line of La Restinga. Further episodes have occurred during November, December 2011 and January 2012, with turbulent water, foam rings, and volcanic material again reaching the sea surface. In order to improve the volcanic surveillance program of El Hierro Island and to provide a multidisciplinary approach, a continuous geochemical station to measure CO2 efflux was installed on September 2003 in Llanos de Guillen, the interception center of the three volcanic-rift zones of the island, with the aim of detecting changes in the diffuse emission of CO2 related to the seismic or volcanic activity. The station measures on an hourly basis the CO2 and H2S efflux, the CO2 and H2S air concentrations, the soil water content and temperature and the atmospheric parameters: wind speed and direction, air temperature and humidity and barometric pressure. The meteorological parameters together with the air CO2 concentration are measured 1 m above the ground and the soil water content and soil temperature

  7. Hydroacoustic Records of the First Historical Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Dziak, R.; Park, M.; Matsumoto, H.; Fox, C.; Byun, S.; Fowler, M.; Haxel, J.; Embley, R.

    2003-12-01

    For the past decade, NOAA/Pacific Marine Environmental Laboratory has monitored volcano-seismic activity from western Pacific island-arc volcanoes using an array of U.S. Navy hydrophones (called SOSUS) deployed at fixed locations throughout the North Pacific Ocean. SOSUS hydrophones are mounted within the SOFAR channel and record the hydroacoustic tertiary phase or T-wave of oceanic earthquakes from throughout the Pacific basin. Since acoustic T-waves obey cylindrical energy attenuation as opposed to the spherical attenuation of solid-earth seismic phases, sound channel hydrophones can detect often smaller and therefore more numerous earthquakes than land-based seismic networks. This property allowed for the detection of harmonic tremor from a submarine volcano in the Volcano Islands on hydrophones >14,000 km away in the eastern Pacific. The first historical eruption of Anatahan Volcano appears to have started (from satellite imagery) at 1730Z on 10 May, with an ash plume visible by 2232Z (BGVN, 5 May 2003). Records from a broadband seismometer deployed on nearby ( ˜6.5 km) Sarigan Island indicate earthquake activity increased at about 1300Z on 10 May (D. Weins, pers com). SOSUS hydrophones in the western Pacific ( ˜4000 km distant) also recorded increased earthquake activity at 1300Z on 10 May as well as continuous, low-frequency (<10 Hz) energy (possible volcanic tremor) that began about a day before the seismicity. The earthquakes and tremor were detected on only two SOSUS hydrophones and therefore it was not possible to estimate their source location. The arrival azimuth of the signals were, however, consistent with a source in the Mariana Islands. To complement the SOSUS hydrophone array coverage in the western Pacific Ocean, an array of five autonomous hydrophones were deployed in February 2003 (sponsored by NOAA's Ocean Exploration Program) within the SOFAR channel along the active island- and back-arc of the Mariana Islands. All five hydrophones (1-110 Hz

  8. The 2003 eruption of Anatahan volcano, Commonwealth of the Northern Mariana Islands: Chronology, volcanology, and deformation

    USGS Publications Warehouse

    Trusdell, F.A.; Moore, R.B.; Sako, M.; White, R.A.; Koyanagi, S.K.; Chong, R.; Camacho, J.T.

    2005-01-01

    The first historical eruption on Anatahan Island occurred on 10 May 2003 from the east crater of the volcano. The eruption was preceded by several hours of seismicity. Two and a half hours before the outbreak, the number of earthquakes surged to more than 100 events per hour. At 0730 UTC, the Washington Volcanic Ash Advisory Center issued an ash advisory. Although the eruption lasted for 3 months, the majority of erupted material was expelled during the first 2 weeks. The opening episode of the eruption resulted in a deposit of juvenile scoria and lithic clasts, the latter derived from geothermally altered colluvial fill from the vent area. The opening episode was followed by crater enlargement and deepening, which produced deposits of coarse, reddish-brown ash containing a mixture of juvenile and lithic clasts. The third episode of the eruption produced coarse ash and lapilli comprised of juvenile scoria and minor amounts of lithics. Plume heights were 4500 to 13,000 m for the initial three phases. The fourth episode, from about May 18 through early August, was characterized by smaller plume heights of 900 to 2400 m, and steam was the dominant component. Minor amounts of coarse ash and accretionary-lapilli ash comprise most of the deposits of the fourth episode, although ballistic blocks and bombs of andesite lava are also locally present. These andesite blocks were emplaced by an explosion on 14 June, which destroyed a small lava dome extruded during the first week of June. Activity waned as the summer progressed, and subsequent ash deposits accumulated in July and early August, by which time the eruption had effectively ended. In September and October, degassing and geothermal activity continued, characterized by small geysers, boiling water, and jetting steam. Noteworthy deviations from this activity were a surge event in late May-early June and the destruction of the lava dome on 14 June. We calculated on-land tephra-fall deposits to have a bulk volume of

  9. At-sea observations of marine birds and their habitats before and after the 2008 eruption of Kasatochi volcano, Alaska

    USGS Publications Warehouse

    Drew, G.S.; Dragoo, D.E.; Renner, M.; Piatt, J.F.

    2010-01-01

    Kasatochi volcano, an island volcano in the Aleutian chain, erupted on 7-8 August 2008. The resulting ash and pyroclastic flows blanketed the island, covering terrestrial habitats. We surveyed the marine environment surrounding Kasatochi Island in June and July of 2009 to document changes in abundance or distribution of nutrients, fish, and marine birds near the island when compared to patterns observed on earlier surveys conducted in 1996 and 2003. Analysis of SeaWiFS satellite imagery indicated that a large chlorophyll-a anomaly may have been the result of ash fertilization during the eruption. We found no evidence of continuing marine fertilization from terrestrial runoff 10 months after the eruption. At-sea surveys in June 2009 established that the most common species of seabirds at Kasatochi prior to the eruption, namely crested auklets (Aethia cristatella) and least auklets (Aethia pusilla) had returned to Kasatochi in relatively high numbers. Densities from more extensive surveys in July 2009 were compared with pre-eruption densities around Kasatochi and neighboring Ulak and Koniuji islands, but we found no evidence of an eruption effect. Crested and least auklet populations were not significantly reduced by the initial explosion and they returned to attempt breeding in 2009, even though nesting habitat had been rendered unusable. Maps of pre- and post-eruption seabird distribution anomalies indicated considerable variation, but we found no evidence that observed distributions were affected by the 2008 eruption. ?? 2010 Regents of the University of Colorado.

  10. Coccidia of Aleutian Canada geese

    USGS Publications Warehouse

    Greiner, E.C.; Forrester, Donald J.; Carpenter, J.W.; Yparraguirre, D.R.

    1981-01-01

    Fecal samples from 122 captive and 130 free-ranging Aleutian Canada geese (Branta canadensis leucopareia) were examined for oocysts of coccidia. Freeranging geese sampled on the spring staging ground near Crescent City, California were infected with Eimeria hermani, E. truncata, E. magnalabia, E. fulva, E. clarkei and Tyzzeria parvula. Except for E. clarkei, the same species of coccidia were found in geese on their breeding grounds in Alaska. Most of the coccidial infections in captive geese from Amchitka Island, Alaska and Patuxent Wildlife Research Center, Maryland, consisted of Tyzzeria.

  11. Observations and sampling of an ongoing subsurface eruption of Kavachi volcano, Solomon Islands, May 2000

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.; de Ronde, Cornel E. J.; Lupton, John E.; McInnes, Brent I. A.

    2002-11-01

    A serendipitous encounter with an erupting, shallow submarine volcano in the Solomon Islands provided a rare opportunity to map and sample the dispersal of volcanogenic emissions into the surrounding water column. Kavachi, episodically active since at least 1939, is a forearc volcano located on the Pacific plate only ˜30 km northeast of its convergent boundary with the downgoing Indo-Australian plate. During 14 May 2000 we observed explosive phreatomagmatic eruptions at several minute intervals, creating a complex distribution of plumes of volcanic glass shards throughout the water column at a distance of ˜1.5 km from the summit. At distances of 4 5 km, shallow-water (<250 m) plumes had dissipated, but deeper plumes were ubiquitous down to seafloor depths of 1500 m. Only 2 of 22 water samples (at 14 and 237 m depth) showed evidence of hydrothermal and magmatic enrichment. These samples were elevated in δ3He, Fe, and Mn (one sample only), but not in CO2. We infer that the volcano flanks were essentially impermeable to fluid emissions and that the observed particle halo was created by magma shattering and resuspension. Most magmatic and hydrothermal fluids were thus discharged directly from the summit into the atmosphere.

  12. Insights into Magma Evolution in the Islands of the Four Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Fulton, A. A.; Izbekov, P. E.; Nicolaysen, K. P.

    2015-12-01

    The Islands of the Four Mountains (IFM) is a group of small volcanoes in the central region of Alaska's Aleutian island arc. There are few studies of this remote group of islands despite their rich archeological history and diverse eruptive histories. This study focuses on silicic deposits from the IFM to shed light on the area's history of large explosive eruptions and the IFM's chemical relationship to the rest of the central Aleutian Islands. This study applies whole rock geochemistry, detailed petrographic analysis, and electron microprobe analysis to samples of volcanic deposits from Tana, Cleveland, Carlisle, and Herbert volcanoes, including the first documented ignimbrite deposit in the IFM, found on northern Tana. The IFM lavas range from basaltic to dacitic and follow typical island arc and calc-alkaline chemical trends, providing evidence of high aqueous fluid input to the mantle wedge, as well as varying levels of influence from subducted sediments. Tana, the largest (~12 km2) and most siliceous of the IFM volcanoes, expresses anomalies in K and Rb concentrations that may aid in the refinement of the continental-oceanic crust boundary location along the Aleutian arc. Plagioclase phenocryst disequilibrium textures and compositions provide evidence of mixing and recharge in the IFM magma chambers. Multiple plagioclase phenocryst populations, euhedral pyroxene crystals in disequilibrium with the melt, and angular xenolithic clasts in the Tana ignimbrite suggest a rapid mixing and heating event that triggered its large explosive eruption during the Pleistocene.

  13. Recolonization of the intertidal and shallow subtidal community following the 2008 eruption of Alaska's Kasatochi Volcano

    NASA Astrophysics Data System (ADS)

    Jewett, S. C.; Drew, G. S.

    2014-03-01

    The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.

  14. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  15. Temporal evolution of micro-eruptions within the crater lake of White Island (Whakaari) during January/February 2013

    NASA Astrophysics Data System (ADS)

    Edwards, Matt; Kennedy, Ben; Jolly, Art; Scheu, Bettina; Taddeucci, Jacopo; Jousset, Philippe; Schmid, Di

    2015-04-01

    Micro-eruptions are potentially modulated by hydrothermal systems and crater lakes but to date have not been well studied. In January/February 2013 White Island (Whakaari), New Zealand, experienced an about three week long period of atypical, frequent micro-eruptions within its crater lake. Many of these micro-eruptions were recorded by tour operators and GNS personnel monitoring the lake activity. Analysis of this video footage reveals an increasingly energetic eruption style. Deformation of the muddy lake surface by ascending bubbles begins as irregularly shaped bursts, producing liquid strings of mud ejected to heights of less than 10m at 10-15m/s. As the episode progresses, eruption frequency is maintained at semi-regular <10s intervals. Each eruption however starts with an increasingly hemispheric surface deformation ~6m in diameter, and bursts occur as "star-bursts" with ejection of less fluidal ash/mud clots. In addition, these bursts are commonly followed within 2s by a more vertical and energetic secondary ejection of material, which occasionally ejects through the deformed hemispheric surface up to >100m high, and reaches ejection velocities up to 45m/s. The period of frequent "star-bursts" is then followed by a two day phase of constant ~30-75m high ash ejection resulting in the formation of a tuff cone with a central open conduit of 6m within the former crater lake. We theorise that this behaviour is influenced by evolving bubble overpressure/volume, including the presence or absence of a trailing wake of smaller bubbles and is modulated over the eruption episode by the viscosity of the crater lake. In the early stages of the episode a lower viscosity lake provides little resistance to rising gas/ash mixtures. Bubble coalescence and/or overpressure development is therefore minimised, resulting in low energy bursts. Over the course of this episode the viscosity of the lake increases due to addition of ash from ash-carrying gas flux and fluid loss by

  16. Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Clarke, Hilary; Troll, Valentin R.; Carracedo, Juan Carlos

    2009-03-01

    Phreatomagmatic activity results from the interaction of magma and external water during a volcanic eruption and is a frequent eruptive phenomenon worldwide. Such 'fuel-coolant' reactions change the eruptive dynamics, thus generating particles that reflect the degree of explosivity. Different eruptive phases may thus be identified from deposits, allowing us to reconstruct conditions that prevailed in the past and use these to predict the level of explosivity in a given geological setting in the future. A detailed study of the deposits from Montaña Los Erales, a 70 m-high Quaternary cinder cone belonging to a rift-related chain of vents in the Bandas del Sur region, in Southeast Tenerife, was undertaken. Field observations on excavated sections and SEM analysis of tephra suggest that the eruption style changed progressively from an initial phreatomagmatic phase, through a transitional stage, to one that was entirely Strombolian. To investigate the causes and the nature of these changes in eruptive style, products from each major unit were analysed for their morphology using hand specimen observations, secondary electron microscopy, backscatter electron microscopy, and reflected light microscopy to examine fragment size variation, fragment morphologies, vesicularity, and the level of secondary hydrous alteration (e.g. palagonitisation and zeolitisation). Study results demonstrate that the initial phase of activity was largely driven by magma-water interaction, where magma may have interacted with a lens of fresh ground- or surface water. With proceeding eruptive activity the water became exhausted, giving rise to an entirely Strombolian eruptive style. Examples of phreatomagmatic activity that occur on typical rift-related basaltic vent alignments are not infrequent in the Canary Islands. These vent systems usually erupt in Strombolian fashion, producing scoria and lava flows that do not generally extend far beyond the vent area. However, aligned feeders may

  17. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Bhutani, Rajneesh; Kumar, Alok; Smitha, R. S.

    2009-11-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787-1832) and three recent eruptions (1991, 1994-95, 2005-06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994-95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.

  18. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  19. Preliminary Results on the 2015 Eruption of Wolf Volcano, Isabela Island, Galápagos: Chronology, Dispersion of the Volcanic Products, and Insight into the Eruptive Dynamics

    NASA Astrophysics Data System (ADS)

    Wright, H. M. N.; Bernard, B.; Ramon, P.; Guevara, A.; Hidalgo, S.; Pacheco, D. A.; Narváez, D.; Vásconez, F.

    2015-12-01

    After 33 years of quiescence, Wolf volcano, located in the northernmost tip of Isabela Island (Galápagos Islands, Ecuador), started a new eruption on May 25, 2015. The first signs of activity were recorded at 5:50 UTC (23:50 on May 24, Local Time in Galápagos) by a seismic station installed on Fernandina island. The first visual observation was reported at 7:38 UTC (1:38 LT). Based on amateur film footage, the vent was a >800 m-long circumferential fissure that produced a >100 m-high lava curtain. The eruption also released a 15 km-high gas plume with a large amount of SO2 and minimal ash content. Lightning was observed in the plume but not near the vent. Due to complex wind directions at high altitude, the gas cloud drifted in all directions eventually coming toward the continent and producing an extremely small ashfall in Quito that was detected only through the use of homemade ashmeters. The ash sample included lava droplets, scoria, and one small fragment of reticulite, indicating high lava fountaining during the first days of the eruption. The active vents on the circumferential fissure, initially located on the SE side of the caldera outer rim, moved progressively northward, eventually extending for a total of 2 km. One week later on June 02, satellite imagery (OMI, GOME, MODIS) documented decreased volcanic activity, leaving two new lava fields covering over 17 km2 on the SE (10 km-long and up to 2 km-wide) and E (7 km-long and up to 1 km-wide, reaching the sea) flanks of the volcano. Volcanic activity resumed on June 11, and on June 13 it shifted into the caldera, apparently emerging from a fissure close to the vent from the 1982 eruption, about 4 km W of the circumferential fissure. This new lava flow covered approximately 3.5 km2 of the caldera floor. Finally, volcanic activity waned at the end of June and appeared to have ended by July 11, accounting for one of the largest eruptions in the Galápagos since 1968 based on remote sensing.

  20. Material culture across the Aleutian archipelago.

    PubMed

    Hatfield, Virginia L

    2010-12-01

    The material evidence from sites across the Aleutian Islands reflects colonization events, subsequent adaptations, and influxes of ideas and/or people from the east. The occurrence in the eastern Aleutians of bifacial technology around 7000 BP, of artifacts similar to the Arctic Small Tool tradition between 4000 and 3500 BP, and of slate and jet objects around 1000 BP reflects repeated surges of influence or movement of peoples from further east into the eastern end of the chain. In the central and western Aleutians, influence or perhaps colonization from east of the Aleutians is also marked by the occurrence of bifacial technology about 6500 BP and the appearance of slate artifacts after 1000 BP, suggesting the movement of ideas or people from further east. Basic trends across the archipelago include a decrease in formal chipped-stone tools, an increase in the use and the complexity of bone technology, and the increase in use and variety of ground-stone tools. In addition, increasing village site sizes and denser midden deposits are seen later in time throughout the archipelago. The similarity in sites and assemblages, albeit with regional variations, reflects trends that are seen across the chain and indicates that these island communities were not isolated from one another or from mainland Alaska. PMID:21417883

  1. Runoff process in the Miyake-jima Island after Eruption in 2000

    NASA Astrophysics Data System (ADS)

    Tagata, Satoshi; Itoh, Takahiro; Miyamoto, Kuniaki; Ishizuka, Tadanori

    2014-05-01

    Hydrological environment in a basin can be changed completely due to volcanic eruption. Huge volume of tephra was yielded due to eruptions in 2000 in the Miyake-jima Island, Japan. Hydrological monitoring was conducted at four observation sites with several hundred m2 in a basin. Those were decided by the distribution of thickness and the grain size of the tephra. Rainfall intensity was measured by a tipping bucket type raingauge and flow discharge was calculated by the over flow depth in a flow gauging weir in the monitoring. However, the runoff rate did not relate to the grain size of tephra and the thickness of tephra deposition, according to measured data of rainfall intensity and runoff discharge. Supposing that if total runoff in one rainfall event is equal to the summation of rainfall over a threshold, the value of the threshold must be the loss rainfall intensity, the value of the threshold corresponds to the infiltration for the rainfall intensity. The relationships between loss rainfall intensity and the antecedent precipitation are calculated using measured rainfall and runoff data in every rainfall event, focusing on that the antecedent precipitation before occurrence of surface runoff approximately corresponds to the water contents under the slope surface. In present study, the results obtained through data analyses are summarized as follows: (1) There are some values for the threshold values, and the loss rainfall intensity approaches to some constant value if the value of the antecedent precipitation increases. The constant value corresponds to the saturated infiltration. (2) The loss rainfall intensity must be vertical unsaturated infiltration, and observed data for water runoff can express that the runoff is given by the excess rainfall intensity more than the loss rainfall intensity. (3) There are two antecedent times for rainfall with several hours and several days, and the saturation ratio before antecedent time at four observation sites can be

  2. Evidence for a Great Aleutian Paleotsunami on Kaua`i

    NASA Astrophysics Data System (ADS)

    Butler, R.; Bai, Y.; Burney, D. A.; Cheung, K.; Yamazaki, Y.

    2013-12-01

    The Hawaiian Islands location amid the Pacific Ocean is threatened by tsunamis from great earthquakes in nearly all directions. Historical great earthquakes Mw>8.5 in the last 100 years have produced large inundations and loss of life in the Islands, but have not accounted for a substantial (>100 m^3) paleotsunami deposit in the Makauwahi sinkhole at Maha`ulepu on the Island of Kaua`i. High-resolution, digital elevation models of bathymetry and topography have been used in conjunction with a non-linear, hydrostatic tsunami model to simulate inundations from giant earthquakes in the Aleutian Islands and elsewhere to estimate the extent of tsunami threats to the State of Hawaii. We model the inundation of the sinkhole by an earthquake with a minimum moment-magnitude of Mw 9.2 located within the eastern Aleutians, where the tsunami energy is focused toward Hawaii. An alternative hypothesis wherein the deposit entered through a small cave entrance is not consistent with fine speleothems, intact in the cave, that pre-date the deposit. The results indicate that a giant earthquake in the eastern Aleutian Islands circa 1425-1665 AD, located between the source regions of the 1946 and 1957 great tsunamigenic earthquakes, generated a tsunami in Hawaii much larger than the historical record. A tsunami deposit in the Aleutians dated circa ~1550 AD is consistent with this eastern Aleutian source region.

  3. The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Réunion Island) from tilt analysis at a single very broadband seismic station

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice R.; Roult, Geneviève; Michon, Laurent; Barruol, Guilhem; Muro, Andrea Di

    2014-04-01

    Seismic records from La Réunion Island very broadband Geoscope station are investigated to constrain the link between the 2007 eruptive sequence and the related caldera collapse of the Piton de la Fournaise volcano. Tilt estimated from seismic records reveals that the three 2007 eruptions belong to a single inflation-deflation cycle. Tilt trend indicates that the small-volume summit eruption of 18 February occurred during a phase of continuous inflation that started in January 2007. Inflation decelerated 24 days before a second short-lived, small-volume eruption on 30 March, almost simultaneous with a sudden, large-scale deflation of the volcano. Deflation rate, which had stabilized at relatively low level, increased anew on 1 April while no magma was erupted, followed on 2 April by a major distal eruption and on 5 April by a summit caldera collapse. Long-term tilt variation suggests that the 2007 eruptive succession was triggered by a deep magma input.

  4. Geochemical monitoring network at El Hierro (Canary Islands) before and during 2011 submarine eruption

    NASA Astrophysics Data System (ADS)

    Torres, P. A.; Meletlidis, S.; Luengo-Oroz, N.; Moure, D.; Rodero, C.; Villasante-Marcos, V.; Abella, R.; López, C.; Blanco, M. J.

    2012-04-01

    Since 17 July 2011 an important increase in the number of seismic events located in El Hierro (Canary Islands, Spain) was detected by the seismic network of the Instituto Geográfico Nacional (I.G.N.). This increment was interpreted as a precursory signal of a potential eruption, which in fact took place three months later (10th October 2011). In order to improve and complete the volcano monitoring network several geochemical parameters were measured since the beginning of the anomalous seismic activity. Measurements of CO2 diffuse flux through the soil were carried out in the major part of the island: the central zone, El Golfo (northern area) and the zone delimitated by the western rift. More than 450 measurements were accomplished during July, August, and September 2011. Analysis of the data revealed the existence of a spatial anomaly with relative high CO2 diffuse flux in the southwest part of the El Golfo area, close to the zone where the anomalous seismicity was located. This abnormal flux, almost aligned with the western limit of the seismic swarm, was not detected again in measurements accomplished on September in the same area. Between July and August, four geochemical stations were installed in three sub-horizontal galleries and in one well. Air and soil temperature were measured in all galleries and air 222Rn concentration was determined in the four stations. Two of the galleries were also equipped with a sensor in order to obtain measurements of CO2 concentration in the air. The sampling period for each parameter was established in ten minutes. Anomalous high 222Rn concentrations were detected in the station located in the well, apparently related to increases in the seismic accumulated energy and the GPS deformation rates. Taking into account the location of the earthquake epicentres and in order to study the evolution over the time of some physicochemical parameters of groundwater, four wells in the El Golfo area were regularly sampled since July 2011

  5. Recolonization of the intertidal and shallow subtidal community following the 2008 eruption of Alaska’s Kasatochi Volcano

    USGS Publications Warehouse

    Jewett, S.C.; Drew, Gary S.

    2014-01-01

    The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.

  6. Co-variation in Magma Compositions, Effusion rates and Seismic Tremor During the 2014-15 Eruption of Fogo volcano, Cape Verde Islands

    NASA Astrophysics Data System (ADS)

    Day, S. J.

    2015-12-01

    Magma compositions vary widely within many eruptions of ocean island volcanoes, particularly those in the Canaries and Cape Verde Islands. The 23 November 2014 to 7 February 2015 eruption of Fogo in the Cape Verde Islands was the first eruption in either the Canaries or the Cape Verdes to be monitored by multiple satellite instruments that measured infrared emissions of the eruption and so enabled continuous quantitative estimation of magma effusion rates and their variation through time. It is also the first eruption in the Cape Verdes for which seismic tremor intensity, indicative of magma ascent dynamics, was continuously recorded. Effusion rates were highest, peaking at about 20 m3/s, in the first five days of eruption but later asymptotic decay in effusion rate was interrupted around 9 and 16 December by pulses of increased effusion. Activity was mainly mildly explosive from December 31, accompanied by intensified seismic tremor. A final pulse of low-rate lava effusion occurred from 17 to 22 January. These data provide a new framework within which to relate compositional variations in the eruption to variations in magma ascent and effusion. We collected a suite of samples whose dates of emplacement have been determined from the date of incandescence of each sample site in high-resolution thermal infrared emissivity maps collected by satellite during the eruption. The samples are highly porphyritic and strongly alkaline in composition, as is typical of Fogo magmas. The first- (November 23/24) and last- (January) erupted magma batches show evidence for hybridization with more evolved magma batches, and the 9 and 16 December magma pulses may be distinct from the magma erupted during the main phase of the eruption. We present data on the samples that allow us to examine the hypothesis that the effusion rate variations were controlled by tapping of different parts of the magma reservoir or reservoirs during the eruption.

  7. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  8. Diffuse degassing He/CO2 ratio before and during the 2011-12 El Hierro submarine eruption, Canary Islands

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Padilla, Germán; Pérez, Nemesio M.; Dionis, Samara; Rodríguez, Fátima; Asensio-Ramos, María; Calvo, David

    2015-04-01

    El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island, culminating with the eruption onset in October 12. Since at El Hierro Islands there are not any surface geothermal manifestation (fumaroles, etc), we have focused our studies on soil degassing surveys. Between July 2011 to March 2012, seventeen diffuse CO2 and He emissions soil gas surveys were undertaken at El Hierro volcanic system (600 observation sites) with the aim to investigate the relationship between their temporal variations and the volcanic activity (Padrón et al., 2013; Melián et al., 2014). Based on the diffuse He/CO2 emission ratio, a sharp increase before the eruption onset was observed, reaching the maximum value on September 26 (6.8×10-5), sixteen days before the occurrence of the eruption. This increase coincided with an increase in seismic energy release during the volcanic unrest and occurred together with an increase on the 3He/4He isotopic ratio in groundwaters from a well in El Hierro Island (Padrón et al., 2013; from 2-3 RA to 7.2 RA where RA = 3He/4He ratio in air), one month prior to the eruption onset. Early degassing of new gas-rich magma batch at depth could explain the observed increase on the He/CO2 ratio, causing a preferential partitioning of CO2 in the gas phase with respect to the He, due to the lower solubility of CO2 than that of He in basaltic magmas. During the eruptive period (October 2011-March 2012) the prevalence of a magmatic CO2-dominated component is evident, as indicated by the generally lower He/CO2 ratios and high 3He/4He values (Padrón et al., 2013). The onset of the submarine eruption might have produced a sudden release of volcanic gases, and consequently, a decrease in the volcanic gas pressure of the magma bodies moving beneath the island, reflected by a drastic decrease in

  9. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  10. Eruption Forecasting: Success and Surprise at Kasatochi and Okmok Volcanoes

    NASA Astrophysics Data System (ADS)

    Prejean, S.; Power, J.; Brodsky, E.

    2008-12-01

    In the summer of 2008, the Alaska Volcano Observatory (AVO) successfully forecast eruption at an unmonitored volcano, Kasatochi, and was unable to forecast eruption at a well monitored volcano, Okmok. We use these case studies to explore the limitations and opportunities of seismically monitored and unmonitored systems and to evaluate situations when we can expect to succeed and when we must expect to fail in eruption forecasting. Challenges in forecasting eruptions include interpreting seismicity in context of volcanic history, developing a firm understanding of distance scales over which pre- and co-eruptive seismic signals are observed, and improving our ability to discriminate processes causing tremor. Kasatochi Volcano is a 3 km wide island in the central Aleutian Islands with no confirmed historical activity. Little is known about the eruptive history of the volcano. It was not considered an immediate threat until 3 days prior to eruption. A report of ground shaking by a biology field crew on the island on August 4 was the first indication of unrest. On August 6 a vigorous seismic swarm became apparent on the nearest seismic stations 40 km distant. The aviation color code/volcano alert level at Kasatochi was increased to Yellow/Advisory in response to increasing magnitude and frequency of earthquakes. The color code/alert level was increased to Orange/Watch on August 7 when volcanic tremor was observed in the wake of the largest earthquake in the sequence, a M 5.6. Three hours after the onset of volcanic tremor, eruption was confirmed by satellite data and the color code/alert level increased to Red/Warning. Eruption forecasting was possible only due to the exceptionally large moment release of pre-eruptive seismicity. The key challenge in evaluating the situation was distinguishing between tectonic activity and a volcanic swarm. It is likely there were weeks to months of precursory seismicity, however little instrumental record exists due to the lack of a

  11. Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption

    NASA Astrophysics Data System (ADS)

    Troll, V. R.; Klügel, A.; Longpré, M.-A.; Burchardt, S.; Deegan, F. M.; Carracedo, J. C.; Wiesmaier, S.; Kueppers, U.; Dahren, B.; Blythe, L. S.; Hansteen, T. H.; Freda, C.; Budd, D. A.; Jolis, E. M.; Jonsson, E.; Meade, F. C.; Harris, C.; Berg, S. E.; Mancini, L.; Polacci, M.; Pedroza, K.

    2012-03-01

    A submarine eruption started off the south coast of El Hierro, Canary Islands, on 10 October 2011 and continues at the time of this writing (February 2012). In the first days of the event, peculiar eruption products were found floating on the sea surface, drifting for long distances from the eruption site. These specimens, which have in the meantime been termed "restingolites" (after the close-by village of La Restinga), appeared as black volcanic "bombs" that exhibit cores of white and porous pumice-like material. Since their brief appearance, the nature and origin of these "floating stones" has been vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have analysed the textures and compositions of representative "restingolites" and compared the results to previous work on similar rocks found in the Canary Islands. Based on their high-silica content, the lack of igneous trace element signatures, the presence of remnant quartz crystals, jasper fragments and carbonate as well as wollastonite (derived from thermal overprint of carbonate) and their relatively high oxygen isotope values, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary layers that were picked up and heated by the ascending magma, causing them to partially melt and vesiculate. As they are closely resembling pumice in appearance, but are xenolithic in origin, we refer to these rocks as "xeno-pumice". The El Hierro xeno-pumices hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies beneath the

  12. Hydroacoustic records and a numerical model of the source mechanism from the first historical eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Park, M.; Matsumoto, H.; Byun, S.-K.

    2005-08-01

    Anatahan Volcano in the Commonwealth of the Northern Mariana Islands (CNMI) erupted for the first time in recorded history on 10 May 2003. The underwater acoustic records ( T-waves) of earthquakes, explosions, and tremor produced during the eruption were recorded on a sound channel hydrophone deployed in February 2003. Acoustic propagation models show that the seismic to acoustic conversion at Anatahan is particularly efficient, aided by the upward slope of the seamount toward the hydrophone. The hydrophone records confirm the onset of earthquake activity between 0100 and 0200Z on 10 May, with a substantial increase in seismicity beginning at ˜ 0620Z. In addition, the onset of continuous, low-frequency (3-40 Hz) acoustic energy that is likely volcanic tremor related to magma intrusion was also observed at 0620Z. The hydrophone recorded 1401 earthquakes during the first 3 days of the eruption. A histogram of seismicity indicates two main periods of explosion/eruption activity, the first beginning at ˜ 0620Z on 10 May and the second at ˜ 0000Z on 11 May. Relative earthquake depth estimates indicate that both eruption periods were accompanied by earthquake activity from deep within the Anatahan volcanic edifice. A numerical representation of the Anatahan volcano-seismic source was developed to examine the character of acoustic signals generated from the eruption governed by the geometry of the source and the physical properties of the magma. A magma pipe source mechanism is used to compute the seismo-acoustic wavefield on the flank of the Anatahan volcanic edifice (on the seafloor and in the water column) due to mode conversion by roughness scattering. A fluid-filled pipe model was chosen because it allows for a more straightforward relation between volcano geometry and spectral features of harmonic tremor as well as its morphologic similarity to a submerged volcanic edifice.

  13. Hydrothermal processes at Milos Island (Greek Cyclades) and the mechanisms of compaction-induced phreatic eruptions

    NASA Astrophysics Data System (ADS)

    Fontaine, F. Jh.; Rabinowicz, M.; Boulègue, J.

    2003-05-01

    The few-hundred-meters-thick rhyolitic tuff layers that cover the volcanic island of Milos host intense hydrothermal alteration which completely transforms the tuffs into clays and locally into microcrystalline quartz aggregates. At the top of one of these quartz layers hundreds of 15-20-m-large and 3-4-m-deep craters are found, randomly scattered over a 1-2-km 2 area. In another area craters with smaller diameters (1-2 m) and depths (0.5-1 m) are found. Geochemical data reveal that the quartz results from the leaching of the tuff or clay layers by a high-temperature (100-200°C) flow of steam and gas. Because of their micrometer size, the quartz grains have a viscous rheology due to solution transfer creep: the effective viscosity is as low as 10 14 Pa s. As a result the steam- or water-saturated porous quartz layers deform by compaction. The compaction length is about 3 and 15 m when the fluid is superheated steam and water, respectively. When the upwelling fluid flow encounters a region with a reduced porosity, compaction generates pocket-like domains of enhanced porosity. These pockets propagate toward the surface by deforming the solid framework of the porous layer. One-dimensional simulations of the porosity waves show that the steam or water concentration in the pockets likely exceeds 70%. The fluid compressibility and viscosity drastically influence the development of the waves. For steam-like (water-like) fluids the size of the pockets is about 15-20 m (3-4 m) and their velocity is about 50-60 m/yr (2-4 m/yr). The fluid overpressure carried by the waves is about 3-4 bar and 0.3-0.5 bar when the fluid is steam-like and water-like, respectively. For steam-like fluids, the 2-4 bar overpressures at the top of the waves are able to re-open healed fissures at a depth of about 5-10 m. Then, the steam catastrophically escapes from the rocks through these fissures and the eruption proceeds as a caldera collapse. This leads to the suggestion that the arrival of

  14. Volcanic Eruptions, Landscape Disturbance, and Potential Impacts to Marine and Terrestrial Ecosystems in Alaska: An Example from the August 2008 Eruption of Kasatochi Volcano

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Drew, G. S.

    2011-12-01

    The magnitude, style, and sometimes-prolonged nature of volcanic activity in Alaska has had significant impact on ecological habitat. The accumulation of volcaniclastic deposits during eruptions have destroyed or altered areas important to the success of various species and it may take years to decades for landforms and surfaces to recover and become habitable again. Kasatochi volcano, in the Aleutian Islands of Alaska, erupted explosively on August 7-8, 2008 and the rich nesting habitat for several species of seabirds on the island was completely destroyed. The eruption produced thick pyroclastic fall and flow deposits and several SO2 rich ash-gas plumes that reached 14 to 18 km above sea level. Pyroclastic deposits are several tens of meters thick, blanket the entire island, and initially extended seaward to increase the diameter of the island by about 800 m. Wave and gully erosion have modified these deposits and have exhumed some pre-eruption surfaces. Analysis of surface erosional features observed in satellite and time-lapse camera images and field studies have shown that by September 2009, gully erosion removed 300,000-600,000 m3 of mostly fine-grained volcanic sediment from the volcano flanks and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins are about 104 m3km-2yr-1 and are comparable to sediment yields at other active volcanoes outside of Alaska. Coastal erosion rates at Kasatochi are as high as 80-140 myr-1 and parts of the northern coastline have already been eroded back to pre-eruption positions. As of March, 2011 about 72% of the material emplaced beyond the pre-eruption coastline on the northern sector of the island has been removed by wave erosion. Parts of the southern coastline have prograded beyond the post-eruption shoreline as a result of long-shore transport of sediment from north to south. As of March 2011, the total volume of material eroded by wave action was about 107 m3. The preferred

  15. The temporal and spatial evolution of pre-eruptive seismicity on Piton de la Fournaise, La Réunion Island.

    NASA Astrophysics Data System (ADS)

    Zecevic, Megan; De Barros, Louis; Bean, Christoper; Brenguier, Florent; Peltier, Aline

    2014-05-01

    Piton de la Fournaise, La Réunion Island, is a very active basaltic volcano with five eruptions between November 2009 and December 2010. Eruptions on Piton de la Fournaise are typically heralded by a seismic crisis that generally follows the volcano-earthquake swarm pattern described by McNutt (2000) with a typical duration of several hours. The seismic crises mainly consist of a volcano-tectonic (VT) swarm, followed by a period of seismic quiescence and then tremor associated with the emission of lava. The VT events are located beneath the summit crater at depths between sea level and 800 m a.s.l.. However, during some seismic crises long-period (LP) events have been identified just after the VT seismicity rate peaks. The LP events have been located beneath the summit crater at shallow depths (< 200 m beneath the surface). We also identified another swarm of events with very high frequency content on a small number of stations during the so-called "quiescent period" between the volcano-tectonic swarm and the eruptive tremor. These high frequency events are shallow and are located close to the future eruption site. Magma migration on Piton de la Fournaise follows a two-phase pattern - vertical migration followed by a lateral migration to the flank - which is observable on GPS data. In order to identify how the different types of pre-eruptive seismicity are associated with the migration of magma from deep within the volcano to the eruption site, the seismic data are put into context with GPS deformation data and radiated seismic intensity locations. The VT events are associated with the vertical migration of magma from depth, whereas the LP events appear to coincide with the transition from vertical to lateral migration. The high frequency events seem to be associated with the opening of the path for the magma propagating laterally at shallow depth. As these events start to occur while the magma is still in a vertical propagation phase, this seismicity seems to be

  16. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  17. Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology

    NASA Astrophysics Data System (ADS)

    Oikonomidis, Dimitrios; Albanakis, Konstantinos; Pavlides, Spyridon; Fytikas, Michael

    2016-02-01

    A catastrophic volcanic explosion took place in Thera/Santorini island around 1613 BC, known as the `Minoan' eruption. Many papers have dealt with the shape of the shoreline of the island before the eruption, but none with the shape of the shoreline exactly after it, assuming that it would be the same with the contemporary one. However, this is not correct due to the wave erosion. In this paper, a new DEM was constructed, covering both land and submarine morphology, then topographic sections were drawn around the island. Using these sections, the `missing parts' (sea-wave erosion) were calculated, the shoreline was reconstructed as it was one day after the eruption and finally the erosion rate was calculated.

  18. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.

    2015-12-01

    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  19. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. PMID:26032670

  20. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  1. Formation of composite pyroclasts by welding inside a lithic-rich mafic eruption column (Los Marteles Caldera, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Sarrionandia, F.; Carracedo Sánchez, M.; Arostegui, J.; Gil Ibarguchi, J. I.

    2015-12-01

    The tuff ring of the Los Marteles phreatomagmatic maar (Gran Canaria, Canary Islands) includes a particular unit that comprises abundant composite spheroidal clasts. However, these clasts differ from cored clasts elsewhere that consist of erupted lithic pyroclasts with an adhering rim of coherent chilled magma. The composite clasts here studied range from lapilli to bombs, and are cored or concentrically banded. Among the welded components, several types of primary clasts are discerned that include: (i) juvenile clasts, resultant of the magma inertial fragmentation, and (ii) cognate or accessory lithic clasts. Juvenile clasts include glass spheres (nano- and microachneliths) and crystals. Lithic clasts include lava fragments, scoriae and olivine xenocrysts. Primary clasts are interpreted to have been produced by the explosion of a partially crystallized mafic (SiO2 ≈ 50-55%) magma that erupted into a maar, filled-up with scoriae plus lava fragments. The explosion would have originated as a dense and turbulent gas thrust into which the repeated collisions of melt droplets with solid clasts generated droplet-coated crystals, lithic clasts and single glass spheres. We interpret the cored and concentrically banded pyroclasts to be made of coalesced and/or agglutinated particles coated with a melt rim to the rest of the components. These composite clasts developed spheroidal shapes during transport within a violent Strombolian eruption column due to spin effect and, finally, landed in solid state.

  2. Chronology of the seismic and ground deformation precursors of the 2014 Fogo Volcano - Cape Verde Islands - eruption.

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Faria, B. V. E.

    2015-12-01

    The most recent eruption of Fogo Volcano, Cape Verde Islands started on the 23 November 2014 at 10h15 (CVT), after 19 years of quiescence. Several months before the begging of the eruption, the seismic activity started to deviate from the baseline, with the appearance of a class of events that was not recorded before then. This activity was characterized by a significant number of instrumentally detected, very low magnitude seismic events, sometimes more than 100 per day. In September those events became more energetic and analysis indicated that they could be of volcano-tectonic (VT) origin. The first VT event to be located was on 4 October with a 2.5 local magnitude: it was located slightly to the south of the middle of the island at between 15.5 and 16 km depth. This was deeper than normal for background VT events and coincided with the depth of last magma equilibration in the 1995 eruption. It was therefore interpreted as a possible precursor of an eruption: thus the alert level was raised to level 2, and the civil protection authorities were informed. On the following weeks the rate of VT events slightly increased and the focal depths became shallower. Very sporadic harmonic volcano tremor episodes and very few and weak long-period events were also recorded. From about the 15 to 21 November, the VT activity rate oscillated, and hypocentres tended to gather in the vicinity of an inferred dike emplacement and at shallower depth - 6 to 5 km b.s.l. On the first hours of the 22 November seismic rate increased from 3 to 6 events per hour and the events became more energetic. After 19h30 (CVT), when the magma reached the ductile-brittle transition zone (5 to 4 km b.s.l), the seismic rate increased again to more than one event per minute; earthquake magnitudes increased as well. At about 03h00 (CVT) the tilt records shown a prominent ground deformation. Continuous volcanic tremor started only one to half an hour before the start of the eruption.

  3. Basaltic volcanism in the Bering Sea: geochronology and volcanic evolution of St. Paul Island, Pribilof Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Winer, G. S.; Feeley, T. C.; Cosca, M. A.

    2004-07-01

    The evolution of a Pleistocene to Holocene basaltic volcanic field in the back-arc region of the Aleutian subduction system is investigated at St. Paul Island, Alaska, one of the youngest eruptive centers in the Bering Sea basalt province. New 40Ar/ 39Ar and 14C age determinations indicate that subaerial volcanic activity forming the island began as early as 540 ka and has continued nearly to the present; the youngest eruption occurred approximately 3230 years BP. Magmas erupted on St. Paul are basaltic with MgO contents ranging from 14 to 4 wt.% and phenocryst assemblages of olivine+clinopyroxene±plagioclase; all are alkalic. The surface of St. Paul is composed mainly of numerous tephra cones surrounded by coalescing, low-viscosity pahoehoe lava flows. A central highland spans the island from east to west and is constructed of relatively young eruptive centers where rocks show a minimum of weathering and little deformation by faulting. In contrast, older lava flows forming the wave-eroded base of the island are gently to moderately tilted and faulted. Geochronologic, stratigraphic, and geochemical data indicate that eruptive styles on St. Paul evolved from early, mostly effusive eruptions of chemically little evolved lavas that form the base of the island, to more explosive monogenetic scoria cones, to polygenetic centers forming shields by repeated effusive eruptions of evolved low-viscosity lavas. Localization of the monogenetic and polygenetic centers appears to be related to east-west and northeast-southwest trending fault and fissure systems, with polygenetic centers located at intersections of major structures. The combined volcanic and compositional changes on St. Paul Island suggest that the magmatic system as a whole may be trending toward eruption of more evolved magmas related to the progressive development of crustal magma chambers in which crystal fractionation and magmatic differentiation are occurring.

  4. Real-time infrasonic monitoring of the eruption at a remote island volcano using seismoacoustic cross correlation

    NASA Astrophysics Data System (ADS)

    Nishida, Kiwamu; Ichihara, Mie

    2016-02-01

    On 2013 November 20, a submarine eruption started close to Nishinoshima island, which lies ˜1000 km south of Tokyo. Real-time monitoring of the eruption is crucial for understanding the formation processes of the new volcano island and related disaster prevention. In situ monitoring, however, is difficult in practice because the closest inhabited island, Chichijima, is 130 km away from Nishinoshima. This study presents an infrasonic monitoring method that uses cross-correlating records at a pair of online stations on Chichijima. One is the horizontal ground velocity recorded at a permanent seismic station operated by the Japan Meteorological Agency (JMA). The seismic records were corrected for atmospheric pressure using an empirical ground response to infrasound. The other is the air pressure recorded at the JMA Meteorological Observatory. For each station, we divided the whole records into 3600-s segments. To suppress outliers, each segment was normalized by the envelope function. We then calculated cross-correlation functions between the pair of stations using the fast Fourier transform. They present clear successive arrivals of infrasound coming from Nishinoshima. We also conducted an offline tripartite-array observation using three low-frequency microphones with a station spacing of ˜50 m installed in 2013 May. The array analysis supports the results obtained from the online stations. The typical root-mean-squared amplitude is on the order of 0.01 Pa, and the typical duration is several days. The amplitudes were primarily controlled by the effective sound velocity structure from Nishinoshima to Chichijima. The infrasonic observations together with the meteorological observation at Chichijima suggest that infrasonic activity was not present in the first two weeks in 2015 January. With the help of a more quantitative estimation of the meteorological effect, we could infer eruptive activity in real time. Now many online seismic stations are available worldwide

  5. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  6. Mt. St. Augustine, Alaska: Geochemical evolution of an eastern Aleutian volcanic center

    SciTech Connect

    Johnson, K.E. . Dept. of Geology); Harmon, R.S. . Kingsley Dunham Centre); Moorbath, S. . Dept. of Earth Sciences); Sigmarsson, O. )

    1993-04-01

    Mt. St. Augustine is a calc-alkaline Quaternary volcano, situated within Cook Inlet, Alaska. The island is composed of low- to medium-K andesite and dacite domes and pyroclastic flows. Major element variations indicate the magmatic evolution is dominantly influenced by fractionation and magma-mixing processes. Incompatible element and isotopic compositions suggest that despite its continental location, crustal assimilation is not significant factor in magmatic evolution. Alkali contents for Augustine are generally lower than elsewhere in the Aleutians (e.g. Augustine Cs/Rb = 0.016--0.024, K/Rb = 372--553; Aleutians Cs/Rb = 0.016--0.17, K/Rb = 231--745). Sr- and Nd-isotope ratios encompass narrow ranges ([sup 87]Sr/[sup 86]Sr = 0.70317--0.70343; [sup 143]Nd/[sup 144]Nd = 0.513011--0.513085), characteristic of uncontaminated mantle-derived melts. U-Th disequilibrium isotopic values also indicate little or no assimilation of evolved continental crust. Pb-isotopic ranges are also relatively restricted ([sup 206]Pb/[sup 204]Pb = 18.62--18.82; [sup 207]Pb/[sup 204]Pb = 15.54--15.57; [sup 208]Pb/[sup 204]Pb = 38.18--38.34) and comparison with north Pacific enriched (OIB) and depleted (MORB) mantle sources suggest the incorporation of only a small percentage of subducted terrigenous sediments. A model for Augustine magma genesis is proposed where parental magmas are generated by 5--20% partial melting of a lherzolite mantle with up to a 5% subducted terrigenous sediment component. The major influence of the thickened continental crust is to prevent the ascent and eruption of basaltic magma. The data exhibit no temporal variations, indicating that the magmatic system which produced the historic eruptions is well established.

  7. High-Precision 40Ar/39Ar Geochronology and Geology of St. George Island, Pribilof Islands, Alaska: Implications for Eruption Rates in the Bering Sea Basalt Province

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Cosca, M. A.; Hamblock, J. M.; Underwood, S. J.

    2007-12-01

    New high-precision 40Ar/39Ar ages and geologic mapping establish an eruptive chronology for St. George Island, Pribilof Islands, Alaska. St. George is part of the Bering Sea basalt province (BSBP), a group of 15 late Cenozoic (mostly < 6 Ma) alkalic to tholeiitic basaltic volcanic fields widely distributed on islands in the Bering Sea, along the west coast of Alaska, and along the coast of northeast Russia. Twelve samples of washed, but otherwise untreated, whole-rock basalts from St. George were cut with a micro-wire saw into chips ~3 mm3 in size and irradiated for 40Ar/39Ar analysis. The chips were incrementally heated with a CO2 laser equipped with an integrator lens, and analyzed using a NU Instruments Noblesse mass spectrometer equipped with a Faraday cup and two ion counting electron multipliers. Detector intercalibration was done using automated air pipettes. A minimum of 20 heating steps were measured per sample, with the data often defining age plateaux. Isochron plots of the data yield ages ranging from 1.57 ± 0.04 to 2.89 ± 0.11 Ma, with trapped 40Ar/36Ar ratios ranging from 312 to 330. The stratigraphic positions of the dated rocks are known directly from field relations and there are no discrepancies between the 40Ar/39Ar ages and this sequence. Geochemical data combined with the age data indicate no progressive petrologic trends during evolution of the magmatic system, except for intermittent eruption of distinctive plagioclase-phyric basalts with low to moderate MgO contents (7 - 5 wt%) beginning at ~2.0 Ma. The new age data combined with volume estimates indicate an average subaerial eruption rate of ~107 m3km-2yr-1, which is adjusted for 3% sedimentary and ultramafic basement rocks beneath the volcanic pile, an average vesicularity of 5%, and an assumed surficial erosion value of 20%. This rate is identical to the estimate (110 m3km-2yr-1) by Mukasa et al. (JGR 112, 2007) for St. George Island. Both estimates, however, do not account for

  8. Submarine eruption near Socorro Island, Mexico: Geochemistry and scanning electron microscopy studies of floating scoria and reticulite

    NASA Astrophysics Data System (ADS)

    Siebe, Claus; Komorowski, Jean-Christophe; Navarro, Carlos; McHone, John; Delgado, Hugo; Cortés, Abel

    1995-11-01

    Products of an underwater eruption near Socorro Island in the NE Pacific were observed directly on January 29, 1993, ten days after precursors were first recorded by SOFAR (Sound Fixing and Ranging) hydrophones located in Hawaii and Tahiti. Eruptive activity was noticed from boats and ships as small steam plumes rising from the sea at an area centered at 18 °48'N, 111 °05'W, 2.4 km NW of Punta Tosca and 4.6 km SSW of Cape Henslow on Socorro Island. The observed steam was produced by 1-3-m-large blocks of hot, dark-grey, highly vesiculated basalt rising buoyantly to the surface from two submarine shallow vents at 210 and 30 m depth. Tens of blocks accompanied by bubbles could be observed rising to the surface in irregular pulses. These scoriaceous blocks remained floating at the surface until they would crack into smaller pieces by thermal contraction, emitting hissing noises from vapourizing seawater in contact with the hot interior of the blocks. Steam jets several metres in height were produced and occasionally blocks were propelled laterally by the steam jet. Depending on vesicularity and permeability, blocks remained floating and drifting with the surface current for 1-15 minutes before sinking back. Floating rocks covered an area of about 6000 m 2. This intermittent activity has been observed ever since and has not stopped as of April 1994. Buoyant scoria and reticulite are indicative of volatile (mostly CO 2) supersaturation and exsolution in the magma prior to rapid quenching, which inhibits loss of volatiles by bubble escape. A high-velocity ascent of low-viscosity magma in a relatively narrow conduit is also required to prevent substantial gas escape and allow formation of reticulite. The buoyant scoria is most probably ejected by intermittent lava fountaining at fixed vents as a result of changes in eruption velocities due to changes in the exsolved gas content of the lava. Between January and July 1993 floating blocks of scoria and reticulite were

  9. Impact of effusive eruptions from the Eguas-Carvão fissure system, São Miguel Island, Azores Archipelago (Portugal)

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Cappello, Annalisa; Zanon, Vittorio; Del Negro, Ciro

    2015-01-01

    The hazard and risk posed by future effusive eruptions from the Éguas-Carvão fissure system in São Miguel Island (Azores Archipelago) are assessed. This fissure system, located ~ 13 km from the town of Ponta Delgada and its international airport, was the only site in the whole island to be characterized by recurrent basaltic eruptions over the past 5000 yr. Here we report on the stratigraphic record of these Holocene eruptions, with special mention to both areas and volumes of deposits, and eruptive styles and recurrence. These basic data then are used to constrain numerical simulations of lava flow paths using the MAGFLOW model, after which hazard zones of possible future events are proposed. The lava flow risk is evaluated by combining the hazard with the exposed value, referred to the population, infrastructures and land use. These results are shown in two distinct maps, where the areas most prone to lava flow inundation and the extent of damages in case of a future effusive eruption are identified. We find that lava flows issuing from the Éguas-Carvão fissure system may be a threat to the villages of Feteiras, Capelas and Santo Antonio. Although this study was conducted on the Éguas-Carvão fissure system, the approach used can be applied to the whole São Miguel Island.

  10. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C., Jr.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  11. Co-located monogenetic eruptions ~200 kyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Brenna, Marco; Németh, Károly; Cronin, Shane J.; Sohn, Young Kwan; Smith, Ian E. M.; Wijbrans, Jan

    2015-05-01

    New eruptions in monogenetic volcanic fields conceptually occur independently of previous ones. In some instances, however, younger volcanic structures and vents may overlap with older edifices. The genetic links between such co-located eruptions remain unclear. We mapped and analysed the stratigraphic relationships between eruptive units on the 400 × 900-m island of Chagwido off the western coast of Jeju Island, a Pleistocene to Holocene intraplate volcanic field. Chagwido consists of an eastern, older tuff ring with a nested scoria cone and a western tuff, scoria and lava flow sequence. The two stratigraphic packages are separated by a prominent paleosol. The East-Chagwido tuff and scoria deposits were eroded and a period of intense weathering and soil development occurred, before a subsequent West-Chagwido tuff ring and scoria cone and lava complex was erupted. The two eruptions were fed by three chemically distinct magmas. The older eastern eruption consists of magma with composition transitional between high-Al alkalic basalt and low-Al alkalic basalt and has stratigraphic characteristics, composition and syn-eruptive trends akin to the neighbouring Dangsanbong tuff cone. This magma type is typical for the transitional stage from high-Al alkalic (pre 500 ka) to low-Al alkalic (post 250 ka) identified for the greater Jeju volcanic system. The East-Chagwido volcanic complex thus formed as the westernmost in a chain of three volcanoes along a fissure system, with a small volcanic remnant island Wado 1 km to the east and the large Dangsanbong tuff cone another 1 km eastward. A new Ar/Ar age of 446 ± 22 ka for Dangsanbong likely characterizes the age of the whole chain. The second, West-Chagwido eruption started with low-Al alkalic basalt forming a phreatomagmatic phase and ended with subalkalic basalt forming a scoria cone and lava flows. The occurrence of subalkalic lavas is known across Jeju to have started only at ~250 ka, and thus, the well

  12. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands

    USGS Publications Warehouse

    Chadwick, W.W., Jr.; De Roy, T.; Carrasco, A.

    1991-01-01

    During 14-16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (mb 4.7-5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (mb 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1-2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown. ?? 1991 Springer-Verlag.

  13. Tilt Recorded by a Portable Broadband Seismograph: The 2003 eruption of Anatahan, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Shore, P. J.; Wiens, D. A.; Pozgay, S.; Sauter, A.; White, R.

    2004-12-01

    The horizontal components of broadband seismographs are highly sensitive to tilt, suggesting that widely deployed portable broadband seismic sensors may record important tilt information associated with volcanic eruptions. We report on a tilt episode that coincides with the first historical eruption of Anatahan volcano on May 10, 2003. The tilt was recorded by a portable PASSCAL STS-2 seismograph fortuitously deployed four days prior to the eruption as part of the Mariana Subduction Factory Imaging Experiment. The seismograph, located in an underground insulated chamber about 6 km west of the active vent, recorded continuously throughout the eruption sequence. A long-period signal with a dominant period of several hours was recorded on the EW component beginning at 06:30 GMT on May 10, which coincides with the onset of continuous volcano-tectonic (VT) seismicity and is one hour prior to the eruption time estimated by the Volcanic Ash Advisory Center based on satellite photos. The signal was much larger than a long period diurnal signal presumably resulting from temperature perturbations. A much smaller signal was recorded on the NS component, and the signal was totally absent on the vertical component, suggesting it results from tilt that is radial with respect to the active vent. An estimate of the tilt as a function of time was recovered by deconvolving to acceleration within a passband of 500-50,000 seconds, and dividing by g. The tilt signal records an initial episode of tilt down away from the volcanic center from 06:30 - 09:30 GMT, which we interpret as inflation of the shallow volcanic source. The tilt reverses and records deflation from 09:30 until 17:50, after which any large tilt signal ceases. The period of inflation corresponds to a period of numerous VT events, whereas fewer events were recorded during the deflation episode, and the VT events resumed again after the end of the deflationary tilt. The maximum tilt is about 2 microradians, although it is

  14. Dynamics and time evolution of a shallow plumbing system: The 1739 and 1888-90 eruptions, Vulcano Island, Italy

    NASA Astrophysics Data System (ADS)

    Vetere, Francesco; Petrelli, Maurizio; Morgavi, Daniele; Perugini, Diego

    2015-11-01

    In this work we analyze the morphology of latitic enclaves occurring in the rhyolitic lava flow of Pietre Cotte (Island of Vulcano, Italy). We show that enclave morphology is a feature inherited from the shallow plumbing system of the volcano during the invasion of the latitic magma into the rhyolitic magma. The complexity of enclave morphology is quantified by fractal analyses. Using the empirical relationship given by Perugini et al. (2005) relating the fractal dimension and viscosity ratio, the range of viscosity ratios that developed during the injection of the latitic magma into the rhyolitic one is estimated. Thermodynamical and rheological modeling indicates that the most plausible scenario to explain the variability of observed viscosity ratios is represented by a plumbing system where a large volume of latitic magma intruded a smaller volume of rhyolitic magma. The comparison of volume proportions of magmas on the outcrop with those estimated by the modeling allows us to infer that most of the latitic magma remained in the plumbing system after the ending of the 1739 eruptive cycle. The strong similarity of compositions from the Pietre Cotte lava flow and products erupted during the last volcanic activity of Vulcano (1888-1890) is interpreted as the reactivation of the latitic magma, that possibly evolved through fractional crystallization to produce trachy-rhyolitic compositions, during the 1888-1890 eruptive cycle. We suggest that the methodological approach presented here can represent a further tool for hazard mitigation in volcanic areas. In particular, it allows obtaining information about the dynamics of plumbing systems of active volcanoes and their time evolution.

  15. The magma plumbing system for the 1971 Teneguía eruption on La Palma, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barker, Abigail K.; Troll, Valentin R.; Carracedo, Juan Carlos; Nicholls, Peter A.

    2015-12-01

    The 1971 Teneguía eruption is the most recent volcanic event of the Cumbre Vieja rift zone on La Palma. The eruption produced basanite lavas that host xenoliths, which we investigate to provide insight into the processes of differentiation, assimilation and magma storage beneath La Palma. We compare our results to the older volcano magmatic systems of the island with the aim to reconstruct the temporal development of the magma plumbing system beneath La Palma. The 1971 lavas are clinopyroxene-olivine-phyric basanites that contain augite, sodic-augite and aluminium augite. Kaersutite cumulate xenoliths host olivine, clinopyroxene including sodic-diopside, and calcic-amphibole, whereas an analysed leucogabbro xenolith hosts plagioclase, sodic-augite-diopside, calcic-amphibole and hauyne. Mineral thermobarometry and mineral-melt thermobarometry indicate that clinopyroxene and plagioclase in the 1971 Teneguía lavas crystallised at 20-45 km depth, coinciding with clinopyroxene and calcic-amphibole crystallisation in the kaersutite cumulate xenoliths at 25-45 km and clinopyroxene, calcic-amphibole and plagioclase crystallisation in the leucogabbro xenolith at 30-50 km. Combined mineral chemistry and thermobarometry suggest that the magmas had already crystallised, differentiated and formed multiple crystal populations in the oceanic lithospheric mantle. Notably, the magmas that supplied the 1949 and 1971 events appear to have crystallised deeper than the earlier Cumbre Vieja magmas, which suggests progressive underplating beneath the Cumbre Vieja rift zone. In addition, the lavas and xenoliths of the 1971 event crystallised at a common depth, indicating a reused plumbing system and progressive recycling of Ocean Island plutonic complexes during subsequent magmatic activity.

  16. Tilt recorded by a portable broadband seismograph: The 2003 eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas A.; Pozgay, Sara H.; Shore, Patrick J.; Sauter, Allan W.; White, Randall A.

    2005-09-01

    The horizontal components of broadband seismographs are highly sensitive to tilt, suggesting that commonly deployed portable broadband seismic sensors may record important tilt information associated with volcanic eruptions. We report on a tilt episode that coincides with the first historical eruption of Anatahan volcano on May 10, 2003. The tilt was recorded by a Strekheisen STS-2 seismograph deployed in an underground insulated chamber 7 km west of the active vent. An ultra-long period signal with a dominant period of several hours was recorded on the E-W component beginning at 06:20 GMT on May 10, which coincides with the onset of continuous volcano-tectonic (VT) seismicity and is one hour prior to the eruption time estimated by the Volcanic Ash Advisory Center. The signal is much smaller on the N-S component and absent on the vertical component, suggesting it results from tilt that is approximately radial with respect to the active vent. An estimate of tilt as a function of time is recovered by deconvolving the record to acceleration and dividing by the acceleration of gravity. The record indicates an initial episode of tilt downward away from the volcanic center from 06:20-09:30 GMT, which we interpret as inflation of the shallow volcanic source. The tilt reverses, recording deflation, from 09:30 until 17:50, after which the tilt signal becomes insignificant. The inflation corresponds to a period of numerous VT events, whereas fewer events were recorded during the deflation episode, and the VT events subsequently resumed after the end of the deflationary tilt. The maximum tilt of 2 microradians can be used to estimate the volume of the source inflation (~2 million m3), assuming a simple Mogi source model. These calculations are consistent with other estimates of source volume if reasonable source depths are assumed. Examination of broadband records of other eruptions may disclose further previously unrecognized tilt signals.

  17. Tilt recorded by a portable broadband seismograph: The 2003 eruption of Anatahan Volcano, Mariana Islands

    USGS Publications Warehouse

    Wiens, D.A.; Pozgay, S.H.; Shore, P.J.; Sauter, A.W.; White, R.A.

    2005-01-01

    The horizontal components of broadband seismographs are highly sensitive to tilt, suggesting that commonly deployed portable broadband seismic sensors may record important tilt information associated with volcanic eruptions. We report on a tilt episode that coincides with the first historical eruption of Anatahan volcano on May 10, 2003. The tilt was recorded by a Strekheisen STS-2 seismograph deployed in an underground insulated chamber 7 km west of the active vent. An ultra-long period signal with a dominant period of several hours was recorded on the E-W component beginning at 06:20 GMT on May 10, which coincides with the onset of continuous volcano-tectonic (VT) seismicity and is one hour prior to the eruption time estimated by the Volcanic Ash Advisory Center. The signal is much smaller on the N-S component and absent on the vertical component, suggesting it results from tilt that is approximately radial with respect to the active vent. An estimate of tilt as a function of time is recovered by deconvolving the record to acceleration and dividing by the acceleration of gravity. The record indicates an initial episode of tilt downward away from the volcanic center from 06:20-09:30 GMT, which we interpret as inflation of the shallow volcanic source. The tilt reverses, recording deflation, from 09:30 until 17:50, after which the tilt signal becomes insignificant. The inflation corresponds to a period of numerous VT events, whereas fewer events were recorded during the deflation episode, and the VT events subsequently resumed after the end of the deflationary tilt. The maximum tilt of 2 microradians can be used to estimate the volume of the source inflation (???2 million in m3), assuming a simple Mogi source model. These calculations are consistent with other estimates of source volume if reasonable source depths are assumed. Examination of broadband records of other eruptions may disclose further previously unrecognized tilt signals. Copyright 2005 by the American

  18. The Eruptive Behavior of Klyuchevskoy Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Rose, S.; Ramsey, M.

    2008-12-01

    Klyuchevskoy volcano, one of the most active volcanoes in the northern Pacific, is located on the Kamchatka Peninsula in eastern Russia at the junction between the Kurile-Kamchatka and Aleutian Island Arcs. Its remote location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor was launched in December 1999 on the NASA Terra satellite and has proven effective for the detection and monitoring of volcanic eruptions and their associated products. The goal of this investigation is to determine how well data from a broad spectral range at spatial resolutions under 100m/pixel can be used to characterize the 2005 and 2007 eruptions of a remote volcano during the harsh northern Pacific winter. The ASTER data presented here are supplemented by hand samples collected from the 2005 basaltic lava flows as well as high-spatial resolution thermal infrared data collected by a Forward Looking Infrared (FLIR) camera during field campaigns in August 2005 and 2007. Collectively, these data provide details regarding the composition, eruption rate, and eruptive mechanisms. Analysis of the data from all three ASTER subsystems reveals four main eruptive phases: a precursory, explosive, explosive-effusive, and cooling phase. These phases correlate to a gradual increase in maximum brightness temperatures followed by a rapid decrease. Close examination of FLIR data and digital photographs reveal the presence of a breakout point approximately 90 m below the rim of the nested summit crater, indicating a flow had breached the nested crater and traveled down the Krestovsky channel during both eruptions. Laboratory- derived TIR spectral data of the 2005 hand samples indicate good agreement with those obtained by ASTER after being reduced to the same spectral resolution. However, inherent errors of the spectra at longer wavelength indicate the

  19. A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, Chatham Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sorrentino, Leonor; Stilwell, Jeffrey D.; Mays, Chris

    2014-03-01

    The Red Bluff Tuff Formation, an early Palaeogene volcano-sedimentary shallow marine succession from the Chatham Islands (New Zealand), provides a unique framework, in eastern 'Zealandia', to explore tephra dispersal processes associated with ancient small phreatomagmatic explosions (i.e. Surtseyan-style eruptions). Detailed sedimentological mapping, logging and sampling integrated with the results of extensive laboratory analyses (i.e. grain-size, componentry and applied palaeontological methods) elucidated the complex mechanisms of transport and deposition of nine identified resedimented fossiliferous volcaniclastic facies. These facies record the subaqueous reworking and deposition of tephra from the erosion and degradation of a proximal, entirely submerged ancient Surtseyan volcanic edifice (Cone II). South of this volcanic cone, the lowermost distal facies provides significant evidence of deposition as water-supported volcanic- or storm-driven mass flows (e.g. turbidity currents and mud/debris flows) of volcaniclastic and bioclastic debris, whereas the uppermost distal facies exhibit features of tractional sedimentary processes caused by shallow subaqueous currents. Further north, within the proximity of the volcanic edifice, the uppermost facies are represented by an abundant, diverse, large, and well preserved in situ fauna of shallow marine sessile invertebrates (e.g. corals and sponges) that reflect the protracted biotic stabiliszation and rebound following pulsed volcanic events. Over a period of time, these stable and wave-eroded volcanic platforms were inhabited by a flourishing and diversifying marine community of benthic and sessile pioneers (corals, bryozoans, molluscs, brachiopods, barnacles, sponges, foraminifera, etc.). This succession exhibits a vertical progression of sedimentary structures (i.e. density, cohesive and mass flows, and cross-bedding) and our interpretations indicate a shallowing upwards succession. This study reports for the first

  20. Identifying potential habitat for the endangered Aleutian shield fern using topographical characteristics

    USGS Publications Warehouse

    Duarte, Adam; Wolcott, Daniel M.; Chow, T. Edwin, Ricca, Mark A.

    2012-01-01

    The Aleutian shield fern Polystichum aleuticum is endemic to the Aleutian archipelago of Alaska and is listed as endangered pursuant to the U.S. Endangered Species Act. Despite numerous efforts to discover new populations of this species, only four known populations are documented to date, and information is needed to prioritize locations for future surveys. Therefore, we incorporated topographical habitat characteristics (elevation, slope, aspect, distance from coastline, and anthropogenic footprint) found at known Aleutian shield fern locations into a Geographical Information System (GIS) model to create a habitat suitability map for the entirety of the Andreaonof Islands. A total of 18 islands contained 489.26 km2 of highly suitable and moderately suitable habitat when weighting each factor equally. This study reports a habitat suitability map for the endangered Aleutian shield fern using topographical characteristics, which can be used to assist current and future recovery efforts for the species.

  1. The 2009 and 2010 eruptions and shallow intrusions at Piton de la Fournaise, La Réunion Island, seen by cGPS measurements

    NASA Astrophysics Data System (ADS)

    Staudacher, Thomas; Peltier, Aline; Boissier, Patrice; di Muro, Andrea

    2010-05-01

    The Piton de la Fournaise volcano at La Réunion Island in the western Indian Ocean is one of the most active volcanoes in the world. Its average eruption rate over the last 2 centuries is one eruption every 9 months. Between 1998 and 2010 thirty eruptions occurred and produced some 300×106 m3 of lava flows. Since the 2007 collapse of 340 m of the Dolomieu caldera, the eruptive activity of the volcano changed with mainly the occurrence of numerous shallow intrusions preceding days or weeks small summit eruptions. In 2009-2010, Piton de la Fournaise erupted successively in November 5, December 14, 2009 and in January 2, 2010. The one day lasting November and December 2009 eruptions started from en echelon fissures close to the summit around its eastern and southern rims, respectively, whereas the January 2010 eruptive fissure opened on the western flank inside of the Dolomieu crater. These three eruptions produced less than 106 m3 of lava, but generated large ground deformation, of up to 70 cm, recorded by the cGPS network of the volcano observatory and by cinematic GPS measurements. The long term survey showed a small extent of the ground deformation field and the small ratios of base/summit displacements and vertical/horizontal displacements reveal the involvement of shallow dykes to fed these successive eruptions. The cGPS network allowed us to follow up precisely the pre eruptive ground deformations, the 40 to 90 minutes dyke propagation toward the surface, as well as the ground deformations after the vent opening. For the November and December 2009 eruptions, the dyke started below the western part of the Dolomieu crater, before propagating to the east and the south, respectively. For the January eruption, the dyke propagated along a more or less vertical pathway directly to the western part of the Dolomieu crater. The two previous dyke injections of November and December had increased the horizontal compressive stress of the eastern side of the Dolomieu

  2. The 1891 submarine eruption offshore Pantelleria Island (Sicily Channel, Italy): Identification of the vent and characterization of products and eruptive style

    NASA Astrophysics Data System (ADS)

    Conte, A. M.; Martorelli, E.; Calarco, M.; Sposato, A.; Perinelli, C.; Coltelli, M.; Chiocci, F. L.

    2014-06-01

    bathymetry and seafloor sampling have been used to characterize the 1891 submarine eruption of the Pantelleria volcanic complex. This submarine eruption has been documented mainly by historical reports, describing basaltic scoria bombs floating on the sea surface (i.e., lava balloons). In this study, the 1891 eruptive vent has been identified as a small cone (volume of ˜700,000 m3) rising ˜90 m from 350 m w.d., and located within a newly discovered submarine volcanic field covering a wide area offshore from the NW coast of Pantelleria; recently, Kelly et al. (2012) confirmed this location by a multibeam and ROV survey. Pyroclasts from the 1891 eruption crop out directly on the seafloor and are fresh scoria clasts (i.e., small bombs, bomb fragments, and lapilli) and glass ash-sized grains; both have been characterized in their morphology, textures, and geochemistry. The distinctive vesicularity and crystallization characteristics displayed by the scoriaceous pyroclasts reflect modes of degassing in both syn and posteruptive regimes; these characteristics, along with the distribution of deposits suggest for the strongest eruptive phase of the 1891 eruption a style analogous to Hawaiian fountaining. Glass grains from a buoyant plume were dispersed northward from the vent, up to distances of 1.5 km, redirected by the Levantine Intermediate Water. The identification of the 1891 submarine eruptive vent offshore Pantelleria, as well as the features of erupted pyroclasts improve our knowledge of submarine explosive eruptions that occur at shallow-intermediate depths and, among these, of the rare eruptions producing lava balloons.

  3. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    USGS Publications Warehouse

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  4. A tectonic earthquake sequence preceding the April-May 1999 eruption of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Stihler, S.D.; Power, J.A.

    2002-01-01

    On 4 March 1999, a shallow ML 5.2 earthquake occurred beneath Unimak Island in the Aleutian Arc. This earthquake was located 10-15 km west of Shishaldin Volcano, a large, frequently active basaltic-andesite stratovolcano. A Strombolian eruption began at Shishaldin roughly 1 month after the mainshock, culminating in a large explosive eruption on 19 April. We address the question of whether or not the eruption caused the mainshock by computing the Coulomb stress change caused by an inflating dike on fault planes oriented parallel to the mainshock focal mechanism. We found Coulomb stress increases of ???0.1 MPa in the region of the mainshock, suggesting that magma intrusion prior to the eruption could have caused the mainshock. Satellite and seismic data indicate that magma was moving upwards beneath Shishaldin well before the mainshock. indicating that, in an overall sense, the mainshock cannot be said to have caused the eruption. However, observations of changes at the volcano following the mainshock and several large aftershocks suggest that the earthquakes may, in turn, have influenced the course of the eruption.

  5. Petrogenesis of Mafic and Ultramafic Enclaves from the Central Aleutian Arc, and Implications for the Formation of New Crust

    NASA Astrophysics Data System (ADS)

    Nadin, E. S.; Kentner, A. E.; Nye, C. J.; Izbekov, P. E.

    2014-12-01

    Mafic and ultramafic enclaves from the 2008 eruption of Kasatochi volcano, central Aleutians, provide insight into the sub-arc structure in this section of the subduction zone. Textural, mineralogical, and chemical similarities between these enclaves and those from neighboring Adak Island volcanoes suggest that sub-arc conditions are similar enough to form the same igneous "strata" in this part of the arc. Kasatochi gabbroic enclaves are undeformed cumulates of 0.1-11 cm euhedral plagioclase and pargasitic hornblende crystals, with minor clinopyroxene and magnetite and cryptocrystalline interstitial glass. Adak gabbro inclusions also contain plagioclase, pargasitic hornblende, clinopyroxene, and magnetite. Gabbroic enclaves from both volcanic islands typically have elongate and aligned minerals, in contrast with the granular textures of the ultramafic suite. Kasatochi ultramafic samples include wehrlite, clinopyroxenite, and olivine clinopyroxenite with Fo83-84 olivine, Mg- and Ca- rich clinopyroxene, and spinel, and pargasitic hornblende present only as a secondary, interstitial phase. Similarly, wehrlite and clinopyroxenite samples from Adak also contain forsteritic olivine, clinopyroxene, spinel, and interstitial pargasitic hornblende. The presence of hornblende and the lack of deformation textures in the cumulate gabbros from both islands suggest that these rocks were stored under similar pressure, temperature, and host-magma conditions prior to eruption. Kasatochi gabbro enclaves are compositionally related to their host basaltic andesite, as suggested by fractionation trends. There is no apparent chemical relationship between the ultramafic enclaves and the 2008 basaltic andesite, nor are these samples ever found within their host rock. Based on compositional similarities to ultramafic xenoliths from Adak Island, the Kasatochi ultramafic suite could have formed by the fractionation of spinel-lherzolite in the upper mantle. Whole-rock REE analyses show

  6. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  7. Sourcing Phenocrysts in Zoned Eruption Sequences Using Trace Elements: the Diego Hernandez Formation, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Neumann, E.

    2001-12-01

    The Diego Hernandez Formation (DHF) consists of several plinian fallout and ignimbrite sequences. With few exceptions, the dominant volume of each eruptive package consists of compositionally variable phonolite with smaller amounts of basaltic and intermediate components. In addition to mixing with the mafic components, compositional variations among the phonolitic component are due to crystal-liquid separation corresponding to up to 60% crystallization of a phonolitic starting liquid. Sphene crystallization plays a dominant role in controlling abundances of REE and HFSE among Tenerife phonolites. Sphene preferentially sequesters MREE, leading to strongly parabolic REE patterns among residual liquids. We have used this feature of the zoned Tenerife phonolites to match the REE content of individual pyroxene crystals, analyzed by laser ablation ICP-MS, to observed liquids using the elastic strain mineral-melt partitioning model of Blundy and Wood [1]. The strongly parabolic REE patterns of the liquids allow matching solely using the calculated Young's modulus of the host M2 cation site in pyroxene, without any independent constraint on the strain-free partition coefficient D0. For sodian salite pyroxenes in the phonolites, we find that most did not grow from the host liquid represented by the pumice clasts in which the crystals were erupted. Instead, most grew from liquids significantly more evolved, with lower MREE/LREE and MREE/HREE than the observed host. Elevated Zr contents in the salites support this conclusion, although the Zr abundances cannot be modelled with the same degree of confidence as the REE. The required liquids correspond to both the most-evolved phonolite compositions observed within the DHF, and to cognate syenite fragments found in the ignimbrites. Sodian salite also occurs as cores to titanaugite grains that grew from the basaltic component. These observations are consistent with a model in which invading basaltic magma melts syenite, and

  8. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands: Strontium, neodymium, lead, and oxygen isotopic evidence

    SciTech Connect

    Cousens, B.L. ); Spera, F.J. ); Dobson, P.F. )

    1993-02-01

    Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from Gran Canaria, Canary Islands, provide evidence for posteruptive mobility of Rb, Sr, and O. Calculated initial [sup 87]Sr/[sup 86]Sr ratios in whole-rock samples from basaltic lavas and feldspar mineral separates from ignimbrites define a magmatic trend in the stratigraphic section, from ratios of 0.70340 at the base of the Mogan Formation to 0.70305 in the lower Fataga Formation. However, calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios in hydrated vitrophyre and devitrified matrix separates range from 0.7035 to 0.7090. [delta][sup 18]O ratios in basalts and feldspars vary little, from +5.7 to +6.1, yet range from +6.5 to +15.0 in the ignimbrite matrices. In contrast to the Sr and O isotope ratios, Pb and Nd isotope ratios are identical within analytical error in feldspars and their silicic ignimbrite matrices. Sequential leaching experiments and the oxygen data suggest that low-temperature, posteruptive interaction with meteoric water, perhaps containing a small seawater component, has modified Rb and Sr concentrations in the matrices, such that calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios are not those of the magmas when they were erupted. Mobilization of Rb and Sr must occur significantly after eurption. Nd and Pb isotope systems appear to be unaffected by this process. Therefore, [sup 87]Sr/[sup 86]Sr ratios determined by whole rock analysis of silicic rocks from hotspot-type oceanic islands are suspect and should not be incorporated into mantle tracer studies, although analysis of phenocrysts may produce useful data. 40 refs., 5 figs., 3 tabs.

  9. Fluvial responses to volcanism: resedimentation of the 1800a Taupo ignimbrite eruption in the Rangitaiki River catchment, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Manville, Vern; Newton, Erin H.; White, James D. L.

    2005-02-01

    The potential for the generation of dangerous and damaging lahars and floods in response to the eruption of voluminous pyroclastic debris has become increasingly appreciated in recent years. The style and tempo of this response varies both between eruptions and between individual catchments impacted by a single eruption, so that an understanding of the factors controlling this variation is necessary for precise hazard assessment. The 1800a Taupo eruption from the Taupo Volcanic Centre in the central North Island of New Zealand devastated an area of 20,000 km 2 during eruption of a climactic ignimbrite, impacting the headwaters of all major rivers draining radially from this region. The Rangitaiki River, the subject of this paper, differs from other catchments in that the Taupo ignimbrite buried an essentially flat land surface inherited from a suite of welded ignimbrite sheets erupted between 320-340 and 230 ka. The middle reaches of the catchment are characterised by narrow, steep gorges alternating with low-gradient basins developed in tectonic half-grabens. Initially, remobilisation of pyroclastic material in the headwaters was dominated by hyperconcentrated sheet flows resulting in shallow reworking. In higher gradient areas, reintegration of drainage networks was achieved by incision of deep channels and gullies, assisted by breakouts from ephemeral lakelets developed in ignimbrite-dammed depressions. Braided, and later meandering, streams superseded this pattern as rill and gully systems stabilised and sediment yields fell leading to a decline in drainage density. Gorge reaches acted as efficient conduits for remobilised material while the basins acted as local depocentres for the temporary storage of volcaniclastic sediments, mediating the transfer of pyroclastic debris to the Bay of Plenty coast >100 km to the north. Reworking and resedimentation of pyroclastic debris began immediately after the eruption, peaking early and then rapidly declining so that

  10. Seasonal and distributional patterns of seabirds along the Aleutian Archipelago

    USGS Publications Warehouse

    Renner, M.; Hunt, G.L., Jr.; Piatt, J.F.; Byrd, G.V.

    2008-01-01

    The Aleutian Archipelago is of global importance to seabirds during the northern summer, but little is known about seabird use of these waters during winter. We compare summer and winter abundances of seabirds around 3 islands: Buldir in the western, Kasatochi in the central, and Aiktak in the eastern Aleutians. The density of combined seabird biomass in nearshore marine waters was higher in summer than in winter at Buldir and Kasatochi, but was higher in winter at Aiktak, despite the departure of abundant migratory species. Comparing foraging guilds, we found that only piscivores increased at the western and central sites in winter, whereas at the eastern site several planktivorous species increased as well. The only planktivore remaining in winter at the central and western sites in densities comparable to summer densities was whiskered auklet Aethia pygmaea. Crested auklet Aethia cristatella and thick-billed murre Uria lomvia showed the greatest proportional winter increase at the eastern site. The seasonal patterns of the seabird communities suggest a winter breakdown of the copepod-based food web in the central and western parts of the archipelago, and a system that remains rich in euphausiids in the eastern Aleutians. We suggest that in winter crested auklets take the trophic role that short-tailed shearwaters Puffinus tenuirostris occupy during summer. We hypothesize that advection of euphausiids in the Aleutian North Slope Current is important for supporting the high biomass of planktivores that occupy the Unimak Pass region on a year-round basis. ?? Inter-Research 2008.

  11. Infrasonic monitoring of the eruption at a remote island volcano, Nishino-shima

    NASA Astrophysics Data System (ADS)

    Ichihara, Mie; Kikuchi, Junji; Nishida, Kiwamu; Sugioka, Hiroko; Hamano, Yozo

    2016-04-01

    Nishino-shima volcano in some 1000 km south of Tokyo is active since November, 2013. The new island has grown to almost swallow the original Nishino-shima island. We installed infrasonic stations to Chichi-jima, which is the closest inhabited island in 130 km to the east of Nishino-shima, and have been detecting clear infrasonic signals from the direction of Nishino-shima since May 2014. We also conducted infrasonic and visual observation in the research cruise close to Nishino-shima on 26th and 27th of February, 2015. The data was compared with the infrasonic data recorded at Chichi-jima to confirm that infrasound associated with the Strombolian activity of Nishino-shima was recorded at the distance of 130 km. The detection of infrasound at such a distance obviously depends on the atmospheric structure. Here we present a simple method to evaluate the atmospheric effect, which is crucial for interpreting the infrasonic observation to the change of volcanic activity. The method is similar to the Monte Carlo phonon method proposed by Shearer and Earle (2004) to investigate seismic scattering wave fields. A million phonon particles were transmitted from the ground to the atmosphere in random angles in 45 degrees from the horizontal direction. Ray-tracing calculation (Tahira, 1982) was performed for each particles assuming one dimensional atmospheric structure with the effect of wind advection in the plane. We counted the number of the particles that reached Chichi-jima in the area of the infrasound stations spanning about 1 km, and regarded that the number represented the infrasound energy that reached the stations. Perfect reflection was assumed on the sea surface, but the particles that were trapped in the bottom layer thinner than the scale of the infrasonic wave length were eliminated. The calculation was performed for atmospheric structures from May 2014 to December 2015, using the data from radiosonde measurements twice a day by the Japan Meteorology Agency. The

  12. Geothermal Drilling In The Aleutians Reveals New Insights On Volcanic History Of Akutan Volcano

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.

    2013-12-01

    In 2010, two thermal gradient wells were drilled in the Hot Springs Bay Valley geothermal resource area on Akutan Island, Alaska. Well TG-2 was drilled in the region of hot springs occurrence near the mouth of the valley and reached a depth of 253 m (833'). Well TG-4 was drilled near the head of the valley, closer to the current volcano, and reached a depth of 457 m (1500'). The core recovered from these wells represent the only drill core extracted from an Aleutian volcano to date and reveals an important missing piece of the surficial eruptive and erosional history of the volcano that cannot be determined from surface evaluation of recent eruptive deposits laid down on 500 ka bedrock outcrops. No intrusive rocks were encountered, indicating a rich history of surficial activity. The core is dominated (46% of recovered core) by basaltic lava flow deposits (49-52 wt% SiO2), consistent with other observed deposits on the island. These flows are interspersed with andesite lava flows (20% of core, ranging from 53-58 wt% SiO2), abundant mass wasting deposits (27% of core) and a series of ash and ash tuff layers that are some of the most silicic deposits identified at Akutan (up to 66 wt% SiO2). Ash deposits are restricted to the upper 125 m in both wells, are significantly thicker in TG-4, and are difficult to correlate between the two wells. Mass wasting deposits are diverse, including a subset characterized by matrix-supported heterolithologic breccias enclosed in a crystalline basaltic lava host. A shell-rich zone at 273 meters depth indicates that the transition between sub-marine and sub-aerial activity may be recorded in the core.

  13. Emplacement and Eruption Style in the Franklin Large Igneous Province, Victoria Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Bedard, J. H.; Williamson, N.; Dell'Oro, T. A.; Hayes, B.; Hryciuk, M.; Winpenny, A.; Scoates, J. S.; Weis, D. A.; Nabelek, P. I.; Naslund, H. R.; MacDonald, W. D.

    2011-12-01

    The Neoproterozoic Franklin large igneous province preserves up to 1.1 km thickness of basaltic volcanics (Natkusiak Fm.). The Natkusiak volcanics include basal agglutinate and local hyaloclastite breccias and pillows, lensoid or sheet flows, some picritic, and lahar deposits that seem to infill paleo-valleys. The overlying main series lavas are mostly subareal sheet flows and exhibit cycles of upwardly decreasing MgO. Localized vent facies include unconsolidated scoria and bombs, spatter, and fumarolic malachite/zeolite around native Cu veins. Lateral trace element chemical heterogeneity implies eruption through multiple vents with distinct plumbing systems. The underlying exposed 3-4 km of the Shaler Supergroup are dolostones, sandstones, gypsum evaporites and shales, which are riddled with sills (most 20-50m, up to 100m). Sills constitute 50-75% of the section in most places, and belong to two distinct geochemical subtypes. A heterogeneous LREE-enriched facies includes sills with olivine-rich bases. A more homogeneous diabasic subtype has flatter REE patterns and occurs higher in the section. The oft-reported saucer-shaped sill morphology does not occur in the Franklin sills, which tend to be concordant over 10s of km distance. In many places, up-section transgressions appear to be structurally controlled by pre-existing faults that guided magma ascent and may have modulated reactivation and injection of olivine-rich slurries into pre-existing sills. The roof-zones of upward transgressions are injected with arcuate dikes on various scales (1m to 1 km), and are often associated with cataclasites, oxide-sulfide skarns and calc-silicates. These reflect the complexity of melt-driven fracture propagation, varying host ductility, fluctuation of magma pressure, and expulsion of melt and fluids from cooling sills. Some of these intrusions are enriched in sulphide minerals, possibly the result of assimilation of S-rich host rocks.

  14. THE EXTENT OF SEA FLOOR VOLCANISM AND NATURE OF PRIMITIVE MAGMAS IN THE WESTERN ALEUTIANS

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Turka, J.; Portnyagin, M.; Kelemen, P. B.; Vervoort, J. D.; Sims, K. W.; Bindeman, I. N.

    2009-12-01

    Results of the 2005 Western Aleutian Volcano Expedition (WAVE) and the June 2009 cruise of the German-Russian KALMAR project (Kamchatka-Aleutian Margin) include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts located 300 km west of Buldir Island, the westernmost emergent volcano in the Aleutians. The newly discovered features fall on a volcanic line connecting Buldir and other emergent volcanoes to Piip Seamount, which is located in the far west. These discoveries suggest that the surface expression of Aleutian volcanism slips below sea level at 175°E, but is otherwise continuous from 170°W to 167°E. Geochemical results from the Ingenstrem Depression (60 km west of Buldir) define two compositional groups, which provide insight into the nature of primitive Aleutian magmatism. Low-Sr lavas (<700 ppm Sr) are basalts and andesites with moderately enriched trace element patterns (La/Yb 4-8, Sr/Y<30) and relatively radiogenic Sr (87/86=0.7031-0.7033), typical of IAB. High-Sr lavas (>700 ppm) are plagioclase and hornblende-phyric andesites and dacites with fractionated trace element patterns (Sr/Y>50) and low Y (<12 ppm) and HREE. Sr isotopes for all lavas are inversely correlated with Sr/Y and SiO2, so the most felsic samples (65-67% SiO2), which have the highest Sr abundances and most fractionated trace element patterns (Sr/Y>120) are also the most isotopically depleted (87/86<0.7028). Major and trace elements are well correlated with isotopes defining primitive end-members at 87/86<0.7027 (high-Sr), and >0.7032 (low Sr). The narrow range for Nd isotopes (8.5-9.5 epsNd) suggests that the main source of Sr and Nd may be seawater-altered subducted oceanic crust; however, oxygen isotopes on olivine and hornblende separates are similar to MORB for both groups (delta18O=5.1-5.6 per-mil, olivine-equ). Available data do not identify a high-Sr lava with whole-rock Mg# and olivine phenocryst compositions appropriate for equilibration

  15. Improvement forecasting of volcanic activity by applying a Kalman filter to the SSEM signal. The case of the El Hierro Island eruption (October 2011)

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Berrocoso, M.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The FFM (Failure Forecast Method) is developed from the eruption of St. Helens, being repeatedly applied to forecast eruptions and recently to the prediction of seismic activity in active volcanic areas. The underwater eruption of El Hierro Island has been monitored from three months before starting (October 10, 2011). This allowed a large catalogue of seismic events (over 11000) and continuous recording seismic signals that cover the entire period. Since the beginning of the seismic-volcanic crisis (July 2011), the FFM was applied to the SSEM signal of seismic records. Mainly because El Hierro is a very small island, the SSEM has a high noise (traffic and oceanic noise). To improve the signal / noise ratio has been used a Kalman filter. The Kalman filter coefficients are adjusted using an inversion process based on forecasting errors occurred in the twenty days preceding. The application of this filter has been a significant improvement in the reliability of forecasts. The analysis of the results shows, before the start of the eruption, that 90% of the forecasts are obtained with errors less than 10 minutes with more than 24 hours in advance. It is noteworthy that the method predicts the events of greater magnitude and especially the beginning of each swarm of seismic events. At the time the eruption starts reducing the efficiency of the forecast 50% with a dispersion of more than one hour. This fact is probably due to decreased detectability by saturation of some of the seismic stations and decreased the average magnitude. However, the events of magnitude greater than 4 were predicted with an error less than 20 minutes.

  16. Environmental contaminants in bald eagle eggs from the Aleutian archipelago.

    PubMed

    Anthony, Robert G; Miles, A Keith; Ricca, Mark A; Estes, James A

    2007-09-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (delta13C) and nitrogen (delta15N). Concentrations of polychlorinated biphenyls (SigmaPCBs), p,p'-dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of SigmaPCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (delta13C) or nitrogen (delta15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. PMID:17702538

  17. Environmental contaminants in bald eagle eggs from the Aleutian archipelago

    USGS Publications Warehouse

    Anthony, R.G.; Miles, A.K.; Ricca, M.A.; Estes, J.A.

    2007-01-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (??13C) and nitrogen (??15N). Concentrations of polychlorinated biphenyls (??PCBs), p,p???- dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of ??PCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (??13C) or nitrogen (??15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. ?? 2007 SETAC.

  18. Stress-induced comenditic trachyte effusion triggered by trachybasalt intrusion: multidisciplinary study of the AD 1761 eruption at Terceira Island (Azores)

    NASA Astrophysics Data System (ADS)

    Pimentel, A.; Zanon, V.; de Groot, L. V.; Hipólito, A.; Di Chiara, A.; Self, S.

    2016-03-01

    The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known as Mistérios Negros) were also thought by some to have formed simultaneously on the eastern flank of Santa Bárbara Volcano. Following a multidisciplinary approach, we combined geological mapping, paleomagnetic, petrographic, mineral and whole-rock geochemical and structural analyses to study this eruption. The paleomagnetic dating method compared geomagnetic vectors (directions and intensities) recorded by both the AD 1761 lava flow and Mistérios Negros domes and revealed that the two events were indeed coeval. Based on new data and interpretation of historical records, we have accordingly reconstructed the AD 1761 eruptive dynamics and distinguished three phases: (1) a precursory phase characterized by decreased degassing in the fumarolic field of Pico Alto Volcano and a gradual increase of seismic activity, which marked the intrusion of trachybasalt magma; (2) a first eruptive phase that started with phreatic explosions on the eastern flank of Santa Bárbara Volcano, followed by the inconspicuous effusion of comenditic trachyte (66 wt% SiO2), forming a WNW-ESE-oriented chain of lava domes; and (3) a second eruptive phase on the central part of the fissure zone, where a Hawaiian to Strombolian-style eruption formed small scoria cones (E-W to ENE-WSW-oriented) and a trachybasalt lava flow (50 wt% SiO2) which buried 27 houses in Biscoitos village. Petrological analyses show that the two batches of magma were emitted independently without evidence of interaction. We envisage that the dome-forming event was triggered by local stress changes induced by intrusion of the trachybasalt dyke along the fissure zone, which created tensile stress conditions that promoted ascent

  19. Relative and probabilistic non linear relocation of the seismicity of El Hierro (Canary Islands, Spain): Implications for the 2011-2012 eruption.

    NASA Astrophysics Data System (ADS)

    Diaz-Moreno, Alejandro; Garcia-Yeguas, Araceli; De Angelis, Silvio; Prudencio, Janire; Ibañez, Jesus M.; Morales, José; Koulakov, Ivan

    2014-05-01

    El Hierro Island (Canary Islands, SPAIN) has recently attracted the interest of the international volcanological community. During a prolonged period of seismic and volcanic unrest, between July 2011 and April 2013, the local seismic network recorded more than 15,000 earthquakes accompanied by a submarine eruption. In this study we present an exhaustive relocation analysis of the original seismic catalog using two well established methods double-difference relative relocation (HypoDD), and probalistic non-linear location (NLLoc). Our relocations are based on 3D velocity models that were obtained from an active-source tomography experiment in the Canary Islands. The relocations constrain the spatial and temporal distribution of seismicity, and help to shed light on the patterns of stress propagation, and areas of crustal weakness under the island. The results show that the seismicity each of unrest recorded during this period is located within a small region close to the center of the island and located around 12 to 14 km depth. Then, the seismicity migrates away from the island. We confirm the presence of a high-velocity block centered underneath El Hierro (up to 15km depth) observed by other authors. This block may represent a barrier to magma propagation and it corresponds to the location of the bulk of seismicity at the beginning of each phase.

  20. Revealing the Eruptive History of Volcanoes from Massive Cross-Correlation of Seismic Signal at Global Scale

    NASA Astrophysics Data System (ADS)

    Dupont, A.; Gaillard, P.; Grenouille, A.; Bui-Quang, P.; Guilhem, A.; Bobrov, D.; Kitov, I. O.; Rozhkov, M.

    2015-12-01

    We propose here a massive cross-correlation technique applied to seismic events located around volcanoes and recorded at teleseismic distance. Multichannel cross-correlations are performed between 2002 to 2012 using seismic templates occurring at the time of moderate to large volcanic eruptions. The volcanic periods are reported from the Global Volcanism Program database while the waveform data are obtained from the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The temporal distribution of new seismic events, built from the association of teleseismic detections reveals acceleration patterns, which are highly correlated to the past eruptive activities. These newly detected events are relocated using Bayesian approach and leads to preliminary interpretation of the volcanic plumbing system. Two examples are presented. First, the large 2008 eruption (Volcanic Explosivity Index, VEI4) of Kasatochi (Aleutian Islands, 52.10°N/175.31°W) is used to demonstrate that only few seismic templates (~3) help to reveal the time scale of the eruption. Results are compared to hydroacoustic signal, which is highly correlated to the distribution of new seismic events prior and during eruption. We also show that after the peaked seismic activity (i.e., ~ 100 seismic events in 1 hour) the infrasound signal starts and signs the volcanic plume activity. The second case example reveals with success seven past volcanic eruptions of lower magnitude (VEI1 to VEI2) of the Karangetang volcano (Siau Island in Indonesia, 2.46°N/125.24°E). We show the potential of this method to detect volcanic eruptions in isolated areas. This is of special interest especially when there is no volcano observatory to monitor the volcanic activity, or when the last eruptive period is unknown.

  1. Explosive eruptions from the interaction of magmatic and hydrothermal systems during flank extension: the Bellecombe Tephra of Piton de La Fournaise (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Ort, Michael H.; Di Muro, Andrea; Michon, Laurent; Bachèlery, Patrick

    2016-01-01

    Piton de la Fournaise (La Réunion Island) is a very active, primarily effusive ocean-island volcano. The Bellecombe Tephra represents at least three explosive eruptions that occurred between about 5465 and 2971 calendar years BP. Near the margin of the present-day Enclos Fouqué caldera margin, two Bellecombe eruptions produced a sequence of two tuff breccias interbedded with tuff. The tuff breccias only reach a few hundred meters outside the current caldera margin. At Petite Carrière, an old scoria cone ~1 km from the Enclos Fouqué margin, these two deposits (the "lower Bellecombe Tephra") are represented by two tuffs with incipient soil formation at the top of each. They are overlain by a third unit (the upper Bellecombe Tephra) made of bedded lapilli tuff and tuff, some reworked in small debris flows off the scoria cone. The lapilli increase in size and the beds in thickness southeastward, toward Chisny volcano and away from the Enclos Fouqué caldera. Deposits from the upper Bellecombe tephra are correlated to sites 5 km northwest of Petite Carrière and 6 km north of a postulated vent location on the north side of Chisny volcano. Distribution patterns of all Bellecombe tephra are consistent with eruption columns that did not rise above 8 km asl. The ash fraction of the Bellecombe Tephra contains three juvenile components: a dominant gray vitric basaltic ash, an oceanitic (olivine-rich basalt) ash, and pyroxene-bearing gabbro with a few percent glass. It also contains doubly terminated clear quartz grains, and olivine and rarer clinopyroxene crystals. The lower Bellecombe Tephra contains an altered brown ash, whereas a tan-yellow clay-rich ash is common in the upper unit. Lava flows of gray aphyric basalt and oceanite are exposed at the surface and preceded the Bellecombe eruptions, but the gabbro, quartz crystals, and hydrothermally altered grains indicate the involvement of the magma/hydrothermal system from 0.5- to 2-km depth. We propose that the three

  2. Hydrogeochemical variations in groundwater periodically sampled at El Hierro (Canary Islands) and its relationships with the recent eruptive and unrest periods

    NASA Astrophysics Data System (ADS)

    Luengo-Oroz, Natividad; Torres, Pedro A.; Moure, David; D'Alessandro, Walter

    2014-05-01

    On 10 October 2011, a submarine volcanic eruption started 2 km south El Hierro Island (Canary Islands, Spain). Since July 2011 a dense multiparametric monitoring network was deployed all over the island by Instituto Geográfico Nacional (IGN). By the time the eruption started, almost 10000 earthquakes had been located and the deformation analyses showed a maximum deformation of more than 5 cm. After the end of the submarine eruption and up to now, several volcanic unrest processes have taken place in the island. The most relevant ones started on June 2012 and March 2013. Each of these periods has been evidenced by intense seismicity and ground deformation. In the framework of this volcanic surveillance program, the IGN team started to periodically sample five groundwater sampling sites. Some parameters have been determined directly in the field (temperature, pH, electric conductivity and alkalinity) and collected samples have been analysed in the laboratory for major (Na, K, NH4, Ca, Mg, SO4, Cl, HCO3, CO3, NO3, NO2, PO4, SiO2, Br, F) and trace elements (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Hg, Tl, Pb, Th, U) contents. In a few cases samples for the chemical analysis of dissolved gases and for the determination of the isotopic composition of He have been collected at two of the sites. Significant increases in alkalinity have been recorded in all sampling sites correlated both to the eruptive period and also to the following unrest episodes. Such increases are probably related to the dissolution of magmatic CO2 exsolved from the rising magma batches. The magmatic contribution can be confirmed by the isotopic composition of dissolved He showing values in the range from 7.76 to 8.91 R/Ra. Since July 2011, only one important CO2 soil degassing anomaly has been detected. This anomalous flux (620 g/m2.d) was measured in a small area (0.36 km2) before the beginning of the submarine eruption and has not been detected again after the eruption onset

  3. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  4. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  5. Volatiles in pantellerite magmas: A case study of the Green Tuff Plinian eruption (Island of Pantelleria, Italy)

    NASA Astrophysics Data System (ADS)

    Lanzo, Giovanni; Landi, Patrizia; Rotolo, Silvio G.

    2013-07-01

    The Green Tuff (GT) Plinian eruption, the largest in magnitude at Pantelleria, erupted 3 to 7 km3 DRE of pantellerite magma and a small volume of trachyte. Fifty-nine anorthoclase-hosted melt inclusions from the two basal pumice members were analyzed by FT-IR spectroscopy in order to assess the pre-eruptive H2O content in the pantellerite melt. Microanalytical methods were used to determine major element, Cl, F and S contents. Melt inclusions and glassy groundmasses have a nearly homogeneous pantelleritic composition (peralkaline index = 1.9-2.2) and variable water contents ranging from 1.4 to as high as 4.2 wt %, i.e. much higher than the 1.4 wt % of earlier published studies. The chlorine content is constant at about 1 wt %. Combined Cl and H2O data were used to estimate a confining pressure of about 50 MPa (depth around 2-3 km) for the GT magma chamber. The chamber was characterized by a compositional zoning with a dominant pantellerite overlying a trachyte magma. Soon after the GT eruption, intra-caldera volcanism was dominated by the eruption of voluminous trachyte lava flows, while pantellerite melt production resumed after about 20 ka with numerous low-volume, mildly explosive (Strombolian) to effusive eruptions. Comparison with data from the literature reveals that, despite the different explosivity, the post-caldera Strombolian eruptions and the GT Plinian eruption were fed by pantelleritic magmas with similar water contents. Chlorine and CO2 contents suggest that the young magma reservoirs feeding the Strombolian to effusive activity were deeper (h ≥ 4.5 km) than the much larger (based on erupted volumes) magma chamber which fed the GT eruption.

  6. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  7. Volcanic-ash hazard to aviation during the 2003 2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Ewert, John W.; Gallina, Gregory M.; Bluth, Gregg J. S.; Swanson, Grace L.

    2005-08-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO 2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  8. An investigation of the distribution of eruptive products on the shield volcanoes of the western Galapagos Islands using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Munro, Duncan C.; Rowland, Scott K.; Mouginis-Mark, Peter J.; Wilson, Lionel; Oviedo-Perez, Victor-Hugo

    1991-01-01

    Recent volcanic activity in the Galapagos Islands is concentrated on the two westernmost islands, Isla Isabela and Isla Fernandina. Difficult access has thus far prevented comprehensive geological field studies, so we examine the potential of remotely sensed data as a means of studying volcanic processes in the region. Volcan Wolf is used as an example of the analysis of SPOT HRV-1 data undertaken for each volcano. Landsat TM data are analyzed in an attempt to construct a relative age sequence for the recent eruptive activity on Isla Fernandina. No systematic variation in the surface reflectance of lava flows as a function of age could be detected with these data. Thus it was not possible to complete a study of the temporal distribution of volcanic activity.

  9. Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Losada, Jose A.; Eff-Darwich, Antonio; Hernandez, Luis E.; Viñas, Ronaldo; Pérez, Nemesio; Hernandez, Pedro; Melián, Gladys; Martinez-Frías, Jesús; Romero-Ruiz, M. Carmen; Coello-Bravo, Juan Jesús

    2015-02-01

    This paper describes the main physical, petrological and geochemical features of the floating fragments that were emitted in the initial stages of the 2011-2012 submarine eruption off the coast of the Canarian island of El Hierro, located 380 km from the Northwest African Coast. It attempts to assess the potential of radiometric analyses to discern the intriguing origin of the floating fragments and the differences between their constituent parts. In this regard, the material that conforms the core of the fragments contains the largest concentration of uranium (U) ever found in volcanic rocks of the Canary Islands. This enrichment in U is not found in the content of thorium (Th), hence the floating fragments have an unusual U/Th ratio, namely equal to or larger than 3. Although the origin of this material is under discussion, it is proposed that the enrichment in U is the result of hydrothermal processes.

  10. Aleutian Ancorinidae (Porifera, Astrophorida): Description of three new species from the genera Stelletta and Ancorina.

    PubMed

    Lehnert, Helmut; Stone, Robert P

    2014-01-01

    Two new species of the genus Stelletta and one new species of Ancorina are described from the Aleutian Islands of Alaska and compared to congeners of the region. This is the first record of the genus Ancorina in the North Pacific Ocean. Stelletta ovalae Tanita 1965 is also reported for the first time from the Bering Sea and Alaska.  PMID:24990051

  11. Subsurface hydrographic structures and the temporal variations of Aleutian eddies

    NASA Astrophysics Data System (ADS)

    Saito, Rui; Yasuda, Ichiro; Komatsu, Kosei; Ishiyama, Hiromu; Ueno, Hiromichi; Onishi, Hiroji; Setou, Takeshi; Shimizu, Manabu

    2016-05-01

    Aleutian eddies are mesoscale anticyclonic eddies formed within the Alaskan Stream region between 180° meridian and 170° E south of the Aleutian Islands. They propagate southwestward after the isolation from the Alaskan Stream and pass through the Western Subarctic Gyre. We compared hydrographic structures of three Aleutian eddies observed during summer, west of 170° E (Eddy A) and east of 170° E (Eddies B and C). In each eddy, a subsurface dichothermal water (3.0-4.0 °C) was observed above a subsurface mesothermal water (4.0-4.5 °C). The minimum temperature in the dichothermal water at around a depth of 100 m was colder in Eddy A (2.8 °C) than in Eddies B and C (3.0-3.2 °C). This difference could be ascribed to wintertime cooling and influence of surrounding waters during spring warming period. The wintertime cooling makes the dichothermal water colder for eddies isolated from the Alaskan Stream region for a longer time. Particle-tracking experiments using re-analysis products from a data-assimilative eddy resolving ocean model suggested that the dichothermal water within Eddy A was cooled by the entrainment of surrounding colder water even during the spring warming period. The mesothermal waters at depth around 250 m demonstrated similarity among the observed eddies, and the maximum temperature in the mesothermal water within Eddy A (4.3 °C) was close to that of Eddies B and C (4.2 °C) in the in situ observations. These results indicated that the dichothermal water of Aleutian eddies modifies over time, whereas the mesothermal water maintains the original feature as they propagate southwestward from the Alaskan Stream region to the Western Subarctic Gyre.

  12. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  13. Ambient air quality effects of the 2008-2009 Halema`uma`u eruption on the Island of Hawai`i

    NASA Astrophysics Data System (ADS)

    Elias, T.; Sutton, A. J.; Kauahikaua, J. P.; Ray, J. D.; Babb, J. L.

    2009-12-01

    While the Halema`uma`u eruption has enlivened volcanologists with the rare opportunity to observe eruptive processes at Kilauea’s summit, it has also caused significant environmental impact on the Island of Hawai`i. Since the beginning of 2008, the combined SO2 emissions from the east rift zone (ERZ) and summit of Kilauea have increased by ~40% as compared to the 2003-2007 long-term average. However, emissions from Kilauea’s summit have increased ~6-fold, averaging 850 t/d during January 2008-August 2009. Although average emissions from the ERZ during this period have been 1-2 times that of the summit, the relative impact of summit emissions is disproportionately large due to the location of the vent and the plume dispersal pattern to downwind communities. Ambient air quality data show that federal standards have been exceeded frequently in various communities on the south half of the island. Between April 2008 and August 2009, primary health standards for SO2 and PM2.5 were exceeded on 41 and 19 occasions respectively in Pahala, located ~30 km downwind of the Kilauea summit under prevailing trade wind conditions. Pahala, which exceeded the SO2 annual standard for 2008, had not exceeded standards prior to the opening of the Halema`uma`u vent in March 2008. In July 2008, the U.S. Secretary of Agriculture designated Hawai`i County a primary natural disaster area due to agricultural losses from volcanic emissions. Many growers of exotic flower crops in the Ka`u district suffered irrecoverable losses. Coffee and macadamia nut farmers also reported damage to their fields. While some livestock farmers reported eye irritation in cattle, more significant damage was observed in the accelerated deterioration of galvanized fencing, gates, pipelines and other infrastructure. The increase in volcanic pollution has spurred health concerns. A rise in respiratory emergencies for visitors to Kilauea caldera in early 2008 led Hawai`i Volcanoes National Park to close areas

  14. Probabilistic approach to decision making under uncertainty during volcanic crises. Retrospective analysis of the 2011 eruption of El Hierro, in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Sobradelo, Rosa; Martí, Joan; Kilburn, Christopher; López, Carmen

    2014-05-01

    Understanding the potential evolution of a volcanic crisis is crucial to improving the design of effective mitigation strategies. This is especially the case for volcanoes close to densely-populated regions, where inappropriate decisions may trigger widespread loss of life, economic disruption and public distress. An outstanding goal for improving the management of volcanic crises, therefore, is to develop objective, real-time methodologies for evaluating how an emergency will develop and how scientists communicate with decision makers. Here we present a new model BADEMO (Bayesian Decision Model) that applies a general and flexible, probabilistic approach to managing volcanic crises. The model combines the hazard and risk factors that decision makers need for a holistic analysis of a volcanic crisis. These factors include eruption scenarios and their probabilities of occurrence, the vulnerability of populations and their activities, and the costs of false alarms and failed forecasts. The model can be implemented before an emergency, to identify actions for reducing the vulnerability of a district; during an emergency, to identify the optimum mitigating actions and how these may change as new information is obtained; and after an emergency, to assess the effectiveness of a mitigating response and, from the results, to improve strategies before another crisis occurs. As illustrated by a retrospective analysis of the 2011 eruption of El Hierro, in the Canary Islands, BADEMO provides the basis for quantifying the uncertainty associated with each recommended action as an emergency evolves, and serves as a mechanism for improving communications between scientists and decision makers.

  15. Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989-2002

    USGS Publications Warehouse

    Power, J.A.; Stihler, S.D.; White, R.A.; Moran, S.C.

    2004-01-01

    Between October 12, 1989 and December 31, 2002, the Alaska Volcano Observatory (AVO) located 162 deep long-period (DLP) events beneath 11 volcanic centers in the Aleutian arc. These events generally occur at mid- to lower-crustal depths (10-45 km) and are characterized by emergent phases, extended codas, and a strong spectral peak between 1.0 and 3.0 Hz. Observed wave velocities and particle motions indicate that the dominant phases are P- and S-waves. DLP epicenters often extend over broad areas (5-20 km) surrounding the active volcanoes. The average reduced displacement of Aleutian DLPs is 26.5 cm2 and the largest event has a reduced displacement of 589 cm2 (or ML 2.5). Aleutian DLP events occur both as solitary events and as sequences of events with several occurring over a period of 1-30 min. Within the sequences, individual DLPs are often separated by lower-amplitude volcanic tremor with a similar spectral character. Occasionally, volcano-tectonic earthquakes that locate at similar depths are contained within the DLP sequences. At most, Aleutian volcanoes DLPs appear to loosely surround the main volcanic vent and occur as part of background seismicity. A likely explanation is that they reflect a relatively steady-state process of magma ascent over broad areas in the lower and middle portions of the crust. At Mount Spurr, DLP seismicity was initiated by the 1992 eruptions and then slowly declined until 1997. At Shishaldin Volcano, a short-lived increase in DLP seismicity occurred about 10 months prior to the April 19, 1999 eruption. These observations suggest a link between eruptive activity and magma flux in the mid- to lower-crust and uppermost mantle.

  16. Precursory characteristics of the seismicity before the 6 August 2012 eruption of Tongariro volcano, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hurst, Tony; Jolly, Arthur D.; Sherburn, Steven

    2014-10-01

    The 6 August 2012 eruption from the Upper Te Maari crater of Tongariro volcano followed approximately three weeks of precursory seismic activity. Earthquake relocations including data from extra temporary stations indicated that nearly all events were in a small area very close to Upper Te Maari. Most of these relocated events were very shallow, with nearly all events being between 1000 and 1500 m below the ground surface. The pre-eruption seismicity occurred in three main swarms. During the first swarm on 12-13 July 2012, all the earthquakes had consistent inter-event times of 71 ± 8 min, while in the later swarms (17-20 and 29-30 July) many events had a similar pattern of consistent inter-event times. The stationary quasi-periodic ("clockwork") earthquake process suggests that a single fracture point was excited by a nearly constant rate flux process. The dominant type of earthquake observed in these swarms had a sharp onset and a broad spectrum, with strong energy from 2 to 10 Hz. Most events seen had a local magnitude of 1.5 to 2.5, with virtually no smaller events. Most of these earthquakes appeared to belong to a main earthquake family whose characteristics included a strong spectral component at about 2 Hz and three bursts of energy spaced at intervals of about 1.5 s. Of the 116 located earthquakes, 75 had a correlation coefficient greater than 0.70 with a master event. The spectra of these events did not change with size, with matching frequency peaks for all the events with a high correlation. The last event of this type was the day before the 6 August 2012 eruption, none have been seen since and there has been very little seismicity under Tongariro. This seismicity alerted GNS Science and other organisations to the unrest of Tongariro, and the Volcanic Alert Level and Aviation Colour Code were raised to publicise this. GNS Science also increased its monitoring of Tongariro, and discovered that the magmatic gas concentrations had increased compared to

  17. New insights into composition and source, single or multistage emplacement, and relationship to eruption cycles from first drilling of volcanic island landslides, offshore Montserrat

    NASA Astrophysics Data System (ADS)

    Talling, Peter

    2013-04-01

    Volcanic island landslides include the largest mass flows on our planet. They can pose a significant hazard due to the landslide itself, and through generation of far-travelling tsunamis. The potential tsunami magnitude is highly controversial, and depends on where material originates, and how the landslide is emplaced. It is also important to know whether landslides are preceded or post-dated by major eruptions, and whether landslides play a role in initiation of new volcanic centres. IODP Expedition 340 recovered the first cores through volcanic island landslides, located offshore Montserrat and Martinique. Here we analyse two landslides offshore Montserrat, where we also have unusually comprehensive seismic data and shallow cores. The younger Deposit 1 (~1.8 cubic km) contains chaotically distributed blocks and was emplaced as a granular avalanche. The older and larger volume (~9 cubic km) Deposit 2 contains blocks in its proximal part, but generally has a smoother surface. Cores from IODP Site U1395 (~25 km from the volcano) contain a spectacular ~7 m thick stack of massive, graded turbidite sands associated with Deposit 2. For comparison, the 1995-recent eruption on Montserrat only produced a ~20 cm thick deposit at this location. The stacked turbidites lack intervening mud suggesting emplacement by pulses in a single event. Deposit 2 is ~100 m thick at Site 1394, where it comprises flat-lying turbidite sands and hemipelagic mud, and thin intervals of homogenised muddy sand. Most turbidites contain a significant (20-90%) bioclastic component. The surprising composition of Deposit 2 can be explained by two hypotheses. First, the flat-lying turbidites and hemipelagic muds are in-situ and record episodic failure over a prolonged period of time. Second, emplacement of material from the volcano caused failure of sea floor sediment, and the turbidite sand and hemipelagic muds are flat-lying blocks of seafloor sediment incorporated into the landslide. Shear was

  18. New insight into composition and source, single or multistage emplacement, and relationship to eruption cycles from first drilling of volcanic island landslides, offshore Montserrat

    NASA Astrophysics Data System (ADS)

    Talling, P. J.; Kataoka, K.; Endo, D.; Watt, S. F.; Le Friant, A.; Ishizuka, O.; Scientific Party, I.; Berndt, C.; Crutchley, G.; Karstens, J.

    2012-12-01

    Volcanic island landslides include the largest mass flows on our planet. They can pose a significant hazard due to the landslide itself, and through generation of far-travelling tsunamis. The potential tsunami magnitude is highly controversial, and depends on where material originates, and how the landslide is emplaced. It is also important to know whether landslides are preceded or post-dated by major eruptions, and whether landslides play a role in initiation of new volcanic centres. IODP Expedition 340 recovered the first cores through volcanic island landslides, located offshore Montserrat and Martinique. Here we analyse two landslides offshore Montserrat, where we also have unusually comprehensive seismic data and shallow cores. The younger Deposit 1 (~1.8 km3) contains chaotically distributed blocks and was emplaced as a granular avalanche. The older and larger volume (~9 km3) Deposit 2 contains blocks in its proximal part, but generally has a smoother surface. Cores from IODP Site U1395 (~25 km from the volcano) contain a spectacular ~7 m thick stack of turbidite sands associated with Deposit 2. For comparison, the 1995-recent eruption on Montserrat only produced a ~20 cm thick deposit at this location. The stacked turbidites lack intervening mud suggesting emplacement by pulses in one event. Deposit 2 is ~100 m thick at Site 1394, where it comprises flat-lying turbidite sands and hemipelagic mud, and thin intervals of homogenised muddy sand. Most turbidites contain a significant (20-90%) bioclastic component. The surprising composition of Deposit 2 can be explained by two hypotheses. First, the flat-lying turbidites and hemipelagic muds are in-situ and record episodic failure over a prolonged period of time. Second, emplacement of material from the volcano caused failure of sea floor sediment, and the turbidite sand and hemipelagic muds are flat-lying blocks of seafloor sediment incorporated into the landslide. Shear was concentrated on the homogenised

  19. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  20. 75 FR 69597 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... 2011 harvest specifications for groundfish in the BSAI (75 FR 11778, March 12, 2010). In accordance... Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting retention of Pacific cod in the Bering...

  1. 75 FR 792 - Fisheries of the Economic Exclusive Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    .../processors using hook-and-line in the BSAI under Sec. 679.20(d)(1)(iii) on November 16, 2009 (74 FR 59918... catcher Pacific cod by catcher/processors using hook-and-line gear in the Bering Sea and Aleutian Islands.../processors using hook-and-line gear in the BSAI. Classification This action responds to the best...

  2. 78 FR 35771 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... (78 FR 13813, March 1, 2013). In accordance with Sec. 679.20(d)(1)(iii), the Regional Administrator... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  3. 75 FR 14498 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... groundfish in the BSAI (75 FR 11778, March 12, 2010). In accordance with Sec. 679.20(d)(1)(i), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  4. 78 FR 64891 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... the BSAI (78 FR 13813, March 1, 2013). In accordance with Sec. 679.20(d)(1)(iii), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  5. 78 FR 64892 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... by the final 2013 and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  6. 77 FR 26212 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... the final 2012 and 2013 harvest specifications for groundfish in the BSAI (77 FR 10669, February 23... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  7. 76 FR 65975 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... by the final 2011 and 2012 harvest specifications for groundfish in the BSAI (76 FR 11139, March 1... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  8. 77 FR 39441 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... the BSAI (77 FR 10669, February 23, 2012). In accordance with Sec. 679.20(d)(1)(iii), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  9. 75 FR 6129 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... BSAI (74 FR 7359, February 17, 2009). In accordance with Sec. 679.20(d)(1)(iii), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. ] SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  10. 76 FR 10780 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... specifications for groundfish in the BSAI (75 FR 11778, March 12, 2010) and inseason adjustment (76 FR 1539... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  11. 78 FR 25878 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... the final 2013 and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1, 2013... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  12. 76 FR 59924 - Fisheries of the Exclusive Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... GOA (76 FR 11139, March 1, 2011) and apportionment of non-specified reserves (76 FR 53840, August 30... Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian Islands Management Area AGENCY: National...: Temporary rule; closure. SUMMARY: NMFS is prohibiting retention of sharks in the Bering Sea and...

  13. Anatahan, Northern Mariana Islands: Reconnaissance geological observations during and after the volcanic crisis of spring 1990, and monitoring prior to the May 2003 eruption

    USGS Publications Warehouse

    Rowland, S.K.; Lockwood, J.P.; Trusdell, F.A.; Moore, R.B.; Sako, M.K.; Koyanagi, R.Y.; Kojima, G.

    2005-01-01

    Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ???1 km across and ???200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the outer flanks and in the caldera walls. These include thick (???10 m) and thin (2-3 m) lava flows, well-indurated tuffs, and scoria units that make up the bulk of the island. Rock compositions range from basaltic andesite to dacite, and most are plagioclase-phyric. On the steep north and south flanks of the volcano, these rocks are cut by numerous east-west-oriented, few-hundred-m-long lineaments of undetermined origin. Indurated breccias unconformably overlie scarps cut into stage 1 units low on the south flank. Intermediate-age eruptive units (stage 2) include caldera-filling lava flows and pyroclastic deposits and, on the outer flanks, vents and valley-filling lava flows. The youngest pre-2003 volcanic unit on Anatahan (stage 3) is a hydromagmatic surge and fall deposit rich in accretionary lapilli. Prior to 2003, this unit was found over almost the entire island, and in many places original depositional surfaces and outcrops could be found in high-energy environments along the coast, indicating a young (but undetermined) age. During reconnaissance visits in 1990, 1992, 1994, and 2001, geothermal activity (fumaroles as well as pits with boiling, sediment-laden pools) was observed in the southern part of the pit crater. In March and April 1990, increased local seismicity, a large regional earthquake, and reported increased fumarolic activity in the pit crater prompted evacuation of Anatahan village, at the west end of the island. Our first field investigation took place in late April 1990 to assess the level of volcanic unrest, conduct reconnaissance geological observations, collect rock and geothermal water

  14. Introduction to Augustine Volcano and Overview of the 2006 Eruption

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2006-12-01

    This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week

  15. Conduit Wall Failure as a Trigger for Transition From Strombolian to Phreatomagmatic Explosive Activity in the Cova de Paúl Crater Eruption on Santo Antão, Cape Verde Islands

    NASA Astrophysics Data System (ADS)

    Tarff, R. W.; Day, S. J.

    2011-12-01

    Episodes of hazardous phreatomagmatic explosive activity, including Surtseyan activity, occur within otherwise less dangerous effusive to mildly explosive magmatic eruptions at high-elevation vents on many oceanic island volcanoes. The water driving these explosions is sourced from freshwater aquifers within the volcanic edifices. Understanding volcanic and geophysical precursors to, and mechanisms of, the (frequently abrupt) transitions to explosive activity is required as a basis for effective warning and mitigation of the resulting hazards. Here we describe near-vent deposits around the large Cova de Paúl crater on the island of Santo Antão, Cape Verde Islands, which provide some insights into a transition from mild magmatic to violently explosive phreatomagmatic activity in one such eruption. This pre-historic but well-preserved crater formed in a single eruption that produced extensive low-temperature, lithic-rich phreatomagmatic pyroclastic flows and surge deposits; these are interbedded in proximal outcrops with airfall breccia and ash beds containing varying proportions of lithic and juvenile clasts, pointing to a series of climactic explosions within an extended period of milder explosive activity of broadly Surtseyan type. Prior to the transition to phreatomagmatic activity, the eruption had been characterized by mild Strombolian activity that produced scoria and spatter deposits of broadly tephritic composition. The Strombolian deposits contain a distinct population of strongly banded, low-vesicularity angular clasts with strongly prolate vesicles and a notably glassy appearance. These became markedly larger and more abundant just below the transition to the phreatomagmatic deposits. Comparisons of these clasts with the Strombolian scoria suggest that they are fragments of flow-banded chilled margins from the walls of the eruptive conduit. Thermal shattering of these margins to produce the angular glassy clasts may record the onset of groundwater flow

  16. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes

    NASA Astrophysics Data System (ADS)

    Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.

    2015-06-01

    On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

  17. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Zhiming

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995-1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993-2003 time interval. All interferograms lack coherence within ???5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5-15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ???14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1-2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from >10 km depth, and that the intrusion-eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  18. A multi-sensor analysis of the 2009 eruption of Sarychev Peak, Kuril Islands: A case study for hazards to aviation

    NASA Astrophysics Data System (ADS)

    Williams, D.; Thomas, H. E.; Watson, M. I.

    2010-12-01

    The eruption of Sarychev Peak Volcano (48°N,153°E), Kuril Islands, occurred between June 12 and 18 2009 emplacing large volumes of sulphur dioxide and volcanic ash into the atmosphere and severely disrupting air traffic in the region. The eruption was observed by several satellite-borne sensors, including the Ozone Monitoring Instrument (OMI), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). This work uses these three sensors concurrently, as the use of several instruments provides more frequent datasets enabling improvements in accurately locating volcanic clouds and the subsequent validation of dispersion models. The North Pacific region sees a large amount of air traffic and the clouds from Sarychev Peak intersected many major air routes. Volcanic ash poses a threat to the operation of aircraft by abrading the engines which can result in failure, as well as “sand blasting” of the cockpit windows. It is also important to detect and map any sulphur dioxide clouds created, as this can also be hazardous for aircraft. Volcanic aerosol can cause corrosion on the aircraft exterior and sulphur based minerals may be deposited within the engines, blocking cooling holes over time. SO2 can also enter the aircraft cabin through the ventilation system, which can cause respiratory problems for the passengers and crew. In addition, SO2 is often associated with volcanic ash as the two species are frequently collocated. When ash retrievals are limited by high concentrations of water vapour and ice in the atmosphere, the presence of SO2 can be used to infer the location of a potential ash cloud, so that aircraft encounters may be avoided. A collection of images from the three sensors, ranging from June 10 to 24 were acquired to determine the mass and location of the SO2 cloud. This data, along with ash cloud data collected from the two MODIS sensors for dates between June 11 and 20, was then used to create a chronology of

  19. Craniometric variation in the Aleutians: integrating morphological, molecular, spatial, and temporal data.

    PubMed

    Ousley, Stephen D; Jones, Erica B

    2010-12-01

    Several hypotheses have been put forward about the origins and evolution of the inhabitants of the Aleutian Islands. Both Hrdlička [The Aleutian and Commander Islands and Their Inhabitants (Philadelphia: Wistar Institute of Anatomy and Biology, 1945)] and Laughlin ["The Alaska gateway viewed from the Aleutian Islands," in Papers on the Physical Anthropology of the American Indian, W. S. Laughlin, ed. (New York: Viking Fund, 1951), 98-126] analyzed cranial morphology and came to somewhat different conclusions using a typological approach and limited analytical methods. Subsequent investigations using morphological data have not significantly improved our understanding of Aleut prehistory. More recently, radiocarbon dating and mitochondrial DNA analyses have shed light on Aleut genetic variation and changes over time, but better morphological methods using multivariate statistical analysis have not yet been used. We analyzed craniometric data using multivariate procedures and found that Aleuts demonstrate significant changes in cranial morphology over time, and these changes correspond to Hrdlička's observations but may not necessarily reflect in-migration. The morphological changes were concentrated in the very aspects of morphology that are easily observable and that Hrdlička most often measured, namely, cranial length, breadth, and height, but they were obscured when craniometric variation as a whole was analyzed. Also, we found that the morphological changes over time were not related to the changes in haplogroup frequencies over time, suggesting that migration into the Aleutians did not play a significant role in producing the morphological changes. However, craniometric variability apparently increases over time, suggesting in-migration, localized selection, and/or greater environmental heterogeneity. Our results contradict Laughlin's observations but may be more in line with his hypothesis of in situ evolutionary changes absent gene flow. In addition to

  20. Subsidence at Kiska volcano, Western Aleutians, detected by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Masterlark, Timothy; Power, J.; Dzurisin, D.; Wicks, C.

    2002-01-01

    Sequential interferometric synthetic aperture radar images of Kiska, the westernmost historically active volcano in the Aleutian arc, show that a circular area about 3 km in diameter centered near the summit subsided by as much as 10 cm from 1995 to 2001, mostly during 1999 and 2000. An elastic Mogi-type deformation model suggests that the source is within 1 km of the surface. Based on the shallow source depth, the copious amounts of steam during recent eruptions, and recent field reports of vigorous steaming and persistent ground shaking near the summit area, we attribute the subsidence to decreased pore-fluid pressure within a shallow hydrothermal system beneath the summit area.

  1. Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians

    USGS Publications Warehouse

    Jicha, Brian R.; Coombs, Michelle L.; Calvert, Andrew T.; Singer, Brad S.

    2012-01-01

    We used geologic mapping and geochemical data augmented by 40Ar/39Ar dating to establish an eruptive chronology for the Tanaga volcanic cluster in the western Aleutian arc. The Tanaga volcanic cluster is unique in comparison to other central and western Aleutian volcanoes in that it consists of three closely spaced, active, volumetrically significant edifices (Sajaka, Tanaga, and Takawangha), the eruptive products of which have unusually high K2O contents. Thirty-five new 40Ar/39Ar ages obtained in two different laboratories constrain the duration of Pleistocene–Holocene subaerial volcanism to younger than 295 ka. The eruptive activity has been mostly continuous for the last 150 k.y., unlike most other well-characterized arc volcanoes, which tend to grow in discrete pulses. More than half of the analyzed Tanaga volcanic cluster lavas are basalts that have erupted throughout the lifetime of the cluster, although a considerable amount of basaltic andesite and basaltic trachyandesite has also been produced since 200 ka. Major- and trace-element variations suggest that magmas from Sajaka and Tanaga volcanoes are likely to have crystallized pyroxene and/or amphibole at greater depths than the older Takawangha magmas, which experienced a larger percentage of plagioclase-dominated fractionation at shallower depths. Magma output from Takawangha has declined over the last 86 k.y. At ca. 19 ka, the focus of magma flux shifted to the west beneath Tanaga and Sajaka volcanoes, where hotter, more mafic magma erupted.

  2. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  3. The Pathogenesis of Aleutian Disease of Mink

    PubMed Central

    Porter, David D.; Larsen, Austen E.; Porter, Helen G.

    1973-01-01

    Mink chronically infected with Aleutian disease virus develop a severe necrotizing arteritis affecting muscular arteries. Acute, subacute and healing lesions may be found. Extracellular deposits of host immunoglobulin and complement and, after acid elution, viral antigen can be shown by immunofluorescence technics in areas of fibrinoid necrosis and between proliferating endothelial cells. No intracellular viral antigen was found, indicating that the virus probably does not replicate in vascular structures. The arteritis of Aleutian disease appears to be the result of immune complex deposits in vessel walls. Imagesp[341]-aFig 4p[343]-aFig 1Fig 2Fig 3 PMID:4576760

  4. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  5. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma batches, shifting vents, and discrete eruptive phases

    NASA Astrophysics Data System (ADS)

    Sohn, Y.; Brenna, M.; Smith, I. E.; Nemeth, K.; White, J. D.; Murtagh, R.; Jeon, Y.; Kwon, C.; Cronin, S. J.

    2010-12-01

    Ilchulbong (Sunrise Peak) tuff cone is a UNESCO World Heritage site that owes its scientific importance to the outstanding coastal exposures that surround it. It is also one of the classic sites that provided the sedimentary evidence for the primary pyroclastic processes that occur during phreatomagmatic basaltic eruptions. It has been long considered, based on the cone morphology, that this classic cone was produced via eruption from a single vent site. Reanalysis of the detailed sedimentary sequence has now revealed that two subtle paraconformities occur in this deposition sequence, one representing a significant time break of perhaps days to weeks or months, during which erosion and compaction of the lower cone occurred, the conduit cooled and solidified and a subsequent resumption of eruption took place in a new vent location. Detailed geochemical study of the juvenile clasts through this cone reveals that three separate alkali basaltic magma batches were erupted, the first and third erupted may be genetically related, with the latter showing evidence for longer periods of shallow-level fractionation. The second magma batch erupted was generated in a different mantle source area. Reconstructing the eruption sequence, the lower Ilchulbong cone was formed by eruption of magma 1. Cessation of eruption was accompanied by erosion to generate a volcano-wide unconformity, associated with reworked deposits in the lower cone flanks. The eruption resumed with magma 2 that, due to the cooled earlier conduit, was forced to erupt in a new site to the west of the initial vent. This formed the middle cone sequence over the initially formed structure. The third magma batch erupted with little or no interval after magma 2 from the same vent location, associated with cone instability and slumping, and making up the deposits of the upper cone. These results demonstrate how critical the examination for sedimentary evidence for time breaks in such eruption sequences is for

  6. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust

    NASA Astrophysics Data System (ADS)

    Witter, Robert C.; Carver, Gary A.; Briggs, Richard W.; Gelfenbaum, Guy; Koehler, Richard D.; La Selle, SeanPaul; Bender, Adrian M.; Engelhart, Simon E.; Hemphill-Haley, Eileen; Hill, Troy D.

    2016-01-01

    Current models used to assess earthquake and tsunami hazards are inadequate where creep dominates a subduction megathrust. Here we report geological evidence for large tsunamis, occurring on average every 300-340 years, near the source areas of the 1946 and 1957 Aleutian tsunamis. These areas bookend a postulated seismic gap over 200 km long where modern geodetic measurements indicate that the megathrust is currently creeping. At Sedanka Island, evidence for large tsunamis includes six sand sheets that blanket a lowland facing the Pacific Ocean, rise to 15 m above mean sea level, contain marine diatoms, cap terraces, adjoin evidence for scour, and date from the past 1700 years. The youngest sheet and modern drift logs found as far as 800 m inland and >18 m elevation likely record the 1957 tsunami. Previously unrecognized tsunami sources coexist with a presently creeping megathrust along this part of the Aleutian Subduction Zone.

  7. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust

    USGS Publications Warehouse

    Witter, Robert C.; Carver, G.A.; Briggs, Richard; Gelfenbaum, Guy R.; Koehler, R.D.; La selle, Seanpaul M.; Bender, Adrian M.; Engelhart, S.E.; Hemphill-Haley, E.; Hill, Troy D.

    2016-01-01

    Current models used to assess earthquake and tsunami hazards are inadequate where creep dominates a subduction megathrust. Here we report geological evidence for large tsunamis, occurring on average every 300–340 years, near the source areas of the 1946 and 1957 Aleutian tsunamis. These areas bookend a postulated seismic gap over 200 km long where modern geodetic measurements indicate that the megathrust is currently creeping. At Sedanka Island, evidence for large tsunamis includes six sand sheets that blanket a lowland facing the Pacific Ocean, rise to 15 m above mean sea level, contain marine diatoms, cap terraces, adjoin evidence for scour, and date from the past 1700 years. The youngest sheet, and modern drift logs found as far as 800 m inland and >18 m elevation, likely record the 1957 tsunami. Modern creep on the megathrust coexists with previously unrecognized tsunami sources along this part of the Aleutian Subduction Zone.

  8. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  9. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes

    NASA Astrophysics Data System (ADS)

    Nielsen, Sune G.; Yogodzinski, Gene; Prytulak, Julie; Plank, Terry; Kay, Suzanne M.; Kay, Robert W.; Blusztajn, Jerzy; Owens, Jeremy D.; Auro, Maureen; Kading, Tristan

    2016-05-01

    Sediment transport from the subducted slab to the mantle wedge is an important process in understanding the chemical and physical conditions of arc magma generation. The Aleutian arc offers an excellent opportunity to study sediment transport processes because the subducted sediment flux varies systematically along strike (Kelemen et al., 2003) and many lavas exhibit unambiguous signatures of sediment addition to the sub-arc mantle (Morris et al., 1990). However, the exact sediment contribution to Aleutian lavas and how these sediments are transported from the slab to the surface are still debated. Thallium (Tl) isotope ratios have great potential to distinguish sediment fluxes in subduction zones because pelagic sediments and low-temperature altered oceanic crust are highly enriched in Tl and display heavy and light Tl isotope compositions, respectively, compared with the upper mantle and continental crust. Here, we investigate the Tl isotope composition of lavas covering almost the entire Aleutian arc a well as sediments outboard of both the eastern (DSDP Sites 178 and 183) and central (ODP Hole 886C) portions of the arc. Sediment Tl isotope compositions change systematically from lighter in the Eastern to heavier in the Central Aleutians reflecting a larger proportion of pelagic sediments when distal from the North American continent. Lavas in the Eastern and Central Aleutians mirror this systematic change to heavier Tl isotope compositions to the west, which shows that the subducted sediment composition is directly translated to the arc east of Kanaga Island. Moreover, quantitative mixing models of Tl and Pb, Sr and Nd isotopes reveal that bulk sediment transfer of ∼0.6-1.0% by weight in the Eastern Aleutians and ∼0.2-0.6% by weight in the Central Aleutians can account for all four isotope systems. Bulk mixing models, however, require that fractionation of trace element ratios like Ce/Pb, Cs/Tl, and Sr/Nd in the Central and Eastern Aleutians occurs after

  10. The "Jerk" Method for Predicting Intrusions and Eruptions of Piton De La Fournaise (La Réunion Island) from the Analysis of the Broadband Seismological Rer Station

    NASA Astrophysics Data System (ADS)

    Roult, G. C.; Beauducel, F.; Ferrazzini, V.; Boissier, P.; Villeneuve, N.

    2014-12-01

    The predictability of volcanic eruptions remains a challenging problem and forecast of volcano behavior (intrusion versus eruption) is a difficult task. Since 1979, the Volcano Observatory of Piton de la Fournaise (OVPF) maintains SP and BB seismic stations, tiltmeters, extensometers and GPS stations. In addition, the RER GEOSCOPE broadband station was installed in 1986, 8.5 km north of the summit crater. The analysis of 83 seismic crises from December 1985 to December 2010 (preceding 54 eruptions, 26 intrusions, 2 summit pit craters,1 caldera collapse) allowed us to identify short-term long period seismic transients (period > 100 s) for most events (Roult et al., 2012). These precursors observed on the horizontal components are tilt signals induced by the inflation/deflation of the volcano. We analyzed 17 eruptions and 7 intrusions spanning the 2005-2010 period with the aim of distinguishing whether an injection of magma will stop or if it can evolve towards an eruption. Transient signature is an acceleration step that can be large or not, with slopes more or less steep according to the acceleration rate. We show a clear differentiation between the acceleration rate of the intrusions (low rate) and the acceleration rate of the eruptions (high rate). With a ratio estimated to 7, the acceleration rate allows to determine a threshold value and to discriminate between intrusive and eruptive events. The real-time calculation of the ground acceleration of the horizontal components of the RER station after removal of the theoretical tide effect is integrated since April 2014 to the Piton de la Fournaise volcano monitoring. In June 2014, the "JERK"method predicted an eruption 50 minutes before the eruption onset. We applied the "material failure prediction" of Voight and Cornelius (1991) with the aim to predict the onset time of the eruptions. Preliminary tests on the 17 eruptions of the 2005-2010 period have shown that the summit eruptions were relatively well predicted

  11. Lithium Isotopic Composition of Aleutian Arc Magmas

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Park, Y.; Liu, X.; Kay, S. M.; Kay, R. W.

    2012-12-01

    The lithium isotopic compositions of inputs to subduction zones can be highly variable. For example, altered oceanic crust is isotopically heavy (δ7Li = 4 to 22, Chan et al., 1996; Bouman et al., 2004) due to uptake of seawater Li (32). Sea floor sediments can have highly variable compositions, ranging from isotopically heavy pelagic sediments (6 to 14) to isotopically light terrigneous clays (-1.5 to 5), derived from highly weathered continental crust (Chan et al., 2006). Despite this variability in inputs, arc outputs (magmatic rocks) typically have mantle-like δ7Li (e.g., 2 to 6; Tomascak et al., 2002; Walker et al., 2009). To explore the behavior of lithium and its isotopes in arcs, we have analyzed [Li] and δ7Li in 48 lavas and plutons from the Aleutian island arc, which span the temporal (0 to 38 Ma), geographical (165-184oW) and compositional variations (SiO2 = 46-70 wt.%) seen in this arc. Previous studies have indicated a systematic geographic change in lava chemistry related to changing sediment composition along the arc (terrigneous in the east, pelagic in the west, e.g., Kay and Kay, 1994; Yogodinski et al., 2010), as well as temporal changes that may also reflect changes in sedimentary input (Kay and Kay, 1994), and we wished to determine if Li isotopes also reflect such changes. Lithium concentration [Li] shows a generally positive correlation with SiO2, consistent with the expected incompatible behavior of Li during magmatic differentiation. Intrusive rocks (all from the Adak region) show more scatter than lavas on this plot, suggesting the influence of cumulate processes. The δ7Li of the rocks span an immense range from -1 to +29, well outside the values considered typical for the MORB-source mantle (e.g., 2-6). However, the majority of the samples (28 out of 48) have δ7Li falling within the range of typical mantle values. There is a general tendency for the lavas (all but one are <2 Ma) to have slightly lower δ7Li than intrusions (which range

  12. A spatial-seasonal analysis of the oiling risk from shipping traffic to seabirds in the Aleutian Archipelago.

    PubMed

    Renner, Martin; Kuletz, Kathy J

    2015-12-15

    Some of the largest seabird concentrations in the northern hemisphere are intersected by major shipping routes in the Aleutian Archipelago. Risk is the product of the probability and the severity incidents in an area. We build a seasonally explicit model of seabird distribution and combine the densities of seabirds with an oil vulnerability index. We use shipping density, as a proxy for the probability of oil spills from shipping accident (or the intensity chronic oil pollution). We find high-risk (above-average seabird and vessel density) areas around Unimak Pass, south of the Alaska Peninsula, near Buldir Island, and north of Attu Island. Risk to seabirds is greater during summer than during winter, but the month of peak risk (May/July) varies depending on how data is analyzed. The area around Unimak Pass stands out for being at high-risk year-round, whereas passes in the western Aleutians are at high risk mostly during summer. PMID:26602441

  13. New Field Surveys of The Great 1946 Aleutian Tsunami

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Synolakis, C. E.; Plafker, G.

    We seek to reopen the case of the 1946 Aleutian tsunami, which was the most destruc- tive transpacific event in the past century, despite the relatively moderate size of its parent earthquake. As a result, the exact nature of its source, and in particular whether it requires a submarine landslide, remains controversial. In 1999, we started a system- atic effort to build a modern database of runup and inundation values for the 1946 event throughout the Pacific Basin. At teleseismic distances, we rely on interviews from elderly witnesses whose testimony is then quantified using standard surveying techniques. As of early 2002, we were able to gather about 60 such measurements in the Marquesas, Society and Austral Islands, French Polynesia; and at Easter and Juan Fernandez Islands. They point out to the concentration of high runup values (8 m or more) in a narrow band of epicentral azimuths including Hawaii, the Marque- sas and Easter, but excluding Juan Fernandez. In the near field, we surveyed in 2001 the islands of Unimak and Sanak, based on available Coast Guard reports at Scotch Cap, and on subsisting watermarks such as large logs of driftwood deposited on these unforrested islands. We obtain a maximum runup height of 42 m on the Southern coast of Unimak and of 22 m at Sanak. These preliminary results suggest the combi- nation of a slow earthquake dislocation responsible for the strong far-field directivity of the tsunami, and of a co-seismic underwater landslide necessary to account for the exceptional near-field amplitudes, which are many times larger than the seismic dis- placement at the source for any acceptable seismological model of the dislocation. The existence of a large landslide is also suggested by anectodal reports of post-quake changes in local bathymetry and diminished fisheries productivity, and a preliminary confirmation is found on post-1946 bathymetric charts of the continental slope around 53.75 deg.N and 163.75 deg.W.

  14. Strain Accommodation Along an Oblique Subduction Zone: Integrating Paleomagnetic Data and Stress Patterns in the Central Aleutian Forearc

    NASA Astrophysics Data System (ADS)

    Krutikov, L.; Reynolds, J. R.; Stone, D. B.

    2005-12-01

    Present day motion of the Pacific plate relative to the North American plate shifts along the Aleutian arc from normal convergence in the east to transform motion in the west. Oblique subduction, partitioned into an arc-normal component and an arc-parallel component, creates a spatially complex pattern of deformation in the overriding plate. Strain partitioning results in tectonic segmentation of the forearc region, caused by increasing obliquity of plate convergence and apparently characterized by clockwise rotation and westward translation of discrete blocks in the central and western Aleutian arc [e.g., Geist et al., Tectonics 7, 327-341, 1988]. Archived cores collected from islands in the central Aleutian arc for previous paleomagnetic studies are being remeasured and reanalyzed using modern thermal demagnetization techniques that were not available at the time of collection. These new measurements indicate counterclockwise rotation or less significant clockwise rotations than those predicted by the block rotation model. Paleomagnetic results are presented for Tertiary and Quaternary volcanic rocks from Adak and Amchitka Islands in the central Aleutians. Results range from no statistically significant rotation in young intrusives, to a number of paleomagnetic vectors in the Finger Bay volcanics (~55 Ma) that suggest clockwise rotation since the time of original magnetization. Paleomagnetic results are combined with analyses of seafloor lineations in high-resolution multibeam sonar data collected in 2003 and 2004 of representative sites between 173W and 179E along the central Aleutian arc. Major fault lineations and joint patterns observed in the bathymetry data are analyzed to estimate the direction of maximum horizontal stress. Lineations in rocks of different stratigraphic ages and paleomagnetic results are being compared with 0-5Ma regional stress patterns [Scholl et al., 1989] to constrain the style and timing of deformation.

  15. Parsing Aleutian Arc Magma Compositions

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2011-12-01

    The first-order subdivision of Aleutian arc magma compositions is based on SiO2, and the second-order subdivision is usually based on the change of FeOt/MgO as a function of SiO2, resulting in the additional twofold subdivision into (TH) and calcalkaline (CA) magmas. However, additional robust compositional variations exist. The two most important of these are (1) variation of the calcium number [Ca#; Ca/(Na+Ca)] as a function of SiO2, and (2) the Rate of Incompatible Trace-element Enrichment (RITE) at individual volcanic centers. Additionally, the data show that the low FeOt/MgO of CA andesite and dacite is more controlled by MgO excess than FeOt depletion. The Ca# of andesites and dacites is strongly bimodal. The low-Ca# group is "calc-alkalic", while the high-Ca# group is "calcic", using Peacock (1931) criteria. A continuum of Ca#s exists, but lavas intermediate between high-Ca# and low-Ca# are much less abundant. Ca#s merge below about 55% SiO2, and have a simple normal distribution. RITE, with rare but important exceptions, is generally constant at the temporal and spatial scale of a single volcano. Among high-RITE magmas LILE, LREE, HFSE, and Th increase ~3.5-fold, and HREE increase ~2.5-fold from basalt or basaltic-andesite through andesite to dacite. There is no strong indication that RITE is silica-dependant. High-RITE magmas develop a strong negative Eu anomaly, and are qualitatively compatible with an origin primarily involving fractionation of plagioclase-dominated mineral assemblages. Low-RITE magmas, in contrast, have nearly invariant REE and HFSE, and LILE and Th increase merely 1.5-fold over the same silica range. Low-RITE magmas are not compatible with fractionation of a plagioclase-dominant mineral assemblage. Alternative qualitatively plausible explanations (needing rigorous evaluation) include fractionation of an ultramafic mineral assemblage (Alaskan-type mafic-ultramafic bodies may be a model; see USGS Prof Paper 1564); that low-RITE basaltic

  16. GLORIA imagery links sedimentation in Aleutian Trench to Yakutat margin via surveyor channel

    SciTech Connect

    Carlson, P.R.; Bruns, T.R.; Mann, D.M.; Stevenson, A.J. ); Huggett, Q.J. )

    1990-06-01

    GLORIA side-scan sonar imagery shows that the continental slope developing along the active margin of the Gulf of Alaska is devoid of large submarine canyons, in spite of the presence of large glacially formed sea valleys that cross the continental shelf. In the western and northern Gulf, discontinuous, actively growing deformation structures disrupt or divert the downslope transport of sediment into the Aleutian Trench. To the east of Middleton Island, the slope is intensively gullied and incised only by relatively small canyons. At the base of the gullied slope between Pamplona Spur and Alsek Valley, numerous small slope gullies coalesce into three turbidity current channels that merge to form the Surveyor deep-sea channel. About 350 km from the margin, the channel crosses the structural barrier formed by the Kodiak-Bowie Seamount chain and heads south for another 150 km where it bends northerly, perhaps influenced by the oceanic basement relief of the Patton Seamounts. The channel, now up to 5 km wide and deeply entrenched to 450 m, continues northerly for 200 km where it intercepts the Aleutian Trench, some 700 km from the Yakutat margin. South of Surveyor Channel, GLORIA imagery revealed evidence of another older channel. The older channel meanders through a gap in the seamount chain and eventually bends northwesterly. This now inactive, largely buried channel may have carried turbidity currents to the Aleutian Trench concurrent with the active Surveyor Channel.

  17. The link between multistep magma ascent and eruption intensity: examples from the recent activity of Piton de la Fournaise (La Réunion Island).

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea

    2014-05-01

    Caldera collapses represent catastrophic events, which induce drastic modification in a volcano plumbing system and can result in major and fast evolution of the system dynamics. At Piton de la Fournaise (PdF) volcano, the 2007 eruptive sequence extruded the largest lava volume (240 Mm3) since at least 3 centuries, provoking the collapse of a small (1 km wide; 340 m deep) summit caldera. In about 35 days, the 2007 major eruption generated i) the greatest lava output rate, ii) the strongest lava fountaining activity (> 200 m high), iii) the largest SO2 volume (> 230 kt) ever documented at PdF. This event ended a 9 year-long period (1998-2007) of continuous edifice inflation and sustained eruptive activity (3 eruptions per year on average). Unexpectedly and in spite of the large volume of magma erupted in 2007, volcano unrest and eruptive activity resumed quickly in 2008, soon after caldera collapse, and produced several closely spaced intracaldera eruptions and shallow intrusions. The post-2007 activity is associated with a trend of continuous volcano deflation and consists in small-volume (<3 Mm3) weak (< 20 m high fountains; strombolian activity) summit/proximal eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. Non-eruptive tremor and increase in SO2 emissions were interpreted as evidences of magma intrusions at shallow depth (< 2.0 km) preceding the eruptions. The 2007-2011 phase of activity represents an ideal case-study to analyze the influence of magma ascent kinetics on the evolution of volcano dynamics at a persistently active basaltic volcano. In order to track magma storage and ascent, we compare geochemical data on fast quenched glasses (melt inclusions, Pele's hairs, coarse ash fragments produced by lava-sea water interaction, glassy crust of lavas, high-temperature lavas quenched in water, matrix glasses) with the geophysical record of volcano unrest. Petro-chemical data suggest that the shallow PdF plumbing system is formed by

  18. The eruptive history of the Trous Blancs pit craters, La Réunion Island: The origin of a 24 km long lava flow

    NASA Astrophysics Data System (ADS)

    Walther, Georg; Frese, Ingmar; Di Muro, Andrea; Kueppers, Ulrich; Michon, Laurent; Métrich, Nicole

    2015-04-01

    The assessment of volcanic hazards is strongly based on the past eruptive behaviour of volcanoes and its morphological parameters. Since past eruption characteristics and their frequency provide the best probabilities of such eruptions for the future, understanding the complete eruptive history of a volcano is one of the most powerful tools in assessing the potential hazards or eruptions. At Piton de la Fournaise (PdF) volcano (La Réunion, Indian Ocean), the most frequent style of activity is the effusion of lava flows, which pose the greatest hazard by invasion of inhabited areas and destruction of human property. Here we examined the eruptive history of a previously uninvestigated area, believed to be the origin of a 24 km long lava flow. The eruptions recurrence time of PdF is about one eruption every 9 months in the central caldera. Besides this central activity, eruptive vents have been built along three main rift zones cutting the edifice during the last 50 kyrs. In this study we focused on the largest rift zone of about 15 km width and 20 km length, which extends in a north westerly direction between PdF and the nearby Piton des Neiges volcanic complex. This rift zone is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, indicative of high fluid pressures (up to 5 kbar) and large volume eruptions. Our area of investigation focused on four consecutively aligned pit craters called the Trous Blancs. These have been identified [1] as the source area of one of the youngest (ca. 6 kyrs) and largest lava field, which extends for 24 km from a height of 1800m asl, passing Le Tampon and Saint Pierre city, until it reaches the coast. To gain insight into the development of this eruption and possible future similar activity, we collected new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruptive products). Fieldwork revealed that the eruption initiated with intense

  19. First cross-correlated measurements of magma dynamics and degassing during a dyke eruption at Piton de la Fournaise hot spot volcano, Reunion island

    NASA Astrophysics Data System (ADS)

    Allard, P.; La Spina, A.; Tamburelllo, G.; Aiuppa, A.; Coquet, A.; Brenguier, F.; Coppola, D.; Di Muro, A.; Burton, M. R.; Staudacher, T.

    2011-12-01

    Piton de la Fournaise (PdF), in the western Indian Ocean, is a very active hot spot basaltic volcano whose eruptions (1-2 per year on average) are well anticipated by the local seismic-geodetic monitoring network. Here we report on the first cross-correlated measurements of seismic tremor, magmatic gas composition (OP-FTIR absorption spectroscopy and in situ MultiGas analysis plus filter-pack sampling), gas fluxes (DOAS) and magma extrusion rate (space-borne MODIS data) during a 2-weeks long dyke eruption at PDF in October 2010. Precursory seismic signals indicated dyke ascent in a few hours from a reservoir located at ~2.5 km beneath the summit crater. After an initial burst coinciding with eruptive fissure opening, both the tremor amplitude, lava extrusion rate and SO2 flux coherently decreased during the first week of eruption. The co-emitted magmatic gases, whose composition varied slightly over time, were found to have a high water content (95-98 mol %), high SO2/HCl and low CO2/SO2, HCl/HF and Cl/Br ratios, consistent with a hydrous hot spot mantle source. By comparing gas fluxes with the magma co-extrusion rate and available melt inclusion data, we infer an essentially syn-eruptive (closed system) degassing for sulfur, chlorine and fluorine during the first half of the eruption. In contrast, additions of CO2 (previously accumulated or/and bubbling differentially) and H2O (external contribution from the hydrothermal system?) are required to explain the gas composition. Differential CO2 bubbling is supported by high frequency correlations between the CO2/HCl ratio and seismic tremor. The second part of the eruption was marked by a spectacular decoupling between re-increasing seismic tremor and declining lava extrusion, indicating a key control of tremor and eruptive activity by differential (open system) gas bubbling across the feeder dyke. This was associated with an increasing contribution of the low-frequency (1-3 Hz) spectral band to the tremor amplitude

  20. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-01-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths

  1. Hawaiian Island Archipelago

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The entire Hawaiian Island Archipelago (21.5N, 158.0W) is seen in this single view. The islands are a favorite international resort and tourist attraction drawing visitors from all over the world to enjoy the tropical climate, year round beaches and lush island flora. Being volcanic in origin, the islands' offer a rugged landscape and on the big island of Hawaii, there is still an occasional volcanic eruption of lava flows and steam vents.

  2. The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Staudacher, Thomas; Ferrazzini, Valérie; Peltier, Aline; Kowalski, Philippe; Boissier, Patrice; Catherine, Philippe; Lauret, Fréderic; Massin, Fréderick

    2009-07-01

    After 10 years of high activity and 24 eruptions, Piton de la Fournaise (PdF) produced on April 2 to May 1, 2007 one of its most voluminous and intense eruption since at least one century. The eruption focused at 590 m elevation in the Grand Brûlé on the south east flank of Piton de la Fournaise, 7 km away from summit. It was located close to the southern cliff of the Grand Brûlé volcano tectonic collapse, the Rempart du Tremblet, and to the nearby village called Le Tremblet, and it highly rattled and incommoded the inhabitants there. Eleven hours after the beginning of the eruption the lava flows reached the sea and created 0.45 km 2 of new land until the end of eruption. In the night of April 5 the rock column beneath Dolomieu crater started to collapse with a piston like mechanism into the magma chamber, forming within less than 24 h the most recent and well documented caldera. We report in this paper the chronology of these two related major events in the recent activity of PdF seen by the scientific networks of the volcanological observatory (OVPF/IPGP) and field observations, which allowed to back up the scenario of the caldera formation and to quantify these two exceptional episodes.

  3. Will Teide erupt again?

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Geyer, Adelina

    2016-04-01

    The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)

  4. Long term volcano monitoring by using advanced Persistent Scatterer SAR Interferometry technique: A case study at Unimak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.; Freymueller, J. T.; Lu, Z.

    2012-12-01

    Unimak Island, the largest island in the eastern Aleutians of Alaska, is home to three major active volcanoes: Shishaldin, Fisher, and Westdahl. Shishaldin and Westdahl erupted within the past 2 decades and Fisher has shown persistent hydrothermal activity (Mann and Freymueller, 2003). Therefore, Unimak Island is of particular interest to geoscientists. Surface deformation on Unimak Island has been studied in several previous efforts. Lu et al. (2000, 2003) applied conventional InSAR techniques to study surface inflation at Westdahl during 1991 and 2000. Mann and Freymueller (2003) used GPS measurements to analyze inflation at Westdahl and subsidence at Fisher during 1998-2001. Moran et al., ( 2006) reported that Shishaldin, the most active volcano in the island , experienced no significant deformation during the 1993 to 2003 period bracketing two eruptions. In this paper, we present deformation measurements at Unimak Islank during 2003-2010 using advanced persistent scatterer InSAR (PSI). Due to the non-urban setting in a subarctic environment and the limited data acquisition, the number of images usable for PSI processing is limited to about 1-3 acquisitions per year. The relatively smaller image stack and the irregular acquisition distribution in time pose challenges in the PSI time-series processing. Therefore, we have developed a modified PSI technique that integrates external atmospheric information from numerical weather predication models to assist in the removal of atmospheric artifacts [1]. Deformation modeling based on PSI results will be also presented. Our new results will be combined with previous findings to address the magma plumbing system at Unimak Island. 1) W. Gong, F. J. Meyer (2012): Optimized filter design for irregular acquired data stack in Persistent Scatterers Synthetic Aperture Radar Interferometry, Proceeding of Geosciences and Remote Sensing Symposium (IGARSS), 2012 IEEE International, Munich, Germany.

  5. Far-field simulation of the 1946 Aleutian tsunami

    NASA Astrophysics Data System (ADS)

    Okal, Emile A.; Hébert, Hélène

    2007-06-01

    We present hydrodynamic far-field simulations of the Aleutian tsunami of 1946 April 1, using both a dislocation source representing a slow earthquake and a dipolar one modelling a large landslide. The earthquake source is derived from the recent seismological study by López and Okal, while the landslide source was previously used to explain the exceptional run-up at Scotch Cap in the near field. The simulations are compared to a field data set previously compiled from testimonies of elderly witnesses at 27 far-field locations principally in the Austral and Marquesas Islands, with additional sites at Pitcairn, Easter and Juan Fernández. We find that the data set is modelled satisfactorily by the dislocation source, while the landslide fails to match the measured amplitudes, and to give a proper rendition of the physical interaction of the wavefield with the shore, in particular at Nuku Hiva, Marquesas. The emerging picture is that the event involved both a very slow earthquake, responsible for the far-field tsunami, and a major landslide explaining the near-field run-up, but with a negligible contribution in the far field.

  6. Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas

    SciTech Connect

    Singer, B.S.; O'Neil, J.R. ); Brophy, J.G. )

    1992-04-01

    The first measurement of {sup 18}O/{sup 16}O ratios of plagioclase, clinopyroxene, orthopyroxene, and titanomagnetite phenocrysts from modern Aleutian island-arc lavas provides new insight and independent constraints on magma sources and intracrustal processes. Basalts are heterogeneous on the scale of the entire arc and individual volcanic centers. Combined with Sr isotope and trace element data {delta}{sup 18}O{sub plag} values suggest a variable magma source characterized by differences in the mantle wedge or the subducted sediment component along the volcanic front. Seven tholeiitic basalt to rhyodacite lavas from the Seguam volcanic center have nearly identical {delta}{sup 18}O{sub plag} values of 6.0{per thousand} {plus minus} 0.2{per thousand}, reflecting extensive closed-system plagioclase-dominated crystal fractionation. Oxygen isotope thermometry and pyroxene and oxide equilibria indicate that differentiation occurred between 1,150 {plus minus} 100C (basalt) and 950 {plus minus} 100C (rhyodacite). In contrast, {delta}{sup 18}O{sub plag} values of 12 calc-alkalic basaltic andesites and andesites from the smaller Kanaga volcanic center span a broader range of 5.9{per thousand}-6.6{per thousand}, and consist of mostly higher values. Isotopic disequilibrium in the Kanaga system is manifest in two ways: two types of basaltic inclusions with contrasting {delta}{sup 18}O values occur in one andesite, and in two other andesites plagioclase-titanomagnetite and clinopyroxene-titanomagnetite oxygen isotope temperatures are inconsistent.

  7. Multi-centennial reconstruction of Aleutian climate from coralline algae

    NASA Astrophysics Data System (ADS)

    Williams, B.; Halfar, J.; DeLong, K. L.; Smith, E.; Steneck, R.; Lebednik, P.; Jacob, D. E.; Fietzke, J.; Moore, K.

    2015-12-01

    Long-lived encrusting coralline algae yield robust reconstructions of mid-to-high latitude environmental change from their annually-banded high-magnesium calcite skeleton. The magnesium to calcium ratio measured in their skeleton reflects ambient seawater temperature at the time of formation. Thus, reconstructions from these algae are important to understanding the role of natural modes of climate variability versus that of external carbon dioxide in controlling climate in data sparse regions such as the northern North Pacific Ocean/southern Bering Sea. Here, we reconstruct regional seawater temperature from the skeletons of nine algae specimens from two islands in the Aleutian Archipelago. We find that seawater temperature increased ~1.4°C degrees over the past 350 years. The detrended seawater reconstruction correlates with storminess because storms moving across the North Pacific Ocean bring warmer water to the archipelago. Comparison of the algal seawater temperature reconstruction with instrumental and terrestrial proxy reconstructions reveals that atmospheric teleconnections to North America via the North Pacific storm tracks are not robust before the 20th century. This indicates that North Pacific climate processes inferred from the instrumental records should be cautiously extrapolated when describing earlier non-analogous climates or future climate change.

  8. The Shallow Plumbing System of Piton de la Fournaise Volcano (La Réunion island, Indian Ocean) Revealed by the Major 2007 Caldera Forming Eruption (Invited)

    NASA Astrophysics Data System (ADS)

    Di Muro, A.; Metrich, N.; Daniele, V.; Rosi, M.; Armienti, P.; Fougeroux, T.; Deloule, E.; Arienzo, I.; Civetta, L.

    2013-12-01

    The 2007 eruption represents a major event in the recent history of Piton de la Fournaise volcano because it produced: i) the most voluminous lava field (at least 0.21 km3), ii) the most intense lava fountaining activity (>200 m high), iii) the largest SO2 plume (>230 kt), iv) the largest summit collapse (1 km wide x 0.34 km deep) and v) the main flank slip event (up to 1.4 m eastwards) ever documented at PdF. The bulk magma volume extruded during the 2007 eruptive sequence is similar to that emitted during the entire 1998-2006 period. As a whole, the volume of magma emitted during the whole 1998-2007 activity cycle is remarkably close to that estimated (~0.35 km3) for the shallow plumbing system of Piton de la Fournaise. The 2007 eruptive sequence consisted of three successive phases (February, March and April). The main caldera forming phase of April ended a 9 years long period (1998-2007) of continuous edifice inflation and frequent eruptive activity (3 eruptions per year on average). On the contrary, post-2007 activity punctuates a trend of continuous deflation and consists of small-volume summit eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. The 2007 lavas and pyroclasts cover the complete range of textures and crystal content an composition typically found in PdF products. The broad range of textures and the large volumes of pyroclasts, lava and gas emitted in 2007 provide an unique and exceptional record of the time-integrated evolution of PdF magma, and represent an unique opportunity to image the volcano plumbing system and bring new constraints on the processes controlling its magmatic and volatile budget. We here address these issues by using an unprecedented geochemical dataset (major, volatile and trace elements, Sr-Nd isotopes) on bulk rocks, minerals, glass inclusions and glass matrices from a very detailed sample set, representative of the time evolution of extruded magma during the entire 2007 eruptive sequence.

  9. Popocatepetl Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  10. Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modelling

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; De Astis, Gianfilippo; La Volpe, Luigi; Mele, Daniela; Sulpizio, Roberto

    2011-04-01

    The detailed analysis of stratigraphy allowed the reconstruction of the complex volcanic history of La Fossa di Vulcano. An eruptive activity mainly driven by superficial phreatomagmatic explosions emerged. A statistical analysis of the pyroclastic Successions led to the identification of dilute pyroclastic density currents (base surges) as the most recurrent events, followed by fallout of dense ballistic blocks. The scale of events is related to the amount of magma involved in each explosion. Events involving about 1 million cm 3 of magma occurred during recent eruptions. They led to the formation of hundreds of meters thick dilute pyroclastic density currents, moving down the volcano slope at velocities exceeding 50 m/s. The dispersion of density currents affected the whole Vulcano Porto area, the Vulcanello area. They also overrode the Fossa Caldera's rim, spreading over the Piano area. For the aim of hazard assessment, deposits from La Fossa Cone and La Fossa Caldera were studied in detail, to depict the eruptive scenarios at short-term and at long-term. By means of physical models that make use of deposit particle features, the impact parameters have been calculated. They are dynamic pressure and particle volumetric concentration of density currents, and impact energy of ballistic blocks. A quantitative hazard map, based on these impact parameters, is presented. It could be useful for territory planning and for the calculation of the expected damage.

  11. Galapagos Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of the Galapagos Islands was acquired on March 12, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The Galapagos Islands, which are part of Ecuador, sit in the Pacific Ocean about 1000 km (620 miles) west of South America. As the three craters on the largest island (Isabela Island) suggest, the archipelago was created by volcanic eruptions, which took place millions of years ago. Unlike most remote islands in the Pacific, the Galapagos have gone relatively untouched by humans over the past few millennia. As a result, many unique species have continued to thrive on the islands. Over 95 percent of the islands' reptile species and nearly three quarters of its land bird species cannot be found anywhere else in the world. Two of the more well known are the Galapagos giant tortoise and marine iguanas. The unhindered evolutionary development of the islands' species inspired Charles Darwin to begin The Origin of Species eight years after his visit there. To preserve the unique wildlife on the islands, the Ecuadorian government made the entire archipelago a national park in 1959. Each year roughly 60,000 tourists visit these islands to experience what Darwin did over a century and a half ago. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  12. Re-colonization by common eiders Somateria mollissima in the Aleutian Archipelago following removal of introduced arctic foxes Vulpes lagopus

    USGS Publications Warehouse

    Petersen, Margaret R.; Sonsthagen, Sarah A.; Sexson, Matthew G.

    2015-01-01

    Islands provide refuges for populations of many species where they find safety from predators, but the introduction of predators frequently results in elimination or dramatic reductions in island-dwelling organisms. When predators are removed, re-colonization for some species occurs naturally, and inter-island phylogeographic relationships and current movement patterns can illuminate processes of colonization. We studied a case of re-colonization of common eiders Somateria mollissima following removal of introduced arctic foxes Vulpes lagopus in the Aleutian Archipelago, Alaska. We expected common eiders to resume nesting on islands cleared of foxes and to re-colonize from nearby islets, islands, and island groups. We thus expected common eiders to show limited genetic structure indicative of extensive mixing among island populations. Satellite telemetry was used to record current movement patterns of female common eiders from six islands across three island groups. We collected genetic data from these and other nesting common eiders at 14 microsatellite loci and the mitochondrial DNA control region to examine population genetic structure, historical fluctuations in population demography, and gene flow. Our results suggest recent interchange among islands. Analysis of microsatellite data supports satellite telemetry data of increased dispersal of common eiders to nearby areas and little between island groups. Although evidence from mtDNA is suggestive of female dispersal among island groups, gene flow is insufficient to account for recolonization and rapid population growth. Instead, near-by remnant populations of common eiders contributed substantially to population expansion, without which re-colonization would have likely occurred at a much lower rate. Genetic and morphometric data of common eiders within one island group two and three decades after re-colonization suggests reduced movement of eiders among islands and little movement between island groups after

  13. Andesitic Plinian eruptions at Mt. Ruapehu: quantifying the uppermost limits of eruptive parameters

    NASA Astrophysics Data System (ADS)

    Pardo, Natalia; Cronin, Shane; Palmer, Alan; Procter, Jonathan; Smith, Ian

    2012-07-01

    New tephro-stratigraphic studies of the Tongariro Volcanic Centre (TgVC) on the North Island (New Zealand) allowed reconstruction of some of the largest, andesitic, explosive eruptions of Mt. Ruapehu. Large eruptions were common in the Late Pleistocene, before a transition to strombolian-vulcanian and phreatomagmatic eruptive styles that have predominated over the past 10,000 years. Considering this is the most active volcano in North Island of New Zealand and the uppermost hazard limits are unknown, we identified and mapped the pyroclastic deposits corresponding to the five largest eruptions since ~27 ka. The selected eruptive units are also characterised by distinctive lithofacies associations correlated to different behaviours of the eruptive column. In addition, we clarify the source of the ~10-9.7 ka Pahoka Tephra, identified by previous authors as the product of one of the largest eruptions of the TgVC. The most common explosive eruptions taking place between ~13.6 and ~10 ka cal years BP involved strongly oscillating, partially collapsing eruptive columns up to 37 km high, at mass discharge rates up to 6 × 108 kg/s and magnitudes of 4.9, ejecting minimum estimated volumes of 0.6 km3. Our results indicate that this volcano (as well as the neighbouring andesitic Mt. Tongariro) can generate Plinian eruptions similar in magnitude to the Chaitén 2008 and Askja 1875 events. Such eruptions would mainly produce pyroclastic fallout covering a minimum area of 1,700 km2 ESE of the volcano, where important touristic, agricultural and military activities are based. As for the 1995/1996 eruption, our field data indicate that complex wind patterns were critical in controlling the dispersion of the eruptive clouds, developing sheared, commonly bilobate plumes.

  14. Can rain cause volcanic eruptions?

    USGS Publications Warehouse

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  15. Intra-eruptive gas emissions and shallow magma storage after the 2007 summit caldera collapse of Piton de la Fournaise, Reunion island.

    NASA Astrophysics Data System (ADS)

    Di Muro, A.; Aiuppa, A.; Burton, M.; Metrich, N.; Allard, P.; Fougeroux, T.; Giudice, G.; Guida, R.

    2012-04-01

    In spite of its frequent eruptive and intrusive activity (1 event/ 9 months, on average), Piton de la Fournaise volcano is characterized by weak gas emissions during intra-eruptive periods. This behaviour clearly contrasts with that of other persistently active mafic volcanoes such as Etna, Popocatepetl, Hawaii, Stromboli or Yasur. At Piton de la Fournaise, visible surface gas emissions between eruptions occur as low-temperature (<100 °C) fumaroles on the inner cliffs of the summit Dolomieu crater and steam release from peri-crateric fractures. Occasional bursts of vapour from the summit crater occur during intense rain episodes because of the presence of recent and still hot lava flows and dykes. We here report on results for i) the first periodic monitoring of the summit crater fumaroles (H2O, CO2, SO2, H2S) during October 2010 to January 2012, using a MultiGAS sensor device, and ii) the dissolved volatile content of melt inclusions and crystal-melt equilibria in post-2007 eruptive products. The post-2007 PdF activity consisted in small volume (0.1-2.9 Mm3) and often short-lived, summit or proximal eruptions and several shallow intrusions. The activity cycle in the period October 2010-January 2012 consisted in two proximal eruptions (October and December 2010) and one shallow intrusion (February 2011, about 2 km below volcano summit). The intrusion was followed by a general trend of decreasing seismic activity (both in number and energy of events) and increasing host-medium seismic velocity, consistent with an observed contraction and deflation of the summit cone. We show here that PdF crater fumaroles are steam-dominated (H2O/CO2: 170-30) and emit H2S as the only sulphur species (CO2/H2S: 20-180; no SO2 detected, at least since April 2011). We find that the decrease in seismic activity and edifice contraction since February 2011 was paralleled by markedly decreasing H2O/CO2 ratio and increasing CO2/H2S ratio, which could reflect declining rates of H2O and H2S

  16. Silicic magma entering a basaltic magma chamber: eruptive dynamics and magma mixing — an example from Salina (Aeolian islands, Southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Calanchi, Natale; de Rosa, Rosanna; Mazzuoli, Roberto; Rossi, Pierluigi; Santacroce, Roberto; Ventura, Guido

    1993-09-01

    The Pollara tuff-ring resulted from two explosive eruptions whose deposits are separated by a paleosol 13 Ka old. The oldest deposits (LPP, about 0.2 km3) consist of three main fall units (A, B, C) deposited from a subplinian column whose height (7 14 km) increased with time from A to C, as a consequence of the increased magma discharge rate during the eruption (1 8x106 kg/s). A highly variable juvenile population characterizes the eruption. Black, dense, highly porphyritic, mafic ejecta (SiO2=50 55%) almost exclusively form A deposits, whereas grey, mildly vesiculated, mildly porphyritic pumice (SiO2=56 67%) and white, highly vesiculated, nearly aphyric pumice (SiO2=66 71%) predominate in B and C respectively. Mafic cumulates are abundant in A, while crystalline lithic ejecta first appear in B and increase upward. The LPP result from the emptying of an unusual and unstable, compositionally zoned, shallow magma chamber in which high density mafic melts capped low density salic ones. Evidence of the existence of a short crystal fractionation series is found in the mafic rocks; the andesitic pumice results from complete blending between rhyolitic and variously fractionated mafic melts (salic component up to 60 wt%), whereas bulk dacitic compositions mainly result from the presence of mafic xenocrysts within rhyolitic glasses. Viscosity and composition-mixing diagrams show that blended liquids formed when the visosities of the two end members had close values. The following model is suggested: 1. A rhyolitic magma rising through the metamorphic basement enterrd a mafic magma chamber whose souter portions were occupied by a highly viscous, mafic crystal mush. 2. Under the pressure of the rhyolitic body the nearly rigid mush was pushed upwards and mafic melts were squeezed against the walls of the chamber, beginning roof fracturing and mingling with silicic melts. 3. When the equilibrium temperature was reached between mafic and silicic melts, blended liquids rapidly

  17. Indirect food web interactions: Sea otters and kelp forest fishes in the Aleutian archipelago

    USGS Publications Warehouse

    Reisewitz, S.E.; Estes, J.A.; Simenstad, C.A.

    2006-01-01

    Although trophic cascades - the effect of apex predators on progressively lower trophic level species through top-down forcing - have been demonstrated in diverse ecosystems, the broader potential influences of trophic cascades on other species and ecosystem processes are not well studied. We used the overexploitation, recovery and subsequent collapse of sea otter (Enhydra lutris) populations in the Aleutian archipelago to explore if and how the abundance and diet of kelp forest fishes are influenced by a trophic cascade linking sea otters with sea urchins and fleshy macroalgae. We measured the abundance of sea urchins (biomass density), kelp (numerical density) and fish (Catch per unit effort) at four islands in the mid-1980s (when otters were abundant at two of the islands and rare at the two others) and in 2000 (after otters had become rare at all four islands). Our fish studies focused on rock greenling (Hexagrammos lagocephalus), the numerically dominant species in this region. In the mid-1980s, the two islands with high-density otter populations supported dense kelp forests, relatively few urchins, and abundant rock greenling whereas the opposite pattern (abundant urchins, sparse kelp forests, and relatively few rock greenling) occurred at islands where otters were rare. In the 2000, the abundances of urchins, kelp and greenling were grossly unchanged at islands where otters were initially rare but had shifted to the characteristic pattern of otter-free systems at islands where otters were initially abundant. Significant changes in greenling diet occurred between the mid-1980s and the 2000 although the reasons for these changes were difficult to assess because of strong island-specific effects. Whereas urchin-dominated communities supported more diverse fish assemblages than kelp-dominated communities, this was not a simple effect of the otter-induced trophic cascade because all islands supported more diverse fish assemblages in 2000 than in the mid-1980s

  18. The Aleutian Tsunami of 1946: the Compound Earthquake-Landslide Source and Near-Field Modeling

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Yamazaki, Y.; McMurtry, G. M.

    2015-12-01

    The tsunami of April 1, 1946, spread death and destruction throughout the Pacific from the Aleutians to Antarctica, and produced exceptional runup, 42 m, at Scotch Cap on Unimak Island in the near field. López & Okal (2006) showed that the triggering earthquake was at least MW = 8.6, large enough to explain the far-field tsunami but still requiring a landslide or other secondary source to achieve the local runup. No convincing landslide was found until von Huene, et al (2014) merged all available multibeam data and reprocessed a old multichannel line to show that a feature on the Aleutian Terrace they call Lone Knoll (LK) is the displaced block of a translational slide. From 210Pb dating of push cores taken near the summit of LK, we find that a disruption in sedimentation occurred in 1946 at one site, but sedimentation was not disrupted at another site nearby. We infer that the slide block moved coherently at a speed close to the threshold for erosion of the hemipelagic clays. From GLORIA sidescan, Fryer, et al (2004) had earlier tentatively identified LK as a landslide deposit, but if the tsunami crossed the shallow Aleutian Shelf at the long-wave speed, that landslide had to extend up to the shelf edge to satisfy the known 48-min travel time to Scotch Cap. The resulting landslide was enormous, and a multibeam survey later in 2004 showed that it could not exist. The slide imaged by von Huene, et al is far smaller, with a headwall 30 km downslope at a depth of 3 km. The greater distance demands that the tsunami travel much faster across the shelf. The huge runup, however, suggests that wave height was a significant fraction of the water depth (only 80 m), so the tsunami probably crossed the Aleutian Shelf as a bore. From modeling the landslide-generated tsunami with a shock-capturing dispersive code we infer that it did indeed cross the shelf as a bore traveling at roughly twice the long-wave speed. We are still exploring the dependence of the tsunami on slide

  19. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc

    NASA Astrophysics Data System (ADS)

    Cai, Yue; Rioux, Matthew; Kelemen, Peter B.; Goldstein, Steven L.; Bolge, Louise; Kylander-Clark, Andrew R. C.

    2015-12-01

    Cenozoic calc-alkaline plutons that comprise the middle crust of the central and eastern Aleutians have distinct isotopic and elemental compositions compared to Holocene tholeiitic lavas in the same region, including those from the same islands. Therefore the Holocene lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Compared to the lavas, the Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks show higher SiO2 at a given Fe/Mg ratio, and have higher εNd-εHf values and lower Pb-Sr isotope ratios. However, the plutonic rocks strongly resemble calc-alkaline Holocene volcanics with more "depleted" isotope ratios in the western Aleutians, whose composition has been attributed to significant contributions from partial melting of subducted basaltic oceanic crust. These data could reflect a temporal variation of central and eastern Aleutian magma source compositions, from predominantly calc-alkaline compositions with more "depleted" isotope ratios in the Paleogene, to tholeiitic compositions with more "enriched" isotopes more recently. Alternatively, the differences between central Aleutian plutonic and volcanic rocks may reflect different transport and emplacement processes for the magmas that form plutons versus lavas. Calc-alkaline parental magmas, with higher SiO2 and high viscosity, are likely to form plutons after extensive mid-crustal degassing of initially high water contents. This conclusion has overarching importance because the plutonic rocks are chemically similar to bulk continental crust. Formation of similar plutonic rocks worldwide may play a key role in the genesis and evolution of continental crust.

  20. The Challenges of Data Rate and Data Accuracy in the Analysis of Volcanic Systems: An Assessment Using Multi-Parameter Data from the 2012-2013 Eruption Sequence at White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Christenson, B. W.; Neuberg, J. W.; Fournier, N.; Mazot, A.; Kilgour, G.; Jolly, G. E.

    2014-12-01

    Volcano monitoring is usually undertaken with the collection of both automated and manual data that form a multi-parameter time-series having a wide range of sampling rates and measurement accuracies. Assessments of hazards and risks ultimately rely on incorporating this information into usable form, first for the scientists to interpret, and then for the public and relevant stakeholders. One important challenge is in building appropriate and efficient strategies to compare and interpret data from these exceptionally different datasets. The White Island volcanic system entered a new eruptive state beginning in mid-2012 and continuing through the present time. Eruptive activity during this period comprised small phreatic and phreato-magmatic events in August 2012, August 2013 and October 2013 and the intrusion of a small dome that was first observed in November 2012. We examine the chemical and geophysical dataset to assess the effects of small magma batches on the shallow hydrothermal system. The analysis incorporates high data rate (100 Hz) seismic, and infrasound data, lower data rate (1 Hz to 5 min sampling interval) GPS, tilt-meter, and gravity data and very low data rate geochemical time series (sampling intervals from days to months). The analysis is further informed by visual observations of lake level changes, geysering activity through crater lake vents, and changes in fumarolic discharges. We first focus on the problems of incorporating the range of observables into coherent time frame dependant conceptual models. We then show examples where high data rate information may be improved through new processing methods and where low data rate information may be collected more frequently without loss of fidelity. By this approach we hope to improve the accuracy and efficiency of interpretations of volcano unrest and thereby improve hazard assessments.

  1. Transpressional Strain Partitioning and the Compatibility of GPS Velocities and Earthquakes Focal Mechanisms in the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Apel, E. V.; Oldow, J. S.; Lewis, D. S.; Hans, A.

    2002-12-01

    Oblique plate convergence is commonly partitioned into boundary normal and parallel components resulting in displacement of the frontal portion of the overriding plate with respect to the backarc region along arc-parallel strike-slip faults. In the Aleutian Islands, the east to west increase in relative plate motion between the North American and Pacific plates from 65 mm/yr to 75 mm/yr is accompanied by a change from normal convergence to boundary parallel displacement. The convergence obliquity increases from near zero to ~80 degrees along strike together with an observed increase in velocities based on GPS measurements from 1996, 1998, 1999, and 2000. GPS velocities have a strong arc-parallel orientation and systematically increase around the curved arc from 4 mm/yr in the east (Unalaska), to 7-10 mm/yr in the center (Atka and Adak), and 25-31 mm/yr in the west (Shemya and Attu). In all cases, GPS velocities record a small arc-normal component of displacement. The orientation of the incremental shortening axis derived from earthquake focal mechanisms on the Aleutian megathrust has an obliquity that varies systematically from zero (normal to the plate boundary) in the east to ~35 degrees in the west. The variation in incremental shortening axes, however, does not document displacement field partitioning but rather is a consequence of transpressional nonplane strain. Existence of displacement partitioning can only be assessed by direct measurement. Unfortunately, GPS velocities record permanent and recoverable strain, necessitating determination of the elastic strain component in the velocity field. The incremental shortening axis related to megathrust deformation constrains the azimuth of the elastic component of the GPS velocity field and yields minimum arc-parallel displacement components of 4 mm/yr in the east, 5-6 mm/yr in the central Aleutian chain, and 22-27 mm/yr in the west. GPS velocities along the Aleutian chain record a lateral variation in

  2. Polymorphic light eruption

    MedlinePlus

    ... outdoors. Wear a sun hat. Wear sunglasses with UV protection. Use a lip balm with sunscreen. Alternative Names Polymorphic light eruption; Photodermatosis; PMLE Images Polymorphic light eruption on ...

  3. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    USGS Publications Warehouse

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  4. Characterization of Aleutian disease virus as a parvovirus.

    PubMed Central

    Bloom, M E; Race, R E; Wolfinbarger, J B

    1980-01-01

    We characterized a strain of Aleutian disease virus adapted to growth in Crandall feline kidney cells at 31.8 degrees C. When purified from infected cells, Aleutian disease virus had a density in CsCl of 1.42 to 1.44 g/ml and was 24 to 26 nm in diameter. [3H]thymidine could be incorporated into the viral genome, and the viral DNA was then studied. In alkaline sucrose gradients, Aleutian disease virus DNA was a single species that cosedimented at 15.5S with single-stranded DNA from adeno-associated virus. When the DNA was analyzed on neutral sucrose gradients, a single species was again observed, which sedimented at 21S and was clearly distinct from 16S duplex adeno-associated virus DNA. A similar result was obtained even after incubation under annealing conditions, implying that the bulk of Aleutian disease virus virions contained a single non-complementary strand with a molecular weight of about 1.4 X 10(6). In addition, two major virus-associated polypeptides with molecular weights of 89,100 and 77,600 were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of virus purified from infected cultures labeled with [35S]methionine. These data suggest that Aleutian disease virus is a nondefective parvovirus. Images PMID:6252342

  5. Episodes of Aleutian Ridge explosive volcanism

    USGS Publications Warehouse

    Hein, J.R.; Scholl, D. W.; Miller, J.

    1978-01-01

    Earlier workers have overlooked deep-sea bentonite beds when unraveling the Cenozoic volcanic history of an area. In the North Pacific, identification of Miocene and older volcanic episodes is possible only if both altered (bentonite) and unaltered ash beds are recognized. Our study, which includes bentonite beds, shows that volcanism on the Aleutian Ridge and Kamchatka Peninsula has been cyclic. Volcanic activity seems to have increased every 2.5 ?? 10 6 years for the past 10 ?? 106 years and every 5.0 ?? 106 years for the time span from 10 to 20 ?? 10 6 years ago. The middle and late Miocene and the Quaternary were times of greatly increased volcanic activity in the North Pacific and elsewhere around the Pacific Basin. The apparent absence of a volcanic record before the late Miocene at Deep Sea Drilling Project site 192 is the result not of plate motion, as suggested by Stewart and by Ninkovich and Donn, but rather of the diagenesis of ash layers. Major, apparently global volcanic episodes occurred at least twice in the last 20 ?? 106 years. Yet, only one major glacial epoch (the Pleistocene) has occurred. Therefore, even though glaciation coincided with an increase in Quaternary volcanism, the increased volcanism itself may not have been the primary cause of global cooling. Copyright ?? 1978 AAAS.

  6. Heavy metals in fish from the Aleutians: interspecific and locational differences.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Pittfield, Taryn; Donio, Mark

    2014-05-01

    The objectives of this study were to examine levels of arsenic, cadmium, lead, mercury and selenium in edible tissue of seven species of marine fish collected from several Aleutian islands (in 2004) to determine: (1) interspecific differences, (2) locational differences (among Aleutian Islands), (3) size-related differences in any metal levels within a species, and (4) potential risk to the fish or to predators on the fish, including humans. We also compared metals levels to those of three other fish species previously examined in detail, as well as examining metals in the edible tissue of octopus (Octopus dofleini). Octopus did not have the highest levels of any metal. There were significant interspecific differences in all metal levels among the fish species, although the differences were less than an order of magnitude, except for arsenic (mean of 19,500 ppb in Flathead sole, Hippoglossoides elassodon). Significant intraisland variation occurred among the four sites on Amchitka, but there was not a consistent pattern. There were significant interisland differences for some metals and species. Mercury levels increased significantly with size for several species; lead increased significantly for only one fish species; and cadmium and selenium decreased significantly with size for halibut (Hippoglossus stenolepis). The Alaskan Department of Health and Social Services supports unrestricted consumption of most Alaskan fish species for all people, including pregnant women. Most mean metal concentrations were well below the levels known to adversely affect the fish themselves, or predators that consume them (including humans), except for mercury in three fish species (mean levels just below 0.3 ppm), and arsenic in two fish species. However, even at low mercury levels, people who consume fish almost daily will exceed guideline values from the Centers for Disease Control and the Environmental Protection Agency. PMID:24727640

  7. Heavy metals in fish from the Aleutians: Interspecific and locational differences

    SciTech Connect

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Pittfield, Taryn; Donio, Mark

    2014-05-01

    The objectives of this study were to examine levels of arsenic, cadmium, lead, mercury and selenium in edible tissue of seven species of marine fish collected from several Aleutian islands (in 2004) to determine: (1) interspecific differences, (2) locational differences (among Aleutian Islands), (3) size-related differences in any metal levels within a species, and (4) potential risk to the fish or to predators on the fish, including humans. We also compared metals levels to those of three other fish species previously examined in detail, as well as examining metals in the edible tissue of octopus (Octopus dofleini). Octopus did not have the highest levels of any metal. There were significant interspecific differences in all metal levels among the fish species, although the differences were less than an order of magnitude, except for arsenic (mean of 19,500 ppb in Flathead sole, Hippoglossoides elassodon). Significant intraisland variation occurred among the four sites on Amchitka, but there was not a consistent pattern. There were significant interisland differences for some metals and species. Mercury levels increased significantly with size for several species; lead increased significantly for only one fish species; and cadmium and selenium decreased significantly with size for halibut (Hippoglossus stenolepis). The Alaskan Department of Health and Social Services supports unrestricted consumption of most Alaskan fish species for all people, including pregnant women. Most mean metal concentrations were well below the levels known to adversely affect the fish themselves, or predators that consume them (including humans), except for mercury in three fish species (mean levels just below 0.3 ppm), and arsenic in two fish species. However, even at low mercury levels, people who consume fish almost daily will exceed guideline values from the Centers for Disease Control and the Environmental Protection Agency. - Highlights: • Cadmium, lead, mercury and selenium

  8. Estimated CO2, SO2 and H2S emission to the atmosphere from the 2011 El Hierro submarine eruption (Canary Islands) on the basis of helicopter gas surveys

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Padrón, E.; Hernández, P. A.; Calvo, D.; Marquez, A.; Pérez, N. M.; Melian, G.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Hernández, I.

    2012-04-01

    An accurate estimation of SO2 emission rates is an important issue to elucidate the activity of volcanoes, moreover the monitoring of its temporal evolution might help to predict a possible eruption and thus, save the loss of human's lives in cities nearby volcanoes. In the lasts years new instruments have been developed and improved, in order to be more portable, cheaper and lighter. The miniDOAS consist of a small spectrometer with a lens for collecting scattered UV light, and are controlled/powered via USB with a laptop. Recently, new technical developments have allowed monitoring the emission of other gas species such as CO2, H2S, etc from volcanic plumes by means of portable multisensor system. With both devices we were able to evaluate the SO2 emission rates and the molar ratios of major volcanic gas components, respectively. Multiplying the observed SO2 emission rate times the observed (gas)i/SO2 mass ratios (CO2/SO2 and H2S/SO2) allowed us to estimate other volatiles emission rates. Between November 11, 2011, and January 16, 2012, and as a consequence of the submarine volcanic eruption started on October 10, 2011, south off shore El Hierro, Canary Islands, a regularly monitoring of the volcanic plume from the submarine volcano has been performed with remote sensors, always depending of helicopter availability. The instruments are mounted aboard on a helicopter belonged to the Helicopter Unit of Spanish Civil Guard. The SO2 flux measured during this period showed a maximum SO2 emission of 109 ± 19 t/d on November 6, just two days before the occurrence of a intense bubbling at the sea surface on November 8, producing a water, gas and ash column of about 15 meters over the sea surface. That day, CO2 and H2S emission also reached the maximum measured, with 5400 t/d and 3.6 t/d, respectively. Since then, SO2, CO2 and H2S emission rates have declined to values close to detection limit (~ 2 t/d for SO2). These results report the first SO2 emission rates measured

  9. Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between Cooling Caused by Major Explosive Eruptions of Evolved Magmas Typical of Island Arcs and Warming Caused by Voluminous Effusive Eruptions of Basaltic Magma Typical of Subaerial Ocean Ridges and Island Chains

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2014-12-01

    Most volcanic eruptions deplete ozone ~6% for a few years, allowing more high-energy, ultraviolet-B radiation to warm earth. Record low levels of total column ozone followed the 1991 explosive eruption of Pinatubo. Yet 6% depletion also followed the smaller and more effusive eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) in Iceland. Explosive volcanoes also eject 10-20 megatons of sulfur dioxide into the lower stratosphere, forming sulfuric-acid aerosols that reflect and diffuse sunlight causing a net cooling of ~0.5°C for 3 years. High rates of explosive volcanos cool earth into ice ages while high rates of effusive basaltic volcanism in Iceland between 11,500 and 9,500 years ago clearly warmed Earth out of the last ice age depositing sulfate recorded in ice cores in Greenland. Basalts from these eruptions are observed as tuyas in Iceland dated during this period. The 25 Dansgaard-Oeschger abrupt warmings are contemporaneous with increased sulfate in Greenland and with the few older dates available for tuyas in Iceland. Extensive flood basalts were formed during the Paleocene Eocene Thermal Maximum and during times of most major mass extinctions when global temperatures rose substantially, with fossil evidence for ozone depletion. Greenhouse-gas theory assumes electromagnetic radiation travels through space as waves and therefore thermal energy reaching earth is proportional to the square of wave amplitude. Thus the change in energy reaching Earth due to ozone depletion is considered small compared to infrared energy absorbed by greenhouse gases. But waves travel in matter and there is no matter in space. Electromagnetic energy is transmitted as frequency, as shown by radio signals, where energy equals frequency times the Planck constant. Thus thermal energy reaching earth when ozone is depleted is 50 times thermal energy involved in greenhouse gases. Global warming from 1970 to 1998 was caused primarily by 3% ozone depletion due to anthropogenic

  10. Griddlestones from Adak Island, Alaska: Their provenance and the biological origins of organic residues from cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burned stone slabs, historically called griddlestones, were recovered from Components 1 (2390-2590 RCYPB) and 2 (170-415 RCYBP) at archaeological site ADK-011 on Adak Island, Aleutian Islands, Alaska. The griddlestones show evidence of fire exposure and have a dark, often greasy, matrix of decompose...

  11. Russian eruption warning systems for aviation

    USGS Publications Warehouse

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  12. Constraints On Hydrothermal Processes On Basaltic Edifices: Inferences On The Conditions Leading To Hydrovolcanic Eruptions At Piton De La Fournaise, Réunion Island, Indian Ocean.

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Rabinowicz, M.; Boulegue, J.; Laurence, J.

    2001-12-01

    The hydrothermal processes that occur on the active basaltic edifice of Piton de la Fournaise are investigated. The present-day volcanic activity concentrates in a west/east-oriented collapsed area, 13 kms long and 6-8 kms large, called Enclos Fouqué. Enclos Fouqué is open to the sea on its eastern side, while a horseshoe rim delimitates its extension to the west, south and north. This forms a continuous cliff, 100-200 m high with respect to the floor of Enclos Fouqué. Inside Enclos Fouqué, a 400 m high basaltic cone with two coalescent summit calderas, constitutes the most active area of the volcano. Beyond the western wall of Enclos Fouqué, a wide basaltic plateau, called La Plaine des Sables, stretches toward the west on a few kilometers, and is also limited by a cliff on its western part. North and south of this plateau, valleys and rivers notch the basaltic edifice, allowing the observations of the lithostratigraphic units and the development of springs. Geochemical data indicate hydrothermal activity within deep fractured media inside the plateau, generated owing to west-east regional extension. On the floor of la Plaine des Sables, near the western wall of Enclos Fouqué, extensive ashed deposits from a violent hydrothermal eruption have been recognized. Hydrothermal activity has also been detected in the deep (> 100 m) porous layers of Enclos Fouqué, on an area centered around the central cone. This circulation occurs in vesiculated rock layers, that constitute a highly permeable, quasi-isotropic medium. Physical models are presented to illustrate the basic differences between the thermal regime of each hydrothermal system. At the periphery of the volcano, we show that the stabilizing effects of the fracture walls on the hydrothermal circulation inside the fissure network, drive the heat to be steadily drained along the impermeable walls. Consequently, hot (230-240 oC) rising convective currents with a finger shape, 50-100 m distant, reach the

  13. Jupiter Eruptions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  14. Sources of organochlorine contaminants and mercury in seabirds from the Aleutian archipelago of Alaska: inferences from spatial and trophic variation.

    PubMed

    Ricca, Mark A; Keith Miles, A; Anthony, Robert G

    2008-11-15

    Persistent organochlorine compounds and mercury (Hg) have been detected in numerous coastal organisms of the Aleutian archipelago of Alaska, yet sources of these contaminants are unclear. We collected glaucous-winged gulls, northern fulmars, and tufted puffins along a natural longitudinal gradient across the western and central Aleutian Islands (Buldir, Kiska, Amchitka, Adak), and an additional 8 seabird species representing different foraging and migratory guilds from Buldir Island to evaluate: 1) point source input from former military installations, 2) westward increases in contaminant concentrations suggestive of distant source input, and 3) effects of trophic status (delta15N) and carbon source (delta13C) on contaminant accumulation. Concentrations of Sigma polychlorinated biphenyls (PCBs) and most chlorinated pesticides in glaucous-winged gulls consistently exhibited a 'U'-shaped pattern of high levels at Buldir and the east side of Adak and low levels at Kiska and Amchitka. In contrast, concentrations of Sigma PCBs and chlorinated pesticides in northern fulmars and tufted puffins did not differ among islands. Hg concentrations increased westward in glaucous-winged gulls and were highest in northern fulmars from Buldir. Among species collected only at Buldir, Hg was notably elevated in pelagic cormorants, and relatively high Sigma PCBs were detected in black-legged kittiwakes. Concentrations of Sigma PCBs, dichlorodiphenyldichloroethylene (p,p' DDE), and Hg were positively correlated with delta15N across all seabird species, indicating biomagnification across trophic levels. The east side of Adak Island (a former military installation) was a likely point source of Sigma PCBs and p,p' DDE, particularly in glaucous-winged gulls. In contrast, elevated levels of these contaminants and Hg, along with PCB congener and chlorinated pesticide compositional patterns detected at Buldir Island indicated exposure from distant sources influenced by a combination of

  15. Sources of organochlorine contaminants and mercury in seabirds from the Aleutian archipelago of Alaska: Inferences from spatial and trophic variation

    USGS Publications Warehouse

    Ricca, M.A.; Keith, Miles A.; Anthony, R.G.

    2008-01-01

    Persistent organochlorine compounds and mercury (Hg) have been detected in numerous coastal organisms of the Aleutian archipelago of Alaska, yet sources of these contaminants are unclear. We collected glaucous-winged gulls, northern fulmars, and tufted puffins along a natural longitudinal gradient across the western and central Aleutian Islands (Buldir, Kiska, Amchitka, Adak), and an additional 8 seabird species representing different foraging and migratory guilds from Buldir Island to evaluate: 1) point source input from former military installations, 2) westward increases in contaminant concentrations suggestive of distant source input, and 3) effects of trophic status (??15N) and carbon source (??13C) on contaminant accumulation. Concentrations of ?? polychlorinated biphenyls (PCBs) and most chlorinated pesticides in glaucous-winged gulls consistently exhibited a 'U'-shaped pattern of high levels at Buldir and the east side of Adak and low levels at Kiska and Amchitka. In contrast, concentrations of ?? PCBs and chlorinated pesticides in northern fulmars and tufted puffins did not differ among islands. Hg concentrations increased westward in glaucous-winged gulls and were highest in northern fulmars from Buldir. Among species collected only at Buldir, Hg was notably elevated in pelagic cormorants, and relatively high ?? PCBs were detected in black-legged kittiwakes. Concentrations of ?? PCBs, dichlorodiphenyldichloroethylene (p,p??? DDE), and Hg were positively correlated with ??15N across all seabird species, indicating biomagnification across trophic levels. The east side of Adak Island (a former military installation) was a likely point source of ?? PCBs and p,p??? DDE, particularly in glaucous-winged gulls. In contrast, elevated levels of these contaminants and Hg, along with PCB congener and chlorinated pesticide compositional patterns detected at Buldir Island indicated exposure from distant sources influenced by a combination of atmospheric

  16. Comprehensive study of the seismotectonics of the eastern Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Jacob, K.H.; Davies, J.N.; House, L.

    1981-01-01

    Refined hypocenter locations beneath the Shumagin Islands seismic network of the eastern Aleutian arc, Alaska, provide for the first time conclusive evidence for a double-sheeted dipping seismic (Benioff) zone in this arc. This refined seismicity structure was obtained in the arc section centered on the Shumagin seismic gap. A thorough review of three seismic gaps in the eastern Aleutian arc shows a high potential for great earthquakes within the next one to two decades in the Shumagin and Yakataga seismic gaps, and a less certain potential for a large or great earthquake in the possible Unalaska gap. A tilt reversal was geodetically observed to have occurred in 1978/79 in the forearc region of the Shumagin gap and could indicate the onset of a precursory strain relief episode prior to a great quake. A comparative study of the Pavlof volcano seismicity with that of other recently active volcanoes (i.e., Mt. St. Helens) indicates that island-arc (explosive-type) volcanoes respond to small ambient, periodic stress changes (i.e., tides). Stress drop measurements from earthquakes on the main thrust zone indicate high stress drops within the seismic gap regions of the Aleutian arc and low stress drops outside the gap region.

  17. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  18. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  19. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery

    USGS Publications Warehouse

    Wang, Teng; Poland, Michael; Lu, Zhong

    2016-01-01

    Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.

  20. Cascades/Aleutian Play Fairway Analysis: Data and Map Files

    SciTech Connect

    Lisa Shevenell

    2015-11-15

    Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.

  1. Analyses of Etna Eruptive Activity From 18th Century and Characterization of Flank Eruptions

    NASA Astrophysics Data System (ADS)

    del Carlo, P.; Branca, S.; Coltelli, M.

    2003-12-01

    to fire fountain. This activity produced abundant ash fall in the whole volcano area reaching the Calabria region and Malta Island. Generally, some of these periods preceded important flank eruptions. Concerning the occurrence of the higher magnitude explosive events, we observe that at least one subplinian eruption occurred both in the 18th and 19th centuries. In the 20th century the increased quality of the scientific reports has allowed to recognize 6 subplinian eruptions from summit craters.

  2. Identification of a nonvirion protein of Aleutian disease virus: mink with Aleutian disease have antibody to both virion and nonvirion proteins.

    PubMed Central

    Bloom, M E; Race, R E; Wolfinbarger, J B

    1982-01-01

    We studied Aleutian disease virus polypeptides in Crandall feline kidney (CRFK) cells. When CRFK cells labeled with [35S]methionine at 60 h postinfection were studied by immunoprecipitation with sera from infected mink, the major Aleutian disease virus virion polypeptides (p85 and p75) were consistently identified, as was a 71,000-dalton nonvirion protein (p71). The peptide maps of p85 and p75 were similar, but the map of p71 was different. p85, p75, and p71 were all precipitated by sera from Aleutian disease virus-infected mink, including those with signs of progressive disease, but heterologous sera raised against purified Aleutian disease virus did not precipitate the nonvirion p71. These results indicated that the nonvirion p71 was unrelated to p85 and p75 and further suggested that mink infected with Aleutian disease virus develop antibody to nonvirion, as well as structural, viral proteins. Images PMID:6287034

  3. An erupted compound odontoma.

    PubMed

    Gupta, Anil; Vij, Hitesh; Vij, Ruchieka; Malhotra, Ritika

    2014-01-01

    Odontomas are familiar entities but their eruption into the oral cavity is an extraordinary occurrence, which may be associated with pain, infection, malocclusion, etc. Not many cases of erupted odontomas have been reported in the literature. This paper puts forth a case of erupting odontoma in an attempt to add to the list of reported cases of this unique pathology. PMID:24729109

  4. Tephra from the 1979 soufriere explosive eruption.

    PubMed

    Sigurdsson, H

    1982-06-01

    The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column. PMID:17808489

  5. Explosion Quakes: The 2007 Eruption of Pavlof

    NASA Astrophysics Data System (ADS)

    Smith, C.; McNutt, S. R.; Thompson, G.

    2014-12-01

    Pavlof Volcano on the Alaska Peninsula began to erupt on August 14, 2007 after an 11 year repose. Pavlof is the most active volcano in the Aleutians, with over 40 eruptions in historical times. The 2007 eruption began with low-frequency earthquakes and thermal anomalies. Strombolian activity occurred from a newly formed vent on the SE flank of the volcano. The plume reached 20,000 ft during the peak of the eruption on August 29th and 30th. Seismic activity, monitored by a network of 5 local instruments, consisted of low-frequency events, explosion quakes, volcanic tremor, and lahar-generated signals. Here we focus on explosion quakes. The first explosion quake occurred August 14th at 2:54pm UTC and the last on September 13th at 3:14pm UTC. Explosion events were often embedded in continuous tremor, but could be distinguished by the ground-coupled air waves, which appeared as a high-frequency spike superimposed on the lower-frequency ground waves. Rates were as high as 19 explosion quakes per minute. We establish whether systematic changes in explosion rates, signal properties, and ground-coupled air-wave amplitudes correlate with the height and ash content of the plume. First order trends show a positive correlation between increased explosion quake rates, increased amplitudes, and plume height. In addition, we investigate how atmospheric conditions such as wind speed and direction affect the recording of the ground-coupled air-wave. The time differences in the airwaves at different stations are consistent with the acoustic speed of 340 m/s, but show variations of up to 0.6 s depending on wind speed and direction. Eruptions at Pavlof typically have little or no seismic precursors; this combined with the low visibility common to the area results in Pavlof being dangerous to the many aviation routes that transverse this airspace. It is the goal of this study to determine the conditions under which explosion quake data may be reliably used for more effective monitoring.

  6. Volcanic Island Appears Near Tonga

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-11-01

    A volcano known as Home Reef is now believed to be the source of a small island that appeared recently in Tonga, accordingto scientists from the Smithsonian Institution's Global Volcanism Program who had initially placed the location of the eruption and resulting island at nearby Metis Shoal. Mariners onboard the yacht Maiken

  7. Seismic damage before eruptions as a tool to map pre-eruptive mechanics: worldwide average patterns

    NASA Astrophysics Data System (ADS)

    Schmid, A.; Grasso, J. R.

    2010-12-01

    than the 0.80 value recovered for earthquakes. For VEI>4 eruptions, the 1.42 p-value of foreshock sequences is larger than the 0.97 value recovered for earthquakes; iii) The departure from the background rate appears to be earlier for the largest VEI eruptions. Those differences relatively to earthquakes foreshocks are the signature of magma forcing. They are related either to change in forcing rates, or to specific medium properties (temperature, presence of fluids) around the volcanoes. Second, we applied the same analysis at a smaller space scale using the VT seismicity prior to 13 eruptions, on a single volcano, Piton de la Fournaise, La Réunion Island. We analysed stacked time-series of seismicity prior 3 classes of eruption volumes (less than 15.106 m3, more than 15.106 m3, and all eruptions). We find that the p-value of average foreshocks to eruptions also increases with the eruption volume, similarly to the pre-eruptive patterns of worldwide eruptions. This result suggests some volume predictability of eruptions and offers new perspectives for volcanic hazard assessment. We will discuss the physical processes that possibly drive such patterns.

  8. History of earthquakes and tsunamis along the eastern Aleutian-Alaska megathrust, with implications for tsunami hazards in the California Continental Borderland

    USGS Publications Warehouse

    Ryan, Holly F.; von Huene, Roland; Wells, Ray E.; Scholl, David W.; Kirby, Stephen; Draut, Amy E.

    2012-01-01

    During the past several years, devastating tsunamis were generated along subduction zones in Indonesia, Chile, and most recently Japan. Both the Chile and Japan tsunamis traveled across the Pacific Ocean and caused localized damage at several coastal areas in California. The question remains as to whether coastal California, in particular the California Continental Borderland, is vulnerable to more extensive damage from a far-field tsunami sourced along a Pacific subduction zone. Assuming that the coast of California is at risk from a far-field tsunami, its coastline is most exposed to a trans-Pacific tsunami generated along the eastern Aleutian-Alaska subduction zone. We present the background geologic constraints that could control a possible giant (Mw ~9) earthquake sourced along the eastern Aleutian-Alaska megathrust. Previous great earthquakes (Mw ~8) in 1788, 1938, and 1946 ruptured single segments of the eastern Aleutian-Alaska megathrust. However, in order to generate a giant earthquake, it is necessary to rupture through multiple segments of the megathrust. Potential barriers to a throughgoing rupture, such as high-relief fracture zones or ridges, are absent on the subducting Pacific Plate between the Fox and Semidi Islands. Possible asperities (areas on the megathrust that are locked and therefore subject to infrequent but large slip) are identified by patches of high moment release observed in the historical earthquake record, geodetic studies, and the location of forearc basin gravity lows. Global Positioning System (GPS) data indicate that some areas of the eastern Aleutian-Alaska megathrust, such as that beneath Sanak Island, are weakly coupled. We suggest that although these areas will have reduced slip during a giant earthquake, they are not really large enough to form a barrier to rupture. A key aspect in defining an earthquake source for tsunami generation is determining the possibility of significant slip on the updip end of the megathrust near

  9. Kilauea volcano eruption seen from orbit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  10. Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu

    NASA Astrophysics Data System (ADS)

    Firth, Chris W.; Cronin, Shane J.; Turner, Simon P.; Handley, Heather K.; Gaildry, Clement; Smith, Ian

    2015-12-01

    A combined stratigraphic and geochemical examination of ~ 43 kyr of volcanic activity is presented for the Yenkahe Caldera, a mafic-intermediate volcanic system on the island of Tanna, in the Vanuatu Arc. Through this period two catastrophic ignimbrite-producing eruptions have occurred: the Siwi eruption and the older, Old Tanna Ignimbrite eruption. The latter was previously linked with a different edifice to the north-east, however re-examination has shown it was derived from the Yenkahe Caldera. Radiocarbon dating of this ignimbrite gives an age of ~ 43 kyr B.P. Both eruptions produced voluminous ignimbrite sheets, however differences in deposit sequences show that the eruptions followed distinct courses. Deposits from the more recent Siwi eruption display greater evidence for phreatomagmatic phases during eruption onset. Both ignimbrites are distributed asymmetrically about the caldera, indicating partial collapse in each case. The early stages of the Siwi eruption produced directed pyroclastic surges and spatter fountains. Between these two major eruptions, volcanic activity was maintained through the formation of small, discrete volcanic cones, such as Yasur, which is active today. Whole rock major and trace element data show that intra-caldera activity between cataclysmic eruptions produced magmas of uniform basaltic-trachy-andesitic composition (SiO2 ~ 56 wt.%). Minerals within these lavas appear to be in equilibrium with their host. The Siwi eruption produced the most evolved, trachy-andesitic magma (SiO2 > 58 wt.%), while the Old Tanna eruption is associated with less evolved, basaltic-andesite magma (SiO2 ~ 53 wt.%). Juvenile clasts from both ignimbrites display diverse mineral chemistry and mineral disequilibrium textures. From these variations in geochemistry and petrology we suggest that a crystal mush or resident magma remained following low-magnitude, intra-caldera activity. MELTS modelling suggest that this was stored at shallow depths, equivalent

  11. Eruption Forecasting in Alaska: A Retrospective and Test of the Distal VT Model

    NASA Astrophysics Data System (ADS)

    Prejean, S. G.; Pesicek, J. D.; Wellik, J.; Cameron, C.; White, R. A.; McCausland, W. A.; Buurman, H.

    2015-12-01

    United States volcano observatories have successfully forecast most significant US eruptions in the past decade. However, eruptions of some volcanoes remain stubbornly difficult to forecast effectively using seismic data alone. The Alaska Volcano Observatory (AVO) has responded to 28 eruptions from 10 volcanoes since 2005. Eruptions that were not forecast include those of frequently active volcanoes with basaltic-andesite magmas, like Pavlof, Veniaminof, and Okmok volcanoes. In this study we quantify the success rate of eruption forecasting in Alaska and explore common characteristics of eruptions not forecast. In an effort to improve future forecasts, we re-examine seismic data from eruptions and known intrusive episodes in Alaska to test the effectiveness of the distal VT model commonly employed by the USGS-USAID Volcano Disaster Assistance Program (VDAP). In the distal VT model, anomalous brittle failure or volcano-tectonic (VT) earthquake swarms in the shallow crust surrounding the volcano occur as a secondary response to crustal strain induced by magma intrusion. Because the Aleutian volcanic arc is among the most seismically active regions on Earth, distinguishing distal VT earthquake swarms for eruption forecasting purposes from tectonic seismicity unrelated to volcanic processes poses a distinct challenge. In this study, we use a modified beta-statistic to identify pre-eruptive distal VT swarms and establish their statistical significance with respect to long-term background seismicity. This analysis allows us to explore the general applicability of the distal VT model and quantify the likelihood of encountering false positives in eruption forecasting using this model alone.

  12. Stratigraphy, petrology, and geochemistry of the Spurr Volcanic Complex, eastern Aleutian Arc, Alaska. [(Appendix for geothermal fluid chemistry)

    SciTech Connect

    Nye, C.J.

    1987-12-01

    The Spurr Volcanic Complex (SVC) is a calcalkaline, medium-K, sequence of andesites erupted over the last quarter of a million years by the easternmost currently active volcanic center in the Aleutian Arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58 to 60% SiO/sub 2/), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent Bezyianny-type avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) was emplaced in the caldera. Both the ashflows and dome are made of acid andesite more silicic than any analyzed lavas from the ancestral Mt. Spurr (60 to 63% SiO/sub 2/), yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53 to 57% SiO/sub 2/) erupted during and after dome emplacement, forming proto-Crater Peak and Crater Peak. Hybrid pyroclastic flows and lavas were also produced. Proto-Crater Peak underwent glacial dissection prior to the formation of Crater Peak in approximately the same location. Appendices II through VIII contain a summary of mineral compositions; Appendix I contains geochemical data. Appendix IX by R.J. Motyka and C.J. Nye describes the chemistry of geothermal fluids. 78 refs., 16 figs., 3 tabs.

  13. 75 FR 69600 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Eastern Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  14. 77 FR 34262 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2012 allocation of Pacific ocean perch in this...

  15. 76 FR 43933 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2011 allocation of Pacific ocean perch in this...

  16. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Central Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  17. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  18. 77 FR 39440 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Central Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2012 allocation of Pacific ocean perch in this...

  19. 76 FR 65972 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Eastern Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2011 allocation of Pacific ocean perch in this...

  20. Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian archipelago

    USGS Publications Warehouse

    Estes, James A.; Tinker, M. Tim; Bodkin, James L.

    2010-01-01

    Recovery criteria for depleted species or populations normally are based on demographic measures, the goal being to maintain enough individuals over a sufficiently large area to assure a socially tolerable risk of future extinction. Such demographically based recovery criteria may be insufficient to restore the functional roles of strongly interacting species. We explored the idea of developing a recovery criterion for sea otters (Enhydra lutris) in the Aleutian archipelago on the basis of their keystone role in kelp forest ecosystems. We surveyed sea otters and rocky reef habitats at 34 island-time combinations. The system nearly always existed in either a kelp-dominated or deforested phase state, which was predictable from sea otter density. We used a resampling analysis of these data to show that the phase state at any particular island can be determined at 95% probability of correct classification with information from as few as six sites. When sea otter population status (and thus the phase state of the kelp forest) was allowed to vary randomly among islands, just 15 islands had to be sampled to estimate the true proportion that were kelp dominated (within 10%) with 90% confidence. We conclude that kelp forest phase state is a more appropriate, sensitive, and cost-effective measure of sea otter recovery than the more traditional demographically based metrics, and we suggest that similar approaches have broad potential utility in establishing recovery criteria for depleted populations of other functionally important species.

  1. Cause and risk of catastrophic eruptions in the Japanese Archipelago.

    PubMed

    Tatsumi, Yoshiyuki; Suzuki-Kamata, Keiko

    2014-01-01

    The Japanese Archipelago is characterized by active volcanism with variable eruption styles. The magnitude (M)-frequency relationships of catastrophic caldera-forming eruptions (M ≥ 7) are statistically different from those of smaller eruptions (M ≤ 5.7), suggesting that different mechanisms control these eruptions. We also find that volcanoes prone to catastrophic eruptions are located in regions of low crustal strain rate (<0.5 × 10(8)/y) and propose, as one possible mechanism, that the viscous silicic melts that cause such eruptions can be readily segregated from the partially molten lower crust and form a large magma reservoir in such a tectonic regime. Finally we show that there is a ∼1% probability of a catastrophic eruption in the next 100 years based on the eruption records for the last 120 ky. More than 110 million people live in an area at risk of being covered by tephra >20 cm thick, which would severely disrupt every day life, from such an eruption on Kyushu Island, SW Japan. PMID:25391319

  2. Cause and risk of catastrophic eruptions in the Japanese Archipelago

    PubMed Central

    TATSUMI, Yoshiyuki; SUZUKI-KAMATA, Keiko

    2014-01-01

    The Japanese Archipelago is characterized by active volcanism with variable eruption styles. The magnitude (M)-frequency relationships of catastrophic caldera-forming eruptions (M ≥ 7) are statistically different from those of smaller eruptions (M ≤ 5.7), suggesting that different mechanisms control these eruptions. We also find that volcanoes prone to catastrophic eruptions are located in regions of low crustal strain rate (<0.5 × 108/y) and propose, as one possible mechanism, that the viscous silicic melts that cause such eruptions can be readily segregated from the partially molten lower crust and form a large magma reservoir in such a tectonic regime. Finally we show that there is a ∼1% probability of a catastrophic eruption in the next 100 years based on the eruption records for the last 120 ky. More than 110 million people live in an area at risk of being covered by tephra >20 cm thick, which would severely disrupt every day life, from such an eruption on Kyushu Island, SW Japan. PMID:25391319

  3. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    PubMed

    Anthony, Robert G; Estes, James A; Ricca, Mark A; Miles, A Keith; Forsman, Eric D

    2008-10-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator

  4. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    USGS Publications Warehouse

    Anthony, R.G.; Estes, J.A.; Ricca, M.A.; Miles, A.K.; Forsman, E.D.

    2008-01-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator

  5. Long-range Receiver Function Profile of Crustal and Mantle Discontinuities From the Aleutian Arc to Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Sawade, Lucas

    2016-04-01

    The Circum-Pacific belt, also called the Pacific Ring of Fire, is the most seismically active region on Earth. Multiple plate boundaries form a zone characterized by frequent volcanic eruptions and seismicity. While convergent plate boundaries such as the Peru-Chile trench dominate the Circum-Pacific belt, divergent and transform boundaries are present as well. The eastern section of the Circum-Pacific belt extends from the Aleutian arc, through the Cascadia subduction zone, San Andreas Fault, middle America trench and the Andean margin down to Tierra del Fuego. Due to the significant hazards posed by this tectonic activity, the region has been densely instrumented by thousands of seismic stations deployed across fifteen countries, over a distance of more than 15000 km. Various seismological studies, including receiver function analyses, have been carried out to investigate the crustal and mantle structure beneath local segments of the eastern Circum-Pacific belt (i.e., at ~100-500 km scale). However, to the best of our knowledge, no study to date has ever attempted to combine all available seismic data from the eastern Circum-Pacific belt to generate a continuous profile of seismic discontinuities extending from the Aleutians to Tierra del Fuego. Here, we use results from the "Global Imaging using Earthquake Records" (GLImER) P-wave receiver function database to create a long-range profile of crustal and upper mantle discontinuities across the entire eastern portion of the Circum-Pacific belt. We image intermittent crustal and mantle discontinuities along the profile, and examine them with regard to their behaviour and properties across transitions between different tectonic regimes.

  6. Herculaneum: Clues to Vesuvius eruption

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    More than 80 skeletons have been unearthed in the ancient Mediterranean town of Herculaneum, west of Italy's Mount Vesuvius. This anthropological find corroborates a reinterpretation by three University of Rhode Island scientists of the sequence of the August A.D. 79 eruption of Vesuvius. In addition, the discovery is the first proof that large numbers of people perished as they tried to flee from the eruption, estimated to have been about 10 times more powerful than the May 1980 Mount St. Helens blast.‘Who says dead men don't talk? Their bones have something to say about them and their everyday lives,’ says Sara C. Bisel, a physical anthropologist who analyzed the skeletons. Among the remains are a cluster of skeletons from six adults, four children, and two infants trying to shield themselves from the volcanic onslaught; the skeleton of a sailor, still clutching an oar, lying on his back beside an 8-m-long capsized boat; a woman whose now bony hand was still graced with gem-encrusted gold rings; and a soldier (see Figure 1). From these and other finds the anthropological team was able to discern that the ancient Romans, on average, were shorter than modern citizens and, judging from the condition of some of the teeth, probably had a low-sugar diet.

  7. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  8. A Stratigraphic, Granulometric, and Textural Comparison of recent pyroclastic density current deposits exposed at West Island and Burr Point, Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rath, C. A.; Browne, B. L.

    2011-12-01

    Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while

  9. Geologic implications of great interplate earthquakes along the Aleutian arc

    SciTech Connect

    Ryan, H.F.; Scholl, D.W.

    1993-12-01

    We present new marine geophysical observations and synthesize previous geologic interpretations of the Aleutian arc to show that the epicenters of these great thrust-type earthquakes coincide with upper plate segments of the arc characterized by a coherent forearc structural fabric. We propose that variations in upper plate structural strength and mobility affect the mechanical properties of the interplate thrust zone and need to be considered in localizing interplate asperities. Forearc tectonic segmentaion associated with the partitioning of strike-slip and thrust motions may exert long-term controls on the rates of seismic moment release.

  10. Solar Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1998-01-01

    The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with the term "prominence eruption". The magnetic field holding a filament is prone to undergo explosive changes in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament eruption, the topic of this article. This article begins with a description of basic observed characteristics of filament eruptions, with attention to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The present understanding of these characteristics in terms of the form and action of the magnetic field is then laid out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that this picture leaves unresolved and with remarks on the observations needed to probe these questions.

  11. Sympathetic Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Dai, Xinghua; Yang, Zhongwei

    2016-08-01

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  12. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommodation space increased arcward of a large outer-arc high that formed, in part, by a thickening of arc basement. This difference in deformation is interpreted to be the result of a variation in interplate coupling across the Amlia fracture zone that was facilitated by increasing subduction obliquity, a change in orientation of the subducting Amlia fracture zone, and late Quaternary intensification of glaciation. The change in coupling is manifested by a possible tear in the subducting slab along the Amlia fracture zone. Differences in coupling across the Amlia fracture zone have important implications for the location of maximum slip during future great earthquakes. In addition, shaking during a great earthquake could trigger large mass failures of the summit platform, as evidenced by the presence of thick mass transport deposits of primarily Quaternary age that are found in the forearc basin west of the Amlia fracture zone.

  13. Temporal Variation in Fish Mercury Concentrations within Lakes from the Western Aleutian Archipelago, Alaska

    PubMed Central

    Kenney, Leah A.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; von Hippel, Frank A.

    2014-01-01

    We assessed temporal variation in mercury (Hg) concentrations of threespine stickleback (Gasterosteus aculeatus) from Agattu Island, Aleutian Archipelago, Alaska. Total Hg concentrations in whole-bodied stickleback were measured at two-week intervals from two sites in each of two lakes from June 1 to August 10, 2011 during the time period when lakes were ice-free. Across all sites and sampling events, stickleback Hg concentrations ranged from 0.37–1.07 µg/g dry weight (dw), with a mean (± SE) of 0.55±0.01 µg/g dw. Mean fish Hg concentrations declined by 9% during the study period, from 0.57±0.01 µg/g dw in early June to 0.52±0.01 µg/g dw in mid-August. Mean fish Hg concentrations were 6% higher in Loon Lake (0.56±0.01 µg/g dw) than in Lake 696 (0.53±0.01 µg/g dw), and 4% higher in males (0.56±0.01 µg/g dw) than in females (0.54±0.01 µg/g dw). Loon Lake was distinguished from Lake 696 by the presence of piscivorous waterbirds during the breeding season. Mercury concentrations in stickleback from Agattu Island were higher than would be expected for an area without known point sources of Hg pollution, and high enough to be of concern to the health of piscivorous wildlife. PMID:25029042

  14. Temporal variation in fish mercury concentrations within lakes from the western Aleutian Archipelago, Alaska

    USGS Publications Warehouse

    Kenney, Leah A.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; von Hippel, Frank A.

    2014-01-01

    We assessed temporal variation in mercury (Hg) concentrations of threespine stickleback (Gasterosteus aculeatus) from Agattu Island, Aleutian Archipelago, Alaska. Total Hg concentrations in whole-bodied stickleback were measured at two-week intervals from two sites in each of two lakes from June 1 to August 10, 2011 during the time period when lakes were ice-free. Across all sites and sampling events, stickleback Hg concentrations ranged from 0.37–1.07 µg/g dry weight (dw), with a mean (± SE) of 0.55±0.01 µg/g dw. Mean fish Hg concentrations declined by 9% during the study period, from 0.57±0.01 µg/g dw in early June to 0.52±0.01 µg/g dw in mid-August. Mean fish Hg concentrations were 6% higher in Loon Lake (0.56±0.01 µg/g dw) than in Lake 696 (0.53±0.01 µg/g dw), and 4% higher in males (0.56±0.01 µg/g dw) than in females (0.54±0.01 µg/g dw). Loon Lake was distinguished from Lake 696 by the presence of piscivorous waterbirds during the breeding season. Mercury concentrations in stickleback from Agattu Island were higher than would be expected for an area without known point sources of Hg pollution, and high enough to be of concern to the health of piscivorous wildlife.

  15. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    SciTech Connect

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L. ); Underwood, M.B. )

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench. The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.

  16. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    SciTech Connect

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.; Karl, H.A.; Marlow, M.S.; Stevenson, A.J.; Huggett, Q.; Kenyon, N.; Parson, L.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slides and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.

  17. An Erupted Silent Tumour.

    PubMed

    Kudva, Adarsh; Chithra, A; Rao, Nirmala N; Cariappa, K M

    2016-07-01

    Odontomas are the most common odontogenic tumors of the oral cavity which are nonaggressive, hamartomatous in nature consisting of enamel, dentin and cementum. They are called as composite because they contain more than one type of tissue. They are generally asymptomatic, hence recognised on routine radiologic examination. The compound odontoma is composed of multiple small tooth like structures, whereas the complex odontoma consists of a conglomerate mass of enamel and dentine, which bears no anatomical similarity to the tooth. The eruption and infection of odontoma are uncommon, only few cases of erupted complex odontoma are reported in the literature. We report a case of silent erupting complex odontoma. PMID:27408461

  18. Petrology and Geochemistry of Plagioclase-Phyric Basaltic Lava Flows on St. George Island, Alaska: Evidence for a Genetic Link Between Magmatic Centers of the Pribilof Islands

    NASA Astrophysics Data System (ADS)

    Deraps, M. R.; Feeley, T. C.; Underwood, S. J.; Winer, G. S.

    2006-12-01

    St. George and St. Paul Islands, the two largest Pribilof Islands (Alaska), are located 70 km apart in the Bering Sea 400-450 km north of the Aleutian arc front. The islands are centers of alkaline basaltic volcanism associated with the diffuse Bering Sea basalt province. On St. George an extensive history of volcanism (~2.6-1.4 Ma; Mukasa and Andronikov, JGR, submitted) is exposed in high sea cliffs and several NE-SW and E-W trending fault blocks that define the present topography of the island. In contrast, St. Paul is a potentially active volcanic center (~550-3 ka) with numerous young tephra cones and associated lava flows that show minimal erosion and deformation by faulting. Volcanic rocks erupted on St. George are mainly olivine- + clinopyroxene-phyric basalts and trachy-basalts with high to moderate MgO contents (12-8 wt%). In addition, distinct plagioclase-phyric lavas are present at high stratigraphic levels. The plagioclase-phyric lavas are relatively evolved with 47-51 wt% SiO2 and 6.6-4.9 wt% MgO. Chondrite-normalized REE patterns are LREE-enriched with little to no Eu anomalies (Eu/Eu* = 1.03-1.06), indicating that the evolved compositions and plagioclase-rich nature of the flows are not due to phenocryst accumulation. Instead, production of plagioclase-phyric lavas on St. George likely involved a complex set of differentiation processes, including fractional crystallization and magma mixing. This assertion is supported by major and trace element compositions of the rocks, which define distinct trends on chemical variation diagrams relative to less evolved plagioclase-poor rocks. For example, whereas MgO contents of most St. George lavas as a group decrease with increasing SiO2 contents, these elements show a positive linear correlation for plagioclase-phyric lavas. The linear trends of these samples on chemical variation diagrams are best explained by mixing of at least two distinct evolved endmember magmas. Major element mass balance calculations

  19. Scrubbing masks magmatic degassing during repose at Cascade-Range and Aleutian-Arc volcanoes

    USGS Publications Warehouse

    Symonds, Robert B.; Janik, C.J.; Evans, William C.; Ritchie, B.E.; Counce, Dale; Poreda, R.J.; Iven, Mark

    2003-01-01

    Between 1992 and 1998, we sampled gas discharges from ≤173°C fumaroles and springs at 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA) including Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. For each site, we collected and analyzed samples to characterize the chemical (H2O, CO2, H2S, N2, CH4, H2, HCl, HF, NH3, Ar, O2, He) and isotopic (δ13C of CO2, 3He/4He, 40Ar/36Ar, δ34S, δ13C of CH4, δ15N, and δD and δ18O of water) compositions of the gas discharges, and to create baseline data for comparison during future unrest. The chemical and isotopic data show that these gases contain a magmatic component that is heavily modified from scrubbing by deep hydrothermal (150° - 350°C) water (primary scrubbing) and shallow meteoric water (secondary scrubbing). The impact of scrubbing is most pronounced in gas discharges from bubbling springs; gases from boiling-point fumaroles and superheated vents show progressively less impact from scrubbing. The most effective strategies for detecting gas precursors to future CRAA eruptions are to measure periodically the emission rates of CO2 and SO2, which have low and high respective solubilities in water, and to monitor continuously CO2 concentrations in soils around volcanic vents. Timely resampling of fumaroles can augment the geochemical surveillance program by watching for chemical changes associated with drying of fumarolic pathways (all CRAA sites), increases in gas geothermometry temperatures (Mount Mageik, Trident, Mount Baker, Mount Shasta), changes in δ13C of CO2 affiliated with magma movement (all CRAA site), and increases in 3He/4He coupled with intrusion of new magma (Mount Rainier, Augustine Volcano, Makushin, Mount Shasta). Repose magmatic degassing may discharge substantial amounts of S and Cl into the edifices of Mount Baker and several other CRAA

  20. Long-period seismicity at Shishaldin volcano (Alaska) in 2003-2004: Indications of an upward migration of the source before a minor eruption

    NASA Astrophysics Data System (ADS)

    Cusano, P.; Palo, M.; West, M. E.

    2015-01-01

    We have analyzed the long-period (LP) seismic activity at Shishaldin volcano (Aleutians Islands, Alaska) in the period October 2003-July 2004, during which a minor eruption took place in May 2004, with ash and steam emissions, thermal anomalies, volcanic tremor and small explosions. We have focused the attention on the time evolution of LP rate, size, spectra and polarization dip angle along the dataset. We find an evolution toward more shallow dip angles in the polarization of the waveforms during the sequence. The dip angle is a manifestation of the source location. Because the LP seismic sources are presumed to reflect the aggregation of gas slug or pockets within the melt, we use the polarization dip at the LP onset as a proxy for the nucleation depth of the seismic events within the conduit. We refer to this parameter as the nucleation dip and the position along the conduit of the gas aggregation as nucleation depth. The nucleation dip changes throughout the dataset. It shows a sharp decrease between the end of December 2003 and the end of January 2004, followed by a gradual increase until the onset of the eruption. At the same time, a general increase of the LP rate occurs. We have associated the dip evolution with a sinking and a subsequent decrease of the nucleation depth, which would quickly migrate up to about 8 km below the crater rim, followed by a slow depth decrease which culminates in the eruption. The change in the nucleation depth reflects either a pressure variation within the plumbing system, which would affect the confining pressure experienced by the gas aggregations. We have imputed such a pressure change to the intrusion of batches of magma from a deeper magma chamber (< 10 km) toward a shallower one (> 5 km). For a cylindric conduit with rigid walls, this leads to a volume of the injected new magma of 105-107 m3, compatible with estimates in other areas, suggesting that the LP process can be considered a good proxy of the thermodynamical

  1. Snake Filament Eruption

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  2. Triple Solar Eruption

    NASA Video Gallery

    Solar activity surged on the morning of Dec 12, 2010 when the sun erupted three times in quick succession, hurling a trio of bright coronal mass ejections (CMEs) into space. Coronagraphs onboard th...

  3. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B. G.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2004-04-01

    An analysis of volcanic activity during the last three hundred years reveals that volcanic eruptions exhibit seasonality to a statistically significant degree. This remarkable pattern is observed primarily along the Pacific "Ring of Fire" and locally at some individual volcanoes. Globally, seasonal fluctuations amount to 18% of the historical average monthly eruption rate. In some regions, seasonal fluctuations amount to as much as 50% of the average eruption rate. Seasonality principally reflects the temporal distribution of the smaller, dated eruptions (volcanic explosivity index of 0-2) that dominate the eruption catalog. We suggest that the pattern of seasonality correlates with the annual Earth surface deformation that accompanies the movement of surface water mass during the annual hydrological cycle and illustrate this with respect to global models of surface deformation and regional measurements of annual sea level change. For example, seasonal peaks in the eruption rate of volcanoes in Central America, the Alaskan Peninsula, and Kamchatka coincide with periods of falling regional sea level. In Melanesia, in contrast, peak numbers of volcanic eruptions occur during months of maximal regional sea level and falling regional atmospheric pressure. We suggest that the well-documented slow deformation of Earth's surface that accompanies the annual movements of water mass from oceans to continents acts to impose a fluctuating boundary condition on volcanoes, such that volcanic eruptions tend to be concentrated during periods of local or regional surface change rather than simply being distributed randomly throughout the year. Our findings have important ramifications for volcanic risk assessment and volcanoclimate feedback mechanisms.

  4. Generalized eruptive syringomas.

    PubMed

    Jamalipour, Mahnaz; Heidarpour, Mitra; Rajabi, Parvin

    2009-01-01

    Generalized eruptive syringoma is a rare clinical presentation of a benign adnexal tumor that derives from the intraepidermal portion of the eccrine sweat ducts. It presents as successive crops of small flesh-colored papules on the anterior body surfaces. It generally occurs in the peripubertal period. Treatment of this benign condition is cosmetic only. A case of a 28-year-old female with an eight-year history of eruptive syringoma is presented. PMID:20049275

  5. Birth of two volcanic islands in the southern Red Sea.

    PubMed

    Xu, Wenbin; Ruch, Joël; Jónsson, Sigurjón

    2015-01-01

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011-2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north-south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice. PMID:26010945

  6. Birth of two volcanic islands in the southern Red Sea

    PubMed Central

    Xu, Wenbin; Ruch, Joël; Jónsson, Sigurjón

    2015-01-01

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north–south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice. PMID:26010945

  7. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    PubMed Central

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-01-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink. PMID:6193063

  8. Diatoms confirm coseismic uplift and subsidence along the eastern Alaska-Aleutian megathrust

    NASA Astrophysics Data System (ADS)

    Dura, T.; Briggs, R. W.; Engelhart, S. E.; Nelson, A. R.; Horton, B.

    2013-12-01

    The Alaska-Aleutian subduction zone is the source of a series of Mw 8-9.2 20th century ruptures, including the second largest historical earthquake ever recorded in 1964. Paleoseismic studies, employing coastal stratigraphic sequences, have been successfully applied at sites within the 1964 rupture zone, but geologic records are unstudied west of the 1964 rupture. Understanding the behavior of the megathrust is important because a tsunamigenic rupture could damage the west coast of the United States. Investigations in the tidal marshes of Sitkinak Island, off the southwest coast of Kodiak Island, have uncovered stratigraphic evidence of five apparent coseismic land-level changes. Radiocarbon, 210Pb, and 137Cs dating indicate this record may include the 1964 and 1788 earthquakes and some predecessors. Here, we present new paleoecological evidence that independently confirms the inference that at least four of the abrupt lithologic changes in the stratigraphy of Sitkinak Island record coseismic land-level changes. Sudden and lasting changes in fossil diatom assemblages spanning tidal lithologic contacts reveal both coseismic subsidence (mud over peat) and coseismic uplift (peat over mud) during the last 1000 years. Across the contact that may mark the 1964 earthquake, a shift from a brackish, low-marsh diatom assemblage dominated by Diploneis interrupta and Navicula cincta to a tidal flat assemblage containing Actinocyclus normanii and Synedra tabulata indicates a sudden rise in relative sea-level, which we infer to record coseismic subsidence. In contrast, diatoms show evidence of coseismic uplift across the probable 1788 contact. An abrupt transition from a fully marine assemblage containing coastal planktonic and tychoplanktonic taxa to a freshwater marsh assemblage dominated by the salt-intolerant benthic diatom Eunotia fallax is consistent with a sudden and lasting relative sea-level fall. Abrupt changes in lithology across a contact dated about ~575 cal yr

  9. Satellite magnetic anomalies over subduction zones - The Aleutian Arc anomaly

    NASA Technical Reports Server (NTRS)

    Clark, S. C.; Frey, H.; Thomas, H. H.

    1985-01-01

    Positive magnetic anomalies seen in MAGSAT average scalar anomaly data overlying some subduction zones can be explained in terms of the magnetization contrast between the cold subducted oceanic slab and the surrounding hotter, nonmagnetic mantle. Three-dimensional modeling studies show that peak anomaly amplitude and location depend on slab length and dip. A model for the Aleutian Arc anomaly matches the general trend of the observed MAGSAT anomaly if a slab thickness of 7 km and a relatively high (induced plus viscous) magnetization contrast of 4 A/m are used. A second source body along the present day continental margin is required to match the observed anomaly in detail, and may be modeled as a relic slab from subduction prior to 60 m.y. ago.

  10. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  11. Acneiform facial eruptions

    PubMed Central

    Cheung, Melody J.; Taher, Muba; Lauzon, Gilles J.

    2005-01-01

    OBJECTIVE To summarize clinical recognition and current management strategies for four types of acneiform facial eruptions common in young women: acne vulgaris, rosacea, folliculitis, and perioral dermatitis. QUALITY OF EVIDENCE Many randomized controlled trials (level I evidence) have studied treatments for acne vulgaris over the years. Treatment recommendations for rosacea, folliculitis, and perioral dermatitis are based predominantly on comparison and open-label studies (level II evidence) as well as expert opinion and consensus statements (level III evidence). MAIN MESSAGE Young women with acneiform facial eruptions often present in primary care. Differentiating between morphologically similar conditions is often difficult. Accurate diagnosis is important because treatment approaches are different for each disease. CONCLUSION Careful visual assessment with an appreciation for subtle morphologic differences and associated clinical factors will help with diagnosis of these common acneiform facial eruptions and lead to appropriate management. PMID:15856972

  12. Lava Textures, Magma Crystallization History, and the Dynamics of Merapi and Aleutian Mush Columns

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.; Del Marmol, M. A.

    2014-12-01

    The subsurface dynamics of magma in mush columns beneath arc volcanoes is recorded in the textures of the basic lavas. A detailed comparison of lava textures from large mature volcanoes in Indonesia (Merapi) and the Aleutian Islands (Adak and Atka), shows remarkably similar, often indistinguishable, textures of high alumina basalts (HAB) and basaltic andesites (BA). We suggest a systematic characterization of these distinctive textures into a few simple categories reflecting the subsurface history of crystallization within solidification fronts (SFs) and subsequent transport dynamics. The HABs are strongly plagioclase-phyric and of two main groups: A1 consists of large, idiomorphic, mildly zoned, plagioclase (20-30 vol.%) with small amounts of olivine (2-8%) set in a finely crystalline groundmass of these same phases; A2 is similar, but contains an additional pervasive population of large 'old' plagioclase, rounded, often highly zoned, and sometimes broken; A1+ is a subclass of A1 where traces of 'old' plagioclase are present. Similar categories exist in the BA lavas except overall crystallinity is higher and olivine is replaced by large clinopyroxenes containing or mantled with magnetite. In a temporal stratigraphic sense, the early lavas are generally HAB A1 types and transition into, sometimes alternating, HAB A2 types followed by BA types. The initial establishment of the mush column is by hot, highly mobile primary magmas, followed by increasingly more thermally mature magmas containing debris from disrupted SFs. The detailed nature of this debris, its variation in time, and the volumes give important insights on the size and vigor of the mush column staging chambers.

  13. Mt. Etna Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Vis/NIR Image CloseupFigure 2: Difference Image

    October 2002 Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide (SO2) plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of SO2 injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    This image was made from a sensor on the AIRS instrument that is sensitive to the visible and near-infrared portions of the spectrum. The visible/near infrared data show the smoke plume from Mt. Etna. The view is of Europe and the central Mediterranean with Italy in the center. Since the visible/near infrared sensor on AIRS is sensitive to wavelengths that are different than the human eye, vegetated regions appear red (compare the red color of Europe with the tan desert of North Africa in the lower left). Figure 1 is a closer view of Sicily and shows a long, brownish smoke plume extending across the Mediterranean to Africa. This is consistent with the enhanced feature in the difference image in Figure 2 and helps validate the information inferred from that image.

    Figure 2 clearly shows the SO2 plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to SO2. By subtracting out the common water vapor signal in both channels, the SO2 feature remains and shows up as an enhancement in the difference image.

    The

  14. Mercury and Other Metals in Feathers of Common Eider (Somateria mollissima) and Tufted Puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska

    PubMed Central

    Gochfeld, Michael

    2014-01-01

    We analyzed arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in the feathers of common eiders (Somateria mollissima) and tufted puffins (Fratercula cirrhata) from Amchitka and Kiska islands (Aleutians). Between species, puffins had 10 times higher chromium (arithmetic mean = 1820 ppb), 7.5 times higher selenium (mean = 6600 ppb), and 3 times higher mercury (mean = 2540 ppb) than eiders. Eiders had significantly higher levels of manganese than puffins. Puffins are higher on the food chain than eiders, which is reflected in their generally higher levels of metals in their feathers. Interisland differences were generally small, and there were few significant differences as a function of the three nuclear test locations on Amchitka. The only sex-related difference was that female puffins had higher mercury than males (arithmetic mean of 3060 ppb vs. 2270 ppb). Mean levels of metals in the feathers of puffins and eiders from the Aleutians were low compared with comparable studies elsewhere, and the relatively low levels of metals do not indicate the potential for adverse behavioral or reproductive effects in the birds themselves, nor pose concern for other consumers, including subsistence hunters. PMID:18712499

  15. Kimberlite ascent and eruption.

    PubMed

    Sparks, R S J; Brown, R J; Field, M; Gilbertson, M

    2007-12-13

    Wilson and Head model kimberlite ascent and eruption by considering the propagation of a volatile-rich dyke. Wilson and Head's model has features in common with Sparks et al., but it is inconsistent with geological observations and constraints on volatile solubility. Here we show that this may be due to erroneous physical assumptions. PMID:18075522

  16. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  17. Eruption on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This image, taken by NASA's Galileo spacecraft, shows a new blue-colored volcanic plume extending about 100 kilometers (about 60 miles) into space from Jupiter's moon Io (see inset at lower left). The blue color of the plume is consistent with the presence of sulfur dioxide gas and 'snow' condensing from the gas as the plume expands and cools. Galileo images have also shown that the Ra Patera plume glows in the dark, perhaps due to the fluorescence of sulfur and oxygen ions created by the breaking apart of sulfur dioxide molecules by energetic particles in the Jovian magnetosphere. The images at right show a comparison of changes seen near the volcano Ra Patera since the Voyager spacecraft flybys of 1979 (windows at right show Voyager image at top and Galileo image at bottom). This eruptive plume is an example of a new type of volcanic activity discovered during Voyager's flyby in 1979, believed to be geyser-like eruptions driven by sulfur dioxide or sulfur gas erupting and freezing in Io's extremely tenuous atmosphere. Volcanic eruptions on Earth cannot throw materials to such high altitudes. Ra Patera is the site of dramatic surface changes. An area around the volcano of about 40,000 square kilometers, area about the size of New Jersey, has been covered by new volcanic deposits. The image was taken in late June 28, 1996 from a distance of 972,000 kilometers (604,000 miles). The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  18. Modern salt-marsh and tidal-flat foraminifera from Sitkinak and Simeonof Islands, southwestern Alaska

    USGS Publications Warehouse

    Kemp, Andrew C.; Engelhart, Simon E.; Culver, Stephen J.; Nelson, Alan R.; Briggs, Richard W.; Haeussler, Peter J.

    2013-01-01

    We describe the modern distribution of salt-marsh and tidal-flat foraminifera from Sitkinak Island (Trinity Islands) and Simeonof Island (Shumagin Islands), Alaska, to begin development of a dataset for later use in reconstructing relative sea-level changes caused by great earthquakes along the Alaska-Aleutian subduction zone. Dead foraminifera were enumerated from a total of 58 surface-sediment samples collected along three intertidal transects around a coastal lagoon on Sitkinak Island and two intertidal transects on Simeonof Island. Two distinctive assemblages of salt-marsh foraminifera were recognized on Sitkinak Island. Miliammina fusca dominated low-marsh settings and Balticammina pseudomacrescens dominated the high marsh. These two species make up >98% of individuals. On Simeonof Island, 93% of individuals in high-marsh settings above mean high water were B. pseudomacrescens. The tidal flat on Simeonof Island was dominated by Cibicides lobatulus (60% of individuals), but the lower limit of this species is subtidal and was not sampled. These results indicate that uplift or subsidence caused by repeated earthquakes along the Alaska-Aleutian subduction zone could be reconstructed in coastal sediments using alternating assemblages of near monospecific B. pseudomacrescens and low-marsh or tidal-flat foraminifera.

  19. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  20. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  1. Compound Antidunes: a Key to Detect Catastrophic Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Nemoto, Y.

    2008-12-01

    Antidunes are common in pyroclastic flow and surge deposits. However, the compound or nested occurrence of antidunes, where smaller antidunes reside within a larger-scale antidune, has seldom been documented or discussed in both pyroclastic and siliciclastic depositional settings. Without realizing this complexity, the frequency and magnitude of volcanic eruptions estimated from pyroclastic deposits are severely unrealistic. We have documented the Holocene outcrops of the antidune-bearing pyroclastites in Niijima Island, 100 miles SSW of Tokyo, Japan. The pyroclastites were formed by the eruptions in 886 AD Along the Habushiura coast in the southeastern part of the island, these outcrops form up to 50 m high cliffs, and are laterally traceable over 5 km from the volcano crater that shed the pyroclastites in the northward (downcurrent) direction. These pyroclastites were previously interpreted as recording about 30 small eruptions, each forming a 0.5-2 meter thick subhorizontal couplet of pumice (inversely grading) and lithic (normal grading) debris, with cm-m thick antidunes. However, we postulate that each of these couplets does not record a single volcanic eruption, but a much shorter time. These couplets occur between concave-up vertical accretion surfaces, which have both upstream- and downstream-migration components, within a 5-15 meter thick compound antidune (our "rank-1" antidune). Three erosively stacked compound antidunes form the coastal cliffs in the Habushiura coast, and each compound antidune is about ten times thicker than antidunes reported by earlier workers (corresponding to our "rank-2 antidunes" that nest within a rank-1 antidune, and "rank-3 antidunes" that nest within a rank-2 antidune). Hence, the Habushiura cliffs represent only three eruption events (instead of 30 events), but each representing much larger magnitude of eruptions. The geometry of these antidunes is comparable to "sediment waves" or "cyclic steps" of siliciclastic deposits

  2. Mafic intrusions triggering eruptions in Iceland

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2012-04-01

    The last two eruptions in Iceland, Eyjafjallajökull 2010 and Grímsvötn 2011, were both provoked by an intrusion of more mafic magma into pre-existing magmatic system. Injection into the latter volcano, which is located in the main rift-zone of the island, above the presumed centre of the mantle plume and is the most active volcano of Iceland, has been gradual since the last eruption in 2004. In contrast, at Eyjafjallajökull volcano, one of the least active volcano in Iceland and located at the southern part of a propagating rift-zone where extensional tectonics are poorly developed, mafic magma intrusion occurred over less than a year. Beneath Eyjafjallajökull, a silicic intrusion at approximately 6 km depth was recharged with mantle derived alkali basalt that was injected into residual rhyolite from the penultimate eruption in the years 1821-23. The resulting magma mingIing process was highly complex, but careful sampling of tephra during the entire eruption allows the dynamics of the mingling process to be unravelled. Short-lived disequilibria between the gaseous nuclide 210Po and the much less volatile nuclide 210Pb, suggest that basalt accumulated beneath the silicic intrusion over approximately 100 days, or from early January 2010 until the onset of the explosive summit eruption on 14 April. Due to the degassing, crystal fractionation modified the composition of the injected mafic magma producing evolved Fe-and Ti-rich basalt, similar in composition to that of the nearby Katla volcano. This evolved basalt was intruded into the liquid part of the silicic intrusion only a few hours before the onset of the explosive summit eruption. The short time between intrusion and eruption led to the production of very heterogeneous (of basaltic, intermediate and silicic composition) and fine-grained tephra during the first days of explosive eruption. The fine grained tephra resulted from combined effects of magma fragmentation due to degassing of stiff magma rich in

  3. Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge

    USGS Publications Warehouse

    Geist, E.L.; Childs, J. R.; Scholl, D. W.

    1987-01-01

    Amlia and Amukta Basins are the largest of many intra-arc basins formed in late Cenozoic time along the crest of the Aleutian Arc. Both basins are grabens filled with 2-5 km of arc-derived sediment. A complex system of normal faults deformed the basinal strata. Although initial deposits of late Micocene age may be non-marine in origin, by early Pliocene time, most of the basinfill consisted of pelagic and hemipelagic debris and terrigenous turbidite deposits derived from wavebase and subaerial erosion of the arc's crestal areas. Late Cenozoic volcanism along the arc commenced during or shortly after initial subsidence and greatly contributed to active deposition in Amlia and Amukta Basins. Two groups of normal faults occur: major boundary faults common to both basins and 'intra-basin' faults that arise primarily from arc-parallel extension of the arc. The most significant boundary fault, Amlia-Amukta fault, is a south-dipping growth fault striking parallel to the trend of the arc. Displacement across this fault forms a large half-graben that is separated into the two depocentres of Amlia and Amukta Basins by the formation of a late Cenozoic volcanic centre, Seguam Island. Faults of the second group reflect regional deformation of the arc and offset the basement floor as well as the overlying basinal section. Intra-basin faults in Amlia Basin are predominantly aligned normal to the trend of the arc, thereby indicating arc-parallel extension. Those in Amukta basin are aligned in multiple orientations and probably indicate a more complex mechanism of faulting. Displacement across intra-basin faults is attributed to tectonic subsidence of the massif, aided by depositional loading within the basins. In addition, most intra-basin faults are listric and are associated with high growth rates. Although, the hydrocarbon potential of Amlia and Amukta Basins is difficult to assess based on existing data, regional considerations imply that an adequate thermal history conducive

  4. Amchitka Island, Alaska, special sampling project 1997

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-28

    This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

  5. Buldir Depression - A Late Tertiary graben on the Aleutian Ridge, Alaska

    USGS Publications Warehouse

    Marlow, M. S.; Scholl, D. W.; Buffington, E.C.; Boyce, R.E.; Alpha, T.R.; Smith, P.J.; Shipek, C.J.

    1970-01-01

    Buldir Depression is a large, rectilinear basin that lies on the northern edge of the Aleutian Ridge and is aligned with the arcuate chain of active volcanoes on the ridge crest. The depression appears to be a volcanic-tectonic feature, which began to form in Late Tertiary time and which is still forming. It is a graben formed by extensional rifting and accompanied by contemporaneous volcanism on the Aleutian Ridge. Subsidence rates for the depression are estimated at 20-70 cm/1,000 years. Sediments in the depression are 300 m thick and are probably pelagic and turbidite deposits of Pleistocene age. The turbidites were apparently derived from the plateau area of the Aleutian Ridge surrounding the depression. Older sediments on the northern slope of the Aleutian Ridge have a maximum thickness of 550 m and are deformed and slumped toward the Bering Sea. These sediments are postulated to overlie a mid-flank terrace on the northern Aleutian Ridge that titled to the north during the formation of Buldir Depression. ?? 1970.

  6. Mount Pinatubo, Philippine Islands as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    View of Mount Pinatubo, Philippine Islands. Subic Bay is at the lower left corner, with the sea at the left and Clark Air Force Base (abandoned after the eruption) is to the lower right of the volcano. A turquoise lake occupies the caldera just below the center of the photograph. Mount Pinatubo erupted in June, 1991 after several hundred years of quiet.

  7. Microscopic analysis of feather and hair fragments associated with human mummified remains from Kagamil Island, Alaska

    USGS Publications Warehouse

    Dove, C.J.; Peurach, S.C.

    2002-01-01

    Human mummified remains of 34 different infant and adult individuals from Kagamil Island, Alaska, are accessioned in the Department of Anthropology, National Museum of Natural History, Smithsonian Institution. Kagamil Island is one of the small islands in the Island of Four Mountains group of the Aleutian Islands, Alaska and is well known for the mummy caves located on the southwest coast of the island. The Kagamil mummy holdings at the Smithsonian represent one of the largest, best documented and preserved collections of this type. Although these specimens are stored in ideal conditions, many small feather and hair fragments have become loose or disassociated from the actual mummies over the years. This preliminary investigation of fragmentary fiber material retrieved from these artifacts is the first attempt to identify bird and mammal species associated with the mummified remains of the Kagamil Island, Alaska collection and is part of the ongoing research connected with these artifacts.

  8. Volcano hazards and potential risks on St. Paul Island, Pribilof Islands, Bering Sea, Alaska

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Winer, G. S.

    2009-05-01

    Volcano hazards and potential risks on St. Paul Island, Alaska, are assessed on the basis of the recent volcanic history of the island. The long-term frequency of volcanic eruptions is estimated using a count of 40 identifiable vents considered to represent separate eruptions. Assuming regular temporal spacing of these events during the period 360,000 to 3230 y.b.p., the estimated mean recurrence time is 0.11 × 10 - 3 eruption/year and the eruptive interval is approximately 8900 years. Volcano hazards on St. Paul are associated exclusively with the eruption of low viscosity alkali basaltic magma. The most important are lava flows, tephra fallout, and base surges. Other hazards include volcanic gases, seismicity and ground deformation associated with dike intrusion beneath rift zones, and explosive lava-water interactions along coastal regions and water-saturated ground. The general characteristics of past volcanism on St. Paul indicate that the most likely styles of future eruptions will be (1) Hawaiian-style eruptions with fire fountains and pahoehoe lava flows issuing from one of two polygenetic shield volcanoes on the island; (2) Strombolian-style, scoria cone-building eruptions with associated tephra fallout and eruption of short pahoehoe lava flows; and (3) explosive Surtseyan-style, phreatomagmatic eruptions initiating at some point along St. Paul's insular shelf. Given the relatively restricted range in volcanic phenomena on St. Paul, the most significant question regarding volcano hazard and risk assessment is whether future eruptions will be confined to the same region on the island as the most recent activity. If future activity follows the recent past, resulting volcano hazards will most likely be located at inland areas sufficiently far from habitation that they will pose little threat to life or property. An important caveat, however, is that St. Paul is constructed almost entirely from the products of volcanic eruptions with vents located all over

  9. Clinical Chemical Studies in Aleutian Disease of Mink

    PubMed Central

    Gershbein, Leon L.; Spencer, Kathryn L.

    1964-01-01

    Clinical chemical determinations were carried out on blood removed by cardiac puncture from 49 mink affected with Aleutian disease and 25 normal animals and the respective differences tested for statistical significance. Blood urea nitrogen, serum total protein and globulin, thymol turbidity, glutamic oxalacetic and glutamic pyruvic transaminases and amylase were definitely elevated in the affected animals whereas serum calcium, albumin and A/G ratio were depressed. No statistically significant difference was apparent between the two groups in the comparison of inorganic phosphorus, alkaline and acid phosphatases, bilirubin, total cholesterol and esters, cephalin-cholesterol flocculation (3+ in each case), sodium, potassium, chloride, CO2-combining power, leucine aminopeptidase and lactic dehydrogenase (means: over 2,000 u./ml.). For both the control and affected mink, the distribution of serum lactic dehydrogenase isozymes resembled that of human homologous serum hepatitis. Electrophoresis of serum proteins confirmed earlier findings of hypergammaglobulinemia in the diseased animals but a fast-moving or pre-albumin component, averaging 4% of the total protein, occurred in both the diseased and normal mink. ImagesFigure 1. PMID:17649484

  10. Detailed transcription map of Aleutian mink disease parvovirus.

    PubMed Central

    Alexandersen, S; Bloom, M E; Perryman, S

    1988-01-01

    We studied the transcription program of Aleutian mink disease parvovirus (ADV) by using a combination of cDNA cloning and sequencing, primer extension, and Northern (RNA) blot hybridization with splice-specific oligonucleotides. The 4.8-kilobase ADV genome was transcribed in the rightward direction, yielding plus-sense polyadenylated transcripts of 4.3 (R1 RNA), 2.8 (R2), 2.8 (R3), 1.1 (RX), and 0.85 (R2') kilobases. Each RNA transcript had potential translation initiation sites within open reading frames, suggesting protein translation, and a scheme encompassing ADV structural and nonstructural proteins is proposed. Each of the five RNA transcripts had a characteristic set of splices and originated from a promoter at nucleotide 152 (map unit 3 [R1, R2, R2', and RX]) or at nucleotide 1729 (map unit 36 [R3]). The transcripts terminated with a poly(A) tail at one of two positions: either at map unit 53 (R2' and RX) or at map unit 92 (R1, R2, and R3). Similarities with and differences from the transcription maps of other parvoviruses are discussed, and possible roles of the unique features found in ADV transcription are related to the special pathogenic features of this virus. Images PMID:2843669

  11. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  12. Dominica Pumiceous Eruptions: Reconstruction of Dynamics and Timescales of Magma Chamber Processes from Crystal Record and Diffusion Modelling.

    NASA Astrophysics Data System (ADS)

    Solaro, C.; Boudon, G.; Balcone Boissard, H.; Martel, C.; Morgan, D. J.

    2015-12-01

    In the last 50ky, Dominica Island (Lesser Antilles Arc) has experienced three major pumiceous ignimbritic eruptions: Layou (~50ka), Roseau (~30ka), and Rosalie (~20ka). These eruptions emitted magma volumes one order of magnitude larger (tens of km3 DRE/eruption) than those of the neighboring islands of Martinique and Guadeloupe (<1 km3/eruption). Reservoir processes and pre-eruptive magma dynamics of these eruptions are still poorly constrained. Our study focuses on the basal Plinian fallout deposit of these three eruptions. We studied the crystal assemblage and performed a detailed analysis of chemical zoning patterns, textures and composition variations on orthopyroxene crystals (12-16% total crystal content). A system analysis approach is conducted to unravel crystals' remobilization processes in the reservoir before eruption. Timescales of these processes have been calculated performing Fe2+-Mg interdiffusion modelling on selected orthopyroxenes by intercalibration of high resolution BSE images with EPMA analyses. Results suggest the existence of a main magmatic environment, containing approximately 80-85% of the total orthopyroxene amount. The remnant 15-20% orthopyroxenes exhibit clear zoning with normal, reverse and double zoning for Layou and Rosalie eruptions and almost reverse and double zoning for Roseau. They display cyclic interaction with smaller magmatic environments of an either more or less evolved composition. Mobilization of crystals in between these different environments causes the simple or double normal and reverse zoning in crystals. In order to constrain timescales of reservoir processes, diffusion has been modelled along the a- and b-axis on zoned orthopyroxenes of Layou and Roseau eruptions at 850°C. For both eruptions, dating of diffusion kinetics on crystal zoning provides comparable timescale distributions of ~3-4 years before each eruption. This suggests magma remobilization of about 3 years prior each eruption, likely acting as a

  13. Satellite observations of lightning-generated NOx in volcanic eruption clouds

    NASA Astrophysics Data System (ADS)

    Carn, Simon; Krotkov, Nickolay; Pickering, Ken; Allen, Dale; Bucsela, Eric

    2016-04-01

    The generation of NO2 by lightning flashes is known to be an important source of NOx in the free troposphere, particularly in the tropics, with implications for ozone production. Although UV-visible satellite observations of lightning-generated NOx (LNOx) in thunderstorms have been previously reported, here we present the first satellite observations of LNOx generated by lightning in explosive volcanic eruption clouds (vLNOx) from the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. To date we have identified vLNOx in operational OMI NO2 measurements (OMNO2) during the high-latitude eruptions of Okmok (Aleutian Is; July 2008), Kasatochi (Aleutian Is; August 2008), Redoubt (Alaska; March 2009) and Grimsvötn (Iceland; May 2011), although analysis of OMNO2 data for other eruptions is underway. We use World Wide Lightning Location Network (WWLLN) observations to verify the occurrence and location of lightning flashes in the volcanic eruption clouds. All the vLNOx anomalies are associated with strong UV Aerosol Index (UVAI) signals due to volcanic ash. Preliminary analysis shows that the maximum vLNOx column detected by OMI decreases linearly with time since eruption, and suggests that the vLNOx signal is transient and can be detected up to ~5-6 hours after an eruption. Detection of vLNOx is hence only possible for eruptions occurring a few hours before the daytime OMI overpass. Based on the number of lightning flashes detected by WWLLN in each eruption cloud, we also estimate the vLNOx production efficiency (moles vLNOx per flash). Preliminary estimates for the 2008 Kasatochi eruption suggest that this is significantly higher than the production efficiency in thunderstorms, but may be biased high due to the low detection efficiency of WWLLN (<10-50% of flashes detected over most regions). The measured vLNOx columns also require adjustment using an algorithm designed to retrieve LNOx from OMI, which takes the total OMI slant column NO2 and removes the

  14. Patterns of growth and body condition in sea otters from the Aleutian archipelago before and after the recent population decline

    USGS Publications Warehouse

    Laidre, K.L.; Estes, J.A.; Tinker, M.T.; Bodkin, J.; Monson, D.; Schneider, K.

    2006-01-01

    3In addition to larger asymptotic values for mass and length, the rate of growth towards asymptotic values was more rapid in the 1990s than in the 1960s/70s: sea otters reached 95% of asymptotic body mass and body length 1–2 years earlier in the 1990s.4Body condition (as measured by the log mass/log length ratio) was significantly greater in males than in females. There was also an increasing trend from the 1960s/70s through 2004 despite much year-to-year variation.5Population age structures differed significantly between the 1960s/70s and the 1990s with the latter distribution skewed toward younger age classes (indicating an altered lxfunction) suggesting almost complete relaxation of age-dependent mortality patterns (i.e. those typical of food-limited populations).6This study spanned a period of time over which the population status of sea otters in the Aleutian archipelago declined precipitously from levels at or near equilibrium densities at some islands in the 1960s/70s to < 5% of estimated carrying capacity by the late 1990s. The results of this study indicate an improved overall health of sea otters over the period of decline and suggest that limited nutritional resources were not the cause of the observed reduced population abundance. Our findings are consistent with the hypothesis that the decline was caused by increased killer whale predation.

  15. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  16. Teleseismically recorded seismicity before and after the May 7, 1986, Andreanof Islands, Alaska, earthquake

    USGS Publications Warehouse

    Engdahl, E.R.; Billington, S.; Kisslinger, C.

    1989-01-01

    The Andreanof Islands earthquake (Mw 8.0) is the largest event to have occurred in that section of the Aleutian arc since the March 9, 1957, Aleutian Islands earthquake (Mw 8.6). Teleseismically well-recorded earthquakes in the region of the 1986 earthquake are relocated with a plate model and with careful attention to the focal depths. The data set is nearly complete for mb???4.7 between longitudes 172??W and 179??W for the period 1964 through April 1987 and provides a detailed description of the space-time history of moderate-size earthquakes in the region for that period. Additional insight is provided by source parameters which have been systematically determined for Mw???5 earthquakes that occurred in the region since 1977 and by a modeling study of the spatial distribution of moment release on the mainshock fault plane. -from Authors

  17. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  18. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  19. Cl constrains on shallow plumbing system and pre-eruptive conditions of the Phlegrean Fields.

    NASA Astrophysics Data System (ADS)

    Zdanowicz, Géraldine; Balcone-Boissard, Hélène; Boudon, Georges; Civetta, Lucia; Orsi, Giovanni; D'Antonio, Massimo

    2015-04-01

    The bay of Naples is known to concentrate several dangerous volcanoes that erupted a lot of times in prehistorical and historical periods: Vesuvius, Phlegrean Fields and Ischia Island. Phlegrean Fields produced voluminous high-magnitude eruptions including: the Campanian Ignimbrite (39 ka BP), one of the two largest explosive eruptions of the Mediterranean region during the last 200,000 years, with 300 km3 of magma emitted, and the Neapolitan Yellow Tuff (15 ka BP), the second major eruption (40 km3 of magma emitted). The Ischia Island is located in the Bay of Naples and its eruptive history has been recently detailed. We present a geochemical investigation of volatile components on the fallout products of the major explosive eruptions of Phlegrean Fields: the Campanian Ignimbrite (39 ka BP), the Neapolitan Yellow Tuff (15 ka BP), the Pomici Principali (10 ka BP; 0.38 km3 DRE magma), the Agnano Monte-Spina (4.1 ka BP; 0.60 km3 DRE magma); the Astroni 6 (3.8 ka BP; 0.70 km3 DRE magma); the Monte Nuovo (1,538 AD), which is the most recent eruption of the Phlegrean Fields (0.04 km3 DRE magma), and for comparison the Cretaio eruption of the Ischia Island (1,800 a BP; 0.02 km3 DRE magma). Volatiles of magmas (H2O, CO2, SO2, Cl, F) are informative not only because they play a key role in the eruptive dynamic but also because they, and especially chlorine, may allow estimating the pressure of localization of the magma storage and pre-eruptive water content (prior the eruption). In the alkaline magmas involved during the Phlegrean Fields eruptions, H2O is the main volatile species but Cl behaviour is particularly interesting to study. Experimentally, it has been demonstrated that in a pressure, temperature and composition domain a water-saturated magma may be in equilibrium with a fluid phase consisting of a water-rich vapor and a chlorine-rich brine. In that case, the Cl content in magma is buffered. This effect allows determining the pressure of localization of

  20. Erupted complex odontoma delayed eruption of permanent molar.

    PubMed

    Ohtawa, Yumi; Ichinohe, Saori; Kimura, Eri; Hashimoto, Sadamitsu

    2013-01-01

    Odontomas, benign tumors that develop in the jaw, rarely erupt into the oral cavity. We report an erupted odontoma which delayed eruption of the first molar. The patient was a 10-year-old Japanese girl who came to our hospital due to delayed eruption of the right maxillary first molar. All the deciduous teeth had been shed. The second premolar on the right side had erupted, but not the first molar. Slight inflammation of the alveolar mucosa around the first molar had exposed a tooth-like, hard tissue. Panoramic radiography revealed a radiopaque mass indicating a lesion approximately 1 cm in diameter. The border of the image was clear, and part of the mass was situated close to the occlusal surface of the first molar. The root of the maxillary right first molar was only half-developed. A clinical diagnosis of odontoma was made. The odontoma was subsequently extracted, allowing the crown of the first molar to erupt almost 5 months later. The dental germ of the permanent tooth had been displaced by the odontoma. However, after the odontoma had been extracted, the permanent tooth was still able to erupt spontaneously, as eruptive force still remained. When the eruption of a tooth is significantly delayed, we believe that it is necessary to examine the area radiographically. If there is any radiographic evidence of a physical obstruction that might delay eruption, that obstruction should be removed before any problems can arise. Regular dental checkups at schools might improve our ability to detect evidence of delayed eruption earlier. PMID:24521551

  1. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... means a bidder's irrevocable offer, in response to an invitation to bid under this section, to surrender...: (1) Holder of record and person otherwise fully and legally entitled to offer, in the manner this.../privilege vessel owner, title holder of record, and person otherwise fully and legally entitled to offer,...

  2. Aleut Dictionary (Unangam Tunudgusii). An Unabridged Lexicon of the Aleutian, Pribilof, and Commander Islands Aleut Language.

    ERIC Educational Resources Information Center

    Bergsland, Knut, Comp.

    This comprehensive dictionary draws on ethnographic and linguistic work of the Aleut language and culture dating to 1745. An introductory section explains the dictionary's format, offers a brief historical survey, and contains notes on Aleut phonology and orthography, dialectal differences and developments, Eskimo-Aleut phonological…

  3. Granulomatous Drug Eruptions.

    PubMed

    Dodiuk-Gad, Roni P; Shear, Neil H

    2015-07-01

    Granuloma formation is usually regarded as a means of defending the host from persistent irritants of either exogenous or endogenous origin. Noninfectious granulomatous disorders of the skin encompass a challenging group of diseases owing to their clinical and histologic overlap. Drug reactions characterized by a granulomatous reaction pattern are rare, and defined by a predominance of histiocytes in the inflammatory infiltrate. This review summarizes current knowledge on the various types of granulomatous drug eruptions, focusing on the 4 major types: interstitial granulomatous drug reaction, drug-induced accelerated rheumatoid nodulosis, drug-induced granuloma annulare, and drug-induced sarcoidosis. PMID:26143430

  4. Drug Rash (Unclassified Drug Eruption) in Children

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Drug Eruption, Unclassified (Pediatric) A parent's guide to condition ... lesions coming together into larger lesions typical of drug rashes (eruptions). Overview A drug eruption, also known ...

  5. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  6. The Variation of Volcanic Tremor During Active Stage in the 1986 Izu-Oshima Eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Kurita, Kei

    2014-05-01

    Izu-Oshima is one of the most active volcanoes in Japan. The latest eruption of Nov. 1986 exhibited a curious eruption sequence; the strombolian type eruption started on 15 Nov. at the central vent and it had continued for 4 days. Then after it ceased, subplinian type fissure eruptions occurred inside and outside the caldera where several hundreds meters to few kilometers away from the central vent. Lava flows were associated with these two eruption episodes. Petrologically compositions of these two kinds of lava are completely dissimilar; magma from the central vent is basaltic with narrow range of chemical composition, which is almost same as that of the previous stages while magma from the fissures is evolved one with wider variations of composition [Aramaki and Fujii, 1988]. This means that two distinct magma sources, which were chemically separated but mechanically coupled, should have existed prior to the eruption. The most important issue concerning this eruption is how the mechanical interaction between two magma sources took place and evolved. Throughout the eruption sequence, remarkable activities of seismic tremor have been observed. In this presentation we report evolution of tremor sources to characterize the interaction based on the recently recovered seismic records and we propose a reinterpretation of the eruption sequence. We analyzed volcanic tremor in Nov. 1986 on digitized seismic records of 7 stations in the Island. The aim of this analysis is to estimate the movement of two kinds of magma associated with the change of the eruption styles. Firstly root mean square amplitudes of the filtered seismic signals and their spectrum were calculated. The tremor style changed from continuous mode to intermittent, sporadic mode at the period between the summit eruption and the fissure eruptions. The dominant frequency also changed around the same time. Secondly to derive the location of tremor source, Amplitude Inversion Method [Battaglia and Aki, 2003

  7. The physics of large eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume

  8. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  9. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  10. Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians

    PubMed Central

    Gochfeld, Michael; Jeitner, Christian; Burke, Sean; Volz, Conrad D.; Snigaroff, Ronald; Snigaroff, Daniel; Shukla, Tara; Shukla, Sheila

    2014-01-01

    Levels of mercury and other contaminants should be lower in birds nesting on isolated oceanic islands and at high latitudes without any local or regional sources of contamination, compared to more urban and industrialized temperate regions. We examined concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in the eggs, and the feathers of fledgling and adult glaucous-winged gulls (Larus glaucescens) nesting in breeding colonies on Adak, Amchitka, and Kiska Islands in the Aleutian Chain of Alaska in the Bering Sea/North Pacific. We tested the following null hypotheses: 1) There were no differences in metal levels among eggs and feathers of adult and fledgling glaucous-winged gulls, 2) There were no differences in metal levels among gulls nesting near the three underground nuclear test sites (Long Shot 1965, Milrow 1969, Cannikin 1971) on Amchitka, 3) There were no differences in metal levels among the three islands, and 4) There were no gender-related differences in metal levels. All four null hypotheses were rejected at the 0.05 level, although there were few differences among the three test sites on Amchitka. Eggs had the lowest levels of cadmium, lead, and mercury, and the feathers of adults had the lowest levels of selenium. Comparing only adults and fledglings, adults had higher levels of cadmium, chromium, lead and mercury, and fledglings had higher levels of arsenic, manganese and selenium. There were few consistent interisland differences, although levels were generally lower for eggs and feathers from gulls on Amchitka compared to the other islands. Arsenic was higher in both adult feathers and eggs from Amchitka compared to Adak, and chromium and lead were higher in adult feathers and eggs from Adak compared to Amchitka. Mercury and arsenic, and chromium and manganese levels were significantly correlated in the feathers of both adult and fledgling gulls. The feathers of males had significantly higher levels of chromium and

  11. Synthesizing knowledge of ocean islands

    NASA Astrophysics Data System (ADS)

    Jefferson, Anne J.; Lees, Jonathan M.; McClinton, Tim

    2011-11-01

    AGU Chapman Conference on the Galápagos as a Laboratory for the Earth Sciences; Puerto Ayora, Galápagos, Ecuador, 25-30 July 2011 An inspiration for Darwin's theory of evolution, the Galápagos Islands and surrounding waters are a natural laboratory for a wide range of Earth science topics. The Galápagos are perfectly situated for geophysical and geochemical investigations of deep-Earth processes at a hot spot, and proximity to a spreading center allows exploration of hot spot-ridge interactions. Several highly active volcanoes show rapid deformation facilitating investigation of melt transport paths and volcanic structure. The islands exhibit a range of ages, eruptive styles, and climatic zones that allow analysis of hydrogeologic and geomorphic processes. The Galápagos Islands are a World Heritage Site and are an ideal setting for developing an integrated biological and geological understanding of ocean island evolution.

  12. FOGO-2014: Monitoring the Fogo 2014 Eruption, Cape Verde

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui; Faria, Bruno

    2015-04-01

    Fogo volcano, located in the Cape Verde Archipelago offshore Western Africa, is a complete stratovolcano system that was created by the Cape Verde hotspot, forming the island of Fogo. The top (Pico do Fogo) reaches ~2830m above sea level, and raises ~1100m above Chã das Caldeiras, an almost flat circular area with approximately 10 kilometres in the north-south direction and 7 kilometres in the east-west direction. Chã das Caldeiras, surrounded towards the West by the ~1000m high Bordeira rampart, has been inhabited since the early 20th Century, because it is one of the most productive agricultural areas in this semi-arid country. Fogo volcano erupted on November 23, 2014 (~10:00UTC) on a subsidiary vent of the main cone, after 19 years of inactivity. C4G (Collaboratory for Geosciences), a distributed research infrastructure created in 2014 in the framework of the Portuguese Roadmap for Strategic Research Infrastructures, immediately offered support to the Cape Verdean authorities, with the goal of complementing the permanent geophysical monitoring network operated in Fogo island by INMG, the Cape Verdean Meteorological and Geophysical Institute. This permanent network is composed of seven seismographic stations and three tiltmeter stations, and the data is transmitted in real time to the INMG geophysical laboratory in São Vicente Island, where it is analysed on a routine basis. Pre-eruptive activity started to be detected by the permanent monitoring network on October 2014, with earthquakes occurring at depths larger than 15 km. These events led to a first volcanic warning to the Cape Verdean Civil Protection Agency. On November 22 several volcano-tectonic earthquakes were recorded at shallow depths, indicating shallow fracturing. On the basis of this activity, INMG issued a formal alert of an impending eruption to the Civil Protection Agency, ~24 hours before the onset of the eruption. Volcanic tremor and clear tiltmeter signals were recorded about one hour

  13. Diverse Water-Magma Interactions In The Conduit And Column During The 2008 Okmok Eruption, Alaska

    NASA Astrophysics Data System (ADS)

    Ort, M. H.; Unema, J. A.; Neal, C. A.; Larsen, J. F.; Schaefer, J. R.

    2015-12-01

    Ground, surface, and atmospheric water affected the Okmok (central Aleutians, Alaska) 2008 eruption in diverse ways. An initial 16-km-high column produced a widespread coarse fallout. Explosion breccias and lithic-rich fallout overlie this deposit proximally, topped by an ash with abundant accretionary lapilli and ash pellets. After this, a water-rich flood, likely from ejected lake water, left deposits in the eastern caldera. Pyroclastic density currents traveled northward in the caldera, leaving both coarse-ash dune forms and massive unsorted deposits. We interpret these to mark vent opening or widening, with diverse currents forming in different sectors due to directed explosions and partial column collapse. The rest of the eruption was characterized by water-rich ash and steam columns 1-4 km high, with brief <9-km-high periods. Several vents formed during the eruption; one enlarged a pre-existing lake and others formed a new lake, a small tuff ring, and a 300-m-high tuff cone. Surface water, shallow groundwater in coarse sediments, and atmospheric water were abundantly available throughout the eruption. Cone D Lake (13.6 Mm3 volume) drained into the North vent 7-10 days into the eruption, with massive groundwater and sediment removal. Nearby pit craters have no ejecta; surficial lava collapsed when underlying sediments were removed. The eruption column was typically gray or white, rarely black, and ashfall dominates the deposits at all localities, reflecting efficient fragmentation and deposition. Scrubbing of the plume by erupted and atmospheric water caused rapid deposition of the ash, so deposits thin rapidly away from the vent. Laminae and thin lenses dominate the deposits outside the caldera whereas some intracaldera deposits are massive beds up to several decimeters thick. Wind-blown ash-laden mist made low-angle ripples and discontinuous laminae; ash rain deposited continuous laminae. A capping vesicular ash (Av soil horizon) formed as a water

  14. The ongoing Puʻu ʻŌʻō eruption of Kīlauea Volcano, Hawaiʻi: 30 years of eruptive activity

    USGS Publications Warehouse

    Orr, Tim R.; Heliker, Christina; Patrick, Matthew R.

    2013-01-01

    The Puʻu ʻŌʻō eruption of Kīlauea Volcano is its longest rift-zone eruption in more than 500 years. Since the eruption began in 1983, lava flows have buried 48 square miles (125 square kilometers) of land and added about 500 acres (200 hectares) of new land to the Island of Hawaiʻi. The eruption not only challenges local communities, which must adapt to an ever-changing and sometimes-destructive environment, but has also drawn millions of visitors to Hawaiʻi Volcanoes National Park. U.S. Geological Survey (USGS) scientists closely monitor and evaluate hazards at Hawaiʻi’s volcanoes and also work with park rangers to help ensure safe lava viewing for visitors.

  15. Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2012-04-01

    Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on

  16. Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into the forms that energy takes have only recently become available. Solar flares have been phenomena of both academic and practical interest since their discovery in 1859. From the academic point of view, they are the nearest events for studying the explosive release of energy in astrophysical magnetized plasmas. From the practical point of view, they disrupt communication channels on Earth, from telegraph communications in 1859 to radio and television signals today. Flares also wreak havoc on the electrical power grid, satellite operations, and GPS signals, and energetic charged particles and radiation are dangerous to passengers on high-altitude polar flights and to astronauts. Flares are not the only explosive phenomena on the Sun. More difficult to observe but equally energetic are the large coronal mass ejections (CMEs), the ejection of up to ten billion tons of magnetized plasma into the solar wind at speeds that can exceed 1000 km/s. CMEs are primarily observed from the side, with coronagraphs that block out the bright disk of the Sun and lower solar atmosphere so that light scattered from the ejected mass can be seen. Major geomagnetic storms are now known to arise from the interaction of CMEs with Earth's magnetosphere. Solar flares are observed without CMEs, and CMEs are observed without flares. The two phenomena often occur together, however, and almost always do in the case of large flares and fast CMEs. The term solar eruptive event refers to the combination of a flare and a CME. Solar eruptive events generate a lot of heat: They can heat plasma to temperatures as high at 50 million Kelvin, producing radiation across the electromagnetic spectrum. But that s not all. A fascinating aspect of solar eruptive events is the acceleration of electrons and ions to suprathermal often relativistic energies. The accelerated particles are primarily

  17. An Eruption on Io

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The first images returned to Earth by New Horizons during its close encounter with Jupiter feature the Galilean moon Io, snapped with the Long Range Reconnaissance Imager (LORRI) at 0840 UTC on February 26, while the moon was 2.5 million miles (4 million kilometers) from the spacecraft.

    Io is intensely heated by its tidal interaction with Jupiter and is thus extremely volcanically active. That activity is evident in these images, which reveal an enormous dust plume, more than 150 miles high, erupting from the volcano Tvashtar. The plume appears as an umbrella-shaped feature of the edge of Io's disk in the 11 o'clock position in the right image, which is a long-exposure (20-millisecond) frame designed specifically to look for plumes like this. The bright spots at 2 o'clock are high mountains catching the setting sun; beyond them the night side of Io can be seen, faintly illuminated by light reflected from Jupiter itself.

    The left image is a shorter exposure -- 3 milliseconds -- designed to look at surface features. In this frame, the Tvashtar volcano shows as a dark spot, also at 11 o'clock, surrounded by a large dark ring, where an area larger than Texas has been covered by fallout from the giant eruption.

    This is the clearest view yet of a plume from Tvashtar, one of Io's most active volcanoes. Ground-based telescopes and the Galileo Jupiter orbiter first spotted volcanic heat radiation from Tvashtar in November 1999, and the Cassini spacecraft saw a large plume when it flew past Jupiter in December 2000. The Keck telescope in Hawaii picked up renewed heat radiation from Tvashtar in spring 2006, and just two weeks ago the Hubble Space Telescope saw the Tvashtar plume in ultraviolet images designed to support the New Horizons flyby.

    Most of those images will be stored onboard the spacecraft for downlink to Earth in March and April.

  18. Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey; Aster, Richard; Jones, Kyle R.; Kyle, Philip; McIntosh, Bill

    2008-11-01

    We invert for acoustic source volume outflux and momentum imparted to the atmosphere using an infrasonic network distributed about the erupting lava lake at Mount Erebus, Ross Island, Antarctica. By modeling these relatively simple eruptions as monopole point sources we estimate explosively ejected gas volumes that range from 1,000 m 3 to 24,000 m 3 for 312 lava lake eruptions recorded between January 6 and April 13, 2006. Though these volumes are compatible with bubble volumes at rupture (as estimated from explosion video records), departures from isotropic radiation are evident in the recorded acoustic wavefield for many eruptions. A point-source acoustic dipole component with arbitrary axis orientation and strength provides precise fit to the recorded infrasound. This dipole source axis, corresponding to the axis of inferred short-duration material jetting, varies significantly between events. Physical interpretation of dipole orientation as being indicative of eruptive directivity is corroborated by directional emissions of ejecta observed in Erebus eruption video footage. Although three azimuthally distributed stations are insufficient to fully characterize the eruptive acoustic source we speculate that a monopole with a minor amount of oriented dipole radiation may reasonably model the primary features of the recorded infrasound for these eruptions.

  19. Contrasting pyroclast density spectra from subaerial and submarine silicic eruptions in the Kermadec arc: implications for eruption processes and dredge sampling

    NASA Astrophysics Data System (ADS)

    Barker, Simon J.; Rotella, Melissa D.; Wilson, Colin J. N.; Wright, Ian C.; Wysoczanski, Richard J.

    2012-08-01

    Pyroclastic deposits from four caldera volcanoes in the Kermadec arc have been sampled from subaerial sections (Raoul and Macauley) and by dredging from the submerged volcano flanks (Macauley, Healy, and the newly discovered Raoul SW). Suites of 16-32 mm sized clasts have been analyzed for density and shape, and larger clasts have been analyzed for major element compositions. Density spectra for subaerial dry-type eruptions on Raoul Island have narrow unimodal distributions peaking at vesicularities of 80-85%, whereas ingress of external water (wet-type eruption) or extended timescales for degassing generate broader distributions, including denser clasts. Submarine-erupted pyroclasts show two different patterns. Healy and Raoul SW dredge samples and Macauley Island subaerial-emplaced samples are dominated by modes at ~80-85%, implying that submarine explosive volcanism at high eruption rates can generate clasts with similar vesicularities to their subaerial counterparts. A minor proportion of Healy and Raoul SW clasts also show a pink oxidation color, suggesting that hot clasts met air despite 0.5 to >1 km of intervening water. In contrast, Macauley dredged samples have a bimodal density spectrum dominated by clasts formed in a submarine-eruptive style that is not highly explosive. Macauley dredged pyroclasts are also the mixed products of multiple eruptions, as shown by pumice major-element chemistry, and the sea-floor deposits reflect complex volcanic and sedimentation histories. The Kermadec calderas are composite features, and wide dispersal of pumice does not require large single eruptions. When coupled with chemical constraints and textural observations, density spectra are useful for interpreting both eruptive style and the diversity of samples collected from the submarine environment.

  20. 75 FR 64957 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... fishery in the Eastern Aleutian District and the Bering Sea subarea on September 1, 2010 (75 FR 53606... remain anonymous). Attachments to electronic comments will be accepted in Microsoft Word, Excel,...

  1. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  2. Investigation of Solar Eruptive Prominences

    NASA Astrophysics Data System (ADS)

    Su, Yingna; McCauley, Patrick; van Ballegooijen, Adriaan; Ji, Haisheng; Reeves, Katharine; DeLuca, Edward

    2015-08-01

    At first, we will present an investigation of the polar crown prominence that erupted on 2012 March 12. This prominence is observed at the southeast limb by SDO/AIA (end-on view) and displays a quasi vertical-thread structure. Bright U-shape (horn-like) structure is observed surrounding the upper portion of the prominence (171 Angstrom) before the eruption and becomes more prominent during the eruption. When viewed on the disk, STEREO-B shows that this long prominence is composed of a series of vertical threads and displays a half loop-like structure during the eruption. We focus on the magnetic support of the prominence by studying the structure and dynamics of the prominence before and during the eruption using observations from SDO and STEREO. We construct a series of magnetic field models (including sheared arcade model, twisted flux rope model, and model with HFT), then compare with observations. Various observational characteristics appear to support the twisted flux rope model. Our study suggests that the flux rope supporting the prominence enters the regime of torus instability at the onset of the fast rise phase, and signature of reconnection appears about one hour later. In the second part, we will present a statistical study on the kinematics of limb eruptive prominences observed by SDO/AIA. A brief introduction on an online catalog of prominence eruptions observed by SDO/AIA will also be presented.

  3. Geochemical surveys in the Lusi mud eruption

    NASA Astrophysics Data System (ADS)

    Sciarra, Alessandra; Mazzini, Adriano; Etiope, Giuseppe; Inguaggiato, Salvatore; Hussein, Alwi; Hadi J., Soffian

    2016-04-01

    The Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the Java Island. In the framework of the Lusi Lab project (ERC grant n° 308126) we carried out geochemical surveys in the Sidoarjo district (Eastern Java Island, Indonesia) to investigate the gas bearing properties of the Watukosek fault system that crosses the Lusi mud eruption area. Soil gas (222Rn, CO2, CH4) concentration and flux measurements were performed 1) along two detailed profiles (~ 1km long), trending almost W-E direction, and 2) inside the Lusi embankment (about 7 km2) built to contain the erupted mud. Higher gas concentrations and fluxes were detected at the intersection with the Watukosek fault and the antithetic fault system. These zones characterized by the association of higher soil gas values constitute preferential migration pathways for fluids towards surface. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). The main shear zones are populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude higher for φCH4. An additional geochemical profile was completed perpendicularly to the Watukosek fault escarpement (W-E direction) at the foots of the Penanngungang volcano. Results reveal CO2 and CH4 flux values significantly lower than those measured in the embankment, however an increase of radon and flux measurements is observed approaching the foots of the escarpment. These measurements are complemented with a database of ~350 CH4 and CO2 flux measurements and some soil gas concentrations (He, H2, CO2, CH4 and C2H6) and their isotopic analyses (δ13C-CH4, δD-CH4 and δ13C-CO2). Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. The collected results shed light on the origin of the

  4. Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia)

    NASA Astrophysics Data System (ADS)

    Vidal, Céline M.; Komorowski, Jean-Christophe; Métrich, Nicole; Pratomo, Indyo; Kartadinata, Nugraha; Prambada, Oktory; Michel, Agnès; Carazzo, Guillaume; Lavigne, Franck; Rodysill, Jessica; Fontijn, Karen; Surono

    2015-09-01

    The 1257 A.D. caldera-forming eruption of Samalas (Lombok, Indonesia) was recently associated with the largest sulphate spike of the last 2 ky recorded in polar ice cores. It is suspected to have impacted climate both locally and at a global scale. Extensive fieldwork coupled with sedimentological, geochemical and physical analyses of eruptive products enabled us to provide new constraints on the stratigraphy and eruptive dynamics. This four-phase continuous eruption produced a total of 33-40 km3 dense rock equivalent (DRE) of deposits, consisting of (i) 7-9 km3 DRE of pumiceous plinian fall products, (ii) 16 km3 DRE of pyroclastic density current deposits (PDC) and (iii) 8-9 km3 DRE of co-PDC ash that settled over the surrounding islands and was identified as far as 660 km from the source on the flanks of Merapi volcano (Central Java). Widespread accretionary lapilli-rich deposits provide evidence of the occurrence of a violent phreatomagmatic phase during the eruption. With a peak mass eruption rate of 4.6 × 108 kg/s, a maximum plume height of 43 km and a dispersal index of 110,500 km2, the 1257 A.D. eruption stands as the most powerful eruption of the last millennium. Eruption dynamics are consistent with an efficient dispersal of sulphur-rich aerosols across the globe. Remarkable reproducibility of trace element analysis on a few milligrammes of pumiceous tephra provides unequivocal evidence for the geochemical correlation of 1257 A.D. proximal reference products with distal tephra identified on surrounding islands. Hence, we identify and characterise a new prominent inter-regional chronostratigraphic tephra marker.

  5. An Analysis of Eruptions Detected by the LMSAL Eruption Patrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.

    2014-12-01

    Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.

  6. Characterization of Solar Eruptions reported by EruptionPatrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, Neal

    2015-04-01

    Observation of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. A method for automatically identifying eruptions near the solar surface (either from filaments or otherwise) has recently been developed and integrated into the Heliophysics Events Knowledgebase. Here we report on the EruptionPatrol module for identifying eruptions in data collected by the SDO/AIA instrument and on the characterization and analysis of its output. A cluster analysis on the time periods reported by EruptionPatrol demarcates several large-scale events spanning significant portions of the solar disk with lifetimes of up to six hours.

  7. Quaternary Eruptions of the Mono-Inyo Craters, California

    NASA Astrophysics Data System (ADS)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  8. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.

    1998-05-01

    An ion probe study of trace elements in Mg-rich clinopyroxene phenocrysts in primitive Aleutian lavas provides constraints on the genesis of Aleutian adakites, and possible insights into the source of common Aleutian magmas. Clinopyroxene (cpx) phenocrysts in the primitive adakites have high Sr and Nd/Yb compared to cpx in Aleutian basalts. In the adakites, Sr and Nd/Yb are highest for high Mg# cpx, and these concentrations decrease toward lower Mg# compositions. These trends are the opposite of those seen in basalt cpx which generally show increasing incompatible trace element contents with decreasing Mg#, and are unlike antithetic compatible-incompatible trace element trends produced by chemical or kinetic effects of crystal growth. Petrographic observations and major and trace element zonation in cpx phenocrysts indicate that primitive Aleutian adakites are in part the product of mixing between primitive and relatively evolved magmas. The adakite trace element signature (high Sr, Nd/Yb) is clearly associated with the primitive mixing end-member. This observation supports the idea that adakites are derived by equilibration of slab melts with mantle olivine, and appears to rule out an origin by melting in the lower crust. Adakites are relatively rare in the Aleutians, but arc-wide correlations between Sr and La/Yb indicates that an adakite-type slab melt component may be present in the magmatic source throughout the arc.

  9. What drives centuries-long polygenetic scoria cone activity at Barren Island volcano?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu

    2014-12-01

    Barren Island in the Andaman Sea is an active mafic stratovolcano, which had explosive and effusive eruptions, followed by caldera formation, in prehistoric time (poorly dated). A scoria cone within the caldera, marking volcanic resurgence, was active periodically from 1787 to 1832 (the historic eruptions). Since 1991, the same scoria cone has produced six eruptions, commonly including lava flows. Links between Barren Island's eruptions and giant earthquakes (such as the 26 December 2004 Great Sumatra megathrust earthquake) have been suggested, though there is no general correlation between them. The ≥ 227-year-long activity of the scoria cone, named here Shanku ("cone"), is normally driven by purely magmatic processes. I present a "source to surface" model for Barren Island and Shanku, including the source region, deeper and shallow magma chambers, volcanotectonics, dyking from magma chambers, and eruptions and eruptive style as controlled by crustal stresses, composition and